Sample records for nuclear properties

  1. Transport Properties in Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  2. 41 CFR 109-45.309-53 - Nuclear-related or proliferation sensitive property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Nuclear-related or proliferation sensitive property. 109-45.309-53 Section 109-45.309-53 Public Contracts and Property Management... Personal Property § 109-45.309-53 Nuclear-related or proliferation sensitive property. Nuclear-related or...

  3. 41 CFR 109-45.309-53 - Nuclear-related or proliferation sensitive property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Nuclear-related or proliferation sensitive property. 109-45.309-53 Section 109-45.309-53 Public Contracts and Property Management... Personal Property § 109-45.309-53 Nuclear-related or proliferation sensitive property. Nuclear-related or...

  4. 41 CFR 109-45.309-53 - Nuclear-related or proliferation sensitive property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Nuclear-related or proliferation sensitive property. 109-45.309-53 Section 109-45.309-53 Public Contracts and Property Management... Personal Property § 109-45.309-53 Nuclear-related or proliferation sensitive property. Nuclear-related or...

  5. 41 CFR 109-45.309-53 - Nuclear-related or proliferation sensitive property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Nuclear-related or proliferation sensitive property. 109-45.309-53 Section 109-45.309-53 Public Contracts and Property Management... Personal Property § 109-45.309-53 Nuclear-related or proliferation sensitive property. Nuclear-related or...

  6. 41 CFR 109-45.309-53 - Nuclear-related or proliferation sensitive property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Nuclear-related or proliferation sensitive property. 109-45.309-53 Section 109-45.309-53 Public Contracts and Property Management... Personal Property § 109-45.309-53 Nuclear-related or proliferation sensitive property. Nuclear-related or...

  7. The NUBASE2016 evaluation of nuclear properties

    NASA Astrophysics Data System (ADS)

    Audi, G.; Kondev, F. G.; Wang, Meng; Huang, W. J.; Naimi, S.

    2017-03-01

    This paper presents the NUBASE2016 evaluation that contains the recommended values for nuclear and decay properties of 3437 nuclides in their ground and excited isomeric (T1/2 >= 100 ns) states. All nuclides for which any experimental information is known were considered. NUBASE2016 covers all data published by October 2016 in primary (journal articles) and secondary (mainly laboratory reports and conference proceedings) references, together with the corresponding bibliographical information. During the development of NUBASE2016, the data available in the 'Evaluated Nuclear Structure Data File' (ENSDF) database were consulted and critically assessed for their validity and completeness. Furthermore, a large amount of new data and some older experimental results that were missing from ENSDF were compiled, evaluated and included in NUBASE2016. The atomic mass values were taken from the 'Atomic Mass Evaluation' (AME2016, second and third parts of the present issue). In cases where no experimental data were available for a particular nuclide, trends in the behavior of specific properties in neighboring nuclides (TNN) were examined. This approach allowed to estimate values for a range of properties that are labeled in NUBASE2016 as 'non-experimental' (flagged '#'). Evaluation procedures and policies used during the development of this database are presented, together with a detailed table of recommended values and their uncertainties. AMDC: http://amdc.impcas.ac.cn/ Contents The NUBASE2016 evaluation of nuclear propertiesAcrobat PDF (1.1 MB) Table I. The NUBASE2016 table of nuclear and decay propertiesAcrobat PDF (706 KB)

  8. Surface properties for α-cluster nuclear matter

    NASA Astrophysics Data System (ADS)

    Castro, J. J.; Soto, J. R.; Yépez, E.

    2013-03-01

    We introduce a new microscopic model for α-cluster matter, which simulates the properties of ordinary nuclear matter and α-clustering in a curved surface of a large but finite nucleus. The model is based on a nested icosahedral fullerene-like multiple-shell structure, where each vertex is occupied by a microscopic α-particle. The novel aspect of this model is that it allows a consistent description of nuclear surface properties from microscopic parameters to be made without using the leptodermous expansion. In particular, we show that the calculated surface energy is in excellent agreement with the corresponding coefficient of the Bethe-Weizäcker semi-empirical mass formula. We discuss the properties of the surface α-cluster state, which resembles an ultra cold bosonic quantum gas trapped in an optical lattice. By comparing the surface and interior states we are able to estimate the α preformation probability. Possible extensions of this model to study nuclear dynamics through surface vibrations and departures from approximate sphericity are mentioned.

  9. 41 CFR 109-43.305-50 - Nuclear-related and proliferation-sensitive personal property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Nuclear-related and proliferation-sensitive personal property. 109-43.305-50 Section 109-43.305-50 Public Contracts and Property... Excess § 109-43.305-50 Nuclear-related and proliferation-sensitive personal property. Nuclear-related and...

  10. 41 CFR 109-43.305-50 - Nuclear-related and proliferation-sensitive personal property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Nuclear-related and proliferation-sensitive personal property. 109-43.305-50 Section 109-43.305-50 Public Contracts and Property... Excess § 109-43.305-50 Nuclear-related and proliferation-sensitive personal property. Nuclear-related and...

  11. 41 CFR 109-43.305-50 - Nuclear-related and proliferation-sensitive personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Nuclear-related and proliferation-sensitive personal property. 109-43.305-50 Section 109-43.305-50 Public Contracts and Property... Excess § 109-43.305-50 Nuclear-related and proliferation-sensitive personal property. Nuclear-related and...

  12. 41 CFR 109-43.305-50 - Nuclear-related and proliferation-sensitive personal property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Nuclear-related and proliferation-sensitive personal property. 109-43.305-50 Section 109-43.305-50 Public Contracts and Property... Excess § 109-43.305-50 Nuclear-related and proliferation-sensitive personal property. Nuclear-related and...

  13. 41 CFR 109-43.305-50 - Nuclear-related and proliferation-sensitive personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Nuclear-related and proliferation-sensitive personal property. 109-43.305-50 Section 109-43.305-50 Public Contracts and Property... Excess § 109-43.305-50 Nuclear-related and proliferation-sensitive personal property. Nuclear-related and...

  14. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  15. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  16. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  17. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  18. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  19. Technetium-99m: basic nuclear physics and chemical properties.

    PubMed

    Castronovo, F P

    1975-05-01

    The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.

  20. Electron Correlation and Tranport Properties in Nuclear Fuel Materials

    NASA Astrophysics Data System (ADS)

    Yin, Quan; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey; Pickett, Warren

    2011-03-01

    Using first principle LDA+DMFT method, we conduct a systematic study on the correlated electronic structures and transport properties of select actinide carbides, nitrides, and oxides, many of which are nuclear fuel materials. Our results capture the metal--insulator Mott transition within the studied systems, and the appearance of the Zhang-Rice state in uranium dioxide. More importantly, by understanding the physics underlying their transport properties, we suggest ways to improve the efficiency of currently used fuels. This work is supported by the DOE Nuclear Energy University Program, contract No. 00088708.

  1. Nuclear equation of state from ground and collective excited state properties of nuclei

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Paar, N.

    2018-07-01

    This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.

  2. Effects of medium on nuclear properties in multifragmentation

    NASA Astrophysics Data System (ADS)

    De, J. N.; Samaddar, S. K.; Viñas, X.; Centelles, M.; Mishustin, I. N.; Greiner, W.

    2012-08-01

    In multifragmentation of hot nuclear matter, properties of fragments embedded in a soup of nucleonic gas and other fragments should be modified as compared with isolated nuclei. Such modifications are studied within a simple model where only nucleons and one kind of heavy nuclei are considered. The interaction between different species is described with a momentum-dependent two-body potential whose parameters are fitted to reproduce properties of cold isolated nuclei. The internal energy of heavy fragments is parametrized according to a liquid-drop model with density- and temperature-dependent parameters. Calculations are carried out for several subnuclear densities and moderate temperatures, for isospin-symmetric and asymmetric systems. We find that the fragments get stretched due to interactions with the medium and their binding energies decrease with increasing temperature and density of nuclear matter.

  3. NUBASE2012 Evaluation of Nuclear Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M., E-mail: wangm@impcas.ac.cn; CSNSM-Orsay, MPI-K, D-69117 Heidelberg; Audi, G.

    NUBASE is a database containing the recommended values for the main properties of all known nuclides in their ground and excited isomeric states. Since the publication of the first version in 1997, NUBASE has been widely used in the nuclear science community. The latest version (NUBASE2012) was published in December 2012. Two specific examples are given to illustrate the evaluation policy of NUBASE2012.

  4. Reverse engineering nuclear properties from rare earth abundances in the r process

    NASA Astrophysics Data System (ADS)

    Mumpower, M. R.; McLaughlin, G. C.; Surman, R.; Steiner, A. W.

    2017-03-01

    The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths around A∼ 160, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. We explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. We conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.

  5. Reverse engineering nuclear properties from rare earth abundances in the r process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.

    The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less

  6. Reverse engineering nuclear properties from rare earth abundances in the r process

    DOE PAGES

    Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.; ...

    2017-02-01

    The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less

  7. The NUBASE2016 evaluation of nuclear properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audi, G.; Kondev, F. G.; Wang, Meng

    This paper presents the NUBASE2016 evaluation that contains the recommended values for nuclear and decay properties of 3437 nuclides in their ground and excited isomeric (T1/2≥100 ns) states. All nuclides for which any experimental information is known were considered. NUBASE2016 covers all data published by October 2016 in primary (journal articles) and secondary (mainly laboratory reports and conference proceedings) references, together with the corresponding bibliographical information. During the development of NUBASE2016, the data available in the “Evaluated Nuclear Structure Data File” (ENSDF) database were consulted and critically assessed for their validity and completeness. Furthermore, a large amount of new datamore » and some older experimental results that were missing from ENSDF were compiled, evaluated and included in NUBASE2016. The atomic mass values were taken from the “Atomic Mass Evaluation” (AME2016, second and third parts of the present issue). In cases where no experimental data were available for a particular nuclide, trends in the behavior of specific properties in neighboring nuclides (TNN) were examined. This approach allowed to estimate values for a range of properties that are labeled in NUBASE2016 as “non-experimental” (flagged “#”). Evaluation procedures and policies used during the development of this database are presented, together with a detailed table of recommended values and their uncertainties. AMDC: http://amdc.impcas.ac.cn/« less

  8. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6 May interested persons and entities request that real property at defense nuclear facilities be...

  9. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6 May interested persons and entities request that real property at defense nuclear facilities be...

  10. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  11. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  12. Progress in Electromagnetic Alteration of Nuclear Decay Properties

    NASA Astrophysics Data System (ADS)

    Casperson, R. J.; Hughes, R. O.; Burke, J. T.; Scielzo, N. D.; Soufli, R.

    2014-03-01

    Significant alteration of nuclear decay properties would have important consequences, ranging from novel approaches to nuclear batteries and gamma-ray lasers, to improved viability for physics experiments with short-lived targets. Quantum systems that decay by photon emission must couple to the electromagnetic modes of the local environment, and by modifying these modes, one can manipulate the rate of spontaneous emission. The nuclear isomer 235mU is low-energy, long-lived, and is easily populated through 239Pu α-decay, which makes it an excellent benchmark for this effect. The decay rate of this isomer in a variety of environments is currently under investigation. Implications of this work will be discussed, and first results will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Progress in Electromagnetic Alteration of Nuclear Decay Properties

    NASA Astrophysics Data System (ADS)

    Casperson, R. J.; Burke, J. T.; Hughes, R. O.; Scielzo, N. D.; Soufli, R.

    2013-10-01

    Significant alteration of nuclear decay properties would have important consequences, ranging from novel approaches to nuclear batteries and gamma-ray lasers, to improved viability for physics experiments with short-lived targets. Quantum systems that decay by photon emission must couple to the electromagnetic modes of the local environment, and by modifying these modes, one can manipulate the rate of spontaneous emission. The nuclear isomer 235mU is low-energy, long-lived, and is easily populated through 239Pu α-decay, which makes it an excellent benchmark for this effect. The decay rate of this isomer in a variety of environments is currently under investigation. Implications of this work will be discussed, and first results will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep

    PubMed Central

    Feric, Marina; Broedersz, Chase P.; Brangwynne, Clifford P.

    2015-01-01

    The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin’s mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales. PMID:26577186

  15. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6... transferred for economic development? Any person or entity may request that specific real property be made...

  16. Nuclear ``pasta'' structures in low-density nuclear matter and properties of the neutron-star crust

    NASA Astrophysics Data System (ADS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2013-08-01

    In the neutron-star crust, nonuniform structure of nuclear matter—called the “pasta” structure—is expected. From recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron-star crust. To investigate the above quantities, we numerically explore the pasta structure with a fully three-dimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of “pasta.”

  17. A method to investigate the diffusion properties of nuclear calcium.

    PubMed

    Queisser, Gillian; Wittum, Gabriel

    2011-10-01

    Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.

  18. Considerations of Alloy 617 Application in the Gen IV Nuclear Reactor Systems - Part II: Metallurgical Property Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju

    2010-01-01

    Alloy 617 is currently considered as a leading candidate material for high temperature components in the Gen IV Nuclear Reactor Systems. Because of the unprecedented severe working conditions beyond its commercial service experience required by the Gen IV systems, the alloy faces various challenges in both mechanical and metallurgical properties. Following a previous paper discussing the mechanical property challenges, this paper is focused on the challenges and issues in metallurgical properties of the alloy for the intended nuclear application. Considerations are given in details about its metallurgical stability and aging evolution, aging effects on mechanical properties, potential Co hazard, andmore » internal oxidation. Some research and development activities are suggested with discussions on viability to satisfy the Gen IV Nuclear Reactor System needs.« less

  19. A systematic and feasible method for computing nuclear contributions to electrical properties of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Luis, Josep M.; Duran, Miquel; Andrés, José L.

    1997-08-01

    An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values.

  20. Quantitative properties of clustering within modern microscopic nuclear models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volya, A.; Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru

    2016-09-15

    A method for studying cluster spectroscopic properties of nuclear fragmentation, such as spectroscopic amplitudes, cluster form factors, and spectroscopic factors, is developed on the basis of modern precision nuclear models that take into account the mixing of large-scale shell-model configurations. Alpha-cluster channels are considered as an example. A mathematical proof of the need for taking into account the channel-wave-function renormalization generated by exchange terms of the antisymmetrization operator (Fliessbach effect) is given. Examples where this effect is confirmed by a high quality of the description of experimental data are presented. By and large, the method in question extends substantially themore » possibilities for studying clustering phenomena in nuclei and for improving the quality of their description.« less

  1. Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.

    1986-04-01

    In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.

  2. Nuclear quantum effects on structure and transport properties of dense liquid helium

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin

    2015-11-01

    Transport properties of dense liquid helium under the conditions of planet's core and cool atmosphere of white dwarfs are important for determining the structure and evolution of these astrophysical objects. We have investigated these properties of dense liquid helium by using the improved centroid path-integral simulations combined with density functional theory. The results show that with the inclusion of nuclear quantum effects (NQEs), the self-diffusion is largely higher while the shear viscosity is notably lower than the results of without the inclusion of NQEs due to the lower collision cross sections even when the NQEs have little effects on the static structures. The potential surface of helium atom along the simulation trajectory is quite different between MD and PIMD simulations. We have shown that the quantum nuclear character induces complex behaviors for ionic transport properties of dense liquid helium. NQEs bring more fluctuations of local electronic density of states than the classical treatment. Therefore, in order to construct more reasonable structure and evolution model for the planets and WDs, NQEs must be reconsidered when calculating the transport properties at certain temperature and density conditions.

  3. Sigma omega meson coupling and properties of nuclei and nuclear matter

    NASA Astrophysics Data System (ADS)

    Haidari, Maryam M.; Sharma, Madan M.

    2008-05-01

    We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model.

  4. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false May interested persons and entities request that real property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6...

  5. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  6. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false May interested persons and entities request that real property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6...

  7. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...

  8. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...

  9. 10 CFR 770.5 - How does DOE notify persons and entities that defense nuclear facility real property is available...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false How does DOE notify persons and entities that defense nuclear facility real property is available for transfer for economic development? 770.5 Section 770.5 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC...

  10. 10 CFR 770.5 - How does DOE notify persons and entities that defense nuclear facility real property is available...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false How does DOE notify persons and entities that defense nuclear facility real property is available for transfer for economic development? 770.5 Section 770.5 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC...

  11. Properties of nuclear matter from macroscopic-microscopic mass formulas

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun

    2015-12-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  12. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false What procedures are to be used to transfer real property at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  13. Nuclear relaxation and vibrational contributions to the static electrical properties of polyatomic molecules: beyond the Hartree-Fock approximation

    NASA Astrophysics Data System (ADS)

    Luis, Josep M.; Martí, Josep; Duran, Miquel; Andrés, JoséL.

    1997-04-01

    Electronic and nuclear contributions to the static molecular electrical properties, along with the Stark tuning rate ( δνE ) and the infrared cross section changes ( δSE) have been calculated at the SCF level and at different correlated levels of theory, using a TZ2P basis set and finite field techniques. Nuclear contributions to these molecular properties have also been calculated using a recent analytical approach that allow both to check the accuracy of the finite field values, and to evaluate the importance of higher-order derivatives. The HF, CO, H 2O, H 2CO, and CH 4 molecules have been studied and the results compared to experimental date when available. The paper shows that nuclear relaxation and vibrational contributions must be included in order to obtain accurate values of the static electrical properties. Two different, combined approaches are proposed to predict experimental values of the electrical properties to an error smaller than 5%.

  14. Considerations of Alloy 617 Application in the Gen IV Nuclear Reactor Systems - Part I: Mechanical Property Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju

    2010-01-01

    Alloy 617 is currently considered as a leading candidate material for high temperature components in the Gen IV Nuclear Reactor Systems. Because of the unprecedented severe working conditions beyond its commercial service experience required by the Gen IV systems, the alloy faces various challenges in both mechanical and metallurgical properties. This paper, as Part I of the discussion, is focused on the challenges and issues in the mechanical properties of Alloy 617 for the intended nuclear application. Considerations are given in details in its mechanical property data scatter, low creep strength in the desired high temperature range, lack of longtermmore » creep curves, high loading rate dependency, and preponderant tertiary creep. Some research and development activities are suggested with discussions on their viability to satisfy the Gen IV Nuclear Reactor System needs in near future and in the long run.« less

  15. The nuclear dynamo; Can a nuclear tornado annihilate nations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, J.R. Jr.

    1991-01-01

    This paper reports on the development of the hypothesis of a nuclear dynamo for a controlled nuclear fusion reactor. This dynamo hypothesis suggests properties for a nuclear tornado that could annihilate nations if accidentally triggered by a single high yield to weight nuclear weapon detonation. The formerly classified reports on ignition of the atmosphere, the properties of a nuclear dynamo, methods to achieve a nuclear dynamo in the laboratory, and the analogy of a nuclear dynamo to a nuclear tornado are discussed. An unclassified international study of this question is urged.

  16. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome.

    PubMed

    Dahl, Kris Noel; Scaffidi, Paola; Islam, Mohammad F; Yodh, Arjun G; Wilson, Katherine L; Misteli, Tom

    2006-07-05

    The nuclear lamina is a network of structural filaments, the A and B type lamins, located at the nuclear envelope and throughout the nucleus. Lamin filaments provide the nucleus with mechanical stability and support many basic activities, including gene regulation. Mutations in LMNA, the gene encoding A type lamins, cause numerous human diseases, including the segmental premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here we show that structural and mechanical properties of the lamina are altered in HGPS cells. We demonstrate by live-cell imaging and biochemical analysis that lamins A and C become trapped at the nuclear periphery in HGPS patient cells. Using micropipette aspiration, we show that the lamina in HGPS cells has a significantly reduced ability to rearrange under mechanical stress. Based on polarization microscopy results, we suggest that the lamins are disordered in the healthy nuclei, whereas the lamins in HGPS nuclei form orientationally ordered microdomains. The reduced deformability of the HGPS nuclear lamina possibly could be due to the inability of these orientationally ordered microdomains to dissipate mechanical stress. Surprisingly, intact HGPS cells exhibited a degree of resistance to acute mechanical stress similar to that of cells from healthy individuals. Thus, in contrast to the nuclear fragility seen in lmna null cells, the lamina network in HGPS cells has unique mechanical properties that might contribute to disease phenotypes by affecting responses to mechanical force and misregulation of mechanosensitive gene expression.

  17. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE PAGES

    Li, Yulan; Hu, Shenyang; Sun, Xin; ...

    2017-04-14

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  18. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  19. Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter

    NASA Astrophysics Data System (ADS)

    Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.

    2018-06-01

    We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.

  20. Spectroscopic properties of nuclear skyrme energy density functionals.

    PubMed

    Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G

    2014-12-19

    We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.

  1. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Information supporting the economic viability of the proposed development; and (v) The consideration offered... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  2. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less

  3. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... supporting the economic viability of the proposed development; and (v) The consideration offered and any... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  4. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... supporting the economic viability of the proposed development; and (v) The consideration offered and any... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  5. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... supporting the economic viability of the proposed development; and (v) The consideration offered and any... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  6. Properties of ΣQ*, ΞQ* and ΩQ* heavy baryons in cold nuclear matter

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Er, N.

    2018-02-01

    The in-medium properties of the heavy spin-3/2 ΣQ*, ΞQ* and ΩQ* baryons with Q being b or c quark are investigated. The shifts in some spectroscopic parameters of these particles due to the saturated cold nuclear matter are calculated. The variations of those parameters with respect to the changes in the density of the cold nuclear medium are studied, as well. It is observed that the parameters of ΣQ* baryons are considerably affected by the nuclear matter compared to the ΞQ* and ΩQ* particles that roughly do not see the medium. The results obtained may be used in analyses of the data to be provided by the in-medium experiments like PANDA.

  7. Functional properties of poly(tetrafluoroethylene) (PTFE) gasket working in nuclear reactor conditions

    NASA Astrophysics Data System (ADS)

    Wyszkowska, Edyta; Leśniak, Magdalena; Kurpaska, Lukasz; Prokopowicz, Rafal; Jozwik, Iwona; Sitarz, Maciej; Jagielski, Jacek

    2018-04-01

    In this study structural and nanomechanical properties of polytetrafluoroethylene (PTFE) used as a gasket in the nuclear reactor have been deeply investigated. In order to reveal structural changes caused by long-term pressure, temperature and irradiation (possibly neutron and gamma), methods such as SEM, X-ray diffraction and Raman Spectroscopy have been used. Nanomechanical properties such as Young Modulus and hardness were investigated by means of the nanoindentation technique. Presented study confirmed the influence of working (radiative) environment on the functional properties of PTFE. The results of Raman spectroscopy and X-ray diffraction techniques revealed shift of the major band positions and band intensities increase. Moreover, changes of hardness and Young Modulus values of the irradiated material with respect to the virgin specimen have been recorded. This phenomenon can be attributed to the modifications in crystallinity of the material. Presented work suggest that morphology of the irradiated material altered from well-ordered parallel fibers to more dense and thicker ones.

  8. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  9. Black Hole Demographics in and Nuclear Properties of Nearby Low Luminosity Radio Galaxies; Connections to Radio Activity?

    NASA Technical Reports Server (NTRS)

    Baum, S. A.; Kleijn, G. A. Verdoes; Xu, C.; ODea, C. P.; deZeeuw, P. T.

    2004-01-01

    We combine the results of an HST STIS and WFPC study of a complete sample of 21 nearby UGC low luminosity radio galaxies with the results of a radio VLA and VLBA study of the same sample. We examine the relationship between the stellar and gaseous properties of the galaxies on tens to hundreds of parsec scale with the properties of the radio jets on the same scale. From the VLA and VLBA data we constrain the physics of the outflowing radio plasma from the tens of parsecs to hundreds of kiloparsec scales. From the WFPC2 H alpha and dust images and the STIS kinematics of the near nuclear gas we obtain constraints on the orientation of near nuclear disks of gas and measures of the nuclear stellar, continuum point source, and line emission fluxes. Under the statistically supported assumption that the radio jet issues perpendicular to the disk, we use the orientation of the optical (large scale accretion?) disks to constrain the three-dimensional orientation of the radio ejection. From HST/STIS spectroscopy of the near-nuclear emission line gas we obtain measures/limits on the black hole masses. We examine correlations between the VLBA and VLA-scale radio emission, the nuclear line emission, and the nuclear optical and radio continuum emission. Though our sample is relatively small, it is uniquely well defined, spans a narrow range in redshift and we have a consistent set of high resolution data with which to carefully examine these relationships. We use the combined radio and optical data to: 1) Constrain the orientation, physics, and bulk outflow speed of the radio plasma; 2) Put limits on the mass accretion rate and study the relationship between black hole mass, radio luminosity, and near nuclear gaseous content; 3) Provide insight into the relationship between BL Lac objects and low luminosity radio galaxies.

  10. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less

  11. Nuclear Lamins

    PubMed Central

    Dechat, Thomas; Adam, Stephen A.; Taimen, Pekka; Shimi, Takeshi; Goldman, Robert D.

    2010-01-01

    The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription. PMID:20826548

  12. National Nuclear Data Center

    Science.gov Websites

    reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and

  13. Evaluated nuclear structure data file

    NASA Astrophysics Data System (ADS)

    Tuli, J. K.

    The Evaluated Nuclear Structure Data File (ENSDF) contains the evaluated nuclear properties of all known nuclides. These properties are derived both from nuclear reaction and radioactive decay measurements. All experimental data are evaluated to create the adopted properties for each nuclide. ENSDF, together with other numeric and biographic files, can be accessed on-line through the INTERNET or modem. Some of the databases are also available on the World Wide Web. The structure and the scope of ENSDF are presented along with the on-line access system of the National Nuclear Data Center at Brookhaven National Laboratory.

  14. Properties of two Lymantria dispar nuclear polyhedrosis virus isolates obtained from the microbial pesticide Gypchek

    Treesearch

    James M. Slavicek; John Podgwaite; Carita Lanner-Herrera

    1992-01-01

    Two Lymantria dispar nuclear polyhedrosis virus isolates, 5-6 and A2-1, differing in the phenotypic characteristic of the number of viral occlusions in infected cells, were obtained from a production lot of the microbial pesticide Gypchek and several of their replication properties were investigated and compared. Budded virus titer produced in cell...

  15. Thermal properties of nuclear matter in a variational framework with relativistic corrections

    NASA Astrophysics Data System (ADS)

    Zaryouni, S.; Hassani, M.; Moshfegh, H. R.

    2014-01-01

    The properties of hot symmetric nuclear matter for a wide range of densities and temperatures are investigated by employing the AV14 potential within the lowest order constrained variational (LOCV) method with the inclusion of a phenomenological three-body force as well as relativistic corrections. The relativistic corrections of many-body kinetic energies as well as the boot interaction corrections are presented for a wide range of densities and temperatures. The free energy, pressure, incompressibility, and other thermodynamic quantities of symmetric nuclear matter are obtained and discussed. The critical temperature is found, and the liquid-gas phase transition is analyzed both with and without the inclusion of three-body forces and relativistic corrections in the LOCV approach. It is shown that the critical temperature is strongly affected by the three-body forces but does not depend on the relativistic corrections. Finally, the results obtained in the present study are compared with other many-body calculations and experimental predictions.

  16. Nuclear fuel cycle waste stream immobilization with cermets for improved thermal properties and waste consolidation

    NASA Astrophysics Data System (ADS)

    Ortega, Luis H.; Kaminski, Michael D.; Zeng, Zuotao; Cunnane, James

    2013-07-01

    In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 × 103 kPa, then sintered at 600 °C and 800 °C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements.

  17. A facile synthesis and carbon-13 nuclear magnetic resonance spectral properties of 7-ketocholesteryl benzoate.

    PubMed

    Parish, E J; Wei, T Y; Livant, P

    1987-10-01

    This paper presents a modified method of the selective allylic oxidation of cholesteryl benzoate. Pyridinium chlorochromate, in refluxing benzene, has been found to be an effective and convenient reagent for the efficient oxidation of cholesteryl benzoate to 7-ketocholesteryl benzoate in high yield. Also included herein are the carbon-13 nuclear magnetic resonance spectral properties of 7-ketocholesteryl benzoate and cholesteryl benzoate.

  18. Nuclear Technology Series. Course 15: Metallurgy and Metals Properties.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Forensics

    DOE PAGES

    Glaser, Alexander; Mayer, Klaus

    2016-06-01

    Whenever nuclear material is found out of regulatory control, questions on the origin of the material, on its intended use, and on hazards associated with the material need to be answered. Analytical and interpretational methodologies have been developed in order to exploit measurable material properties for gaining information on the history of the nuclear material. This area of research is referred to as nuclear forensic science or, in short, nuclear forensics.This chapter reviews the origins, types, and state-of-the-art of nuclear forensics; discusses the potential roles of nuclear forensics in supporting nuclear security; and examines what nuclear forensics can realistically achieve.more » It also charts a path forward, pointing at potential applications of nuclear forensic methodologies in other areas.« less

  20. Digital computer program for nuclear reactor design water properties (LWBR Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, L.L.

    1967-07-01

    An edit program MO899 for the tabulation of thermodynamic and transport properties of liquid and vapor water, frequently used in design calculations for pressurized water nuclear reactors, is described. The data tabulated are obtained from a FORTRAN IV subroutine named HOH. Values of enthalpy, specific volume, viscosity, and thermal conductivity are given for the following ranges: pressure from one bar (14.5 psia) to 175 bars (2538 psia) and temperature from as much as 320 deg C (608 deg F) below saturation up to 500 deg C (932 deg F) above saturation. (NSA 21: 38472)

  1. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores.

    PubMed

    Law, Y K; Hassanali, A A

    2018-03-14

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  2. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores

    NASA Astrophysics Data System (ADS)

    Law, Y. K.; Hassanali, A. A.

    2018-03-01

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  3. Evaluated nuclear structure data file

    NASA Astrophysics Data System (ADS)

    Tuli, J. K.

    1996-02-01

    The Evaluated Nuclear Structure Data File (ENSDF) contains the evaluated nuclear properties of all known nuclides, as derived both from nuclear reaction and radioactive decay measurements. All experimental data are evaluated to create the adopted properties for each nuclide. ENSDF, together with other numeric and bibliographic files, can be accessed on-line through the INTERNET or modem, and some of the databases are also available on the World Wide Web. The structure and the scope of ENSDF are presented along with the on-line access system of the National Nuclear Data Center at Brookhaven National Laboratory.

  4. The properties of nuclear matter with lattice NN potential in relativistic Brueckner-Hartree-Fock theory

    PubMed Central

    Hu, Jinniu; Toki, Hiroshi; Shen, Hong

    2016-01-01

    We study the properties of nuclear matter with lattice nucleon-nucleon (NN) potential in the relativistic Brueckner-Hartree-Fock (RBHF) theory. To use this potential in such a microscopic many-body theory, we firstly have to construct a one-boson-exchange potential (OBEP) based on the latest lattice NN potential. Three mesons, pion, σ meson, and ω meson, are considered. Their coupling constants and cut-off momenta are determined by fitting the on-shell behaviors and phase shifts of the lattice force, respectively. Therefore, we obtain two parameter sets of the OBEP potential (named as LOBEP1 and LOBEP2) with these two fitting ways. We calculate the properties of symmetric and pure neutron matter with LOBEP1 and LOBEP2. In non-relativistic Brueckner-Hartree-Fock case, the binding energies of symmetric nuclear matter are around −3 and −5 MeV at saturation density, while it becomes −8 and −12 MeV in relativistic framework with 1S0, 3S1, and 3D1 channels using our two parameter sets. For the pure neutron matter, the equations of state in non-relativistic and relativistic cases are very similar due to only consideration 1S0 channel with isospin T = 1 case. PMID:27752124

  5. The properties of nuclear matter with lattice NN potential in relativistic Brueckner-Hartree-Fock theory.

    PubMed

    Hu, Jinniu; Toki, Hiroshi; Shen, Hong

    2016-10-18

    We study the properties of nuclear matter with lattice nucleon-nucleon (NN) potential in the relativistic Brueckner-Hartree-Fock (RBHF) theory. To use this potential in such a microscopic many-body theory, we firstly have to construct a one-boson-exchange potential (OBEP) based on the latest lattice NN potential. Three mesons, pion, σ meson, and ω meson, are considered. Their coupling constants and cut-off momenta are determined by fitting the on-shell behaviors and phase shifts of the lattice force, respectively. Therefore, we obtain two parameter sets of the OBEP potential (named as LOBEP1 and LOBEP2) with these two fitting ways. We calculate the properties of symmetric and pure neutron matter with LOBEP1 and LOBEP2. In non-relativistic Brueckner-Hartree-Fock case, the binding energies of symmetric nuclear matter are around -3 and -5 MeV at saturation density, while it becomes -8 and -12 MeV in relativistic framework with 1 S 0 , 3 S 1 , and 3 D 1 channels using our two parameter sets. For the pure neutron matter, the equations of state in non-relativistic and relativistic cases are very similar due to only consideration 1 S 0 channel with isospin T = 1 case.

