Kanda, Kojun; Pflug, James M; Sproul, John S; Dasenko, Mark A; Maddison, David R
2015-01-01
In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced.
Dasenko, Mark A.
2015-01-01
In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced. PMID:26716693
MitoNuc: a database of nuclear genes coding for mitochondrial proteins. Update 2002.
Attimonelli, Marcella; Catalano, Domenico; Gissi, Carmela; Grillo, Giorgio; Licciulli, Flavio; Liuni, Sabino; Santamaria, Monica; Pesole, Graziano; Saccone, Cecilia
2002-01-01
Mitochondria, besides their central role in energy metabolism, have recently been found to be involved in a number of basic processes of cell life and to contribute to the pathogenesis of many degenerative diseases. All functions of mitochondria depend on the interaction of nuclear and organelle genomes. Mitochondrial genomes have been extensively sequenced and analysed and data have been collected in several specialised databases. In order to collect information on nuclear coded mitochondrial proteins we developed MitoNuc, a database containing detailed information on sequenced nuclear genes coding for mitochondrial proteins in Metazoa. The MitoNuc database can be retrieved through SRS and is available via the web site http://bighost.area.ba.cnr.it/mitochondriome where other mitochondrial databases developed by our group, the complete list of the sequenced mitochondrial genomes, links to other mitochondrial sites and related information, are available. The MitoAln database, related to MitoNuc in the previous release, reporting the multiple alignments of the relevant homologous protein coding regions, is no longer supported in the present release. In order to keep the links among entries in MitoNuc from homologous proteins, a new field in the database has been defined: the cluster identifier, an alpha numeric code used to identify each cluster of homologous proteins. A comment field derived from the corresponding SWISS-PROT entry has been introduced; this reports clinical data related to dysfunction of the protein. The logic scheme of MitoNuc database has been implemented in the ORACLE DBMS. This will allow the end-users to retrieve data through a friendly interface that will be soon implemented.
Nuclear envelopathies: a complex LINC between nuclear envelope and pathology.
Janin, Alexandre; Bauer, Delphine; Ratti, Francesca; Millat, Gilles; Méjat, Alexandre
2017-08-30
Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.
Decoding the function of nuclear long non-coding RNAs.
Chen, Ling-Ling; Carmichael, Gordon G
2010-06-01
Long non-coding RNAs (lncRNAs) are mRNA-like, non-protein-coding RNAs that are pervasively transcribed throughout eukaryotic genomes. Rather than silently accumulating in the nucleus, many of these are now known or suspected to play important roles in nuclear architecture or in the regulation of gene expression. In this review, we highlight some recent progress in how lncRNAs regulate these important nuclear processes at the molecular level. Copyright 2010 Elsevier Ltd. All rights reserved.
RNA Nuclear Export: From Neurological Disorders to Cancer.
Hautbergue, Guillaume M
2017-01-01
The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.
Bain, Peter A; Papanicolaou, Alexie; Kumar, Anupama
2015-01-01
Murray-Darling rainbowfish (Melanotaenia fluviatilis [Castelnau, 1878]; Atheriniformes: Melanotaeniidae) is a small-bodied teleost currently under development in Australasia as a test species for aquatic toxicological studies. To date, efforts towards the development of molecular biomarkers of contaminant exposure have been hindered by the lack of available sequence data. To address this, we sequenced messenger RNA from brain, liver and gonads of mature male and female fish and generated a high-quality draft transcriptome using a de novo assembly approach. 149,742 clusters of putative transcripts were obtained, encompassing 43,841 non-redundant protein-coding regions. Deduced amino acid sequences were annotated by functional inference based on similarity with sequences from manually curated protein sequence databases. The draft assembly contained protein-coding regions homologous to 95.7% of the complete cohort of predicted proteins from the taxonomically related species, Oryzias latipes (Japanese medaka). The mean length of rainbowfish protein-coding sequences relative to their medaka homologues was 92.1%, indicating that despite the limited number of tissues sampled a large proportion of the total expected number of protein-coding genes was captured in the study. Because of our interest in the effects of environmental contaminants on endocrine pathways, we manually curated subsets of coding regions for putative nuclear receptors and steroidogenic enzymes in the rainbowfish transcriptome, revealing 61 candidate nuclear receptors encompassing all known subfamilies, and 41 putative steroidogenic enzymes representing all major steroidogenic enzymes occurring in teleosts. The transcriptome presented here will be a valuable resource for researchers interested in biomarker development, protein structure and function, and contaminant-response genomics in Murray-Darling rainbowfish.
Silla, Toomas; Karadoulama, Evdoxia; Mąkosa, Dawid; Lubas, Michal; Jensen, Torben Heick
2018-05-15
Mammalian genomes are promiscuously transcribed, yielding protein-coding and non-coding products. Many transcripts are short lived due to their nuclear degradation by the ribonucleolytic RNA exosome. Here, we show that abolished nuclear exosome function causes the formation of distinct nuclear foci, containing polyadenylated (pA + ) RNA secluded from nucleocytoplasmic export. We asked whether exosome co-factors could serve such nuclear retention. Co-localization studies revealed the enrichment of pA + RNA foci with "pA-tail exosome targeting (PAXT) connection" components MTR4, ZFC3H1, and PABPN1 but no overlap with known nuclear structures such as Cajal bodies, speckles, paraspeckles, or nucleoli. Interestingly, ZFC3H1 is required for foci formation, and in its absence, selected pA + RNAs, including coding and non-coding transcripts, are exported to the cytoplasm in a process dependent on the mRNA export factor AlyREF. Our results establish ZFC3H1 as a central nuclear pA + RNA retention factor, counteracting nuclear export activity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Nuclear export of RNA: Different sizes, shapes and functions.
Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O
2018-03-01
Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
David S. Bischoff; James M. Slavicek
1995-01-01
The Lymantria dispar multinucleocapsid nuclear polyhedrosis virus (LdMNPV) gene encoding G22 was cloned and sequenced. The G22 gene codes for a 191 amino acid protein with a predicted Mr of 22000. Expression of G22 in a rabbit reticulocyte system generated a protein with an M...
Seligmann, Hervé
2018-05-01
Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.
Su, Huei-Jiun; Hu, Jer-Ming
2012-01-01
Background and Aims The holoparasitic flowering plant Balanophora displays extreme floral reduction and was previously found to have enormous rate acceleration in the nuclear 18S rDNA region. So far, it remains unclear whether non-ribosomal, protein-coding genes of Balanophora also evolve in an accelerated fashion and whether the genes with high substitution rates retain their functionality. To tackle these issues, six different genes were sequenced from two Balanophora species and their rate variation and expression patterns were examined. Methods Sequences including nuclear PI, euAP3, TM6, LFY and RPB2 and mitochondrial matR were determined from two Balanophora spp. and compared with selected hemiparasitic species of Santalales and autotrophic core eudicots. Gene expression was detected for the six protein-coding genes and the expression patterns of the three B-class genes (PI, AP3 and TM6) were further examined across different organs of B. laxiflora using RT-PCR. Key Results Balanophora mitochondrial matR is highly accelerated in both nonsynonymous (dN) and synonymous (dS) substitution rates, whereas the rate variation of nuclear genes LFY, PI, euAP3, TM6 and RPB2 are less dramatic. Significant dS increases were detected in Balanophora PI, TM6, RPB2 and dN accelerations in euAP3. All of the protein-coding genes are expressed in inflorescences, indicative of their functionality. PI is restrictively expressed in tepals, synandria and floral bracts, whereas AP3 and TM6 are widely expressed in both male and female inflorescences. Conclusions Despite the observation that rates of sequence evolution are generally higher in Balanophora than in hemiparasitic species of Santalales and autotrophic core eudicots, the five nuclear protein-coding genes are functional and are evolving at a much slower rate than 18S rDNA. The mechanism or mechanisms responsible for rapid sequence evolution and concomitant rate acceleration for 18S rDNA and matR are currently not well understood and require further study in Balanophora and other holoparasites. PMID:23041381
Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi.
Subramanian, Sankar; Huynen, Leon; Millar, Craig D; Lambert, David M
2010-12-15
Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli) and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.
The chemical basis for the origin of the genetic code and the process of protein synthesis
NASA Technical Reports Server (NTRS)
1981-01-01
The principles upon which the process of protein synthesis and the genetic code were established are elucidated. Extensive work on nuclear magnetic resonance studies of both monomermonomer and monoamino acid polynucleotide interactions is included. A new method of general utility for studying any amino acid interacting with any polynucleotide was developed. This system involves the use of methyl esters of amino acids interacting with polynucleotides.
Mitochondrial genome evolution in the Saccharomyces sensu stricto complex.
Ruan, Jiangxing; Cheng, Jian; Zhang, Tongcun; Jiang, Huifeng
2017-01-01
Exploring the evolutionary patterns of mitochondrial genomes is important for our understanding of the Saccharomyces sensu stricto (SSS) group, which is a model system for genomic evolution and ecological analysis. In this study, we first obtained the complete mitochondrial sequences of two important species, Saccharomyces mikatae and Saccharomyces kudriavzevii. We then compared the mitochondrial genomes in the SSS group with those of close relatives, and found that the non-coding regions evolved rapidly, including dramatic expansion of intergenic regions, fast evolution of introns and almost 20-fold higher rearrangement rates than those of the nuclear genomes. However, the coding regions, and especially the protein-coding genes, are more conserved than those in the nuclear genomes of the SSS group. The different evolutionary patterns of coding and non-coding regions in the mitochondrial and nuclear genomes may be related to the origin of the aerobic fermentation lifestyle in this group. Our analysis thus provides novel insights into the evolution of mitochondrial genomes.
USDA-ARS?s Scientific Manuscript database
Retrograde signalling is a selective process defined by cues generated in chloroplast/mitochondria which traverse membranes and end up regulating nuclear gene expression and protein synthesis. The coding and encoding of organellar message(s) that alter nuclear gene expression and/or cellular metabo...
Kucejová, B; Foury, F
2003-01-01
RIM1 is a nuclear gene of the yeast Saccharomyces cerevisiae coding for a protein with single-stranded DNA-binding activity that is essential for mitochondrial genome maintenance. No protein partners of Rim1p have been described so far in yeast. To better understand the role of this protein in mitochondrial DNA replication and recombination, a search for protein interactors by the yeast two-hybrid system was performed. This approach led to the identification of several candidates, including a putative transcription factor, Azf1p, and Mph1p, a protein with an RNA helicase domain which is known to influence the mutation rate of nuclear and mitochondrial genomes.
Port, Sarah A; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H
2016-10-28
Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A) + RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A) + RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Port, Sarah A.; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H.
2016-01-01
Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A)+ RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A)+ RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. PMID:27613868
Plasmodium falciparum spliceosomal RNAs: 3' and 5' end processing.
Eliana, Calvo; Javier, Escobar; Moisés, Wasserman
2011-02-01
The major spliceosomal small nuclear ribonucleoproteins (snRNPs) consist of snRNA (U1, U2, U4 or U5) and several proteins which can be unique or common to each snRNP particle. The common proteins are known as Sm proteins; they are crucial for RNP assembly and nuclear import of spliceosomal RNPs. This paper reports detecting the interaction between Plasmodium falciparum snRNAs and Sm proteins, and the usual 5' trimethylated caps on the snRNAs, by immunoprecipitation with specific antibodies. Furthermore, an unusual poly(A) tail was detected on these non-coding RNAs. 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.
1992-01-01
We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.
Does CTCF mediate between nuclear organization and gene expression?
Ohlsson, Rolf; Lobanenkov, Victor; Klenova, Elena
2010-01-01
The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.
Controlling nuclear RNA levels.
Schmid, Manfred; Jensen, Torben Heick
2018-05-10
RNA turnover is an integral part of cellular RNA homeostasis and gene expression regulation. Whereas the cytoplasmic control of protein-coding mRNA is often the focus of study, we discuss here the less appreciated role of nuclear RNA decay systems in controlling RNA polymerase II (RNAPII)-derived transcripts. Historically, nuclear RNA degradation was found to be essential for the functionalization of transcripts through their proper maturation. Later, it was discovered to also be an important caretaker of nuclear hygiene by removing aberrant and unwanted transcripts. Recent years have now seen a set of new protein complexes handling a variety of new substrates, revealing functions beyond RNA processing and the decay of non-functional transcripts. This includes an active contribution of nuclear RNA metabolism to the overall cellular control of RNA levels, with mechanistic implications during cellular transitions.
Zhang, Yongqiang; Jia, Jun; Li, Ying; Chen, Yan-Ge; Huang, Huan; Qiao, Yang; Zhu, Yu
2018-06-01
Glioma is one of the malignant tumor types detrimental to human health; therefore, it is important to find novel targets and therapeutics for this tumor. The downregulated expression of Tudor-staphylococcal nuclease (SN) and alkylglycerone phosphate synthase (AGPS) can decrease cancer malignancy, and the overexpression of them can the increase viability and migration potential of various tumor cell types; however, the role of AGPS in the proliferation and migration of glioma, and the association of Tudor-SN and AGPS in human glioma is not clear. In the present study, it was determined that AGPS silencing suppressed the proliferation and migration potential of glioma U87MG cells, and suppressed the expression of the circular RNAs circ-ubiquitin-associated protein 2, circ-zinc finger protein 292 and circ-homeodomain-interacting protein kinase 3, and the long non-coding RNAs H19 imprinted maternally expressed transcript (non-protein coding), colon cancer-associated transcript 1 (non-protein coding) and hepatocellular carcinoma upregulated long non-coding RNA. Furthermore, Tudor-SN silencing suppressed the expression of AGPS; however, nuclear factor (NF)-κB and microRNA (miR)-127 retrieval experiments partially reduced the expression of AGPS. Additionally, it was determined that Tudor-SN silencing suppressed the activity of the mechanistic target of rapamycin (mTOR) signaling pathway, and NF-κB and miR-127 retrieval experiments partially reduced the activity of mTOR. Therefore, it was considered that NF-κB and miR-127 may be the mediators of Tudor-SN-regulated AGPS via the mTOR signaling pathway. These results improve on our knowledge of the mechanisms underlying Tudor-SN and AGPS in human glioma.
PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex.
Surapureddi, Sailesh; Viswakarma, Navin; Yu, Songtao; Guo, Dongsheng; Rao, M Sambasiva; Reddy, Janardan K
2006-05-05
Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.
A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements
Elisaphenko, Eugeny A.; Kolesnikov, Nikolay N.; Shevchenko, Alexander I.; Rogozin, Igor B.; Nesterova, Tatyana B.; Brockdorff, Neil; Zakian, Suren M.
2008-01-01
X-chromosome inactivation, which occurs in female eutherian mammals is controlled by a complex X-linked locus termed the X-inactivation center (XIC). Previously it was proposed that genes of the XIC evolved, at least in part, as a result of pseudogenization of protein-coding genes. In this study we show that the key XIC gene Xist, which displays fragmentary homology to a protein-coding gene Lnx3, emerged de novo in early eutherians by integration of mobile elements which gave rise to simple tandem repeats. The Xist gene promoter region and four out of ten exons found in eutherians retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those with simple tandem repeats detectable in their structure have similarity to different transposable elements. Integration of mobile elements into Xist accompanies the overall evolution of the gene and presumably continues in contemporary eutherian species. Additionally we showed that the combination of remnants of protein-coding sequences and mobile elements is not unique to the Xist gene and is found in other XIC genes producing non-coding nuclear RNA. PMID:18575625
Bender, Aline; Hajieva, Parvana; Moosmann, Bernd
2008-10-28
Humans and most other animals use 2 different genetic codes to translate their hereditary information: the standard code for nuclear-encoded proteins and a modern variant of this code in mitochondria. Despite the pivotal role of the genetic code for cell biology, the functional significance of the deviant mitochondrial code has remained enigmatic since its first description in 1979. Here, we show that profound and functionally beneficial alterations on the encoded protein level were causative for the AUA codon reassignment from isoleucine to methionine observed in most mitochondrial lineages. We demonstrate that this codon reassignment leads to a massive accumulation of the easily oxidized amino acid methionine in the highly oxidative inner mitochondrial membrane. This apparently paradoxical outcome can yet be smoothly settled if the antioxidant surface chemistry of methionine is taken into account, and we present direct experimental evidence that intramembrane accumulation of methionine exhibits antioxidant and cytoprotective properties in living cells. Our results unveil that methionine is an evolutionarily selected antioxidant building block of respiratory chain complexes. Collective protein alterations can thus constitute the selective advantage behind codon reassignments, which authenticates the "ambiguous decoding" hypothesis of genetic code evolution. Oxidative stress has shaped the mitochondrial genetic code.
Paraspeckles: nuclear bodies built on long noncoding RNA
Bond, Charles S.
2009-01-01
Paraspeckles are ribonucleoprotein bodies found in the interchromatin space of mammalian cell nuclei. These structures play a role in regulating the expression of certain genes in differentiated cells by nuclear retention of RNA. The core paraspeckle proteins (PSF/SFPQ, P54NRB/NONO, and PSPC1 [paraspeckle protein 1]) are members of the DBHS (Drosophila melanogaster behavior, human splicing) family. These proteins, together with the long nonprotein-coding RNA NEAT1 (MEN-ϵ/β), associate to form paraspeckles and maintain their integrity. Given the large numbers of long noncoding transcripts currently being discovered through whole transcriptome analysis, paraspeckles may be a paradigm for a class of subnuclear bodies formed around long noncoding RNA. PMID:19720872
Nakao, Minoru; Lavikainen, Antti; Iwaki, Takashi; Haukisalmi, Voitto; Konyaev, Sergey; Oku, Yuzaburo; Okamoto, Munehiro; Ito, Akira
2013-05-01
The cestode family Taeniidae generally consists of two valid genera, Taenia and Echinococcus. The genus Echinococcus is monophyletic due to a remarkable similarity in morphology, features of development and genetic makeup. By contrast, Taenia is a highly diverse group formerly made up of different genera. Recent molecular phylogenetic analyses strongly suggest the paraphyly of Taenia. To clarify the genetic relationships among the representative members of Taenia, molecular phylogenies were constructed using nuclear and mitochondrial genes. The nuclear phylogenetic trees of 18S ribosomal DNA and concatenated exon regions of protein-coding genes (phosphoenolpyruvate carboxykinase and DNA polymerase delta) demonstrated that both Taenia mustelae and a clade formed by Taenia parva, Taenia krepkogorski and Taenia taeniaeformis are only distantly related to the other members of Taenia. Similar topologies were recovered in mitochondrial genomic analyses using 12 complete protein-coding genes. A sister relationship between T. mustelae and Echinococcus spp. was supported, especially in protein-coding gene trees inferred from both nuclear and mitochondrial data sets. Based on these results, we propose the resurrection of Hydatigera Lamarck, 1816 for T. parva, T. krepkogorski and T. taeniaeformis and the creation of a new genus, Versteria, for T. mustelae. Due to obvious morphological and ecological similarities, Taenia brachyacantha is also included in Versteria gen. nov., although molecular evidence is not available. Taenia taeniaeformis has been historically regarded as a single species but the present data clearly demonstrate that it consists of two cryptic species. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Choudhry, H; Albukhari, A; Morotti, M; Haider, S; Moralli, D; Smythies, J; Schödel, J; Green, C M; Camps, C; Buffa, F; Ratcliffe, P; Ragoussis, J; Harris, A L; Mole, D R
2015-01-01
Activation of cellular transcriptional responses, mediated by hypoxia-inducible factor (HIF), is common in many types of cancer, and generally confers a poor prognosis. Known to induce many hundreds of protein-coding genes, HIF has also recently been shown to be a key regulator of the non-coding transcriptional response. Here, we show that NEAT1 long non-coding RNA (lncRNA) is a direct transcriptional target of HIF in many breast cancer cell lines and in solid tumors. Unlike previously described lncRNAs, NEAT1 is regulated principally by HIF-2 rather than by HIF-1. NEAT1 is a nuclear lncRNA that is an essential structural component of paraspeckles and the hypoxic induction of NEAT1 induces paraspeckle formation in a manner that is dependent upon both NEAT1 and on HIF-2. Paraspeckles are multifunction nuclear structures that sequester transcriptionally active proteins as well as RNA transcripts that have been subjected to adenosine-to-inosine (A-to-I) editing. We show that the nuclear retention of one such transcript, F11R (also known as junctional adhesion molecule 1, JAM1), in hypoxia is dependent upon the hypoxic increase in NEAT1, thereby conferring a novel mechanism of HIF-dependent gene regulation. Induction of NEAT1 in hypoxia also leads to accelerated cellular proliferation, improved clonogenic survival and reduced apoptosis, all of which are hallmarks of increased tumorigenesis. Furthermore, in patients with breast cancer, high tumor NEAT1 expression correlates with poor survival. Taken together, these results indicate a new role for HIF transcriptional pathways in the regulation of nuclear structure and that this contributes to the pro-tumorigenic hypoxia-phenotype in breast cancer. PMID:25417700
Reuther, Peter; Göpfert, Kristina; Dudek, Alexandra H.; Heiner, Monika; Herold, Susanne; Schwemmle, Martin
2015-01-01
Influenza A viruses (IAV) pose a constant threat to the human population and therefore a better understanding of their fundamental biology and identification of novel therapeutics is of upmost importance. Various reporter-encoding IAV were generated to achieve these goals, however, one recurring difficulty was the genetic instability especially of larger reporter genes. We employed the viral NS segment coding for the non-structural protein 1 (NS1) and nuclear export protein (NEP) for stable expression of diverse reporter proteins. This was achieved by converting the NS segment into a single open reading frame (ORF) coding for NS1, the respective reporter and NEP. To allow expression of individual proteins, the reporter genes were flanked by two porcine Teschovirus-1 2A peptide (PTV-1 2A)-coding sequences. The resulting viruses encoding luciferases, fluorescent proteins or a Cre recombinase are characterized by a high genetic stability in vitro and in mice and can be readily employed for antiviral compound screenings, visualization of infected cells or cells that survived acute infection. PMID:26068081
Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.
Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M
2016-08-01
Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Kastner, Philomena; Mosgoeller, Wilhelm; Fang-Kircher, Susanne; Kitzmueller, Erwin; Kirchner, Liselotte; Hoeger, Harald; Seither, Peter; Lubec, Gert; Lubec, Barbara
2003-01-01
RNA polymerases (POL) are integral constituents of the protein synthesis machinery, with POL I and POL III coding for ribosomal RNA and POL II coding for protein. POL I is located in the nucleolus and transcribes class I genes, those that code for large ribosomal RNA. It has been reported that the POL system is seriously affected in perinatal asphyxia (PA) immediately after birth. Because POL I is necessary for protein synthesis and brain protein synthesis was shown to be deranged after hypoxic-ischemic conditions, we aimed to study whether POL derangement persists in a simple, well-documented animal model of graded global PA at the activity, mRNA, protein, and morphologic level until 8 d after the asphyctic insult. Nuclear POL I activity was determined according to a radiochemical method; mRNA steady state and protein levels of RPA4O-an essential subunit of POL I and III-were evaluated by blotting methods; and the POL I subunit polymerase activating factor-53 was evaluated using immunohistochemistry. Silver staining and transmission electron microscopy were used to examine the nucleolus. At the eighth day after PA, nuclear POL I decreased with the length of the asphyctic period, whereas mRNA and protein levels for RPA4O were unchanged. The subunit polymerase activating factor-53, however, was unambiguously reduced in several brain regions. Dramatic changes of nucleolar morphology were observed, the main finding being nucleolar disintegration at the electron microscopy level. We suggest that severe acidosis and/or deficient protein kinase C in the brain during the asphyctic period may be responsible for disintegration of the nucleolus as well as for decreased POL activity persisting until the eighth day after PA. The biologic effect may be that PA causes impaired RNA and protein synthesis, which has been already observed in hypoxic-ischemic states.
Molecular taxonomy and phylogeny
USDA-ARS?s Scientific Manuscript database
The cyst nematodes comprise a group of sedentary endoparasitic nematodes that impact a wide range of crops in both tropical and temperate regions of the world. This chapter updates the taxonomy and phylogeny of this group and describes the nuclear protein coding, ribosomal, and mitochondrial sequenc...
Schoch, Conrad L.; Seifert, Keith A.; Huhndorf, Sabine; Robert, Vincent; Spouge, John L.; Levesque, C. André; Chen, Wen; Bolchacova, Elena; Voigt, Kerstin; Crous, Pedro W.; Miller, Andrew N.; Wingfield, Michael J.; Aime, M. Catherine; An, Kwang-Deuk; Bai, Feng-Yan; Barreto, Robert W.; Begerow, Dominik; Bergeron, Marie-Josée; Blackwell, Meredith; Boekhout, Teun; Bogale, Mesfin; Boonyuen, Nattawut; Burgaz, Ana R.; Buyck, Bart; Cai, Lei; Cai, Qing; Cardinali, G.; Chaverri, Priscila; Coppins, Brian J.; Crespo, Ana; Cubas, Paloma; Cummings, Craig; Damm, Ulrike; de Beer, Z. Wilhelm; de Hoog, G. Sybren; Del-Prado, Ruth; Dentinger, Bryn; Diéguez-Uribeondo, Javier; Divakar, Pradeep K.; Douglas, Brian; Dueñas, Margarita; Duong, Tuan A.; Eberhardt, Ursula; Edwards, Joan E.; Elshahed, Mostafa S.; Fliegerova, Katerina; Furtado, Manohar; García, Miguel A.; Ge, Zai-Wei; Griffith, Gareth W.; Griffiths, K.; Groenewald, Johannes Z.; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Guo, Liang-Dong; Hagen, Ferry; Hambleton, Sarah; Hamelin, Richard C.; Hansen, Karen; Harrold, Paul; Heller, Gregory; Herrera, Cesar; Hirayama, Kazuyuki; Hirooka, Yuuri; Ho, Hsiao-Man; Hoffmann, Kerstin; Hofstetter, Valérie; Högnabba, Filip; Hollingsworth, Peter M.; Hong, Seung-Beom; Hosaka, Kentaro; Houbraken, Jos; Hughes, Karen; Huhtinen, Seppo; Hyde, Kevin D.; James, Timothy; Johnson, Eric M.; Johnson, Joan E.; Johnston, Peter R.; Jones, E.B. Gareth; Kelly, Laura J.; Kirk, Paul M.; Knapp, Dániel G.; Kõljalg, Urmas; Kovács, Gábor M.; Kurtzman, Cletus P.; Landvik, Sara; Leavitt, Steven D.; Liggenstoffer, Audra S.; Liimatainen, Kare; Lombard, Lorenzo; Luangsa-ard, J. Jennifer; Lumbsch, H. Thorsten; Maganti, Harinad; Maharachchikumbura, Sajeewa S. N.; Martin, María P.; May, Tom W.; McTaggart, Alistair R.; Methven, Andrew S.; Meyer, Wieland; Moncalvo, Jean-Marc; Mongkolsamrit, Suchada; Nagy, László G.; Nilsson, R. Henrik; Niskanen, Tuula; Nyilasi, Ildikó; Okada, Gen; Okane, Izumi; Olariaga, Ibai; Otte, Jürgen; Papp, Tamás; Park, Duckchul; Petkovits, Tamás; Pino-Bodas, Raquel; Quaedvlieg, William; Raja, Huzefa A.; Redecker, Dirk; Rintoul, Tara L.; Ruibal, Constantino; Sarmiento-Ramírez, Jullie M.; Schmitt, Imke; Schüßler, Arthur; Shearer, Carol; Sotome, Kozue; Stefani, Franck O.P.; Stenroos, Soili; Stielow, Benjamin; Stockinger, Herbert; Suetrong, Satinee; Suh, Sung-Oui; Sung, Gi-Ho; Suzuki, Motofumi; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M. Teresa; Tretter, Eric; Untereiner, Wendy A.; Urbina, Hector; Vágvölgyi, Csaba; Vialle, Agathe; Vu, Thuy Duong; Walther, Grit; Wang, Qi-Ming; Wang, Yan; Weir, Bevan S.; Weiß, Michael; White, Merlin M.; Xu, Jianping; Yahr, Rebecca; Yang, Zhu L.; Yurkov, Andrey; Zamora, Juan-Carlos; Zhang, Ning; Zhuang, Wen-Ying; Schindel, David
2012-01-01
Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups. PMID:22454494
Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen
2012-04-17
Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.
Toxic effects of mercury on the cell nucleus of Dictyostelium discoideum.
Boatti, Lara; Rapallo, Fabio; Viarengo, Aldo; Marsano, Francesco
2017-02-01
Governmental agencies (www.epa.gov/mercury) and the scientific community have reported on the high toxicity due to mercury. Indeed, exposure to mercury can cause severe injury to the central nervous system and kidney in humans. Beyond its recognized toxicity, little is known regarding the molecular mechanisms involved in the actions of this heavy metal. Mercury has been also observed to form insoluble fibrous protein aggregates in the cell nucleus. We used D. discoideum to evaluate micronuclei formation and, since mercury is able to induce oxidative stress that could bring to protein aggregation, we assessed nuclear protein carbonylation by Western Blot. We observed a significant increase in micronuclei formation and 14 carbonylated proteins were identified. Moreover, we used isotope-coded protein label (ICPL) and mass spectrometry analysis of proteins obtained by lysis of purified nuclei, before of tryptic digestion to quantify nuclear proteins affected by mercury. In particular, we examined the effects of mercury that associate a classical genotoxic assay to proteomic effects into the nucleus. The data present direct evidences for mercury genotoxicity, nuclear protein carbonylation, quantitative change in core histones, and the involvement of pseudouridine synthase in mercury toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 417-425, 2017. © 2016 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Higher-level relationships within the Lepidoptera, and particularly within the species-rich subclade Ditrysia, are generally not well understood, although recent studies have yielded progress. 483 taxa spanning 115 of 124 families were sampled for 19 protein-coding nuclear genes. Their aligned nucle...
The complete mitochondrial genome of Papilio glaucus and its phylogenetic implications.
Shen, Jinhui; Cong, Qian; Grishin, Nick V
2015-09-01
Due to the intriguing morphology, lifecycle, and diversity of butterflies and moths, Lepidoptera are emerging as model organisms for the study of genetics, evolution and speciation. The progress of these studies relies on decoding Lepidoptera genomes, both nuclear and mitochondrial. Here we describe a protocol to obtain mitogenomes from Next Generation Sequencing reads performed for whole-genome sequencing and report the complete mitogenome of Papilio (Pterourus) glaucus. The circular mitogenome is 15,306 bp in length and rich in A and T. It contains 13 protein-coding genes (PCGs), 22 transfer-RNA-coding genes (tRNA), and 2 ribosomal-RNA-coding genes (rRNA), with a gene order typical for mitogenomes of Lepidoptera. We performed phylogenetic analyses based on PCG and RNA-coding genes or protein sequences using Bayesian Inference and Maximum Likelihood methods. The phylogenetic trees consistently show that among species with available mitogenomes Papilio glaucus is the closest to Papilio (Agehana) maraho from Asia.
Wise, C A; Chiang, L C; Paznekas, W A; Sharma, M; Musy, M M; Ashley, J A; Lovett, M; Jabs, E W
1997-04-01
Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development.
Dobrenel, Thomas; Mancera-Martínez, Eder; Forzani, Céline; Azzopardi, Marianne; Davanture, Marlène; Moreau, Manon; Schepetilnikov, Mikhail; Chicher, Johana; Langella, Olivier; Zivy, Michel; Robaglia, Christophe; Ryabova, Lyubov A.; Hanson, Johannes; Meyer, Christian
2016-01-01
Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5′ untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5′ terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase. PMID:27877176
Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis
2015-04-01
Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. © 2014 John Wiley & Sons Ltd.
St. Laurent, Georges; Savva, Yiannis A.; Kapranov, Philipp
2012-01-01
Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as “junk DNA,” that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these micro-domains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events. PMID:22539933
Sundaram, Gopinath M; Veera Bramhachari, Pallaval
2017-06-01
Esophageal squamous cell carcinoma is the sixth most common cancer in the developing world. The aggressive nature of esophageal squamous cell carcinoma, its tendency for relapse, and the poor survival prospects of patients diagnosed at advanced stages, represent a pressing need for the development of new therapies for this disease. Chronic inflammation is known to have a causal link to cancer pre-disposition. Nuclear factor kappa B and signal transducer and activator of transcription 3 are transcription factors which regulate immunity and inflammation and are emerging as key regulators of tumor initiation, progression, and metastasis. Although these pro-inflammatory factors in esophageal squamous cell carcinoma have been well-characterized with reference to protein-coding targets, their functional interactions with non-coding RNAs have only recently been gaining attention. Non-coding RNAs, especially microRNAs and long non-coding RNAs demonstrate potential as biomarkers and alternative therapeutic targets. In this review, we summarize the recent literature and concepts on non-coding RNAs that are regulated by/regulate nuclear factor kappa B and signal transducer and activator of transcription 3 in esophageal cancer progression. We also discuss how these recent discoveries can pave way for future therapeutic options to treat esophageal squamous cell carcinoma.
Activity-Dependent Human Brain Coding/Noncoding Gene Regulatory Networks
Lipovich, Leonard; Dachet, Fabien; Cai, Juan; Bagla, Shruti; Balan, Karina; Jia, Hui; Loeb, Jeffrey A.
2012-01-01
While most gene transcription yields RNA transcripts that code for proteins, a sizable proportion of the genome generates RNA transcripts that do not code for proteins, but may have important regulatory functions. The brain-derived neurotrophic factor (BDNF) gene, a key regulator of neuronal activity, is overlapped by a primate-specific, antisense long noncoding RNA (lncRNA) called BDNFOS. We demonstrate reciprocal patterns of BDNF and BDNFOS transcription in highly active regions of human neocortex removed as a treatment for intractable seizures. A genome-wide analysis of activity-dependent coding and noncoding human transcription using a custom lncRNA microarray identified 1288 differentially expressed lncRNAs, of which 26 had expression profiles that matched activity-dependent coding genes and an additional 8 were adjacent to or overlapping with differentially expressed protein-coding genes. The functions of most of these protein-coding partner genes, such as ARC, include long-term potentiation, synaptic activity, and memory. The nuclear lncRNAs NEAT1, MALAT1, and RPPH1, composing an RNAse P-dependent lncRNA-maturation pathway, were also upregulated. As a means to replicate human neuronal activity, repeated depolarization of SY5Y cells resulted in sustained CREB activation and produced an inverse pattern of BDNF-BDNFOS co-expression that was not achieved with a single depolarization. RNAi-mediated knockdown of BDNFOS in human SY5Y cells increased BDNF expression, suggesting that BDNFOS directly downregulates BDNF. Temporal expression patterns of other lncRNA-messenger RNA pairs validated the effect of chronic neuronal activity on the transcriptome and implied various lncRNA regulatory mechanisms. lncRNAs, some of which are unique to primates, thus appear to have potentially important regulatory roles in activity-dependent human brain plasticity. PMID:22960213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejerman, Nicolás, E-mail: n.bejerman@uq.edu.au; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072; Giolitti, Fabián
Summary: We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cellmore » periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses. - Highlights: • The complete genome of alfalfa dwarf virus is obtained. • An integrated localization and interaction map for ADV is determined. • ADV has a genome sequence similarity and evolutionary links with cytorhabdoviruses. • ADV protein localization and interaction data show an association with the nucleus. • ADV combines properties of both cytoplasmic and nuclear plant rhabdoviruses.« less
Fu, Cheng-Jie; Sheikh, Sanea; Miao, Wei; Andersson, Siv G E; Baldauf, Sandra L
2014-08-21
Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism
USDA-ARS?s Scientific Manuscript database
The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that responds to oxidative stress by binding to the antioxidant response element (ARE) in the promoter of genes coding for antioxidant enzymes like NAD(P)H:quinone oxidoreductase 1 (NQO1) and proteins for glutathione synthesis. ...
Görner, Wolfram; Durchschlag, Erich; Martinez-Pastor, Maria Teresa; Estruch, Francisco; Ammerer, Gustav; Hamilton, Barbara; Ruis, Helmut; Schüller, Christoph
1998-01-01
Msn2p and the partially redundant factor Msn4p are key regulators of stress-responsive gene expression in Saccharomyces cerevisiae. They are required for the transcription of a number of genes coding for proteins with stress-protective functions. Both Msn2p and Msn4p are Cys2His2 zinc finger proteins and bind to the stress response element (STRE). In vivo footprinting studies show that the occupation of STREs is enhanced in stressed cells and dependent on the presence of Msn2p and Msn4p. Both factors accumulate in the nucleus under stress conditions, such as heat shock, osmotic stress, carbon-source starvation, and in the presence of ethanol or sorbate. Stress-induced nuclear localization was found to be rapid, reversible, and independent of protein synthesis. Nuclear localization of Msn2p and Msn4p was shown to be correlated inversely to cAMP levels and protein kinase A (PKA) activity. A region with significant homologies shared between Msn2p and Msn4p is sufficient to confer stress-regulated localization to a SV40–NLS–GFP fusion protein. Serine to alanine or aspartate substitutions in a conserved PKA consensus site abolished cAMP-driven nuclear export and cytoplasmic localization in unstressed cells. We propose stress and cAMP-regulated intracellular localization of Msn2p to be a key step in STRE-dependent transcription and in the general stress response. PMID:9472026
Winkler, Isaac S; Blaschke, Jeremy D; Davis, Daniel J; Stireman, John O; O'Hara, James E; Cerretti, Pierfilippo; Moulton, John K
2015-07-01
Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and their relatives, we show that a small number of well-chosen nuclear protein-coding genes can successfully resolve even difficult phylogenetic problems. Copyright © 2015 Elsevier Inc. All rights reserved.
Khorsandi, Shirin Elizabeth; Salehi, Siamak; Cortes, Miriam; Vilca-Melendez, Hector; Menon, Krishna; Srinivasan, Parthi; Prachalias, Andreas; Jassem, Wayel; Heaton, Nigel
2018-02-15
Mitochondria have their own genomic, transcriptomic and proteomic machinery but are unable to be autonomous, needing both nuclear and mitochondrial genomes. The aim of this work was to use computational biology to explore the involvement of Mitochondrial microRNAs (MitomiRs) and their interactions with the mitochondrial proteome in a clinical model of primary non function (PNF) of the donor after cardiac death (DCD) liver. Archival array data on the differential expression of miRNA in DCD PNF was re-analyzed using a number of publically available computational algorithms. 10 MitomiRs were identified of importance in DCD PNF, 7 with predicted interaction of their seed sequence with the mitochondrial transcriptome that included both coding, and non coding areas of the hypervariability region 1 (HVR1) and control region. Considering miRNA regulation of the nuclear encoded mitochondrial proteome, 7 hypothetical small proteins were identified with homolog function that ranged from co-factor for formation of ATP Synthase, REDOX balance and an importin/exportin protein. In silico, unconventional seed interactions, both non canonical and alternative seed sites, appear to be of greater importance in MitomiR regulation of the mitochondrial genome. Additionally, a number of novel small proteins of relevance in transplantation have been identified which need further characterization.
Cloud prediction of protein structure and function with PredictProtein for Debian.
Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard
2013-01-01
We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.
Cloud Prediction of Protein Structure and Function with PredictProtein for Debian
Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Rost, Burkhard
2013-01-01
We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome. PMID:23971032
Flather, Dylan; Semler, Bert L.
2015-01-01
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review. PMID:26150805
Rocketdyne/Westinghouse nuclear thermal rocket engine modeling
NASA Technical Reports Server (NTRS)
Glass, James F.
1993-01-01
The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.
Lorenzo, Alessandra Di; Bedford, Mark T.
2012-01-01
Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527
Integration of mRNP formation and export.
Björk, Petra; Wieslander, Lars
2017-08-01
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA-protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Montandon, P E; Vasserot, A; Stutz, E
1986-01-01
We retrieved a 1.6 kbp intron separating two exons of the psb C gene which codes for the 44 kDa reaction center protein of photosystem II. This intron is 3 to 4 times the size of all previously sequenced Euglena gracilis chloroplast introns. It contains an open reading frame of 458 codons potentially coding for a basic protein of 54 kDa of yet unknown function. The intron boundaries follow consensus sequences established for chloroplast introns related to class II and nuclear pre-mRNA introns. Its 3'-terminal segment has structural features similar to class II mitochondrial introns with an invariant base A as possible branch point for lariat formation.
USDA-ARS?s Scientific Manuscript database
In the mega-diverse insect order Lepidoptera (butterflies and moths; 165,000 species total), 98% of the species fall in the clade Ditrysia, relationships within which are little understood. As the first step in a long-term study of ditrysian phylogeny, we tested the ability of maximum likelihood ana...
Arthropod phylogeny based on eight molecular loci and morphology
NASA Technical Reports Server (NTRS)
Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.
2001-01-01
The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.
Weinreich, D M; Rand, D M
2000-01-01
We report that patterns of nonneutral DNA sequence evolution among published nuclear and mitochondrially encoded protein-coding loci differ significantly in animals. Whereas an apparent excess of amino acid polymorphism is seen in most (25/31) mitochondrial genes, this pattern is seen in fewer than half (15/36) of the nuclear data sets. This differentiation is even greater among data sets with significant departures from neutrality (14/15 vs. 1/6). Using forward simulations, we examined patterns of nonneutral evolution using parameters chosen to mimic the differences between mitochondrial and nuclear genetics (we varied recombination rate, population size, mutation rate, selective dominance, and intensity of germ line bottleneck). Patterns of evolution were correlated only with effective population size and strength of selection, and no single genetic factor explains the empirical contrast in patterns. We further report that in Arabidopsis thaliana, a highly self-fertilizing plant with effectively low recombination, five of six published nuclear data sets also exhibit an excess of amino acid polymorphism. We suggest that the contrast between nuclear and mitochondrial nonneutrality in animals stems from differences in rates of recombination in conjunction with a distribution of selective effects. If the majority of mutations segregating in populations are deleterious, high linkage may hinder the spread of the occasional beneficial mutation. PMID:10978302
2014-01-01
Background Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. (‘intermediate form’) is unclear. Methods Single specimens inferred to represent Fasciola sp. (‘intermediate form’; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). Results The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. Conclusions The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries. PMID:24685294
Liu, Guo-Hua; Gasser, Robin B; Young, Neil D; Song, Hui-Qun; Ai, Lin; Zhu, Xing-Quan
2014-03-31
Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. ('intermediate form') is unclear. Single specimens inferred to represent Fasciola sp. ('intermediate form'; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries.
Cell cycle dependent intracellular distribution of two spliced isoforms of TCP/ILF3 proteins.
Xu, You Hai; Leonova, Tatyana; Grabowski, Gregory A
2003-12-01
TCP80 is an approximately 80kDa mammalian cytoplasmic protein that binds to a set of mRNAs and inhibits their translation in vitro and ex vivo. This protein has high sequence similarity to interleukin-2 enhancer-binding factors (NF90/ILF3) and the M-phase phosphoprotein (MPP4)/DRBP76. A 110kDa immunologic isoform of TCP80/NF90/MPP4/DRBP76, termed TCP110, also is present in cytoplasm and nuclei of many types of cells. A cDNA sequence coding for TCP110 was derived by 5(')RACE. The TCP110 sequence is identical to ILF3. The gene coding for TCP110/ILF3 mapped to human chromosome 19 and the gene organization was analyzed using TCP80 and TCP110/ILF3 cDNA sequences. The TCP/ILF3 gene spans >34.8kb and contains 21 exons. At least one alternatively spliced product involving exons 19-21 exists and predicts the formation of either TCP80 or TCP110/ILF3. However, the functional relationships of TCP80 and TCP110/ILF3 required elucidation. The metabolic turnover rates and subcellular distribution of TCP80 and TCP110/ILF3 during the cell cycle showed TCP80 to be relatively stable (t(1/2)=5 days) in the cytoplasmic compartment. In comparison, TCP110/ILF3 migrated between the cytoplasmic and nuclear compartments during the cell cycle. The TCP110 C-terminal segment contains an additional nuclear localizing signal that plays a role in its nuclear translocation. This study indicates that the multiple cellular functions, i.e., translation control, interleukin-2 enhancer binding, or cell division, of TCP/ILF3 are fulfilled by alternatively spliced isoforms.
Falconi, M; Oteri, F; Eliseo, T; Cicero, D O; Desideri, A
2008-08-01
The structural dynamics of the DNA binding domains of the human papillomavirus strain 16 and the bovine papillomavirus strain 1, complexed with their DNA targets, has been investigated by modeling, molecular dynamics simulations, and nuclear magnetic resonance analysis. The simulations underline different dynamical features of the protein scaffolds and a different mechanical interaction of the two proteins with DNA. The two protein structures, although very similar, show differences in the relative mobility of secondary structure elements. Protein structural analyses, principal component analysis, and geometrical and energetic DNA analyses indicate that the two transcription factors utilize a different strategy in DNA recognition and deformation. Results show that the protein indirect DNA readout is not only addressable to the DNA molecule flexibility but it is finely tuned by the mechanical and dynamical properties of the protein scaffold involved in the interaction.
Proteomic analysis in giant axonal neuropathy: new insights into disease mechanisms.
Mussche, Silke; De Paepe, Boel; Smet, Joél; Devreese, Katrien; Lissens, Willy; Rasic, Vedrana Milic; Murnane, Matthew; Devreese, Bart; Van Coster, Rudy
2012-08-01
Giant axonal neuropathy (GAN) is a progressive hereditary disease that affects the peripheral and central nervous systems. It is characterized morphologically by aggregates of intermediate filaments in different tissues. Mutations have been reported in the gene that codes for gigaxonin. Nevertheless, the underlying molecular mechanism remains obscure. Cell lines from 4 GAN patients and 4 controls were analyzed by iTRAQ. Among the dysregulated proteins were ribosomal protein L29, ribosomal protein L37, galectin-1, glia-derived nexin, and aminopeptidase N. Also, nuclear proteins linked to formin-binding proteins were found to be dysregulated. Although the major role of gigaxonin is reported to be degradation of cytoskeleton-associated proteins, the amount of 76 structural cytoskeletal proteins was unaltered. Several of the dysregulated proteins play a role in cytoskeletal reorganization. Based on these findings, we speculate that disturbed cytoskeletal regulation is responsible for formation of aggregates of intermediate filaments. Copyright © 2012 Wiley Periodicals, Inc.
Leung, Carol S; Haigh, Tracey A; Mackay, Laura K; Rickinson, Alan B; Taylor, Graham S
2010-02-02
Whereas exogenously acquired proteins are the major source of antigens feeding the MHC class II pathway in antigen-presenting cells, some endogenously expressed antigens also access that pathway but the rules governing such access are poorly understood. Here we address this using Epstein-Barr virus (EBV)-coded nuclear antigen EBNA1, a protein naturally expressed in EBV-infected B lymphoblastoid cell lines (LCLs) and a source of multiple CD4(+) T cell epitopes. Using CD4(+) T cell clones against three indicator epitopes, we find that two epitopes are weakly displayed on the LCL surface whereas the third is undetectable, a pattern of limited epitope presentation that is maintained even when nuclear expression of EBNA1 is induced to high supraphysiological levels. Inhibitor and siRNA studies show that, of the two epitopes weakly presented under these conditions, one involves macroautophagy, and the second involves antigen delivery to the MHC II pathway by another endogenous route. In contrast, when EBNA1 is expressed as a cytoplasmic protein, all three CD4 epitopes are processed and presented much more efficiently, and all involve macroautophagy. We conclude that EBNA1's nuclear location limits its accessibility to the macroautophagy pathway and, in consequence, limits the level and range of EBNA1 CD4 epitopes naturally displayed on the infected cell surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wada, Takeyoshi; Asahi, Toru; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480
2016-08-26
The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as amore » thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.« less
Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos
NASA Astrophysics Data System (ADS)
Parsons, D. Kent
2017-09-01
Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given.
Approaches to Fungal Genome Annotation
Haas, Brian J.; Zeng, Qiandong; Pearson, Matthew D.; Cuomo, Christina A.; Wortman, Jennifer R.
2011-01-01
Fungal genome annotation is the starting point for analysis of genome content. This generally involves the application of diverse methods to identify features on a genome assembly such as protein-coding and non-coding genes, repeats and transposable elements, and pseudogenes. Here we describe tools and methods leveraged for eukaryotic genome annotation with a focus on the annotation of fungal nuclear and mitochondrial genomes. We highlight the application of the latest technologies and tools to improve the quality of predicted gene sets. The Broad Institute eukaryotic genome annotation pipeline is described as one example of how such methods and tools are integrated into a sequencing center’s production genome annotation environment. PMID:22059117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adrian Miron; Joshua Valentine; John Christenson
2009-10-01
The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFCmore » codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.« less
Noncoding RNAs and the control of signalling via nuclear receptor regulation in health and disease.
Cathcart, Paul; Lucchesi, Walter; Ottaviani, Silvia; De Giorgio, Alex; Krell, Jonathan; Stebbing, Justin; Castellano, Leandro
2015-08-01
Nuclear receptors belong to a superfamily of proteins that play central roles in human biology, orchestrating a large variety of biological functions in both health and disease. Understanding the interactions and regulatory pathways of NRs will allow development of potential therapeutic interventions for a multitude of disease processes. Non-coding RNAs have recently been discovered to have significant interactions with NR signalling pathways via a variety of biological connections. This review summarises the known interactions between ncRNAs and the NR superfamily in health, embryogenesis and a plethora of human diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tellgren-Roth, Christian; Baudo, Charles D.; Kennell, John C.; Sun, Sheng; Billmyre, R. Blake; Schröder, Markus S.; Andersson, Anna; Holm, Tina; Sigurgeirsson, Benjamin; Wu, Guangxi; Sankaranarayanan, Sundar Ram; Siddharthan, Rahul; Sanyal, Kaustuv; Lundeberg, Joakim; Nystedt, Björn; Boekhout, Teun; Dawson, Thomas L.; Heitman, Joseph
2017-01-01
Abstract Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies. PMID:28100699
Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ
Andrews, Joel F.; Sykora, Landon J.; Barik-Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.
2012-01-01
HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington’s, Parkinson’s diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S). PMID:22504047
Kaltimbacher, Valérie; Bonnet, Crystel; Lecoeuvre, Gaëlle; Forster, Valérie; Sahel, José-Alain; Corral-Debrinski, Marisol
2006-01-01
As previously established in yeast, two sequences within mRNAs are responsible for their specific localization to the mitochondrial surface—the region coding for the mitochondrial targeting sequence and the 3′UTR. This phenomenon is conserved in human cells. Therefore, we decided to use mRNA localization as a tool to address to mitochondria, a protein that is not normally imported. For this purpose, we associated a nuclear recoded ATP6 gene with the mitochondrial targeting sequence and the 3′UTR of the nuclear SOD2 gene, which mRNA exclusively localizes to the mitochondrial surface in HeLa cells. The ATP6 gene is naturally located into the organelle and encodes a highly hydrophobic protein of the respiratory chain complex V. In this study, we demonstrated that hybrid ATP6 mRNAs, as the endogenous SOD2 mRNA, localize to the mitochondrial surface in human cells. Remarkably, fusion proteins localize to mitochondria in vivo. Indeed, ATP6 precursors synthesized in the cytoplasm were imported into mitochondria in a highly efficient way, especially when both the MTS and the 3′UTR of the SOD2 gene were associated with the re-engineered ATP6 gene. Hence, these data indicate that mRNA targeting to the mitochondrial surface represents an attractive strategy for allowing the mitochondrial import of proteins originally encoded by the mitochondrial genome without any amino acid change in the protein that could interfere with its biologic activity. PMID:16751614
The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions
NASA Astrophysics Data System (ADS)
Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.
2016-01-01
A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.
EMPIRE: A code for nuclear astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palumbo, A.
The nuclear reaction code EMPIRE is presented as a useful tool for nuclear astrophysics. EMPIRE combines a variety of the reaction models with a comprehensive library of input parameters providing a diversity of options for the user. With exclusion of the directsemidirect capture all reaction mechanisms relevant to the nuclear astrophysics energy range of interest are implemented in the code. Comparison to experimental data show consistent agreement for all relevant channels.
Solís, D; Jiménez-Barbero, J; Kaltner, H; Romero, A; Siebert, H C; von der Lieth, C W; Gabius, H J
2001-01-01
The term 'code' in biological information transfer appears to be tightly and hitherto exclusively connected with the genetic code based on nucleotides and translated into functional activities via proteins. However, the recent appreciation of the enormous coding capacity of oligosaccharide chains of natural glycoconjugates has spurred to give heed to a new concept: versatile glycan assembly by the genetically encoded glycosyltransferases endows cells with a probably not yet fully catalogued array of meaningful messages. Enciphered by sugar receptors such as endogenous lectins the information of code words established by a series of covalently linked monosaccharides as letters for example guides correct intra- and intercellular routing of glycoproteins, modulates cell proliferation or migration and mediates cell adhesion. Evidently, the elucidation of the structural frameworks and the recognition strategies within the operation of the sugar code poses a fascinating conundrum. The far-reaching impact of this recognition mode on the level of cells, tissues and organs has fueled vigorous investigations to probe the subtleties of protein-carbohydrate interactions. This review presents information on the necessarily concerted approach using X-ray crystallography, molecular modeling, nuclear magnetic resonance spectroscopy, thermodynamic analysis and engineered ligands and receptors. This part of the treatise is flanked by exemplarily chosen insights made possible by these techniques. Copyright 2001 S. Karger AG, Basel
Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8
DOE Office of Scientific and Technical Information (OSTI.GOV)
First, M.W.
1991-02-01
Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)
SOC-DS computer code provides tool for design evaluation of homogeneous two-material nuclear shield
NASA Technical Reports Server (NTRS)
Disney, R. K.; Ricks, L. O.
1967-01-01
SOC-DS Code /Shield Optimization Code-Direc Search/, selects a nuclear shield material of optimum volume, weight, or cost to meet the requirments of a given radiation dose rate or energy transmission constraint. It is applicable to evaluating neutron and gamma ray shields for all nuclear reactors.
Phylogenetic relationships of Hemiptera inferred from mitochondrial and nuclear genes.
Song, Nan; Li, Hu; Cai, Wanzhi; Yan, Fengming; Wang, Jianyun; Song, Fan
2016-11-01
Here, we reconstructed the Hemiptera phylogeny based on the expanded mitochondrial protein-coding genes and the nuclear 18S rRNA gene, separately. The differential rates of change across lineages may associate with long-branch attraction (LBA) effect and result in conflicting estimates of phylogeny from different types of data. To reduce the potential effects of systematic biases on inferences of topology, various data coding schemes, site removal method, and different algorithms were utilized in phylogenetic reconstruction. We show that the outgroups Phthiraptera, Thysanoptera, and the ingroup Sternorrhyncha share similar base composition, and exhibit "long branches" relative to other hemipterans. Thus, the long-branch attraction between these groups is suspected to cause the failure of recovering Hemiptera under the homogeneous model. In contrast, a monophyletic Hemiptera is supported when heterogeneous model is utilized in the analysis. Although higher level phylogenetic relationships within Hemiptera remain to be answered, consensus between analyses is beginning to converge on a stable phylogeny.
Rodermel, S; Haley, J; Jiang, C Z; Tsai, C H; Bogorad, L
1996-01-01
Multimeric protein complexes in chloroplasts and mitochondria are generally composed of products of both nuclear and organelle genes of the cell. A central problem of eukaryotic cell biology is to identify and understand the molecular mechanisms for integrating the production and accumulation of the products of the two separate genomes. Ribulose bisphosphate carboxylase (Rubisco) is localized in the chloroplasts of photosynthetic eukaryotic cells and is composed of small subunits (SS) and large subunits (LS) coded for by nuclear rbcS and chloroplast rbcL genes, respectively. Transgenic tobacco plants containing antisense rbcS DNA have reduced levels of rbcS mRNA, normal levels of rbcL mRNA, and coordinately reduced LS and SS proteins. Our previous experiments indicated that the rate of translation of rbcL mRNA might be reduced in some antisense plants; direct evidence is presented here. After a short-term pulse there is less labeled LS protein in the transgenic plants than in wild-type plants, indicating that LS accumulation is controlled in the mutants at the translational and/or posttranslational levels. Consistent with a primary restriction at translation, fewer rbcL mRNAs are associated with polysomes of normal size and more are free or are associated with only a few ribosomes in the antisense plants. Effects of the rbcS antisense mutation on mRNA and protein accumulation, as well as on the distribution of mRNAs on polysomes, appear to be minimal for other chloroplast and nuclear photosynthetic genes. Our results suggest that SS protein abundance specifically contributes to the regulation of LS protein accumulation at the level of rbcL translation initiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 8 PMID:8632983
Kreplak, Laurent; Richter, Karsten; Aebi, Ueli; Herrmann, Harald
2008-01-01
Intermediate filaments (IFs) were originally discovered and defined by electron microscopy in myoblasts. In the following it was demonstrated and confirmed that they constitute, in addition to microtubules and microfilaments, a third independent, general filament system in the cytoplasm of most metazoan cells. In contrast to the other two systems, IFs are present in cells in two principally distinct cytoskeletal forms: (i) extended and free-running filament arrays in the cytoplasm that are integrated into the cytoskeleton by associated proteins of the plakin type; and (ii) a membrane- and chromatin-bound thin 'lamina' of a more or less regular network of interconnected filaments made from nuclear IF proteins, the lamins, which differ in several important structural aspects from cytoplasmic IF proteins. In man, more than 65 genes code for distinct IF proteins that are expressed during embryogenesis in various routes of differentiation in a tightly controlled manner. IF proteins exhibit rather limited sequence identity implying that the different types of IFs have distinct biochemical properties. Hence, to characterize the structural properties of the various IFs, in vitro assembly regimes have been developed in combination with different visualization methods such as transmission electron microscopy of fixed and negatively stained samples as well as methods that do not use staining such as scanning transmission electron microscopy (STEM) and cryoelectron microscopy as well as atomic force microscopy. Moreover, with the generation of both IF-type specific antibodies and chimeras of fluorescent proteins and IF proteins, it has become possible to investigate the subcellular organization of IFs by correlative fluorescence and electron microscopic methods. The combination of these powerful methods should help to further develop our understanding of nuclear architecture, in particular how nuclear subcompartments are organized and in which way lamins are involved.
Fransz, Paul F; de Jong, J Hans
2002-12-01
Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large network of interactions that control the nuclear programming of cell identity. New insight into how chromatin conformations are regulated in plants sheds light on the relationships between chromosome function, cell differentiation and developmental patterns.
Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane
2014-01-01
The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs—the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3–RRM4 block is the main platform mediating the stable association with the H12–H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP–RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. PMID:24748666
Quantitative proteomic analysis of CMS-related changes in Honglian CMS rice anther.
Sun, Qingping; Hu, Chaofeng; Hu, Jun; Li, Shaoqing; Zhu, Yingguo
2009-10-01
Honglian (HL) cytoplasmic male sterility (CMS) is one of the rice CMS types and has been widely used in hybrid rice production in China. The CMS line (Yuetai A, YTA) has a Yuetai B (maintainer line, YTB) nuclear genome, but has a rearranged mitochondrial (mt) genome consisting of Yuetai B. The fertility of hybrid (HL-6) was restored by restorer gene in nuclear genome of restorer line (9311). We used isotope-code affinity tag (ICAT) technology to perform the protein profiling of uninucleate stage rice anther and identify the CMS-HL related proteins. Two separate ICAT analyses were performed in this study: (1) anthers from YTA versus anthers from YTB, and (2) anthers from YTA versus anthers from HL-6. Based on the two analyses, a total of 97 unique proteins were identified and quantified in uninucleate stage rice anther under the error rate of less than 10%, of which eight proteins showed abundance changes of at least twofold between YTA and YTB. Triosephosphate isomerase, fructokinase II, DNA-binding protein GBP16 and ribosomal protein L3B were over-expressed in YTB, while oligopeptide transporter, floral organ regulator 1, kinase and S-adenosyl-L: -methionine synthetase were over-expressed in YTA. Reduction of the proteins associated with energy production and lesser ATP equivalents detected in CMS anther indicated that the low level of energy production played an important role in inducing CMS-HL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha
HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies implymore » that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).« less
Hu, Jianwei; Gauld, Ian C.
2014-12-01
The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jianwei; Gauld, Ian C.
The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less
Chromatinized Protein Kinase C-θ: Can It Escape the Clutches of NF-κB?
Sutcliffe, Elissa L.; Li, Jasmine; Zafar, Anjum; Hardy, Kristine; Ghildyal, Reena; McCuaig, Robert; Norris, Nicole C.; Lim, Pek Siew; Milburn, Peter J.; Casarotto, Marco G.; Denyer, Gareth; Rao, Sudha
2012-01-01
We recently provided the first description of a nuclear mechanism used by Protein Kinase C-theta (PKC-θ) to mediate T cell gene expression. In this mode, PKC-θ tethers to chromatin to form an active nuclear complex by interacting with proteins including RNA polymerase II, the histone kinase MSK-1, the demethylase LSD1, and the adaptor molecule 14-3-3ζ at regulatory regions of inducible immune response genes. Moreover, our genome-wide analysis identified many novel PKC-θ target genes and microRNAs implicated in T cell development, differentiation, apoptosis, and proliferation. We have expanded our ChIP-on-chip analysis and have now identified a transcription factor motif containing NF-κB binding sites that may facilitate recruitment of PKC-θ to chromatin at coding genes. Furthermore, NF-κB association with chromatin appears to be a prerequisite for the assembly of the PKC-θ active complex. In contrast, a distinct NF-κB-containing module appears to operate at PKC-θ targeted microRNA genes, and here NF-κB negatively regulates microRNA gene transcription. Our efforts are also focusing on distinguishing between the nuclear and cytoplasmic functions of PKCs to ascertain how these kinases may synergize their roles as both cytoplasmic signaling proteins and their functions on the chromatin template, together enabling rapid induction of eukaryotic genes. We have identified an alternative sequence within PKC-θ that appears to be important for nuclear translocation of this kinase. Understanding the molecular mechanisms used by signal transduction kinases to elicit specific and distinct transcriptional programs in T cells will enable scientists to refine current therapeutic strategies for autoimmune diseases and cancer. PMID:22969762
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prevorovsky, Martin; Grousl, Tomas; Stanurova, Jana
The CSL (CBF1/RBP-J{kappa}/Suppressor of Hairless/LAG-1) family is comprised of transcription factors essential for metazoan development, mostly due to their involvement in the Notch receptor signaling pathway. Recently, we identified two novel classes of CSL genes in the genomes of several fungal species, organisms lacking the Notch pathway. In this study, we characterized experimentally cbf11{sup +} and cbf12{sup +}, the two CSL genes of Schizosaccharomyces pombe, in order to elucidate the CSL function in fungi. We provide evidence supporting their identity as genuine CSL genes. Both cbf11{sup +} and cbf12{sup +} are non-essential; they have distinct expression profiles and code formore » nuclear proteins with transcription activation potential. Significantly, we demonstrated that Cbf11 recognizes specifically the canonical CSL response element GTG{sup A}/{sub G}GAA in vitro. The deletion of cbf11{sup +} is associated with growth phenotypes and altered colony morphology. Furthermore, we found that Cbf11 and Cbf12 play opposite roles in cell adhesion, nuclear and cell division and their coordination. Disturbed balance of the two CSL proteins leads to cell separation defects (sep phenotype), cut phenotype, and high-frequency diploidization in heterothallic strains. Our data show that CSL proteins operate in an organism predating the Notch pathway, which should be of relevance to the understanding of (Notch-independent) CSL functions in metazoans.« less
Leadership Class Configuration Interaction Code - Status and Opportunities
NASA Astrophysics Data System (ADS)
Vary, James
2011-10-01
With support from SciDAC-UNEDF (www.unedf.org) nuclear theorists have developed and are continuously improving a Leadership Class Configuration Interaction Code (LCCI) for forefront nuclear structure calculations. The aim of this project is to make state-of-the-art nuclear structure tools available to the entire community of researchers including graduate students. The project includes codes such as NuShellX, MFDn and BIGSTICK that run a range of computers from laptops to leadership class supercomputers. Codes, scripts, test cases and documentation have been assembled, are under continuous development and are scheduled for release to the entire research community in November 2011. A covering script that accesses the appropriate code and supporting files is under development. In addition, a Data Base Management System (DBMS) that records key information from large production runs and archived results of those runs has been developed (http://nuclear.physics.iastate.edu/info/) and will be released. Following an outline of the project, the code structure, capabilities, the DBMS and current efforts, I will suggest a path forward that would benefit greatly from a significant partnership between researchers who use the codes, code developers and the National Nuclear Data efforts. This research is supported in part by DOE under grant DE-FG02-87ER40371 and grant DE-FC02-09ER41582 (SciDAC-UNEDF).
Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren
2016-01-01
RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts. PMID:27375638
Zhu, Yafeng; Engström, Pär G; Tellgren-Roth, Christian; Baudo, Charles D; Kennell, John C; Sun, Sheng; Billmyre, R Blake; Schröder, Markus S; Andersson, Anna; Holm, Tina; Sigurgeirsson, Benjamin; Wu, Guangxi; Sankaranarayanan, Sundar Ram; Siddharthan, Rahul; Sanyal, Kaustuv; Lundeberg, Joakim; Nystedt, Björn; Boekhout, Teun; Dawson, Thomas L; Heitman, Joseph; Scheynius, Annika; Lehtiö, Janne
2017-03-17
Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Shoriki, Takuya; Ichikawa-Seki, Madoka; Suganuma, Keisuke; Naito, Ikunori; Hayashi, Kei; Nakao, Minoru; Aita, Junya; Mohanta, Uday Kumar; Inoue, Noboru; Murakami, Kenji; Itagaki, Tadashi
2016-06-01
Fasciolosis is an economically important disease of livestock caused by Fasciola hepatica, Fasciola gigantica, and aspermic Fasciola flukes. The aspermic Fasciola flukes have been discriminated morphologically from the two other species by the absence of sperm in their seminal vesicles. To date, the molecular discrimination of F. hepatica and F. gigantica has relied on the nucleotide sequences of the internal transcribed spacer 1 (ITS1) region. However, ITS1 genotypes of aspermic Fasciola flukes cannot be clearly differentiated from those of F. hepatica and F. gigantica. Therefore, more precise and robust methods are required to discriminate Fasciola spp. In this study, we developed PCR restriction fragment length polymorphism and multiplex PCR methods to discriminate F. hepatica, F. gigantica, and aspermic Fasciola flukes on the basis of the nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and DNA polymerase delta, which are single locus genes in most eukaryotes. All aspermic Fasciola flukes used in this study had mixed fragment pattern of F. hepatica and F. gigantica for both of these genes, suggesting that the flukes are descended through hybridization between the two species. These molecular methods will facilitate the identification of F. hepatica, F. gigantica, and aspermic Fasciola flukes, and will also prove useful in etiological studies of fasciolosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Auto-Regulatory RNA Editing Fine-Tunes mRNA Re-Coding and Complex Behaviour in Drosophila
Savva, Yiannis A.; Jepson, James E.C; Sahin, Asli; Sugden, Arthur U.; Dorsky, Jacquelyn S.; Alpert, Lauren; Lawrence, Charles; Reenan, Robert A.
2014-01-01
Auto-regulatory feedback loops are a common molecular strategy used to optimize protein function. In Drosophila many mRNAs involved in neuro-transmission are re-coded at the RNA level by the RNA editing enzyme dADAR, leading to the incorporation of amino acids that are not directly encoded by the genome. dADAR also re-codes its own transcript, but the consequences of this auto-regulation in vivo are unclear. Here we show that hard-wiring or abolishing endogenous dADAR auto-regulation dramatically remodels the landscape of re-coding events in a site-specific manner. These molecular phenotypes correlate with altered localization of dADAR within the nuclear compartment. Furthermore, auto-editing exhibits sexually dimorphic patterns of spatial regulation and can be modified by abiotic environmental factors. Finally, we demonstrate that modifying dAdar auto-editing affects adaptive complex behaviors. Our results reveal the in vivo relevance of auto-regulatory control over post-transcriptional mRNA re-coding events in fine-tuning brain function and organismal behavior. PMID:22531175
Cenik, Can; Chua, Hon Nian; Zhang, Hui; Tarnawsky, Stefan P.; Akef, Abdalla; Derti, Adnan; Tasan, Murat; Moore, Melissa J.; Palazzo, Alexander F.; Roth, Frederick P.
2011-01-01
In higher eukaryotes, messenger RNAs (mRNAs) are exported from the nucleus to the cytoplasm via factors deposited near the 5′ end of the transcript during splicing. The signal sequence coding region (SSCR) can support an alternative mRNA export (ALREX) pathway that does not require splicing. However, most SSCR–containing genes also have introns, so the interplay between these export mechanisms remains unclear. Here we support a model in which the furthest upstream element in a given transcript, be it an intron or an ALREX–promoting SSCR, dictates the mRNA export pathway used. We also experimentally demonstrate that nuclear-encoded mitochondrial genes can use the ALREX pathway. Thus, ALREX can also be supported by nucleotide signals within mitochondrial-targeting sequence coding regions (MSCRs). Finally, we identified and experimentally verified novel motifs associated with the ALREX pathway that are shared by both SSCRs and MSCRs. Our results show strong correlation between 5′ untranslated region (5′UTR) intron presence/absence and sequence features at the beginning of the coding region. They also suggest that genes encoding secretory and mitochondrial proteins share a common regulatory mechanism at the level of mRNA export. PMID:21533221
Hill, J; McGraw, P; Tzagoloff, A
1985-03-25
The yeast nuclear gene CBP2 was previously proposed to code for a protein necessary for processing of the terminal intron in the cytochrome b pre-mRNA (McGraw, P., and Tzagoloff, A. (1983) J. Biol. Chem. 258, 9459-9468). In the present study we describe a mitochondrial mutation capable of suppressing the respiratory deficiency of cbp2 mutants. The mitochondrial suppressor mutation has been shown to be the result of a precise excision of the last intervening sequence from the cytochrome b gene. Strains with the altered mitochondrial DNA have normal levels of mature cytochrome b mRNA and of cytochrome b and exhibit wild type growth on glycerol. These results confirm that CBP2 codes for a protein specifically required for splicing of the cytochrome b intron and further suggest that absence of the intervening sequence does not noticeably affect the expression of respiratory function in mitochondria.
Qiu, Guo-Hua
2016-01-01
In this review, the protective function of the abundant non-coding DNA in the eukaryotic genome is discussed from the perspective of genome defense against exogenous nucleic acids. Peripheral non-coding DNA has been proposed to act as a bodyguard that protects the genome and the central protein-coding sequences from ionizing radiation-induced DNA damage. In the proposed mechanism of protection, the radicals generated by water radiolysis in the cytosol and IR energy are absorbed, blocked and/or reduced by peripheral heterochromatin; then, the DNA damage sites in the heterochromatin are removed and expelled from the nucleus to the cytoplasm through nuclear pore complexes, most likely through the formation of extrachromosomal circular DNA. To strengthen this hypothesis, this review summarizes the experimental evidence supporting the protective function of non-coding DNA against exogenous nucleic acids. Based on these data, I hypothesize herein about the presence of an additional line of defense formed by small RNAs in the cytosol in addition to their bodyguard protection mechanism in the nucleus. Therefore, exogenous nucleic acids may be initially inactivated in the cytosol by small RNAs generated from non-coding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. Exogenous nucleic acids may enter the nucleus, where some are absorbed and/or blocked by heterochromatin and others integrate into chromosomes. The integrated fragments and the sites of DNA damage are removed by repetitive non-coding DNA elements in the heterochromatin and excluded from the nucleus. Therefore, the normal eukaryotic genome and the central protein-coding sequences are triply protected by non-coding DNA against invasion by exogenous nucleic acids. This review provides evidence supporting the protective role of non-coding DNA in genome defense. Copyright © 2016 Elsevier B.V. All rights reserved.
Review of current nuclear fallout codes.
Auxier, Jerrad P; Auxier, John D; Hall, Howard L
2017-05-01
The importance of developing a robust nuclear forensics program to combat the illicit use of nuclear material that may be used as an improvised nuclear device is widely accepted. In order to decrease the threat to public safety and improve governmental response, government agencies have developed fallout-analysis codes to predict the fallout particle size, dose, and dispersion and dispersion following a detonation. This paper will review the different codes that have been developed for predicting fallout from both chemical and nuclear weapons. This will decrease the response time required for the government to respond to the event. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [NRC-2008-0554] RIN 3150-AI35 American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases; Corrections AGENCY: Nuclear Regulatory... the American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016, phone (800) 843...
2011-01-01
Background The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits. Results The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively. Conclusions Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non-conserved structure both in gene number and organisation, as well as in the features of the noncoding DNA. The transfer of nuclear DNA to the melon mitochondrial genome and the high proportion of repetitive DNA appear to explain the size of the largest mitochondrial genome reported so far. PMID:21854637
NASA Astrophysics Data System (ADS)
Lahaye, S.; Huynh, T. D.; Tsilanizara, A.
2016-03-01
Uncertainty quantification of interest outputs in nuclear fuel cycle is an important issue for nuclear safety, from nuclear facilities to long term deposits. Most of those outputs are functions of the isotopic vector density which is estimated by fuel cycle codes, such as DARWIN/PEPIN2, MENDEL, ORIGEN or FISPACT. CEA code systems DARWIN/PEPIN2 and MENDEL propagate by two different methods the uncertainty from nuclear data inputs to isotopic concentrations and decay heat. This paper shows comparisons between those two codes on a Uranium-235 thermal fission pulse. Effects of nuclear data evaluation's choice (ENDF/B-VII.1, JEFF-3.1.1 and JENDL-2011) is inspected in this paper. All results show good agreement between both codes and methods, ensuring the reliability of both approaches for a given evaluation.
CESAR: A Code for Nuclear Fuel and Waste Characterisation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal, J.M.; Grouiller, J.P.; Launay, A.
2006-07-01
CESAR (Simplified Evolution Code Applied to Reprocessing) is a depletion code developed through a joint program between CEA and COGEMA. In the late 1980's, the first use of this code dealt with nuclear measurement at the Laboratories of the La Hague reprocessing plant. The use of CESAR was then extended to characterizations of all entrance materials and for characterisation, via tracer, of all produced waste. The code can distinguish more than 100 heavy nuclides, 200 fission products and 100 activation products, and it can characterise both the fuel and the structural material of the fuel. CESAR can also make depletionmore » calculations from 3 months to 1 million years of cooling time. Between 2003-2005, the 5. version of the code was developed. The modifications were related to the harmonisation of the code's nuclear data with the JEF2.2 nuclear data file. This paper describes the code and explains the extensive use of this code at the La Hague reprocessing plant and also for prospective studies. The second part focuses on the modifications of the latest version, and describes the application field and the qualification of the code. Many companies and the IAEA use CESAR today. CESAR offers a Graphical User Interface, which is very user-friendly. (authors)« less
Serine/Threonine kinase dependent transcription from the polyhedrin promoter of SpltNPV-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Gourav; Gautam, Hemant K.; Das, Rakha H.