  6. Investigating the binding properties of porous drug delivery systems using nuclear sensors (radiotracers) and positron annihilation lifetime spectroscopy--predicting conditions for optimum performance.

    PubMed

    Mume, Eskender; Lynch, Daniel E; Uedono, Akira; Smith, Suzanne V

    2011-06-21

    Understanding how the size, charge and number of available pores in porous material influences the uptake and release properties is important for optimising their design and ultimately their application. Unfortunately there are no standard methods for screening porous materials in solution and therefore formulations must be developed for each encapsulated agent. This study investigates the potential of a library of radiotracers (nuclear sensors) for assessing the binding properties of hollow silica shell materials. Uptake and release of Cu(2+) and Co(2+) and their respective complexes with polyazacarboxylate macrocycles (dota and teta) and a series of hexa aza cages (diamsar, sarar and bis-(p-aminobenzyl)-diamsar) from the hollow silica shells was monitored using their radioisotopic analogues. Coordination chemistry of the metal (M) species, subtle alterations in the molecular architecture of ligands (Ligand) and their resultant complexes (M-Ligand) were found to significantly influence their uptake over pH 3 to 9 at room temperature. Positively charged species were selectively and rapidly (within 10 min) absorbed at pH 7 to 9. Negatively charged species were preferentially absorbed at low pH (3 to 5). Rates of release varied for each nuclear sensor, and time to establish equilibrium varied from minutes to days. The subtle changes in design of the nuclear sensors proved to be a valuable tool for determining the binding properties of porous materials. The data support the development of a library of nuclear sensors for screening porous materials for use in optimising the design of porous materials and the potential of nuclear sensors for high through-put screening of materials.

  7. Thermal and physicochemical properties important for the long term behavior of nuclear waste glasses

    NASA Astrophysics Data System (ADS)

    Matzke, Hj.; Vernaz, E.

    High level nuclear waste from reprocessing of spent nuclear fuel has to be solidified in a stable matrix for safe long-time storage. Vitrification in borosilicate glasses is the technique accepted worldwide as the best combination of engineering constraints from fabrication and physicochemical properties of the matrix. A number of different glasses was developed in different national programs. The criteria and the reasons for selecting the final compositions are described briefly. Emphasis is placed on the French product R7T7 and on thermal and physicochemical properties though glasses developed in other national projects (e.g., the German product GP 98/12, etc.) are also treated. The basic physical and mechanical properties and the chemical durability of the glass in contact with water are described. The basic mechanisms of aqueous corrosion are discussed and the evolving modelling of the leaching process is dealt with, as well as effects of container material, backfill, etc. The thermal behavior has also been studied and extensive data exist on diffusion of glass constituents (Na) and of interesting elements of the waste such as the alkalis Rb and Cs or the actinides U and Pu, as well as on crystallization processes in the glass during storage at elevated temperatures. Emphasis is placed on the radiation stability of the glasses, based on extensive studies using short-lived actinides (e.g., 244Cm) or ion implantation to produce the damage expected during long storage at an accelerated rate. The radiation stability is shown to be very good, if realistic damage conditions are used. The knowledge accumulated in the past years is used to evaluate and predict the long-term evolution of the glass under storage conditions.

  8. LLAMA: nuclear stellar properties of Swift-BAT AGN and matched inactive galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Davies, R. I.; Hicks, E. K. S.; Burtscher, L.; Contursi, A.; Genzel, R.; Koss, M.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2018-02-01

    In a complete sample of local 14-195 keV selected active galactic nuclei (AGNs) and inactive galaxies, matched by their host galaxy properties, we study the spatially resolved stellar kinematics and luminosity distributions at near-infrared wavelengths on scales of 10-150 pc, using SINFONI on the VLT. In this paper, we present the first half of the sample, which comprises 13 galaxies, eight AGNs and five inactive galaxies. The stellar velocity fields show a disc-like rotating pattern, for which the kinematic position angle is in agreement with the photometric position angle obtained from large scale images. For this set of galaxies, the stellar surface brightness of the inactive galaxy sample is generally comparable to the matched sample of AGN, but extends to lower surface brightness. After removal of the bulge contribution, we find a nuclear stellar light excess with an extended nuclear disc structure, which exhibits a size-luminosity relation. While we expect the excess luminosity to be associated with a dynamically cooler young stellar population, we do not typically see a matching drop in dispersion. This may be because these galaxies have pseudo-bulges in which the intrinsic dispersion increases towards the centre. And although the young stars may have an impact in the observed kinematics, their fraction is too small to dominate over the bulge and compensate the increase in dispersion at small radii, so no dispersion drop is seen. Finally, we find no evidence for a difference in the stellar kinematics and nuclear stellar luminosity excess between these active and inactive galaxies.

  9. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Snead, Mary A.; Field, Kevin G.

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the developmentmore » of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.« less

  10. Nuclear and Physical Properties of Dielectrics under Neutron Irradiation in Fast (BN-600) and Fusion (DEMO-S) Reactors

    NASA Astrophysics Data System (ADS)

    Blokhin, D. A.; Chernov, V. M.; Blokhin, A. I.

    2017-12-01

    Nuclear and physical properties (activation and transmutation of elements) of BN and Al2O3 dielectric materials subjected to neutron irradiation for up to 5 years in Russian fast (BN-600) and fusion (DEMO-S) reactors were calculated using the ACDAM-2.0 software complex for different post-irradiation cooling times (up to 10 years). Analytical relations were derived for the calculated quantities. The results may be used in the analysis of properties of irradiated dielectric materials and may help establish the rules for safe handling of these materials.

  11. Frictional Properties of Opalinus Clay: Implications for Nuclear Waste Storage

    NASA Astrophysics Data System (ADS)

    Orellana, L. F.; Scuderi, M. M.; Collettini, C.; Violay, M.

    2018-01-01

    The kaolinite-bearing Opalinus Clay (OPA) is the host rock proposed in Switzerland for disposal of radioactive waste. However, the presence of tectonic faults intersecting the OPA formation put the long-term safety performance of the underground repository into question due to the possibility of earthquakes triggered by fault instability. In this paper, we study the frictional properties of the OPA shale. To do that, we have carried out biaxial direct shear experiments under conditions typical of nuclear waste storage. We have performed velocity steps (1-300 μm/s) and slide-hold-slide tests (1-3,000 s) on simulated fault gouge at different normal stresses (4-30 MPa). To establish the deformation mechanisms, we have analyzed the microstructures of the sheared samples through scanning electron microscopy. Our results show that peak (μpeak) and steady state friction (μss) range from 0.21 to 0.52 and 0.14 to 0.39, respectively, thus suggesting that OPA fault gouges are weak. The velocity dependence of friction indicates a velocity strengthening regime, with the friction rate parameter (a - b) that decreases with normal stress. Finally, the zero healing values imply a lack of restrengthening during interseismic periods. Taken together, if OPA fault reactivates, our experimental evidence favors an aseismic slip behavior, making the nucleation of earthquakes difficult, and long-term weakness, resulting in stable fault creeping over geological times. Based on the results, our study confirms the seismic safety of the OPA formation for a nuclear waste repository.

  12. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Authors, Various

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  13. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  14. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barsoum, Michel; Bentzel, Grady; Tallman, Darin J.

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosenmore » for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.« less

  15. AtomicNuclearProperties

    Science.gov Websites

    ) Polytrifluorochloroethylene [C2F3Cl]n Polyvinylacetate [CH2CHOCOCH3]n Polyvinyl alcohol (C2H3-O-H)n Polyvinyl butyral [C8H1302 other materal for properties of interest in high-energy physics: stopping power (<-dE/dx>) tables (C10H16O) Aniline (C6H5NH2) Anthracene (C14H10) Benzene C6H6 Butane (C4H10) n-Butyl alcohol (C4H9OH) Carbon

  16. Nuclear Mechanics in Disease

    PubMed Central

    Zwerger, Monika; Ho, Chin Yee; Lammerding, Jan

    2015-01-01

    Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell’s microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can affect not only nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer. PMID:21756143

  17. Nuclear Forensics. Chapter 18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Klaus; Glaser, Alexander

    Whenever nuclear material is found out of regulatory control, questions on the origin of the material, on its intended use, and on hazards associated with the material need to be answered. Here, analytical and interpretational methodologies have been developed in order to exploit measurable material properties for gaining information on the history of the nuclear material. This area of research is referred to as nuclear forensic science or, in short, nuclear forensics.This chapter reviews the origins, types, and state-of-the-art of nuclear forensics; discusses the potential roles of nuclear forensics in supporting nuclear security; and examines what nuclear forensics can realisticallymore » achieve. Lastly, it also charts a path forward, pointing at potential applications of nuclear forensic methodologies in other areas.« less

  18. The Alarmin Properties of DNA and DNA-associated Nuclear Proteins.

    PubMed

    Magna, Melinda; Pisetsky, David S

    2016-05-01

    The communication of cell injury and death is a critical element in host defense. Although immune cells can serve this function by elaborating cytokines and chemokines, somatic cells can repurpose nuclear macromolecules to function as damage-associated molecular patterns (DAMPs) or alarmins to exert similar activity. Among these molecules, DNA, high-mobility group box-1, and histone proteins can all act as DAMPs once they are in an extracellular location. This review describes current information on the role of the nuclear DAMPs, their translocation to the outside of cells, and pathways of activation after uptake into the inside of immune cells. MEDLINE and PubMed databases were searched for citations (1990-2016) in English related to the following terms: DAMPs, high-mobility group box-1, DNA, histones, cell death, danger, and immune activation. Selected articles with the most relevant studies were included for a more detailed consideration. Although nuclear molecules have important structural and genetic regulatory roles inside the cell nucleus, when released into the extracellular space during cell death, these molecules can acquire immune activity and serve as alarmins or DAMPs. Although apoptosis is generally considered the source of extracellular nuclear material, other cell death pathways such as necroptosis, NETosis, and pyroptosis can contribute to the release of nuclear molecules. Importantly, the release of nuclear DAMPs occurs with both soluble and particulate forms of these molecules. The activity of nuclear molecules may depend on posttranslational modifications, redox changes, and the binding of other molecules. Once in an extracellular location, nuclear DAMPs can engage the same pattern recognition receptors as do pathogen-associated molecular patterns. These interactions can activate immune cells and lead to cytokine and chemokine production. Among these receptors, internal receptors for DNA are key to the response to this molecule; the likely

  19. Three-Dimensional Nuclear Chart--Understanding Nuclear Physics and Nucleosynthesis in Stars

    ERIC Educational Resources Information Center

    Koura, Hiroyuki

    2014-01-01

    Three-dimensional (3D) nuclear charts were created using toy blocks, which represent the atomic masses per nucleon number and the total half-lives for each nucleus in the entire region of the nuclear mass. The bulk properties of the nuclei can be easily understood by using these charts. Subsequently, these charts were used in outreach activities…

  20. Nuclear Data Sheets for A = 136

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.

    2002-04-01

    Experimental data on ground-- and excited--state properties for all known nuclei with mass number A=136 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties are presented. This work supersedes the 1994 evaluation by J.K. Tuli (1994Tu01).

  1. Transport Properties of the Nuclear Pasta Phase with Quantum Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Nandi, Rana; Schramm, Stefan

    2018-01-01

    We study the transport properties of nuclear pasta for a wide range of density, temperature, and proton fractions, relevant for different astrophysical scenarios adopting a quantum molecular dynamics model. In particular, we estimate the values of shear viscosity as well as electrical and thermal conductivities by calculating the static structure factor S(q) using simulation data. In the density and temperature range where the pasta phase appears, the static structure factor shows irregular behavior. The presence of a slab phase greatly enhances the peak in S(q). However, the effect of irregularities in S(q) on the transport coefficients is not very dramatic. The values of all three transport coefficients are found to have the same orders of magnitude as found in theoretical calculations for the inner crust matter of neutron stars without the pasta phase; therefore, the values are in contrast to earlier speculations that a pasta layer might be highly resistive, both thermally and electrically.

  2. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcones, Almudena; Escher, Jutta E.; Others, M.

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9more » - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.« less

  3. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Bernstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta E.; Fields, Brian D.; Fröhlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William G.; McLaughlin, Gail C.; Meyer, Bradley S.; Mezzacappa, Anthony; Nunes, Filomena; O'Shea, Brian W.; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert E.; Schatz, Hendrik; Smith, Michael S.; Stairs, Ingrid H.; Steiner, Andrew W.; Strohmayer, Tod E.; Timmes, F. X.; Townsley, Dean M.; Wiescher, Michael; Zegers, Remco G. T.; Zingale, Michael

    2017-05-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.

  4. Operational level for unconditional release of contaminated property from affected areas around Fukushima Daiichi nuclear power plant

    PubMed Central

    Ogino, Haruyuki; Hattori, Takatoshi

    2013-01-01

    This paper focuses on the surface contamination control of slightly contaminated property after the Fukushima nuclear accident. The operational level for the unconditional release of contaminated properties is calculated in counts per minute (cpm) to enable the use of a typical Geiger-Muller (GM) survey meter with a 50-mm bore, on the basis of the surficial clearance level of 10 Bq cm−2 for 134Cs and 137Cs derived in the previous studies of the authors. By applying a factor for the conversion of the unit surface contamination to the count rate of a survey meter widely used after the Fukushima accident, the operational level for the unconditional release of contaminated properties was calculated to be 2300 cpm on average and 23 000 cpm at the highest-contamination part. The calculated numerical values of the operational levels are effective as long as the typical GM survey meter is used in the radiation measurement. PMID:23778575

  5. Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    DOE PAGES

    Aarts, G.; Aichelin, J.; Allton, C.; ...

    2017-05-16

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Some recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. Here, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profoundmore » knowledge of the dynamical properties of the quark-gluon plasma.« less

  6. The nuclear Thomas-Fermi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, W.D.; Swiatecki, W.J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear mattermore » and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.« less

  7. The Nuclear Thomas-Fermi Model

    DOE R&D Accomplishments Database

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  8. Structure for Storing Properties of Particles (PoP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N. R.; Mattoon, C. M.; Beck, B. R.

    2014-06-01

    Some evaluated nuclear databases are critical for applications such as nuclear energy, nuclear medicine, homeland security, and stockpile stewardship. Particle masses, nuclear excitation levels, and other “Properties of Particles” are essential for making evaluated nuclear databases. Currently, these properties are obtained from various databases that are stored in outdated formats. Moreover, the “Properties of Particles” (PoP) structure is being designed that will allow storing all information for one or more particles in a single place, so that each evaluation, simulation, model calculation, etc. can link to the same data. Information provided in PoP will include properties of nuclei, gammas andmore » electrons (along with other particles such as pions, as evaluations extend to higher energies). Presently, PoP includes masses from the Atomic Mass Evaluation version 2003 (AME2003), and level schemes and gamma decays from the Reference Input Parameter Library (RIPL-3). The data are stored in a hierarchical structure. An example of how PoP stores nuclear masses and energy levels will be presented here.« less

  9. Structure for Storing Properties of Particles (PoP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.R., E-mail: infinidhi@llnl.gov; Mattoon, C.M.; Beck, B.R.

    2014-06-15

    Evaluated nuclear databases are critical for applications such as nuclear energy, nuclear medicine, homeland security, and stockpile stewardship. Particle masses, nuclear excitation levels, and other “Properties of Particles” are essential for making evaluated nuclear databases. Currently, these properties are obtained from various databases that are stored in outdated formats. A “Properties of Particles” (PoP) structure is being designed that will allow storing all information for one or more particles in a single place, so that each evaluation, simulation, model calculation, etc. can link to the same data. Information provided in PoP will include properties of nuclei, gammas and electrons (alongmore » with other particles such as pions, as evaluations extend to higher energies). Presently, PoP includes masses from the Atomic Mass Evaluation version 2003 (AME2003), and level schemes and gamma decays from the Reference Input Parameter Library (RIPL-3). The data are stored in a hierarchical structure. An example of how PoP stores nuclear masses and energy levels will be presented here.« less

  10. Nuclear Data Sheets for A = 69

    NASA Astrophysics Data System (ADS)

    Nesaraja, C. D.

    2014-01-01

    Experimental data on ground- and excited-state properties for all known nuclei with mass number A = 69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R. Bhat and J.K. Tuli (2000Bh05).

  11. Nuclear Data Sheets for A=69

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesaraja, C.D.

    Experimental data on ground– and excited–state properties for all known nuclei with mass number A=69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R. Bhat and J.K. Tuli (2000Bh05)

  12. Towards a Conceptual Diagnostic Survey in Nuclear Physics

    ERIC Educational Resources Information Center

    Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa

    2011-01-01

    Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at…

  13. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  14. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  15. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  16. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  17. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  18. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  19. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    DOE PAGES

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; ...

    2016-12-28

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less

  20. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less

  1. A nuclear chocolate box: the periodic table of nuclear medicine.

    PubMed

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry.

  2. Nuclear structure and reaction properties of Ne, Mg and Si isotopes with RMF densities

    NASA Astrophysics Data System (ADS)

    Panda, R. N.; Sharma, Mahesh K.; Patra, S. K.

    2014-01-01

    We have studied nuclear structure and reaction properties of Ne, Mg and Si isotopes, using relativistic mean field (RMF) densities, in the framework of Glauber model. Total reaction cross-section σR for Ne isotopes on 12C target have been calculated at incident energy 240 MeV. The results are compared with the experimental data and with the recent theoretical study [W. Horiuchi et al., Phys. Rev. C 86, 024614 (2012)]. Study of σR using deformed densities have shown a good agreement with the data. We have also predicted total reaction cross-section σR for Ne, Mg and Si isotopes as projectiles and 12C as target at different incident energies.

  3. Quantum nuclear pasta and nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  4. Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.

    PubMed

    Rybkin, Vladimir V; VandeVondele, Joost

    2017-04-06

    Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO 2 , HO 2 , and O 2 ) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO 2 , where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.

  5. Structural integrity of materials in nuclear service: a bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heddleson, F.A.

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.

  6. Nuclear Data Sheets for A = 138

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.

    2003-03-01

    Experimental data on ground- and excited-state properties for all known nuclei with mass number A=138 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties are given. This work supersedes the 1995 evaluation by J.K. Tuli (1995Tu01). Manuscripts published before December 2002 have been included in this work.

  7. Applications of a global nuclear-structure model to studies of the heaviest elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, P.; Nix, J.R.

    1993-10-01

    We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, {alpha}-decay properties, {beta}-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements.

  8. Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps

    NASA Astrophysics Data System (ADS)

    Block, Michael

    2017-11-01

    The X. international workshop on "Application of Lasers and Storage Devices in Atomic Nuclei Research" took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.

  9. Nuclear cartography: patterns in binding energies and subatomic structure

    NASA Astrophysics Data System (ADS)

    Simpson, E. C.; Shelley, M.

    2017-11-01

    Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements around us were formed in stars. One way of visualising these nuclear properties is through the nuclide chart, which maps all nuclides as a function of their proton and neutron numbers. Here we use the nuclide chart to illustrate various aspects of nuclear physics, and present 3D visualisations of it produced as part of the binding blocks project.

  10. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).

    PubMed

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  11. A New Look to Nuclear Data

    DOE PAGES

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    2017-03-30

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  12. A New Look to Nuclear Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  13. Predictions of nuclear charge radii

    NASA Astrophysics Data System (ADS)

    Bao, M.; Lu, Y.; Zhao, Y. M.; Arima, A.

    2016-12-01

    The nuclear charge radius is a fundamental property of an atomic nucleus. In this article we study the predictive power of empirical relations for experimental nuclear charge radii of neighboring nuclei and predict the unknown charge radii of 1085 nuclei based on the experimental CR2013 database within an uncertainty of 0.03 fm.

  14. Nuclear physics: Macroscopic aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiatecki, W.J.

    1993-12-01

    A systematic macroscopic, leptodermous approach to nuclear statics and dynamics is described, based formally on the assumptions {h_bar} {yields} 0 and b/R << 1, where b is the surface diffuseness and R the nuclear radius. The resulting static model of shell-corrected nuclear binding energies and deformabilities is accurate to better than 1 part in a thousand and yields a firm determination of the principal properties of the nuclear fluid. As regards dynamics, the above approach suggests that nuclear shape evolutions will often be dominated by dissipation, but quantitative comparisons with experimental data are more difficult than in the case ofmore » statics. In its simplest liquid drop version the model exhibits interesting formal connections to the classic astronomical problem of rotating gravitating masses.« less

  15. Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less

  16. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors

    DOE PAGES

    Yamamoto, Yukinori; Pint, Bruce A.; Terrani, Kurt A.; ...

    2015-10-19

    Development of nuclear grade, iron-based wrought FeCrAl alloys has been initiated for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys with enhanced accident tolerance. Ferritic alloys with sufficient chromium and aluminum additions can exhibit significantly improved oxidation kinetics in high-temperature steam environments when compared to zirconium-based alloys. In the first phase, a set of model FeCrAl alloys containing 10–20Cr, 3–5Al, and 0–0.12Y in weight percent, were prepared by conventional arc-melting and hot-working processes to explore the effect of composition on the properties of FeCrAlY alloys. It was found that the tensile properties were insensitivemore » to the alloy compositions studied; however, the steam oxidation resistance strongly depended on both the chromium and the aluminum contents. The second phase development focused on strengthening Fe-13Cr-5Al with minor alloying additions of molybdenum, niobium, and silicon. Combined with an optimized thermo-mechanical treatment, a thermally stable microstructure was produced with improved tensile properties at temperatures up to 741°C.« less

  17. Forging the link between nuclear reactions and nuclear structure.

    PubMed

    Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J

    2014-04-25

    A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64  MeV/A.

  18. Colloquium: Astromaterial science and nuclear pasta

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Horowitz, C. J.

    2017-10-01

    "Astromaterial science" is defined as the study of materials in astronomical objects that are qualitatively denser than materials on Earth. Astromaterials can have unique properties related to their large density, although they may be organized in ways similar to more conventional materials. By analogy to terrestrial materials, this study of astromaterials is divided into hard and soft and one example of each is discussed. The hard astromaterial discussed here is a crystalline lattice, such as the Coulomb crystals in the interior of cold white dwarfs and in the crust of neutron stars, while the soft astromaterial is nuclear pasta found in the inner crusts of neutron stars. In particular, how molecular dynamics simulations have been used to calculate the properties of astromaterials to interpret observations of white dwarfs and neutron stars is discussed. Coulomb crystals are studied to understand how compact stars freeze. Their incredible strength may make crust "mountains" on rotating neutron stars a source for gravitational waves that the Laser Interferometer Gravitational-Wave Observatory (LIGO) may detect. Nuclear pasta is expected near the base of the neutron star crust at densities of 1014 g /cm3 . Competition between nuclear attraction and Coulomb repulsion rearranges neutrons and protons into complex nonspherical shapes such as sheets (lasagna) or tubes (spaghetti). Semiclassical molecular dynamics simulations of nuclear pasta have been used to study these phases and calculate their transport properties such as neutrino opacity, thermal conductivity, and electrical conductivity. Observations of neutron stars may be sensitive to these properties and can be used to interpret observations of supernova neutrinos, magnetic field decay, and crust cooling of accreting neutron stars. This Colloquium concludes by comparing nuclear pasta shapes with some similar shapes seen in biological systems.

  19. Nuclear Data Sheets for A=241

    DOE PAGES

    Nesaraja, Caroline D.

    2015-11-27

    This paper presents available information pertaining to the nuclear structure of ground and excited states for all known nuclei with mass numbers A=24, which have been compiled and evaluated. The adopted level and decay schemes, as well as the detailed nuclear properties and configuration assignments based on experimental data are presented for these nuclides. When there are insufficient data, expected values from systematics of nuclear properties or/and theoretical calculations are quoted. Unexpected or discrepant experimental results are also noted. A summary and compilation of the discovery of various isotopes in this mass region is given in 2013Fr02 ( 241Np, 241Pu,more » 241Am, 241Cm, 241Bk, and 241Cf), 2011Me01 (241Es), and 2013Th02 ( 241Fm).« less

  20. Nuclear astrophysics and electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, A.

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  1. Nuclear Data Sheets for A = 133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khazov, Yu.; Rodionov, A.; Kondev, F.G.

    2011-04-15

    Evaluated nuclear structure and decay data for all nuclei within the A=133 mass chain are presented. The experimental data are evaluated and best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by S. Raab (1995Ra12), published in Nuclear Data Sheets75, 491 (1995).

  2. Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient

    PubMed Central

    Shimojima, Masaya; Yuasa, Shinsuke; Motoda, Chikaaki; Yozu, Gakuto; Nagai, Toshihiro; Ito, Shogo; Lachmann, Mark; Kashimura, Shin; Takei, Makoto; Kusumoto, Dai; Kunitomi, Akira; Hayashiji, Nozomi; Seki, Tomohisa; Tohyama, Shugo; Hashimoto, Hisayuki; Kodaira, Masaki; Egashira, Toru; Hayashi, Kenshi; Nakanishi, Chiaki; Sakata, Kenji; Yamagishi, Masakazu; Fukuda, Keiichi

    2017-01-01

    Alteration of the nuclear Ca2+ transient is an early event in cardiac remodeling. Regulation of the nuclear Ca2+ transient is partly independent of the cytosolic Ca2+ transient in cardiomyocytes. One nuclear membrane protein, emerin, is encoded by EMD, and an EMD mutation causes Emery-Dreifuss muscular dystrophy (EDMD). It remains unclear whether emerin is involved in nuclear Ca2+ homeostasis. The aim of this study is to elucidate the role of emerin in rat cardiomyocytes by means of hypertrophic stimuli and in EDMD induced pluripotent stem (iPS) cell-derived cardiomyocytes in terms of nuclear structure and the Ca2+ transient. The cardiac hypertrophic stimuli increased the nuclear area, decreased nuclear invagination, and increased the half-decay time of the nuclear Ca2+ transient in cardiomyocytes. Emd knockdown cardiomyocytes showed similar properties after hypertrophic stimuli. The EDMD-iPS cell-derived cardiomyocytes showed increased nuclear area, decreased nuclear invagination, and increased half-decay time of the nuclear Ca2+ transient. An autopsied heart from a patient with EDMD also showed increased nuclear area and decreased nuclear invagination. These data suggest that Emerin plays a crucial role in nuclear structure and in the nuclear Ca2+ transient. Thus, emerin and the nuclear Ca2+ transient are possible therapeutic targets in heart failure and EDMD. PMID:28290476

  3. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; ...

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  4. Nuclear exoticism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penionzhkevich, Yu. E., E-mail: pyuer@mail.ru

    2016-07-15

    Extreme states of nuclearmatter (such that feature high spins, large deformations, high density and temperature, or a large excess of neutrons and protons) play an important role in studying fundamental properties of nuclei and are helpful in solving the problem of constructing the equation of state for nuclear matter. The synthesis of neutron-rich nuclei near the nucleon drip lines and investigation of their properties permit drawing conclusions about the positions of these boundaries and deducing information about unusual states of such nuclei and about their decays. At the present time, experimental investigations along these lines can only be performed viamore » the cooperation of leading research centers that possess powerful heavy-ion accelerators, such as the Large Hadron Collider (LHC) at CERN and the heavy-ion cyclotrons at the Joint Institute for Nuclear Research (JINR, Dubna), where respective experiments are being conducted by physicists from about 20 JINR member countries. The present article gives a survey of the most recent results in the realms of super neutron-rich nuclei. Implications of the change in the structure of such nuclei near the nucleon drip lines are discussed. Information about the results obtained by measuring the masses (binding energies) of exotic nuclei, the nucleon-distribution radii (neutron halo) and momentum distributions in them, and their deformations and quantum properties is presented. It is shown that the properties of nuclei lying near the stability boundaries differ strongly from the properties of other nuclei. The problem of the stability of nuclei that is associated with the magic numbers of 20 and 28 is discussed along with the effect of new magic numbers.« less

  5. Nuclear data and related services

    NASA Astrophysics Data System (ADS)

    Tuli, J. K.

    1985-10-01

    National Nuclear Data Center (NNDC) maintains a number of data bases containing bibliographic information and evaluated as well as experimental nuclear properties. An evaluated computer file maintained by the NNDC, called the Evaluated Nuclear Structure Data File (ENSDF), contains nuclear structure information for all known nuclides. The ENSDF is the source for the journal Nuclear Data Sheets which is produced and edited by NNDC. The Evaluated Nuclear Data File (ENDF), on the other hand is designed for storage and retrieval of such evaluated nuclear data as are used in neutronic, photonic, and decay heat calculations in a large variety of applications. Some of the publications from these data bases are the Nuclear Wallet Cards, Radioactivity Handbook, and books on neutron cross sections and resonance parameters. In addition, the NNDC maintains three bibliographic files: NSR - for nuclear structure and decay data related references, CINDA - a bibliographic file for neutron induced reactions, and CPBIB for charged particle reactions. Selected retrievals from evaluated data and bibliographic files are possible on-line or on request from NNDC.

  6. Python-Based Tool for Universal Nuclear Data Extraction

    NASA Astrophysics Data System (ADS)

    McDonald, William; Blair, Hayden; Consalvi, Peter; Garbiso, Markus; Grover, Hannah; Harget, Alex; Martin, Matthew; Natzke, Connor; Leach, Kyle

    2017-09-01

    Over the past 70 years, nuclear physics experiments have provided a vast wealth of experimental data on both ground and excited state properties across the nuclear chart. In many cases, searching for and parsing the relevant nuclear structure data from previous work can be tedious and difficult. Although the compilation, evaluation, and digitization of this data by multiple groups around the world over the past several decades has helped dramatically in this respect, the process of performing systematic studies using this data can still be cumbersome and limited. We are in the process of creating a python-based program to extract, sort, and manipulate nuclear and atomic data efficiently. In its current state, the program is able to extract all atomic-shell ionization energies, excited- and ground-state nuclear properties, and all beta-decay rates and ratios. As a part of this ongoing project, we plan to use this tool to examine beta-decay rates in extreme astrophysical environments.

  7. Nuclear Data Sheets for A = 146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khazov, Yu.; Rodionov, A.; Shulyak, G.

    Evaluated nuclear structure and decay data for all nuclei within the A = 146 mass chain are presented. The experimental data are evaluated and best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by L.K. Peker, J.K. Tuli (1997Pe22), published in Nuclear Data Sheets82, 187 (1997).

  8. Nuclear Data Sheets for A = 146

    NASA Astrophysics Data System (ADS)

    Khazov, Yu.; Rodionov, A.; Shulyak, G.

    2016-09-01

    Evaluated nuclear structure and decay data for all nuclei within the A = 146 mass chain are presented. The experimental data are evaluated and best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by L.K. Peker, J.K. Tuli (1997Pe22), published in Nuclear Data Sheets82, 187 (1997).

  9. AGC 2 Irradiated Material Properties Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  10. The nuclear envelope as an integrator of nuclear and cytoplasmic architecture.