2007-07-06
Polyhedrin (polh) and p10 are the two hyper-expressed very late genes of nucleopolyhedroviruses. Alpha amanitin resistant transcription from Spodoptera litura nucleopolyhedrovirus (SpltNPV-I) polyhedrin promoter was observed with virus infected nuclear extract of NIV-HA-197 cells but not with that from uninfected nuclear extract. Anti-protein kinase-1 (pk1) antibody inhibited the transcription and the inhibition reversed on addition of pk1, however, pk1 mutant protein, K50M having no phosphorylation activity did not overcome the transcription inhibition. Chromatin immuno-precipitation assays with viral anti-pk1 antibody showed the interaction of pk1 with the polh while electrophoretic mobility shift assays indicated the strong binding affinity (K {sub d}more » {approx} 5.5 x 10{sup -11}) of purified pk1 with the polh promoter. These results suggested that the viral coded pk1 acts as a transcription factor in transcribing baculovirus very late genes.« less
Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane
2014-06-01
The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs-the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3-RRM4 block is the main platform mediating the stable association with the H12-H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP-RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
HZETRN: A heavy ion/nucleon transport code for space radiations
NASA Technical Reports Server (NTRS)
Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.
1991-01-01
The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.
Neuenfeldt, Anne; Lorber, Bernard; Ennifar, Eric; Gaudry, Agnès; Sauter, Claude; Sissler, Marie; Florentz, Catherine
2013-02-01
In the mammalian mitochondrial translation apparatus, the proteins and their partner RNAs are coded by two genomes. The proteins are nuclear-encoded and resemble their homologs, whereas the RNAs coming from the rapidly evolving mitochondrial genome have lost critical structural information. This raises the question of molecular adaptation of these proteins to their peculiar partner RNAs. The crystal structure of the homodimeric bacterial-type human mitochondrial aspartyl-tRNA synthetase (DRS) confirmed a 3D architecture close to that of Escherichia coli DRS. However, the mitochondrial enzyme distinguishes by an enlarged catalytic groove, a more electropositive surface potential and an alternate interaction network at the subunits interface. It also presented a thermal stability reduced by as much as 12°C. Isothermal titration calorimetry analyses revealed that the affinity of the mitochondrial enzyme for cognate and non-cognate tRNAs is one order of magnitude higher, but with different enthalpy and entropy contributions. They further indicated that both enzymes bind an adenylate analog by a cooperative allosteric mechanism with different thermodynamic contributions. The larger flexibility of the mitochondrial synthetase with respect to the bacterial enzyme, in combination with a preserved architecture, may represent an evolutionary process, allowing nuclear-encoded proteins to cooperate with degenerated organelle RNAs.
Klahre, U; Hemmings-Mieszczak, M; Filipowicz, W
1995-06-01
We have previously characterized nuclear cDNA clones encoding two RNA binding proteins, CP-RBP30 and CP-RBP-31, which are targeted to chloroplasts in Nicotiana plumbaginifolia. In this report we describe the analysis of the 3'-untranslated regions (3'-UTRs) in 22 CP-RBP30 and 8 CP-RBP31 clones which reveals that mRNAs encoding both proteins have a very complex polyadenylation pattern. Fourteen distinct poly(A) sites were identified among CP-RBP30 clones and four sites among the CP-RBP31 clones. The authenticity of the sites was confirmed by RNase A/T1 mapping of N. plumbaginifolia RNA. CP-RBP30 provides an extreme example of the heterogeneity known to be a feature of mRNA polyadenylation in higher plants. Using PCR we have demonstrated that CP-RBP genes in N. plumbaginifolia and N. sylvestris, in addition to the previously described introns interrupting the coding region, contain an intron located in the 3' non-coding part of the gene. In the case of the CP-RBP31, we have identified one polyadenylation event occurring in this intron.
NF90 isoforms, a new family of cellular proteins involved in viral replication?
Patiño, Claudia; Haenni, Anne-Lise; Urcuqui-Inchima, Silvio
2015-01-01
The Nuclear Factor 90 (NF90) and its isoforms constitute a family of proteins that can interact with double-stranded (ds) RNA, through its dsRNA binding motifs. Due to various potential translational events such as alternative splicing, the human Interleukin enhancer binding factor 3 (ilf3) gene codes for multifunctional proteins that are NF90 and its isoforms, involved in transcription, translation, mRNA export and microRNA biogenesis. These proteins can act as cellular partners affecting viral replication and they are also implicated in host defense. As a result of these numerous functions, these protein isoforms have been given various names over the years, leading to confusion in determining their specific functions. In this review we focus on the role of the human NF90 protein isoforms in DNA and RNA virus replication. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.
Overview of codes and tools for nuclear engineering education
NASA Astrophysics Data System (ADS)
Yakovlev, D.; Pryakhin, A.; Medvedeva, L.
2017-01-01
The recent world trends in nuclear education have been developed in the direction of social education, networking, virtual tools and codes. MEPhI as a global leader on the world education market implements new advanced technologies for the distance and online learning and for student research work. MEPhI produced special codes, tools and web resources based on the internet platform to support education in the field of nuclear technology. At the same time, MEPhI actively uses codes and tools from the third parties. Several types of the tools are considered: calculation codes, nuclear data visualization tools, virtual labs, PC-based educational simulators for nuclear power plants (NPP), CLP4NET, education web-platforms, distance courses (MOOCs and controlled and managed content systems). The university pays special attention to integrated products such as CLP4NET, which is not a learning course, but serves to automate the process of learning through distance technologies. CLP4NET organizes all tools in the same information space. Up to now, MEPhI has achieved significant results in the field of distance education and online system implementation.
Meng, Fanchi; Na, Insung; Kurgan, Lukasz; Uversky, Vladimir N.
2015-01-01
The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions. PMID:26712748
Utilization of recently developed codes for high power Brayton and Rankine cycle power systems
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
1993-01-01
Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.
The Effect of Cold Work on Properties of Alloy 617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Richard
2014-08-01
Alloy 617 is approved for non-nuclear construction in the ASME Boiler and Pressure Vessel Code Section I and Section VIII, but is not currently qualified for nuclear use in ASME Code Section III. A draft Code Case was submitted in 1992 to qualify the alloy for nuclear service but efforts were stopped before the approval process was completed.1 Renewed interest in high temperature nuclear reactors has resulted in a new effort to qualify Alloy 617 for use in nuclear pressure vessels. The mechanical and physical properties of Alloy 617 were extensively characterized for the VHTR programs in the 1980’s andmore » incorporated into the 1992 draft Code Case. Recently, the properties of modern heats of the alloy that incorporate an additional processing step, electro-slag re-melting, have been characterized both to confirm that the properties of contemporary material are consistent with those in the historical record and to increase the available database. A number of potential issues that were identified as requiring further consideration prior to the withdrawal of the 1992 Code Case are also being re-examined in the current R&D program. Code Cases are again being developed to allow use of Alloy 617 for nuclear design within the rules of the ASME Boiler and Pressure Vessel Code. In general the Code defines two temperature ranges for nuclear design with austenitic and nickel based alloys. Below 427°C (800°F) time dependent behavior is not considered, while above this temperature creep and creep-fatigue are considered to be the dominant life-limiting deformation modes. There is a corresponding differentiation in the treatment of the potential for effects associated with cold work. Below 427°C the principal issue is the relationship between the level of cold work and the propensity for stress corrosion cracking and above that temperature the primary concern is the impact of cold work on creep-rupture behavior.« less
A human haploid gene trap collection to study lncRNAs with unusual RNA biology.
Kornienko, Aleksandra E; Vlatkovic, Irena; Neesen, Jürgen; Barlow, Denise P; Pauler, Florian M
2016-01-01
Many thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator.
Bardoni, Barbara; Abekhoukh, Sabiha; Zongaro, Samantha; Melko, Mireille
2012-01-01
Intellectual disability (ID) is the most frequent cause of serious handicap in children and young adults and interests 2-3% of worldwide population, representing a serious problem from the medical, social, and economic points of view. The causes are very heterogeneous. Genes involved in ID have various functions altering different pathways important in neuronal function. Regulation of mRNA metabolism is particularly important in neurons for synaptic structure and function. Here, we review ID due to alteration of mRNA metabolism. Functional absence of some RNA-binding proteins--namely, FMRP, FMR2P, PQBP1, UFP3B, VCX-A--causes different forms of ID. These proteins are involved in different steps of RNA metabolism and, even if a detailed analysis of their RNA targets has been performed so far only for FMRP, it appears clear that they modulate some aspects (translation, stability, transport, and sublocalization) of a subset of RNAs coding for proteins, whose function must be relevant for neurons. Two other proteins, DYRK1A and CDKL5, involved in Down syndrome and Rett syndrome, respectively, have been shown to have an impact on splicing efficiency of specific mRNAs. Both proteins are kinases and their effect is indirect. Interestingly, both are localized in nuclear speckles, the nuclear domains where splicing factors are assembled, stocked, and recycled and influence their biogenesis and/or their organization. Copyright © 2012 Elsevier B.V. All rights reserved.
Nuclear shell model code CRUNCHER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resler, D.A.; Grimes, S.M.
1988-05-01
A new nuclear shell model code CRUNCHER, patterned after the code VLADIMIR, has been developed. While CRUNCHER and VLADIMIR employ the techniques of an uncoupled basis and the Lanczos process, improvements in the new code allow it to handle much larger problems than the previous code and to perform them more efficiently. Tests involving a moderately sized calculation indicate that CRUNCHER running on a SUN 3/260 workstation requires approximately one-half the central processing unit (CPU) time required by VLADIMIR running on a CRAY-1 supercomputer.
Shrestha, Roshan P.; Hildebrand, Mark
2017-08-17
An inducible promoter for recombinant protein expression provides substantial benefits because under induction conditions cellular energy and metabolic capability can be directed into protein synthesis. The most widely used inducible promoter for diatoms is for nitrate reductase, however, nitrogen metabolism is tied into diverse aspects of cellular function, and the induction response is not necessarily robust. Silicon limitation offers a means to eliminate energy and metabolic flux into cell division processes, with little other detrimental effect on cellular function, and a protein expression system that works under those conditions could be advantageous. In this study, we evaluate a number ofmore » promoters for recombinant protein expression induced by silicon limitation and repressed by the presence of silicon in the diatoms Thalassiosira pseudonana and Cyclotella cryptica. In addition to silicon limitation, we describe additional strategies to elevate recombinant protein expression level, including inclusion of the 5' fragment of the coding region of the native gene and reducing carbon flow into ancillary processes of pigment synthesis and formation of photosynthetic storage products. We achieved yields of eGFP to 1.8% of total soluble protein in C. cryptica, which is about 3.6-fold higher than that obtained with chloroplast expression and ninefold higher than nuclear expression in another well-established algal system. Our studies demonstrate that the combination of inducible promoter and other strategies can result in robust expression of recombinant protein in a nuclear-based expression system in diatoms under silicon limited conditions, separating the protein expression regime from growth processes and improving overall recombinant protein yields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Roshan P.; Hildebrand, Mark
An inducible promoter for recombinant protein expression provides substantial benefits because under induction conditions cellular energy and metabolic capability can be directed into protein synthesis. The most widely used inducible promoter for diatoms is for nitrate reductase, however, nitrogen metabolism is tied into diverse aspects of cellular function, and the induction response is not necessarily robust. Silicon limitation offers a means to eliminate energy and metabolic flux into cell division processes, with little other detrimental effect on cellular function, and a protein expression system that works under those conditions could be advantageous. In this study, we evaluate a number ofmore » promoters for recombinant protein expression induced by silicon limitation and repressed by the presence of silicon in the diatoms Thalassiosira pseudonana and Cyclotella cryptica. In addition to silicon limitation, we describe additional strategies to elevate recombinant protein expression level, including inclusion of the 5' fragment of the coding region of the native gene and reducing carbon flow into ancillary processes of pigment synthesis and formation of photosynthetic storage products. We achieved yields of eGFP to 1.8% of total soluble protein in C. cryptica, which is about 3.6-fold higher than that obtained with chloroplast expression and ninefold higher than nuclear expression in another well-established algal system. Our studies demonstrate that the combination of inducible promoter and other strategies can result in robust expression of recombinant protein in a nuclear-based expression system in diatoms under silicon limited conditions, separating the protein expression regime from growth processes and improving overall recombinant protein yields.« less
Multi-Omics Driven Assembly and Annotation of the Sandalwood (Santalum album) Genome.
Mahesh, Hirehally Basavarajegowda; Subba, Pratigya; Advani, Jayshree; Shirke, Meghana Deepak; Loganathan, Ramya Malarini; Chandana, Shankara Lingu; Shilpa, Siddappa; Chatterjee, Oishi; Pinto, Sneha Maria; Prasad, Thottethodi Subrahmanya Keshava; Gowda, Malali
2018-04-01
Indian sandalwood ( Santalum album ) is an important tropical evergreen tree known for its fragrant heartwood-derived essential oil and its valuable carving wood. Here, we applied an integrated genomic, transcriptomic, and proteomic approach to assemble and annotate the Indian sandalwood genome. Our genome sequencing resulted in the establishment of a draft map of the smallest genome for any woody tree species to date (221 Mb). The genome annotation predicted 38,119 protein-coding genes and 27.42% repetitive DNA elements. In-depth proteome analysis revealed the identities of 72,325 unique peptides, which confirmed 10,076 of the predicted genes. The addition of transcriptomic and proteogenomic approaches resulted in the identification of 53 novel proteins and 34 gene-correction events that were missed by genomic approaches. Proteogenomic analysis also helped in reassigning 1,348 potential noncoding RNAs as bona fide protein-coding messenger RNAs. Gene expression patterns at the RNA and protein levels indicated that peptide sequencing was useful in capturing proteins encoded by nuclear and organellar genomes alike. Mass spectrometry-based proteomic evidence provided an unbiased approach toward the identification of proteins encoded by organellar genomes. Such proteins are often missed in transcriptome data sets due to the enrichment of only messenger RNAs that contain poly(A) tails. Overall, the use of integrated omic approaches enhanced the quality of the assembly and annotation of this nonmodel plant genome. The availability of genomic, transcriptomic, and proteomic data will enhance genomics-assisted breeding, germplasm characterization, and conservation of sandalwood trees. © 2018 American Society of Plant Biologists. All Rights Reserved.
Bergeron, Danny; Lapointe, Catherine; Bissonnette, Cyntia; Tremblay, Guillaume; Motard, Julie; Roucou, Xavier
2013-01-01
Spinocerebellar ataxia type 1 is an autosomal dominant cerebellar ataxia associated with the expansion of a polyglutamine tract within the ataxin-1 (ATXN1) protein. Recent studies suggest that understanding the normal function of ATXN1 in cellular processes is essential to decipher the pathogenesis mechanisms in spinocerebellar ataxia type 1. We found an alternative translation initiation ATG codon in the +3 reading frame of human ATXN1 starting 30 nucleotides downstream of the initiation codon for ATXN1 and ending at nucleotide 587. This novel overlapping open reading frame (ORF) encodes a 21-kDa polypeptide termed Alt-ATXN1 (Alternative ATXN1) with a completely different amino acid sequence from ATXN1. We introduced a hemagglutinin tag in-frame with Alt-ATXN1 in ATXN1 cDNA and showed in cell culture the co-expression of both ATXN1 and Alt-ATXN1. Remarkably, Alt-ATXN1 colocalized and interacted with ATXN1 in nuclear inclusions. In contrast, in the absence of ATXN1 expression, Alt-ATXN1 displays a homogenous nucleoplasmic distribution. Alt-ATXN1 interacts with poly(A)+ RNA, and its nuclear localization is dependent on RNA transcription. Polyclonal antibodies raised against Alt-ATXN1 confirmed the expression of Alt-ATXN1 in human cerebellum expressing ATXN1. These results demonstrate that human ATXN1 gene is a dual coding sequence and that ATXN1 interacts with and controls the subcellular distribution of Alt-ATXN1. PMID:23760502
Kocher, Arthur; Gantier, Jean-Charles; Holota, Hélène; Jeziorski, Céline; Coissac, Eric; Bañuls, Anne-Laure; Girod, Romain; Gaborit, Pascal; Murienne, Jérôme
2016-11-01
The nearly complete mitochondrial genome of Lutzomyia umbratilis Ward & Fraiha, 1977 (Psychodidae: Phlebotominae), considered as the main vector of Leishmania guyanensis, is presented. The sequencing has been performed on an Illumina Hiseq 2500 platform, with a genome skimming strategy. The full nuclear ribosomal RNA segment was also assembled. The mitogenome of L. umbratilis was determined to be at least 15,717 bp-long and presents an architecture found in many mitogenomes of insect (13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and one non-coding region also referred as the control region). The control region contains a large repeated element of c. 370 bp and a poly-AT region of unknown length. This is the first mitogenome of Psychodidae to be described.
Wise, Carol A.; Chiang, Lydia C.; Paznekas, William A.; Sharma, Mridula; Musy, Maurice M.; Ashley, Jennifer A.; Lovett, Michael; Jabs, Ethylin W.
1997-01-01
Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development. PMID:9096354
Integration of Dakota into the NEAMS Workbench
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, Laura Painton; Lefebvre, Robert A.; Langley, Brandon R.
2017-07-01
This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on integrating Dakota into the NEAMS Workbench. The NEAMS Workbench, developed at Oak Ridge National Laboratory, is a new software framework that provides a graphical user interface, input file creation, parsing, validation, job execution, workflow management, and output processing for a variety of nuclear codes. Dakota is a tool developed at Sandia National Laboratories that provides a suite of uncertainty quantification and optimization algorithms. Providing Dakota within the NEAMS Workbench allows users of nuclear simulation codes to perform uncertainty and optimization studies on their nuclear codes frommore » within a common, integrated environment. Details of the integration and parsing are provided, along with an example of Dakota running a sampling study on the fuels performance code, BISON, from within the NEAMS Workbench.« less
Ignarski, Michael; Singh, Aditi; Swart, Estienne C; Arambasic, Miroslav; Sandoval, Pamela Y; Nowacki, Mariusz
2014-10-29
Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Fearnley, I M; Finel, M; Skehel, J M; Walker, J E
1991-01-01
The 39 kDa and 42 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria are nuclear-coded components of the hydrophobic protein fraction of the enzyme. Their amino acid sequences have been deduced from the sequences of overlapping cDNA clones. These clones were amplified from total bovine heart cDNA by means of the polymerase chain reaction, with the use of complex mixtures of oligonucleotide primers based upon fragments of protein sequence determined at the N-terminals of the proteins and at internal sites. The protein sequences of the 39 kDa and 42 kDa subunits are 345 and 320 amino acid residues long respectively, and their calculated molecular masses are 39,115 Da and 36,693 Da. Both proteins are predominantly hydrophilic, but each contains one or two hydrophobic segments that could possibly be folded into transmembrane alpha-helices. The bovine 39 kDa protein sequence is related to that of a 40 kDa subunit from complex I from Neurospora crassa mitochondria; otherwise, it is not related significantly to any known sequence, including redox proteins and two polypeptides involved in import of proteins into mitochondria, known as the mitochondrial processing peptidase and the processing-enhancing protein. Therefore the functions of the 39 kDa and 42 kDa subunits of complex I are unknown. The mitochondrial gene product, ND4, a hydrophobic component of complex I with an apparent molecular mass of about 39 kDa, has been identified in preparations of the enzyme. This subunit stains faintly with Coomassie Blue dye, and in many gel systems it is not resolved from the nuclearcoded 36 kDa subunit. Images Fig. 1. PMID:1832859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan, E-mail: dyoo@illinois.edu
Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E),more » membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. - Highlights: • PEDV modulates the host innate immune system by suppressing the type I interferon production and ISGs expression. • Ten viral proteins were identified as IFN antagonists, and nsp1 was the most potent viral IFN antagonist. • PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP). • PEDV nsp1 caused the CBP degradation in the nucleus, which may be the key mechanism for PEDV-mediated IFN downregulation.« less
Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein.
Kotake, Yojiro; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Niida, Hiroyuki; Naemura, Madoka; Kitagawa, Masatoshi
2016-04-01
P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Organization patterns of the AGFG genes: an evolutionary study.
Panaro, Maria Antonietta; Acquafredda, Angela; Calvello, Rosa; Lisi, Sabrina; Dragone, Teresa; Cianciulli, Antonia
2011-03-01
A number of proteins which are needed for the building of new immunodeficiency virus type 1 virions can only be translated from unspliced virus-derived pre-mRNAs. These unspliced mRNAs are shuttled through the nuclear pores reaching the cytosol when bound to the viral protein Rev. However, as a cellular co-factor Rev requires a Rev-binding protein of the AGFG family (nucleoporin-related Arf-GAP domain and FG repeats-containing proteins). In this article we address the evolution of the AGFGs by analyzing the first section of the coding mRNAs. This contains a "core module" which can be traced from Drosophilae to fish, amphibia, birds, and mammals, including man. In the subfamily of AGFG1 molecules the estimated conservation from Drosophilae to primates is 67% (with limited gaps). In some Drosophilae the core module is preceded by a long stretch of more than 300 coding nucleotides, but this additional module is absent in other Drosophilae and in all AGFG1s of other species. The AGFG2 molecules emerged later in evolution, possibly deriving from a duplication of AGFG1s. AGFG2s, present in mammals only, exhibit an additional module of about 50 coding nucleotides ahead of the core module, which is significantly less conserved (54%, with more remarkable gaps). This additional module does not seem to have homologies with the additional module of Drosophilae nor with the precoding section of AGFG1s. Interestingly, in birds a highly re-edited form of the AGFG1 core module (Gallus gallus, Galliformes) coexists with a typical form of the AGFG1 core module (Taeniopygia guttata, Passeriformes).
DOT National Transportation Integrated Search
1994-05-26
This Circular calls the attention of Coast Guard field units, marine surveyors, shippers and carriers of nuclear materials to the International Maritime Organization (IMO) Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High-Leve...
Thermodynamic Effects of Noncoded and Coded Methionine Substitutions in Calmodulin
Yamniuk, Aaron P.; Ishida, Hiroaki; Lippert, Dustin; Vogel, Hans J.
2009-01-01
The methionine residues in the calcium (Ca2+) regulatory protein calmodulin (CaM) are structurally and functionally important. They are buried within the N- and C-domains of apo-CaM but become solvent-exposed in Ca2+-CaM, where they interact with numerous target proteins. Previous structural studies have shown that methionine substitutions to the noncoded amino acids selenomethionine, ethionine, or norleucine, or mutation to leucine do not impact the main chain structure of CaM. Here we used differential scanning calorimetry to show that these substitutions enhance the stability of both domains, with the largest increase in melting temperature (19–26°C) achieved with leucine or norleucine in the apo-C-domain. Nuclear magnetic resonance spectroscopy experiments also revealed the loss of a slow conformational exchange process in the Leu-substituted apo-C-domain. In addition, isothermal titration calorimetry experiments revealed considerable changes in the enthalpy and entropy of target binding to apo-CaM and Ca2+-CaM, but the free energy of binding was largely unaffected due to enthalpy-entropy compensation. Collectively, these results demonstrate that noncoded and coded methionine substitutions can be accommodated in CaM because of the structural plasticity of the protein. However, adjustments in side-chain packing and dynamics lead to significant differences in protein stability and the thermodynamics of target binding. PMID:19217866
Methodology, status, and plans for development and assessment of the RELAP5 code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, G.W.; Riemke, R.A.
1997-07-01
RELAP/MOD3 is a computer code used for the simulation of transients and accidents in light-water nuclear power plants. The objective of the program to develop and maintain RELAP5 was and is to provide the U.S. Nuclear Regulatory Commission with an independent tool for assessing reactor safety. This paper describes code requirements, models, solution scheme, language and structure, user interface validation, and documentation. The paper also describes the current and near term development program and provides an assessment of the code`s strengths and limitations.
Simulation of Nuclear Reactor Kinetics by the Monte Carlo Method
NASA Astrophysics Data System (ADS)
Gomin, E. A.; Davidenko, V. D.; Zinchenko, A. S.; Kharchenko, I. K.
2017-12-01
The KIR computer code intended for calculations of nuclear reactor kinetics using the Monte Carlo method is described. The algorithm implemented in the code is described in detail. Some results of test calculations are given.
Comparison of ENDF/B-VII.1 and JEFF-3.2 in VVER-1000 operational data calculation
NASA Astrophysics Data System (ADS)
Frybort, Jan
2017-09-01
Safe operation of a nuclear reactor requires an extensive calculational support. Operational data are determined by full-core calculations during the design phase of a fuel loading. Loading pattern and design of fuel assemblies are adjusted to meet safety requirements and optimize reactor operation. Nodal diffusion code ANDREA is used for this task in case of Czech VVER-1000 reactors. Nuclear data for this diffusion code are prepared regularly by lattice code HELIOS. These calculations are conducted in 2D on fuel assembly level. There is also possibility to calculate these macroscopic data by Monte-Carlo Serpent code. It can make use of alternative evaluated libraries. All calculations are affected by inherent uncertainties in nuclear data. It is useful to see results of full-core calculations based on two sets of diffusion data obtained by Serpent code calculations with ENDF/B-VII.1 and JEFF-3.2 nuclear data including also decay data library and fission yields data. The comparison is based directly on fuel assembly level macroscopic data and resulting operational data. This study illustrates effect of evaluated nuclear data library on full-core calculations of a large PWR reactor core. The level of difference which results exclusively from nuclear data selection can help to understand the level of inherent uncertainties of such full-core calculations.
A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes.
Hezroni, Hadas; Ben-Tov Perry, Rotem; Meir, Zohar; Housman, Gali; Lubelsky, Yoav; Ulitsky, Igor
2017-08-30
Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs. We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality. We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs.
Subgroup A : nuclear model codes report to the Sixteenth Meeting of the WPEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talou, P.; Chadwick, M. B.; Dietrich, F. S.
2004-01-01
The Subgroup A activities focus on the development of nuclear reaction models and codes, used in evaluation work for nuclear reactions from the unresolved energy region up to the pion threshold production limit, and for target nuclides from the low teens and heavier. Much of the efforts are devoted by each participant to the continuing development of their own Institution codes. Progresses in this arena are reported in detail for each code in the present document. EMPIRE-II is of public access. The release of the TALYS code has been announced for the ND2004 Conference in Santa Fe, NM, October 2004.more » McGNASH is still under development and is not expected to be released in the very near future. In addition, Subgroup A members have demonstrated a growing interest in working on common modeling and codes capabilities, which would significantly reduce the amount of duplicate work, help manage efficiently the growing lines of existing codes, and render codes inter-comparison much easier. A recent and important activity of the Subgroup A has therefore been to develop the framework and the first bricks of the ModLib library, which is constituted of mostly independent pieces of codes written in Fortran 90 (and above) to be used in existing and future nuclear reaction codes. Significant progresses in the development of ModLib have been made during the past year. Several physics modules have been added to the library, and a few more have been planned in detail for the coming year.« less
cncRNAs: Bi-functional RNAs with protein coding and non-coding functions
Kumari, Pooja; Sampath, Karuna
2015-01-01
For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036
Hodroj, Dana; Serhal, Kamar; Maiorano, Domenico
2017-09-03
The DEAD-box Helicase 19 (Ddx19) gene codes for an RNA helicase involved in both mRNA (mRNA) export from the nucleus into the cytoplasm and in mRNA translation. In unperturbed cells, Ddx19 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore. Here we review recent findings related to an additional Ddx19 function in the nucleus in resolving RNA:DNA hybrids (R-loops) generated during collision between transcription and replication, and upon DNA damage. Activation of a DNA damage response pathway dependent upon the ATR kinase, a major regulator of replication fork progression, stimulates translocation of the Ddx19 protein from the cytoplasm into the nucleus. Only nuclear Ddx19 is competent to resolve R-loops, and down regulation of Ddx19 expression induces DNA double strand breaks only in proliferating cells. Overall these observations put forward Ddx19 as an important novel mediator of the crosstalk between transcription and replication.
NASA Astrophysics Data System (ADS)
McNeill, Alexander, III; Balkey, Kenneth R.
1995-05-01
The current inservice inspection activities at a U.S. nuclear facility are based upon the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI. The Code selects examination locations based upon a sampling criteria which includes component geometry, stress, and usage among other criteria. This can result in a significant number of required examinations. As a result of regulatory action each nuclear facility has conducted probabilistic risk assessments (PRA) or individual plant examinations (IPE), producing plant specific risk-based information. Several initiatives have been introduced to apply this new plant risk information. Among these initiatives is risk-based inservice inspection. A code case has been introduced for piping inspections based upon this new risk- based technology. This effort brought forward to the ASME Section XI Code committee, has been initiated and championed by the ASME Research Task Force on Risk-Based Inspection Guidelines -- LWR Nuclear Power Plant Application. Preliminary assessments associated with the code case have revealed that potential advantages exist in a risk-based inservice inspection program with regard to a number of exams, risk, personnel exposure, and cost.
Computation of Thermodynamic Equilibria Pertinent to Nuclear Materials in Multi-Physics Codes
NASA Astrophysics Data System (ADS)
Piro, Markus Hans Alexander
Nuclear energy plays a vital role in supporting electrical needs and fulfilling commitments to reduce greenhouse gas emissions. Research is a continuing necessity to improve the predictive capabilities of fuel behaviour in order to reduce costs and to meet increasingly stringent safety requirements by the regulator. Moreover, a renewed interest in nuclear energy has given rise to a "nuclear renaissance" and the necessity to design the next generation of reactors. In support of this goal, significant research efforts have been dedicated to the advancement of numerical modelling and computational tools in simulating various physical and chemical phenomena associated with nuclear fuel behaviour. This undertaking in effect is collecting the experience and observations of a past generation of nuclear engineers and scientists in a meaningful way for future design purposes. There is an increasing desire to integrate thermodynamic computations directly into multi-physics nuclear fuel performance and safety codes. A new equilibrium thermodynamic solver is being developed with this matter as a primary objective. This solver is intended to provide thermodynamic material properties and boundary conditions for continuum transport calculations. There are several concerns with the use of existing commercial thermodynamic codes: computational performance; limited capabilities in handling large multi-component systems of interest to the nuclear industry; convenient incorporation into other codes with quality assurance considerations; and, licensing entanglements associated with code distribution. The development of this software in this research is aimed at addressing all of these concerns. The approach taken in this work exploits fundamental principles of equilibrium thermodynamics to simplify the numerical optimization equations. In brief, the chemical potentials of all species and phases in the system are constrained by estimates of the chemical potentials of the system components at each iterative step, and the objective is to minimize the residuals of the mass balance equations. Several numerical advantages are achieved through this simplification. In particular, computational expense is reduced and the rate of convergence is enhanced. Furthermore, the software has demonstrated the ability to solve systems involving as many as 118 component elements. An early version of the code has already been integrated into the Advanced Multi-Physics (AMP) code under development by the Oak Ridge National Laboratory, Los Alamos National Laboratory, Idaho National Laboratory and Argonne National Laboratory. Keywords: Engineering, Nuclear -- 0552, Engineering, Material Science -- 0794, Chemistry, Mathematics -- 0405, Computer Science -- 0984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard provides rules for the construction of Class 1 nuclear components, parts, and appurtenances for use at elevated temperatures. This standard is a complete set of requirements only when used in conjunction with Section III of the ASME Boiler and Pressure Vessel Code (ASME Code) and addenda, ASME Code Cases 1592, 1593, 1594, 1595, and 1596, and RDT E 15-2NB. Unmodified paragraphs of the referenced Code Cases are not repeated in this standard but are a part of the requirements of this standard.
Implementation of a tree algorithm in MCNP code for nuclear well logging applications.
Li, Fusheng; Han, Xiaogang
2012-07-01
The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length. Copyright © 2011 Elsevier Ltd. All rights reserved.
EMPIRE: A Reaction Model Code for Nuclear Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palumbo, A., E-mail: apalumbo@bnl.gov; Herman, M.; Capote, R.
The correct modeling of abundances requires knowledge of nuclear cross sections for a variety of neutron, charged particle and γ induced reactions. These involve targets far from stability and are therefore difficult (or currently impossible) to measure. Nuclear reaction theory provides the only way to estimate values of such cross sections. In this paper we present application of the EMPIRE reaction code to nuclear astrophysics. Recent measurements are compared to the calculated cross sections showing consistent agreement for n-, p- and α-induced reactions of strophysical relevance.
Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong
2010-02-19
Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna wasmore » similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.« less
Enwerem, Isioma I.; Velma, Venkatramreddy; Broome, Hanna J.; Kuna, Marija; Begum, Rowshan A.; Hebert, Michael D.
2014-01-01
ABSTRACT Spliceosomal small nuclear ribonucleoproteins (snRNPs) are enriched in the Cajal body (CB). Guide RNAs, known as small Cajal body-specific RNAs (scaRNAs), direct modification of the small nuclear RNA (snRNA) component of the snRNP. The protein WRAP53 binds a sequence motif (the CAB box) found in many scaRNAs and the RNA component of telomerase (hTR) and targets these RNAs to the CB. We have previously reported that coilin, the CB marker protein, associates with certain non-coding RNAs. For a more comprehensive examination of the RNAs associated with coilin, we have sequenced the RNA isolated from coilin immunocomplexes. A striking preferential association of coilin with the box C/D scaRNAs 2 and 9, which lack a CAB box, was observed. This association varied by treatment condition and WRAP53 knockdown. In contrast, reduction of WRAP53 did not alter the level of coilin association with hTR. Additional studies showed that coilin degrades/processes scaRNA 2 and 9, associates with active telomerase and can influence telomerase activity. These findings suggest that coilin plays a novel role in the biogenesis of box C/D scaRNPs and telomerase. PMID:24659245
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasrabadi, M. N., E-mail: mnnasrabadi@ast.ui.ac.ir; Sepiani, M.
2015-03-30
Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.
NASA Astrophysics Data System (ADS)
Nasrabadi, M. N.; Sepiani, M.
2015-03-01
Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.
Linear and Nonlinear Statistical Characterization of DNA
NASA Astrophysics Data System (ADS)
Norio Oiwa, Nestor; Goldman, Carla; Glazier, James
2002-03-01
We find spatial order in the distribution of protein-coding (including RNAs) and control segments of GenBank genomic sequences, irrespective of ATCG content. This is achieved by correlations, histograms, fractal dimensions and singularity spectra. Estimates of these quantities in complete nuclear genome indicate that coding sequences are long-range correlated and their disposition are self-similar (multifractal) for eukaryotes. These characteristics are absent in prokaryotes, where there are few noncoding sequences, suggesting the `junk' DNA play a relevant role to the genome structure and function. Concerning the genetic message of ATCG sequences, we build a random walk (Levy flight), using DNA symmetry arguments, where we associate A, T, C and G as left, right, down and up steps, respectively. Nonlinear analysis of mitochondrial DNA walks reveal multifractal pattern based on palindromic sequences, which fold in hairpins and loops.
Recent Progress in the Development of a Multi-Layer Green's Function Code for Ion Beam Transport
NASA Technical Reports Server (NTRS)
Tweed, John; Walker, Steven A.; Wilson, John W.; Tripathi, Ram K.
2008-01-01
To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiation is needed. To address this need, a new Green's function code capable of simulating high charge and energy ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.
The NJOY Nuclear Data Processing System, Version 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macfarlane, Robert; Muir, Douglas W.; Boicourt, R. M.
The NJOY Nuclear Data Processing System, version 2016, is a comprehensive computer code package for producing pointwise and multigroup cross sections and related quantities from evaluated nuclear data in the ENDF-4 through ENDF-6 legacy card-image formats. NJOY works with evaluated files for incident neutrons, photons, and charged particles, producing libraries for a wide variety of particle transport and reactor analysis codes.
OWL: A code for the two-center shell model with spherical Woods-Saxon potentials
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis
2018-03-01
A Fortran-90 code for solving the two-center nuclear shell model problem is presented. The model is based on two spherical Woods-Saxon potentials and the potential separable expansion method. It describes the single-particle motion in low-energy nuclear collisions, and is useful for characterizing a broad range of phenomena from fusion to nuclear molecular structures.
Progress on China nuclear data processing code system
NASA Astrophysics Data System (ADS)
Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu
2017-09-01
China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.
Zhang, Peng
2012-01-01
Background Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. Methodology/Principal Findings We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. Conclusions/Significance Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for phylogenetic questions of osteichthyans at different taxonomic levels. PMID:22720083
A DEK Domain-Containing Protein Modulates Chromatin Structure and Function in Arabidopsis[W][OPEN
Waidmann, Sascha; Kusenda, Branislav; Mayerhofer, Juliane; Mechtler, Karl; Jonak, Claudia
2014-01-01
Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function. PMID:25387881
Protein Sub-Nuclear Localization Prediction Using SVM and Pfam Domain Information
Kumar, Ravindra; Jain, Sohni; Kumari, Bandana; Kumar, Manish
2014-01-01
The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server. PMID:24897370
Knapp, Jenny; Nakao, Minoru; Yanagida, Tetsuya; Okamoto, Munehiro; Saarma, Urmas; Lavikainen, Antti; Ito, Akira
2011-12-01
The family Taeniidae of tapeworms is composed of two genera, Echinococcus and Taenia, which obligately parasitize mammals including humans. Inferring phylogeny via molecular markers is the only way to trace back their evolutionary histories. However, molecular dating approaches are lacking so far. Here we established new markers from nuclear protein-coding genes for RNA polymerase II second largest subunit (rpb2), phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold). Bayesian inference and maximum likelihood analyses of the concatenated gene sequences allowed us to reconstruct phylogenetic trees for taeniid parasites. The tree topologies clearly demonstrated that Taenia is paraphyletic and that the clade of Echinococcus oligarthrus and Echinococcusvogeli is sister to all other members of Echinococcus. Both species are endemic in Central and South America, and their definitive hosts originated from carnivores that immigrated from North America after the formation of the Panamanian land bridge about 3 million years ago (Ma). A time-calibrated phylogeny was estimated by a Bayesian relaxed-clock method based on the assumption that the most recent common ancestor of E. oligarthrus and E. vogeli existed during the late Pliocene (3.0 Ma). The results suggest that a clade of Taenia including human-pathogenic species diversified primarily in the late Miocene (11.2 Ma), whereas Echinococcus started to diversify later, in the end of the Miocene (5.8 Ma). Close genetic relationships among the members of Echinococcus imply that the genus is a young group in which speciation and global radiation occurred rapidly. Copyright © 2011 Elsevier Inc. All rights reserved.