    PubMed

    Crisp, Melissa; Burke, Brian

    2008-06-18

    Initially perceived as little more than a container for the genome, our view of the nuclear envelope (NE) and its role in defining global nuclear architecture has evolved significantly in recent years. The recognition that certain human diseases arise from defects in NE components has provided new insight into its structural and regulatory functions. In particular, NE defects associated with striated muscle disease have been shown to cause structural perturbations not just of the nucleus itself but also of the cytoplasm. It is now becoming increasingly apparent that these two compartments display co-dependent mechanical properties. The identification of cytoskeletal binding complexes that localize to the NE now reveals a molecular framework that can seamlessly integrate nuclear and cytoplasmic architecture.

  11. White Paper on Nuclear Data Needs and Capabilities for Basic Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelder, J.; Kawano, T.; Kelley, J.

    Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and societymore » by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.« less

  12. Perturbation theory of nuclear matter with a microscopic effective interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhar, Omar; Lovato, Alessandro

    Here, an updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.

  13. Perturbation theory of nuclear matter with a microscopic effective interaction

    DOE PAGES

    Benhar, Omar; Lovato, Alessandro

    2017-11-01

    Here, an updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.

  14. Experimental data on ground- and excited-state properties for all nuclei with mass number A=144 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes have been built, as well as tables of nuclear properties. This work supersedes the 1989 evaluation by J.K. Tuli (1989Tu02). Manuscripts published before December 2000 have been included in this work

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.

    2001-07-01

    Experimental data on ground- and excited-state properties for all nuclei with mass number A = 144 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes have been built, as well as tables of nuclear properties. This work supersedes the 1989 evaluation by J.K. Tuli (1989Tu02). Manuscripts published before December 2000 have been included in this work.

  15. Nuclear Cartography: Patterns in Binding Energies and Subatomic Structure

    ERIC Educational Resources Information Center

    Simpson, E. C.; Shelley, M.

    2017-01-01

    Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements…

  16. An investigation on high temperature fatigue properties of tempered nuclear-grade deposited weld metals

    NASA Astrophysics Data System (ADS)

    Cao, X. Y.; Zhu, P.; Yong, Q.; Liu, T. G.; Lu, Y. H.; Zhao, J. C.; Jiang, Y.; Shoji, T.

    2018-02-01

    Effect of tempering on low cycle fatigue (LCF) behaviors of nuclear-grade deposited weld metal was investigated, and The LCF tests were performed at 350 °C with strain amplitudes ranging from 0.2% to 0.6%. The results showed that at a low strain amplitude, deposited weld metal tempered for 1 h had a high fatigue resistance due to high yield strength, while at a high strain amplitude, the one tempered for 24 h had a superior fatigue resistance due to high ductility. Deposited weld metal tempered for 1 h exhibited cyclic hardening at the tested strain amplitudes. Deposited weld metal tempered for 24 h exhibited cyclic hardening at a low strain amplitude but cyclic softening at a high strain amplitude. Existence and decomposition of martensite-austenite (M-A) islands as well as dislocations activities contributed to fatigue property discrepancy among the two tempered deposited weld metal.

  17. Physicochemical properties of aerosol released in the case of a fire involving materials used in the nuclear industry.

    PubMed

    Ouf, F-X; Mocho, V-M; Pontreau, S; Wang, Z; Ferry, D; Yon, J

    2015-01-01

    For industrial concerns, and more especially for nuclear applications, the characterization of soot is essential for predicting the behaviour of containment barriers in fire conditions. This study deals with the characterization (emission factor, composition, size, morphology, microstructure) of particles produced during thermal degradation of materials found in nuclear facilities (electrical cables, polymers, oil and solvents). Small-scale experiments have been conducted for oxygen concentrations [O2] ranging from 15% to 21% in order to imitate the oxygen depletion encountered during a confined fire. Particles denote distinct shapes, from aggregates composed of monomers with diameters ranging from 31.2 nm to 52.8 nm, to compact nanoparticles with diameters ranging from 15 nm to 400 nm, and their composition strongly depends on fuel type. Despite the organic to total carbon ratio (OC/TC), their properties are poorly influenced by the decrease in [O2]. Finally, two empirical correlations are proposed for predicting the OC/TC ratio and the monomer diameter, respectively, as a function of the fuel's carbon to hydrogen ratio and the emission factor. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions

    NASA Astrophysics Data System (ADS)

    Bombaci, Ignazio; Logoteta, Domenico

    2018-02-01

    Aims: We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the Δ(1232) isobar intermediate state. This EOS is provided in tabular form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars. Methods: The EOS is derived using the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are next computed solving numerically the Tolman-Oppenheimer-Volkov structure equations. Results: Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon. These experiments provide a selective test for constraining the nuclear EOS up to 4n0. Our EOS models are consistent with present measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M⊙ of the neutron stars in PSR J0348+0432.

  19. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    NASA Astrophysics Data System (ADS)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  20. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, J.; Gandolfi, S.; Pederiva, F.; ...

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  1. Advances in instrumentation for nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pain, S. D.

    The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentationmore » necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.« less

  2. Linking Nuclear Reactions and Nuclear Structure on the Way to the Drip Line

    NASA Astrophysics Data System (ADS)

    Dickhoff, Willem

    2012-10-01

    The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied on data from the (e,e'p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The dispersive optical model (DOM), originally conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. The DOM provides the starting point to provide a framework in which nuclear reactions and structure data can be analyzed consistently to provide unambiguous spectroscopic information including its asymmetry dependence. Recent extensions of this approach include the treatment of non-locality to describe experimental data like the nuclear charge density based on information of the spectral density below the Fermi energy, the application of the DOM ingredients to the description of transfer reactions, a comparison of the microscopic content of the nucleon self-energy based on Faddeev-RPA calculations emphasizing long-range correlations with DOM potentials, and a study of the relation between a self-energy which includes the effect of short-range correlations with DOM potentials. The most recent Dom implementation currently in progress abandons the constraint of local potentials completely to allow an accurate description of various properties of the nuclear ground state.

  3. Gas inflow patterns and nuclear rings in barred galaxies

    NASA Astrophysics Data System (ADS)

    Shen, Juntai; Li, Zhi

    2017-06-01

    Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear ringsare tightly correlated with galactic properties, such as the bar pattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear ringsto measure the parameters of real barred galaxies with detailed gas kinematics. We have also extended current hydrodynamical simulations to model gas features in the Milky Way.

  4. LUNA: Nuclear Astrophysics Deep Underground

    NASA Astrophysics Data System (ADS)

    Broggini, Carlo; Bemmerer, Daniel; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-11-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso National Laboratory, the cross sections of the key reactions of the proton-proton chain and of the carbon-nitrogen-oxygen cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. We review the main results obtained by LUNA during the past 20 years and discuss their influence on our understanding of the properties of the neutrino, the Sun, and the universe itself. Future directions of underground nuclear astrophysics toward the study both of helium and carbon burning and of stellar neutron sources in stars are outlined.

  5. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance; Contescu, Christian I.; Byun, Thak Sang

    2016-08-01

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 *C up to 9.3E25 n/m2 (E > 0.1 MeV). Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free conditions. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3e40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  6. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE PAGES

    Snead, Lance L.; Contescu, C. I.; Byun, T. S.; ...

    2016-04-23

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 C up to 9.3x10 25 n/m 2 (E>0.1 MeV.) Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free condition. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3-40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  7. Patenting the bomb: nuclear weapons, intellectual property, and technological control.

    PubMed

    Wellerstein, Alex

    2008-03-01

    During the course of the Manhattan Project, the U.S. government secretly attempted to acquire a monopoly on the patent rights for inventions used in the production of nuclear weapons and nuclear energy. The use of patents as a system of control, while common for more mundane technologies, would seem at first glance to conflict with the regimes of secrecy that have traditionally been associated with nuclear weapons. In explaining the origins and operations of the Manhattan Project patent system, though, this essay argues that the utilization of patents was an ad hoc attempt at legal control of the atomic bomb by Manhattan Project administrators, focused on the monopolistic aspects of the patent system and preexisting patent secrecy legislation. From the present perspective, using patents as a method of control for such weapons seems inadequate, if not unnecessary; but at the time, when the bomb was a new and essentially unregulated technology, patents played an important role in the thinking of project administrators concerned with meaningful postwar control of the bomb.

  8. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  9. Nuclear Data Sheets for A = 152

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.J.

    2013-11-15

    Detailed level schemes, decay schemes, and the experimental data on which they are based are presented for all nuclei with mass number A=152. The experimental data are evaluated; inconsistencies and discrepancies are noted; and adopted values for level and γ–ray energies, γ intensities, as well as for other nuclear properties are given. This evaluation replaces the A=152 evaluation published by Agda Artna–Cohen in Nuclear Data Sheets 79, 1 (1996) and the evaluation for 152Dy prepared by Balraj Singh and published in Nuclear Data Sheets 95, 995 (2002)

  10. Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Robert E.; Overy, Catherine; Opalka, Daniel

    Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, themore » present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation.« less

  11. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  12. Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejerman, Nicolás, E-mail: n.bejerman@uq.edu.au; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072; Giolitti, Fabián

    Summary: We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cellmore » periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses. - Highlights: • The complete genome of alfalfa dwarf virus is obtained. • An integrated localization and interaction map for ADV is determined. • ADV has a genome sequence similarity and evolutionary links with cytorhabdoviruses. • ADV protein localization and interaction data show an association with the nucleus. • ADV combines properties of both cytoplasmic and nuclear plant rhabdoviruses.« less

  13. Nuclear astrophysics in the laboratory and in the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champagne, A. E., E-mail: artc@physics.unc.edu; Iliadis, C.; Longland, R.

    Nuclear processes drive stellar evolution and so nuclear physics, stellar models and observations together allow us to describe the inner workings of stars and their life stories. This Information on nuclear reaction rates and nuclear properties are critical ingredients in addressing most questions in astrophysics and often the nuclear database is incomplete or lacking the needed precision. Direct measurements of astrophysically-interesting reactions are necessary and the experimental focus is on improving both sensitivity and precision. In the following, we review recent results and approaches taken at the Laboratory for Experimental Nuclear Astrophysics (LENA, http://research.physics.unc.edu/project/nuclearastro/Welcome.html )

  14. Towards novel efficient and stable nuclear import signals: synthesis and properties of trimethylguanosine cap analogs modified within the 5',5'-triphosphate bridge.

    PubMed

    Zytek, Malgorzata; Kowalska, Joanna; Lukaszewicz, Maciej; Wojtczak, Blazej A; Zuberek, Joanna; Ferenc-Mrozek, Aleksandra; Darzynkiewicz, Edward; Niedzwiecka, Anna; Jemielity, Jacek

    2014-12-07

    A trimethylguanosine (TMG) cap is present at the 5' end of several small nuclear and nucleolar RNAs. Recently, it has been reported that the TMG cap is a potential nuclear import signal for nucleus-targeting therapeutic nucleic acids and proteins. The import is mediated by recognition of the TMG cap by the snRNA transporting protein, snurportin1. This work describes the synthesis and properties of a series of dinucleotide TMG cap (m3(2,2,7)GpppG) analogs modified in the 5',5'-triphosphate bridge as tools to study TMG cap-dependent biological processes. The bridge was altered at different positions by introducing either bridging (imidodiphosphate, O to NH and methylenebisphosphonate, O to CH2) or non-bridging (phosphorothioate, O to S and boranophosphate, O to BH3) modifications, or by elongation to tetraphosphate. The stability of novel analogs in blood serum was studied to reveal that the α,β-bridging O to NH substitution (m3(2,2,7)GppNHpG) confers the highest resistance. Short RNAs capped with analogs containing α,β-bridging (m3(2,2,7)GppNHpG) or β-non-bridging (m3(2,2,7)GppSpG D2) modifications were resistant to decapping pyrophosphatase, hNudt16. Preliminary studies on binding by human snurportin1 revealed that both O to NH and O to S substitutions support this binding. Due to favorable properties in all three assays, m3(2,2,7)GppNHpG was selected as a promising candidate for further studies on the efficiency of the TMG cap as a nuclear import signal.

  15. The Keck/OSIRIS Nearby AGN Survey (KONA). I. The Nuclear K-band Properties of Nearby AGN

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Hicks, E. K. S.; Malkan, M.; Davies, R.; Yu, P. C.; Shaver, S.; Davis, B.

    2018-05-01

    We introduce the Keck OSIRIS Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ∼0.″1 resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the K-band (2.1 μm) luminosities of the compact Seyfert 1 nuclei are correlated with the hard X-ray luminosities, implying a non-stellar origin for the majority of the continuum emission. The best-fit correlation is log L K = 0.9log L 2–10 keV + 4 over three orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 μm luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in 5 galaxies. Finally, we find 4/20 galaxies that are usually classified as Seyfert 2 based on their optical spectra exhibit a broad component of Brγ emission, and one galaxy (NGC 7465) shows evidence of a double nucleus. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M

  16. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false What real property does this part cover? 770.2 Section 770.2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at defense nuclear facilities, for the purpose of permitting economic development. (b...

  17. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false What real property does this part cover? 770.2 Section 770.2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at defense nuclear facilities, for the purpose of permitting economic development. (b...

  18. SiC/SiC Cladding Materials Properties Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Mary A.; Katoh, Yutai; Koyanagi, Takaaki

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormalmore » operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.« less

  19. Nuclear reactions from lattice QCD

    DOE PAGES

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  20. Nuclear Data and Reaction Rate Databases in Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas

    2018-06-01

    Astrophysical simulations and models require a large variety of micro-physics data, such as equation of state tables, atomic opacities, properties of nuclei, and nuclear reaction rates. Some of the required data is experimentally accessible, but the extreme conditions present in many astrophysical scenarios cannot be reproduced in the laboratory and thus theoretical models are needed to supplement the empirical data. Collecting data from various sources and making them available as a database in a unified format is a formidable task. I will provide an overview of the data requirements in astrophysics with an emphasis on nuclear astrophysics. I will then discuss some of the existing databases, the science they enable, and their limitations. Finally, I will offer some thoughts on how to design a useful database.

  1. Properties of nonaqueous electrolytes

    NASA Technical Reports Server (NTRS)

    Foster, J. N.; Hanson, D. C.; Hon, J. F.; Keller, R.; Muirhead, J. S.

    1970-01-01

    Physical property measurements and structural studies conducted in aprotic solvents using various solutes are applicable to the further development of lithum batteries. Structural studies utilize nuclear magnetic resonance and electron paramagnetic resonance techniques.

  2. Multimodal Light Microscopy Approaches to Reveal Structural and Functional Properties of Promyelocytic Leukemia Nuclear Bodies.

    PubMed

    Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter

    2018-01-01

    The promyelocytic leukemia ( pml ) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.

  3. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurila, Eeva; Vuorinen, Elisa; Fimlab Laboratories, Biokatu 4, 33520 Tampere

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700Tmore » pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.« less

  4. THE NUCLEAR RAMJET PROPULSION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkle, T.C.

    1959-06-30

    The most practical nuclear ramjet systems consist of a suituble inlet diffusor system followed by a singlepass, straight-through heat exchanger (reactor) which couples into a typical exhaust nozzle. Within this framework, possibilities ars governed by the aerodynamic requirements of flight, the nuclear requirements of the reactor, the chemical problems associated with breathing air, and the mechanical properties of materials at elevated temperatures. The major research and development areas which must be entered in the actual production of such an engine are discussed. (W.D.M.)

  5. Nuclear structure and dynamics with density functional theory

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel

    2015-10-01

    Even in the absence of ab initio methods capable of tackling heavy nuclei without restrictions, one can obtain an ab initio description of ground-state properties by means of the density functional theory (DFT), and its extension to superfluid systems in its local variant, the superfluid local density approximation (SLDA). Information about the properties of excited states can be obtained in the same framework by using an extension to the time-dependent (TD) phenomena. Unlike other approaches in which the nuclear structure information is used as a separate input into reaction models, the TD approach treats on the same footing the nuclear structure and dynamics, and is well suited to provide more reliable description for a large number of processes involving heavy nuclei, from the nuclear response to electroweak probes, to nuclear reactions, such as neutron-induced reactions, or nuclear fusion and fission. Such processes, sometimes part of integrated nuclear systems, have important applications in astrophysics, energy production, global security, etc. In this talk, I will present the simulation of a simple reaction, that is the Coulomb excitation of a 238U nucleus, and discuss the application of the TD-DFT formalism to the description of induced fission. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program.

  6. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.

    1987-12-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.

  7. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander

    1987-01-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.

  8. Understanding r-process Nucleosynthesis through Nuclear Data

    NASA Astrophysics Data System (ADS)

    Surman, Rebecca

    2018-06-01

    The electromagnetic counterpart of the GW170817 neutron star merger provided the first direct evidence of the astrophysical formation of nuclei via rapid neutron capture (r-process) nucleosynthesis. Full understanding of this event from first principles and its role in galactic chemical evolution requires progress in a number of areas. One key area is nuclear physics. A neutron star merger r-process involves thousands of exotic nuclear species, the majority of which have never been studied in the laboratory. Here we will discuss r-process nuclear data needs and how nuclear physics uncertainties influence our interpretation of observed abundance patterns and kilonova signals. We will explore the promise of experimental campaigns at rare isotope beam facilities to reduce these uncertainties, and describe recent efforts to directly connect nuclear data to astrophysical environments via the ‘reverse-engineering’ of unknown nuclear properties from the r-process abundance pattern.

  9. Photons in dense nuclear matter: Random-phase approximation

    NASA Astrophysics Data System (ADS)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  10. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  11. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    NASA Astrophysics Data System (ADS)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  12. Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi

    2012-12-01

    Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.

  13. Proliferative lifespan is conserved after nuclear transfer.

    PubMed

    Clark, A John; Ferrier, Patricia; Aslam, Samena; Burl, Sarah; Denning, Chris; Wylie, Diana; Ross, Arlene; de Sousa, Paul; Wilmut, Ian; Cui, Wei

    2003-06-01

    Cultured primary cells exhibit a finite proliferative lifespan, termed the Hayflick limit. Cloning by nuclear transfer can reverse this cellular ageing process and can be accomplished with cultured cells nearing senescence. Here we describe nuclear transfer experiments in which donor cell lines at different ages and with different proliferative capacities were used to clone foetuses and animals from which new primary cell lines were generated. The rederived lines had the same proliferative capacity and rate of telomere shortening as the donor cell lines, suggesting that these are innate, genetically determined, properties that are conserved by nuclear transfer.

  14. Deflection by Kinetic Impact or Nuclear Ablation: Sensitivity to Asteroid Properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.

    2015-12-01

    Impulsive deflection of a threatening asteroid can be achieved by deploying either a kinetic impactor or a standoff nuclear device to impart a modest velocity change to the body. Response to each of these methods is sensitive to the individual asteroid's characteristics, some of which may not be well constrained before an actual deflection mission. Numerical simulations of asteroid deflection, using both hypervelocity impacts and nuclear ablation of the asteroid's surface, provide detailed information on asteroid response under a range of initial conditions. Here we present numerical results for the deflection of asteroids by both kinetic and nuclear methods, focusing on the roles of target body composition, strength, porosity, rotational state, shape, and internal structure. These results provide a framework for evaluating the planetary defense-related value of future asteroid characterization missions and capture some of the uncertainty that may be present in a real threat scenario. Part of this work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-005, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675914.

  15. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at closed or downsized defense nuclear facilities, for the purpose of permitting economic development. (b) DOE may transfer, by lease only, improvements at defense nuclear facilities on land withdrawn...

  16. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at defense nuclear facilities, for the purpose of permitting economic development. (b) DOE may transfer, by lease only, improvements at defense nuclear facilities on land withdrawn from the...

  17. Multimodal Light Microscopy Approaches to Reveal Structural and Functional Properties of Promyelocytic Leukemia Nuclear Bodies

    PubMed Central

    Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter

    2018-01-01

    The promyelocytic leukemia (pml) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology. PMID:29888200

  18. I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar

    Science.gov Websites

    dropdown arrow Site Map A-Z Index Menu Synopsis I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar Nobel Prize in Physics "for his resonance method for recording the magnetic properties of atomic the atomic clock, the laser and the diagnostic scanning of the human body by nuclear magnetic

  19. Minimal nuclear energy density functional

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas

    2018-04-01

    We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.

  20. Minimal nuclear energy density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi

    Inmore » this paper, we present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ε r = 0.022 fm and a standard deviation σ r = 0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body ( NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body ( NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. Finally, we identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.« less

  1. Minimal nuclear energy density functional

    DOE PAGES

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; ...

    2018-04-17

    Inmore » this paper, we present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ε r = 0.022 fm and a standard deviation σ r = 0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body ( NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body ( NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. Finally, we identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.« less

  2. Automodification of PARP-1 mediates its tight binding to the nuclear matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaalishvili, Giorgi, E-mail: giozaal@gmail.com; Margiani, Dina; Kutalia, Ketevan

    2010-02-26

    Poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that catalyzes the NAD{sup +}-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been shown to be associated with the nuclear matrix. As yet, the properties and conditions of this association are unclear. Here, we show the existence of two PARP-1 pools associated with the nuclear matrix of rat liver and the ability of PARP-1 automodification to facilitate its binding to the nuclear matrix.

  3. Nuclear spectroscopic studies. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  4. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sale or lease at defense nuclear facilities, for the purpose of permitting economic development. (b... permitting economic development. ....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC...

  5. 10 CFR 5.120 - Transfers of property.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operates any education program or activity, and the Federal share of the fair market value of the property... 10 Energy 1 2010-01-01 2010-01-01 false Transfers of property. 5.120 Section 5.120 Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING...

  6. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  7. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  8. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  9. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  10. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  11. IL-1β promotes the nuclear translocaiton of S100A4 protein in gastric cancer cells MGC803 and the cell's stem-like properties through PI3K pathway.

    PubMed

    Yu, Aiwen; Wang, Yu; Bian, Yue; Chen, Lisha; Guo, Junfu; Shen, Wei; Chen, Danqi; Liu, Shanshan; Sun, Xiuju

    2018-06-22

    It has been shown that nuclear expression of S100A4 is significantly correlated with increased metastasis and reduced survival in patients with gastric cancer and many other cancers. However, the factors which could influence the nuclear contents of S100A4 in cancer cells are not clear. It has also been reported that Interleukin-1β (IL-1β) promotes the nuclear translocation of S100A4 in chondrocytes. Previous studies have shown that IL-1β promotes the stemness of colon cancer cells, and S100A4 is also involved in maintaining cancer-initiating cells in head and neck cancers. We speculate that IL-1β might promote the nuclear translocation of S100A4 protein in MGC803 gastric cancer cells and therefore enhance their stem-like properties. The results from Western-blot and qRT-PCR analysis showed that IL-1β increased the nuclear and total cellular content of S100A4 protein and S100A4 mRNA level in MGC803 cells. LY294002, a pharmacological inhibitor of Phosphoinositide 3-kinase (PI3K) reversed the above effects. Functional studies indicated that IL-1β promoted the colony-forming and spheroid-forming capabilities of the cells and the expression of SOX2 and NANOG gene. PI3K or S100A4 inhibition reversed the IL-1β-mediated increase in colony and spheroid-forming capabilities of the cells. LY294002 also reversed the elevated SOX2 and NANOG expression induced by IL-1β. Our study demonstrated that IL-1β promote the nuclear translocation of S100A4 protein in gastric cancer cells MGC803, which are PI3K dependent, suggesting the existence of IL-1β-PI3K-S100A4 pathway for the first time. The study also showed that IL-1β promoted stem-like properties of the cells through the new pathway. © 2018 Wiley Periodicals, Inc.

  12. Nuclear Pasta: Topology and Defects

    NASA Astrophysics Data System (ADS)

    da Silva Schneider, Andre; Horowitz, Charles; Berry, Don; Caplan, Matt; Briggs, Christian

    2015-04-01

    A layer of complex non-uniform phases of matter known as nuclear pasta is expected to exist at the base of the crust of neutron stars. Using large scale molecular dynamics we study the topology of some pasta shapes, the formation of defects and how these may affect properties of neutron star crusts.

  13. Modeling transient heat transfer in nuclear waste repositories.

    PubMed

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  14. Delayed signatures of underground nuclear explosions

    DOE PAGES

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; ...

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. Here, we observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be anmore » indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). In conclusion, our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.« less

  15. Delayed signatures of underground nuclear explosions

    PubMed Central

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-01-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288

  16. Delayed signatures of underground nuclear explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  17. Delayed signatures of underground nuclear explosions.

    PubMed

    Carrigan, Charles R; Sun, Yunwei; Hunter, Steven L; Ruddle, David G; Wagoner, Jeffrey L; Myers, Katherine B L; Emer, Dudley F; Drellack, Sigmund L; Chipman, Veraun D

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People's Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  18. tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes.

    PubMed

    Zaitseva, Lyubov; Myers, Richard; Fassati, Ariberto

    2006-10-01

    Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3' CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle-arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import.

  19. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  20. The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael

    2011-02-17

    Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it providesmore » an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material

  1. Constraints on the nuclear equation of state from nuclear masses and radii in a Thomas-Fermi meta-modeling approach

    NASA Astrophysics Data System (ADS)

    Chatterjee, D.; Gulminelli, F.; Raduta, Ad. R.; Margueron, J.

    2017-12-01

    The question of correlations among empirical equation of state (EoS) parameters constrained by nuclear observables is addressed in a Thomas-Fermi meta-modeling approach. A recently proposed meta-modeling for the nuclear EoS in nuclear matter is augmented with a single finite size term to produce a minimal unified EoS functional able to describe the smooth part of the nuclear ground state properties. This meta-model can reproduce the predictions of a large variety of models, and interpolate continuously between them. An analytical approximation to the full Thomas-Fermi integrals is further proposed giving a fully analytical meta-model for nuclear masses. The parameter space is sampled and filtered through the constraint of nuclear mass reproduction with Bayesian statistical tools. We show that this simple analytical meta-modeling has a predictive power on masses, radii, and skins comparable to full Hartree-Fock or extended Thomas-Fermi calculations with realistic energy functionals. The covariance analysis on the posterior distribution shows that no physical correlation is present between the different EoS parameters. Concerning nuclear observables, a strong correlation between the slope of the symmetry energy and the neutron skin is observed, in agreement with previous studies.

  2. Exploring for oil with nuclear physics

    NASA Astrophysics Data System (ADS)

    Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa

    2017-09-01

    Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.

  3. Separate roles for chromatin and lamins in nuclear mechanics.

    PubMed

    Stephens, Andrew D; Banigan, Edward J; Marko, John F

    2018-01-01

    The cell nucleus houses, protects, and arranges the genome within the cell. Therefore, nuclear mechanics and morphology are important for dictating gene regulation, and these properties are perturbed in many human diseases, such as cancers and progerias. The field of nuclear mechanics has long been dominated by studies of the nuclear lamina, the intermediate filament shell residing just beneath the nuclear membrane. However, a growing body of work shows that chromatin and chromatin-related factors within the nucleus are an essential part of the mechanical response of the cell nucleus to forces. Recently, our group demonstrated that chromatin and the lamina provide distinct mechanical contributions to nuclear mechanical response. The lamina is indeed important for robust response to large, whole-nucleus stresses, but chromatin dominates the short-extension response. These findings offer a clarifying perspective on varied nuclear mechanics measurements and observations, and they suggest several new exciting possibilities for understanding nuclear morphology, organization, and mechanics.

  4. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  5. Fermi liquid, clustering, and structure factor in dilute warm nuclear matter

    NASA Astrophysics Data System (ADS)

    Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.

    2018-02-01

    Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.

  6. Nuclear Mechanics in Cancer

    PubMed Central

    Denais, Celine; Lammerding, Jan

    2015-01-01

    Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion. PMID:24563360

  7. Phospholipid Regulation of the Nuclear Receptor Superfamily

    PubMed Central

    Crowder, Mark K.; Seacrist, Corey D.; Blind, Raymond D.

    2016-01-01

    Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the activity of certain nuclear receptors, suggesting a critical role for these non-cholesterol-based molecules in transcriptional regulation. Phosphatidylcholines, phosphoinositides and sphingolipids are a few of the many phospholipid like molecules shown to quite specifically regulate nuclear receptors in mouse models, cell lines and in vitro. More recent evidence has also shown that certain nuclear receptors can “present” a bound phospholipid headgroup to key lipid signaling enzymes, which can then modify the phospholipid headgroup with very unique kinetic properties. Here, we review the broad array of phospholipid / nuclear receptor interactions, from the perspective of the chemical nature of the phospholipid, and the cellular abundance of the phospholipid. We also view the data in the light of well established paradigms for phospholipid mediated transcriptional regulation, as well as newer models of how phospholipids might effect transcription in the acute regulation of complex nuclear signaling pathways. Thus, this review provides novel insight into the new, non-membrane associated roles nuclear phospholipids play in regulating complex nuclear events, centered on the nuclear receptor superfamily of transcription factors. PMID:27838257

  8. Certification procedures for nuclear fast red (Kernechtrot), CI 60760.

    PubMed

    Frank, M; Dapson, Rw; Wickersham, Tw; Kiernan, Ja

    2007-02-01

    Nuclear fast red (CI 60760), also known as Kernechtrot, is commonly used in conjunction with an excess of aluminum ions as a red nuclear counterstain following histochemical procedures that yield blue products. The dye has also been used as a histochemical and colorimetric reagent for calcium. Unsatisfactory samples of nuclear fast red are encountered occasionally, and confusion has resulted from applying the name of the dye to neutral red (CI 50040), an unrelated compound with different properties. Tests for the identity and performance of nuclear fast red have been developed in the laboratory of the Biological Stain Commission. The Commission will now accept samples submitted by vendors for certification. We describe here the spectrophotometric, chromatographic and biological staining methods that are used to identify and test nuclear fast red.

  9. Chemical Compound Design Using Nuclear Charge Distributions

    DTIC Science & Technology

    2012-03-01

    Finding optimal solutions to design problems in chemistry is hampered by the combinatorially large search space. We develop a general theoretical ... framework for finding chemical compounds with prescribed properties using nuclear charge distributions. The key is the reformulation of the design

  10. Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges

    DOE PAGES

    Ceriotti, Michele; Fang, Wei; Kusalik, Peter G.; ...

    2016-04-06

    Nuclear quantum effects influence the structure and dynamics of hydrogen bonded systems, such as water, which impacts their observed properties with widely varying magnitudes. This review highlights the recent significant developments in the experiment, theory and simulation of nuclear quantum effects in water. Novel experimental techniques, such as deep inelastic neutron scattering, now provide a detailed view of the role of nuclear quantum effects in water’s properties. These have been combined with theoretical developments such as the introduction of the competing quantum effects principle that allows the subtle interplay of water’s quantum effects and their manifestation in experimental observables tomore » be explained. We discuss how this principle has recently been used to explain the apparent dichotomy in water’s isotope effects, which can range from very large to almost nonexistent depending on the property and conditions. We then review the latest major developments in simulation algorithms and theory that have enabled the efficient inclusion of nuclear quantum effects in molecular simulations, permitting their combination with on-the-fly evaluation of the potential energy surface using electronic structure theory. Finally, we identify current challenges and future opportunities in the area.« less

  11. Nuclear Matter Properties with the Re-evaluated Coefficients of Liquid Drop Model

    NASA Astrophysics Data System (ADS)

    Chowdhury, P. Roy; Basu, D. N.

    2006-06-01

    The coefficients of the volume, surface, Coulomb, asymmetry and pairing energy terms of the semiempirical liquid drop model mass formula have been determined by furnishing best fit to the observed mass excesses. Slightly different sets of the weighting parameters for liquid drop model mass formula have been obtained from minimizations of \\chi 2 and mean square deviation. The most recent experimental and estimated mass excesses from Audi-Wapstra-Thibault atomic mass table have been used for the least square fitting procedure. Equation of state, nuclear incompressibility, nuclear mean free path and the most stable nuclei for corresponding atomic numbers, all are in good agreement with the experimental results.

  12. (Project 14-6770) An Investigation to Establish Multiphysical Property Dataset of Nuclear Materials Based on in-situ Observations and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Vikas; Haque, Aman; Hattar, Khalid

    In-core nuclear materials including fuel pins and cladding materials fail due to issues including corrosion, mechanical wear, and pellet cladding interaction. In most such scenario microstructure dependent and corrosioninduced chemistry dependent property changes significantly affect performance of cladding, pellet, and housing. Emphasis of this work was on replace conventional pellet-cladding material models with a new straingradient viscoplasticity model that is informed by transmission electron microscopy (TEM) based measurements and by nanomechanical Raman spectroscopy (NMRS) based measurements. The TEM measurements are quantitative in nature and therefore reveal stress-strain relations with simultaneous insights into mechanisms of deformation at nanoscale. The NMRS measurementsmore » reveal the similar information at mesoscale along with additional information on relating local microstructural stresses with applied stresses. The resulting information is used to fit constants in the strain gradient viscoplasticity model as well as to validate one. During TEM measurements, a micro-electro-mechanical system based setup was developed with mechanical actuation, sensing, heating, and electrical loading. Contrary to post-mortem analysis or qualitative visualization, this setup combines direct visualization of the mechanisms behind deformation with measurement of stress, strain, thermal and electrical properties. The unique research philosophy of visualizing the microstructure at high resolution while measuring the properties led to fundamental understanding in grain size and temperature effects on measured mechanical properties such as fracture toughness. A key contribution is the role of mechanical loading boundary conditions to deconvolute the insitu TEM based nanoscale and NMRS based mesoscale data to bulk behavior. First the literature based pellet cladding mechanical interaction model based on the work of Retel’s and Williamson’s in literature work to

  13. Ceramics in nuclear waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T D; Mendel, J E

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  14. Research on fission fragment excitation of gases and nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Davie, R. N.; Davis, J. F.; Fuller, J. L.; Paternoster, R. R.; Shipman, G. R.; Sterritt, D. E.; Helmick, H. H.

    1974-01-01

    Experimental investigations of fission fragment excited gases are reported along with a theoretical analysis of population inversions in fission fragment excited helium. Other studies reported include: nuclear augmentation of gas lasers, direct nuclear pumping of a helium-xenon laser, measurements of a repetitively pulsed high-power CO2 laser, thermodynamic properties of UF6 and UF6/He mixtures, and nuclear waste disposal utilizing a gaseous core reactor.

  15. The Gpn3 Q279* cancer-associated mutant inhibits Gpn1 nuclear export and is deficient in RNA polymerase II nuclear targeting.

    PubMed

    Barbosa-Camacho, Angel A; Méndez-Hernández, Lucía E; Lara-Chacón, Bárbara; Peña-Gómez, Sonia G; Romero, Violeta; González-González, Rogelio; Guerra-Moreno, José A; Robledo-Rivera, Angélica Y; Sánchez-Olea, Roberto; Calera, Mónica R

    2017-11-01

    Gpn3 is required for RNA polymerase II (RNAPII) nuclear targeting. Here, we investigated the effect of a cancer-associated Q279* nonsense mutation in Gpn3 cellular function. Employing RNAi, we replaced endogenous Gpn3 by wt or Q279* RNAi-resistant Gpn3R in epithelial model cells. RNAPII nuclear accumulation and transcriptional activity were markedly decreased in cells expressing only Gpn3R Q279*. Wild-type Gpn3R localized to the cytoplasm but a fraction of Gpn3R Q279* entered the cell nucleus and inhibited Gpn1-EYFP nuclear export. This property and the transcriptional deficit in Gpn3R Q279*-expressing cells required a PDZ-binding motif generated by the Q279* mutation. We conclude that an acquired PDZ-binding motif in Gpn3 Q279* caused Gpn3 nuclear entry, and inhibited Gpn1 nuclear export and Gpn3-mediated RNAPII nuclear targeting. © 2017 Federation of European Biochemical Societies.

  16. Nuclear magnetic resonance relaxation and diffusion measurements as a proxy for soil properties

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Pohlmeier, Andreas; Galvosas, Petrik; Vereecken, Harry

    2013-04-01

    Nuclear Magnetic Resonance (NMR) relaxation and NMR diffusion measurements are two of a series of fast and non-invasive NMR applications widely used e.g. as well logging tools in petroleum exploration [1]. For experiments with water, NMR relaxation measures the relaxation behaviour of former excited water molecules, and NMR diffusion evaluates the self-diffusion of water. Applied in porous media, both relaxation and diffusion measurements depend on intrinsic properties of the media like pore size distribution, connectivity and tortuosity of the pores, and water saturation [2, 3]. Thus, NMR can be used to characterise the pore space of porous media not only in consolidated sediments but also in soil. The physical principle behind is the relaxation of water molecules in an external magnetic field after excitation. In porous media water molecules in a surface layer of the pores relax faster than the molecules in bulk water because of interactions with the pore wall. Thus, the relaxation in smaller pores is generally faster than in bigger pores resulting in a relaxation time distribution for porous media with a range of pore sizes like soil [4]. In NMR diffusion experiments, there is an additional encoding of water molecules by application of a magnetic field gradient. Subsequent storage of the magnetization and decoding enables the determination of the mean square displacement and therefore of the self-diffusion of the water molecules [5]. Employing various relaxation and diffusion experiments, we get a measure of the surface to volume ratio of the pores and the tortuosity of the media. In this work, we show the characterisation of a set of sand and soil samples covering a wide range of textural classes by NMR methods. Relaxation times were monitored by the Carr-Purcell-Meiboom-Gill sequence and analysed using inverse Laplace transformation. Apparent self-diffusion constants were detected by a 13-intervall pulse sequence and variation of the storage time. We

  17. Towards a self-consistent dynamical nuclear model

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Niu, Y. F.; Colò, G.; Bortignon, P. F.

    2017-04-01

    Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method. In this contribution, we will implement the subtraction method in our model for the first time and study its consequences.

  18. Nuclear lamina at the crossroads of the cytoplasm and nucleus.

    PubMed

    Gerace, Larry; Huber, Michael D

    2012-01-01

    The nuclear lamina is a protein meshwork that lines the nuclear envelope in metazoan cells. It is composed largely of a polymeric assembly of lamins, which comprise a distinct sequence homology class of the intermediate filament protein family. On the basis of its structural properties, the lamina originally was proposed to provide scaffolding for the nuclear envelope and to promote anchoring of chromatin and nuclear pore complexes at the nuclear surface. This viewpoint has expanded greatly during the past 25 years, with a host of surprising new insights on lamina structure, molecular composition and functional attributes. It has been established that the self-assembly properties of lamins are very similar to those of cytoplasmic intermediate filament proteins, and that the lamin polymer is physically associated with components of the cytoplasmic cytoskeleton and with a multitude of chromatin and inner nuclear membrane proteins. Cumulative evidence points to an important role for the lamina in regulating signaling and gene activity, and in mechanically coupling the cytoplasmic cytoskeleton to the nucleus. The significance of the lamina has been vaulted to the forefront by the discovery that mutations in lamins and lamina-associated polypeptides lead to an array of human diseases. A key future challenge is to understand how the lamina integrates pathways for mechanics and signaling at the molecular level. Understanding the structure of the lamina from the atomic to supramolecular levels will be essential for achieving this goal. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The stellar content of the nuclear regions of Sc galaxies

    NASA Technical Reports Server (NTRS)

    Turnrose, B. E.

    1976-01-01

    Stellar-population syntheses based on absolute spectral energy distributions over the wavelength range from 3300 to 10,400 A are used to determine the stellar content of the nuclear regions of seven nearby Sc galaxies (NGC 628, 1073, 1084, 1637, 2903, 4321, and 5194). A linear-programming procedure is employed to construct models of the overall stellar populations whose spectra closely match those of the seven galaxies. Absolute measurements of the emission-line spectra of the nuclear regions are also provided. It is found that: (1) intrinsic reddening is probably present in each nuclear region; (2) the upper main sequence is substantially populated in most of the models; (3) the lower main sequence contributes insignificantly to the luminosity in all optimal solutions; (4) substantial contributions are made by evolved M stars at long wavelengths in all the models; (5) the model photometric M/L ratios are low, of the order of unity; and (6) the O-B stars arising naturally in the population models are just sufficient to provide the observed nuclear ionization in all the galaxies except NGC 5194, which may be collisionally ionized. The properties of the nuclear regions are shown to be consistent with the existence of a common initial mass function for star formation and a variety of time dependences for the star-formation process. A possibly significant correlation is noted between nuclear stellar content and overall dynamical properties in four of the galaxies.

  20. Half a century of "the nuclear matrix".

    PubMed

    Pederson, T

    2000-03-01

    A cell fraction that would today be termed "the nuclear matrix" was first described and patented in 1948 by Russian investigators. In 1974 this fraction was rediscovered and promoted as a fundamental organizing principle of eukaryotic gene expression. Yet, convincing evidence for this functional role of the nuclear matrix has been elusive and has recently been further challenged. What do we really know about the nonchromatin elements (if any) of internal nuclear structure? Are there objective reasons (as opposed to thinly veiled disdain) to question experiments that use harsh nuclear extraction steps and precipitation-prone conditions? Are the known biophysical properties of the nucleoplasm in vivo consistent with the existence of an extensive network of anastomosing filaments coursing dendritically throughout the interchromatin space? To what extent may the genome itself contribute information for its own quarternary structure in the interphase nucleus? These questions and recent work that bears on the mystique of the nuclear matrix are addressed in this essay. The degree to which gene expression literally depends on nonchromatin nuclear structure as a facilitating organizational format remains an intriguing but unsolved issue in eukaryotic cell biology, and considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the in vivo situation.

  1. Classical Molecular Dynamics Simulation of Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devanathan, Ram; Krack, Matthias; Bertolus, Marjorie

    2015-10-10

    Molecular dynamics simulation is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermo-mechanical properties. In these simulations, the forces on the ions are dictated by interaction potentials generated by fitting properties of interest to experimental data. The results obtained from the present generation of potentials are qualitatively similar, but quantitatively different. There is a need to refine existing potentials to provide a better representation of the performance of polycrystalline fuel under a varietymore » of operating conditions, and to develop models that are equipped to handle deviations from stoichiometry. In addition to providing insights into fundamental mechanisms governing the behaviour of nuclear fuel, MD simulations can also provide parameters that can be used as inputs for mesoscale models.« less

  2. Comparison between the Strength Levels of Baseline Nuclear-Grade Graphite and Graphite Irradiated in AGC-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Mark Christopher

    2015-07-01

    This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less

  3. Production of nuclear grade zirconium: A review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    2015-11-01

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr-Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr-Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt-metal equilibrium. In the present paper, the available Zr-Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  4. Nuclear waste forms for actinides

    PubMed Central

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  5. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  6. Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, A. M.

    2017-12-01

    The optical properties of DAM-ADC solid state nuclear track detectors (SSNTDs) were investigated. Samples of DAM-ADC detector were irradiated at room temperature with gamma doses in the range of 100-500 kGy using 1.25 MeV 60Co source of dose rate 4 kGy/h. The optical characterization of these detectors have been studied through the measurements of UV-visible absorption spectra of blank and γ- irradiated samples. The optical energy band gaps, Eg for the detectors were obtained from the direct and the indirect allowed transitions in K-space using two methods (Tauc's model and absorption spectrum fitting (ASF) method). The absorbance of DAM-ADC detector was found to increase with increasing of the gamma absorbed dose. The width of the tail of localized states in the band gap, Eu was evaluated with the Urbach's method. The number of carbon atoms per conjugated length (N), the number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Both of the direct and the indirect band gaps of DAM-ADC detector decrease with increasing of the gamma absorbed dose. Urbach's energy decreased significantly for the detector. An increase in N, M, and n with increasing of the gamma absorbed dose was noticed. Results shed light on the effect of gamma irradiations of DAM-ADC SSNTDs to suitable industrial applications and to modify the optical properties through gamma-induced modifications of the polymer structure.

  7. High-nuclearity mixed-valence clusters and mixed-valence chains: general approach to the calculation of the energy levels and bulk magnetic properties.

    PubMed

    Clemente-Juan, J M; Borrás-Almenar, J J; Coronado, E; Palii, A V; Tsukerblat, B S

    2009-05-18

    A general approach to the problem of electron delocalization in the high-nuclearity mixed-valence (MV) clusters containing an arbitrary number of localized spins and itinerant electrons is developed. Along with the double exchange, we consider the isotropic magnetic exchange between the localized electrons as well as the Coulomb intercenter repulsion. As distinguished from the previous approaches dealing with the MV systems in which itinerant electrons are delocalized over all constituent metal sites, here, we consider a more common case of systems exhibiting partial delocalization and containing several delocalized domains. Taking full advantage of the powerful angular momentum technique, we were able to derive closed form analytical expressions for the matrix elements of the full Hamiltonian. These expressions provide an efficient tool for treating complex mixed-valence systems, because they contain only products of 6j-symbols (that appear while treating the delocalized parts) and 9j-symbols (exchange interactions in localized parts) and do not contain high-order recoupling coefficients and 3j-symbols that essentially constrained all previous theories of mixed valency. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk thermodynamic properties (magnetic susceptibility, magnetization, and magnetic specific heat) of high-nuclearity MV clusters. Finally, this approach has been used to discuss the magnetic properties of the octanuclear MV cluster [Fe(8)(mu(4)-O)(4)(4-Cl-pz)(12)Cl(4)](-) and the diphthalocyanine chains [YPc(2)].CH(2)Cl(2) and [ScPc(2)].CH(2)Cl(2) composed of MV dimers interacting through the magnetic exchange and Coulomb repulsion.

  8. Nuclear quantum effects in a HIV/cancer inhibitor: The case of ellipticine

    NASA Astrophysics Data System (ADS)

    Sappati, Subrahmanyam; Hassanali, Ali; Gebauer, Ralph; Ghosh, Prasenjit

    2016-11-01

    Ellipticine is a natural product that is currently being actively investigated for its inhibitory cancer and HIV properties. Here we use path-integral molecular dynamics coupled with excited state calculations to characterize the role of nuclear quantum effects on the structural and electronic properties of ellipticine in water, a common biological solvent. Quantum effects collectively enhance the fluctuations of both light and heavy nuclei of the covalent and hydrogen bonds in ellipticine. In particular, for the ellipticine-water system, where the proton donor and acceptor have different proton affinities, we find that nuclear quantum effects (NQEs) strengthen both the strong and the weak H bonds. This is in contrast to what is observed for the cases where the proton affinity of the donors and acceptors is same. These structural fluctuations cause a significant red-shift in the absorption spectra and an increase in the broadening, bringing it into closer agreement with the experiments. Our work shows that nuclear quantum effects alter both qualitatively and quantitatively the optical properties of this biologically relevant system and highlights the importance of the inclusion of these effects in the microscopic understanding of their optical properties. We propose that isotopic substitution will produce a blue shift and a reduction in the broadening of the absorption peak.

  9. Compact Gamma-Beam Source for Nuclear Security Technologies

    NASA Astrophysics Data System (ADS)

    Gladkikh, P.; Urakawa, J.

    2015-10-01

    A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.

  10. A Deuterated Neutron Detector Array For Nuclear (Astro)Physics Studies

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, Sergio; Asher, B. W.; Barber, P.; Hanselman, K.; Perello, J. F.

    2016-09-01

    The properties of neutron-rich nuclei are at the forefront of research in nuclear structure, nuclear reactions and nuclear astrophysics. The advent of intense rare isotope beams (RIBs) has opened a new door for studies of systems with very short half-lives and possible fascinating properties. Neutron spectroscopic techniques become increasingly relevant when these neutron rich nuclei are used in a variety of experiments. At Florida State University, we are developing a neutron detector array that will allow us to perform high-resolution neutron spectroscopic studies with stable and radioactive beams. The neutron detection system consists of 16 deuterated organic liquid scintillation detectors with fast response and pulse-shape discrimination capabilities. In addition to these properties, there is the potential to use the structure in the pulse-height spectra to extract the energy of the neutrons and thus produce directly excitation spectra. This type of detector uses deuterated benzene (C6D6) as the liquid scintillation medium. The asymmetric nature of the scattering between a neutron and a deuterium in the center of mass produces a pulse-height spectrum from the deuterated scintillator which contains useful information on the initial energy of the neutron. Work supported in part by the State of Florida and NSF Grant No. 1401574.

  11. Nuclear Rings in Galaxies - A Kinematic Perspective

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain

    2011-01-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  12. Nuclear Data Sheets for A=243

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesaraja, Caroline D; McCutchan, Elizabeth A.

    2014-09-30

    We present available information pertaining to the nuclear structure of all nuclei with mass numbers A=243. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given. When there are insufficient data, expected values from systematics of nuclear properties or/and theoretical calculations are quoted. Unexpected or discrepant experimental results are also noted. A summary and compilation of the discovery of various isotopes in this mass region is given in 2013Fr02 ( 243Np, 243Pu, 243Am, 243Cm, 243Bk, and 243Cf), 2011Me01 ( 243Es), and 2013Th02 ( 243Fm).

  13. Differences in rates of decrease of environmental radiation dose rates by ground surface property in Fukushima City after the Fukushima Daiichi nuclear power plant accident.

    PubMed

    Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2013-01-01

    After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.

  14. Expanded plug method for developing circumferential mechanical properties of tubular materials

    DOEpatents

    Hendrich, William Ray; McAfee, Wallace Jefferson; Luttrell, Claire Roberta

    2006-11-28

    A method for determining the circumferential properties of a tubular product, especially nuclear fuel cladding, utilizes compression of a polymeric plug within the tubular product to determine strain stress, yield stress and other properties. The process is especially useful in the determination of aging properties such as fuel rod embrittlement after long burn-down.

  15. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  16. Equations of state for real gases on the nuclear scale

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr

    2017-07-01

    The formalism to augment the classical models of the equation of state for real gases with quantum statistical effects is presented. It allows an arbitrary excluded volume procedure to model repulsive interactions, and an arbitrary density-dependent mean field to model attractive interactions. Variations on the excluded volume mechanism include van der Waals (VDW) and Carnahan-Starling models, while the mean fields are based on VDW, Redlich-Kwong-Soave, Peng-Robinson, and Clausius equations of state. The VDW parameters of the nucleon-nucleon interaction are fitted in each model to the properties of the ground state of nuclear matter, and the following range of values is obtained: a =330 -430 MeV fm3 and b =2.5 -4.4 fm3 . In the context of the excluded volume approach, the fits to the nuclear ground state disfavor the values of the effective hard-core radius of a nucleon significantly smaller than 0.5 fm , at least for the nuclear matter region of the phase diagram. Modifications to the standard VDW repulsion and attraction terms allow one to improve significantly the value of the nuclear incompressibility factor K0, bringing it closer to empirical estimates. The generalization to include the baryon-baryon interactions into the hadron resonance gas model is performed. The behavior of the baryon-related lattice QCD observables at zero chemical potential is shown to be strongly correlated to the nuclear matter properties: an improved description of the nuclear incompressibility also yields an improved description of the lattice data at μ =0 .

  17. NRV web knowledge base on low-energy nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpov, V., E-mail: karpov@jinr.ru; Denikin, A. S.; Alekseev, A. P.

    Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it tomore » the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.« less

  18. Nuclear pasta phases within the quark-meson coupling model

    NASA Astrophysics Data System (ADS)

    Grams, Guilherme; Santos, Alexandre M.; Panda, Prafulla K.; Providência, Constança; Menezes, Débora P.

    2017-05-01

    In this work, the low-density regions of nuclear and neutron star matter are studied. The search for the existence of nuclear pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter in β equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in the coexistence phases regime and we present results that show the existence of the pasta phases subject to some choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in supernova simulations.

  19. Bulk nuclear properties from dynamical description of heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hong, Jun

    Mapping out the equation of state (EOS) of nuclear matter is a long standing problem in nuclear physics. Both experimentalists and theoretical physicists spare no effort in improving understanding of the EOS. In this thesis, we examine observables sensitive to the EOS within the pBUU transport model based on the Boltzmann equation. By comparing theoretical predictions with experimental data, we arrive at new constraints for the EOS. Further we propose novel promising observables for analysis of future experimental data. One set of observables that we examine within the pBUU model are pion yields. First, we find that net pion yields in central heavy-ion collisions (HIC) are strongly sensitive to the momentum dependence of the isoscalar nuclear mean field. We reexamine the momentum dependence that is assumed in the Boltzmann equation model for the collisions and optimize that dependence to describe the FOPI measurements of pion yields from the Au+Au collisions at different beam energies. Alas such optimized dependence yields a somewhat weaker baryonic elliptic flow than seen in measurements. Subsequently, we use the same pBUU model to generate predictions for baryonic elliptic flow observable in HIC, while varying the incompressibility of nuclear matter. In parallel, we test the sensitivity of pion multiplicity to the density dependence of EOS, and in particular to incompressibility, and optimize that dependence to describe both the elliptic flow and pion yields. Upon arriving at acceptable regions of density dependence of pressure and energy, we compare our constraints on EOS with those recently arrived at by the joint experiment and theory effort FOPI-IQMD. We should mention that, for the more advanced observables from HIC, there remain discrepancies of up to 30%, depending on energy, between the theory and experiment, indicating the limitations of the transport theory. Next, we explore the impact of the density dependence of the symmetry energy on observables

  20. The Effect of Cold Work on Properties of Alloy 617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Richard

    2014-08-01

    Alloy 617 is approved for non-nuclear construction in the ASME Boiler and Pressure Vessel Code Section I and Section VIII, but is not currently qualified for nuclear use in ASME Code Section III. A draft Code Case was submitted in 1992 to qualify the alloy for nuclear service but efforts were stopped before the approval process was completed.1 Renewed interest in high temperature nuclear reactors has resulted in a new effort to qualify Alloy 617 for use in nuclear pressure vessels. The mechanical and physical properties of Alloy 617 were extensively characterized for the VHTR programs in the 1980’s andmore » incorporated into the 1992 draft Code Case. Recently, the properties of modern heats of the alloy that incorporate an additional processing step, electro-slag re-melting, have been characterized both to confirm that the properties of contemporary material are consistent with those in the historical record and to increase the available database. A number of potential issues that were identified as requiring further consideration prior to the withdrawal of the 1992 Code Case are also being re-examined in the current R&D program. Code Cases are again being developed to allow use of Alloy 617 for nuclear design within the rules of the ASME Boiler and Pressure Vessel Code. In general the Code defines two temperature ranges for nuclear design with austenitic and nickel based alloys. Below 427°C (800°F) time dependent behavior is not considered, while above this temperature creep and creep-fatigue are considered to be the dominant life-limiting deformation modes. There is a corresponding differentiation in the treatment of the potential for effects associated with cold work. Below 427°C the principal issue is the relationship between the level of cold work and the propensity for stress corrosion cracking and above that temperature the primary concern is the impact of cold work on creep-rupture behavior.« less

  1. The nuclear near-infrared spectral properties of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Mason, Rachel; Ardila, Alberto; Martins, Lucimara; Riffel, Rogerio; Gonzalez-Martin, Omaira; Ramos Almeida, Christina; Ruschel Dutra, Daniel; Ho, Luis C.; Thanjavur, Karun; Flohic, Helene; Alonso-Herrero, Almudena; Lira, Paulina; McDermid, Richard; Riffel, Rogemar A.; Schiavon, Ricardo P.; Winge, Claudia; Perlman, Eric S.; Hoenig, Michael D.

    2015-01-01

    We present spectra of the nuclear regions of 50 nearby (D = 1 - 92 Mpc, median = 20 Mpc) galaxies of morphological types E to Sm. The spectra, obtained with the Gemini Near-IR Spectrograph on the Gemini North telescope, cover a wavelength range of approximately 0.85-2.5 μm at R˜1300-1800. There is evidence that most of the galaxies host an active galactic nucleus (AGN), but the range of AGN luminosities (log (L2-10 keV [erg s-1]) = 37.0-43.2) in the sample means that the spectra display a wide variety of features. Some nuclei, especially the Seyferts, exhibit a rich emission-line spectrum. Other objects, in particular the type 2 Low Ionisation Nuclear Emission Region galaxies, show just a few, weak emission lines, allowing a detailed view of the underlying stellar population. These spectra display numerous absorption features sensitive to the stellar initial mass function, as well as molecular bands arising in cool stars, and many other atomic absorption lines. We compare the spectra of subsets of galaxies known to be characterised by intermediate-age and old stellar populations, and find clear differences in their absorption lines and continuum shapes. We also examine the effect of atmospheric water vapor on the signal-to-noise ratio achieved in regions between the conventional NIR atmospheric windows, of potential interest to those planning observations of redshifted emission lines or other features affected by telluric H2O. Further exploitation of this data set is in progress, and the reduced spectra and data reduction tools are made available to the community.

  2. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    NASA Astrophysics Data System (ADS)

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  3. Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Awad, E. M.

    2018-05-01

    Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.

  4. Tools to Understand Structural Property Relationships for Wood Cell Walls

    Treesearch

    Joseph E. Jakes; Daniel J. Yelle; Charles R. Frihart

    2011-01-01

    Understanding structure-property relationships for wood cell walls has been hindered by the complex polymeric structures comprising these cell walls and the difficulty in assessing meaningful mechanical property measurements of individual cell walls. To help overcome these hindrances, we have developed two experimental methods: 1) two-dimensional solution state nuclear...

  5. Critical insights into nuclear collectivity from complementary nuclear spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Wood, J. L.; Yates, S. W.

    2018-06-01

    Low-energy collectivity of nuclei has been, and is being, characterized in a critical manner using data from a variety of spectroscopic methods, including Coulomb excitation, β decay, inelastic scattering of charged and uncharged particles, transfer reactions, etc. In addition to level energies and spins, transition multipolarities and intensities, lifetimes, and nuclear moments are available. The totality of information from these probes must be considered in achieving an accurate vision of the excitations in nuclei and determining the applicability of nuclear models. From these data, major changes in our view of low-energy collectivity in nuclei have emerged; most notable is the demise of the long-held view of low-energy quadrupole collectivity near closed shells as due to vibrations about a spherical equilibrium shape. In this contribution, we focus on the basic predictions of the spherical harmonic vibrator limit of the Bohr Hamiltonian. Properties such as B(E2) values, quadrupole moments, E0 strengths, etc are outlined. Using the predicted properties as a guide, evidence is cited for and against the existence of vibrational states, and especially multi-phonon states, in nuclei that are, or historically were considered to be, spherical or have a nearly spherical shape in their ground state. It is found that very few of the nuclei that were identified in the last major survey seeking nearly spherical harmonic vibrators satisfy the more stringent guidelines presented herein. Details of these fundamental shifts in our view of low-energy collectivity in nuclei are presented.

  6. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  7. Lattice QCD input for nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Davoudi, Zohreh

    2018-03-01

    Explorations of the properties of light nuclear systems beyond their lowestlying spectra have begun with Lattice Quantum Chromodynamics. While progress has been made in the past year in pursuing calculations with physical quark masses, studies of the simplest nuclear matrix elements and nuclear reactions at heavier quark masses have been conducted, and several interesting results have been obtained. A community effort has been devoted to investigate the impact of such Quantum Chromodynamics input on the nuclear many-body calculations. Systems involving hyperons and their interactions have been the focus of intense investigations in the field, with new results and deeper insights emerging. While the validity of some of the previous multi-nucleon studies has been questioned during the past year, controversy remains as whether such concerns are relevant to a given result. In an effort to summarize the newest developments in the field, this talk will touch on most of these topics.

  8. Neutral hydrogen in elliptical galaxies with nuclear radio sources and optical emission lines

    NASA Technical Reports Server (NTRS)

    Dressel, L. L.; Bania, T. M.; Oconnell, R. W.

    1982-01-01

    An H I detection survey of eleven elliptical galaxies with powerful nuclear radio sources was conducted, using the 305 m antenna of Arecibo Observatory, to test the hypothesis that large H I mass is conductive to the formation of nuclear radio sources in elliptical galaxies. The H I was detected in emission in UGC 09114 and was possibly detected in absorption in UGC 06671. Observations of the remaining galaxies were not sensitive enough to support or refute the hypothesis. Data was combined from other H I surveys and spectroscopic surveys to search for correlations of H I mass with other galactic properties and environmental conditions. Strong correlations of (O II) lambda 3727 emission with H I content and with nuclear radio power were found. The latter two properties may simply indicate, respectively, whether a significant amount of gas is available to be ionized and whether energy is provided by nuclear activity for ionization. No dependence of H I content on optical luminosity or on degree of isolation from other galaxies was found.

  9. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    NASA Astrophysics Data System (ADS)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  10. 48 CFR 2045.371 - Property accountability procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Property accountability procedures. 2045.371 Section 2045.371 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION... accountability procedures. (a) The threshold for detailed reporting of capitalized equipment by contractors is...

  11. Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond

    NASA Astrophysics Data System (ADS)

    Guichon, P. A. M.; Stone, J. R.; Thomas, A. W.

    2018-05-01

    The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.

  12. The role of nuclear sensors and positrons for engineering nano and microtechnologies

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne V.

    2011-01-01

    A sustainable nano-manufacturing future relies on optimisation of the design and synthetic approach, detailed understanding of structure/properties relationships and the ability to measure a products impact in the environment. This article outlines how bench-top PALS and nuclear techniques can be used in the routine analysis of a wide range of nanomaterials. Traditionally used in the semiconductor industry, PALS has proven to be useful not only in measuring porosity in polymeric materials but also in the monitoring of milling processes used to produce natural fibre powders. Nuclear sensors (radiotracers), designed to probe charge, size and hydrophilicity of nanomaterials, are used to evaluate the connectivity (availability) of these pores for interaction with media. Together they provide valuable information on structure/properties relationship of nanomaterials and insight into how the design of a material can be optimised. Furthermore, the highly sensitive nuclear sensors can be adapted for monitoring the impact of nanomaterials in vivo and the environment.

  13. Nuclear security applications of antineutrino detectors : current capabilities and future prospects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, A.; Goodman, M.; Baldwin, G.

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline withmore » other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  14. Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects

    DOE PAGES

    Bernstein, Adam; Baldwin, George; Boyer, Brian; ...

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline—Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This work presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoingmore » fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  15. A simple polymeric model describes cell nuclear mechanical response

    NASA Astrophysics Data System (ADS)

    Banigan, Edward; Stephens, Andrew; Marko, John

    The cell nucleus must continually resist inter- and intracellular mechanical forces, and proper mechanical response is essential to basic cell biological functions as diverse as migration, differentiation, and gene regulation. Experiments probing nuclear mechanics reveal that the nucleus stiffens under strain, leading to two characteristic regimes of force response. This behavior depends sensitively on the intermediate filament protein lamin A, which comprises the outer layer of the nucleus, and the properties of the chromatin interior. To understand these mechanics, we study a simulation model of a polymeric shell encapsulating a semiflexible polymer. This minimalistic model qualitatively captures the typical experimental nuclear force-extension relation and observed nuclear morphologies. Using a Flory-like theory, we explain the simulation results and mathematically estimate the force-extension relation. The model and experiments suggest that chromatin organization is a dominant contributor to nuclear mechanics, while the lamina protects cell nuclei from large deformations.

  16. Nuclear Data Sheets for A = 68

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchan, E. A.

    2012-07-01

    The experimental results from the various reaction and radioactive decay studies leading to nuclides in the A = 68 mass chain have been reviewed. Nuclides ranging from Cr (Z = 24) to Br (Z = 35) are included. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given. This work supersedes the previous evaluation of the data on these nuclides (2002Bu29).

  17. Uncertainty quantification and propagation in nuclear density functional theory

    DOE PAGES

    Schunck, N.; McDonnell, J. D.; Higdon, D.; ...