Lara-Sampablo, Alejandra; Flores-Alonso, Juan Carlos; De Jesús-Ortega, Nereyda; Santos-López, Gerardo; Vallejo-Ruiz, Verónica; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Herrera-Camacho, Irma; Reyes-Leyva, Julio
2014-06-24
Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-α) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-α expression was evaluated. Both TNF-α mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-α promoter. In the presence of NEP the activity of TNF-α promoter increased significantly compared with the control (83.5±2.9 vs. 30.9±2.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-α promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-α promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-α promoter mediated by NEP (41.5±3.2, 70% inhibition; and 80.6±7.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-α expression. Copyright © 2014 Elsevier B.V. All rights reserved.
Reynolds, Ashley E.; Ryckman, Brent J.; Baines, Joel D.; Zhou, Yuping; Liang, Li; Roller, Richard J.
2001-01-01
The herpes simplex virus type 1 (HSV-1) UL34 protein is likely a type II membrane protein that localizes within the nuclear membrane and is required for efficient envelopment of progeny virions at the nuclear envelope, whereas the UL31 gene product of HSV-1 is a nuclear matrix-associated phosphoprotein previously shown to interact with UL34 protein in HSV-1-infected cell lysates. For these studies, polyclonal antisera directed against purified fusion proteins containing UL31 protein fused to glutathione-S-transferase (UL31-GST) and UL34 protein fused to GST (UL34-GST) were demonstrated to specifically recognize the UL31 and UL34 proteins of approximately 34,000 and 30,000 Da, respectively. The UL31 and UL34 gene products colocalized in a smooth pattern throughout the nuclear rim of infected cells by 10 h postinfection. UL34 protein also accumulated in pleiomorphic cytoplasmic structures at early times and associated with an altered nuclear envelope late in infection. Localization of UL31 protein at the nuclear rim required the presence of UL34 protein, inasmuch as cells infected with a UL34 null mutant virus contained UL31 protein primarily in central intranuclear domains separate from the nuclear rim, and to a lesser extent in the cytoplasm. Conversely, localization of UL34 protein exclusively at the nuclear rim required the presence of the UL31 gene product, inasmuch as UL34 protein was detectable at the nuclear rim, in replication compartments, and in the cytoplasm of cells infected with a UL31 null virus. When transiently expressed in the absence of other viral factors, UL31 protein localized diffusely in the nucleoplasm, whereas UL34 protein localized primarily in the cytoplasm and at the nuclear rim. In contrast, coexpression of the UL31 and UL34 proteins was sufficient to target both proteins exclusively to the nuclear rim. The proteins were also shown to directly interact in vitro in the absence of other viral proteins. In cells infected with a virus lacking the US3-encoded protein kinase, previously shown to phosphorylate the UL34 gene product, UL31 and UL34 proteins colocalized in small punctate areas that accumulated on the nuclear rim. Thus, US3 kinase is required for even distribution of UL31 and UL34 proteins throughout the nuclear rim. Taken together with the similar phenotypes of the UL31 and UL34 deletion mutants, these data strongly suggest that the UL31 and UL34 proteins form a complex that accumulates at the nuclear membrane and plays an important role in nucleocapsid envelopment at the inner nuclear membrane. PMID:11507225
NASA Astrophysics Data System (ADS)
Darmawan, R.
2018-01-01
Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.
reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and
Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties
Ilas, Germina; Liljenfeldt, Henrik
2017-05-19
Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less
Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Liljenfeldt, Henrik
Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less
Rumpho, Mary E.; Pochareddy, Sirisha; Worful, Jared M.; Summer, Elizabeth J.; Bhattacharya, Debashish; Pelletreau, Karen N.; Tyler, Mary S.; Lee, Jungho; Manhart, James R.; Soule, Kara M.
2009-01-01
Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclear-encoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V. litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V. litorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months. PMID:19995736
Honda, Akinobu; Chigwechokha, Petros Kingstone; Kamada-Futagami, Yuko; Komatsu, Masaharu; Shiozaki, Kazuhiro
2018-06-01
Sialidase catalyzes the removal of sialic acids from glycoconjugates. Different from Neu1 and Neu3 sialidases, Neu4 enzymatic properties such as substrate specificity and subcellular localization are not well-conserved among vertebrates. In fish only zebrafish and medaka neu4 genes have been cloned and their polypeptides have been characterized so far. Thus, characterization of Neu4 from other fish species is necessary to evaluate Neu4 physiological functions. Here, Nile tilapia was chosen for the characterization of Neu4 polypeptide considering that it is one of the major cultured fish all over the world and that its genomic sequences are now available. Coding DNA sequence of tilapia Neu4 was identified as 1,497 bp and its recombinant protein showed broad substrate specificity and optimal sialidase enzyme activity pH at 4.0. Neu4 activity was sustained even in neutral and alkali pH. Interestingly, immunofluorescence analysis revealed that major subcellular localization of tilapia Neu4 was nuclear, quite distinct from zebrafish (ER) and medaka Neu4 (lysosome). Bioinformatic analysis showed the existence of putative nuclear localization signal (NLS) in tilapia Neu4. In general, it is known that importin families bind to several proteins via NLS and transfer them into nucleus. Therefore, to determine the involvement of putative NLS in Neu4 nuclear localization, Neu4 mutant deleting NLS was constructed and expressed in cultured cells. As a result, NLS deletion significantly diminished the nuclear localization. Furthermore, treatment of importazole, interrupter of binding importin β and RanGTP, significantly suppressed Neu4 nuclear localization. In summary, tilapia Neu4 is a unique sialidase localized at nucleus and its transport system into nucleus is regulated by importin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Assuring Structural Integrity in Army Systems
1985-02-28
power plants are* I. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code , Section III - Rules for Construction of Nuclear...Power Plant Components; 2. ASNE Boiler and Pressure Vessel Code , Section XI, Rules for In-Service Inspection of Nuclear Power Plant Components; and 3
Scoping Calculations of Power Sources for Nuclear Electric Propulsion
NASA Technical Reports Server (NTRS)
Difilippo, F. C.
1994-01-01
This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to make scoping calculations for mission analysis.
Roth, Melissa S; Cokus, Shawn J; Gallaher, Sean D; Walter, Andreas; Lopez, David; Erickson, Erika; Endelman, Benjamin; Westcott, Daniel; Larabell, Carolyn A; Merchant, Sabeeha S; Pellegrini, Matteo; Niyogi, Krishna K
2017-05-23
Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis , because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase ( BKT ), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.
Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.; ...
2017-05-08
Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.
Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less
Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.; Walter, Andreas; Lopez, David; Erickson, Erika; Endelman, Benjamin; Westcott, Daniel; Larabell, Carolyn A.; Merchant, Sabeeha S.; Pellegrini, Matteo
2017-01-01
Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production. PMID:28484037
Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code
NASA Technical Reports Server (NTRS)
Fittje, James E.; Schnitzler, Bruce G.
2008-01-01
The Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for exploratory expeditions to the moon, Mars, and beyond. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the Rover/NERVA program from 1955 to 1973. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design, and a comparison of its results to the Small Nuclear Rocket Engine (SNRE) design.
PROTEINS IN NUCLEOCYTOPLASMIC INTERACTIONS
Prescott, David; Goldstein, Lester
1968-01-01
The behavior of nuclear proteins in Amoeba proteus was studied by tritiated amino acid labeling, nuclear transplantation, and cytoplasmic amputation. During prophase at least 77% (but probably over 95%) of the nuclear proteins is released to the cytoplasm. These same proteins return to the nucleus within the first 3 hr of interphase. When cytoplasm is amputated from an ameba in mitosis (shen the nuclear proteins are in the cytoplasm), the resultant daughter nuclei are depleted in the labeled nuclear proteins. The degree of depletion is less than proportional to the amount of cytoplasm removed because a portion of rapidly migrating protein (a nuclear protein that is normally shuttling between nucleus and cytoplasm and is thus also present in the cytoplasm) which would normally remain in the cytoplasm is taken up by the reconstituting daughter nuclei. Cytoplasmic fragments cut from mitotic cells are enriched in both major classes of nuclear proteins, i.e. rapidly migrating protein and slow turn-over protein. An interphase nucleus implanted into such an enucleated cell acquires from the cytoplasm essentially all of the excess nuclear proteins of both classes. The data indicate that there is a lack of binding sites in the cytoplasm for the rapidly migrating nuclear protein. The quantitative aspects of the distribution of rapidly migrating protein between the nucleus and the cytoplasm indicate that the distribution is governed primarily by factors within the nucleus. PMID:5677972
Singh, Manish K; Tiwari, Pramod K
2016-08-01
Hsp27, a highly conserved small molecular weight heat shock protein, is widely known to be developmentally regulated and heat inducible. Its role in thermotolerance is also implicated. This study is a sequel of our earlier studies to understand the molecular organization of heat shock genes/proteins and their role in development and thermal adaptation in a sheep pest, Lucilia cuprina (blowfly), which exhibits unusually high adaptability to a variety of environmental stresses, including heat and chemicals. In this report our aim was to understand the evolutionary relationship of Lucilia hsp27 gene/protein with those of other species and its role in thermal adaptation. We sequence characterized the Lchsp27 gene (coding region) and analyzed its expression in various larval and adult tissues under normal as well as heat shock conditions. The nucleotide sequence analysis of 678 bps long-coding region of Lchsp27 exhibited closest evolutionary proximity with Drosophila (90.09%), which belongs to the same order, Diptera. Heat shock caused significant enhancement in the expression of Lchsp27 gene in all the larval and adult tissues examined, however, in a tissue specific manner. Significantly, in Malpighian tubules, while the heat-induced level of hsp27 transcript (mRNA) appeared increased as compared to control, the protein level remained unaltered and nuclear localized. We infer that Lchsp27 may have significant role in the maintenance of cellular homeostasis, particularly, during summer months, when the fly remains exposed to high heat in its natural habitat. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Are plant formins integral membrane proteins?
Cvrcková, F
2000-01-01
The formin family of proteins has been implicated in signaling pathways of cellular morphogenesis in both animals and fungi; in the latter case, at least, they participate in communication between the actin cytoskeleton and the cell surface. Nevertheless, they appear to be cytoplasmic or nuclear proteins, and it is not clear whether they communicate with the plasma membrane, and if so, how. Because nothing is known about formin function in plants, I performed a systematic search for putative Arabidopsis thaliana formin homologs. I found eight putative formin-coding genes in the publicly available part of the Arabidopsis genome sequence and analyzed their predicted protein sequences. Surprisingly, some of them lack parts of the conserved formin-homology 2 (FH2) domain and the majority of them seem to have signal sequences and putative transmembrane segments that are not found in yeast or animals formins. Plant formins define a distinct subfamily. The presence in most Arabidopsis formins of sequence motifs typical or transmembrane proteins suggests a mechanism of membrane attachment that may be specific to plant formins, and indicates an unexpected evolutionary flexibility of the conserved formin domain.
Nuclear Energy Knowledge and Validation Center (NEKVaC) Needs Workshop Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans
2015-02-01
The Department of Energy (DOE) has made significant progress developing simulation tools to predict the behavior of nuclear systems with greater accuracy and of increasing our capability to predict the behavior of these systems outside of the standard range of applications. These analytical tools require a more complex array of validation tests to accurately simulate the physics and multiple length and time scales. Results from modern simulations will allow experiment designers to narrow the range of conditions needed to bound system behavior and to optimize the deployment of instrumentation to limit the breadth and cost of the campaign. Modern validation,more » verification and uncertainty quantification (VVUQ) techniques enable analysts to extract information from experiments in a systematic manner and provide the users with a quantified uncertainty estimate. Unfortunately, the capability to perform experiments that would enable taking full advantage of the formalisms of these modern codes has progressed relatively little (with some notable exceptions in fuels and thermal-hydraulics); the majority of the experimental data available today is the "historic" data accumulated over the last decades of nuclear systems R&D. A validated code-model is a tool for users. An unvalidated code-model is useful for code developers to gain understanding, publish research results, attract funding, etc. As nuclear analysis codes have become more sophisticated, so have the measurement and validation methods and the challenges that confront them. A successful yet cost-effective validation effort requires expertise possessed only by a few, resources possessed only by the well-capitalized (or a willing collective), and a clear, well-defined objective (validating a code that is developed to satisfy the need(s) of an actual user). To that end, the Idaho National Laboratory established the Nuclear Energy Knowledge and Validation Center to address the challenges of modern code validation and to manage the knowledge from past, current, and future experimental campaigns. By pulling together the best minds involved in code development, experiment design, and validation to establish and disseminate best practices and new techniques, the Nuclear Energy Knowledge and Validation Center (NEKVaC or the ‘Center’) will be a resource for industry, DOE Programs, and academia validation efforts.« less
Transmutation Fuel Performance Code Thermal Model Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory K. Miller; Pavel G. Medvedev
2007-09-01
FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.
Simulation of prompt gamma-ray emission during proton radiotherapy.
Verburg, Joost M; Shih, Helen A; Seco, Joao
2012-09-07
The measurement of prompt gamma rays emitted from proton-induced nuclear reactions has been proposed as a method to verify in vivo the range of a clinical proton radiotherapy beam. A good understanding of the prompt gamma-ray emission during proton therapy is key to develop a clinically feasible technique, as it can facilitate accurate simulations and uncertainty analysis of gamma detector designs. Also, the gamma production cross-sections may be incorporated as prior knowledge in the reconstruction of the proton range from the measurements. In this work, we performed simulations of proton-induced nuclear reactions with the main elements of human tissue, carbon-12, oxygen-16 and nitrogen-14, using the nuclear reaction models of the GEANT4 and MCNP6 Monte Carlo codes and the dedicated nuclear reaction codes TALYS and EMPIRE. For each code, we made an effort to optimize the input parameters and model selection. The results of the models were compared to available experimental data of discrete gamma line cross-sections. Overall, the dedicated nuclear reaction codes reproduced the experimental data more consistently, while the Monte Carlo codes showed larger discrepancies for a number of gamma lines. The model differences lead to a variation of the total gamma production near the end of the proton range by a factor of about 2. These results indicate a need for additional theoretical and experimental study of proton-induced gamma emission in human tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Cruz, D. F.; Rochman, D.; Koning, A. J.
2012-07-01
This paper discusses the uncertainty analysis on reactivity and inventory for a typical PWR fuel element as a result of uncertainties in {sup 235,238}U nuclear data. A typical Westinghouse 3-loop fuel assembly fuelled with UO{sub 2} fuel with 4.8% enrichment has been selected. The Total Monte-Carlo method has been applied using the deterministic transport code DRAGON. This code allows the generation of the few-groups nuclear data libraries by directly using data contained in the nuclear data evaluation files. The nuclear data used in this study is from the JEFF3.1 evaluation, and the nuclear data files for {sup 238}U and {supmore » 235}U (randomized for the generation of the various DRAGON libraries) are taken from the nuclear data library TENDL. The total uncertainty (obtained by randomizing all {sup 238}U and {sup 235}U nuclear data in the ENDF files) on the reactor parameters has been split into different components (different nuclear reaction channels). Results show that the TMC method in combination with a deterministic transport code constitutes a powerful tool for performing uncertainty and sensitivity analysis of reactor physics parameters. (authors)« less
RELAP5-3D Resolution of Known Restart/Backup Issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesina, George L.; Anderson, Nolan A.
2014-12-01
The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho National Laboratory (INL), RELAP5-3D, continues to adapt to changes in computer hardware and software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the forefront, code testing must evolve with both code and industry developments, and it must work correctly. To best ensure this, the processes of Software Verification and Validation (V&V) are applied. Verification compares coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions. A form of this, sequentialmore » verification, checks code specifications against coding only when originally written then applies regression testing which compares code calculations between consecutive updates or versions on a set of test cases to check that the performance does not change. A sequential verification testing system was specially constructed for RELAP5-3D to both detect errors with extreme accuracy and cover all nuclear-plant-relevant code features. Detection is provided through a “verification file” that records double precision sums of key variables. Coverage is provided by a test suite of input decks that exercise code features and capabilities necessary to model a nuclear power plant. A matrix of test features and short-running cases that exercise them is presented. This testing system is used to test base cases (called null testing) as well as restart and backup cases. It can test RELAP5-3D performance in both standalone and coupled (through PVM to other codes) runs. Application of verification testing revealed numerous restart and backup issues in both standalone and couple modes. This document reports the resolution of these issues.« less
Jacobs, Susan C; Taylor, Adam; Herrero, Lara J; Mahalingam, Suresh; Fazakerley, John K
2017-10-20
Transmitted by mosquitoes; chikungunya virus (CHIKV) is responsible for frequent outbreaks of arthritic disease in humans. CHIKV is an arthritogenic alphavirus of the Togaviridae family. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleus. In encephalitic alphaviruses nuclear translocation induces host cell shut off; however, the role of capsid protein nuclear localisation in arthritogenic alphaviruses remains unclear. Using replicon systems, we investigated a nuclear export sequence (NES) in the N-terminal region of capsid protein; analogous to that found in encephalitic alphavirus capsid but uncharacterised in CHIKV. The chromosomal maintenance 1 (CRM1) export adaptor protein mediated CHIKV capsid protein export from the nucleus and a region within the N-terminal part of CHIKV capsid protein was required for active nuclear targeting. In contrast to encephalitic alphaviruses, CHIKV capsid protein did not inhibit host nuclear import; however, mutating the NES of capsid protein (∆NES) blocked host protein access to the nucleus. Interactions between capsid protein and the nucleus warrant further investigation.
Planning U.S. General Purpose Forces: The Theater Nuclear Forces
1977-01-01
usefulness in combat. All U.S. nuclear weapons deployed in Europe are fitted with Permissive Action Links (PAL), coded devices designed to impede...may be proposed. The Standard Missile 2, the Harpoon missile, the Mk48 tor- pedo , and the SUBROC anti-submarine rocket are all being considered for...Permissive Action Link . A coded device attached to nuclear weapons deployed abroad that impedes the unauthorized arming or firing of the weapon. Pershing
15 CFR Appendix B to Part 30 - AES Filing Codes
Code of Federal Regulations, 2014 CFR
2014-01-01
... charity FS—Foreign Military Sales ZD—North American Free Trade Agreements (NAFTA) duty deferral shipments...—Validated End User Authorization C58CCD—Consumer Communication Devices C59STA—Strategic Trade Authorization Department of Energy/National Nuclear Security Administration (DOE/NNSA) Codes E01—DOE/NNSA Nuclear...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru
2010-12-15
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less
NASA Astrophysics Data System (ADS)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.
2010-12-01
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.
Sequence and characterization of cytoplasmic nuclear protein import factor p97
1995-01-01
Nuclear location sequence-mediated binding of karyophilic proteins to the nuclear pore complexes is one of the earliest steps in nuclear protein import. We previously identified two cytosolic proteins that reconstitute this step in a permeabilized cell assay: the 54/56-kD NLS receptor and p97. A monoclonal antibody to p97 localizes the protein to the cytoplasm and the nuclear envelope. p97 is extracted from nuclear envelopes under the same conditions as the O-glycosylated nucleoporins indicating a tight association with the pore complex. The antibody inhibits import in a permeabilized cell assay but does not affect binding of karyophiles to the nuclear pore complex. Immunodepletion of p97 renders the cytosol inactive for import and identifies at least three other cytosolic proteins that interact with p97. cDNA cloning of p97 shows that it is a unique protein containing 23 cysteine residues. Recombinant p97 binds zinc and a bound metal ion is required for the nuclear envelope binding activity of the protein. PMID:7615630
Dellaire, G.; Farrall, R.; Bickmore, W.A.
2003-01-01
The Nuclear Protein Database (NPD) is a curated database that contains information on more than 1300 vertebrate proteins that are thought, or are known, to localise to the cell nucleus. Each entry is annotated with information on predicted protein size and isoelectric point, as well as any repeats, motifs or domains within the protein sequence. In addition, information on the sub-nuclear localisation of each protein is provided and the biological and molecular functions are described using Gene Ontology (GO) terms. The database is searchable by keyword, protein name, sub-nuclear compartment and protein domain/motif. Links to other databases are provided (e.g. Entrez, SWISS-PROT, OMIM, PubMed, PubMed Central). Thus, NPD provides a gateway through which the nuclear proteome may be explored. The database can be accessed at http://npd.hgu.mrc.ac.uk and is updated monthly. PMID:12520015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E.; Roussin, R.W.
This paper presents a brief review of computer codes concerned with checking, plotting, processing and using of covariances of neutron cross-section data. It concentrates on those available from the computer code information centers of the United States and the OECD/Nuclear Energy Agency. Emphasis will be placed also on codes using covariances for specific applications such as uncertainty analysis, data adjustment and data consistency analysis. Recent evaluations contain neutron cross section covariance information for all isotopes of major importance for technological applications of nuclear energy. It is therefore important that the available software tools needed for taking advantage of this informationmore » are widely known as hey permit the determination of better safety margins and allow the optimization of more economic, I designs of nuclear energy systems.« less
Morchikh, Mehdi; Cribier, Alexandra; Raffel, Raoul; Amraoui, Sonia; Cau, Julien; Severac, Dany; Dubois, Emeric; Schwartz, Olivier; Bennasser, Yamina; Benkirane, Monsef
2017-08-03
The DNA-mediated innate immune response underpins anti-microbial defenses and certain autoimmune diseases. Here we used immunoprecipitation, mass spectrometry, and RNA sequencing to identify a ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1 that we dubbed the HEXIM1-DNA-PK-paraspeckle components-ribonucleoprotein complex (HDP-RNP). The HDP-RNP contains DNA-PK subunits (DNAPKc, Ku70, and Ku80) and paraspeckle proteins (SFPQ, NONO, PSPC1, RBM14, and MATRIN3). We show that binding of HEXIM1 to NEAT1 is required for its assembly. We further demonstrate that the HDP-RNP is required for the innate immune response to foreign DNA, through the cGAS-STING-IRF3 pathway. The HDP-RNP interacts with cGAS and its partner PQBP1, and their interaction is remodeled by foreign DNA. Remodeling leads to the release of paraspeckle proteins, recruitment of STING, and activation of DNAPKc and IRF3. Our study establishes the HDP-RNP as a key nuclear regulator of DNA-mediated activation of innate immune response through the cGAS-STING pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Human La binds mRNAs through contacts to the poly(A) tail.
Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A
2018-05-04
In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3'OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3'OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.
Performance assessment of KORAT-3D on the ANL IBM-SP computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeyev, A.V.; Zvenigorodskaya, O.A.; Shagaliev, R.M.
1999-09-01
The TENAR code is currently being developed at the Russian Federal Nuclear Center (VNIIEF) as a coupled dynamics code for the simulation of transients in VVER and RBMK systems and other nuclear systems. The neutronic module in this code system is KORAT-3D. This module is also one of the most computationally intensive components of the code system. A parallel version of KORAT-3D has been implemented to achieve the goal of obtaining transient solutions in reasonable computational time, particularly for RBMK calculations that involve the application of >100,000 nodes. An evaluation of the KORAT-3D code performance was recently undertaken on themore » Argonne National Laboratory (ANL) IBM ScalablePower (SP) parallel computer located in the Mathematics and Computer Science Division of ANL. At the time of the study, the ANL IBM-SP computer had 80 processors. This study was conducted under the auspices of a technical staff exchange program sponsored by the International Nuclear Safety Center (INSC).« less
Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.
Shen, Shu; Tobery, Cynthia E; Rose, Mark D
2009-05-01
Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.
Dakota Uncertainty Quantification Methods Applied to the CFD code Nek5000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delchini, Marc-Olivier; Popov, Emilian L.; Pointer, William David
This report presents the state of advancement of a Nuclear Energy Advanced Modeling and Simulation (NEAMS) project to characterize the uncertainty of the computational fluid dynamics (CFD) code Nek5000 using the Dakota package for flows encountered in the nuclear engineering industry. Nek5000 is a high-order spectral element CFD code developed at Argonne National Laboratory for high-resolution spectral-filtered large eddy simulations (LESs) and unsteady Reynolds-averaged Navier-Stokes (URANS) simulations.
Survey of Codes Employing Nuclear Damage Assessment
1977-10-01
surveyed codes were com- DO 73Mu 1473 ETN OF 1NOVSSSOLETE UNCLASSIFIED 1 SECURITY CLASSIFICATION OF THIS f AGE (Wh*11 Date Efntered)S<>-~C. I UNCLASSIFIED...level and above) TALLEY/TOTEM not nuclear TARTARUS too highly aggregated (battalion level and above) UNICORN highly aggregated force allocation code...vulnerability data can bq input by the user as he receives them, and there is the abil ’ity to replay any situation using hindsight. The age of target
Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)
NASA Astrophysics Data System (ADS)
Valentine, Timothy
2017-09-01
The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.
Prediction of plant lncRNA by ensemble machine learning classifiers.
Simopoulos, Caitlin M A; Weretilnyk, Elizabeth A; Golding, G Brian
2018-05-02
In plants, long non-protein coding RNAs are believed to have essential roles in development and stress responses. However, relative to advances on discerning biological roles for long non-protein coding RNAs in animal systems, this RNA class in plants is largely understudied. With comparatively few validated plant long non-coding RNAs, research on this potentially critical class of RNA is hindered by a lack of appropriate prediction tools and databases. Supervised learning models trained on data sets of mostly non-validated, non-coding transcripts have been previously used to identify this enigmatic RNA class with applications largely focused on animal systems. Our approach uses a training set comprised only of empirically validated long non-protein coding RNAs from plant, animal, and viral sources to predict and rank candidate long non-protein coding gene products for future functional validation. Individual stochastic gradient boosting and random forest classifiers trained on only empirically validated long non-protein coding RNAs were constructed. In order to use the strengths of multiple classifiers, we combined multiple models into a single stacking meta-learner. This ensemble approach benefits from the diversity of several learners to effectively identify putative plant long non-coding RNAs from transcript sequence features. When the predicted genes identified by the ensemble classifier were compared to those listed in GreeNC, an established plant long non-coding RNA database, overlap for predicted genes from Arabidopsis thaliana, Oryza sativa and Eutrema salsugineum ranged from 51 to 83% with the highest agreement in Eutrema salsugineum. Most of the highest ranking predictions from Arabidopsis thaliana were annotated as potential natural antisense genes, pseudogenes, transposable elements, or simply computationally predicted hypothetical protein. Due to the nature of this tool, the model can be updated as new long non-protein coding transcripts are identified and functionally verified. This ensemble classifier is an accurate tool that can be used to rank long non-protein coding RNA predictions for use in conjunction with gene expression studies. Selection of plant transcripts with a high potential for regulatory roles as long non-protein coding RNAs will advance research in the elucidation of long non-protein coding RNA function.
Li, S.-F.; Xu, J.-W.; Yang, Q.-L.; Wang, C.H.; Chen, Q.; Chapman, D.C.; Lu, G.
2009-01-01
Based upon morphological characters, Silver carp Hypophthalmichthys molitrix and bighead carp Hypophthalmichthys nobilis (or Aristichthys nobilis) have been classified into either the same genus or two distinct genera. Consequently, the taxonomic relationship of the two species at the generic level remains equivocal. This issue is addressed by sequencing complete mitochondrial genomes of H. molitrix and H. nobilis, comparing their mitogenome organization, structure and sequence similarity, and conducting a comprehensive phylogenetic analysis of cyprinid species. As with other cyprinid fishes, the mitogenomes of the two species were structurally conserved, containing 37 genes including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA (tRNAs) genes and a putative control region (D-loop). Sequence similarity between the two mitogenomes varied in different genes or regions, being highest in the tRNA genes (98??8%), lowest in the control region (89??4%) and intermediate in the protein-coding genes (94??2%). Analyses of the sequence comparison and phylogeny using concatenated protein sequences support the view that the two species belong to the genus Hypophthalmichthys. Further studies using nuclear markers and involving more closely related species, and the systematic combination of traditional biology and molecular biology are needed in order to confirm this conclusion. ?? 2009 The Fisheries Society of the British Isles.
Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.
Gonzalez, Yanira; Saito, Akira; Sazer, Shelley
2012-01-01
In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.
Upgrades to the NESS (Nuclear Engine System Simulation) Code
NASA Technical Reports Server (NTRS)
Fittje, James E.
2007-01-01
In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-05-26
The Circular calls the attention of Coast Guard field units, marine surveyors, shippers and carriers of nuclear materials to the International Maritime Organization (IMO) Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes in Flasks on Board Ships (IMO Resolution A.748(18)).
Atomic structure of the Y complex of the nuclear pore
Kelley, Kotaro; Knockenhauer, Kevin E.; Kabachinski, Greg; ...
2015-03-30
The nuclear pore complex (NPC) is the principal gateway for transport into and out of the nucleus. Selectivity is achieved through the hydrogel-like core of the NPC. The structural integrity of the NPC depends on ~15 architectural proteins, which are organized in distinct subcomplexes to form the >40-MDa ring-like structure. In this paper, we present the 4.1-Å crystal structure of a heterotetrameric core element ('hub') of the Y complex, the essential NPC building block, from Myceliophthora thermophila. Using the hub structure together with known Y-complex fragments, we built the entire ~0.5-MDa Y complex. Our data reveal that the conserved coremore » of the Y complex has six rather than seven members. Finally, evolutionarily distant Y-complex assemblies share a conserved core that is very similar in shape and dimension, thus suggesting that there are closely related architectural codes for constructing the NPC in all eukaryotes.« less
Nuclear factor 90 uses an ADAR2-like binding mode to recognize specific bases in dsRNA.
Jayachandran, Uma; Grey, Heather; Cook, Atlanta G
2016-02-29
Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3' untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel
2005-07-01
While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.
Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei
2018-02-15
The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.
Overview of the Graphical User Interface for the GERM Code (GCR Event-Based Risk Model
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2010-01-01
The descriptions of biophysical events from heavy ions are of interest in radiobiology, cancer therapy, and space exploration. The biophysical description of the passage of heavy ions in tissue and shielding materials is best described by a stochastic approach that includes both ion track structure and nuclear interactions. A new computer model called the GCR Event-based Risk Model (GERM) code was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL). The GERM code calculates basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at NSRL for the purpose of simulating space radiobiological effects. For mono-energetic beams, the code evaluates the linear-energy transfer (LET), range (R), and absorption in tissue equivalent material for a given Charge (Z), Mass Number (A) and kinetic energy (E) of an ion. In addition, a set of biophysical properties are evaluated such as the Poisson distribution of ion or delta-ray hits for a specified cellular area, cell survival curves, and mutation and tumor probabilities. The GERM code also calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle. The contributions from primary ion and nuclear secondaries are evaluated. The GERM code accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections, and has been used by the GERM code for application to thick target experiments. The GERM code provides scientists participating in NSRL experiments with the data needed for the interpretation of their experiments, including the ability to model the beam line, the shielding of samples and sample holders, and the estimates of basic physical and biological outputs of the designed experiments. We present an overview of the GERM code GUI, as well as providing training applications.
HUFF, a One-Dimensional Hydrodynamics Code for Strong Shocks
1978-12-01
results for two sample problems. The first problem discussed is a one-kiloton nuclear burst in infinite sea level air. The second problem is the one...of HUFF as an effective first order hydro- dynamic computer code. 1 KT Explosion The one-kiloton nuclear explosion in infinite sea level air was
The Evolution and Expression Pattern of Human Overlapping lncRNA and Protein-coding Gene Pairs.
Ning, Qianqian; Li, Yixue; Wang, Zhen; Zhou, Songwen; Sun, Hong; Yu, Guangjun
2017-03-27
Long non-coding RNA overlapping with protein-coding gene (lncRNA-coding pair) is a special type of overlapping genes. Protein-coding overlapping genes have been well studied and increasing attention has been paid to lncRNAs. By studying lncRNA-coding pairs in human genome, we showed that lncRNA-coding pairs were more likely to be generated by overprinting and retaining genes in lncRNA-coding pairs were given higher priority than non-overlapping genes. Besides, the preference of overlapping configurations preserved during evolution was based on the origin of lncRNA-coding pairs. Further investigations showed that lncRNAs promoting the splicing of their embedded protein-coding partners was a unilateral interaction, but the existence of overlapping partners improving the gene expression was bidirectional and the effect was decreased with the increased evolutionary age of genes. Additionally, the expression of lncRNA-coding pairs showed an overall positive correlation and the expression correlation was associated with their overlapping configurations, local genomic environment and evolutionary age of genes. Comparison of the expression correlation of lncRNA-coding pairs between normal and cancer samples found that the lineage-specific pairs including old protein-coding genes may play an important role in tumorigenesis. This work presents a systematically comprehensive understanding of the evolution and the expression pattern of human lncRNA-coding pairs.
Nuclear Data Evaluation Co-operation (WPEC) Nuclear Reaction Data Centers, NRDC (IAEA Vienna) EMPIRE , Nuclear Reaction Model Code Atlas of Neutron Resonances The Cross Section Evaluation Working Group (CSEWG
FRENDY: A new nuclear data processing system being developed at JAEA
NASA Astrophysics Data System (ADS)
Tada, Kenichi; Nagaya, Yasunobu; Kunieda, Satoshi; Suyama, Kenya; Fukahori, Tokio
2017-09-01
JAEA has provided an evaluated nuclear data library JENDL and nuclear application codes such as MARBLE, SRAC, MVP and PHITS. These domestic codes have been widely used in many universities and industrial companies in Japan. However, we sometimes find problems in imported processing systems and need to revise them when the new JENDL is released. To overcome such problems and immediately process the nuclear data when it is released, JAEA started developing a new nuclear data processing system, FRENDY in 2013. This paper describes the outline of the development of FRENDY and both its capabilities and performances by the analyses of criticality experiments. The verification results indicate that FRENDY properly generates ACE files.
Genomic understanding of dinoflagellates.
Lin, Senjie
2011-01-01
The phylum of dinoflagellates is characterized by many unusual and interesting genomic and physiological features, the imprint of which, in its immense genome, remains elusive. Much novel understanding has been achieved in the last decade on various aspects of dinoflagellate biology, but most remarkably about the structure, expression pattern and epigenetic modification of protein-coding genes in the nuclear and organellar genomes. Major findings include: 1) the great diversity of dinoflagellates, especially at the base of the dinoflagellate tree of life; 2) mini-circularization of the genomes of typical dinoflagellate plastids (with three membranes, chlorophylls a, c1 and c2, and carotenoid peridinin), the scrambled mitochondrial genome and the extensive mRNA editing occurring in both systems; 3) ubiquitous spliced leader trans-splicing of nuclear-encoded mRNA and demonstrated potential as a novel tool for studying dinoflagellate transcriptomes in mixed cultures and natural assemblages; 4) existence and expression of histones and other nucleosomal proteins; 5) a ribosomal protein set expected of typical eukaryotes; 6) genetic potential of non-photosynthetic solar energy utilization via proton-pump rhodopsin; 7) gene candidates in the toxin synthesis pathways; and 8) evidence of a highly redundant, high gene number and highly recombined genome. Despite this progress, much more work awaits genome-wide transcriptome and whole genome sequencing in order to unfold the molecular mechanisms underlying the numerous mysterious attributes of dinoflagellates. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.
Nie, Yuanyang; Cao, Mei; Wu, Daoyan; Li, Ningzhe; Peng, Jingshan; Yi, Sijun; Yang, Xiaofan; Zhang, Mao; Hu, Guoku; Zhao, Jian
2018-05-04
Salmonella enteritidis infection occurs in enterogenous diseases, such as gastroenteritis and parenteral focal infection, which often involve inflammation of intestinal epithelial cells. The nuclear factor kappa B (NF-κB) pathway participates in the innate immune response to many gram-negative pathogenic bacteria and initiates inflammation in epithelial cells. KH-type splicing regulatory protein (KSRP) is a multi-domain RNA-binding protein that recruits the exosome-containing mRNA degradation complex to mRNAs coding for inflammatory response factors. However, it remains unclear whether KSRP is regulated by NF-κB signaling pathway in response to S. enteritidis infection and affects the development of inflammation. Accordingly, in this study, we investigated the role of KSRP in mediating the response to S. enteritidis in Caco-2 cells. The data revealed that S. enteritidis infection decreased KSRP expression, which was suppressed by blocking the NF-κB pathway. Additionally, S. enteritidis infection significantly increased the expression of inducible nitric oxide synthase and cyclooxygenase-2. Overexpression of KSRP reduced the expression levels of inflammatory factors in Caco-2 cells. KSRP was regulated by the NF-κB signaling pathway and participated in mediating the innate immune response to S. enteritidis infection in Caco-2 cells, and KSRP acted as a negative regulator of inflammatory gene expression.
Kapranov, Philipp; St Laurent, Georges; Raz, Tal; Ozsolak, Fatih; Reynolds, C Patrick; Sorensen, Poul H B; Reaman, Gregory; Milos, Patrice; Arceci, Robert J; Thompson, John F; Triche, Timothy J
2010-12-21
Discovery that the transcriptional output of the human genome is far more complex than predicted by the current set of protein-coding annotations and that most RNAs produced do not appear to encode proteins has transformed our understanding of genome complexity and suggests new paradigms of genome regulation. However, the fraction of all cellular RNA whose function we do not understand and the fraction of the genome that is utilized to produce that RNA remain controversial. This is not simply a bookkeeping issue because the degree to which this un-annotated transcription is present has important implications with respect to its biologic function and to the general architecture of genome regulation. For example, efforts to elucidate how non-coding RNAs (ncRNAs) regulate genome function will be compromised if that class of RNAs is dismissed as simply 'transcriptional noise'. We show that the relative mass of RNA whose function and/or structure we do not understand (the so called 'dark matter' RNAs), as a proportion of all non-ribosomal, non-mitochondrial human RNA (mt-RNA), can be greater than that of protein-encoding transcripts. This observation is obscured in studies that focus only on polyA-selected RNA, a method that enriches for protein coding RNAs and at the same time discards the vast majority of RNA prior to analysis. We further show the presence of a large number of very long, abundantly-transcribed regions (100's of kb) in intergenic space and further show that expression of these regions is associated with neoplastic transformation. These overlap some regions found previously in normal human embryonic tissues and raises an interesting hypothesis as to the function of these ncRNAs in both early development and neoplastic transformation. We conclude that 'dark matter' RNA can constitute the majority of non-ribosomal, non-mitochondrial-RNA and a significant fraction arises from numerous very long, intergenic transcribed regions that could be involved in neoplastic transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Lin, H; Xu, X
Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based onmore » Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)« less
Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L.
2012-01-01
Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of “novel” and “putative” protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and strongly suggests that the translation of alternative transcripts may be subject to selective constraints. PMID:22446687
Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor
NASA Technical Reports Server (NTRS)
Butler, C.; Albright, D.
2007-01-01
Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.
Epigenetic Regulation of Transcription in Trypanosomatid Protozoa.
Martínez-Calvillo, Santiago; Romero-Meza, Gabriela; Vizuet-de-Rueda, Juan C; Florencio-Martínez, Luis E; Manning-Cela, Rebeca; Nepomuceno-Mejía, Tomás
2018-02-01
The Trypanosomatid family includes flagellated parasites that cause fatal human diseases. Remarkably, protein-coding genes in these organisms are positioned in long tandem arrays that are transcribed polycistronically. However, the knowledge about regulation of transcription initiation and termination in trypanosomatids is scarce. The importance of epigenetic regulation in these processes has become evident in the last years, as distinctive histone modifications and histone variants have been found in transcription initiation and termination regions. Moreover, multiple chromatin-related proteins have been identified and characterized in trypanosomatids, including histone-modifying enzymes, effector complexes, chromatin-remodelling enzymes and histone chaperones. Notably, base J, a modified thymine residue present in the nuclear DNA of trypanosomatids, has been implicated in transcriptional regulation. Here we review the current knowledge on epigenetic control of transcription by all three RNA polymerases in this group of early-diverged eukaryotes.
Rolland, Norbert; Curien, Gilles; Finazzi, Giovanni; Kuntz, Marcel; Maréchal, Eric; Matringe, Michel; Ravanel, Stéphane; Seigneurin-Berny, Daphné
2012-01-01
Plastids are semiautonomous organelles derived from cyanobacterial ancestors. Following endosymbiosis, plastids have evolved to optimize their functions, thereby limiting metabolic redundancy with other cell compartments. Contemporary plastids have also recruited proteins produced by the nuclear genome of the host cell. In addition, many genes acquired from the cyanobacterial ancestor evolved to code for proteins that are targeted to cell compartments other than the plastid. Consequently, metabolic pathways are now a patchwork of enzymes of diverse origins, located in various cell compartments. Because of this, a wide range of metabolites and ions traffic between the plastids and other cell compartments. In this review, we provide a comprehensive analysis of the well-known, and of the as yet uncharacterized, chloroplast/cytosol exchange processes, which can be deduced from what is currently known about compartmentation of plant-cell metabolism.
Suárez, H Saurí; Becker, F; Klix, A; Pang, B; Döring, T
2018-06-07
To store and dispose spent nuclear fuel, shielding casks are employed to reduce the emitted radiation. To evaluate the exposure of employees handling such casks, Monte Carlo radiation transport codes can be employed. Nevertheless, to assess the reliability of these codes and nuclear data, experimental checks are required. In this study, a neutron generator (NG) producing neutrons of 2.5 MeV was employed to simulate neutrons produced in spent nuclear fuel. Different configurations of shielding layers of steel and polyethylene were positioned between the target of the NG and a NE-213 detector. The results of the measurements of neutron and γ radiation and the corresponding simulations with the code MCNP6 are presented. Details of the experimental set-up as well as neutron and photon flux spectra are provided as reference points for such NG investigations with shielding structures.
Evaluation of Production Cross Sections of Li, Be, B in CR
NASA Technical Reports Server (NTRS)
Moskalenko, I. V.; Mashnik, S. G.
2003-01-01
Accurate evaluation of the production cross section of light elements is important for models of cosmic ray (CR) propagation, galactic chemical evolution, and cosmological studies. However, the experimental spallation cross section data are scarce and often unavailable to CR community while semi-empirical systematics are frequently wrong by a significant factor. Running sophisticated nuclear codes is not an option of choice for everyone either. We use the Los Alamos versions of the Quark-Gluon String Model code LAQGSM and the improved Cascade-Exciton Model code CEM2k together with all available data from Los Alamos Nuclear Laboratory (LANL) nuclear database to produce evaluated production cross sections of isotopes of Li, Be, and B suitable for astrophysical applications. The LAQGSM and CEM2k models have been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.
Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling
NASA Astrophysics Data System (ADS)
Zalewski, Daniel; Jodoin, Vincent
2001-04-01
Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.
Fission Activities of the Nuclear Reactions Group in Uppsala
NASA Astrophysics Data System (ADS)
Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Jansson, K.; Koning, A.; Lantz, M.; Mattera, A.; Prokofiev, A. V.; Rakopoulos, V.; Sjöstrand, H.; Solders, A.; Tarrío, D.; Österlund, M.; Pomp, S.
This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
SinEx DB: a database for single exon coding sequences in mammalian genomes.
Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S
2016-01-01
Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl. © The Author(s) 2016. Published by Oxford University Press.
Conditional Depletion of Nuclear Proteins by the Anchor Away System (ms# CP-10-0125)
Fan, Xiaochun; Geisberg, Joseph V.; Wong, Koon Ho; Jin, Yi
2011-01-01
Nuclear proteins play key roles in the regulation of many important cellular processes. In Saccharomyces cerevisiae, many genes encoding nuclear proteins are essential. Here we describe a method termed Anchor Away that can be used to conditionally and rapidly deplete nuclear proteins of interest. It involves conditional export of the protein of interest out of the nucleus and its subsequent sequestration in the cytoplasm. This method can be used to simultaneously deplete multiple proteins from nucleus. PMID:21225637
Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U.; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N.; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O.
2014-01-01
Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes. PMID:25264628
Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O
2014-01-01
Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes.
Highlights on distinctive structural and functional properties of HTLV Tax proteins
Romanelli, Maria Grazia; Diani, Erica; Bergamo, Elisa; Casoli, Claudio; Ciminale, Vincenzo; Bex, Françoise; Bertazzoni, Umberto
2013-01-01
Human T cell leukemia viruses (HTLVs) are complex human retroviruses of the Deltaretrovirus genus. Four types have been identified thus far, with HTLV-1 and HTLV-2 much more prevalent than HTLV-3 or HTLV-4. HTLV-1 and HTLV-2 possess strictly related genomic structures, but differ significantly in pathogenicity, as HTLV-1 is the causative agent of adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis, whereas HTLV-2 is not associated with neoplasia. HTLVs code for a protein named Tax that is responsible for enhancing viral expression and drives cell transformation. Much effort has been invested to dissect the impact of Tax on signal transduction pathways and to identify functional differences between the HTLV Tax proteins that may explain the distinct oncogenic potential of HTLV-1 and HTLV-2. This review summarizes our current knowledge of Tax-1 and Tax-2 with emphasis on their structure, role in activation of the NF-κB (nuclear factor kappa-B) pathway, and interactions with host factors. PMID:24058363
Yin, Xiaojian; Komatsu, Setsuko
2016-07-01
To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.
Szymonowicz, Klaudia; Oeck, Sebastian; Malewicz, Nathalie M; Jendrossek, Verena
2018-03-18
Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt's activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.
Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R
2011-06-01
Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.
Saito, Shoko; Cigdem, Sadik; Okuwaki, Mitsuru; Nagata, Kyosuke
2016-07-01
Nuclear-cytoplasmic transport through nuclear pore complexes is mediated by nuclear transport receptors. Previous reports have suggested that aberrant nuclear-cytoplasmic transport due to mutations or overexpression of nuclear pore complexes and nuclear transport receptors is closely linked to diseases. Nup214, a component of nuclear pore complexes, has been found as chimeric fusion proteins in leukemia. Among various Nup214 fusion proteins, SET-Nup214 and DEK-Nup214 have been shown to be engaged in tumorigenesis, but their oncogenic mechanisms remain unclear. In this study, we examined the functions of the Nup214 fusion proteins by focusing on their effects on nuclear-cytoplasmic transport. We found that SET-Nup214 and DEK-Nup214 interact with exportin-1 (XPO1)/CRM1 and nuclear RNA export factor 1 (NXF1)/TAP, which mediate leucine-rich nuclear export signal (NES)-dependent protein export and mRNA export, respectively. SET-Nup214 and DEK-Nup214 decreased the XPO1-mediated nuclear export of NES proteins such as cyclin B and proteins involved in the NF-κB signaling pathway by tethering XPO1 onto nuclear dots where Nup214 fusion proteins are localized. We also demonstrated that SET-Nup214 and DEK-Nup214 expression inhibited NF-κB-mediated transcription by abnormal tethering of the complex containing p65 and its inhibitor, IκB, in the nucleus. These results suggest that SET-Nup214 and DEK-Nup214 perturb the regulation of gene expression through alteration of the nuclear-cytoplasmic transport system. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.
Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associatedmore » proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.« less
Radioprotective Thiolamines WR-1065 and WR-33278 Selectively Denature Nonhistone Nuclear Proteins
NASA Technical Reports Server (NTRS)
Booth, Valerie K.; Roberts, Jeanette C.; Warters, Raymond L.; Wilmore, Britta H.; Lepock, James R.
2000-01-01
Differential scanning calorimetry was used to study the interactions of nuclei isolated from Chinese hamster V79 cells with the radioprotector WR-1065, other thiol compounds, and polyamines. Differential scanning calorimetry monitors denaturation of macromolecules and resolves the major nuclear components (e.g. constrained and relaxed DNA, nucleosome core, and nuclear matrix) of intact nuclei on the basis of thermal stability. WR-1065 treatment (0.5-10 mM) of isolated nuclei led to the irreversible denaturation of nuclear proteins, a fraction of which are nuclear matrix proteins. Denaturation of 50% of the total nonhistone nuclear protein content of isolated nuclei occurred after exposure to 4.7 mM WR-1065 for 20 min at 23 C. In addition, a 22% increase in the insoluble protein content of nuclei isolated from V79 cells that had been treated with 4 mM WR-1065 for 30 min at 37 C was observed, indicating that WR-1065-induced protein denaturation occurs not only in isolated nuclei but also in the nuclei of intact cells. From the extent of the increase in insoluble protein in the nucleus, protein denaturation by WR-1065 is expected to contribute to drug toxicity at concentrations greater than approximately 4 mM. WR-33278, the disulfide form of WR1065, was approximately twice as effective as the free thiol at denaturing nuclear proteins. The proposed mechanism for nucleoprotein denaturation is through direct interactions with protein cysteine groups with the formation of destabilizing protein-WR-1065 disulfides. In comparison to its effect on nuclear proteins in isolated nuclei, WR-1065 had only a very small effect on non-nuclear proteins of whole cells, isolated nuclear matrix, or the thiol-rich Ca (2+) ATPase of sarcoplasmic reticulum, indicating that WR-1065 can effectively denature protein only inside an intact nucleus, probably due to the increased concentration of the positively charged drug in the vicinity of DNA.
Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz
2012-01-01
Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Masashi
1997-07-01
This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.
Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu
2003-03-01
VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.
Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu
2003-01-01
VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region. PMID:12588991
Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition.
Duss, Olivier; Michel, Erich; Diarra dit Konté, Nana; Schubert, Mario; Allain, Frédéric H-T
2014-04-01
The carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) type of small non-coding RNAs (sRNAs) is widespread throughout bacteria and acts by sequestering the global translation repressor protein CsrA/RsmE from the ribosome binding site of a subset of mRNAs. Although we have previously described the molecular basis of a high affinity RNA target bound to RsmE, it remains unknown how other lower affinity targets are recognized by the same protein. Here, we have determined the nuclear magnetic resonance solution structures of five separate GGA binding motifs of the sRNA RsmZ of Pseudomonas fluorescens in complex with RsmE. The structures explain how the variation of sequence and structural context of the GGA binding motifs modulate the binding affinity for RsmE by five orders of magnitude (∼10 nM to ∼3 mM, Kd). Furthermore, we see that conformational adaptation of protein side-chains and RNA enable recognition of different RNA sequences by the same protein contributing to binding affinity without conferring specificity. Overall, our findings illustrate how the variability in the Csr/Rsm protein-RNA recognition allows a fine-tuning of the competition between mRNAs and sRNAs for the CsrA/RsmE protein.
Jensen, Jeanette H; Conley, Lene N; Hedegaard, Jakob; Nielsen, Mathilde; Young, Jette F; Oksbjerg, Niels; Hornshøj, Henrik; Bendixen, Christian; Thomsen, Bo
2012-07-01
Acute physical activity elicits changes in gene expression in skeletal muscles to promote metabolic changes and to repair exercise-induced muscle injuries. In the present time-course study, pigs were submitted to an acute bout of treadmill running until near exhaustion to determine the impact of unaccustomed exercise on global transcriptional profiles in porcine skeletal muscles. Using a combined microarray and candidate gene approach, we identified a suite of genes that are differentially expressed in muscles during postexercise recovery. Several members of the heat shock protein family and proteins associated with proteolytic events, such as the muscle-specific E3 ubiquitin ligase atrogin-1, were significantly upregulated, suggesting that protein breakdown, prevention of protein aggregation and stabilization of unfolded proteins are important processes for restoration of cellular homeostasis. We also detected an upregulation of genes that are associated with muscle cell proliferation and differentiation, including MUSTN1, ASB5 and CSRP3, possibly reflecting activation, differentiation and fusion of satellite cells to facilitate repair of muscle damage. In addition, exercise increased expression of the orphan nuclear hormone receptor NR4A3, which regulates metabolic functions associated with lipid, carbohydrate and energy homeostasis. Finally, we observed an unanticipated induction of the long non-coding RNA transcript NEAT1, which has been implicated in RNA processing and nuclear retention of adenosine-to-inosine edited mRNAs in the ribonucleoprotein bodies called paraspeckles. These findings expand the complexity of pathways affected by acute contractile activity of skeletal muscle, contributing to a better understanding of the molecular processes that occur in muscle tissue in the recovery phase.
The nuclear proteome of Trypanosoma brucei
Goos, Carina; Dejung, Mario; Janzen, Christian J.; Butter, Falk
2017-01-01
Trypanosoma brucei is a protozoan flagellate that is transmitted by tsetse flies into the mammalian bloodstream. The parasite has a huge impact on human health both directly by causing African sleeping sickness and indirectly, by infecting domestic cattle. The biology of trypanosomes involves some highly unusual, nuclear-localised processes. These include polycistronic transcription without classical promoters initiated from regions defined by histone variants, trans-splicing of all transcripts to the exon of a spliced leader RNA, transcription of some very abundant proteins by RNA polymerase I and antigenic variation, a switch in expression of the cell surface protein variants that allows the parasite to resist the immune system of its mammalian host. Here, we provide the nuclear proteome of procyclic Trypanosoma brucei, the stage that resides within the tsetse fly midgut. We have performed quantitative label-free mass spectrometry to score 764 significantly nuclear enriched proteins in comparison to whole cell lysates. A comparison with proteomes of several experimentally characterised nuclear and non-nuclear structures and pathways confirmed the high quality of the dataset: the proteome contains about 80% of all nuclear proteins and less than 2% false positives. Using motif enrichment, we found the amino acid sequence KRxR present in a large number of nuclear proteins. KRxR is a sub-motif of a classical eukaryotic monopartite nuclear localisation signal and could be responsible for nuclear localization of proteins in Kinetoplastida species. As a proof of principle, we have confirmed the nuclear localisation of six proteins with previously unknown localisation by expressing eYFP fusion proteins. While proteome data of several T. brucei organelles have been published, our nuclear proteome closes an important gap in knowledge to study trypanosome biology, in particular nuclear-related processes. PMID:28727848
Jaw1/LRMP has a role in maintaining nuclear shape via interaction with SUN proteins.
Kozono, Takuma; Tadahira, Kazuko; Okumura, Wataru; Itai, Nao; Tamura-Nakano, Miwa; Dohi, Taeko; Tonozuka, Takashi; Nishikawa, Atsushi
2018-06-06
Jaw1/LRMP is characterized as a type II integral membrane protein that is localized to endoplasmic reticulum (ER), however, its physiological functions have been poorly understood. An alignment of amino acid sequence of Jaw1 with KASH proteins, outer nuclear membrane proteins, revealed that Jaw1 has a partial homology to the KASH domain. Here, we show that the function of Jaw1 is to maintain nuclear shape in mouse melanoma cell line. The siRNA-mediated knockdown of Jaw1 caused a severe defect in nuclear shape, and the defect was rescued by ectopic expression of siRNA-resistant Jaw1. Since co-immunoprecipitation assay indicates that Jaw1 interacts with SUN proteins that are inner nuclear proteins and microtubules, this study suggests that Jaw1 has a role in maintaining nuclear shape via interactions with SUN proteins and microtubules.
Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra
2014-01-01
ABSTRACT Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. IMPORTANCE Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins. PMID:25078698
2010-01-01
Background Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD) is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. Results The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1) RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. Conclusions The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to date. This, along with the amino acid variability observed within their PUM-HDs, suggests that these proteins may be involved in a wide range of post-transcriptional regulatory events that are important in providing plants with the ability to respond rapidly to changes in environmental conditions and throughout development. PMID:20214804
The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.
Jackson, D A; Pombo, A; Iborra, F
2000-02-01
The control of RNA synthesis from protein-coding genes is fundamental in determining the various cell types of higher eukaryotes. The activation of these genes is driven by promoter complexes, and RNA synthesis is performed by an enzyme mega-complex-the RNA polymerase II holoenzyme. These two complexes are the fundamental components required to initiate gene expression and generate the primary transcripts that, after processing, yield mRNAs that pass to the cytoplasm where protein synthesis occurs. But although this gene expression pathway has been studied intensively, aspects of RNA metabolism remain difficult to comprehend. In particular, it is unclear why >95% of RNA polymerized by polymerase II remains in the nucleus, where it is recycled. To explain this apparent paradox, this review presents a detailed description of nuclear RNA (nRNA) metabolism in mammalian cells. We evaluate the number of active transcription units, discuss the distribution of polymerases on active genes, and assess the efficiency with which the products mature and pass to the cytoplasm. Differences between the behavior of mRNAs on this productive pathway and primary transcripts that never leave the nucleus lead us to propose that these represent distinct populations. We discuss possible roles for nonproductive RNAs and present a model to describe the metabolism of these RNAs in the nuclei of mammalian cells.-Jackson, D. A., Pombo, A., Iborra, F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then bymore » facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.« less
Transcriptome sequences resolve deep relationships of the grape family.
Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M; Gerrath, Jean; Zimmer, Elizabeth A; Fang, Xiao-Dong
2013-01-01
Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.
Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization.
Nevzorov, Ilja; Sidorenko, Ekaterina; Wang, Weihuan; Zhao, Hongxia; Vartiainen, Maria K
2018-02-01
Accurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin-dependent motor protein Myosin-1C (Myo1C) resembles the diffusion-retention mechanism utilized by inner nuclear membrane proteins. We show that Myo1C constantly shuttles in and out of the nucleus and that its nuclear localization does not require soluble factors, but is dependent on phosphoinositide binding. Nuclear import of Myo1C is preceded by its interaction with the endoplasmic reticulum, and phosphoinositide binding is specifically required for nuclear import, but not nuclear retention, of Myo1C. Our results therefore demonstrate, for the first time, that membrane association and binding to nuclear partners is sufficient to drive nuclear localization of also soluble proteins, opening new perspectives to evolution of cellular protein sorting mechanisms. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development.
Garcia-Molina, Antoni; Xing, Shuping; Huijser, Peter
2014-01-01
Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-like-protein (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development.
The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development
Garcia-Molina, Antoni; Xing, Shuping; Huijser, Peter
2014-01-01
Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-LIKE-PROTEIN (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development. PMID:24713636
Caenorhabditis elegans as a model system for studying the nuclear lamina and laminopathic diseases.
Bank, Erin M; Gruenbaum, Yosef
2011-01-01
The nuclear lamina is a protein-rich network located directly underneath the inner nuclear membrane of metazoan nuclei. The components of the nuclear lamina have been implicated in nearly all nuclear functions; therefore, understanding the structural, mechanical, and signal transducing properties of these proteins is crucial. In addition, mutations in many of these proteins cause a wide range of human diseases, the laminopathies. The structure, function, and interaction of the lamina proteins are conserved among metazoans, emphasizing their fundamental roles in the nucleus. Several of the advances in the field of the nuclear lamina have come from studies performed in Caenorhabditis elegans or on C. elegans proteins expressed in vitro. Here, we discuss the current knowledge about the nuclear lamina, including an overview of the technical tools offered by C. elegans that make it a powerful model organism for the study of the nuclear lamina and laminopathic diseases.
NEAMS Update. Quarterly Report for October - December 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, K.
2012-02-16
The Advanced Modeling and Simulation Office within the DOE Office of Nuclear Energy (NE) has been charged with revolutionizing the design tools used to build nuclear power plants during the next 10 years. To accomplish this, the DOE has brought together the national laboratories, U.S. universities, and the nuclear energy industry to establish the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program. The mission of NEAMS is to modernize computer modeling of nuclear energy systems and improve the fidelity and validity of modeling results using contemporary software environments and high-performance computers. NEAMS will create a set of engineering-level codes aimedmore » at designing and analyzing the performance and safety of nuclear power plants and reactor fuels. The truly predictive nature of these codes will be achieved by modeling the governing phenomena at the spatial and temporal scales that dominate the behavior. These codes will be executed within a simulation environment that orchestrates code integration with respect to spatial meshing, computational resources, and execution to give the user a common 'look and feel' for setting up problems and displaying results. NEAMS is building upon a suite of existing simulation tools, including those developed by the federal Scientific Discovery through Advanced Computing and Advanced Simulation and Computing programs. NEAMS also draws upon existing simulation tools for materials and nuclear systems, although many of these are limited in terms of scale, applicability, and portability (their ability to be integrated into contemporary software and hardware architectures). NEAMS investments have directly and indirectly supported additional NE research and development programs, including those devoted to waste repositories, safeguarded separations systems, and long-term storage of used nuclear fuel. NEAMS is organized into two broad efforts, each comprising four elements. The quarterly highlights October-December 2011 are: (1) Version 1.0 of AMP, the fuel assembly performance code, was tested on the JAGUAR supercomputer and released on November 1, 2011, a detailed discussion of this new simulation tool is given; (2) A coolant sub-channel model and a preliminary UO{sub 2} smeared-cracking model were implemented in BISON, the single-pin fuel code, more information on how these models were developed and benchmarked is given; (3) The Object Kinetic Monte Carlo model was implemented to account for nucleation events in meso-scale simulations and a discussion of the significance of this advance is given; (4) The SHARP neutronics module, PROTEUS, was expanded to be applicable to all types of reactors, and a discussion of the importance of PROTEUS is given; (5) A plan has been finalized for integrating the high-fidelity, three-dimensional reactor code SHARP with both the systems-level code RELAP7 and the fuel assembly code AMP. This is a new initiative; (6) Work began to evaluate the applicability of AMP to the problem of dry storage of used fuel and to define a relevant problem to test the applicability; (7) A code to obtain phonon spectra from the force-constant matrix for a crystalline lattice has been completed. This important bridge between subcontinuum and continuum phenomena is discussed; (8) Benchmarking was begun on the meso-scale, finite-element fuels code MARMOT to validate its new variable splitting algorithm; (9) A very computationally demanding simulation of diffusion-driven nucleation of new microstructural features has been completed. An explanation of the difficulty of this simulation is given; (10) Experiments were conducted with deformed steel to validate a crystal plasticity finite-element code for bodycentered cubic iron; (11) The Capability Transfer Roadmap was completed and published as an internal laboratory technical report; (12) The AMP fuel assembly code input generator was integrated into the NEAMS Integrated Computational Environment (NiCE). More details on the planned NEAMS computing environment is given; and (13) The NEAMS program website (neams.energy.gov) is nearly ready to launch.« less
Poyau, A; Buchet, K; Bouzidi, M F; Zabot, M T; Echenne, B; Yao, J; Shoubridge, E A; Godinot, C
2000-02-01
We have studied the fibroblasts of three patients suffering from Leigh syndrome associated with cytochrome c oxidase deficiency (LS-COX-). Their mitochondrial DNA was functional and all nuclear COX subunits had a normal sequence. The expression of transcripts encoding mitochondrial and nuclear COX subunits was normal or slightly increased. Similarly, the OXA1 transcript coding for a protein involved in COX assembly was increased. However, several COX-protein subunits were severely depressed, indicating deficient COX assembly. Surf1, a factor involved in COX biogenesis, was recently reported as mutated in LS-COX- patients, all mutations predicting a truncated protein. Sequence analysis of SURF1 gene in our three patients revealed seven heterozygous mutations, six of which were new : an insertion, a nonsense mutation, a splicing mutation of intron 7 in addition to three missense mutations. The mutation G385 A (Gly124-->Glu) changes a Gly that is strictly conserved in Surfl homologs of 12 species. The substitution G618 C (Asp202-->His), changing an Asp that is conserved only in mammals, appears to be a polymorphism. The mutation T751 C changes Ile246 to Thr, a position at which a hydrophobic amino acid is conserved in all eukaryotic and some bacterial species. Replacing Ile246 by Thr disrupts a predicted beta sheet structure present in all higher eukaryotes. COX activity could be restored in fibroblasts of the three patients by complementation with a retroviral vector containing normal SURF1 cDNA. These mutations identify domains essential to Surf1 protein structure and/or function.
Three-dimensional pin-to-pin analyses of VVER-440 cores by the MOBY-DICK code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, M.; Mikolas, P.
1994-12-31
Nuclear design for the Dukovany (EDU) VVER-440s nuclear power plant is routinely performed by the MOBY-DICK system. After its implementation on Hewlett Packard series 700 workstations, it is able to perform routinely three-dimensional pin-to-pin core analyses. For purposes of code validation, the benchmark prepared from EDU operational data was solved.
Ponomarev, Vladimir; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Balatoni, Julius; Blasberg, Ronald; Tjuvajev, Juri Gelovani
2003-01-01
Abstract To optimize the sensitivity of imaging HSV1-tk/GFP reporter gene expression, a series of HSV1-tk/GFP mutants was developed with altered nuclear localization and better cellular enzymatic activity, compared to that of the native HSV1-tk/GFP fusion protein (HSV1-tk/GFP). Several modifications of HSV1-tk/GFP reporter gene were performed, including targeted inactivating mutations in the nuclear localization signal (NLS), the addition of a nuclear export signal (NES), a combination of both mutation types, and a truncation of the first 135 bp of the native hsv1-tk coding sequence containing a “cryptic” testicular promoter and the NLS. A recombinant HSV1-tk/GFP protein and a highly sensitive sandwich enzyme-linked immunosorbent assay for HSV1-tk/GFP were developed to quantitate the amount of reporter gene product in different assays to allow normalization of the data. These different mutations resulted in various degrees of nuclear clearance, predominant cytoplasmic distribution, and increased total cellular enzymatic activity of the HSV1-tk/GFP mutants, compared to native HSV1-tk/GFP when expressed at the same levels. This appears to be the result of improvedmetabolic bioavailability of cytoplasmically retargeted mutant HSV1-tk/GFP enzymes for reaction with the radiolabeled probe (e.g., FIAU). The analysis of enzymatic properties of different HSV1-tk/GFP mutants using FIAU as a substrate revealed no significant differences from that of the native HSV1-tk/GFP. Improved total cellular enzymatic activity of cytoplasmically retargeted HSV1-tk/GFP mutants observed in vitro was confirmed by noninvasive imaging of transduced subcutaneous tumor xenografts bearing these reporters using [131I]FIAU and a γ-camera. PMID:12869307
1986-01-01
The nonchromatin structure or matrix of the nucleus has been studied using an improved fractionation in concert with resinless section electron microscopy. The resinless sections show the nucleus of the intact cell to be filled with a dense network or lattice composed of soluble proteins and chromatin in addition to the structural nuclear constituents. In the first fractionation step, soluble proteins are removed by extraction with Triton X-100, and the dense nuclear lattice largely disappears. Chromatin and nonchromatin nuclear fibers are now sharply imaged. Nuclear constituents are further separated into three well-defined, distinct protein fractions. Chromatin proteins are those that require intact DNA for their association with the nucleus and are released by 0.25 M ammonium sulfate after internucleosomal DNA is cut with DNAase I. The resulting structure retains most heterogeneous nuclear ribonucleoprotein (hnRNP) and is designated the RNP-containing nuclear matrix. The proteins of hnRNP are those associated with the nucleus only if RNA is intact. These are released when nuclear RNA is briefly digested with RNAase A. Ribonuclease digestion releases 97% of the hnRNA and its associated proteins. These proteins correspond to the hnRNP described by Pederson (Pederson, T., 1974, J. Mol. Biol., 83:163- 184) and are distinct from the proteins that remain in the ribonucleoprotein (RNP)-depleted nuclear matrix. The RNP-depleted nuclear matrix is a core structure that retains lamins A and C, the intermediate filaments, and a unique set of nuclear matrix proteins (Fey, E. G., K. M. Wan, and S. Penman, 1984, J. Cell Biol. 98:1973- 1984). This core had been previously designated the nuclear matrix- intermediate filament scaffold and its proteins are a third, distinct, and nonoverlapping subset of the nuclear nonhistone proteins. Visualizing the nuclear matrix using resinless sections shows that nuclear RNA plays an important role in matrix organization. Conventional Epon-embedded electron microscopy sections show comparatively little of the RNP-containing and RNP-depleted nuclear matrix structure. In contrast, resinless sections show matrix interior to be a three-dimensional network of thick filaments bounded by the nuclear lamina. The filaments are covered with 20-30-nm electron dense particles which may contain the hnRNA. The large electron dense bodies, enmeshed in the interior matrix fibers, have the characteristic morphology of nucleoli. Treatment of the nuclear matrix with RNAase results in the aggregation of the interior fibers and the extensive loss of the 20-30-nm particles.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3700470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.W.; Layton, J.P.
1976-09-13
The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The NUROC3A systems analysis code was designed to provide the user with performance characteristics of the dual-mode system. Volume 3 describes utilization of the NUROC3A code to produce a detailed parameter study of the system.
Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly.
Pasion, S G; Forsburg, S L
1999-12-01
The minichromosome maintenance (MCM) proteins MCM2-MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear.
Nuclear Localization of Schizosaccharomyces pombe Mcm2/Cdc19p Requires MCM Complex Assembly
Pasion, Sally G.; Forsburg, Susan L.
1999-01-01
The minichromosome maintenance (MCM) proteins MCM2–MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear. PMID:10588642
Getzenberg, R H; Coffey, D S
1990-09-01
The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.
An emerging link between LIM domain proteins and nuclear receptors.
Sala, Stefano; Ampe, Christophe
2018-06-01
Nuclear receptors are ligand-activated transcription factors that partake in several biological processes including development, reproduction and metabolism. Over the last decade, evidence has accumulated that group 2, 3 and 4 LIM domain proteins, primarily known for their roles in actin cytoskeleton organization, also partake in gene transcription regulation. They shuttle between the cytoplasm and the nucleus, amongst other as a consequence of triggering cells with ligands of nuclear receptors. LIM domain proteins act as important coregulators of nuclear receptor-mediated gene transcription, in which they can either function as coactivators or corepressors. In establishing interactions with nuclear receptors, the LIM domains are important, yet pleiotropy of LIM domain proteins and nuclear receptors frequently occurs. LIM domain protein-nuclear receptor complexes function in diverse physiological processes. Their association is, however, often linked to diseases including cancer.
Using NJOY to Create MCNP ACE Files and Visualize Nuclear Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahler, Albert Comstock
We provide lecture materials that describe the input requirements to create various MCNP ACE files (Fast, Thermal, Dosimetry, Photo-nuclear and Photo-atomic) with the NJOY Nuclear Data Processing code system. Input instructions to visualize nuclear data with NJOY are also provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... Perry. FOR FURTHER INFORMATION CONTACT: Michael Mahoney, Office of Nuclear Reactor Regulation, U.S... Nuclear Reactor Regulation. [FR Doc. 2010-7331 Filed 3-31-10; 8:45 am] BILLING CODE 7590-01-P ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-440; NRC-2010-0124] FirstEnergy Nuclear Operating...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp; Hirai, Yuya; Yoshimura, Shige H.
2013-12-10
To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do notmore » take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.« less
Petrovsky, Roman; Krohne, Georg; Großhans, Jörg
2018-03-01
The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.
The nuclear import of ribosomal proteins is regulated by mTOR
Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.
2014-01-01
Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810
Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, Rumi; En, Atsuki; Ukekawa, Ryo
2016-05-13
5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.
Mutations in the Promoter Region of the Aldolase B Gene that cause Hereditary Fructose Intolerance
Coffee, Erin M.; Tolan, Dean R.
2010-01-01
SUMMARY Hereditary fructose intolerance (HFI) is a potentially fatal inherited metabolic disease caused by a deficiency of aldolase B activity in the liver and kidney. Over 40 disease-causing mutations are known in the protein-coding region of ALDOB. Mutations upstream of the protein-coding portion of ALDOB are reported here for the first time. DNA sequence analysis of 61 HFI patients revealed single base mutations in the promoter, intronic enhancer, and the first exon, which is entirely untranslated. One mutation, g.–132G>A, is located within the promoter at an evolutionarily conserved nucleotide within a transcription factor-binding site. A second mutation, IVS1+1G>C, is at the donor splice site of the first exon. In vitro electrophoretic mobility shift assays show a decrease in nuclear extract-protein binding at the g.–132G>A mutant site. The promoter mutation results in decreased transcription using luciferase reporter plasmids. Analysis of cDNA from cells transfected with plasmids harboring the IVS1+1G>C mutation results in aberrant splicing leading to complete retention of the first intron (~ 5 kb). The IVS1+1G>C splicing mutation results in loss of luciferase activity from a reporter plasmid. These novel mutations in ALDOB represent 2% of alleles in American HFI patients, with IVS1+1G>C representing a significantly higher allele frequency (6%) among HFI patients of Hispanic and African-American ethnicity. PMID:20882353
Sequencing of Seven Haloarchaeal Genomes Reveals Patterns of Genomic Flux
Lynch, Erin A.; Langille, Morgan G. I.; Darling, Aaron; Wilbanks, Elizabeth G.; Haltiner, Caitlin; Shao, Katie S. Y.; Starr, Michael O.; Teiling, Clotilde; Harkins, Timothy T.; Edwards, Robert A.; Eisen, Jonathan A.; Facciotti, Marc T.
2012-01-01
We report the sequencing of seven genomes from two haloarchaeal genera, Haloferax and Haloarcula. Ease of cultivation and the existence of well-developed genetic and biochemical tools for several diverse haloarchaeal species make haloarchaea a model group for the study of archaeal biology. The unique physiological properties of these organisms also make them good candidates for novel enzyme discovery for biotechnological applications. Seven genomes were sequenced to ∼20×coverage and assembled to an average of 50 contigs (range 5 scaffolds - 168 contigs). Comparisons of protein-coding gene compliments revealed large-scale differences in COG functional group enrichment between these genera. Analysis of genes encoding machinery for DNA metabolism reveals genera-specific expansions of the general transcription factor TATA binding protein as well as a history of extensive duplication and horizontal transfer of the proliferating cell nuclear antigen. Insights gained from this study emphasize the importance of haloarchaea for investigation of archaeal biology. PMID:22848480
The draft genome of the parasitic nematode Trichinella spiralis
Mitreva, Makedonka; Jasmer, Douglas P.; Zarlenga, Dante S.; Wang, Zhengyuan; Abubucker, Sahar; Martin, John; Taylor, Christina M.; Yin, Yong; Fulton, Lucinda; Minx, Pat; Yang, Shiaw-Pyng; Warren, Wesley C.; Fulton, Robert S.; Bhonagiri, Veena; Zhang, Xu; Hallsworth-Pepin, Kym; Clifton, Sandra W.; McCarter, James P.; Appleton, Judith; Mardis, Elaine R.; Wilson, Richard K.
2011-01-01
Genome-based studies of metazoan evolution are most informative when phylogenetically diverse species are incorporated in the analysis. As such, evolutionary trends within and outside the phylum Nematoda have been less revealing by focusing only on comparisons involving Caenorhabditis elegans. Herein, we present a draft of the 64 megabase nuclear genome of Trichinella spiralis, containing 15,808 protein coding genes. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum enabling identification of archetypical genes and molecular signatures exclusive to nematodes. Comparative analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic vs. a non-parasitic nematode, and a preponderance of gene loss and gain events in nematodes relative to Drosophila melanogaster. This sequence and the panphylum characteristics identified herein will advance evolutionary studies and strategies to combat global parasites of humans, food animals and crops. PMID:21336279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimura, Ann S.; Brandt, Larry D.
2009-11-01
The NUclear EVacuation Analysis Code (NUEVAC) has been developed by Sandia National Laboratories to support the analysis of shelter-evacuate (S-E) strategies following an urban nuclear detonation. This tool can model a range of behaviors, including complex evacuation timing and path selection, as well as various sheltering or mixed evacuation and sheltering strategies. The calculations are based on externally generated, high resolution fallout deposition and plume data. Scenario setup and calculation outputs make extensive use of graphics and interactive features. This software is designed primarily to produce quantitative evaluations of nuclear detonation response options. However, the outputs have also proven usefulmore » in the communication of technical insights concerning shelter-evacuate tradeoffs to urban planning or response personnel.« less
Convection and thermal radiation analytical models applicable to a nuclear waste repository room
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.W.