    2015-12-23

    Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this study, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statisticalmore » analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.« less

  18. Nuclear Data Sheets for A=40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun

    The experimental nuclear structure data and decay data are evaluated for the known nuclides of mass 40 (Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti). Detailed evaluated nuclear structure information is presented with the best values recommended for level energies, half-lives, γ-ray energies and intensities, decay properties (energies, intensities and placement of radiations), and other spectroscopic data. The {sup 40}Ca and {sup 40}K nuclides remain as the most extensively studied from many different reactions and decays; no excited states are known in {sup 40}Mg, {sup 40}Al, {sup 40}P and {sup 40}Ti. This work supersedes the earlier fullmore » evaluation of A=40 by J. Cameron and B. Singh (2004Ca38).« less

  19. Solid wastes from nuclear power production.

    PubMed Central

    Soule, H F

    1978-01-01

    Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244

  20. Mass Defect from Nuclear Physics to Mass Spectral Analysis.

    PubMed

    Pourshahian, Soheil

    2017-09-01

    Mass defect is associated with the binding energy of the nucleus. It is a fundamental property of the nucleus and the principle behind nuclear energy. Mass defect has also entered into the mass spectrometry terminology with the availability of high resolution mass spectrometry and has found application in mass spectral analysis. In this application, isobaric masses are differentiated and identified by their mass defect. What is the relationship between nuclear mass defect and mass defect used in mass spectral analysis, and are they the same? Graphical Abstract ᅟ.

  1. Theoretical constraints on the properties of low-mass neutron stars from the equation of state of nuclear matter in the inner crust

    NASA Astrophysics Data System (ADS)

    Wen, Yong-Mei; Wen, De-Hua

    2017-06-01

    By employing four typical equation of states (EOSs) of nuclear matter in the inner crust, the properties of low-mass neutron stars are investigated theoretically. Based on the well-known fact that there is a big gap between the neutron stars and white dwarfs in the mass-radius sequence of compact stars, according to the mass-radius relations of the four adopted EOSs, we conclude that there is a rough forbidden region for the central density and stellar radius to form a compact star; that is, there is no compact star in nature having central density in the region from about 1012kgm-3 to 1017kgm-3 , and there is also no compact star having a radius in the region from about 400 km to 2000 km. Moreover, the properties of the low-mass neutron stars are also explored. It is shown that for a stable neutron star near the minimum mass point, the stellar size (with radius >200 km) is much larger than that of normal neutron stars, and there is a compact "core" concentrated at about 95% of the stellar mass in the inner core with a radius of about 13 km and density higher than the neutron-drip point (4.3 ×1014kgm-3) . This property totally differs from that of normal neutron stars and white dwarfs. Furthermore, the Keplerian period, the moment of inertia, and the surface gravitational redshift of the star near the minimum-mass point are also investigated.

  2. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    USGS Publications Warehouse

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  3. UPDATED MASS SCALING RELATIONS FOR NUCLEAR STAR CLUSTERS AND A COMPARISON TO SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Nicholas; Graham, Alister W.

    2013-02-15

    We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M {sub NC}, correlates most tightly with the host galaxy's velocity dispersion: log M {sub NC} = (2.11 {+-} 0.31)log ({sigma}/54) + (6.63 {+-} 0.09), butmore » has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M {sub NC}{proportional_to}M {sup 0.55{+-}0.15} {sub Gal,dyn}; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.« less

  4. Probing cytoskeletal pre-stress and nuclear mechanics in endothelial cells with spatiotemporally controlled (de-)adhesion kinetics on micropatterned substrates

    PubMed Central

    Versaevel, Marie; Riaz, Maryam; Corne, Tobias; Grevesse, Thomas; Lantoine, Joséphine; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; De Vos, Winnok H.; Gabriele, Sylvain

    2017-01-01

    ABSTRACT The mechanical properties of living cells reflect their propensity to migrate and respond to external forces. Both cellular and nuclear stiffnesses are strongly influenced by the rigidity of the extracellular matrix (ECM) through reorganization of the cyto- and nucleoskeletal protein connections. Changes in this architectural continuum affect cell mechanics and underlie many pathological conditions. In this context, an accurate and combined quantification of the mechanical properties of both cells and nuclei can contribute to a better understanding of cellular (dys-)function. To address this challenge, we have established a robust method for probing cellular and nuclear deformation during spreading and detachment from micropatterned substrates. We show that (de-)adhesion kinetics of endothelial cells are modulated by substrate stiffness and rely on the actomyosin network. We combined this approach with measurements of cell stiffness by magnetic tweezers to show that relaxation dynamics can be considered as a reliable parameter of cellular pre-stress in adherent cells. During the adhesion stage, large cellular and nuclear deformations occur over a long time span (>60 min). Conversely, nuclear deformation and condensed chromatin are relaxed in a few seconds after detachment. Finally, our results show that accumulation of farnesylated prelamin leads to modifications of the nuclear viscoelastic properties, as reflected by increased nuclear relaxation times. Our method offers an original and non-intrusive way of simultaneously gauging cellular and nuclear mechanics, which can be extended to high-throughput screens of pathological conditions and potential countermeasures. PMID:27111836

  5. Probing cytoskeletal pre-stress and nuclear mechanics in endothelial cells with spatiotemporally controlled (de-)adhesion kinetics on micropatterned substrates.

    PubMed

    Versaevel, Marie; Riaz, Maryam; Corne, Tobias; Grevesse, Thomas; Lantoine, Joséphine; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; De Vos, Winnok H; Gabriele, Sylvain

    2017-01-02

    The mechanical properties of living cells reflect their propensity to migrate and respond to external forces. Both cellular and nuclear stiffnesses are strongly influenced by the rigidity of the extracellular matrix (ECM) through reorganization of the cyto- and nucleoskeletal protein connections. Changes in this architectural continuum affect cell mechanics and underlie many pathological conditions. In this context, an accurate and combined quantification of the mechanical properties of both cells and nuclei can contribute to a better understanding of cellular (dys-)function. To address this challenge, we have established a robust method for probing cellular and nuclear deformation during spreading and detachment from micropatterned substrates. We show that (de-)adhesion kinetics of endothelial cells are modulated by substrate stiffness and rely on the actomyosin network. We combined this approach with measurements of cell stiffness by magnetic tweezers to show that relaxation dynamics can be considered as a reliable parameter of cellular pre-stress in adherent cells. During the adhesion stage, large cellular and nuclear deformations occur over a long time span (>60 min). Conversely, nuclear deformation and condensed chromatin are relaxed in a few seconds after detachment. Finally, our results show that accumulation of farnesylated prelamin leads to modifications of the nuclear viscoelastic properties, as reflected by increased nuclear relaxation times. Our method offers an original and non-intrusive way of simultaneously gauging cellular and nuclear mechanics, which can be extended to high-throughput screens of pathological conditions and potential countermeasures.

  6. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Fan W; Han, Karen; Olasov, Lauren R

    2015-01-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less

  7. New Horizon in Nuclear Physics and Astrophysics Using Radioactive Nuclear Beams

    NASA Astrophysics Data System (ADS)

    Tanihata, Isao

    Beams of β- radioactive nuclei, having a lifetime as short as 1 ms have been used for studies of the nuclear structure and reaction relevant to nucleosynthesis in the universe. In nuclear-structure studies, decoupling of the proton and neutron distributions in nuclei has been discovered. The decoupling appeared as neutron halos and neutron skins on the surface of neutron-rich unstable nuclei. In astrophysics, reaction cross sections have been determined for many key reactions of nucleosynthesis involving short-lived nuclei in the initial and final states. One such important reaction, 13N+p → 14O +γ, has been studied using beams of unstable 13N nuclei. Such studies became possible after the invention of beams of radioactive nuclei in the mid-80's. Before that, the available ion beams were restricted to ions of stable nuclei for obvious reasons. In the next section the production method of radioactive beams is presented, then a few selected studies using radioactive beams are discussed in the following sections. In the last section, some useful properties of radioactive nuclei for other applications is shown.

  8. H and H2 NMR properties in amorphous hydrogenated silicon (a-Si:H)

    NASA Astrophysics Data System (ADS)

    Lee, Sook

    1986-07-01

    It is shown that the basic NMR properties of ortho-H2 molecules with a rotational angular momentum J and a spin angular momentum I under the influence of a completely asymmetric crystalline field in an amorphous matrix can be described by an effective nuclear spin Hamiltonian which contains only the nuclear spin angular momentum operators (Ii), but is independent of the molecular rotational angular momentum operators (Ji). By directly applying the existing magnetic-resonance theories to this effective nuclear spin Hamiltonian, a simple description is presented for various static and dynamic NMR properties of the ortho-H2 NMR centers in amorphous hydrogenated silicon (a-Si:H), thereby resolving many difficulties and uncertainties encountered in understanding and explaining the H and H2 NMR observations in a-Si:H.

  9. Thermal Properties Measurement Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U 3Si 2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling andmore » simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).« less

  10. Dissertation Award in Nuclear Physics Recipient: Astromaterials in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew E.

    2017-09-01

    Stars freeze. As they age and cool white dwarfs and neutron stars crystallize, with remarkable materials forming in their interiors. These `astromaterials' have structures similar to terrestrial crystalline solids and liquid crystals, though they are over a trillion times denser. Notably, because their material properties affect the observable properties of the star, astromaterials must be understood to interpret observations of neutron stars. Thus, astromaterial science can be thought of as an interdisciplinary field, using techniques from material science to study nuclear physics systems with astrophysical relevance. In this talk, I will discuss recent results from simulations of astromaterials and how we use these results to interpret observations of neutron stars in X-ray binaries. In addition, I will discuss how nuclear pasta, in neutron stars, forms structures remarkably similar to biophysical membranes seen in living organisms.

  11. C. elegans Nuclear Envelope Proteins Emerin, MAN1, Lamin, and Nucleoporins Reveal Unique Timing of Nuclear Envelope Breakdown during Mitosis

    PubMed Central

    Lee, Kenneth K.; Gruenbaum, Yosef; Spann, Perah; Liu, Jun; Wilson, Katherine L.

    2000-01-01

    Emerin, MAN1, and LAP2 are integral membrane proteins of the vertebrate nuclear envelope. They share a 43-residue N-terminal motif termed the LEM domain. We found three putative LEM domain genes in Caenorhabditis elegans, designated emr-1, lem-2, and lem-3. We analyzed emr-l, which encodes Ce-emerin, and lem-2, which encodes Ce-MAN1. Ce-emerin and Ce-MAN1 migrate on SDS-PAGE as 17- and 52-kDa proteins, respectively. Based on their biochemical extraction properties and immunolocalization, both Ce-emerin and Ce-MAN1 are integral membrane proteins localized at the nuclear envelope. We used antibodies against Ce-MAN1, Ce-emerin, nucleoporins, and Ce-lamin to determine the timing of nuclear envelope breakdown during mitosis in C. elegans. The C. elegans nuclear envelope disassembles very late compared with vertebrates and Drosophila. The nuclear membranes remained intact everywhere except near spindle poles during metaphase and early anaphase, fully disassembling only during mid-late anaphase. Disassembly of pore complexes, and to a lesser extent the lamina, depended on embryo age: pore complexes were absent during metaphase in >30-cell embryos but existed until anaphase in 2- to 24-cell embryos. Intranuclear mRNA splicing factors disassembled after prophase. The timing of nuclear disassembly in C. elegans is novel and may reflect its evolutionary position between unicellular and more complex eukaryotes. PMID:10982402

  12. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?

    PubMed

    Iborra, Francisco J

    2007-04-12

    The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.

  13. Nuclear quantum dynamics in dense hydrogen

    PubMed Central

    Kang, Dongdong; Sun, Huayang; Dai, Jiayu; Chen, Wenbo; Zhao, Zengxiu; Hou, Yong; Zeng, Jiaolong; Yuan, Jianmin

    2014-01-01

    Nuclear dynamics in dense hydrogen, which is determined by the key physics of large-angle scattering or many-body collisions between particles, is crucial for the dynamics of planet's evolution and hydrodynamical processes in inertial confinement confusion. Here, using improved ab initio path-integral molecular dynamics simulations, we investigated the nuclear quantum dynamics regarding transport behaviors of dense hydrogen up to the temperatures of 1 eV. With the inclusion of nuclear quantum effects (NQEs), the ionic diffusions are largely higher than the classical treatment by the magnitude from 20% to 146% as the temperature is decreased from 1 eV to 0.3 eV at 10 g/cm3, meanwhile, electrical and thermal conductivities are significantly lowered. In particular, the ionic diffusion is found much larger than that without NQEs even when both the ionic distributions are the same at 1 eV. The significant quantum delocalization of ions introduces remarkably different scattering cross section between protons compared with classical particle treatments, which explains the large difference of transport properties induced by NQEs. The Stokes-Einstein relation, Wiedemann-Franz law, and isotope effects are re-examined, showing different behaviors in nuclear quantum dynamics. PMID:24968754

  14. Vibrational nonlinear optical properties of spatially confined weakly bound complexes.

    PubMed

    Zaleśny, Robert; Chołuj, Marta; Kozłowska, Justyna; Bartkowiak, Wojciech; Luis, Josep M

    2017-09-13

    This study focuses on the theoretical description of the influence of spatial confinement on the electronic and vibrational contributions to (hyper)polarizabilities of two dimeric hydrogen bonded systems, namely HCNHCN and HCNHNC. A two-dimensional analytical potential is employed to render the confining environment (e.g. carbon nanotube). Based on the results of the state-of-the-art calculations, performed at the CCSD(T)/aug-cc-pVTZ level of theory, we established that: (i) the influence of spatial confinement increases with increasing order of the electrical properties, (ii) the effect of spatial confinement is much larger in the case of the electronic than vibrational contribution (this holds for each order of the electrical properties) and (iii) the decrease in the static nuclear relaxation first hyperpolarizability upon the increase of confinement strength is mainly due to changes in the harmonic term, however, in the case of nuclear relaxation second hyperpolarizability the anharmonic terms contribute more to the drop of this property.

  15. Clustering and pasta phases in nuclear density functional theory

    DOE PAGES

    Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold

    2017-05-23

    Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less

  16. Dictionary/handbook of nuclear medicine and clinical imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iturralde, M.P.

    This book covers the following topics: Fundamentals of English medical etymology, Abbreviations, acronyms, symbols, denotations, and signs commonly used or defined in the dictionary, Characteristics of the elements, Characteristics of practicable radioisotopes and of selected radionuclides commonly used in nuclear medicine, Properties and production of radionuclides, Radioactive decay, Radiopharmaceuticals, and Radiation dosimetry.

  17. Exploratory investigation of the HIPPO gas-jet target fluid dynamic properties

    NASA Astrophysics Data System (ADS)

    Meisel, Zach; Shi, Ke; Jemcov, Aleksandar; Couder, Manoel

    2016-08-01

    In order to optimize the performance of gas-jet targets for future nuclear reaction measurements, a detailed understanding of the dependence of the gas-jet properties on experiment design parameters is required. Common methods of gas-jet characterization rely on measuring the effective thickness using nuclear elastic scattering and energy loss techniques; however, these tests are time intensive and limit the range of design modifications which can be explored to improve the properties of the jet as a nuclear reaction target. Thus, a more rapid jet-characterization method is desired. We performed the first steps towards characterizing the gas-jet density distribution of the HIPPO gas-jet target at the University of Notre Dame's Nuclear Science Laboratory by reproducing results from 20Ne(α,α)20Ne elastic scattering measurements with computational fluid dynamics (CFD) simulations performed with the state-of-the-art CFD software ANSYS Fluent. We find a strong sensitivity to experimental design parameters of the gas-jet target, such as the jet nozzle geometry and ambient pressure of the target chamber. We argue that improved predictive power will require moving to three-dimensional simulations and additional benchmarking with experimental data.

  18. Properties of Localized Protons in Neutron Star Matter at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Szmaglinski, A.; Kubis, S.; Wójcik, W.

    2014-02-01

    We study properties of the proton component of neutron star matter for realistic nuclear models. Vanishing of the nuclear symmetry energy implies proton-neutron separation in dense nuclear matter. Protons which form admixture tend to be localized in potential wells. Here, we extend the description of proton localization to finite temperatures. It appears that the protons are still localized at temperatures typical for hot neutron stars. That fact has important astrophysical consequences. Moreover, the temperature inclusion leads to unexpected results for the behavior of the proton localized state.

  19. Nuclear recoil measurements with the ARIS experiment

    NASA Astrophysics Data System (ADS)

    Fan, Alden; ARIS Collaboration

    2017-01-01

    As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.

  20. Tungsten - Yttrium Based Nuclear Structural Materials

    NASA Astrophysics Data System (ADS)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  1. Modern hadron spectroscopy: a bridge between nuclear and particle physics.

    NASA Astrophysics Data System (ADS)

    Szczepaniak, A. P.

    2018-05-01

    In this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  2. Modern hadron spectroscopy: a bridge between nuclear and particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczepaniak, Adam P.

    Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  3. Modern hadron spectroscopy: a bridge between nuclear and particle physics

    DOE PAGES

    Szczepaniak, Adam P.

    2018-05-01

    Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  4. Convection and thermal radiation analytical models applicable to a nuclear waste repository room

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1979-01-17

    Time-dependent temperature distributions in a deep geologic nuclear waste repository have a direct impact on the physical integrity of the emplaced canisters and on the design of retrievability options. This report (1) identifies the thermodynamic properties and physical parameters of three convection regimes - forced, natural, and mixed; (2) defines the convection correlations applicable to calculating heat flow in a ventilated (forced-air) and in a nonventilated nuclear waste repository room; and (3) delineates a computer code that (a) computes and compares the floor-to-ceiling heat flow by convection and radiation, and (b) determines the nonlinear equivalent conductivity table for a repositorymore » room. (The tables permit the use of the ADINAT code to model surface-to-surface radiation and the TRUMP code to employ two different emissivity properties when modeling radiation exchange between the surface of two different materials.) The analysis shows that thermal radiation dominates heat flow modes in a nuclear waste repository room.« less

  5. The compression-mode giant resonances and nuclear incompressibility

    NASA Astrophysics Data System (ADS)

    Garg, Umesh; Colò, Gianluca

    2018-07-01

    The compression-mode giant resonances, namely the isoscalar giant monopole and isoscalar giant dipole modes, are examples of collective nuclear motion. Their main interest stems from the fact that one hopes to extrapolate from their properties the incompressibility of uniform nuclear matter, which is a key parameter of the nuclear Equation of State (EoS). Our understanding of these issues has undergone two major jumps, one in the late 1970s when the Isoscalar Giant Monopole Resonance (ISGMR) was experimentally identified, and another around the turn of the millennium since when theory has been able to start giving reliable error bars to the incompressibility. However, mainly magic nuclei have been involved in the deduction of the incompressibility from the vibrations of finite nuclei. The present review deals with the developments beyond all this. Experimental techniques have been improved, and new open-shell, and deformed, nuclei have been investigated. The associated changes in our understanding of the problem of the nuclear incompressibility are discussed. New theoretical models, decay measurements, and the search for the evolution of compressional modes in exotic nuclei are also discussed.

  6. Nondestructive evaluation of nuclear-grade graphite

    NASA Astrophysics Data System (ADS)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  7. High Resolution Three-Color Imaging of Spirals With Nuclear Star-Forming Rings

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa; Obenschain, Arthur (Technical Monitor)

    2001-01-01

    Nuclear rings in barred spirals offer an opportunity to study starburst properties in order to develop an understanding of the evolution of star formation in galaxies. To achieve this understanding, a large scale imaging survey in the H alpha line and in the B and I broad bands has been performed. Analysis of all galaxies that reveal nuclear rings in the H alpha line will be compared to numerical models so that the relative ages between the starforming clumps can be estimated. The luminosity function of the starforming regions will be related to the measured properties of the associated star-cluster and the required ionizing flux. Also B - I color index images will be performed to indicate the location of the dust lanes.

  8. Conventional and Non-Conventional Nuclear Material Signatures

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    2009-03-01

    The detection and interdiction of concealed special nuclear material (SNM) in all modes of transport is one of the most critical security issues facing the United States and the rest of the world. In principle, detection of nuclear materials is relatively easy because of their unique properties: all of them are radioactive and all emit some characteristic gamma rays. A few emit neutrons as well. These signatures are the basis for passive non-intrusive detection of nuclear materials. The low energy of the radiations necessitates additional means of detection and validation. These are provided by high-energy x-ray radiography and by active inspection based on inducing nuclear reactions in the nuclear materials. Positive confirmation that a nuclear material is present or absent can be provided by interrogation of the inspected object with penetrating probing radiation, such as neutrons and photons. The radiation induces specific reactions in the nuclear material yielding, in turn, penetrating signatures which can be detected outside the inspected object. The "conventional" signatures are first and foremost fission signatures: prompt and delayed neutrons and gamma rays. Their intensity (number per fission) and the fact that they have broad energy (non-discrete, though unique) distributions and certain temporal behaviors are key to their use. The "non- conventional" signatures are not related to the fission process but to the unique nuclear structure of each element or isotope in nature. This can be accessed through the excitation of isotopic nuclear levels (discrete and continuum) by neutron inelastic scattering or gamma resonance fluorescence. Finally there is an atomic signature, namely the high atomic number (Z>74), which obviously includes all the nuclear materials and their possible shielding. The presence of such high-Z elements can be inferred by techniques using high-energy x rays. The conventional signatures have been addressed in another article. Non

  9. Visualization of nuclear particle trajectories in nuclear oil-well logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Case, C.R.; Chiaramonte, J.M.

    Nuclear oil-well logging measures specific properties of subsurface geological formations as a function of depth in the well. The knowledge gained is used to evaluate the hydrocarbon potential of the surrounding oil field. The measurements are made by lowering an instrument package into an oil well and slowly extracting it at a constant speed. During the extraction phase, neutrons or gamma rays are emitted from the tool, interact with the formation, and scatter back to the detectors located within the tool. Even though only a small percentage of the emitted particles ever reach the detectors, mathematical modeling has been verymore » successful in the accurate prediction of these detector responses. The two dominant methods used to model these devices have been the two-dimensional discrete ordinates method and the three-dimensional Monte Carlo method has routinely been used to investigate the response characteristics of nuclear tools. A special Los Alamos National Laboratory version of their standard MCNP Monte carlo code retains the details of each particle history of later viewing within SABRINA, a companion three-dimensional geometry modeling and debugging code.« less

  10. Toughness Properties of Nodular Iron

    NASA Astrophysics Data System (ADS)

    Bradley, Walter L.

    1985-01-01

    The German government recently certified ductile iron for construction of nuclear waste transport containers. This approved use of ductile iron for such a critical application represents the culmination of ten years worth of research bringing to light the surprising toughness of ductile iron. This article explains how modern fracture mechanics and microstructure/property relationships have altered the stereotype of ductile iron as a low toughness material.

  11. BEC-BCS crossover and the liquid-gas phase transition in hot and dense nuclear matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Meng; Urban, Michael; Schuck, Peter

    2010-08-15

    The effect of nucleon-nucleon correlations in symmetric nuclear matter at finite temperature is studied beyond BCS theory. Starting from a Hartree-Fock description of nuclear matter with the Gogny effective interaction, we add correlations corresponding to the formation of preformed pairs and scattering states above the superfluid critical temperature within the in-medium T-matrix approach, which is analogous to the Nozieres-Schmitt-Rink theory. We calculate the critical temperature for a BEC superfluid of deuterons, of a BCS superfluid of nucleons, and in the crossover between these limits. The effect of the correlations on thermodynamic properties (equation of state, energy, entropy) and the liquid-gasmore » phase transition is discussed. Our results show that nucleon-nucleon correlations beyond BCS play an important role for the properties of nuclear matter, especially in the low-density region.« less

  12. Characterization of Two-Pore Channel 2 by Nuclear Membrane Electrophysiology

    PubMed Central

    Lee, Claire Shuk-Kwan; Tong, Benjamin Chun-Kit; Cheng, Cecily Wing-Hei; Hung, Harry Chun-Hin; Cheung, King-Ho

    2016-01-01

    Lysosomal calcium (Ca2+) release mediated by NAADP triggers signalling cascades that regulate many cellular processes. The identification of two-pore channel 2 (TPC2) as the NAADP receptor advances our understanding of lysosomal Ca2+ signalling, yet the lysosome is not amenable to traditional patch-clamp electrophysiology. Previous attempts to record TPC2 single-channel activity put TPC2 outside its native environment, which not reflect TPC2’s true physiological properties. To test the feasibility of using nuclear membrane electrophysiology for TPC2 channel characterization, we constructed a stable human TPC2-expressing DT40TKO cell line that lacks endogenous InsP3R and RyR (DT40TKO-hTPC2). Immunostaining revealed hTPC2 expression on the ER and nuclear envelope. Intracellular dialysis of NAADP into Fura-2-loaded DT40TKO-hTPC2 cells elicited cytosolic Ca2+ transients, suggesting that hTPC2 was functionally active. Using nuclear membrane electrophysiology, we detected a ~220 pS single-channel current activated by NAADP with K+ as the permeant ion. The detected single-channel recordings displayed a linear current-voltage relationship, were sensitive to Ned-19 inhibition, were biphasically regulated by NAADP concentration, and regulated by PKA phosphorylation. In summary, we developed a cell model for the characterization of the TPC2 channel and the nuclear membrane patch-clamp technique provided an alternative approach to rigorously investigate the electrophysiological properties of TPC2 with minimal manipulation. PMID:26838264

  13. Nuclear organization mediates cancer-compromised genetic and epigenetic control.

    PubMed

    Zaidi, Sayyed K; Fritz, Andrew; Tracy, Kirsten; Gordon, Jonathan; Tye, Coralee; Boyd, Joseph; Van Wijnen, Andre; Nickerson, Jeffrey; Imbalzano, Anthony; Lian, Jane; Stein, Janet; Stein, Gary

    2018-05-09

    Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of Nuclear Radiation on Materials at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Schwanbeck, C. A.

    1965-01-01

    The tensile properties for 33 polycrystalline structural materials including aluminum, titanium, nickel and iron alloys were obtained at -256.5 C (30 deg R) after irradiation exposure at this temperature to 10(exp 17) nvt (E greater than 0.5 Mev), at -256.5 C without previous irradiation, and at approximately 27 C (540 deg R) without previous irradiation. The data were evaluated statistically to permit identification of cryogenic effects and nuclear-cryogenic effects. A number of conclusions were drawn regarding suitability of certain of the materials for use in nuclear-cryogenic applications and regarding the need for further investigation.

  15. New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.

    2013-06-01

    A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.

  16. 78 FR 70934 - Trespassing on DOE Property: Kansas City Plant Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ..., National Nuclear Security Administration, Kirtland Operations operating area. The facilities are described...). Addition of the Kirtland Operations operating area property does not terminate the prior Kansas City Plant...

  17. Caenorhabditis elegans as a model system for studying the nuclear lamina and laminopathic diseases.

    PubMed

    Bank, Erin M; Gruenbaum, Yosef

    2011-01-01

    The nuclear lamina is a protein-rich network located directly underneath the inner nuclear membrane of metazoan nuclei. The components of the nuclear lamina have been implicated in nearly all nuclear functions; therefore, understanding the structural, mechanical, and signal transducing properties of these proteins is crucial. In addition, mutations in many of these proteins cause a wide range of human diseases, the laminopathies. The structure, function, and interaction of the lamina proteins are conserved among metazoans, emphasizing their fundamental roles in the nucleus. Several of the advances in the field of the nuclear lamina have come from studies performed in Caenorhabditis elegans or on C. elegans proteins expressed in vitro. Here, we discuss the current knowledge about the nuclear lamina, including an overview of the technical tools offered by C. elegans that make it a powerful model organism for the study of the nuclear lamina and laminopathic diseases.

  18. Constraining the surface properties of effective Skyrme interactions

    NASA Astrophysics Data System (ADS)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  19. The nuclear membrane-associated honeycomb structure of the unicellular organism Amoeba proteus: on the search for homologies with the nuclear lamina of metazoa.

    PubMed

    Schmidt, M; Grossmann, U; Krohne, G

    1995-07-01

    In the protozoon Amoeba proteus, a complex and highly organized structure with the morphology of a honeycomb is associated with the nucleoplasmic surface of the nuclear membrane. We have tested whether this structure exhibits similarity to the nuclear lamina of metazoic organisms. First, we have shown that the honeycomb layer is composed of 3 to 5 nm thick protein fibrils resistant to treatment with detergent, high salt, and digestion with nucleases, thus possessing properties typical for karyoskeletal elements. However, in contrast to the meshwork of lamin filaments in somatic cells of metazoic organisms, the honeycomb layer is not tightly anchored to the nucleoplasmic side of pore complexes, or to the inner nuclear membrane. Second, in microinjection experiments we investigated whether fluorescently labeled lamins of Xenopus laevis (lamins A and LI) and Drosophila melanogaster (lamin Dmo) were able to associate in vivo with the Amoeba proteus honeycomb structure. In microinjected amoeba these three lamins were efficiently transported into the nucleus, but did not associate with the nuclear envelope. Our results suggest that the Amoeba proteus nuclear envelope, including the honeycomb layer, does not contain proteins exhibiting high homologies to lamins of metazoan species thus preventing the localized assembly of microinjected lamins along the nuclear periphery.

  20. Lamina-independent lamins in the nuclear interior serve important functions.

    PubMed

    Dechat, T; Gesson, K; Foisner, R

    2010-01-01

    Nuclear lamins were originally described as the main constituents of the nuclear lamina, a filamentous meshwork closely associated with the inner nuclear membrane. However, within recent years, it has become increasingly evident that a fraction of lamins also resides throughout the nuclear interior. As intermediate-filament-type proteins, lamins have been suggested to fulfill mainly structural functions such as providing shape and mechanical stability to the nucleus. But recent findings show that both peripheral and nucleoplasmic lamins also have important roles in essential cellular processes such as transcription, DNA replication, cell cycle progression, and chromatin organization. Furthermore, more than 300 mutations in the gene encoding A-type lamins have been associated with several human diseases now generally termed laminopathies and comprising muscular dystrophies, lipodystrophies, cardiomyopathies, and premature aging diseases. This review focuses on the lamina-independent pool of lamins in the nuclear interior, which surprisingly has not been studied in much detail so far. We discuss the properties and regulation of nucleoplasmic lamins during the cell cycle, their interaction partners, and their potential involvement in cellular processes and the development of laminopathies.

  1. The Nuclear Power/Nuclear Weapons Connection.

    ERIC Educational Resources Information Center

    Totten, Sam; Totten, Martha Wescoat

    1985-01-01

    Once they have nuclear power, most countries will divert nuclear materials from commercial to military programs. In excerpts from the book "Facing the Danger" (by Totten, S. and M. W., Crossing Press, 1984), five anti-nuclear activists explain how and why they have been addressing the nuclear connection. (RM)

  2. Nuclear Data Sheets for A=150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, S.K.; Sonzogni, A.A.

    The experimental results from the various reaction and decay studies leading to nuclides in the A=150 mass chain have been reviewed. These data are summarized and presented, together with the adopted level schemes and properties, for the nuclides from Cs(Z=55) through Lu(Z=71). This evaluation replaces the previous evaluation by E. der Mateosian and J. K. Tuli (1995De28), which appeared in Nuclear Data Sheets 75, 827 (1995)

  3. Nuclear Data Sheets for A=150

    NASA Astrophysics Data System (ADS)

    Basu, S. K.; Sonzogni, A. A.

    2013-04-01

    The experimental results from the various reaction and decay studies leading to nuclides in the A=150 mass chain have been reviewed. These data are summarized and presented, together with the adopted level schemes and properties, for the nuclides from Cs(Z=55) through Lu(Z=71). This evaluation replaces the previous evaluation by E. der Mateosian and J. K. Tuli (1995De28), which appeared in Nuclear Data Sheets 75, 827 (1995).