1979-01-17
Time-dependent temperature distributions in a deep geologic nuclear waste repository have a direct impact on the physical integrity of the emplaced canisters and on the design of retrievability options. This report (1) identifies the thermodynamic properties and physical parameters of three convection regimes - forced, natural, and mixed; (2) defines the convection correlations applicable to calculating heat flow in a ventilated (forced-air) and in a nonventilated nuclear waste repository room; and (3) delineates a computer code that (a) computes and compares the floor-to-ceiling heat flow by convection and radiation, and (b) determines the nonlinear equivalent conductivity table for a repositorymore » room. (The tables permit the use of the ADINAT code to model surface-to-surface radiation and the TRUMP code to employ two different emissivity properties when modeling radiation exchange between the surface of two different materials.) The analysis shows that thermal radiation dominates heat flow modes in a nuclear waste repository room.« less
Energy spectrum of 208Pb(n,x) reactions
NASA Astrophysics Data System (ADS)
Tel, E.; Kavun, Y.; Özdoǧan, H.; Kaplan, A.
2018-02-01
Fission and fusion reactor technologies have been investigated since 1950's on the world. For reactor technology, fission and fusion reaction investigations are play important role for improve new generation technologies. Especially, neutron reaction studies have an important place in the development of nuclear materials. So neutron effects on materials should study as theoretically and experimentally for improve reactor design. For this reason, Nuclear reaction codes are very useful tools when experimental data are unavailable. For such circumstances scientists created many nuclear reaction codes such as ALICE/ASH, CEM95, PCROSS, TALYS, GEANT, FLUKA. In this study we used ALICE/ASH, PCROSS and CEM95 codes for energy spectrum calculation of outgoing particles from Pb bombardment by neutron. While Weisskopf-Ewing model has been used for the equilibrium process in the calculations, full exciton, hybrid and geometry dependent hybrid nuclear reaction models have been used for the pre-equilibrium process. The calculated results have been discussed and compared with the experimental data taken from EXFOR.
Nuclear Resonance Fluorescence for Materials Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir
This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less
NLSdb-major update for database of nuclear localization signals and nuclear export signals.
Bernhofer, Michael; Goldberg, Tatyana; Wolf, Silvana; Ahmed, Mohamed; Zaugg, Julian; Boden, Mikael; Rost, Burkhard
2018-01-04
NLSdb is a database collecting nuclear export signals (NES) and nuclear localization signals (NLS) along with experimentally annotated nuclear and non-nuclear proteins. NES and NLS are short sequence motifs related to protein transport out of and into the nucleus. The updated NLSdb now contains 2253 NLS and introduces 398 NES. The potential sets of novel NES and NLS have been generated by a simple 'in silico mutagenesis' protocol. We started with motifs annotated by experiments. In step 1, we increased specificity such that no known non-nuclear protein matched the refined motif. In step 2, we increased the sensitivity trying to match several different families with a motif. We then iterated over steps 1 and 2. The final set of 2253 NLS motifs matched 35% of 8421 experimentally verified nuclear proteins (up from 21% for the previous version) and none of 18 278 non-nuclear proteins. We updated the web interface providing multiple options to search protein sequences for NES and NLS motifs, and to evaluate your own signal sequences. NLSdb can be accessed via Rostlab services at: https://rostlab.org/services/nlsdb/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mochizuki, Ryota; Tsugama, Daisuke; Yamazaki, Michihiro; Fujino, Kaien; Masuda, Kiyoshi
2017-05-04
NMCP/CRWN (NUCLEAR MATRIX CONSTITUENT PROTEIN/CROWDED NUCLEI) is a major component of a protein fibrous meshwork (lamina-like structure) on the plant inner nuclear membrane. NMCP/CRWN contributes to regulating nuclear shape and nuclear functions. An NMCP/CRWN protein in Daucus carota (DcNMCP1) is localized to the nuclear periphery in interphase cells, and surrounds chromosomes in cells in metaphase and anaphase. The N-terminal region and the C-terminal region of DcNMCP1 are both necessary for localizing DcNMCP1 to the nuclear periphery. Here candidate interacting partners of the amino acid position 975-1053 of DcNMCP1 (T975-1053), which is present in the C-terminal region and contains a conserved sequence that plays a role in localizing DcNMCP1 to the nuclear periphery, are screened for. Arabidopsis thaliana nuclear proteins were subjected to far-Western blotting with GST-fused T975-1053 as a probe, and signals were detected at the positions corresponding to ∼70, ∼40, and ∼18 kDa. These ∼70, ∼40, and ∼18 kDa nuclear proteins were identified by mass spectrometry, and subjected to a yeast 2-hybrid (Y2H) analysis with T975-1053 as bait. In this analysis, the ∼40 kDa protein ARP7, which is a nuclear actin-related protein possibly involved in regulating chromatin structures, was confirmed to interact with T975-1053. Independently of the far-Western blotting, a Y2H screen was performed using T975-1053 as bait. Targeted Y2H assays confirmed that 3 proteins identified in the screen, MYB3, SINAT1, and BIM1, interact with T975-1053. These proteins might have roles in NMCP/CRWN protein-mediated biologic processes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-366; NRC-2010-0345] Southern Nuclear Operating Company Inc. Edwin I. Hatch Nuclear Plant, Unit No. 2 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering the issuance of an exemption from Title 10 of the Code of Federal Regulations, ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-29
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-348 and 50-364; NRC-2009-0375] Southern Nuclear Operating Company, Inc. Joseph M. Farley Nuclear Plant, Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant to Title 10 of the Code of Federal...
Janssen, K A; Sidoli, S; Garcia, B A
2017-01-01
Functional epigenetic regulation occurs by dynamic modification of chromatin, including genetic material (i.e., DNA methylation), histone proteins, and other nuclear proteins. Due to the highly complex nature of the histone code, mass spectrometry (MS) has become the leading technique in identification of single and combinatorial histone modifications. MS has now overcome antibody-based strategies due to its automation, high resolution, and accurate quantitation. Moreover, multiple approaches to analysis have been developed for global quantitation of posttranslational modifications (PTMs), including large-scale characterization of modification coexistence (middle-down and top-down proteomics), which is not currently possible with any other biochemical strategy. Recently, our group and others have simplified and increased the effectiveness of analyzing histone PTMs by improving multiple MS methods and data analysis tools. This review provides an overview of the major achievements in the analysis of histone PTMs using MS with a focus on the most recent improvements. We speculate that the workflow for histone analysis at its state of the art is highly reliable in terms of identification and quantitation accuracy, and it has the potential to become a routine method for systems biology thanks to the possibility of integrating histone MS results with genomics and proteomics datasets. © 2017 Elsevier Inc. All rights reserved.
Human La binds mRNAs through contacts to the poly(A) tail
Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A
2018-01-01
Abstract In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3’OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3’OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail. PMID:29447394
Improvements to the nuclear model code GNASH for cross section calculations at higher energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, P.G.; Chadwick, M.B.
1994-05-01
The nuclear model code GNASH, which in the past has been used predominantly for incident particle energies below 20 MeV, has been modified extensively for calculations at higher energies. The model extensions and improvements are described in this paper, and their significance is illustrated by comparing calculations with experimental data for incident energies up to 160 MeV.
Banerjee, Ayan; Vest, Katherine E; Pavlath, Grace K; Corbett, Anita H
2017-10-13
The polyadenylate binding protein 1 (PABPN1) is a ubiquitously expressed RNA binding protein vital for multiple steps in RNA metabolism. Although PABPN1 plays a critical role in the regulation of RNA processing, mutation of the gene encoding this ubiquitously expressed RNA binding protein causes a specific form of muscular dystrophy termed oculopharyngeal muscular dystrophy (OPMD). Despite the tissue-specific pathology that occurs in this disease, only recently have studies of PABPN1 begun to explore the role of this protein in skeletal muscle. We have used co-immunoprecipitation and mass spectrometry to identify proteins that interact with PABPN1 in mouse skeletal muscles. Among the interacting proteins we identified Matrin 3 (MATR3) as a novel protein interactor of PABPN1. The MATR3 gene is mutated in a form of distal myopathy and amyotrophic lateral sclerosis (ALS). We demonstrate, that like PABPN1, MATR3 is critical for myogenesis. Furthermore, MATR3 controls critical aspects of RNA processing including alternative polyadenylation and intron retention. We provide evidence that MATR3 also binds and regulates the levels of long non-coding RNA (lncRNA) Neat1 and together with PABPN1 is required for normal paraspeckle function. We demonstrate that PABPN1 and MATR3 are required for paraspeckles, as well as for adenosine to inosine (A to I) RNA editing of Ctn RNA in muscle cells. We provide a functional link between PABPN1 and MATR3 through regulation of a common lncRNA target with downstream impact on paraspeckle morphology and function. We extend our analysis to a mouse model of OPMD and demonstrate altered paraspeckle morphology in the presence of endogenous levels of alanine-expanded PABPN1. In this study, we report protein-binding partners of PABPN1, which could provide insight into novel functions of PABPN1 in skeletal muscle and identify proteins that could be sequestered with alanine-expanded PABPN1 in the nuclear aggregates found in OPMD. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Banerjee, Ayan; Vest, Katherine E.
2017-01-01
Abstract The polyadenylate binding protein 1 (PABPN1) is a ubiquitously expressed RNA binding protein vital for multiple steps in RNA metabolism. Although PABPN1 plays a critical role in the regulation of RNA processing, mutation of the gene encoding this ubiquitously expressed RNA binding protein causes a specific form of muscular dystrophy termed oculopharyngeal muscular dystrophy (OPMD). Despite the tissue-specific pathology that occurs in this disease, only recently have studies of PABPN1 begun to explore the role of this protein in skeletal muscle. We have used co-immunoprecipitation and mass spectrometry to identify proteins that interact with PABPN1 in mouse skeletal muscles. Among the interacting proteins we identified Matrin 3 (MATR3) as a novel protein interactor of PABPN1. The MATR3 gene is mutated in a form of distal myopathy and amyotrophic lateral sclerosis (ALS). We demonstrate, that like PABPN1, MATR3 is critical for myogenesis. Furthermore, MATR3 controls critical aspects of RNA processing including alternative polyadenylation and intron retention. We provide evidence that MATR3 also binds and regulates the levels of long non-coding RNA (lncRNA) Neat1 and together with PABPN1 is required for normal paraspeckle function. We demonstrate that PABPN1 and MATR3 are required for paraspeckles, as well as for adenosine to inosine (A to I) RNA editing of Ctn RNA in muscle cells. We provide a functional link between PABPN1 and MATR3 through regulation of a common lncRNA target with downstream impact on paraspeckle morphology and function. We extend our analysis to a mouse model of OPMD and demonstrate altered paraspeckle morphology in the presence of endogenous levels of alanine-expanded PABPN1. In this study, we report protein-binding partners of PABPN1, which could provide insight into novel functions of PABPN1 in skeletal muscle and identify proteins that could be sequestered with alanine-expanded PABPN1 in the nuclear aggregates found in OPMD. PMID:28977530
Heude, M; Chanet, R; Moustacchi, E
1975-04-01
The contribution of nuclear-directed protein synthesis in the repair of lethal and mitochondrial genetic damage after UV-irradiation of exponential and stationary phage haploid yeast cells was examined. This was carried out using cycloheximide (CH), a specific inhibitor of nuclear protein synthesis. It appears that nuclear protein synthesis is required for the increase in survival seen after the liquid holding of cells at both stages, as well as for the "petite" recovery seen after the liquid holding of exponential phase cells. The characteristic negative liquid holding effect observed for the UV induction of "petites" in stationary phase cells (increase of the frequency of "petites" during storage) remained following all the treatments which inhibited nuclear protein synthesis. However, the application of photoreactivating light following dark holding with cycloheximide indicates that some steps of the repair of both nuclear and mitochondrial damage are performed in the absence of a synthesis of proteins.
2014-01-01
Background The genome is pervasively transcribed but most transcripts do not code for proteins, constituting non-protein-coding RNAs. Despite increasing numbers of functional reports of individual long non-coding RNAs (lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells remains intricate. In the protein-coding world, transcripts differentially expressed in the context of processes essential for the survival of multicellular organisms have been instrumental in the discovery of functionally relevant proteins and their deregulation is frequently associated with diseases. We therefore systematically identified lncRNAs expressed differentially in response to oncologically relevant processes and cell-cycle, p53 and STAT3 pathways, using tiling arrays. Results We found that up to 80% of the pathway-triggered transcriptional responses are non-coding. Among these we identified very large macroRNAs with pathway-specific expression patterns and demonstrated that these are likely continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein-coding genes suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the initially used cell lines, macroRNAs are differentially expressed. Conclusions It has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding. We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence of leaky or random transcription events. PMID:24594072
Poleshko, Andrey; Mansfield, Katelyn M; Burlingame, Caroline C; Andrake, Mark D; Shah, Neil R; Katz, Richard A
2013-10-31
The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here, we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a function in the selection of HP1-bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis.
Poleshko, Andrey; Mansfield, Katelyn M.; Burlingame, Caroline C.; Andrake, Mark D.; Shah, Neil R.; Katz, Richard A.
2013-01-01
SUMMARY The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin, and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a novel function in the selection of HP1–bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis. PMID:24209742
The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition
NASA Astrophysics Data System (ADS)
Štambuk, Nikola
The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.
The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins.
Ponce de Leon, Miguel; de Miranda, Antonio Basilio; Alvarez-Valin, Fernando; Carels, Nicolas
2014-01-01
For this report, we analyzed protein secondary structures in relation to the statistics of three nucleotide codon positions. The purpose of this investigation was to find which properties of the ribosome, tRNA or protein level, could explain the purine bias (Rrr) as it is observed in coding DNA. We found that the Rrr pattern is the consequence of a regularity (the codon structure) resulting from physicochemical constraints on proteins and thermodynamic constraints on ribosomal machinery. The physicochemical constraints on proteins mainly come from the hydropathy and molecular weight (MW) of secondary structures as well as the energy cost of amino acid synthesis. These constraints appear through a network of statistical correlations, such as (i) the cost of amino acid synthesis, which is in favor of a higher level of guanine in the first codon position, (ii) the constructive contribution of hydropathy alternation in proteins, (iii) the spatial organization of secondary structure in proteins according to solvent accessibility, (iv) the spatial organization of secondary structure according to amino acid hydropathy, (v) the statistical correlation of MW with protein secondary structures and their overall hydropathy, (vi) the statistical correlation of thymine in the second codon position with hydropathy and the energy cost of amino acid synthesis, and (vii) the statistical correlation of adenine in the second codon position with amino acid complexity and the MW of secondary protein structures. Amino acid physicochemical properties and functional constraints on proteins constitute a code that is translated into a purine bias within the coding DNA via tRNAs. In that sense, the Rrr pattern within coding DNA is the effect of information transfer on nucleotide composition from protein to DNA by selection according to the codon positions. Thus, coding DNA structure and ribosomal machinery co-evolved to minimize the energy cost of protein coding given the functional constraints on proteins.
Mechanisms of Nuclear Export in Cancer and Resistance to Chemotherapy.
El-Tanani, Mohamed; Dakir, El-Habib; Raynor, Bethany; Morgan, Richard
2016-03-14
Tumour suppressor proteins, such as p53, BRCA1, and ABC, play key roles in preventing the development of a malignant phenotype, but those that function as transcriptional regulators need to enter the nucleus in order to function. The export of proteins between the nucleus and cytoplasm is complex. It occurs through nuclear pores and exported proteins need a nuclear export signal (NES) to bind to nuclear exportin proteins, including CRM1 (Chromosomal Region Maintenance protein 1), and the energy for this process is provided by the RanGTP/RanGDP gradient. Due to the loss of DNA repair and cell cycle checkpoints, drug resistance is a major problem in cancer treatment, and often an initially successful treatment will fail due to the development of resistance. An important mechanism underlying resistance is nuclear export, and a number of strategies that can prevent nuclear export may reverse resistance. Examples include inhibitors of CRM1, antibodies to the nuclear export signal, and alteration of nuclear pore structure. Each of these are considered in this review.
Reformation of Regulatory Technical Standards for Nuclear Power Generation Equipments in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikio Kurihara; Masahiro Aoki; Yu Maruyama
2006-07-01
Comprehensive reformation of the regulatory system has been introduced in Japan in order to apply recent technical progress in a timely manner. 'The Technical Standards for Nuclear Power Generation Equipments', known as the Ordinance No.622) of the Ministry of International Trade and Industry, which is used for detailed design, construction and operating stage of Nuclear Power Plants, was being modified to performance specifications with the consensus codes and standards being used as prescriptive specifications, in order to facilitate prompt review of the Ordinance with response to technological innovation. The activities on modification were performed by the Nuclear and Industrial Safetymore » Agency (NISA), the regulatory body in Japan, with support of the Japan Nuclear Energy Safety Organization (JNES), a technical support organization. The revised Ordinance No.62 was issued on July 1, 2005 and is enforced from January 1 2006. During the period from the issuance to the enforcement, JNES carried out to prepare enforceable regulatory guide which complies with each provisions of the Ordinance No.62, and also made technical assessment to endorse the applicability of consensus codes and standards, in response to NISA's request. Some consensus codes and standards were re-assessed since they were already used in regulatory review of the construction plan submitted by licensee. Other consensus codes and standards were newly assessed for endorsement. In case that proper consensus code or standards were not prepared, details of regulatory requirements were described in the regulatory guide as immediate measures. At the same time, appropriate standards developing bodies were requested to prepare those consensus code or standards. Supplementary note which provides background information on the modification, applicable examples etc. was prepared for convenience to the users of the Ordinance No. 62. This paper shows the activities on modification and the results, following the NISA's presentation at ICONE-13 that introduced the framework of the performance specifications and the modification process of the Ordinance NO. 62. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sublet, J.-Ch., E-mail: jean-christophe.sublet@ukaea.uk; Eastwood, J.W.; Morgan, J.G.
Fispact-II is a code system and library database for modelling activation-transmutation processes, depletion-burn-up, time dependent inventory and radiation damage source terms caused by nuclear reactions and decays. The Fispact-II code, written in object-style Fortran, follows the evolution of material irradiated by neutrons, alphas, gammas, protons, or deuterons, and provides a wide range of derived radiological output quantities to satisfy most needs for nuclear applications. It can be used with any ENDF-compliant group library data for nuclear reactions, particle-induced and spontaneous fission yields, and radioactive decay (including but not limited to TENDL-2015, ENDF/B-VII.1, JEFF-3.2, JENDL-4.0u, CENDL-3.1 processed into fine-group-structure files, GEFY-5.2more » and UKDD-16), as well as resolved and unresolved resonance range probability tables for self-shielding corrections and updated radiological hazard indices. The code has many novel features including: extension of the energy range up to 1 GeV; additional neutron physics including self-shielding effects, temperature dependence, thin and thick target yields; pathway analysis; and sensitivity and uncertainty quantification and propagation using full covariance data. The latest ENDF libraries such as TENDL encompass thousands of target isotopes. Nuclear data libraries for Fispact-II are prepared from these using processing codes PREPRO, NJOY and CALENDF. These data include resonance parameters, cross sections with covariances, probability tables in the resonance ranges, PKA spectra, kerma, dpa, gas and radionuclide production and energy-dependent fission yields, supplemented with all 27 decay types. All such data for the five most important incident particles are provided in evaluated data tables. The Fispact-II simulation software is described in detail in this paper, together with the nuclear data libraries. The Fispact-II system also includes several utility programs for code-use optimisation, visualisation and production of secondary radiological quantities. Included in the paper are summaries of results from the suite of verification and validation reports available with the code.« less
FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling
NASA Astrophysics Data System (ADS)
Sublet, J.-Ch.; Eastwood, J. W.; Morgan, J. G.; Gilbert, M. R.; Fleming, M.; Arter, W.
2017-01-01
Fispact-II is a code system and library database for modelling activation-transmutation processes, depletion-burn-up, time dependent inventory and radiation damage source terms caused by nuclear reactions and decays. The Fispact-II code, written in object-style Fortran, follows the evolution of material irradiated by neutrons, alphas, gammas, protons, or deuterons, and provides a wide range of derived radiological output quantities to satisfy most needs for nuclear applications. It can be used with any ENDF-compliant group library data for nuclear reactions, particle-induced and spontaneous fission yields, and radioactive decay (including but not limited to TENDL-2015, ENDF/B-VII.1, JEFF-3.2, JENDL-4.0u, CENDL-3.1 processed into fine-group-structure files, GEFY-5.2 and UKDD-16), as well as resolved and unresolved resonance range probability tables for self-shielding corrections and updated radiological hazard indices. The code has many novel features including: extension of the energy range up to 1 GeV; additional neutron physics including self-shielding effects, temperature dependence, thin and thick target yields; pathway analysis; and sensitivity and uncertainty quantification and propagation using full covariance data. The latest ENDF libraries such as TENDL encompass thousands of target isotopes. Nuclear data libraries for Fispact-II are prepared from these using processing codes PREPRO, NJOY and CALENDF. These data include resonance parameters, cross sections with covariances, probability tables in the resonance ranges, PKA spectra, kerma, dpa, gas and radionuclide production and energy-dependent fission yields, supplemented with all 27 decay types. All such data for the five most important incident particles are provided in evaluated data tables. The Fispact-II simulation software is described in detail in this paper, together with the nuclear data libraries. The Fispact-II system also includes several utility programs for code-use optimisation, visualisation and production of secondary radiological quantities. Included in the paper are summaries of results from the suite of verification and validation reports available with the code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hongxing, E-mail: Hongxing.Zhao@igp.uu.se; Chen, Maoshan; Lind, Sara Bergström
The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phasemore » and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.« less
Phylogenetic Analysis of Mitochondrial Outer Membrane β-Barrel Channels
Wojtkowska, Małgorzata; Jąkalski, Marcin; Pieńkowska, Joanna R.; Stobienia, Olgierd; Karachitos, Andonis; Przytycka, Teresa M.; Weiner, January; Kmita, Hanna; Makałowski, Wojciech
2012-01-01
Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have β-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial β-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane β-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta. PMID:22155732
Integral nuclear data validation using experimental spent nuclear fuel compositions
Gauld, Ian C.; Williams, Mark L.; Michel-Sendis, Franco; ...
2017-07-19
Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors andmore » representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. Furthermore, the database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.« less
Integral nuclear data validation using experimental spent nuclear fuel compositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauld, Ian C.; Williams, Mark L.; Michel-Sendis, Franco
Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors andmore » representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. Furthermore, the database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... INFORMATION CONTACT: Nageswaran Kalyanam, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory..., Office of Nuclear Reactor Regulation. [FR Doc. 2013-06510 Filed 3-20-13; 8:45 am] BILLING CODE 7590-01-P ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0012] [Docket Nos. 50-458, 50-155, 72-043, 50-003, 50-247...
QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation
NASA Astrophysics Data System (ADS)
Samana, A. R.; Krmpotić, F.; Bertulani, C. A.
2010-06-01
A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.
Hakala, John L; Hung, Joseph C; Mosman, Elton A
2012-09-01
The objective of this project was to ensure correct radiopharmaceutical administration through the use of a bar code system that links patient and drug profiles with on-site information management systems. This new combined system would minimize the amount of manual human manipulation, which has proven to be a primary source of error. The most common reason for dosing errors is improper patient identification when a dose is obtained from the nuclear pharmacy or when a dose is administered. A standardized electronic transfer of information from radiopharmaceutical preparation to injection will further reduce the risk of misadministration. Value stream maps showing the flow of the patient dose information, as well as potential points of human error, were developed. Next, a future-state map was created that included proposed corrections for the most common critical sites of error. Transitioning the current process to the future state will require solutions that address these sites. To optimize the future-state process, a bar code system that links the on-site radiology management system with the nuclear pharmacy management system was proposed. A bar-coded wristband connects the patient directly to the electronic information systems. The bar code-enhanced process linking the patient dose with the electronic information reduces the number of crucial points for human error and provides a framework to ensure that the prepared dose reaches the correct patient. Although the proposed flowchart is designed for a site with an in-house central nuclear pharmacy, much of the framework could be applied by nuclear medicine facilities using unit doses. An electronic connection between information management systems to allow the tracking of a radiopharmaceutical from preparation to administration can be a useful tool in preventing the mistakes that are an unfortunate reality for any facility.
Development and preliminary verification of the 3D core neutronic code: COCO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H.; Mo, K.; Li, W.
As the recent blooming economic growth and following environmental concerns (China)) is proactively pushing forward nuclear power development and encouraging the tapping of clean energy. Under this situation, CGNPC, as one of the largest energy enterprises in China, is planning to develop its own nuclear related technology in order to support more and more nuclear plants either under construction or being operation. This paper introduces the recent progress in software development for CGNPC. The focus is placed on the physical models and preliminary verification results during the recent development of the 3D Core Neutronic Code: COCO. In the COCO code,more » the non-linear Green's function method is employed to calculate the neutron flux. In order to use the discontinuity factor, the Neumann (second kind) boundary condition is utilized in the Green's function nodal method. Additionally, the COCO code also includes the necessary physical models, e.g. single-channel thermal-hydraulic module, burnup module, pin power reconstruction module and cross-section interpolation module. The preliminary verification result shows that the COCO code is sufficient for reactor core design and analysis for pressurized water reactor (PWR). (authors)« less
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
NASA Astrophysics Data System (ADS)
Tayama, Ryuichi; Wakasugi, Kenichi; Kawanaka, Ikunori; Kadota, Yoshinobu; Murakami, Yasuhiro
We measured the skyshine dose from turbine buildings at Shimane Nuclear Power Station Unit 1 (NS-1) and Unit 2 (NS-2), and then compared it with the dose calculated with the Monte Carlo transport code MCNP5. The skyshine dose values calculated with the MCNP5 code agreed with the experimental data within a factor of 2.8, when the roof of the turbine building was precisely modeled. We concluded that our MCNP5 calculation was valid for BWR turbine skyshine dose evaluation.
Luks, Lisanne; Maier, Marcia Y; Sacchi, Silvia; Pollegioni, Loredano; Dietrich, Daniel R
2017-11-01
Proper subcellular trafficking is essential to prevent protein mislocalization and aggregation. Transport of the peroxisomal enzyme D-amino acid oxidase (DAAO) appears dysregulated by specific pharmaceuticals, e.g., the anti-overactive bladder drug propiverine or a norepinephrine/serotonin reuptake inhibitor (NSRI), resulting in massive cytosolic and nuclear accumulations in rat kidney. To assess the underlying molecular mechanism of the latter, we aimed to characterize the nature of peroxisomal and cyto-nuclear shuttling of human and rat DAAO overexpressed in three cell lines using confocal microscopy. Indeed, interference with peroxisomal transport via deletion of the PTS1 signal or PEX5 knockdown resulted in induced nuclear DAAO localization. Having demonstrated the absence of active nuclear import and employing variably sized mCherry- and/or EYFP-fusion proteins of DAAO and catalase, we showed that peroxisomal proteins ≤134 kDa can passively diffuse into mammalian cell nuclei-thereby contradicting the often-cited 40 kDa diffusion limit. Moreover, their inherent nuclear presence and nuclear accumulation subsequent to proteasome inhibition or abrogated peroxisomal transport suggests that nuclear localization is a characteristic in the lifecycle of peroxisomal proteins. Based on this molecular trafficking analysis, we suggest that pharmaceuticals like propiverine or an NSRI may interfere with peroxisomal protein targeting and import, consequently resulting in massive nuclear protein accumulation in vivo.
The intriguing plant nuclear lamina.
Ciska, Malgorzata; Moreno Díaz de la Espina, Susana
2014-01-01
The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.
Belanger, Kenneth D; Griffith, Amanda L; Baker, Heather L; Hansen, Jeanne N; Kovacs, Laura A Simmons; Seconi, Justin S; Strine, Andrew C
2011-09-01
Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.
Insight into nuclear body formation of phytochromes through stochastic modelling and experiment.
Grima, Ramon; Sonntag, Sebastian; Venezia, Filippo; Kircher, Stefan; Smith, Robert W; Fleck, Christian
2018-05-01
Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies. The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing nuclear bodies as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins. Creative Commons Attribution license.
Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina.
Muranyi, Walter; Haas, Jürgen; Wagner, Markus; Krohne, Georg; Koszinowski, Ulrich H
2002-08-02
The passage of large-sized herpesviral capsids through the nuclear lamina and the inner nuclear membrane to leave the nucleus requires a dissolution of the nuclear lamina. Here, we report on the functions of M50/p35, a beta-herpesviral protein of murine cytomegalovirus. M50/p35 inserts into the inner nuclear membrane and is aggregated by a second viral protein, M53/p38, to form the capsid docking site. M50/p35 recruits the cellular protein kinase C for phosphorylation and dissolution of the nuclear lamina, suggesting that herpesviruses target a critical element of nuclear architecture.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-321 and 50-366; NRC-2010-0024] Southern Nuclear Operating Company, Inc., Edwin I. Hatch Nuclear Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant to Title 10 of the Code of...
Computational Nuclear Physics and Post Hartree-Fock Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lietz, Justin; Sam, Novario; Hjorth-Jensen, M.
We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions onmore » strategies for porting the code to present and planned high-performance computing facilities.« less
Unique and shared functions of nuclear lamina LEM domain proteins in Drosophila.
Barton, Lacy J; Wilmington, Shameika R; Martin, Melinda J; Skopec, Hannah M; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K
2014-06-01
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. Copyright © 2014 by the Genetics Society of America.
Unique and Shared Functions of Nuclear Lamina LEM Domain Proteins in Drosophila
Barton, Lacy J.; Wilmington, Shameika R.; Martin, Melinda J.; Skopec, Hannah M.; Lovander, Kaylee E.; Pinto, Belinda S.; Geyer, Pamela K.
2014-01-01
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. PMID:24700158
Duan, Zhiqiang; Xu, Haixu; Ji, Xinqin; Zhao, Jiafu; Xu, Houqiang; Hu, Yan; Deng, Shanshan; Hu, Shunlin; Liu, Xiufan
2018-12-31
The matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to localize in the nucleus via intrinsic nuclear localization signal (NLS), but cellular proteins involved in the nuclear import of NDV M protein and the role of M's nuclear localization in the replication and pathogenicity of NDV remain unclear. In this study, importin β1 was screened to interact with NDV M protein by yeast two-hybrid screening. This interaction was subsequently confirmed by co-immunoprecipitation and pull-down assays. In vitro binding studies indicated that the NLS region of M protein and the amino acids 336-433 of importin β1 that belonged to the RanGTP binding region were important for binding. Importantly, a recombinant virus with M/NLS mutation resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chicken fibroblasts and SPF chickens. In agreement with the binding data, nuclear import of NDV M protein in digitonin-permeabilized HeLa cells required both importin β1 and RanGTP. Interestingly, importin α5 was verified to interact with M protein through binding importin β1. However, importin β1 or importin α5 depletion by siRNA resulted in different results, which showed the obviously cytoplasmic or nuclear accumulation of M protein and the remarkably decreased or increased replication ability and pathogenicity of NDV in chicken fibroblasts, respectively. Our findings therefore demonstrate for the first time the nuclear import mechanism of NDV M protein and the negative regulation role of importin α5 in importin β1-mediated nuclear import of M protein and the replication and pathogenicity of a paramyxovirus.
Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin
2016-01-01
The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including “codon capture,” “genome streamlining,” and “ambiguous intermediate” theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNAAla containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. PMID:27197221
Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase.
Repetto, B; Tzagoloff, A
1989-06-01
Nuclear respiratory-defective mutants of Saccharomyces cerevisiae have been screened for lesions in the mitochondrial alpha-ketoglutarate dehydrogenase complex. Strains assigned to complementation group G70 were ascertained to be deficient in enzyme activity due to mutations in the KGD1 gene coding for the alpha-ketoglutarate dehydrogenase component of the complex. The KGD1 gene has been cloned by transformation of a representative kgd1 mutant, C225/U1, with a recombinant plasmid library of wild-type yeast nuclear DNA. Transformants containing the gene on a multicopy plasmid had three- to four-times-higher alpha-ketoglutarate dehydrogenase activity than did wild-type S. cerevisiae. Substitution of the chromosomal copy of KGD1 with a disrupted allele (kgd1::URA3) induced a deficiency in alpha-ketoglutarate dehydrogenase. The sequence of the cloned region of DNA which complements kgd1 mutants was found to have an open reading frame of 3,042 nucleotides capable of coding for a protein of Mw 114,470. The encoded protein had 38% identical residues with the reported sequence of alpha-ketoglutarate dehydrogenase from Escherichia coli. Two lines of evidence indicated that transcription of KGD1 is catabolite repressed. Higher steady-state levels of KGD1 mRNA were detected in wild-type yeast grown on the nonrepressible sugar galactose than in yeast grown on high glucose. Regulation of KGD1 was also studied by fusing different 5'-flanking regions of KGD1 to the lacZ gene of E. coli and measuring the expression of beta-galactosidase in yeast. Transformants harboring a fusion of 693 nucleotides of the 5'-flanking sequence expressed 10 times more beta-galactosidase activity when grown under derepressed conditions. The response to the carbon source was reduced dramatically when the same lacZ fusion was present in a hap2 or hap3 mutant. The promoter element(s) responsible for the regulated expression of KGD1 has been mapped to the -354 to -143 region. This region contained several putative activation sites with sequences matching the core element proposed to be essential for binding of the HAP2 and HAP3 regulatory proteins.
Thermal-hydraulic interfacing code modules for CANDU reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Gold, M.; Sills, H.
1997-07-01
The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.
Lewis, Aurélia E.; Sommer, Lilly; Arntzen, Magnus Ø.; Strahm, Yvan; Morrice, Nicholas A.; Divecha, Nullin; D'Santos, Clive S.
2011-01-01
Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(Xn = 3–7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions. PMID:21048195
Nuclear translocation of proteins and the effect of phosphatidic acid.
Yao, Hongyan; Wang, Geliang; Wang, Xuemin
2014-01-01
Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.
Nuclear translocation of proteins and the effect of phosphatidic acid
Yao, Hongyan; Wang, Geliang; Wang, Xuemin
2014-01-01
Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm. PMID:25482760
Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei
2018-02-26
Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.
Dang, Van-Dinh; Levin, Henry L.
2000-01-01
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674
Dang, V D; Levin, H L
2000-10-01
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.
Nuclear Resonance Fluorescence for Materials Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiter, Brian J.; Ludewigt, Bernhard; Mozin, Vladimir
This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX?s photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less
Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong
2017-03-01
The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like ECH-associated protein 1 overexpression reversed nuclear factor-E2-related factor 2 up-regulation and abolished the neuroprotection induced by sevoflurane preconditioning. Kelch-like ECH-associated protein 1 small interfering RNA administration improved nuclear factor-E2-related factor 2 expression and the outcome of mice subjected to ischemia/reperfusion injury. Kelch-like ECH-associated protein 1 down-regulation-dependent nuclear factor-E2-related factor 2 activation underlies the ability of sevoflurane preconditioning to activate the endogenous antioxidant response, which elicits its neuroprotection.
Mitoepigenetics and drug addiction.
Sadakierska-Chudy, Anna; Frankowska, Małgorzata; Filip, Małgorzata
2014-11-01
Being the center of energy production in eukaryotic cells, mitochondria are also crucial for various cellular processes including intracellular Ca(2+) signaling and generation of reactive oxygen species (ROS). Mitochondria contain their own circular DNA which encodes not only proteins, transfer RNA and ribosomal RNAs but also non-coding RNAs. The most recent line of evidence indicates the presence of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (mtDNA); thus, the level of gene expression - in a way similar to nuclear DNA - can be regulated by direct epigenetic modifications. Up to now, very little data shows the possibility of epigenetic regulation of mtDNA. Mitochondria and mtDNA are particularly important in the nervous system and may participate in the initiation of drug addiction. In fact, some addictive drugs enhance ROS production and generate oxidative stress that in turn alters mitochondrial and nuclear gene expression. This review summarizes recent findings on mitochondrial function, mtDNA copy number and epigenetics in drug addiction. Copyright © 2014 Elsevier Inc. All rights reserved.
Palacio, Melissa; Robledo, Gerardo Lucio; Reck, Mateus Arduvino; Grassi, Emanuel; Góes-Neto, Aristóteles; Drechsler-Santos, Elisandro Ricardo
2017-01-01
Polyporus dictyopus, with a large number of heterotypic synonyms, has been traditionally considered a species complex, characterized by wide morphological variation and geographic distribution. Thus, neotropical specimens previously identified as P. dictyopus from Amazonia, Cerrado and Atlantic Forest biomes were studied based on detailed macro- and micromorphological examination and phylogenetic analyses, using distinct ribosomal and protein-coding genomic regions: the nuclear ribosomal internal transcribed spacer (nrITS), nuclear ribosomal large subunit (nrLSU), and RNA polymerase II second subunit (RPB2). Two unrelated generic lineages, each one represented by different species, are reported: Atroporus is recovered and re-circumscribed to include A. diabolicus and A. rufoatratus comb. nov.; Neodictyopus gen. nov. is proposed to accommodate N. dictyopus comb. nov. and two new species, N. atlanticae and N. gugliottae. Our study showed that at least five distinct species were hidden under the name P. dictyopus. Detailed descriptions, pictures, illustrations, and a key are provided for Atroporus and Neodictyopus species.