  4. Overview of Nuclear Physics Data: Databases, Web Applications and Teaching Tools

    NASA Astrophysics Data System (ADS)

    McCutchan, Elizabeth

    2017-01-01

    The mission of the United States Nuclear Data Program (USNDP) is to provide current, accurate, and authoritative data for use in pure and applied areas of nuclear science and engineering. This is accomplished by compiling, evaluating, and disseminating extensive datasets. Our main products include the Evaluated Nuclear Structure File (ENSDF) containing information on nuclear structure and decay properties and the Evaluated Nuclear Data File (ENDF) containing information on neutron-induced reactions. The National Nuclear Data Center (NNDC), through the website www.nndc.bnl.gov, provides web-based retrieval systems for these and many other databases. In addition, the NNDC hosts several on-line physics tools, useful for calculating various quantities relating to basic nuclear physics. In this talk, I will first introduce the quantities which are evaluated and recommended in our databases. I will then outline the searching capabilities which allow one to quickly and efficiently retrieve data. Finally, I will demonstrate how the database searches and web applications can provide effective teaching tools concerning the structure of nuclei and how they interact. Work supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  5. Biokinetics of nuclear fuel compounds and biological effects of nonuniform radiation.

    PubMed Central

    Lang, S; Servomaa, K; Kosma, V M; Rytömaa, T

    1995-01-01

    Environmental releases of insoluble nuclear fuel compounds may occur at nuclear power plants during normal operation, after nuclear power plant accidents, and as a consequence of nuclear weapons testing. For example, the Chernobyl fallout contained extensive amounts of pulverized nuclear fuel composed of uranium and its nonvolatile fission products. The effects of these highly radioactive particles, also called hot particles, on humans are not well known due to lack of reliable data on the extent of the exposure. However, the biokinetics and biological effects of nuclear fuel compounds have been investigated in a number of experimental studies using various cellular systems and laboratory animals. In this article, we review the biokinetic properties and effects of insoluble nuclear fuel compounds, with special reference to UO2, PuO2, and nonvolatile, long-lived beta-emitters Zr, Nb, Ru, and Ce. First, the data on hot particles, including sources, dosimetry, and human exposure are discussed. Second, the biokinetics of insoluble nuclear fuel compounds in the gastrointestinal tract and respiratory tract are reviewed. Finally, short- and long-term biological effects of nonuniform alpha- and beta-irradiation on the gastrointestinal tract, lungs, and skin are discussed. Images p920-a Figure 1. PMID:8529589

  6. Nuclear Structure Aspects in Nuclear Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael Scott

    2006-12-01

    Nuclear Astrophysics as a broad and diverse field of study can be viewed as a magnifier of the impact of microscopic processes on the evolution of macroscopic events. One of the primary goals in Nuclear Astrophysics is the understanding of the nucleosynthesis processes that take place in the cosmos and the simulation of the correlated stellar and explosive burning scenarios. These simulations are strongly dependent on the input from Nuclear Physics which sets the time scale for all stellar dynamic processes--from giga-years of stellar evolution to milliseconds of stellar explosions--and provides the basis for most of the signatures that wemore » have for the interpretation of these events--from stellar luminosities, elemental and isotopic abundances to neutrino flux from distant supernovae. The Nuclear Physics input comes through nuclear structure, low energy reaction rates, nuclear masses, and decay rates. There is a common perception that low energy reaction rates are the most important component of the required nuclear physics input; however, in this article we take a broader approach and present an overview of the close correlation between various nuclear structure aspects and their impact on nuclear astrophysics. We discuss the interplay between the weak and the strong forces on stellar time scales due to the limitations they provide for the evolution of slow and rapid burning processes. The effects of shell structure in nuclei on stellar burning processes as well as the impact of clustering in nuclei is outlined. Furthermore we illustrate the effects of the various nuclear structure aspects on the major nucleosynthesis processes that have been identified in the last few decades. We summarize and provide a coherent overview of the impact of all aspects of nuclear structure on nuclear astrophysics.« less

  7. Potential Fuel Loadings, Fire Ignitions, and Smoke Emissions from Nuclear Bursts in Megacities

    NASA Astrophysics Data System (ADS)

    Turco, R. P.; Toon, O. B.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-12-01

    We consider the effects of "small" nuclear detonations in modern "megacities," focusing on the possible extent of fire ignitions, and the properties of corresponding smoke emissions. Explosive devices in the multi-kiloton yield range are being produced by a growing number of nuclear states (Toon et al., 2006), and such weapons may eventually fall into the hands of terrorists. The numbers of nuclear weapons that might be used in a regional conflict, and their potential impacts on population and infrastructure, are discussed elsewhere. Here, we estimate the smoke emissions that could lead to widespread environmental effects, including large-scale climate anomalies. We find that low-yield weapons, which emerging nuclear states have been stockpiling, and which are likely to be targeted against cities in a regional war, can generate up to 100 times as much smoke per kiloton of yield as the high-yield weapons once associated with a superpower nuclear exchange. The fuel loadings in modern cities are estimated using a variety of data, including extrapolations from earlier detailed studies. The probability of ignition and combustion of fuels, smoke emission factors and radiative properties, and prompt scavenging and dispersion of the smoke are summarized. We conclude that a small regional nuclear war might generate up to 5 teragrams of highly absorbing particles in urban firestorms, and that this smoke could initially be injected into the middle and upper troposphere. These results are used to develop smoke emission scenarios for a climate impact analysis reported by Oman et al. (2006). Uncertainties in the present smoke estimates are outlined. Oman, L., A. Robock, G. L. Stenchikov, O. B. Toon, C. Bardeen and R. P. Turco, "Climatic consequences of regional nuclear conflicts," AGU, Fall 2006. Toon, O. B., R. P. Turco, A. Robock, C. Bardeen, L. Oman and G. L. Stenchikov, "Consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism," AGU, Fall

  8. Conserved cell cycle regulatory properties within the amino terminal domain of the Epstein-Barr virus nuclear antigen 3C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Nikhil; Knight, Jason S.; Robertson, Erle S.

    The gammaherpesviruses Rhesus lymphocryptovirus (LCV) and Epstein-Barr virus (EBV) are closely related phylogenetically. Rhesus LCV efficiently immortalizes Rhesus B cells in vitro. However, despite a high degree of conservation between the Rhesus LCV and EBV genomes, Rhesus LCV fails to immortalize human B cells in vitro. This species restriction may, at least in part, be linked to the EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), known to be essential for B cell transformation. We compared specific properties of EBNA3C, a well-characterized and essential EBV protein, with its Rhesus counterpart to determine whether EBNA3C phenotypes which contribute to cellmore » cycle regulation are conserved in the Rhesus LCV. We show that both EBNA3C and Rhesus EBNA3C bind to a conserved region of mammalian cyclins, regulate pRb stability, and modulate SCF{sup Skp2}-dependent ubiquitination. These results suggest that Rhesus LCV restriction from human B cell immortalization is independent of the conserved cell cycle regulatory functions of the EBNA3C protein.« less

  9. The nuclear arsenals and nuclear disarmament.

    PubMed

    Barnaby, F

    1998-01-01

    Current world stockpiles of nuclear weapons and the status of treaties for nuclear disarmament and the ultimate elimination of nuclear weapons are summarised. The need for including stockpiles of civil plutonium in a programme for ending production and disposing of fissile materials is emphasized, and the ultimate difficulty of disposing of the last few nuclear weapons discussed.

  10. Radiation and Thermal Ageing of Nuclear Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, William J

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behaviormore » of nuclear waste glass are reviewed.« less

  11. Analysis and prediction of leucine-rich nuclear export signals.

    PubMed

    la Cour, Tanja; Kiemer, Lars; Mølgaard, Anne; Gupta, Ramneek; Skriver, Karen; Brunak, Søren

    2004-06-01

    We present a thorough analysis of nuclear export signals and a prediction server, which we have made publicly available. The machine learning prediction method is a significant improvement over the generally used consensus patterns. Nuclear export signals (NESs) are extremely important regulators of the subcellular location of proteins. This regulation has an impact on transcription and other nuclear processes, which are fundamental to the viability of the cell. NESs are studied in relation to cancer, the cell cycle, cell differentiation and other important aspects of molecular biology. Our conclusion from this analysis is that the most important properties of NESs are accessibility and flexibility allowing relevant proteins to interact with the signal. Furthermore, we show that not only the known hydrophobic residues are important in defining a nuclear export signals. We employ both neural networks and hidden Markov models in the prediction algorithm and verify the method on the most recently discovered NESs. The NES predictor (NetNES) is made available for general use at http://www.cbs.dtu.dk/.

  12. Characterization of Mechanical Properties of Nuclear Graphite Using Subsize Specimens and Reusing Tested Specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Hyun, Yoon; Byun, Thak Sang; Strizak, Joe P

    2011-01-01

    The mechanical properties of NBG-18 nuclear grade graphite have been characterized using small specimen test techniques and statistical treatment on the test results. New fracture strength and toughness test techniques were developed to use subsize cylindrical specimens with glued heads and to reuse their broken halves. Three sets of subsize cylindrical specimens with the different diameters of 4 mm, 8 mm, and 12 mm were tested to obtain tensile fracture strength. The longer piece of the broken halves was cracked from side surfaces and tested under three-point bend loading to obtain fracture toughness. Both the strength and fracture toughness datamore » were analyzed using Weibull distribution models focusing on size effect. The mean fracture strength decreased from 22.9 MPa to 21.5 MPa as the diameter increased from 4 mm to 12 mm, and the mean strength of 15.9 mm diameter standard specimen, 20.9 MPa, was on the extended trend line. These fracture strength data indicate that in the given diameter range the size effect is not significant and much smaller than that predicted by the Weibull statistics-based model. Further, no noticeable size effect existed in the fracture toughness data, whose mean values were in a narrow range of 1.21 1.26 MPa. The Weibull moduli measured for fracture strength and fracture toughness datasets were around 10. It is therefore believed that the small or negligible size effect enables to use the subsize specimens and that the new fracture toughness test method to reuse the broken specimens to help minimize irradiation space and radioactive waste.« less

  13. Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7

    PubMed Central

    Fassati, Ariberto; Görlich, Dirk; Harrison, Ian; Zaytseva, Lyubov; Mingot, José-Manuel

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1), like other lentiviruses, can infect non-dividing cells. This property depends on the active nuclear import of its intracellular reverse transcription complex (RTC). We have studied nuclear import of purified HIV-1 RTCs in primary macrophages and found that importin 7, an import receptor for ribosomal proteins and histone H1, is involved in the process. Nuclear import of RTCs requires, in addition, energy and the com ponents of the Ran system. Depletion of importin 7 from cultured cells by small interfering RNA inhibits HIV-1 infection. These results provide a new insight into the molecular mechanism for HIV-1 nuclear import and reveal potential targets for therapeutic intervention. PMID:12853482

  14. 10 CFR 840.5 - Criterion II-Substantial damages to persons offsite or property offsite.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Criterion II-Substantial damages to persons offsite or property offsite. 840.5 Section 840.5 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.5... nuclear, or byproduct material; or (2) DOE finds that $2,500,000 or more of damage offsite has been or...

  15. 10 CFR 840.5 - Criterion II-Substantial damages to persons offsite or property offsite.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Criterion II-Substantial damages to persons offsite or property offsite. 840.5 Section 840.5 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.5... nuclear, or byproduct material; or (2) DOE finds that $2,500,000 or more of damage offsite has been or...

  16. 10 CFR 840.5 - Criterion II-Substantial damages to persons offsite or property offsite.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Criterion II-Substantial damages to persons offsite or property offsite. 840.5 Section 840.5 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.5... nuclear, or byproduct material; or (2) DOE finds that $2,500,000 or more of damage offsite has been or...

  17. 10 CFR 840.5 - Criterion II-Substantial damages to persons offsite or property offsite.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Criterion II-Substantial damages to persons offsite or property offsite. 840.5 Section 840.5 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.5... nuclear, or byproduct material; or (2) DOE finds that $2,500,000 or more of damage offsite has been or...

  18. Layer Protecting the Surface of Zirconium Used in Nuclear Reactors.

    PubMed

    Ashcheulov, Petr; Skoda, Radek; Skarohlíd, Jan; Taylor, Andrew; Fendrych, Frantisek; Kratochvílová, Irena

    2016-01-01

    Zirconium alloys have very useful properties for nuclear facilities applications having low absorption cross-section of thermal electrons, high ductility, hardness and corrosion resistance. However, there is also a significant disadvantage: it reacts with water steam and during this (oxidative) reaction it releases hydrogen gas, which partly diffuses into the alloy forming zirconium hydrides. A new strategy for surface protection of zirconium alloys against undesirable oxidation in nuclear reactors by polycrystalline diamond film has been patented- Czech patent 305059: Layer protecting the surface of zirconium alloys used in nuclear reactors and PCT patent: Layer for protecting surface of zirconium alloys (Patent Number: WO2015039636-A1). The zirconium alloy surface was covered by polycrystalline diamond layer grown in plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. Substantial progress in the description and understanding of the polycrystalline diamond/ zirconium alloys interface and material properties under standard and nuclear reactors conditions (irradiation, hot steam oxidation experiments and heating-quenching cycles) was made. In addition, process technology for the deposition of protective polycrystalline diamond films onto the surface of zirconium alloys was optimized. Zircaloy2 nuclear fuel pins were covered by 300 nm thick protective polycrystalline diamond layer (PCD) using plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. The polycrystalline diamond layer protects the zirconium alloy surface against undesirable oxidation and consolidates its chemical stability while preserving its functionality. PCD covered Zircaloy2 and standard Zircaloy2 pins were for 30 min. oxidized in 1100°C hot steam. Under these conditions α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). PCD anticorrosion protection of Zircaloy nuclear fuel assemblies can

  19. Self-consistent calculation of the nuclear composition in hot and dense stellar matter

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Mishustin, Igor

    2017-03-01

    We investigate the mass fractions and in-medium properties of heavy nuclei in stellar matter at characteristic densities and temperatures for supernova (SN) explosions. The individual nuclei are described within the compressible liquid-drop model taking into account modifications of bulk, surface, and Coulomb energies. The equilibrium properties of nuclei and the full ensemble of heavy nuclei are calculated self-consistently. It is found that heavy nuclei in the ensemble are either compressed or decompressed depending on the isospin asymmetry of the system. The compression or decompression has a little influence on the binding energies, total mass fractions, and average mass numbers of heavy nuclei, although the equilibrium densities of individual nuclei themselves are changed appreciably above one-hundredth of normal nuclear density. We find that nuclear structure in the single-nucleus approximation deviates from the actual one obtained in the multinucleus description, since the density of free nucleons is different between these two descriptions. This study indicates that a multinucleus description is required to realistically account for in-medium effects on the nuclear structure in supernova matter.

  20. Nuclear proliferomics: A new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO3.

    PubMed

    Schwerdt, Ian J; Brenkmann, Alexandria; Martinson, Sean; Albrecht, Brent D; Heffernan, Sean; Klosterman, Michael R; Kirkham, Trenton; Tasdizen, Tolga; McDonald Iv, Luther W

    2018-08-15

    The use of a limited set of signatures in nuclear forensics and nuclear safeguards may reduce the discriminating power for identifying unknown nuclear materials, or for verifying processing at existing facilities. Nuclear proliferomics is a proposed new field of study that advocates for the acquisition of large databases of nuclear material properties from a variety of analytical techniques. As demonstrated on a common uranium trioxide polymorph, α-UO 3 , in this paper, nuclear proliferomics increases the ability to improve confidence in identifying the processing history of nuclear materials. Specifically, α-UO 3 was investigated from the calcination of unwashed uranyl peroxide at 350, 400, 450, 500, and 550 °C in air. Scanning electron microscopy (SEM) images were acquired of the surface morphology, and distinct qualitative differences are presented between unwashed and washed uranyl peroxide, as well as the calcination products from the unwashed uranyl peroxide at the investigated temperatures. Differential scanning calorimetry (DSC), UV-Vis spectrophotometry, powder X-ray diffraction (p-XRD), and thermogravimetric analysis-mass spectrometry (TGA-MS) were used to understand the source of these morphological differences as a function of calcination temperature. Additionally, the SEM images were manually segmented using Morphological Analysis for MAterials (MAMA) software to identify quantifiable differences in morphology for three different surface features present on the unwashed uranyl peroxide calcination products. No single quantifiable signature was sufficient to discern all calcination temperatures with a high degree of confidence; therefore, advanced statistical analysis was performed to allow the combination of a number of quantitative signatures, with their associated uncertainties, to allow for complete discernment by calcination history. Furthermore, machine learning was applied to the acquired SEM images to demonstrate automated discernment with

  1. Seismic isolation of nuclear power plants using elastomeric bearings

    NASA Astrophysics Data System (ADS)

    Kumar, Manish

    Seismic isolation using low damping rubber (LDR) and lead-rubber (LR) bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. Although seismic isolation has been deployed in nuclear structures in France and South Africa, it has not seen widespread use because of limited new build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, design and construction of isolation systems specific to nuclear structures. The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to consider seismic isolation for new large light water and small modular reactors to withstand the effects of extreme earthquakes. The mechanical properties of LDR and LR bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead-rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the horizontal displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) were investigated using an advanced numerical model of a lead-rubber bearing that has been verified and validated, and implemented in OpenSees and ABAQUS. A series of experiments were conducted at University at Buffalo to characterize the behavior of elastomeric bearings in tension. The test data was used to validate a phenomenological model of an elastomeric bearing in tension. The value of three times the shear modulus of rubber in elastomeric bearing was found to be a reasonable estimate of the cavitation stress of a bearing. The sequence of loading did not change the behavior of an elastomeric bearing under cyclic tension, and there was no

  2. New proton drip-line nuclei relevant to nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Ferreira, L. S.

    2018-02-01

    We discuss recent results on decay of exotic proton rich nuclei at the proton drip line for Z < 50, that are of great importance for nuclear astrophysics models. From the interpretation of the data, we assign their properties, and impose a constraint on the separation energy which has strong implications in the network calculations.

  3. Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery.

    PubMed

    Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu

    2018-05-18

    Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.

  4. Nuclear matter from effective quark-quark interaction.

    PubMed

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  5. Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins.

    PubMed

    Casanova, J; Wang, Z-Y; Plenio, M B

    2016-09-23

    Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.

  6. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue

    PubMed Central

    Swift, Joe; Discher, Dennis E.

    2014-01-01

    ABSTRACT How cells respond to physical cues in order to meet and withstand the physical demands of their immediate surroundings has been of great interest for many years, with current research efforts focused on mechanisms that transduce signals into gene expression. Pathways that mechano-regulate the entry of transcription factors into the cell nucleus are emerging, and our most recent studies show that the mechanical properties of the nucleus itself are actively controlled in response to the elasticity of the extracellular matrix (ECM) in both mature and developing tissue. In this Commentary, we review the mechano-responsive properties of nuclei as determined by the intermediate filament lamin proteins that line the inside of the nuclear envelope and that also impact upon transcription factor entry and broader epigenetic mechanisms. We summarize the signaling pathways that regulate lamin levels and cell-fate decisions in response to a combination of ECM mechanics and molecular cues. We will also discuss recent work that highlights the importance of nuclear mechanics in niche anchorage and cell motility during development, hematopoietic differentiation and cancer metastasis, as well as emphasizing a role for nuclear mechanics in protecting chromatin from stress-induced damage. PMID:24963133

  7. The Nuclear Barcode: a New Taggant for Identifying Explosives

    NASA Astrophysics Data System (ADS)

    Seman, James; Johnson, Catherine; Castaño, Carlos

    2017-06-01

    Creating an effective taggant system for explosives is a challenging problem since the taggant used must be designed to endure the detonation process. A new taggant for use in explosives has been recently developed and named the `nuclear barcode'. The nuclear barcode tags explosives by adding low concentrations of eight different elements to the explosive, and then reads the tag from the post-blast residue using neutron activation analysis (NAA) to identify the elements and their concentrations. The nuclear barcode can be used to identify explosives after detonation by sampling the post-blast residue that is deposited due to incomplete reaction of the explosives. This method of tagging explosives creates an identifying taggant that survives detonation as NAA detects atomic nuclei as opposed to using any chemical or physical properties of the taggant that don't always survive the detonation process. Additional advantages this taggant method offers is ease of recovery of the taggant after detonation, and a total of 25.6 billion possible taggants as currently conceived, which enables the nuclear barcode to be used to tag individual batches of explosives. This paper describes the development of the nuclear barcode taggant system and its potential use in the explosives industry.

  8. Nuclear choices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfson, R.

    This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects andmore » uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.« less

  9. Equation of state of asymmetric nuclear matter using re-projected nucleon–nucleon potentials

    NASA Astrophysics Data System (ADS)

    Asadi Aghbolaghi, Z.; Bigdeli, M.

    2018-06-01

    In this paper, we have calculated the equation of state of asymmetric nuclear matter using the lowest order constrained variational approach and Argonne family potentials with and without three-nucleon interaction (TNI) contribution. In particular, we have used the AV18 potential and the re-projected potentials, AV8‧, and AV6‧. We have also calculated the saturation properties of symmetric nuclear matter, and the nuclear symmetry energy using AV18+TNI, AV8‧+TNI and AV6‧+TNI potentials. The inclusion of TNI has modified the agreement with experiment. We have also made a comparison between our results and those of other many-body calculations.

  10. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators

    PubMed Central

    Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.

    2015-01-01

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  11. Nuclear Data Sheets for A = 209

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Kondev, F. G.

    2015-05-01

    The experimental data are evaluated for known nuclides of mass number A=209 (Au,Hg,TI,Pb,Bi,Po,At,Rn, Fr,Ra,Ac,Th). Detailed evaluated level properties and related nuclear structure information are presented, with the best values recommended for level energies, half lives, gamma-ray energies and intensities, decay data (energies, intensities and placement of radiations), and other spectroscopic data. This work supersedes the earlier full evaluation of A=209 by M.J. Martin (1991Ma16).

  12. Nuclear Data Sheets for A = 209

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Present address: National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824; Kondev, F.G.

    2015-05-15

    The experimental data are evaluated for known nuclides of mass number A = 209 (Au,Hg,Tl,Pb,Bi,Po,At,Rn, Fr,Ra,Ac,Th). Detailed evaluated level properties and related nuclear structure information are presented, with the best values recommended for level energies, half-lives, γ–ray energies and intensities, decay data (energies, intensities and placement of radiations), and other spectroscopic data. This work supersedes the earlier full evaluation of A = 209 by M.J. Martin (1991Ma16)

  13. The Nuclear Power and Nuclear Weapons Connection.

    ERIC Educational Resources Information Center

    Leventhal, Paul

    1990-01-01

    Explains problems enforcing the Nuclear Non-Proliferation Treaty (NPT) of 1968. Provides factual charts and details concerning the production of nuclear energy and arms, the processing and disposal of waste products, and outlines the nuclear fuel cycle. Discusses safeguards, the risk of nuclear terrorism, and ways to deal with these problems. (NL)

  14. Thermodynamic properties and equation of state of liquid lead and lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Sobolev, V. P.; Schuurmans, P.; Benamati, G.

    2008-06-01

    Since the 1950s, liquid lead (Pb) and lead-bismuth eutectic (Pb-Bi) have been studied in the USA, Canada and in the former-USSR as potential coolants for nuclear installations due to their very attractive thermophysical and neutronic properties. However, experimental data on the thermal properties of these coolants in the temperature range of interest are still incomplete and often contradictory. This makes it very difficult to perform design calculations and to analyse the normal and abnormal behaviour of nuclear installations where these coolants are expected to be used. Recently, a compilation of heavy liquid metal (HLM) properties along with recommendations for its use was prepared by the OECD/NEA Working Party on Fuel Cycle (WPFC) Expert Group on Lead-Bismuth Eutectic Technology. A brief review of this compilation and some new data are presented in this article. A set of correlations for the temperature dependence of the main thermodynamic properties of Pb and Pb-Bi(e) at normal pressure, and a set of simplified thermal and caloric equations of state for the liquid phase are proposed.

  15. 77 FR 70847 - Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc., Indian Point Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-247; NRC-2012-0284] Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 2, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request for Action; receipt. SUMMARY: The U.S. Nuclear...

  16. Assessment of empirical potential for MOX nuclear fuels and thermomechanical properties

    NASA Astrophysics Data System (ADS)

    Balboa, Hector; Van Brutzel, Laurent; Chartier, Alain; Le Bouar, Yann

    2017-11-01

    We assess five empirical interatomic potentials in the approximation of rigid ions and pair interactions for the (U1-y,Puy)O solid solution. The assessment compares available experimental data and Fink's recommendation with simulations on: the structural, thermodynamics, and mechanical properties over the full range of plutonium composition, from pure UO2 to pure PuO2 and for temperatures ranging from 300 K to the melting point. The best results are obtained by potentials referred as Cooper and Potashnikov potentials. The first one reproduces more accurately recommendations for the thermodynamics and mechanical properties exhibiting ductile-like behaviour during crack propagation, while the second one gives brittle behaviour at low temperature.

  17. 75 FR 39057 - Entergy Nuclear Operations, Inc.; Entergy Nuclear Vermont Yankee, LLC; Vermont Yankee Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271; NRC-2010-0243; License No. DPR-28] Entergy Nuclear Operations, Inc.; Entergy Nuclear Vermont Yankee, LLC; Vermont Yankee Nuclear Power Station... action with regard to the Vermont Yankee Nuclear Power Station. Mr. Mulligan requested in his petition...

  18. 76 FR 19148 - Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271; License No. DPR-28; NRC-2011-0074] Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear Power Station... regard to the Vermont Yankee Nuclear Power Station (VY). Mr. Saporito requested in his petition that the...

  19. Glenn T. Seaborg and heavy ion nuclear science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies.more » Future roles of radiochemistry in heavy ion nuclear science also will be discussed.« less

  20. Glenn T. Seaborg and heavy ion nuclear science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies.more » Future roles of radiochemistry in heavy ion nuclear science also will be discussed.« less

  1. On microscopic theory of radiative nuclear reaction characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamerdzhiev, S. P.; Achakovskiy, O. I., E-mail: oachakovskiy@ippe.ru; Avdeenkov, A. V.

    2016-07-15

    A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effectsmore » on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic {sup 132}Sn and {sup 208}Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.« less

  2. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery

    NASA Astrophysics Data System (ADS)

    Artun, Ozan

    2017-07-01

    In this paper, we intend to extend the nuclear data of 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery technology, because, these nuclei are quite important for space investigations in radioisotope thermoelectric generator (RTG) and for microelectronic technologies in betavoltaic batteries. Therefore, the nuclear structure properties of nuclei such as separation energies, neutron skin thicknesses, proton, charge and neutron density distributions as a function of radius, the root mean square (rms) proton, charge and neutron radii, binding energies per particle, have been investigated by Hartree-Fock with eight different Skyrme forces. The obtained results have been compared with the experimental data in literature and relativistic mean field theory (RMFT) results.

  3. Nuclear Lamin A/C Deficiency Induces Defects in Cell Mechanics, Polarization, and Migration

    PubMed Central

    Lee, Jerry S. H.; Hale, Christopher M.; Panorchan, Porntula; Khatau, Shyam B.; George, Jerry P.; Tseng, Yiider; Stewart, Colin L.; Hodzic, Didier; Wirtz, Denis

    2007-01-01

    Lamin A/C is a major constituent of the nuclear lamina, a thin filamentous protein layer that lies beneath the nuclear envelope. Here we show that lamin A/C deficiency in mouse embryonic fibroblasts (Lmna−/− MEFs) diminishes the ability of these cells to polarize at the edge of a wound and significantly reduces cell migration speed into the wound. Moreover, lamin A/C deficiency induces significant separation of the microtubule organizing center (MTOC) from the nuclear envelope. Investigations using ballistic intracellular nanorheology reveal that lamin A/C deficiency also dramatically affects the micromechanical properties of the cytoplasm. Both the elasticity (stretchiness) and the viscosity (propensity of a material to flow) of the cytoplasm in Lmna−/− MEFs are significantly reduced. Disassembly of either the actin filament or microtubule networks in Lmna+/+ MEFs results in decrease of cytoplasmic elasticity and viscosity down to levels found in Lmna−/− MEFs. Together these results show that both the mechanical properties of the cytoskeleton and cytoskeleton-based processes, including cell motility, coupled MTOC and nucleus dynamics, and cell polarization, depend critically on the integrity of the nuclear lamina, which suggest the existence of a functional mechanical connection between the nucleus and the cytoskeleton. These results also suggest that cell polarization during cell migration requires tight mechanical coupling between MTOC and nucleus, which is mediated by lamin A/C. PMID:17631533

  4. Nuclear winter or nuclear fall?

    NASA Astrophysics Data System (ADS)

    Berger, André

    Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.

  5. Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, G G

    2001-03-28

    Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use ofmore » forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade

  6. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  7. Nuclear Function of Smad7 Promotes Myogenesis▿

    PubMed Central

    Miyake, Tetsuaki; Alli, Nezeka S.; McDermott, John C.

    2010-01-01

    In the “canonical” view of transforming growth factor β (TGF-β) signaling, Smad7 plays an inhibitory role. While Smad7 represses Smad3 activation by TGF-β, it does not reverse the inhibitory effect of TGF-β on myogenesis, suggesting a different function in myogenic cells. We previously reported a promyogenic role of Smad7 mediated by an interaction with MyoD. Based on this association, we hypothesized a possible nuclear function of Smad7 independent of its role at the level of the receptor. We therefore engineered a chimera of Smad7 with a nuclear localization signal (NLS), which serves to prevent and therefore bypass binding to the TGF-β receptor while concomitantly constitutively localizing Smad7 to the nucleus. This Smad7-NLS did not repress Smad3 activation by TGF-β but did retain its ability to enhance myogenic gene activation and phenotypic myogenesis, indicating that the nuclear, receptor-independent function of Smad7 is sufficient to promote myogenesis. Furthermore, Smad7 physically interacts with MyoD and antagonizes the repressive effects of active MEK on MyoD. Reporter and myogenic conversion assays indicate a pivotal regulation of MyoD transcriptional properties by the balance between Smad7 and active MEK. Thus, Smad7 has a nuclear coactivator function that is independent of TGF-β signaling and necessary to promote myogenic differentiation. PMID:19995910

  8. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less

  9. Detection of a nuclear, EBNA-type antigen in apparently EBNA-negative Herpesvirus papio (HVP)-transformed lymphoid lines by the acid-fixed nuclear binding technique.

    PubMed

    Ohno, S; Luka, J; Falk, L; Klein, G

    1977-12-15

    In agreement with the findings of previous authors, we could not detect a virally determined nuclear antigen in Herpesvirus papio (HVP)-transformed baboon lymphoid lines by anticomplementary staining in situ, as for EBNA. However, by means of our recently developed acid-fixed nuclear binding technique an EBNA-like antigen could be readily demonstrated, after extraction from both producer and non-producer lines. We propose to designate the antigen as HUPNA. It can be detected by a human anti-EBNA antibody, suggesting cross-reactivity, if not identity, between EBNA and HUPNA. HVP-DNA carrying non-producer lines, negative for in situ ACIF stainability but capable of yielding HUPNA by the nuclear binding technique, can be superinfected with EBV, with brilliant EBNA expression as the result, suggesting that the defective in situ staining is a property associated with the baboon HVP, rather than the baboon lymphoid cell per se.

  10. The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2018-05-01

    This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.

  11. Structure of cold nuclear matter at subnuclear densities by quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2003-09-01

    Structure of cold nuclear matter at subnuclear densities for the proton fraction x=0.5, 0.3, and 0.1 is investigated by quantum molecular dynamics (QMD) simulations. We demonstrate that the phases with slablike and rodlike nuclei, etc. can be formed dynamically from hot uniform nuclear matter without any assumptions on nuclear shape, and also systematically analyze the structure of cold matter using two-point correlation functions and Minkowski functionals. In our simulations, we also observe intermediate phases, which have complicated nuclear shapes. It has been found out that these phases can be characterized as those with negative Euler characteristic. Our result implies the existence of these kinds of phases in addition to the simple “pasta” phases in neutron star crusts and supernova inner cores. In addition, we investigate the properties of the effective QMD interaction used in the present work to examine the validity of our results. The resultant energy per nucleon ɛn of the pure neutron matter, the proton chemical μ(0)p in pure neutron matter and the nuclear surface tension Esurf are generally reasonable in comparison with other nuclear interactions.

  12. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  13. Low Energy Nuclear Structure Modeling: Can It Be Improved?

    NASA Astrophysics Data System (ADS)

    Stone, Jirina R.

    Since the discovery of the atomic nucleus in 1911 generations of physicists have devoted enormous effort to understand low energy nuclear structure. Properties of nuclei in their ground state, including mass, binding energy and shape, provide vital input to many areas of sub-atomic physics as well as astrophysics and cosmology. Low energy excited states are equally important for understanding nuclear dynamics. Yet, no consensus exists as to what is the best path to a theory which would not only consistently reproduce a wide variety of experimental data but also have enough predictive power to yield credible predictions in areas where data are still missing. In this contribution some of the main obstacles preventing building such a theory are discussed. These include modification of the free nucleon-nucleon force in the nuclear environment and effects of the sub-nucleon (quark) structure of the nucleon. Selected classes of nuclear models, mean-field, shell and ab-initio models are briefly outlined. Finally, suggestions are made for, at least partial, progress that can be achieved with the quark-meson coupling model, as reported in recent publication [1].

  14. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyburt, R. H.; Keek, L.; Schatz, H.

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to matchmore » calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.« less

  15. Status of Initial Assessment of Physical and Mechanical Properties of Graphite Grades for NGNP Appkications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strizak, Joe P; Burchell, Timothy D; Windes, Will

    2011-12-01

    Current candidate graphite grades for the core structures of NGNP include grades NBG-17, NBG-18, PCEA and IG-430. Both NBG-17 and NBG-18 are manufactured using pitch coke, and are vibrationally molded. These medium grain products are produced by SGL Carbon SAS (France). Tayo Tanso (Japan) produces IG-430 which is a petroleum coke, isostatically molded, nuclear grade graphite. And PCEA is a medium grain, extruded graphite produced by UCAR Carbon Co. (USA) from petroleum coke. An experimental program has been initiated to develop physical and mechanical properties data for these current candidate graphites. The results will be judged against the requirements formore » nuclear grade graphites set forth in ASTM standard D 7219-05 "Standard Specification for Isotropic and Near-isotropic Nuclear Graphites". Physical properties data including thermal conductivity and coefficient of thermal expansion, and mechanical properties data including tensile, compressive and flexural strengths will be obtained using the established test methods covered in D-7219 and ASTM C 781-02 "Standard Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors". Various factors known to effect the properties of graphites will be investigated. These include specimen size, spatial location within a graphite billet, specimen orientation (ag and wg) within a billet, and billet-to-billet variations. The current status of the materials characterization program is reported herein. To date billets of the four graphite grades have been procured, and detailed cut up plans for obtaining the various specimens have been prepared. Particular attention has been given to the traceability of each specimen to its spatial location and orientation within a billet.« less

  16. The conductive propagation of nuclear flames. I - Degenerate C + O and O + Ne + Mg white dwarfs

    NASA Technical Reports Server (NTRS)

    Timmes, F. X.; Woosley, S. E.

    1992-01-01

    The paper determines the physical properties - speed, width, and density structure - of conductive burning fronts in degenerate carbon-oxygen (C + O) and oxygen-neon-magnesium (O + Ne + Mg) compositions for a grid of initial densities and compositions. The dependence of the physical properties of the flame on the assumed values of nuclear reaction rates, the nuclear reaction network employed, the thermal conductivity, and the choice of coordinate system are investigated. The occurrence of accretion-induced collapse of a white dwarf is found to be critically dependent on the velocity of the nuclear conductive burning front and the growth rate of hydrodynamic instabilities. Treating the expanding area of the turbulent burning region as a fractal whose tile size is identical to the minimum unstable Rayleigh-Taylor wavelength, it is found, for all reasonable values of the fractal dimension, that for initial C + O or O + Ne + Mg densities above about 9 x 10 exp 9 g/cu cm the white dwarf should collapse to a neutron star.

  17. On the physical interpretation of the nuclear molecular orbital energy.

    PubMed

    Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés

    2017-06-07

    Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.

  18. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear pasta in protoneutron stars: simulations of neutrino emission from nucelar de-excitation

    NASA Astrophysics Data System (ADS)

    Witt, Matthew Charles; Newton, William

    2017-01-01

    Nuclear pasta is an exotic phase of matter with densities near ρ ≈ ρ0 = 1014 g cm-3 that consists of complex structures with geometries resembling spaghetti, lasagna, gnocchi, and other types of pasta. It is predicted to appear in the inner crust of neutron stars, protoneutron stars, and the collapsing cores of massive stars. It is hypothesized that nuclear pasta has a significant effect on transport and neutrino scattering properties of neutron and protoneutron stars. If this is true, then it is possible to find observational signatures of nuclear pasta. We present a calculation of neutrino emmissivity of pasta phases due to de-excitation of neutrons. We discuss observational implications on the neutrino signal of protoneutron stars.

  20. Surface symmetry energy of nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.

    2011-03-01

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  1. Going nuclear: The spread of nuclear weapons 1986-1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spector, L.S.

    1987-01-01

    In the third annual report of the Carnegie Endowment for International Peace on the spread of nuclear weapons, Spector provides a critical survey of the status of nuclear proliferation throughout the world and examines the nuclear potential of nations in the Middle East, Asia, Africa, and Latin America. Drawing on both historical documents and up-to-date reports, the author addresses such specific topics as Israel's nuclear arsenal, nuclear terrorism and its global security implications, arms control and nuclear safeguards, international treaties, weapons buildup, and political radicalism and unrest in nuclear-threshold nations.

  2. Nuclear Data Sheets for A = 183

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglin, Coral M.

    Evaluated nuclear structure and decay data for all nuclides with mass number A=183 (Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb) are presented here. At, Po and Fr have not yet been observed, but for prediction of ground state and/or isomer properties see, e.g., 2015Bh08 (At, Fr), 2013Ba41 (Tl), 2013Ho05 (Po). This evaluation includes structure and decay data information available by 15 April 2015 and supersedes that by R.B. Firestone published in Nuclear Data Sheets65, 589 (1992) (literature cutoff 9 January 1991), and subsequent revisions by C.M. Baglin for {sup 183}Au in ENSDF database (literaturemore » cutoff 13 March 1999), {sup 183}Hg in Nuclear Data Sheets91, 117 (2000) (literature cutoff 25 September 2000), {sup 183}Tl in Nuclear Data Sheets95, 49 (2002) (literature cutoff 1 January 2002) and {sup 183}Pb in ENSDF (literature cutoff 6 January 2003). Since the prior Nuclear Data Sheets publication of this mass chain: {sup 183}Yb (2012Ku26) and {sup 183}Pb (2006An11, 2006Se18, 2007De09, 2009Se13) have been observed; our knowledge of high–spin states has been significantly expanded for {sup 183}Ta (2009Sh17), {sup 183}W (1999Sa60), {sup 183}Re (1998Ha51, 2001Sh41), {sup 183}Au (2002Jo18, 2005So01) and {sup 183}Tl (2001Mu26, 2004Ra28); a large amount of new structure information for {sup 183}W has been obtained from transfer reactions (1997Pr02, 2011Bo09), (n,n'γ) (1993Pr09) and thermal neutron capture (1993Pr09, 1997Pr02, 2011Bo09, 2014Hu02), as well as from the two–photon cascade study by 2005Su29.« less

  3. Nuclear Fuels & Materials Spotlight Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petti, David Andrew

    2016-10-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system.more » • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.« less

  4. Dynamical Properties of Eccentric Nuclear Disks: Stability, Longevity, and Implications for Tidal Disruption Rates in Post-merger Galaxies

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie; Halle, Andrew; Moody, Mackenzie; McCourt, Michael; Nixon, Chris; Wernke, Heather

    2018-02-01

    In some galaxies, the stars orbiting the supermassive black hole take the form of an eccentric nuclear disk, in which every star is on a coherent, apsidally aligned orbit. The most famous example of an eccentric nuclear disk is the double nucleus of Andromeda, and there is strong evidence for many more in the local universe. Despite their apparent ubiquity, however, a dynamical explanation for their longevity has remained a mystery: differential precession should wipe out large-scale apsidal-alignment on a short timescale. Here we identify a new dynamical mechanism which stabilizes eccentric nuclear disks, and explain for the first time the negative eccentricity gradient seen in the Andromeda nucleus. The stabilizing mechanism drives oscillations of the eccentricity vectors of individual orbits, both in direction (about the mean body of the disk) and in magnitude. Combined with the negative eccentricity gradient, the eccentricity oscillations push some stars near the inner edge of the disk extremely close to the black hole, potentially leading to tidal disruption events (TDEs). Order of magnitude calculations predict extremely high rates in recently formed eccentric nuclear disks (∼0.1–1 {{yr}}-1 {{gal}}-1). Unless the stellar disks are replenished, these rates should decrease with time as the disk depletes in mass. If eccentric nuclear disks form during gas-rich major mergers, this may explain the preferential occurrence of TDEs in recently merged and post-merger (E+A/K+A) galaxies.

  5. Nuclear fuel microsphere gamma analyzer

    DOEpatents

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  6. Multilayer Network Analysis of Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-08-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  7. First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties

    DOE PAGES

    von Lilienfeld, O. Anatole

    2013-02-26

    A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce-of-gold prizemore » challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. Here, these relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation.« less

  8. Nuclear obligations: Nuremberg law, nuclear weapons, and protest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burroughs, J.R.

    1991-01-01

    Nuclear weapons use and deployment and nonviolent anti-nuclear protests are evaluated. Use of nuclear weapons would constitute war crimes and crimes against humanity as defined in both the Nuremberg Charter and Allied Control Council Law No. 10 and applied by the International Military Tribunal and other Nuremberg courts. Strategic and atomic bombing during World War 2 did not set a precedent for use of nuclear weapons. The consequentialist argument for World War 2 bombing fails and the bombing has also been repudiated by codification of the law of war in Protocol 1 to the 1949 Geneva Conventions. The legality ofmore » deploying nuclear weapons as instruments of geopolitical policy is questionable when measured against the Nuremberg proscription of planning and preparation of aggressive war, war crimes, and crimes against humanity and the United Nations Charter's proscription of aggressive threat of force. While states' practice of deploying the weapons and the arms-control treaties that regulate but do not prohibit mere possession provide some support for legality, those treaties recognize the imperative of preventing nuclear war, and the Nuclear Non-Proliferation Treaty commits nuclear-armed states to good-faith negotiation of nuclear disarmament.« less

  9. Multinuclear Detection of Nuclear Spin Optical Rotation at Low Field.

    PubMed

    Zhu, Yue; Gao, Yuheng; Rodocker, Shane; Savukov, Igor; Hilty, Christian

    2018-06-06

    We describe the multinuclear detection of nuclear spin optical rotation (NSOR), an effect dependent on the hyperfine interaction between nuclear spins and electrons. Signals of 1 H and 19 F are discriminated by frequency in a single spectrum acquired at sub-millitesla field. The simultaneously acquired optical signal along with the nuclear magnetic resonance signal allows the calculation of the relative magnitude of the NSOR constants corresponding to different nuclei within the sample molecules. This is illustrated by a larger NSOR signal measured at the 19 F frequency despite a smaller corresponding spin concentration. Second, it is shown that heteronuclear J-coupling is observable in the NSOR signal, which can be used to retrieve chemical information. Multinuclear frequency and J resolution can localize optical signals in the molecule. Properties of electronic states at multiple sites in a molecule may therefore ultimately be determined by frequency-resolved NSOR spectroscopy at low field.

  10. Adhesion layer for etching of tracks in nuclear trackable materials

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A method for forming nuclear tracks having a width on the order of 100-200 nm in nuclear trackable materials, such as polycarbonate (LEXAN) without causing delamination of the LEXAN. The method utilizes an adhesion film having a inert oxide which allows the track to be sufficiently widened to >200 nm without delamination of the nuclear trackable materials. The adhesion film may be composed of a metal such as Cr, Ni, Au, Pt, or Ti, or composed of a dielectric having a stable surface, such as silicon dioxide (SiO.sub.2), silicon nitride (SiN.sub.x), and aluminum oxide (AlO). The adhesion film can either be deposited on top of the gate metal layer, or if the properties of the adhesion film are adequate, it can be used as the gate layer. Deposition of the adhesion film is achieved by standard techniques, such as sputtering or evaporation.

  11. Nuclear Data Sheets for A = 94

    NASA Astrophysics Data System (ADS)

    Abriola, D.; Sonzogni, A. A.

    2006-09-01

    Experimental data on ground- and excited-state properties for all known nuclei with mass number A = 94 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given. The Hager-Seltzer internal conversion coefficients are listed for gamma rays of known multipolarity. This work supersedes the 1992 evaluation by J.K. Tuli (1992Tu02). Since 1992, many articles have been published which were incorporated in this evaluation. In summary, high-spin data using large arrays of Ge detectors have been obtained for 94Kr (2000Rz02), 94Sr (1995Ha20), 94Zr (2002Fo03,2005Pa48), 94Nb (2000Ma63), 94Mo (1998Kh04), 94Tc (2000Gh01), 94Ru (1994Ju03,1994Ro08), 94Rh (1994Ar33), and 94Pd (2003Ma24). A new isomer was observed in 94Y (1999Ge01). The low-spin levels in 98Mo were systematically studied using a variety of experimental techniques (2003Fr02). Considerable effort was spent investigating the decay of 94Ag and the levels of 94Pd (2006Mu03,2005Mu15,2004BaZY,2004Pl01,2002La18), in particular, the (21+) level in 94Ag is the first level observed to undergo both single and double proton radioactivity.

  12. Power counting and Wilsonian renormalization in nuclear effective field theory

    NASA Astrophysics Data System (ADS)

    Valderrama, Manuel Pavón

    2016-05-01

    Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.

  13. Exclusive nuclear location of estrogen receptors in Squalus testis.

    PubMed Central

    Callard, G V; Mak, P

    1985-01-01

    An estrogen (E)-binding molecule having both occupied and unoccupied sites is restricted to nuclear subfractions in the testis of the spiny dogfish (Squalus acanthias). We investigated the hypothesis that a species characterized by high body-fluid osmolarity (1010 mosM) has an estrogen receptor (ER) that binds to chromatin with high affinity and consequently resists redistribution during tissue processing. Although the steroid binding and sedimentation properties of the Squalus nuclear ER conformed to those of classical ER, its elution maximum from DNA-cellulose was unusually high (0.55 M NaCl). A tendency to adhere tightly to cell nuclei was reflected in the high salt concentration (0.43 M KCl) required to extract 50% of the receptors from the nuclear compartment during homogenization and in the stability of the nuclear ER population in the presence of high concentrations of a nonionic solute (urea) or increased buffer volume. Mixing and redistribution experiments showed that nuclear ER could be quantitatively and qualitatively measured in cytosolic extracts, ruling out the possibility that soluble receptors were being masked. Although Squalus oviduct ER was similar to that of testis, ER in the testis and liver of a related elasmobranch (Potamotrygon) that maintains osmotic equilibrium at 300 mosM more closely resembled mammalian ER in its elution maximum from DNA-cellulose (0.22 M NaCl) and cytosolic/nuclear ratios in low-salt buffers. We conclude that Squalus testis has a single ER pool located exclusively in the nuclear compartment. These observations support a revised concept of steroid action and further indicate that the chromatin affinity of the hormone-ER complex is an important factor in determining subfractional distribution during tissue processing. PMID:3856265

  14. Actinide targets for fundamental research in nuclear physics

    NASA Astrophysics Data System (ADS)

    Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.

    2018-05-01

    Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.

  15. Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Martin J.

    This project was part of a coordinated software development effort which the nuclear physics lattice QCD community pursues in order to ensure that lattice calculations can make optimal use of present, and forthcoming leadership-class and dedicated hardware, including those of the national laboratories, and prepares for the exploitation of future computational resources in the exascale era. The UW team improved and extended software libraries used in lattice QCD calculations related to multi-nucleon systems, enhanced production running codes related to load balancing multi-nucleon production on large-scale computing platforms, and developed SQLite (addressable database) interfaces to efficiently archive and analyze multi-nucleon datamore » and developed a Mathematica interface for the SQLite databases.« less

  16. Nuclear structure properties of the double-charge-exchange transition amplitudes

    NASA Astrophysics Data System (ADS)

    Auerbach, N.; Zheng, D. C.

    1992-03-01

    Nuclear structure aspects of the double-charge-exchange (DCX) reaction on nuclei are studied. Using a variety of DCX-type two-body transition operators, we explore the influence of two-body correlations among valence nucleons on the DCX transition amplitudes to the isobaric analog state and to other nonanalog J π=0+ states. In particular, the question of the spin dependence and of the range of the DCX transition operators is explored and the behavior of the transition amplitudes as a function of the valence nucleon number is studied. It is shown that the two-amplitude DCX formula derived by Auerbach, Gibbs, and Piasetzky for a single j n configuration holds also in some cases when configuration mixing is strong. DCX-type transitions from the Ca and Ni isotopes to the Ti and Zn isotopes and from 56Fe to 56Ni are the subject of this study.

  17. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue.

    PubMed

    Swift, Joe; Discher, Dennis E

    2014-07-15

    How cells respond to physical cues in order to meet and withstand the physical demands of their immediate surroundings has been of great interest for many years, with current research efforts focused on mechanisms that transduce signals into gene expression. Pathways that mechano-regulate the entry of transcription factors into the cell nucleus are emerging, and our most recent studies show that the mechanical properties of the nucleus itself are actively controlled in response to the elasticity of the extracellular matrix (ECM) in both mature and developing tissue. In this Commentary, we review the mechano-responsive properties of nuclei as determined by the intermediate filament lamin proteins that line the inside of the nuclear envelope and that also impact upon transcription factor entry and broader epigenetic mechanisms. We summarize the signaling pathways that regulate lamin levels and cell-fate decisions in response to a combination of ECM mechanics and molecular cues. We will also discuss recent work that highlights the importance of nuclear mechanics in niche anchorage and cell motility during development, hematopoietic differentiation and cancer metastasis, as well as emphasizing a role for nuclear mechanics in protecting chromatin from stress-induced damage. © 2014. Published by The Company of Biologists Ltd.

  18. Examination of psychological variables related to nuclear attitudes and nuclear activism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, P.J.

    1985-01-01

    It was hypothesized that knowledge about nuclear arms developments would not be correlated with nuclear attitudes, that sense of efficacy would be positively correlated with magnitude of nuclear activism, and that death anxiety would be correlated with high level of nuclear knowledge and anti-nuclear attitudes, but not with sense of power. It was also hypothesized that positive correlations would be found between nuclear activism and political activism, knowledge of nuclear facts, and degree of adherence to anti-nuclear attitudes. One hundred and forty three women and 90 men participated in this questionnaire study. Major findings are as follows. In general, themore » more people knew about nuclear developments, the more anti-nuclear were their attitudes. Also, regardless of nuclear attitudes, a positive correlation was found between knowledge of nuclear facts and nuclear activism. Death anxiety and powerlessness were not correlated. There was a positive correlation between anxiety and both nuclear knowledge and anti-nuclear attitudes. A strong positive correlation was found between nuclear activism and anti-nuclear attitudes, and between political activism and nuclear activism. Internal locus of control did not correlate significantly with high sense of power or with high degree of nuclear activism.« less

  19. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    USGS Publications Warehouse

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize

  20. 75 FR 3497 - Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point 2, LLC, Entergy Nuclear Indian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-247 and 50-286; NRC-2010-0006] Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point 2, LLC, Entergy Nuclear Indian Point 3, LLC,: Indian Point Nuclear Generating Unit Nos. 2 and 3; Notice of Consideration of Issuance of Amendment to Facility Operating License and Opportunity To Request a...

  1. Is nuclear matter a quantum crystal?

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1973-01-01

    A possible alternative to the ordinary gas-like computation for nuclear matter is investigated under the assumption that the nucleons are arranged in a lattice. BCC, FCC and HCP structures are investigated. Only HCP shows a minimum in the energy vs. density curve with a modest binding energy of -1.5 MeV. The very low density limit is investigated and sensible results are obtained only if the tensor force decreases with the density. A study of the elastic properties indicates that the previous structures are mechanically unstable against shearing stresses.

  2. Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.

  3. Reactor Materials Program - Baseline Material Property Handbook - Mechanical Properties of 1950's Vintage Stainless Steel Weldment Components, Task Number 89-23-A-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, K.J.

    1999-11-05

    The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.

  4. TH-AB-206-00: Challenges and Opportunities for Nuclear Medicine Theranostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describesmore » preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.« less

  5. The ``Nuclear Renaissance'' and the Spread of Nuclear Weapons

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin S.

    2007-05-01

    As interest grows around the world in nuclear power as an energy source that could help control greenhouse gas emissions, some have proclaimed the arrival of a ``nuclear renaissance.'' But can the increased risks of more nuclear power be managed? The political crisis surrounding Iran's pursuit of uranium enrichment has exposed weaknesses in the nuclear nonproliferation regime. Also, al Qaeda's declared interest in weapons of mass destruction raises the concern that terrorists could acquire nuclear weapons by stealing materials from poorly secured facilities. Growth of nuclear energy would require the construction of many additional uranium enrichment plants. And the generation of more spent nuclear fuel without a credible waste disposal strategy would increase political support for reprocessing, which separates large quantities of weapon-usable plutonium from spent fuel. There is little evidence that the various institutional arrangements and technical schemes proposed to mitigate the security risks of a major nuclear expansion would be effective. This talk will focus on the measures necessary to allow large-scale global growth of nuclear power without resulting in an unacceptably high risk of nuclear proliferation and nuclear terrorism, and will discuss the feasibility of such measures. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.E1.2

  6. Super Star Clusters and H II Regions in Nuclear Rings

    NASA Astrophysics Data System (ADS)

    Filippenko, Alex

    1996-07-01

    We propose to obtain WFPC2 optical broad-band {F547M and F814W} and narrow-band Halpha+ionN2 {F658N} images of nuclear starburst rings in four nearby galaxies for which we already have ultraviolet {F220W} FOC data. Nuclear rings {or ``hot- spot'' regions} in barred spirals are some of the nearest and least obscured starburst regions, and HST images of nuclear rings in several galaxies show that the rings contain large populations of super star clusters similar to those recently discovered in other types of starburst systems. These compact clusters, many having luminosities exceeding that of the R136 cluster in 30 Doradus, represent a violent mode of star formation distinct from that seen in ordinary disk ionH2 regions, and the nuclear rings present us with an opportunity to study large numbers of these extreme clusters in relatively unobscured starburst environments. It has been suggested that super star clusters are present-day versions of young globular clusters. To evaluate this hypothesis, it is important to understand the physical properties and stellar contents of the clusters, but previous HST studies of nuclear ring galaxies have only used single-filter observations. Together with our UV data, new WFPC2 images will enable us to determine the H II region and cluster luminosity functions within nuclear rings, measure cluster radii, derive age and mass estimates for the clusters by comparison with evolutionary synthesis models, and study the structure and evolution of nuclear rings.

  7. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  8. Nuclear Reactions in the Crusts of Accreting Neutron Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Rita; Beard, Mary; Gupta, Sanjib S.

    X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density ismore » $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$ using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. As a result, this work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.« less

  9. Nuclear Reactions in the Crusts of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Lau, R.; Beard, M.; Gupta, S. S.; Schatz, H.; Afanasjev, A. V.; Brown, E. F.; Deibel, A.; Gasques, L. R.; Hitt, G. W.; Hix, W. R.; Keek, L.; Möller, P.; Shternin, P. S.; Steiner, A. W.; Wiescher, M.; Xu, Y.

    2018-05-01

    X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density is ρ =2× {10}12 {{g}} {cm}}-3 using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond ρ =2× {10}12 {{g}} {cm}}-3. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. This work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.

  10. Notre Dame Nuclear Database: A New Chart of Nuclides

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Khouw, Timothy; Fasano, Patrick; Mumpower, Matthew; Aprahamian, Ani

    2014-09-01

    Nuclear data is critical to research fields from medicine to astrophysics. We are creating a database, the Notre Dame Nuclear Database, which can store theoretical and experimental datasets. We place emphasis on storing metadata and user interaction with the database. Users are able to search in addition to the specific nuclear datum, the author(s), the facility where the measurements were made, the institution of the facility, and device or method/technique used. We also allow users to interact with the database by providing online search, an interactive nuclide chart, and a command line interface. The nuclide chart is a more descriptive version of the periodic table that can be used to visualize nuclear properties such as half-lives and mass. We achieve this by using D3 (Data Driven Documents), HTML, and CSS3 to plot the nuclides and color them accordingly. Search capabilities can be applied dynamically to the chart by using Python to communicate with MySQL, allowing for customization. Users can save the customized chart they create to any image format. These features provide a unique approach for researchers to interface with nuclear data. We report on the current progress of this project and will present a working demo that highlights each aspect of the aforementioned features. This is the first time that all available technologies are put to use to make nuclear data more accessible than ever before in a manner that is much easier and fully detailed. This is a first and we will make it available as open source ware.

  11. Nuclear Reactions in the Crusts of Accreting Neutron Stars

    DOE PAGES

    Lau, Rita; Beard, Mary; Gupta, Sanjib S.; ...

    2018-05-24

    X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density ismore » $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$ using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. As a result, this work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.« less

  12. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James; Wright, Judith

    2012-07-01

    .e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not

  13. Effect of nuclear stars gravity on quasar radiation feedback on the parsec-scale

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Hong; Bu, De-Fu

    2018-05-01

    It is often suggested that a super massive black hole is embedded in a nuclear bulge of size of a few 102 parsec . The nuclear stars gravity is not negligible near ˜10parsec. In order to study the effect of nuclear stars gravity on quasar radiation feedback on the parsec scale, we have simulated the parsec scale flows irradiated by a quasar by taking into account the gravitational potential of both the black hole and the nuclear star cluster. We find that the effect of nuclear stars gravity on the parsec-scale flows is related to the fraction of X-ray photons in quasar radiation. For the models in which the fraction of X-ray photons is not small (e.g. the X-ray photons contribute to 20% of the quasar radiation), the nuclear stars gravity is very helpful to collimate the outflows driven by UV photons, significantly weakens the outflow power at the outer boundary and significantly enhances the net accretion rate onto the black hole. For the models in which X-ray photons are significantly decreased (e.g. the X-ray photons contribute to 5% of the quasar radiation), the nuclear stars gravity can just slightly change properties of outflow and slightly enhance the net accretion rate onto the black hole.

  14. Analytical mass formula and nuclear surface properties in the ETF approximation. Part II: asymmetric nuclei

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.

  15. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  16. Scoping Study of Machine Learning Techniques for Visualization and Analysis of Multi-source Data in Nuclear Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yonggang

    In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integratedmore » analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.« less

  17. Nucleology, nuclear medicine, molecular nuclear medicine and subspecialties.

    PubMed

    Grammaticos, Philip C

    2005-01-01

    Henry N. Wagner Jr started the presentation of the highlights of the 39th Annual Meeting of the Society of Nuclear Medicine by quoting: "The economist JM Keynes said: "the difficult lies not in new ideas but in escaping from the old ones". Many changes have taken place in the actual term describing our specialty during the last 15 years. Cardiologists have adopted an important chapter of nuclear medicine and to describe that they use the term of "nuclear cardiology". Radiologists have proposed the term "radionuclide radiology". "Nuclear endocrinology", "nuclear oncology", "nuclear nephrology" may be considered as terms describing chapters of nuclear medicine related to other specialties. Will that indicate that our specialty will be divided into smaller chapters and be offered to colleagues working in other specialties leaving to us the role of the supervisor or perhaps the radioprotection officer for in vivo studies? Of course this role is now being exercised by our colleagues in medical physics. It is suggested to use the word " nucleology", instead of "nuclear medicine" where "nuclear" is used as an adjective. Thus, we will avoid being part of another specialty and cardiologists would use the term cardiac nucleology where "cardiac" is the adjective. The proposed term "nucleology" as compared to the existing term "nuclear medicine" has the advantage of being simpler, correct from the grammar point of view and not related to combined terms that may seem to offer part of our specialty to other specialties. At present our specialty faces many problems. The term "nucleology" supports our specialty from the point of view of terminology. During the 3rd International Meeting of Nuclear Medicine of N. Greece which was held in Thessaloniki, Macedonia, Greece on 4-6 November 2005, a discussion arose among participants as to whether the name of "nucleology" could replace the existing name of "nuclear medicine". Finally, a vote (between "yes" and "no") for the new proposed

  18. Properties of Tuffs, Grout and Other Materials.

    DTIC Science & Technology

    1982-01-01

    analysis , and tested in uniaxial strain. Table 2 presents the physical properties, ultrasonic data, and the per- manent volume compaction resulting from the... methods provide an accuracy of ±2% on pressure and stress measure- ments. Strain Measurements - Strains are measured using cantilever arms inside the...that are used in nuclear blast effects analysis , and specifically to assist in the analysis of the grout sphere explosive tests being conducted by the

  19. Support vector machines for nuclear reactor state estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less

  20. Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn

    In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less

  1. Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations

    DOE PAGES

    Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn; ...

    2015-12-24

    In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less

  2. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Effective gaseous diffusion coefficients of select ultra-fine, super-fine and medium grain nuclear graphite

    DOE PAGES

    Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.; ...

    2018-05-05

    Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less

  5. Effective gaseous diffusion coefficients of select ultra-fine, super-fine and medium grain nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.

    Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less

  6. A study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of CR-39 nuclear track detector

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Atta, M. R.; El-Melleegy, W. M.

    2004-08-01

    A comparative study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of the CR-39 diglycol carbonate solid state nuclear track detector has been carried out. Samples from CR-39 polymer were classified into two main groups: the first group was irradiated by gamma rays with doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm(2). Non-isothermal studies were carried out using thermogravimetry, differential thermogravimetry and differential thermal analysis to obtain activation energy of decomposition and transition temperatures for the non-irradiated and all irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. Variation in the onset temperature of decomposition T-o, activation energy of decomposition E-a, melting temperature T-m, refractive index n and the mass fraction of the amorphous phase after gamma and laser irradiation were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via degradation and cross-linking mechanisms. Also, the gamma dose has an advantage of increasing the correlation between thermal stability of the CR-39 polymer and bond formation created by the ionizing effect of gamma radiation. On the other hand, higher laser-energy fluences in the range 4.27-8.53 J/cm(2) decrease the melting temperature of the CR-39 polymer and this is most suitable for applications requiring molding of the polymer at lower temperatures.

  7. Nuclear Security for Floating Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology aremore » proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states« less

  8. Status and improvement of CLAM for nuclear application

    NASA Astrophysics Data System (ADS)

    Huang, Qunying

    2017-08-01

    A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.

  9. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  10. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  11. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  12. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  13. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  14. 48 CFR 50.104-3 - Special procedures for unusually hazardous or nuclear risks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... identifying the risks insured against and the coverage extended to persons or property, or both; (C) Dollar... unusually hazardous or nuclear risks. 50.104-3 Section 50.104-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT EXTRAORDINARY CONTRACTUAL ACTIONS AND THE SAFETY ACT...

  15. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.

  16. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  17. Development of Nanomaterials for Nuclear Energetics

    NASA Astrophysics Data System (ADS)

    Petrunin, V. F.