Reck, Mateus Arduvino; Grassi, Emanuel; Góes-Neto, Aristóteles; Drechsler-Santos, Elisandro Ricardo
2017-01-01
Polyporus dictyopus, with a large number of heterotypic synonyms, has been traditionally considered a species complex, characterized by wide morphological variation and geographic distribution. Thus, neotropical specimens previously identified as P. dictyopus from Amazonia, Cerrado and Atlantic Forest biomes were studied based on detailed macro- and micromorphological examination and phylogenetic analyses, using distinct ribosomal and protein-coding genomic regions: the nuclear ribosomal internal transcribed spacer (nrITS), nuclear ribosomal large subunit (nrLSU), and RNA polymerase II second subunit (RPB2). Two unrelated generic lineages, each one represented by different species, are reported: Atroporus is recovered and re-circumscribed to include A. diabolicus and A. rufoatratus comb. nov.; Neodictyopus gen. nov. is proposed to accommodate N. dictyopus comb. nov. and two new species, N. atlanticae and N. gugliottae. Our study showed that at least five distinct species were hidden under the name P. dictyopus. Detailed descriptions, pictures, illustrations, and a key are provided for Atroporus and Neodictyopus species. PMID:29049417
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xinxin; Zhang, Min; Takano, Tetsuo
Highlights: {yields} The AtCCX5 protein coding a putative cation calcium exchanger was characterized. {yields} AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. {yields} AtCCX5 protein did not show the same transport properties as the CAXs. {yields} AtCCX5 protein involves in mediating high-affinity K{sup +} uptake in yeast. {yields} AtCCX5 protein also involves in Na{sup +} transport in yeast. -- Abstract: The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membranemore » and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, Fe{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Cd{sup 2+}, Mn{sup 2+}, Ba{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Li{sup +}) were analyzed. AtCCX5 expression was found to affect the response to K{sup +} and Na{sup +} in yeast. The AtCCX5 transformant also showed a little better growth to Zn{sup 2+}. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K{sup +} (0.5 mM), and also suppressed its Na{sup +} sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K{sup +} uptake and was also involved in Na{sup +} transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K{sup +} uptake and Na{sup +} transport in yeast.« less
PML tumor suppressor protein is required for HCV production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuroki, Misao; Research Fellow of the Japan Society for the Promotion of Science; Center for AIDS Research, Kumamoto University, Kumamoto 860-0811
2013-01-11
Highlights: Black-Right-Pointing-Pointer PML tumor suppressor protein is required for HCV production. Black-Right-Pointing-Pointer PML is dispensable for HCV RNA replication. Black-Right-Pointing-Pointer HCV could not alter formation of PML-NBs. Black-Right-Pointing-Pointer INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown.more » To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.« less
Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V
2010-01-01
Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.
Nuclear localization of foamy virus Gag precursor protein.
Schliephake, A W; Rethwilm, A
1994-01-01
All foamy viruses give rise to a strong nuclear staining when infected cells are reacted with sera from infected hosts. This nuclear fluorescence distinguishes foamy viruses from all other retroviruses. The experiments reported here indicate that the foamy virus Gag precursor protein is transiently located in the nuclei of infected cells and this is the likely reason for the typical foamy virus nuclear fluorescence. By using the vaccinia virus expression system, a conserved basic sequence motif in the nucleocapsid domain of foamy virus Gag proteins was identified to be responsible for the nuclear transport of the gag precursor molecule. This motif was also found to be able to direct a heterologous protein, the Gag protein of human immunodeficiency virus, into the nucleus. Images PMID:8035493
Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prochnik, Simon E.; Umen, James; Nedelcu, Aurora
2010-07-01
Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similarmore » protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... Power Plant Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory... Code of Federal Regulations (10 CFR), Appendix R, ``Fire Protection Program for Nuclear Power...), for the operation of the James A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County...
75 FR 42469 - Firstenergy Nuclear Operating Company; Request for Licensing Action
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-21
... nuclear plant in Ohio, preventing the reactor from restarting until such time that the NRC determines... Commission's regulations. The request has been referred to the Director of the Office of Nuclear Reactor... of Nuclear Reactor Regulation. [FR Doc. 2010-17834 Filed 7-20-10; 8:45 am] BILLING CODE 7590-01-P ...
Ueda, Kenji; Xu, Zheng-Jun; Miyagi, Nobuaki; Ono, Michiyuki; Wabiko, Hiroetsu; Masuda, Kiyoshi; Inoue, Masayasu
2013-07-01
The nuclear matrix is involved in many nuclear events, but its protein architecture in plants is still not fully understood. A cDNA clone was isolated by immunoscreening with a monoclonal antibody raised against nuclear matrix proteins of Daucus carota L. Its deduced amino acid sequence showed about 40% identity with the PESCADILLO protein of zebrafish and humans. Primary structure analysis of the protein revealed a Pescadillo N-terminus domain, a single breast cancer C-terminal domain, two nuclear localization signals, and a potential coiled-coil region as also found in animal PESCADILLO proteins. Therefore, we designated this gene DcPES1. Although DcPES1 mRNA was detected in all tissues examined, its levels were highest in tissues with proliferating cells. Immunofluorescence using specific antiserum against the recombinant protein revealed that DcPES1 localized exclusively in the nucleolus. Examination of fusion proteins with green fluorescent protein revealed that the N-terminal portion was important for localization to the nucleoli of tobacco and onion cells. Moreover, when the nuclear matrix of carrot cells was immunostained with an anti-DcPES1 serum, the signal was detected in the nucleolus. Therefore, the DcPES1 protein appears to be a component of or tightly bound to components of the nuclear matrix. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
In vitro V(D)J recombination: signal joint formation.
Cortes, P; Weis-Garcia, F; Misulovin, Z; Nussenzweig, A; Lai, J S; Li, G; Nussenzweig, M C; Baltimore, D
1996-11-26
The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.
Transcriptome Sequences Resolve Deep Relationships of the Grape Family
Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M.; Gerrath, Jean; Zimmer, Elizabeth A.; Fang, Xiao-Dong
2013-01-01
Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated. PMID:24069307
Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication
Zhang, Alice Tianbu; Langley, Alexander R.; Christov, Christo P.; Kheir, Eyemen; Shafee, Thomas; Gardiner, Timothy J.; Krude, Torsten
2011-01-01
Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular ‘catch and release’ mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors. PMID:21610089
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.H.; Walsh, C.J.
1988-06-01
The nuclear run-on technique was used to measure the rate of transcription of flagellar genes during the differentiation of Naegleria gruberi amebae into flagellates. Synthesis of mRNAs for the axonemal proteins ..cap alpha..- and BETA-tubulin and flagellar calmodulin, as well as a coordinately regulated poly(A)/sup +/ RNA that codes for an unidentified protein, showed transient increases averaging 22-fold. The rate of synthesis of two poly(A)/sup +/ RNAs common to ameobae and flagellates was low until the transcription of the flagellar genes began to decline, at which time synthesis of the RNAs found in ameobae increased 3- to 10-fold. The observedmore » changes in the rate of transcription can account quantitatively for the 20-fold increase in flagellar mRNA concentration during the differentiation. The data for the flagellar calmodulin gene demonstrate transcriptional regulation for a nontubulin axonemal protein. The data also demonstrate at least two programs of transcriptional regulation during the differentiation and raise the intriguing possibility that some significant fraction of the nearly 200 different proteins of the flagellar axoneme is transcriptionally regulated during the 1 h it takes N. gruberi amebae to form visible flagella.« less
Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe
2016-03-10
In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.
Mechanisms of Nuclear Export in Cancer and Resistance to Chemotherapy
El-Tanani, Mohamed; Dakir, El-Habib; Raynor, Bethany; Morgan, Richard
2016-01-01
Tumour suppressor proteins, such as p53, BRCA1, and ABC, play key roles in preventing the development of a malignant phenotype, but those that function as transcriptional regulators need to enter the nucleus in order to function. The export of proteins between the nucleus and cytoplasm is complex. It occurs through nuclear pores and exported proteins need a nuclear export signal (NES) to bind to nuclear exportin proteins, including CRM1 (Chromosomal Region Maintenance protein 1), and the energy for this process is provided by the RanGTP/RanGDP gradient. Due to the loss of DNA repair and cell cycle checkpoints, drug resistance is a major problem in cancer treatment, and often an initially successful treatment will fail due to the development of resistance. An important mechanism underlying resistance is nuclear export, and a number of strategies that can prevent nuclear export may reverse resistance. Examples include inhibitors of CRM1, antibodies to the nuclear export signal, and alteration of nuclear pore structure. Each of these are considered in this review. PMID:26985906
Sangdee, Kusavadee; Nakbanpote, Woranan; Sangdee, Aphidech
2015-01-01
The entomopathogenic fungus Cod-MK1201 was isolated from a dead cicada nymph. Three regions of ribosomal nuclear DNA, the internal transcribed spacers of nuclear ribosomal DNA repeats (ITS), the partial small subunit of rDNA (nrSSU) , and the partial large subunit of rDNA (nrLSU), and two protein-coding regions, the elongation factor 1α (EF-1α), and the largest subunit of the RNA polymerase II (rpb1) gene, were sequenced and used for fungal identification. The phylogenetic analysis of the ITS and the combined data set of the five genes indicated that the fungal isolate Cod-MK1201 is a new strain of Cordyceps sp. that is closely related to Cordyceps nipponica and C. kanzashiana. Crude extracts of mycelium-cultured Cod-MK1201 were obtained using distilled water and 50% (v/v) ethanol, and the antibacterial activity of each was determined. Both extracts had activity against Gram-positive and Gram-negative bacteria, but the ethanol extract was the more potent of the two. The antibacterial activity of the protein fractions of these extracts was also determined. The protein fraction from the ethanol extract was more antibacterial than the protein fraction from the aqueous extract. Three antibacterial constituents including adenosine, the total phenolic content (TPC), and the total flavonoid content (TFC) was also determined. The results showed that the adenosine content, the TPC, and the TFC of the ethanol extract were more active than those of the aqueous extract. Moreover, synergism was detected between these antibacterial constituents. In conclusion, the entomopathogenic fungal isolate Cod-MK1201 represents a natural source of antibacterial agents.
Hallermann-Streiff Syndrome: No Evidence for a Link to Laminopathies
Kortüm, F.; Chyrek, M.; Fuchs, S.; Albrecht, B.; Gillessen-Kaesbach, G.; Mütze, U.; Seemanova, E.; Tinschert, S.; Wieczorek, D.; Rosenberger, G.; Kutsche, K.
2011-01-01
Hallermann-Streiff syndrome (HSS) is a rare inherited disorder characterized by malformations of the cranium and facial bones, congenital cataracts, microphthalmia, skin atrophy, hypotrichosis, proportionate short stature, teeth abnormalities, and a typical facial appearance with prominent forehead, small pointed nose, and micrognathia. The genetic cause of this developmental disorder is presently unknown. Here we describe 8 new patients with a phenotype of HSS. Individuals with HSS present with clinical features overlapping with some progeroid syndromes that belong to the laminopathies, such as Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia (MAD). HGPS is caused by de novo point mutations in the LMNA gene, coding for the nuclear lamina proteins lamin A and C. MAD with type A and B lipodystrophy are recessive disorders resulting from mutations in LMNA and ZMPSTE24, respectively. ZMPSTE24 in addition to ICMT encode proteins involved in posttranslational processing of lamin A. We hypothesized that HSS is an allelic disorder to HGPS and MAD. As the nuclear shape is often irregular in patients with LMNA mutations, we first analyzed the nuclear morphology in skin fibroblasts of patients with HSS, but could not identify any abnormality. Sequencing of the genes LMNA, ZMPSTE24 and ICMT in the 8 patients with HSS revealed the heterozygous missense mutation c.1930C>T (p.R644C) in LMNA in 1 female. Extreme phenotypic diversity and low penetrance have been associated with the p.R644C mutation. In ZMPSTE24 and ICMT, no pathogenic sequence change was detected in patients with HSS. Together, we found no evidence that HSS is another laminopathy. PMID:22570643
Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions
NASA Astrophysics Data System (ADS)
Groth, C. P. T.
1986-04-01
In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.
Common radiation analysis model for 75,000 pound thrust NERVA engine (1137400E)
NASA Technical Reports Server (NTRS)
Warman, E. A.; Lindsey, B. A.
1972-01-01
The mathematical model and sources of radiation used for the radiation analysis and shielding activities in support of the design of the 1137400E version of the 75,000 lbs thrust NERVA engine are presented. The nuclear subsystem (NSS) and non-nuclear components are discussed. The geometrical model for the NSS is two dimensional as required for the DOT discrete ordinates computer code or for an azimuthally symetrical three dimensional Point Kernel or Monte Carlo code. The geometrical model for the non-nuclear components is three dimensional in the FASTER geometry format. This geometry routine is inherent in the ANSC versions of the QAD and GGG Point Kernal programs and the COHORT Monte Carlo program. Data are included pertaining to a pressure vessel surface radiation source data tape which has been used as the basis for starting ANSC analyses with the DASH code to bridge into the COHORT Monte Carlo code using the WANL supplied DOT angular flux leakage data. In addition to the model descriptions and sources of radiation, the methods of analyses are briefly described.
Li, Xiu-Juan
2018-05-01
The role of long non-coding RNA in diabetic retinopathy, a serious complication of diabetes mellitus, has attracted increasing attention in recent years. The purpose of this study was to explore whether long non-coding RNA nuclear paraspeckle assembly transcript 1 was involved in the context of diabetic retinopathy and its underlying mechanisms. Our results revealed that nuclear paraspeckle assembly transcript 1 was significantly downregulated in the retina of diabetes mellitus rats. Meanwhile, miR-497 was significantly increased in diabetes mellitus rats' retina and high glucose-treated Müller cells, but brain-derived neurotrophic factor was increased. We also found that high glucose-induced apoptosis of Müller cells was accompanied by the significant downregulation of nuclear paraspeckle assembly transcript 1 in vitro. Further study demonstrated that high glucose-promoted Müller cells apoptosis through downregulating nuclear paraspeckle assembly transcript 1 and downregulated nuclear paraspeckle assembly transcript 1 mediated this effect via negative regulating miR-497. Moreover, brain-derived neurotrophic factor was negatively regulated by miR-497 and associated with the apoptosis of Müller cells under high glucose. Our results suggested that under diabetic conditions, downregulated nuclear paraspeckle assembly transcript 1 decreased the expression of brain-derived neurotrophic factor through elevating miR-497, thereby promoting Müller cells apoptosis and aggravating diabetic retinopathy.
Bronze-da-Rocha, E; Catita, J A; Sunkel, C E
1998-02-01
Systemic lupus erythematosus autoantibodies were used to identify and to characterize new human chromosome-associated proteins. Previous immunolocalization studies in human and murine tissue culture cells showed that some of these monoclonal antibodies recognize nuclear antigens that associate with condensed chromosomes during mitosis. One antibody was selected for screening a human HeLa S3 cDNA expression library, and cDNAs that code for an antigen of 31-33 kDa were isolated. Immunological, biochemical and cell fractionation data indicate that the 31- to 33-kDa antigen corresponds to the chromosome-associated protein recognized by the original monoclonal antibody. Sequence analysis shows that we isolated a novel human gene. Immunolocalization to human tissue culture cells shows that during interphase the antigen is dispersed in the nucleus and that during mitosis it associates exclusively with condensed chromosomes. A similar pattern of localization was also observed in mouse fibroblasts, suggesting that the antigen is conserved among different species. Finally, we show that part of the antigen remains bound to the scaffold/matrix component, even after high salt extraction.
Purrello, M; Di Pietro, C; Rapisarda, A; Viola, A; Corsaro, C; Motta, S; Grzeschik, K H; Sichel, G
1996-01-01
Dr1 is a nuclear protein of 19 kDa that exists in the nucleoplasm as a homotetramer. By binding to TBP (the DNA-binding subunit of TFIID, and also a subunit of SL1 and TFIIIB), the protein blocks class II and class III preinitiation complex assembly, thus repressing the activity of the corresponding promoters. Since transcription of class I genes is unaffected by Dr1. it has been proposed that the protein may coordinate the expression of class I, class II and class III genes. By somatic cell genetics and fluorescence in situ hybridization, we have localized the gene (DR1), present in the genome of higher eukaryotes as a single copy, to human chromosome region 1p21-->p13. The nucleotide sequence conservation of the coding segment of the gene, as determined by Noah's ark blot analysis, and its ubiquitous transcription suggest that Dr1 has an important biological role, which could be related to the negative control of cell proliferation.
SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease
Li, Darrick K.; Tisdale, Sarah; Lotti, Francesco; Pellizzoni, Livio
2014-01-01
At the post-transcriptional level, expression of protein-coding genes is controlled by a series of RNA regulatory events including nuclear processing of primary transcripts, transport of mature mRNAs to specific cellular compartments, translation and ultimately, turnover. These processes are orchestrated through the dynamic association of mRNAs with RNA binding proteins and ribonucleoprotein (RNP) complexes. Accurate formation of RNPs in vivo is fundamentally important to cellular development and function, and its impairment often leads to human disease. The survival motor neuron (SMN) protein is key to this biological paradigm: SMN is essential for the biogenesis of various RNPs that function in mRNA processing, and genetic mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP assembly. We discuss advances in our understanding of SMN activity as a chaperone of RNPs and how disruption of SMN-dependent RNA pathways can cause motor neuron disease. PMID:24769255
Death of a dogma: eukaryotic mRNAs can code for more than one protein
Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier
2016-01-01
mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5′ UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3′ UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. PMID:26578573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonzogni, A.A.
2005-05-24
A package of computer codes has been developed to process and display nuclear structure and decay data stored in the ENSDF (Evaluated Nuclear Structure Data File) library. The codes were written in an object-oriented fashion using the java language. This allows for an easy implementation across multiple platforms as well as deployment on web pages. The structure of the different java classes that make up the package is discussed as well as several different implementations.
Hexagonal Uniformly Redundant Arrays (HURAs) for scintillator based coded aperture neutron imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamage, K.A.A.; Zhou, Q.
2015-07-01
A series of Monte Carlo simulations have been conducted, making use of the EJ-426 neutron scintillator detector, to investigate the potential of using hexagonal uniformly redundant arrays (HURAs) for scintillator based coded aperture neutron imaging. This type of scintillator material has a low sensitivity to gamma rays, therefore, is of particular use in a system with a source that emits both neutrons and gamma rays. The simulations used an AmBe source, neutron images have been produced using different coded-aperture materials (boron- 10, cadmium-113 and gadolinium-157) and location error has also been estimated. In each case the neutron image clearly showsmore » the location of the source with a relatively small location error. Neutron images with high resolution can be easily used to identify and locate nuclear materials precisely in nuclear security and nuclear decommissioning applications. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, R. Navarro; Schunck, N.; Lasseri, R.
2017-03-09
HFBTHO is a physics computer code that is used to model the structure of the nucleus. It is an implementation of the nuclear energy Density Functional Theory (DFT), where the energy of the nucleus is obtained by integration over space of some phenomenological energy density, which is itself a functional of the neutron and proton densities. In HFBTHO, the energy density derives either from the zero-range Dkyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear superfluidity is treated at the Hartree-Fock-Bogoliubov (HFB) approximation, and axial-symmetry of the nuclear shape is assumed. This version is the 3rd release ofmore » the program; the two previous versions were published in Computer Physics Communications [1,2]. The previous version was released at LLNL under GPL 3 Open Source License and was given release code LLNL-CODE-573953.« less
New French Regulation for NPPs and Code Consequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faidy, Claude
2006-07-01
On December 2005, the French regulator issued a new regulation for French nuclear power plants, in particular for pressure equipment (PE). This regulation need first to agree with non-nuclear PE regulation and add to that some specific requirements, in particular radiation protection requirements. Different advantages are in these proposal, it's more qualitative risk oriented and it's an important link with non-nuclear industry. Only few components are nuclear specific. But, the general philosophy of the existing Codes (RCC-M [15], KTA [16] or ASME [17]) have to be improved. For foreign Codes, it's plan to define the differences in the user specifications.more » In parallel to that, a new safety classification has been developed by French utility. The consequences is the need to cross all these specifications to define a minimum quality level for each components or systems. In the same time a new concept has been developed to replace the well known 'Leak Before Break methodology': the 'Break Exclusion' methodology. This paper will summarize the key aspects of these different topics. (authors)« less
Nuclear data uncertainty propagation by the XSUSA method in the HELIOS2 lattice code
NASA Astrophysics Data System (ADS)
Wemple, Charles; Zwermann, Winfried
2017-09-01
Uncertainty quantification has been extensively applied to nuclear criticality analyses for many years and has recently begun to be applied to depletion calculations. However, regulatory bodies worldwide are trending toward requiring such analyses for reactor fuel cycle calculations, which also requires uncertainty propagation for isotopics and nuclear reaction rates. XSUSA is a proven methodology for cross section uncertainty propagation based on random sampling of the nuclear data according to covariance data in multi-group representation; HELIOS2 is a lattice code widely used for commercial and research reactor fuel cycle calculations. This work describes a technique to automatically propagate the nuclear data uncertainties via the XSUSA approach through fuel lattice calculations in HELIOS2. Application of the XSUSA methodology in HELIOS2 presented some unusual challenges because of the highly-processed multi-group cross section data used in commercial lattice codes. Currently, uncertainties based on the SCALE 6.1 covariance data file are being used, but the implementation can be adapted to other covariance data in multi-group structure. Pin-cell and assembly depletion calculations, based on models described in the UAM-LWR Phase I and II benchmarks, are performed and uncertainties in multiplication factor, reaction rates, isotope concentrations, and delayed-neutron data are calculated. With this extension, it will be possible for HELIOS2 users to propagate nuclear data uncertainties directly from the microscopic cross sections to subsequent core simulations.
Nakrieko, Kerry-Ann; Ivanova, Iordanka A; Dagnino, Lina
2010-01-01
In this chapter, we review protocols for the analysis of nucleocytoplasmic shuttling of transcription factors and nuclear proteins, using two different approaches. The first involves the use of photoactivatable forms of the protein of interest by fusion to photoactivatable green fluorescent protein to follow its movement out of the nucleus by live-cell confocal microscopy. This methodology allows for the kinetic characterization of protein movements as well as measurement of steady-state levels. In a second procedure to assess the ability of a nuclear protein to move into and out of the nucleus, we describe the use of interspecies heterokaryon assays, which provide a measurement of steady-state distribution. These technologies are directly applicable to the analysis of nucleocytoplasmic movements not only of transcription factors, but also other nuclear proteins.
Mapping of protein- and chromatin-interactions at the nuclear lamina.
Kubben, Nard; Voncken, Jan Willem; Misteli, Tom
2010-01-01
The nuclear envelope and the lamina define the nuclear periphery and are implicated in many nuclear processes including chromatin organization, transcription and DNA replication. Mutations in lamin A proteins, major components of the lamina, interfere with these functions and cause a set of phenotypically diverse diseases referred to as laminopathies. The phenotypic diversity of laminopathies is thought to be the result of alterations in specific protein- and chromatin interactions due to lamin A mutations. Systematic identification of lamin A-protein and -chromatin interactions will be critical to uncover the molecular etiology of laminopathies. Here we summarize and critically discuss recent technology to analyze lamina-protein and-chromatin interactions.
Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization
Roux, Kyle J.; Crisp, Melissa L.; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L.; Burke, Brian
2009-01-01
Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin–Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1–3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning. PMID:19164528
Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization.
Roux, Kyle J; Crisp, Melissa L; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L; Burke, Brian
2009-02-17
Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.
Hormone- and light-regulated nucleocytoplasmic transport in plants: current status.
Lee, Yew; Lee, Hak-Soo; Lee, June-Seung; Kim, Seong-Ki; Kim, Soo-Hwan
2008-01-01
The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.
NASA Astrophysics Data System (ADS)
Dai, Jin; Niemi, Antti J.; He, Jianfeng
2016-07-01
The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.
48 CFR 2001.104-1 - Publication and code arrangement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Publication and code arrangement. 2001.104-1 Section 2001.104-1 Federal Acquisition Regulations System NUCLEAR REGULATORY... 2001.104-1 Publication and code arrangement. (a) The NRCAR and its subsequent changes are: (1...
Development of Northeast Asia Nuclear Power Plant Accident Simulator.
Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff
2017-06-15
A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Informational structure of genetic sequences and nature of gene splicing
NASA Astrophysics Data System (ADS)
Trifonov, E. N.
1991-10-01
Only about 1/20 of DNA of higher organisms codes for proteins, by means of classical triplet code. The rest of DNA sequences is largely silent, with unclear functions, if any. The triplet code is not the only code (message) carried by the sequences. There are three levels of molecular communication, where the same sequence ``talks'' to various bimolecules, while having, respectively, three different appearances: DNA, RNA and protein. Since the molecular structures and, hence, sequence specific preferences of these are substantially different, the original DNA sequence has to carry simultaneously three types of sequence patterns (codes, messages), thus, being a composite structure in which one had the same letter (nucleotide) is frequently involved in several overlapping codes of different nature. This multiplicity and overlapping of the codes is a unique feature of the Gnomic, language of genetic sequences. The coexisting codes have to be degenerate in various degrees to allow an optimal and concerted performance of all the encoded functions. There is an obvious conflict between the best possible performance of a given function and necessity to compromise the quality of a given sequence pattern in favor of other patterns. It appears that the major role of various changes in the sequences on their ``ontogenetic'' way from DNA to RNA to protein, like RNA editing and splicing, or protein post-translational modifications is to resolve such conflicts. New data are presented strongly indicating that the gene splicing is such a device to resolve the conflict between the code of DNA folding in chromatin and the triplet code for protein synthesis.
2008-09-01
under- resourced. • Missile transfer vans /warhead transfer vans require upgrades. • ICBM weapon system test sets under-funded; the coding system...Air Force’s Nuclear Mission D-1 Appendix D. Current B-52 Basing Status Barksdale AFB, LA 64 B-52Hs Minot AFB, ND 27 B-52Hs Edwards AFB, CA 3...Barksdale – 64 B-52s 2 BW (ACC) 15 TF; 24 CC; 7 BAI 53 WG (ACC) 2 Test Coded 917 WG (AFRC) 8 CC; 1 BAI 7 Unfunded AR Edwards - 3 B-52s 412 TW 2 Test
Cheng, Yu Ti; Germain, Hugo; Wiermer, Marcel; Bi, Dongling; Xu, Fang; García, Ana V; Wirthmueller, Lennart; Després, Charles; Parker, Jane E; Zhang, Yuelin; Li, Xin
2009-08-01
Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein-mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-kappaB transcription factors, resulting in nuclear accumulation of NF-kappaB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs.
Nuclear speckles: molecular organization, biological function and role in disease
Galganski, Lukasz; Urbanek, Martyna O.
2017-01-01
Abstract The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders. PMID:28977640
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlin, Jeremy
2017-03-15
This software is code related to reading/writing/manipulating nuclear data in the Generalized Nuclear Data (GND) format, a new format for sharing nuclear data among institutions. In addition to the software and its documentation, notes and documentation from the WPEC Subgroup 43 will be included. WPEC Subgroup 43 is an international committee charged with creating the API for the GND format.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-06
... Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; telephone (301..., Office of Nuclear Reactor Regulation. [FR Doc. 2011-11107 Filed 5-5-11; 8:45 am] BILLING CODE 7590-01-P ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0071; Docket No. 50-382] Entergy Operations, Inc...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
.... Brown, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC 20555..., Office of Nuclear Reactor Regulation. [FR Doc. 2011-5756 Filed 3-11-11; 8:45 am] BILLING CODE 7590-01-P ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-373 and 50-374; NRC-2011-0051] Exelon Generation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-20
... Nuclear Reactor Regulation on the information that should be included in the Environmental Report, which...: Mr. Scott Sloan, Project Manager, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory..., Office of Nuclear Reactor Regulation. [FR Doc. 2011-15227 Filed 6-17-11; 8:45 am] BILLING CODE 7590-01-P ...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., spillage, or other accident. INF cargo means packaged irradiated nuclear fuel, plutonium or high-level... Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes on Board Ships” (INF Code) contained in...
High-Energy Activation Simulation Coupling TENDL and SPACS with FISPACT-II
NASA Astrophysics Data System (ADS)
Fleming, Michael; Sublet, Jean-Christophe; Gilbert, Mark
2018-06-01
To address the needs of activation-transmutation simulation in incident-particle fields with energies above a few hundred MeV, the FISPACT-II code has been extended to splice TENDL standard ENDF-6 nuclear data with extended nuclear data forms. The JENDL-2007/HE and HEAD-2009 libraries were processed for FISPACT-II and used to demonstrate the capabilities of the new code version. Tests of the libraries and comparisons against both experimental yield data and the most recent intra-nuclear cascade model results demonstrate that there is need for improved nuclear data libraries up to and above 1 GeV. Simulations on lead targets show that important radionuclides, such as 148Gd, can vary by more than an order of magnitude where more advanced models find agreement within the experimental uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruet, J
2007-06-23
This report describes Kiwi, a program developed at Livermore to enable mature studies of the relation between imperfectly known nuclear physics and uncertainties in simulations of complicated systems. Kiwi includes a library of evaluated nuclear data uncertainties, tools for modifying data according to these uncertainties, and a simple interface for generating processed data used by transport codes. As well, Kiwi provides access to calculations of k eigenvalues for critical assemblies. This allows the user to check implications of data modifications against integral experiments for multiplying systems. Kiwi is written in python. The uncertainty library has the same format and directorymore » structure as the native ENDL used at Livermore. Calculations for critical assemblies rely on deterministic and Monte Carlo codes developed by B division.« less
Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin
2016-07-01
The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. © 2016 Mühlhausen et al.; Published by Cold Spring Harbor Laboratory Press.
User input verification and test driven development in the NJOY21 nuclear data processing code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainer, Amelia Jo; Conlin, Jeremy Lloyd; McCartney, Austin Paul
Before physically-meaningful data can be used in nuclear simulation codes, the data must be interpreted and manipulated by a nuclear data processing code so as to extract the relevant quantities (e.g. cross sections and angular distributions). Perhaps the most popular and widely-trusted of these processing codes is NJOY, which has been developed and improved over the course of 10 major releases since its creation at Los Alamos National Laboratory in the mid-1970’s. The current phase of NJOY development is the creation of NJOY21, which will be a vast improvement from its predecessor, NJOY2016. Designed to be fast, intuitive, accessible, andmore » capable of handling both established and modern formats of nuclear data, NJOY21 will address many issues that many NJOY users face, while remaining functional for those who prefer the existing format. Although early in its development, NJOY21 is quickly providing input validation to check user input. By providing rapid and helpful responses to users while writing input files, NJOY21 will prove to be more intuitive and easy to use than any of its predecessors. Furthermore, during its development, NJOY21 is subject to regular testing, such that its test coverage must strictly increase with the addition of any production code. This thorough testing will allow developers and NJOY users to establish confidence in NJOY21 as it gains functionality. This document serves as a discussion regarding the current state input checking and testing practices of NJOY21.« less
Long non-coding RNAs and mRNAs profiling during spleen development in pig.
Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou
2018-01-01
Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.
78 FR 37721 - Approval of American Society of Mechanical Engineers' Code Cases
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
...-0359] RIN 3150-AI72 Approval of American Society of Mechanical Engineers' Code Cases AGENCY: Nuclear... mandatory American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (BPV) Code and... Guide'' series. In a notice of proposed rulemaking, ``Approval of American Society of Mechanical...
Aging impact on biochemical activities and gene expression of Drosophila melanogaster mitochondria.
Dubessay, Pascal; Garreau-Balandier, Isabelle; Jarrousse, Anne-Sophie; Fleuriet, Annie; Sion, Benoit; Debise, Roger; Alziari, Serge
2007-08-01
The consequences of aging are characterized by a decline in the main cellular functions, including those of the mitochondria. Although these consequences have been much studied, efforts have often focused solely on a few parameters used to assess the "state" of mitochondrial function during aging. We performed comparative measurements of several parameters in young (a few days) and old (8 and 12 weeks) adult male Drosophila melanogaster: respiratory complex activities, mitochondrial respiration, ATP synthesis, lipid composition of the inner membrane, concentrations of respiratory complex subunits, expression of genes (nuclear and mitochondrial) coding for mitochondrial proteins. Our results show that, in the mitochondria of "old" flies, the activities of three respiratory complexes (I, III, IV) are greatly diminished, ATP synthesis is decreased, and the lipid composition of the inner membrane (fatty acids, cardiolipin) is modified. However, the respiration rate and subunit concentrations measured by Western blot are unaffected. Although cellular mitochondrial DNA (mtDNA) content remains constant, there is a decrease in concentrations of nuclear and mitochondrial transcripts apparently coordinated. The expression of nuclear genes encoding the transcription factors TFAM, TFB1, TFB2, and DmTTF, which are essential for the maintenance and expression of mtDNA are also decreased. The decrease in nuclear and mitochondrial transcript concentrations may be one of the principal effects of aging on mitochondria, and could explain observed decreases in mitochondrial efficiency.
Regulation of the Drosophila Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export ▿
Romero, Nuria M.; Irisarri, Maximiliano; Roth, Peggy; Cauerhff, Ana; Samakovlis, Christos; Wappner, Pablo
2008-01-01
Hypoxia-inducible factor α (HIF-α) proteins are regulated by oxygen levels through several different mechanisms that include protein stability, transcriptional coactivator recruitment, and subcellular localization. It was previously reported that these transcription factors are mainly nuclear in hypoxia and cytoplasmic in normoxia, but so far the molecular basis of this regulation is unclear. We show here that the Drosophila melanogaster HIF-α protein Sima shuttles continuously between the nucleus and the cytoplasm. We identified the relevant nuclear localization signal and two functional nuclear export signals (NESs). These NESs are in the Sima basic helix-loop-helix (bHLH) domain and promote CRM1-dependent nuclear export. Site-directed mutagenesis of either NES provoked Sima nuclear retention and increased transcriptional activity, suggesting that nuclear export contributes to Sima regulation. The identified NESs are conserved and probably functional in the bHLH domains of several bHLH-PAS proteins. We propose that rapid nuclear export of Sima regulates the duration of cellular responses to hypoxia. PMID:18332128
Mapping the nuclear localization signal in the matrix protein of potato yellow dwarf virus.
Anderson, Gavin; Jang, Chanyong; Wang, Renyuan; Goodin, Michael
2018-05-01
The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.
Preparation of the Nuclear Matrix for Parallel Microscopy and Biochemical Analyses.
Wilson, Rosemary H C; Hesketh, Emma L; Coverley, Dawn
2016-01-04
Immobilized proteins within the nucleus are usually identified by treating cells with detergent. The detergent-resistant fraction is often assumed to be chromatin and is described as such in many studies. However, this fraction consists of both chromatin-bound and nuclear-matrix-bound proteins. To investigate nuclear-matrix-bound proteins alone, further separation of these fractions is required; the DNA must be removed so that the remaining proteins can be compared with those from untreated cells. This protocol uses a nonionic detergent (Triton X-100) to remove membranes and soluble proteins from cells under physiologically relevant salt concentrations, followed by extraction with 0.5 m NaCl, digestion with DNase I, and removal of fragmented DNA. It uses a specialized buffer (cytoskeletal buffer) to stabilize the cytoskeleton and nuclear matrix in relatively gentle conditions. Nuclear matrix proteins can then be assessed by either immunofluorescence (IF) and immunoblotting (IB). IB has the advantage of resolving different forms of a protein of interest, and the soluble fractions can be analyzed. The major advantage of IF analysis is that individual cells (rather than homogenized populations) can be monitored, and the spatial arrangement of proteins bound to residual nuclear structures can be revealed. © 2016 Cold Spring Harbor Laboratory Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, John R
R code that performs the analysis of a data set presented in the paper ‘Leveraging Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications’ by Lewis, J., Zhang, A., Anderson-Cook, C. It provides functions for doing inverse predictions in this setting using several different statistical methods. The data set is a publicly available data set from a historical Plutonium production experiment.
Nuclear Fuel Depletion Analysis Using Matlab Software
NASA Astrophysics Data System (ADS)
Faghihi, F.; Nematollahi, M. R.
Coupled first order IVPs are frequently used in many parts of engineering and sciences. In this article, we presented a code including three computer programs which are joint with the Matlab software to solve and plot the solutions of the first order coupled stiff or non-stiff IVPs. Some engineering and scientific problems related to IVPs are given and fuel depletion (production of the 239Pu isotope) in a Pressurized Water Nuclear Reactor (PWR) are computed by the present code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, Carolyn P.; Ayalew, Lisanework E.; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3 S7N 5B4 Canada
The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ({sup 105}RKR{sup 107}) of the identified domain (amino acids {sup 102}GMPRKRVLT{sup 110}) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin {alpha}/{beta}-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin {alpha}3. Although deletion of amino acidmore » 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-{alpha}3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin {alpha}3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.« less
Schoborg, Todd; Rickels, Ryan; Barrios, Josh
2013-01-01
Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization. PMID:23878275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Hiroki; Masuda, Munemitsu; Miura, Ryuichi
2006-08-15
Morbilliviruses, which belong to the Mononegavirales, replicate its RNA genome in the cytoplasm of the host cell. However, they also form characteristic intranuclear inclusion bodies, consisting of nucleoprotein (N), in infected cells. To analyze the mechanisms of nucleocytoplasmic transport of N protein, we characterized the nuclear localization (NLS) and nuclear export (NES) signals of canine distemper virus (CDV) N protein by deletion mutation and alanine substitution of the protein. The NLS has a novel leucine/isoleucine-rich motif (TGILISIL) at positions 70-77, whereas the NES is composed of a leucine-rich motif (LLRSLTLF) at positions 4-11. The NLS and NES of the Nmore » proteins of other morbilliviruses, that is, measles virus (MV) and rinderpest virus (RPV), were also analyzed. The NLS of CDV-N protein is conserved at the same position in MV-N protein, whereas the NES of MV-N protein is located in the C-terminal region. The NES of RPV-N protein is also located at the same position as CDV-N protein, whereas the NLS motif is present not only at the same locus as CDV-N protein but also at other sites. Interestingly, the nuclear export of all these N proteins appears to proceed via a CRM1-independent pathway.« less
Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camous, F.; Jacq, F.; Chatelard, P.