    Structure and properties peculiarities of the nanocrystalline powders give the opportunity to design new and to develop a modernization of nuclear energy industry materials. It was shown experimentally, that addition of 5-10% uranium dioxide nanocrystalline powder to traditional coarse powder allows to decrease the sintering temperature or to increase the fuel tablets size of grain. Similar perspectives for the technology of neutron absorbing tablets of control-rod modernization are shown by nanopowder of dysprosium hafnate changing instead now using boron carbide. It is powders in nanocrystalline state get an opportunity to sinter them and to receive compact tablet with 8,2-8,4 g/cm2 density for automatic defence system of nuclear reactor. Resource of dysprosium hafnate ceramics can be 18-20 years instead 4-5 years for boron carbide. To step up the radiation-damage stability of fuel element jacket material was suggested to strengthen a heat-resistant ferrite-martensite steel by Y2O3 nanocrystalline powder addition. Nanopowder with size of particles 560 nm and crystallite size 9 nm was prepeared by chemical coprecipitation method. To make lighter the container for transport and provisional disposal of exposed fuel from nuclear reactor a new boron-aluminium alloy called as boral was developed. This composite armed with nanopowders of boron-containing materials and heavy metals oxides can replace succesburnt-up corrosion-resistant steels.

  18. 77 FR 66492 - Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point 2, LLC, and Entergy Nuclear Indian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 50-003, 50-247, 50-286; NRC-2012-0265: License Nos.: DPR- 5, DPR-26, and DPR-64] Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point 2, LLC, and Entergy Nuclear Indian Point 3, LLC; Issuance of Director's Decision Notice is hereby given that the Director, Office of Nuclear Reactor Regulation...

  19. Properties of K,Rb-intercalated C{sub 60} encapsulated inside carbon nanotubes called peapods derived from nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahfouz, R.; Bouhrara, M.; Kim, Y.

    2015-09-21

    We present a detailed experimental study on how magnetic and electronic properties of Rb,K-intercalated C{sub 60} encapsulated inside carbon nanotubes called peapods can be derived from {sup 13}C nuclear magnetic resonance investigations. Ring currents do play a basic role in those systems; in particular, the inner cavities of nanotubes offer an ideal environment to investigate the magnetism at the nanoscale. We report the largest diamagnetic shifts down to −68.3 ppm ever observed in carbon allotropes, which is connected to the enhancement of the aromaticity of the nanotube envelope upon intercalation. The metallization of intercalated peapods is evidenced from the chemical shiftmore » anisotropy and spin-lattice relaxation (T{sub 1}) measurements. The observed relaxation curves signal a three-component model with two slow and one fast relaxing components. We assigned the fast component to the unpaired electrons charged C{sub 60} that show a phase transition near 100 K. The two slow components can be rationalized by the two types of charged C{sub 60} at two different positions with a linear regime following Korringa behavior, which is typical for metallic system and allow us to estimate the density of sate at Fermi level n(E{sub F})« less

  20. Cultural Resource Investigations for the Resumption of Transient Testing of Nuclear Fuels and Material at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Brenda R.; Williams, Julie B.

    2013-11-01

    The U. S. Department of Energy (DOE) has a need to test nuclear fuels under conditions that subject them to short bursts of intense, high-power radiation called ‘transient testing’ in order to gain important information necessary for licensing new nuclear fuels for use in U.S. nuclear power plants, for developing information to help improve current nuclear power plant performance and sustainability, for improving the affordability of new generation reactors, for developing recyclable nuclear fuels, and for developing fuels that inhibit any repurposing into nuclear weapons. To meet this mission need, DOE is considering alternatives for re-use and modification of existingmore » nuclear reactor facilities to support a renewed transient testing program. One alternative under consideration involves restarting the Transient Reactor Test (TREAT) reactor located at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL) site in southeastern Idaho. This report summarizes cultural resource investigations conducted by the INL Cultural Resource Management Office in 2013 to support environmental review of activities associated with restarting the TREAT reactor at the INL. These investigations were completed in order to identify and assess the significance of cultural resources within areas of potential effect associated with the proposed action and determine if the TREAT alternative would affect significant cultural resources or historic properties that are eligible for nomination to the National Register of Historic Places. No archaeological resources were identified in the direct area of potential effects for the project, but four of the buildings proposed for modifications are evaluated as historic properties, potentially eligible for nomination to the National Register of Historic Places. This includes the TREAT reactor (building #), control building (building #), guardhouse (building #), and warehouse (building #). The proposed re-use of these

  1. Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer

    PubMed Central

    Heerma van Voss, Marise R; Vesuna, Farhad; Bol, Guus M; Meeldijk, Jan; Raman, Ana; Offerhaus, G Johan; Buerger, Horst; Patel, Arvind H; van der Wall, Elsken; van Diest, Paul J; Raman, Venu

    2017-01-01

    Purpose DEAD box protein 3 (DDX3) is an RNA helicase with oncogenic properties that shuttles between the cytoplasm and nucleus. The majority of DDX3 is found in the cytoplasm, but a subset of tumors has distinct nuclear DDX3 localization of yet unknown biological significance. This study aimed to evaluate the significance of and mechanisms behind nuclear DDX3 expression in colorectal and breast cancer. Methods Expression of nuclear DDX3 and the nuclear exporter chromosome region maintenance 1 (CRM1) was evaluated by immunohistochemistry in 304 colorectal and 292 breast cancer patient samples. Correlations between the subcellular localization of DDX3 and CRM1 and the difference in overall survival between patients with and without nuclear DDX3 were studied. In addition, DDX3 mutants were created for in vitro evaluation of the mechanism behind nuclear retention of DDX3. Results DDX3 was present in the nucleus of 35% of colorectal and 48% of breast cancer patient samples and was particularly strong in the nucleolus. Nuclear DDX3 correlated with worse overall survival in both colorectal (hazard ratio [HR] 2.34, P<0.001) and breast cancer (HR 2.39, P=0.004) patients. Colorectal cancers with nuclear DDX3 expression more often had cytoplasmic expression of the nuclear exporter CRM1 (relative risk 1.67, P=0.04). In vitro analysis of DDX3 deletion mutants demonstrated that CRM1-mediated export was most dependent on the N-terminal nuclear export signal. Conclusion Overall, we conclude that nuclear DDX3 is partially CRM1-mediated and predicts worse survival in colorectal and breast cancer patients, putting it forward as a target for therapeutic intervention with DDX3 inhibitors under development in these cancer types. PMID:28761359

  2. Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer.

    PubMed

    Heerma van Voss, Marise R; Vesuna, Farhad; Bol, Guus M; Meeldijk, Jan; Raman, Ana; Offerhaus, G Johan; Buerger, Horst; Patel, Arvind H; van der Wall, Elsken; van Diest, Paul J; Raman, Venu

    2017-01-01

    DEAD box protein 3 (DDX3) is an RNA helicase with oncogenic properties that shuttles between the cytoplasm and nucleus. The majority of DDX3 is found in the cytoplasm, but a subset of tumors has distinct nuclear DDX3 localization of yet unknown biological significance. This study aimed to evaluate the significance of and mechanisms behind nuclear DDX3 expression in colorectal and breast cancer. Expression of nuclear DDX3 and the nuclear exporter chromosome region maintenance 1 (CRM1) was evaluated by immunohistochemistry in 304 colorectal and 292 breast cancer patient samples. Correlations between the subcellular localization of DDX3 and CRM1 and the difference in overall survival between patients with and without nuclear DDX3 were studied. In addition, DDX3 mutants were created for in vitro evaluation of the mechanism behind nuclear retention of DDX3. DDX3 was present in the nucleus of 35% of colorectal and 48% of breast cancer patient samples and was particularly strong in the nucleolus. Nuclear DDX3 correlated with worse overall survival in both colorectal (hazard ratio [HR] 2.34, P <0.001) and breast cancer (HR 2.39, P =0.004) patients. Colorectal cancers with nuclear DDX3 expression more often had cytoplasmic expression of the nuclear exporter CRM1 (relative risk 1.67, P =0.04). In vitro analysis of DDX3 deletion mutants demonstrated that CRM1-mediated export was most dependent on the N-terminal nuclear export signal. Overall, we conclude that nuclear DDX3 is partially CRM1-mediated and predicts worse survival in colorectal and breast cancer patients, putting it forward as a target for therapeutic intervention with DDX3 inhibitors under development in these cancer types.

  3. Nuclear Wallet Cards

    Science.gov Websites

    Index Nuclear Wallet Cards Contents Current Version Radioactive Nuclides (Homeland Security) Nuclear Materials Management & Safeguards System 8th Edition 2011 Nuclear Wallet Cards Resources Search Nuclear Wallet Cards 8th Edition PDF Format 8thEdition, Android Market Download Nuclear Wallet Cards Nuclear

  4. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  5. Lightweight Radiator for in Space Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  6. Nuclear Data Sheets for A = 94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abriola, D.; Sonzogni, A.A.

    Experimental data on ground- and excited-state properties for all known nuclei with mass number A = 94 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given. The Hager-Seltzer internal conversion coefficients are listed for gamma rays of known multipolarity. This work supersedes the 1992 evaluation by J.K. Tuli (1992Tu02). Since 1992, many articles have been published which were incorporated in this evaluation. In summary, high-spin data using large arrays of Ge detectors have beenmore » obtained for {sup 94}Kr (2000Rz02), {sup 94}Sr (1995Ha20), {sup 94}Zr (2002Fo03,2005Pa48), {sup 94}Nb (2000Ma63), {sup 94}Mo (1998Kh04), {sup 94}Tc (2000Gh01), {sup 94}Ru (1994Ju03,1994Ro08), {sup 94}Rh (1994Ar33), and {sup 94}Pd (2003Ma24). A new isomer was observed in {sup 91}999Ge01). The low-spin levels in {sup 98}Mo were systematically studied using a variety of experimental techniques (2003Fr02). Considerable effort was spent investigating the decay of {sup 94}Ag and the levels of {sup 94}Pd (2006Mu03,2005Mu15,2004BaZY,2004Pl01,2002La18), in particular, the (21+) level in {sup 94}Ag is the first level observed to undergo both single and double proton radioactivity.« less

  7. Nuclear ventriculography

    MedlinePlus

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  8. Application of modern autoradiography to nuclear forensic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods

  9. Application of modern autoradiography to nuclear forensic analysis

    DOE PAGES

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; ...

    2018-05-20

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods

  10. Application of modern autoradiography to nuclear forensic analysis.

    PubMed

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; Stone, Gary; Caldeira, Lee; Ramon, Christina; Kristo, Michael

    2018-05-01

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary to information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20×40cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5 ) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ∼10μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. In this

  11. Physical properties, structure, and shape of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident derived from soil, bamboo and shiitake mushroom measurements.

    PubMed

    Niimura, Nobuo; Kikuchi, Kenji; Tuyen, Ninh Duc; Komatsuzaki, Masakazu; Motohashi, Yoshinobu

    2015-01-01

    We conducted an elution experiment with contaminated soils using various aqueous reagent solutions and autoradiography measurements of contaminated bamboo shoots and shiitake mushrooms to determine the physical and chemical characteristics of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident. Based on our study results and data in the literature, we conclude that the active Cs emitted by the accident fell to the ground as granular non-ionic materials. Therefore, they were not adsorbed or trapped by minerals in the soil, but instead physically adhere to the rough surfaces of the soil mineral particles. Granular Cs* can be transferred among media, such as soils and plants. The physical properties and dynamic behavior of the granular Cs* is expected to be helpful in considering methods for decontamination of soil, litter, and other media. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Light vector mesons in the nuclear medium

    NASA Astrophysics Data System (ADS)

    Wood, M. H.; Nasseripour, R.; Weygand, D. P.; Djalali, C.; Tur, C.; Mosel, U.; Muehlich, P.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Blaszczyk, L.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Casey, L.; Chen, S.; Cheng, L.; Cole, P. L.; Collins, P.; Coltharp, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Dashyan, N.; de Vita, R.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dickson, R.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Fradi, A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gordon, C. I. O.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hanretty, C.; Hardie, J.; Hassall, N.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; Lu, H. Y.; MacCormick, M.; Markov, N.; Mattione, P.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pereira, S. Anefalos; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Sharov, D.; Shvedunov, N. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S.; Stepanyan, S. S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Williams, M.; Wolin, E.; Yegneswaran, A.; Zana, L.; Zhang, B.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2008-07-01

    The light vector mesons (ρ,ω, and ϕ) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the ρ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to e+e-. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The ρ-meson mass spectrum was extracted after the ω and ϕ signals were removed in a nearly model-independent way. Comparisons were made between the ρ mass spectra from the heavy targets (A>2) with the mass spectrum extracted from the deuterium target. With respect to the ρ-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body effects such as collisional broadening and Fermi motion.

  13. Nuclear networking.

    PubMed

    Xie, Wei; Burke, Brian

    2017-07-04

    Nuclear lamins are intermediate filament proteins that represent important structural components of metazoan nuclear envelopes (NEs). By combining proteomics and superresolution microscopy, we recently reported that both A- and B-type nuclear lamins form spatially distinct filament networks at the nuclear periphery of mouse fibroblasts. In particular, A-type lamins exhibit differential association with nuclear pore complexes (NPCs). Our studies reveal that the nuclear lamina network in mammalian somatic cells is less ordered and more complex than that of amphibian oocytes, the only other system in which the lamina has been visualized at high resolution. In addition, the NPC component Tpr likely links NPCs to the A-type lamin network, an association that appears to be regulated by C-terminal modification of various A-type lamin isoforms. Many questions remain, however, concerning the structure and assembly of lamin filaments, as well as with their mode of association with other nuclear components such as peripheral chromatin.

  14. Nuclear weapons modernizations

    NASA Astrophysics Data System (ADS)

    Kristensen, Hans M.

    2014-05-01

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  15. Parvoviral nuclear import: bypassing the host nuclear-transport machinery.

    PubMed

    Cohen, Sarah; Behzad, Ali R; Carroll, Jeffrey B; Panté, Nelly

    2006-11-01

    The parvovirus Minute virus of mice (MVM) is a small DNA virus that replicates in the nucleus of its host cells. However, very little is known about the mechanisms underlying parvovirus' nuclear import. Recently, it was found that microinjection of MVM into the cytoplasm of Xenopus oocytes causes damage to the nuclear envelope (NE), suggesting that the nuclear-import mechanism of MVM involves disruption of the NE and import through the resulting breaks. Here, fluorescence microscopy and electron microscopy were used to examine the effect of MVM on host-cell nuclear structure during infection of mouse fibroblast cells. It was found that MVM caused dramatic changes in nuclear shape and morphology, alterations of nuclear lamin immunostaining and breaks in the NE of infected cells. Thus, it seems that the unusual nuclear-import mechanism observed in Xenopus oocytes is in fact used by MVM during infection of host cells.

  16. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingensmith, A. L.

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  17. SPY: A new scission point model based on microscopic ingredients to predict fission fragments properties

    NASA Astrophysics Data System (ADS)

    Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.

    2013-12-01

    Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.

  18. Molten salts and nuclear energy production

    NASA Astrophysics Data System (ADS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  19. Nuclear stress test

    MedlinePlus

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  20. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

  1. Nuclear bodies in the oocyte nucleus of ground beetles are enriched in snRNPs.

    PubMed

    Jaglarz, M K

    2001-08-01

    Within the oocyte nucleus of many insect species, a variable number of intensely stained spherical bodies occur. These nuclear bodies differ significantly from nucleoli and their precise role in nuclei has not been elucidated yet. I have examined some of the histochemical properties as well as the molecular composition of these structures in a representative of ground (carabid) beetles. I demonstrate, using molecular markers, that the nuclear bodies are composed of small nuclear RNAs and associated proteins, including p80 coilin. Hence, they correspond to Cajal bodies (= coiled bodies) described in somatic cell nuclei as well as oocyte germinal vesicles in plant and animal organisms. It is suggested that Cajal bodies in the carabid germinal vesicle serve as a storage site for splicing factors.

  2. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Shropshire

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions tomore » their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.« less

  3. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction.

    PubMed

    Szczesny, Spencer E; Mauck, Robert L

    2017-02-01

    Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.

  4. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction

    PubMed Central

    Szczesny, Spencer E.; Mauck, Robert L.

    2017-01-01

    Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions. PMID:27918797

  5. Nuclear resonant scattering experiment with fast time response: Photonuclear excitation of 201Hg

    NASA Astrophysics Data System (ADS)

    Yoshimi, A.; Hara, H.; Hiraki, T.; Kasamatsu, Y.; Kitao, S.; Kobayashi, Y.; Konashi, K.; Masuda, R.; Masuda, T.; Miyamoto, Y.; Okai, K.; Okubo, S.; Ozaki, R.; Sasao, N.; Sato, O.; Seto, M.; Schumm, T.; Shigekawa, Y.; Stellmer, S.; Suzuki, K.; Uetake, S.; Watanabe, M.; Yamaguchi, A.; Yasuda, Y.; Yoda, Y.; Yoshimura, K.; Yoshimura, M.

    2018-02-01

    Nuclear resonant excitation and detection of its decay signal for the 26.27-keV level of 201Hg is demonstrated with high-brilliance synchrotron radiation (SR) and a fast x-ray detector system. This SR-based photonuclear excitation scheme, known as nuclear resonant scattering (NRS) in the field of materials science, is also useful for investigating nuclear properties, such as the half-lives and radiative widths of excited nuclear levels. To date, because of the limited time response of the x-ray detector, the nuclear levels to which this method could be applied have been limited to the one whose half-lives are longer than ˜1 ns. The faster time response of the NRS measurement makes possible NRS experiments on nuclear levels with much shorter half-lives. We have fabricated an x-ray detector system that has a time resolution of 56 ps and a shorter tail function than that reported previously. With the implemented detector system, the NRS signal of the 26.27-keV state of 201Hg could be clearly discriminated from the electronic scattering signal at an elapsed time of 1 ns after the SR pulse. The half-life of the state was determined as 629 ± 18 ps, which has better precision by a factor of three compared with that reported to date obtained from nuclear decay spectroscopy.

  6. Characterization of Large Volume CLYC Scintillators for Nuclear Security Applications

    NASA Astrophysics Data System (ADS)

    Soundara-Pandian, Lakshmi; Tower, J.; Hines, C.; O'Dougherty, P.; Glodo, J.; Shah, K.

    2017-07-01

    We report on our development of large volume Cs2LiYCl6 (CLYC) detectors for nuclear security applications. Three-inch diameter boules have been grown and 3-in right cylinders have been fabricated. Crystals containing either >95% 6Li or >99% 7Li have been grown for applications specific to thermal or fast neutron detection, respectively. We evaluated their gamma and neutron detection properties and the performance is as good as small size crystals. Gamma and neutron efficiencies were measured for large crystals and compared with smaller size crystals. With their excellent performance characteristics, and the ability to detect fast neutrons, CLYC detectors are excellent triple-mode scintillators for use in handheld and backpack instruments for nuclear security applications.

  7. Nuclear weapons modernizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristensen, Hans M.

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludesmore » that new limits on nuclear modernizations are needed.« less

  8. Applications of nuclear physics

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  9. Applications of nuclear physics

    DOE PAGES

    Hayes-Sterbenz, Anna Catherine

    2017-01-10

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  10. Applications of nuclear physics.

    PubMed

    Hayes, A C

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  11. Applications of nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  12. Embedded random matrix ensembles from nuclear structure and their recent applications

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.; Chavda, N. D.

    Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.

  13. Nuclear Bragg scattering studies in [sup 57]Fe with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.

    1993-01-01

    Studies of nuclear Bragg x-ray scattering of synchrotron radiation, using crystals of [alpha]-[sup 57]Fe[sub 2]O[sub 3], have been carried out at the NSLS at Brookhaven National Laboratory and at the Cornell University CHESS facility. These studies have demonstrated that nuclear resonance states can be used to produce filtered x-ray beams which have extremely narrow bandwidth, small angular divergence and unique polarization and temporal properties. this combination of characteristics, unobtainable with radioactive sources, makes synchrotron-based Moessbauer spectroscopy feasible and is an important complement to existing methods. A review of the experimental methodology is presented. As well as come suggestions for fullermore » exploitation of this new technique.« less

  14. Nuclear Bragg scattering studies in {sup 57}Fe with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.

    1993-03-01

    Studies of nuclear Bragg x-ray scattering of synchrotron radiation, using crystals of {alpha}-{sup 57}Fe{sub 2}O{sub 3}, have been carried out at the NSLS at Brookhaven National Laboratory and at the Cornell University CHESS facility. These studies have demonstrated that nuclear resonance states can be used to produce filtered x-ray beams which have extremely narrow bandwidth, small angular divergence and unique polarization and temporal properties. this combination of characteristics, unobtainable with radioactive sources, makes synchrotron-based Moessbauer spectroscopy feasible and is an important complement to existing methods. A review of the experimental methodology is presented. As well as come suggestions for fullermore » exploitation of this new technique.« less

  15. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical

  16. Quantum nuclear effects in water using centroid molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kondratyuk, N. D.; Norman, G. E.; Stegailov, V. V.

    2018-01-01

    The quantum nuclear effects are studied in water using the method of centroid molecular dynamics (CMD). The aim is the calibration of CMD implementation in LAMMPS. The calculated intramolecular energy, atoms gyration radii and radial distribution functions are shown in comparison with previous works. The work is assumed to be the step toward to solution of the discrepancy between the simulation results and the experimental data of liquid n-alkane properties in our previous works.

  17. Nuclear-powered ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This paper reports that using Puget Sound Naval Shipyard as a model, GAO examined the Navy's accounting practices at nuclear shipyards. In fiscal year 1991, Puget Sound worked on 24 nuclear-powered and three conventionally powered ships. About 31 percent of the workdays and 35 percent of total costs were for nuclear work. The average cost per workday for nuclear labor was 25 percent higher than for non-nuclear work, and the average cost per day for overhead for nuclear work was about 60 percent higher. These higher costs are due to the complexity of nuclear work, which requires a higher levelmore » of services, and the higher cost of specially trained workers and specialized shipyard departments that support nuclear work.« less

  18. A review of carbide fuel corrosion for nuclear thermal propulsion applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1993-10-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  19. A Review of Carbide Fuel Corrosion for Nuclear Thermal Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1994-07-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  20. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    NASA Astrophysics Data System (ADS)

    Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.

    2009-12-01

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains

  1. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Oblozinsky, P.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES

  2. RIPL-Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Capote,R.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains

  3. 76 FR 40945 - Entergy Nuclear Indian Point 2, LLC, Entergy Nuclear Indian Point 3, LLC, Entergy Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0150; Docket Nos. 50-003, 50-247, and 50-286; License Nos. DPR-5, DPR-26, and DPR-64] Entergy Nuclear Indian Point 2, LLC, Entergy Nuclear Indian Point 3, LLC, Entergy Nuclear Operations, Inc.; Receipt of Request for Action Notice is hereby given that by petition...

  4. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  5. Hydrogen speciation in hydrated layers on nuclear waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-12-31

    The hydration of an outer layer on nuclear waste glasses in known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. In addition, molecular watermore » was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. The hydrated layer on the nuclear waste glasses appears to be of relatively low water content (4 to 7% by weight) and is not substantially hydroxylated. Thus, these layers do not have many of the properties associated with gel layers.« less

  6. Symmetry Energy Effects in the Neutron Star Properties

    NASA Astrophysics Data System (ADS)

    Alvarez-Castillo, D. E.; Kubis, S.

    2012-12-01

    The functional form of the nuclear symmetry energy has only been determined in a very narrow range of densities. Uncertainties concern both the low as well as the high density behaviour of this function. In this work different shapes of the symmetry energy, consistent with the experimental data, were introduced and their consequences for the crustal properties of neutron stars are presented. The resulting models are in agreement with astrophysical observations.

  7. Application of Optical Diagnosis to Aged Low-Voltage Cable Insulation in Nuclear Plants

    NASA Astrophysics Data System (ADS)

    Katagiri, Junichi; Takezawa, Yoshitaka; Shouji, Hiroshi

    We have developed a novel non-destructive optical diagnosis technique for low-voltage cable insulations used in nuclear power plants. The key features of this diagnosis are the use of two wavelengths to measure the change in reflective absorbance (ΔAR), the use of polarized light to measure crystallinity and the use of element volatilizing to measure fluorescence. Chemical kinetics is used to predict the lifetimes of the cable insulations. When cable insulations darken and harden by time degradation, the ΔAR and depolarization parameters increase. This means that the cross-linking density in the cable insulations increases due to deterioration reactions. When the cross-linking density of insulation increases, its elasticity, corresponding to the material's life, increases. Similarly, as the crystallinity increases due to the change in the high-order structure of the insulating resin caused by irradiation, its elongation property decreases. The elongation property of insulation is one of the most important parameters that can be used to evaluate material lifetimes, because it relates to elasticity. The ΔAR correlated with the elongation property, and the correlation coefficient of an accelerated experiment using model pieces was over 0.9. Thus, we concluded that this optical diagnosis should be applied to evaluate the degradation of cable insulations used in nuclear power plants.

  8. Modeling property evolution of container materials used in nuclear waste storage

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Garmestani, Hamid; Khaleel, Moe; Sun, Xin

    2010-03-01

    Container materials under irradiation for a long time will raise high energy in the structure to generate critical structural damage. This study investigated what kind of mesoscale microstructure will be more resistant to radiation damage. Mechanical properties evolution during irradiation was modeled using statistical continuum mechanics. Preliminary results also showed how to achieve the desired microstructure with higher resistance to radiation.

  9. An Updated Nuclear Equation of State for Neutron Stars and Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Meixner, M. A.; Mathews, G. J.; Dalhed, H. E.; Lan, N. Q.

    2011-10-01

    We present an updated and improved Equation of State based upon the framework originally developed by Bowers & Wilson. The details of the EoS and improvements are described along with a description of how to access this EOS for numerical simulations. Among the improvements are an updated compressibility based upon recent measurements, the possibility of the formation of proton excess (Ye> 0.5) material and an improved treatment of the nuclear statistical equilibrium and the transition to pasta nuclei as the density approaches nuclear matter density. The possibility of a QCD chiral phase transition is also included at densities above nuclear matter density. We show comparisons of this EOS with the other two publicly available equations of state used in supernova collapse simulations. The advantages of the present EoS is that it is easily amenable to phenomenological parameterization to fit observed explosion properties and to accommodate new physical parameters.

  10. Unique nuclear localization of Nile tilapia (Oreochromis niloticus) Neu4 sialidase is regulated by nuclear transport receptor importin α/β.

    PubMed

    Honda, Akinobu; Chigwechokha, Petros Kingstone; Kamada-Futagami, Yuko; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2018-06-01

    Sialidase catalyzes the removal of sialic acids from glycoconjugates. Different from Neu1 and Neu3 sialidases, Neu4 enzymatic properties such as substrate specificity and subcellular localization are not well-conserved among vertebrates. In fish only zebrafish and medaka neu4 genes have been cloned and their polypeptides have been characterized so far. Thus, characterization of Neu4 from other fish species is necessary to evaluate Neu4 physiological functions. Here, Nile tilapia was chosen for the characterization of Neu4 polypeptide considering that it is one of the major cultured fish all over the world and that its genomic sequences are now available. Coding DNA sequence of tilapia Neu4 was identified as 1,497 bp and its recombinant protein showed broad substrate specificity and optimal sialidase enzyme activity pH at 4.0. Neu4 activity was sustained even in neutral and alkali pH. Interestingly, immunofluorescence analysis revealed that major subcellular localization of tilapia Neu4 was nuclear, quite distinct from zebrafish (ER) and medaka Neu4 (lysosome). Bioinformatic analysis showed the existence of putative nuclear localization signal (NLS) in tilapia Neu4. In general, it is known that importin families bind to several proteins via NLS and transfer them into nucleus. Therefore, to determine the involvement of putative NLS in Neu4 nuclear localization, Neu4 mutant deleting NLS was constructed and expressed in cultured cells. As a result, NLS deletion significantly diminished the nuclear localization. Furthermore, treatment of importazole, interrupter of binding importin β and RanGTP, significantly suppressed Neu4 nuclear localization. In summary, tilapia Neu4 is a unique sialidase localized at nucleus and its transport system into nucleus is regulated by importin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2017-08-01

    Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.

  12. Low-Field Nuclear Polarization Using Nitrogen Vacancy Centers in Diamonds

    NASA Astrophysics Data System (ADS)

    Hovav, Y.; Naydenov, B.; Jelezko, F.; Bar-Gill, N.

    2018-02-01

    It was recently demonstrated that bulk nuclear polarization can be obtained using nitrogen vacancy (NV) color centers in diamonds, even at ambient conditions. This is based on the optical polarization of the NV electron spin, and using several polarization transfer methods. One such method is the nuclear orientation via electron spin locking (NOVEL) sequence, where a spin-locked sequence is applied on the NV spin, with a microwave power equal to the nuclear precession frequency. This was performed at relatively high fields, to allow for both polarization transfer and noise decoupling. As a result, this scheme requires accurate magnetic field alignment in order preserve the NV properties. Such a requirement may be undesired or impractical in many practical scenarios. Here we present a new sequence, termed the refocused NOVEL, which can be used for polarization transfer (and detection) even at low fields. Numerical simulations are performed, taking into account both the spin Hamiltonian and spin decoherence, and we show that, under realistic parameters, it can outperform the NOVEL sequence.

  13. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gapsmore » exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.« less

  14. Dynamic Nuclear Polarization and the Paradox of Quantum Thermalization.

    PubMed

    De Luca, Andrea; Rosso, Alberto

    2015-08-21

    Dynamic nuclear polarization (DNP) is to date the most effective technique to increase the nuclear polarization opening disruptive perspectives for medical applications. In a DNP setting, the interacting spin system is quasi-isolated and brought out of equilibrium by microwave irradiation. Here we show that the resulting stationary state strongly depends on the ergodicity properties of the spin many-body eigenstates. In particular, the dipolar interactions compete with the disorder induced by local magnetic fields resulting in two distinct dynamical phases: while for weak interaction, only a small enhancement of polarization is observed, for strong interactions the spins collectively equilibrate to an extremely low effective temperature that boosts DNP efficiency. We argue that these two phases are intimately related to the problem of thermalization in closed quantum systems where a many-body localization transition can occur varying the strength of the interactions.

  15. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.

    PubMed

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-03-07

    Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening

    PubMed Central

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z.; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-01-01

    SUMMARY Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step towards chromatin condensation during erythropoiesis in mice. PMID:26954545

  17. Nuclear Stress Test

    MedlinePlus

    ... Nuclear Stress Test Menu Topics Topics FAQs Nuclear Stress Test A nuclear stress test lets doctors see pictures of your heart ... after you have exercised. En español A nuclear stress test lets doctors see pictures of your heart ...

  18. In defiance of nuclear deterrence: anti-nuclear New Zealand after two decades.

    PubMed

    Reitzig, Andreas

    2006-01-01

    In 1984, nuclear-armed and nuclear-powered vessels were banned from New Zealand to express the country's rejection of the nuclear deterrence concept. This led to a disagreement with the United States. Today, the ban on nuclear-powered ships is the only element of the nuclear-free legislation that still strains US-New Zealand relations. This article presents the reasons for the ban on nuclear-powered ships, which include scientific safety concerns, a symbolic rejection of the nuclear deterrence posture, and patriotic factors such as a nuclear-free national identity. The military and economic consequences of the ban are also examined. Since the ban on nuclear-powered vessels appears to be neither widely known abroad nor commonly recognised as a supportive disarmament measure outside New Zealand, it is concluded that whatever the future of this ban will be, New Zealand's anti-nuclear image will remain known internationally through the ban on nuclear arms.

  19. Properties of Fiber Cell Plasma Membranes Isolated from the Cortex and Nucleus of the Porcine Eye Lens

    PubMed Central

    Mainali, Laxman; Raguz, Marija; O’Brien, William J.; Subczynski, Witold K.

    2012-01-01

    The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eyes lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes—namely, the domain formed by boundary lipids and the domain formed by trapped lipids—were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region. PMID:22326289

  20. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyeon-Deuk, Kim, E-mail: kim@kuchem.kyoto-u.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computationalmore » cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.« less