1997-07-01
In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.
10 CFR 820.20 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.20 Purpose and scope... violations of the DOE Nuclear Safety Requirements, for determining, whether a violation has occurred, for... of a violation of: (1) Any DOE Nuclear Safety Requirement set forth in the Code of Federal...
10 CFR 820.20 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.20 Purpose and scope... violations of the DOE Nuclear Safety Requirements, for determining, whether a violation has occurred, for... of a violation of: (1) Any DOE Nuclear Safety Requirement set forth in the Code of Federal...
10 CFR 820.20 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.20 Purpose and scope... violations of the DOE Nuclear Safety Requirements, for determining, whether a violation has occurred, for... of a violation of: (1) Any DOE Nuclear Safety Requirement set forth in the Code of Federal...
10 CFR 820.20 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.20 Purpose and scope... violations of the DOE Nuclear Safety Requirements, for determining, whether a violation has occurred, for... of a violation of: (1) Any DOE Nuclear Safety Requirement set forth in the Code of Federal...
Pereira, Suzam L S; Martins, Cristina P S; Sousa, Aurizangela O; Camillo, Luciana R; Araújo, Caroline P; Alcantara, Grazielle M; Camargo, Danielle S; Cidade, Luciana C; de Almeida, Alex-Alan F; Costa, Marcio G C
2018-01-01
Nuclear factor Y (NF-Y) is a ubiquitous transcription factor found in eukaryotes. It is composed of three distinct subunits called NF-YA, NF-YB and NF-YC. NF-Ys have been identified as key regulators of multiple pathways in the control of development and tolerance to biotic and abiotic factors. The present study aimed to identify and characterize the complete repertoire of genes coding for NF-Y in citrus, as well as to perform the functional characterization of one of its members, namely CsNFYA5, in transgenic tobacco plants. A total of 22 genes coding for NF-Y were identified in the genomes of sweet orange (Citrus sinensis) and Clementine mandarin (C. clementina), including six CsNF-YAs, 11 CsNF-YBs and five CsNF-YCs. Phylogenetic analyses showed that there is a NF-Y orthologous in the Clementine genome for each sweet orange NF-Y gene; this was not observed when compared to Arabidopsis thaliana. CsNF-Y proteins shared the same conserved domains with their orthologous proteins in other organisms, including mouse. Analysis of gene expression by RNA-seq and EST data demonstrated that CsNF-Ys have a tissue-specific and stress inducible expression profile. qRT-PCR analysis revealed that CsNF-YA5 exhibits differential expression in response to water deficit in leaves and roots of citrus plants. Overexpression of CsNF-YA5 in transgenic tobacco plants contributed to the reduction of H2O2 production under dehydration conditions and increased plant growth and photosynthetic rate under normal conditions and drought stress. These biochemical and physiological responses to drought stress promoted by CsNF-YA5 may confer a productivity advantage in environments with frequent short-term soil water deficit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.
1979-09-01
A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples.
Computer optimization of reactor-thermoelectric space power systems
NASA Technical Reports Server (NTRS)
Maag, W. L.; Finnegan, P. M.; Fishbach, L. H.
1973-01-01
A computer simulation and optimization code that has been developed for nuclear space power systems is described. The results of using this code to analyze two reactor-thermoelectric systems are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demura, T.; Driscoll, W.J.; Lee, Y.C.
1991-01-01
Nuclei of the guinea pig adrenal cortex contain a protein that specifically binds progesterone and that, biochemically, is clearly distinct from the classical progesterone receptor. The adrenocortical nuclear progesterone-binding protein has now been purified more than 2000-fold by steroid-affinity chromatography with a 75% yield. The purified protein preparation demonstrated three major bands on sodium dodecyl sulfate-polyacrylamide gel of 79K, 74K, and 50K. To determine which of the three might represent the progesterone-binding protein, steroid photoaffinity labeling was performed which resulted in the specific and exclusive labeling of a 50K band. Thus, the adrenocortical nuclear progesterone-binding protein appears to be distinctmore » from the classical progesterone receptor not only biochemically, but also on the basis of molecular size. To test whether the adrenocortical nuclear progesterone-binding protein can be hormonally stimulated, guinea pigs were treated with ACTH. The chronic administration of ACTH caused a 4- to 6-fold increase in the specific progesterone binding capacity without a change in the binding affinity. There appeared to be no significant difference in nuclear progesterone binding between the zona fasciculata and zona reticularis. This finding suggests a mediating role for the progesterone-binding protein in ACTH action. In addition, the nuclear progesterone-binding protein bound to nonspecific DNA sequences, further suggesting a possible transcriptional regulatory role.« less
Goncharov, I; Palfi, Z; Bindereif, A; Michaeli, S
1999-04-30
Trans-splicing in trypanosomes involves the addition of a common spliced leader (SL) sequence, which is derived from a small RNA, the SL RNA, to all mRNA precursors. The SL RNA is present in the cell in the form of a ribonucleoprotein, the SL RNP. Using conventional chromatography and affinity selection with 2'-O-methylated RNA oligonucleotides at high ionic strength, five proteins of 70, 16, 13, 12, and 8 kDa were co-selected with the SL RNA from Leptomonas collosoma, representing the SL RNP core particle. Under conditions of lower ionic strength, additional proteins of 28 and 20 kDa were revealed. On the basis of peptide sequences, the gene coding for a protein with a predicted molecular weight of 11.9 kDa was cloned and identified as homologue of the cis-spliceosomal SmE. The protein carries the Sm motifs 1 and 2 characteristic of Sm antigens that bind to all known cis-spliceosomal uridylic acid-rich small nuclear RNAs (U snRNAs), suggesting the existence of Sm proteins in trypanosomes. This finding is of special interest because trypanosome snRNPs are the only snRNPs examined to date that are not recognized by anti-Sm antibodies. Because of the early divergence of trypanosomes from the eukaryotic lineage, the trypanosome SmE protein represents one of the primordial Sm proteins in nature.
Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization
Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj
2016-01-01
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment. PMID:21030958
Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.
Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj
2010-11-01
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. One chimera consists of a FK506-binding protein (FKBP12) fused to a cellular 'address' (nuclear localization signal or nuclear export sequence). The second chimera consists of a target protein fused to a fluorescent protein and the FKBP12-rapamycin-binding (FRB) domain from FKBP-12-rapamycin associated protein 1 (FRAP1, also known as mTor). Rapamycin induces dimerization of the FKBP12- and FRB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.
Tsuchiya, Megumi; Karim, M Rezaul; Matsumoto, Taro; Ogawa, Hidesato; Taniguchi, Hiroaki
2017-01-24
Transcriptional coregulators are vital to the efficient transcriptional regulation of nuclear chromatin structure. Coregulators play a variety of roles in regulating transcription. These include the direct interaction with transcription factors, the covalent modification of histones and other proteins, and the occasional chromatin conformation alteration. Accordingly, establishing relatively quick methods for identifying proteins that interact within this network is crucial to enhancing our understanding of the underlying regulatory mechanisms. LC-MS/MS-mediated protein binding partner identification is a validated technique used to analyze protein-protein interactions. By immunoprecipitating a previously-identified member of a protein complex with an antibody (occasionally with an antibody for a tagged protein), it is possible to identify its unknown protein interactions via mass spectrometry analysis. Here, we present a method of protein preparation for the LC-MS/MS-mediated high-throughput identification of protein interactions involving nuclear cofactors and their binding partners. This method allows for a better understanding of the transcriptional regulatory mechanisms of the targeted nuclear factors.
RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, S.L.; Miller, L.A.; Monroe, D.K.
1998-04-01
This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in themore » quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.« less
Death of a dogma: eukaryotic mRNAs can code for more than one protein.
Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier
2016-01-08
mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Omeire, Destiny; Abdin, Shaunte; Brooks, Daniel M; Miranda, Hector C
2015-04-01
The Germain's Peacock-Pheasant Polyplectron germaini (Aves, Galliformes, Phasianidae) is classified as Near Threatened on the IUCN Red List. The complete mitochondrial genome of P. germaini is 16,699 bp, consisting of 13 protein-coding genes, 2 rRNA, 22 tRNA genes and 1 control region. All of the 13 protein-coding genes have ATG as start codon. Eight of the 13 protein-coding genes have TAA as stop codon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassell, Geoffrey D.; Weitzman, Matthew D.
2004-10-01
Adeno-associated virus (AAV) replicates in the nucleus of infected cells, and therefore multiple nuclear import events are required for productive infection. We analyzed nuclear import of the viral Rep proteins and characterized a nuclear localization signal (NLS) in the C-terminus. We demonstrate that basic residues in this region constitute an NLS that is transferable and mediates interaction with the nuclear import receptor importin {alpha} in vitro. Mutant Rep proteins are predominantly cytoplasmic and are severely compromised for interactions with importin {alpha}, but retain their enzymatic functions in vitro. Interestingly, mutations of the NLS had significantly less effect on importin {alpha}more » interaction and replication in the context of Rep78 than when incorporated into the Rep68 protein. Together, our results demonstrate that a bipartite NLS exists in the shared part of Rep68 and Rep78, and suggest that an alternate entry mechanism may also contribute to nuclear localization of the Rep78 protein.« less
Xiong, Yan; Yue, Feng; Jia, Zhihao; Gao, Yun; Jin, Wen; Hu, Keping; Zhang, Yong; Zhu, Dahai; Yang, Gongshe; Kuang, Shihuan
2018-04-01
The thermogenic activities of brown and beige adipocytes can be exploited to reduce energy surplus and counteract obesity. Recent RNA sequencing studies have uncovered a number of long noncoding RNAs (lncRNAs) uniquely expressed in white and brown adipose tissues (WAT and BAT), but whether and how these lncRNAs function in adipogenesis remain largely unknown. Here, we report the identification of a novel brown adipocyte-enriched LncRNA (AK079912), and its nuclear localization, function and regulation. The expression of AK079912 increases during brown preadipocyte differentiation and in response to cold-stimulated browning of white adipocytes. Knockdown of AK079912 inhibits brown preadipocyte differentiation, manifested by reductions in lipid accumulation and down-regulation of adipogenic and BAT-specific genes. Conversely, ectopic expression of AK079912 in white preadipocytes up-regulates the expression of genes involved in thermogenesis. Mechanistically, inhibition of AK079912 reduces mitochondrial copy number and protein levels of mitochondria electron transport chain (ETC) complexes, whereas AK079912 overexpression increases the levels of ETC proteins. Lastly, reporter and pharmacological assays identify Pparγ as an upstream regulator of AK079912. These results provide new insights into the function of non-coding RNAs in brown adipogenesis and regulating browning of white adipocytes. Copyright © 2018 Elsevier B.V. All rights reserved.
Nota, Florencia; Cambiagno, Damián A; Ribone, Pamela; Alvarez, María E
2015-06-01
DNA glycosylases recognize and excise damaged or incorrect bases from DNA initiating the base excision repair (BER) pathway. Methyl-binding domain protein 4 (MBD4) is a member of the HhH-GPD DNA glycosylase superfamily, which has been well studied in mammals but not in plants. Our knowledge on the plant enzyme is limited to the activity of the Arabidopsis recombinant protein MBD4L in vitro. To start evaluating MBD4L in its biological context, we here characterized the structure, expression and effects of its gene, AtMBD4L. Phylogenetic analysis indicated that AtMBD4L belongs to one of the seven families of HhH-GPD DNA glycosylase genes existing in plants, and is unique on its family. Two AtMBD4L transcripts coding for active enzymes were detected in leaves and flowers. Transgenic plants expressing the AtMBD4L:GUS gene confined GUS activity to perivascular leaf tissues (usually adjacent to hydathodes), flowers (anthers at particular stages of development), and the apex of immature siliques. MBD4L-GFP fusion proteins showed nuclear localization in planta. Interestingly, overexpression of the full length MBD4L, but not a truncated enzyme lacking the DNA glycosylase domain, induced the BER gene LIG1 and enhanced tolerance to oxidative stress. These results suggest that endogenous MBD4L acts on particular tissues, is capable of activating BER, and may contribute to repair DNA damage caused by oxidative stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai
2013-12-01
Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.
Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes.
Boulo, Sébastien; Akarsu, Hatice; Ruigrok, Rob W H; Baudin, Florence
2007-03-01
Influenza virus is a negative strand RNA virus and is one of the rare RNA viruses to replicate in the nucleus. The viral RNA is associated with 4 viral proteins to form ribonucleoprotein particles (RNPs). After cell entry the RNPs are dissociated from the viral matrix protein in the low pH of the endosome and are actively imported into the cell nucleus. After translation of viral mRNAs, the proteins necessary for the assembly of new RNPs (the nucleoprotein and the three subunits of the polymerase complex) are also imported into the nucleus. Apart from these four proteins, part of the newly made matrix protein is also imported and the nuclear export protein (NEP) enters the nucleus probably through diffusion. Finally, NS1 also enters the nucleus in order to regulate a number of nuclear processes. The nuclear localization signals on all these viral proteins and their interaction with the cellular transport system are discussed. In the nucleus, the matrix protein binds to the newly assembled RNPs and NEP then binds to the matrix protein. NEP contains the nuclear export signal necessary for transport of the RNPs to the cytoplasm, necessary for the budding of new virus particles. There appears to be a intricate ballet in exposing and hiding nuclear transport signals which leads to a unidirectional transport of the RNPs to the nucleus at the start of the infection process and an opposite unidirectional export of RNPs at the end of the infection.
A proteomic study of the arabidopsis nuclear matrix.
Calikowski, Tomasz T; Meulia, Tea; Meier, Iris
2003-10-01
The eukaryotic nucleus has been proposed to be organized by two interdependent nucleoprotein structures, the DNA-based chromatin and the RNA-dependent nuclear matrix. The functional composition and molecular organization of the second component have not yet been resolved. Here, we describe the isolation of the nuclear matrix from the model plant Arabidopsis, its initial characterization by confocal and electron microscopy, and the identification of 36 proteins by mass spectrometry. Electron microscopy of resinless samples confirmed a structure very similar to that described for the animal nuclear matrix. Two-dimensional gel electrophoresis resolved approximately 300 protein spots. Proteins were identified in batches by ESI tandem mass spectrometry after resolution by 1D SDS-PAGE. Among the identified proteins were a number of demonstrated or predicted Arabidopsis homologs of nucleolar proteins such as IMP4, Nop56, Nop58, fibrillarins, nucleolin, as well as ribosomal components and a putative histone deacetylase. Others included homologs of eEF-1, HSP/HSC70, and DnaJ, which have also been identified in the nucleolus or nuclear matrix of human cells, as well as a number of novel proteins with unknown function. This study is the first proteomic approach towards the characterization of a higher plant nuclear matrix. It demonstrates the striking similarities both in structure and protein composition of the operationally defined nuclear matrix across kingdoms whose unicellular ancestors have separated more than one billion years ago. Copyright 2003 Wiley-Liss, Inc.
Yang, Feng-Ming; Feng, Shan-Jung; Lai, Tsai-Chun; Hu, Meng-Chun
2015-10-15
As an orphan member of the nuclear receptor family, liver receptor homologue-1 (LRH-1) controls a tremendous range of transcriptional programmes that are essential for metabolism and hormone synthesis. Our previous studies have shown that nuclear localization of the LRH-1 protein is mediated by two nuclear localization signals (NLSs) that are karyopherin/importin-dependent. It is unclear whether LRH-1 can be actively exported from the nucleus to the cytoplasm. In the present study, we describe a nuclear export domain containing two leucine-rich motifs [named nuclear export signal (NES)1 and NES2] within the ligand-binding domain (LBD). Mutation of leucine residues in NES1 or NES2 abolished nuclear export, indicating that both NES1 and NES2 motifs are essential for full nuclear export activity. This NES-mediated nuclear export was insensitive to the chromosomal region maintenance 1 (CRM1) inhibitor leptomycin B (LMB) or to CRM1 knockdown. However, knockdown of calreticulin (CRT) prevented NES-mediated nuclear export. Furthermore, our data show that CRT interacts with LRH-1 and is involved in the nuclear export of LRH-1. With full-length LRH-1, mutation of NES1 led to perinuclear accumulation of the mutant protein. Immunofluorescence analysis showed that these perinuclear aggregates were co-localized with the centrosome marker, microtubule-associated protein 1 light chain 3 (LC3), ubiquitin and heat shock protein 70 (Hsp70), indicating that the mutant was misfolded and sequestered into aggresome-like structures via the autophagic clearance pathway. Our study demonstrates for the first time that LRH-1 has a CRT-dependent NES which is not only required for cytoplasmic trafficking, but also essential for correct protein folding to avoid misfolding-induced aggregation. © 2015 Authors; published by Portland Press Limited.
Towards a supported common NEAMS software stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormac Garvey
2012-04-01
The NEAMS IPSC's are developing multidimensional, multiphysics, multiscale simulation codes based on first principles that will be capable of predicting all aspects of current and future nuclear reactor systems. These new breeds of simulation codes will include rigorous verification, validation and uncertainty quantification checks to quantify the accuracy and quality of the simulation results. The resulting NEAMS IPSC simulation codes will be an invaluable tool in designing the next generation of Nuclear Reactors and also contribute to a more speedy process in the acquisition of licenses from the NRC for new Reactor designs. Due to the high resolution of themore » models, the complexity of the physics and the added computational resources to quantify the accuracy/quality of the results, the NEAMS IPSC codes will require large HPC resources to carry out the production simulation runs.« less
The use of the SRIM code for calculation of radiation damage induced by neutrons
NASA Astrophysics Data System (ADS)
Mohammadi, A.; Hamidi, S.; Asadabad, Mohsen Asadi
2017-12-01
Materials subjected to neutron irradiation will being evolve to structural changes by the displacement cascades initiated by nuclear reaction. This study discusses a methodology to compute primary knock-on atoms or PKAs information that lead to radiation damage. A program AMTRACK has been developed for assessing of the PKAs information. This software determines the specifications of recoil atoms (using PTRAC card of MCNPX code) and also the kinematics of interactions. The deterministic method was used for verification of the results of (MCNPX+AMTRACK). The SRIM (formely TRIM) code is capable to compute neutron radiation damage. The PKAs information was extracted by AMTRACK program, which can be used as an input of SRIM codes for systematic analysis of primary radiation damage. Then the Bushehr Nuclear Power Plant (BNPP) radiation damage on reactor pressure vessel is calculated.
A Role for Caenorhabditis elegans Importin IMA-2 in Germ Line and Embryonic Mitosis
Geles, Kenneth G.; Johnson, Jeffrey J.; Jong, Sena; Adam, Stephen A.
2002-01-01
The importin α family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin α proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin α proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype. ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis. PMID:12221121
Iwamoto, Masaaki; Mori, Chie; Osakada, Hiroko; Koujin, Takako; Hiraoka, Yasushi; Haraguchi, Tokuko
2018-06-08
Ciliated protozoa possess two morphologically and functionally distinct nuclei: a macronucleus (MAC) and a micronucleus (MIC). The MAC is transcriptionally active and functions in all cellular events. The MIC is transcriptionally inactive during cell growth, but functions in meiotic events to produce progeny nuclei. Thus, these two nuclei must be distinguished by the nuclear proteins required for their distinct functions during cellular events such as cell proliferation and meiosis. To understand the mechanism of the nuclear transport specific to either MAC or MIC, we identified specific nuclear localization signals (NLSs) in two MAC- and MIC-specific nuclear proteins, macronuclear histone H1 and micronuclear linker histone-like protein (Mlh1), respectively. By expressing GFP-fused fragments of these proteins in Tetrahymena thermophila cells, two distinct regions in macronuclear histone H1 protein were assigned as independent MAC-specific NLSs and two distinct regions in Mlh1 protein were assigned as independent MIC-specific NLSs. These NLSs contain several essential lysine residues responsible for the MAC- and MIC-specific nuclear transport, but neither contains any consensus sequence with known monopartite or bipartite NLSs in other model organisms. Our findings contribute to understanding how specific nuclear targeting is achieved to perform distinct nuclear functions in binucleated ciliates. © 2018 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, Carlos N; Caro, J A; Lebensohn, R A
2010-01-01
Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
A MODEL BUILDING CODE FOR FALLOUT SHELTERS WAS DRAWN UP FOR INCLUSION IN FOUR NATIONAL MODEL BUILDING CODES. DISCUSSION IS GIVEN OF FALLOUT SHELTERS WITH RESPECT TO--(1) NUCLEAR RADIATION, (2) NATIONAL POLICIES, AND (3) COMMUNITY PLANNING. FALLOUT SHELTER REQUIREMENTS FOR SHIELDING, SPACE, VENTILATION, CONSTRUCTION, AND SERVICES SUCH AS ELECTRICAL…
10 CFR 50.55a - Codes and standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... specified in § 50.55, except that each combined license for a boiling or pressurized water-cooled nuclear... boiling or pressurized water-cooled nuclear power facility is subject to the conditions in paragraphs (f... performed. (2) Systems and components of boiling and pressurized water-cooled nuclear power reactors must...
78 FR 9745 - Kewaunee Power Station; Application for Amendment to Facility Operating License
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... FURTHER INFORMATION CONTACT: Karl Feintuch, Project Manager, Office of Nuclear Reactor Regulation, U.S... Licensing, Office of Nuclear Reactor Regulation. [FR Doc. 2013-03037 Filed 2-8-13; 8:45 am] BILLING CODE... NUCLEAR REGULATORY COMMISSION [Docket No. 50-305; NRC-2013-0028] Kewaunee Power Station...
Sharma, Mayuri; Kamil, Jeremy P.; Coughlin, Margaret; Reim, Natalia I.
2014-01-01
Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them. PMID:24155370
Sharma, Mayuri; Kamil, Jeremy P; Coughlin, Margaret; Reim, Natalia I; Coen, Donald M
2014-01-01
Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.
Nuclear export of ubiquitinated proteins via the UBIN-POST system
Sugihara, Munechika; Morito, Daisuke; Iemura, Shun-ichiro; Natsume, Tohru; Nagata, Kazuhiro
2018-01-01
Although mechanisms for protein homeostasis in the cytosol have been studied extensively, those in the nucleus remain largely unknown. Here, we identified that a protein complex mediates export of polyubiquitinated proteins from the nucleus to the cytosol. UBIN, a ubiquitin-associated (UBA) domain-containing protein, shuttled between the nucleus and the cytosol in a CRM1-dependent manner, despite the lack of intrinsic nuclear export signal (NES). Instead, the UBIN binding protein polyubiquitinated substrate transporter (POST) harboring an NES shuttled UBIN through nuclear pores. UBIN bound to polyubiquitin chain through its UBA domain, and the UBIN-POST complex exported them from the nucleus to the cytosol. Ubiquitinated proteins accumulated in the cytosol in response to proteasome inhibition, whereas cotreatment with CRM1 inhibitor led to their accumulation in the nucleus. Our results suggest that ubiquitinated proteins are exported from the nucleus to the cytosol in the UBIN-POST complex-dependent manner for the maintenance of nuclear protein homeostasis. PMID:29666234
Nuclear export of ubiquitinated proteins via the UBIN-POST system.
Hirayama, Shoshiro; Sugihara, Munechika; Morito, Daisuke; Iemura, Shun-Ichiro; Natsume, Tohru; Murata, Shigeo; Nagata, Kazuhiro
2018-05-01
Although mechanisms for protein homeostasis in the cytosol have been studied extensively, those in the nucleus remain largely unknown. Here, we identified that a protein complex mediates export of polyubiquitinated proteins from the nucleus to the cytosol. UBIN, a ubiquitin-associated (UBA) domain-containing protein, shuttled between the nucleus and the cytosol in a CRM1-dependent manner, despite the lack of intrinsic nuclear export signal (NES). Instead, the UBIN binding protein polyubiquitinated substrate transporter (POST) harboring an NES shuttled UBIN through nuclear pores. UBIN bound to polyubiquitin chain through its UBA domain, and the UBIN-POST complex exported them from the nucleus to the cytosol. Ubiquitinated proteins accumulated in the cytosol in response to proteasome inhibition, whereas cotreatment with CRM1 inhibitor led to their accumulation in the nucleus. Our results suggest that ubiquitinated proteins are exported from the nucleus to the cytosol in the UBIN-POST complex-dependent manner for the maintenance of nuclear protein homeostasis. Copyright © 2018 the Author(s). Published by PNAS.
Nuclear fuel management optimization using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-07-01
The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less
Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G
1997-03-01
We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.
Genetics Home Reference: familial cylindromatosis
... instructions for making a protein that helps regulate nuclear factor-kappa-B. Nuclear factor-kappa-B is a group of related ... to certain signals. In regulating the action of nuclear factor-kappa-B, the CYLD protein allows cells ...
0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Heng; Denhard, Leslie A.; Zhou Huaxin
Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and roundmore » spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, Hajime; Kukita; Ohnuki, Akira
1997-07-01
The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.
Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; ...
2014-10-02
Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui
Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less
Pang, Erli; Wu, Xiaomei; Lin, Kui
2016-06-01
Protein evolution plays an important role in the evolution of each genome. Because of their functional nature, in general, most of their parts or sites are differently constrained selectively, particularly by purifying selection. Most previous studies on protein evolution considered individual proteins in their entirety or compared protein-coding sequences with non-coding sequences. Less attention has been paid to the evolution of different parts within each protein of a given genome. To this end, based on PfamA annotation of all human proteins, each protein sequence can be split into two parts: domains or unassigned regions. Using this rationale, single nucleotide polymorphisms (SNPs) in protein-coding sequences from the 1000 Genomes Project were mapped according to two classifications: SNPs occurring within protein domains and those within unassigned regions. With these classifications, we found: the density of synonymous SNPs within domains is significantly greater than that of synonymous SNPs within unassigned regions; however, the density of non-synonymous SNPs shows the opposite pattern. We also found there are signatures of purifying selection on both the domain and unassigned regions. Furthermore, the selective strength on domains is significantly greater than that on unassigned regions. In addition, among all of the human protein sequences, there are 117 PfamA domains in which no SNPs are found. Our results highlight an important aspect of protein domains and may contribute to our understanding of protein evolution.
SASS-1--SUBASSEMBLY STRESS SURVEY CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, C.M.
1960-01-01
SASS-1, an IBM-704 FORTRAN code, calculates pressure, thermal, and combined stresses in a nuclear reactor core subassembly. In addition to cross- section stresses, the code calculates axial shear stresses needed to keep plane cross sections plane under axial variations of temperature. The input and output nomenclature, arrangement, and formats are described. (B.O.G.)
78 FR 37848 - ASME Code Cases Not Approved for Use
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-1233, ``ASME Code Cases not Approved for Use.'' This regulatory guide lists the American Society of Mechanical Engineers (ASME) Code Cases that the NRC has determined not to be acceptable for use on a generic basis.
A Comparison of Fatigue Design Methods
2001-04-05
Boiler and Pressure Vessel Code does not...Engineers, "ASME Boiler and Pressure Vessel Code ," ASME, 3 Park Ave., New York, NY 10016-5990. [4] Langer, B. F., "Design of Pressure Vessels Involving... and Pressure Vessel Code [3] presents these methods and has expanded the procedures to other pressure vessels besides nuclear pressure vessels. B.
Neutronic calculation of fast reactors by the EUCLID/V1 integrated code
NASA Astrophysics Data System (ADS)
Koltashev, D. A.; Stakhanova, A. A.
2017-01-01
This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.
Widłak, P; Rzeszowska-Wolny, J
1993-01-01
The binding of [14C]benzo[a]pyrene (B[a]P) to DNA and proteins in total nuclei and subnuclear fractions of cultured rat hepatocytes was compared. The main targets of B[a]P were non-histone high molecular weight proteins of the nuclear matrix and DNA sequences attached to this structure. Following 24 h exposure to B[a]P the amounts of adducts in the nuclear matrix DNA and proteins were twice as high as in total nuclei. After withdrawal of the carcinogen containing medium the level of B[a]P-induced adducts gradually decreased but always remained the highest in the nuclear matrix proteins. Removal of adducts from the nuclear matrix DNA was more efficient than from the other DNA fractions, and 72 h after exposure to the carcinogen the level of DNA adducts in this fraction was similar to that in total nuclei.
Hovde, Blake T.; Deodato, Chloe R.; Hunsperger, Heather M.; Ryken, Scott A.; Yost, Will; Jha, Ramesh K.; Patterson, Johnathan; Monnat, Raymond J.; Barlow, Steven B.; Starkenburg, Shawn R.; Cattolico, Rose Ann
2015-01-01
Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes. PMID:26397803
Miller, John J; Delwiche, Charles F
2015-06-01
Emiliania huxleyi is a haptophyte alga of uncertain phylogenetic affinity containing a secondarily derived, chlorophyll c containing plastid. We sought to characterize its relationships with other taxa by quantifying the bipartitions in which it was included from a group of single protein phylogenetic trees in a way that allowed for variation in taxonomic content and accounted for paralogous sequences. The largest number of sequences supported a phylogenetic relationship of E. huxleyi with the stramenopiles, in particular Aureococcus anophagefferens. Far fewer nuclear sequences gave strong support to the placement of this coccolithophorid with the cryptophyte, Guillardia theta. The majority of the sequences that did support this relationship did not have plastid related functions. These results suggest that the haptophytes may be more closely allied with the heterokonts than with the cryptophytes. Another small set of genes associated E. huxleyi with the Viridiplantae with high support. While these genes could have been acquired with a plastid, the lack of plastid related functions among the proteins for which they code and the lack of other organisms with chlorophyll c containing plastids within these bipartitions suggests other explanations may be possible. This study also identified several genes that may have been transferred from the haptophyte lineage to the dinoflagellates Karenia brevis and Karlodinium veneficum as a result of their haptophyte derived plastid, including some with non-photosynthetic functions. Published by Elsevier B.V.
Van Lent, Sarah; Creasy, Heather Huot; Myers, Garry S A; Vanrompay, Daisy
2016-01-01
Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of pmp coding sequences differs between Chlamydia species, but it is unknown whether the number of pmp coding sequences is constant within a Chlamydia species. The level of conservation of the Pmp proteins has previously only been determined for Chlamydia trachomatis. As different Pmp proteins might be indispensible for the pathogenesis of different Chlamydia species, this study investigated the conservation of Pmp proteins both within and across C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci. The pmp coding sequences were annotated in 16 C. trachomatis, 6 C. pneumoniae, 2 C. abortus, and 16 C. psittaci genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed Chlamydia species. The length of coding sequences of pmpA,pmpB, and pmpH was conserved among all analyzed genomes, while the length of pmpE/F and pmpG, and remarkably also of the subtype pmpD, differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci, respectively. PmpB was the most conserved Pmp across the 4 analyzed Chlamydia species. © 2016 S. Karger AG, Basel.
Globalization of ASME Nuclear Codes and Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swayne, Rick; Erler, Bryan A.
2006-07-01
With the globalization of the nuclear industry, it is clear that the reactor suppliers are based in many countries around the world (such as United States, France, Japan, Canada, South Korea, South Africa) and they will be marketing their reactors to many countries around the world (such as US, China, South Korea, France, Canada, Finland, Taiwan). They will also be fabricating their components in many different countries around the world. With this situation, it is clear that the requirements of ASME Nuclear Codes and Standards need to be adjusted to accommodate the regulations, fabricating processes, and technology of various countriesmore » around the world. It is also very important for the American Society of Mechanical Engineers (ASME) to be able to assure that products meeting the applicable ASME Code requirements will provide the same level of safety and quality assurance as those products currently fabricated under the ASME accreditation process. To do this, many countries are in the process of establishing or changing their regulations, and it is important for ASME to interface with the appropriate organizations in those countries, in order to ensure there is effective use of ASME Codes and standards around the world. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRISC is a developmental prototype for a nextgeneration systems-level integrated performance and safety code (IPSC) for nuclear reactors. Its development served to demonstrate how a lightweight multi-physics coupling approach can be used to tightly couple the physics models in several different physics codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled burner nuclear reactor. For example, the RIO Fluid Flow and Heat transfer code developed at Sandia (SNL: Chris Moen, Dept. 08005) is used in BRISC to model fluid flow and heat transfer, as well as conduction heat transfermore » in solids. Because BRISC is a prototype, its most practical application is as a foundation or starting point for developing a true production code. The sub-codes and the associated models and correlations currently employed within BRISC were chosen to cover the required application space and demonstrate feasibility, but were not optimized or validated against experimental data within the context of their use in BRISC.« less
A new code for modelling the near field diffusion releases from the final disposal of nuclear waste
NASA Astrophysics Data System (ADS)
Vopálka, D.; Vokál, A.
2003-01-01
The canisters with spent nuclear fuel produced during the operation of WWER reactors at the Czech power plants are planned, like in other countries, to be disposed of in an underground repository. Canisters will be surrounded by compacted bentonite that will retard the migration of safety-relevant radionuclides into the host rock. A new code that enables the modelling of the critical radionuclides transport from the canister through the bentonite layer in the cylindrical geometry was developed. The code enables to solve the diffusion equation for various types of initial and boundary conditions by means of the finite difference method and to take into account the non-linear shape of the sorption isotherm. A comparison of the code reported here with code PAGODA, which is based on analytical solution of the transport equation, was made for the actinide chain 4N+3 that includes 239Pu. A simple parametric study of the releases of 239Pu, 129I, and 14C into geosphere is discussed.
PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weiju; Lin, Lianshan
2013-01-01
To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced featuresmore » facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.« less
MCNP capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less
RELAP-7 Code Assessment Plan and Requirement Traceability Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Junsoo; Choi, Yong-joon; Smith, Curtis L.
2016-10-01
The RELAP-7, a safety analysis code for nuclear reactor system, is under development at Idaho National Laboratory (INL). Overall, the code development is directed towards leveraging the advancements in computer science technology, numerical solution methods and physical models over the last decades. Recently, INL has also been putting an effort to establish the code assessment plan, which aims to ensure an improved final product quality through the RELAP-7 development process. The ultimate goal of this plan is to propose a suitable way to systematically assess the wide range of software requirements for RELAP-7, including the software design, user interface, andmore » technical requirements, etc. To this end, we first survey the literature (i.e., international/domestic reports, research articles) addressing the desirable features generally required for advanced nuclear system safety analysis codes. In addition, the V&V (verification and validation) efforts as well as the legacy issues of several recently-developed codes (e.g., RELAP5-3D, TRACE V5.0) are investigated. Lastly, this paper outlines the Requirement Traceability Matrix (RTM) for RELAP-7 which can be used to systematically evaluate and identify the code development process and its present capability.« less
Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, Richard E., E-mail: rlloyd@bcm.edu
Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizesmore » recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.« less
NASA Technical Reports Server (NTRS)
Lacey, J. C., Jr.; Mullins, D. W., Jr.
1983-01-01
A survey is presented of the literature on the experimental evidence for the genetic code assignments and the chemical reactions involved in the process of protein synthesis. In view of the enormous number of theoretical models that have been advanced to explain the origin of the genetic code, attention is confined to experimental studies. Since genetic coding has significance only within the context of protein synthesis, it is believed that the problem of the origin of the code must be dealt with in terms of the origin of the process of protein synthesis. It is contended that the answers must lie in the nature of the molecules, amino acids and nucleotides, the affinities they might have for one another, and the effect that those affinities must have on the chemical reactions that are related to primitive protein synthesis. The survey establishes that for the bulk of amino acids, there is a direct and significant correlation between the hydrophobicity rank of the amino acids and the hydrophobicity rank of their anticodonic dinucleotides.
2012-03-01
environments where a source is either weak or shielded. A vehicle of this type could survey large areas after a nuclear attack or a nuclear reactor accident...to prevent its detection by γ-rays. The best application for unmanned vehicles is the detection of radioactive material after a nuclear reactor ...accident or a nuclear weapon detonation [70]. Whether by a nuclear detonation or a nuclear reactor accident, highly radioactive substances could be dis
Genomic insights into the Ixodes scapularis tick vector of Lyme disease
Gulia-Nuss, Monika; Nuss, Andrew B.; Meyer, Jason M.; Sonenshine, Daniel E.; Roe, R. Michael; Waterhouse, Robert M.; Sattelle, David B.; de la Fuente, José; Ribeiro, Jose M.; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R.; Walenz, Brian P.; Koren, Sergey; Hostetler, Jessica B.; Thiagarajan, Mathangi; Joardar, Vinita S.; Hannick, Linda I.; Bidwell, Shelby; Hammond, Martin P.; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L.; Almeida, Francisca C.; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W.; Bonzon-Kulichenko, Elena; Buckingham, Steven D.; Caffrey, Daniel R.; Caimano, Melissa J.; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J.; Giraldo-Calderón, Gloria I.; Grabowski, Jeffrey M.; Jiang, David; Khalil, Sayed M. S.; Kim, Donghun; Kocan, Katherine M.; Koči, Juraj; Kuhn, Richard J.; Kurtti, Timothy J.; Lees, Kristin; Lang, Emma G.; Kennedy, Ryan C.; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D.; Sakamoto, Joyce M.; Sánchez-Gracia, Alejandro; Severo, Maiara S.; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P.; Vázquez, Jesús; Vieira, Filipe G.; Villar, Margarita; Wespiser, Adam R.; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V.; Barker, Stephen C.; Shao, Renfu; Zdobnov, Evgeny M.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H. F.; Nelson, David R.; Unger, Maria F.; Tubio, Jose M. C.; Tu, Zhijian; Robertson, Hugh M.; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R.; Lawson, Daniel; Wikel, Stephen K.; Nene, Vishvanath M.; Fraser, Claire M.; Collins, Frank H.; Birren, Bruce; Nelson, Karen E.; Caler, Elisabet; Hill, Catherine A.
2016-01-01
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent. PMID:26856261
Genomic insights into the Ixodes scapularis tick vector of Lyme disease.
Gulia-Nuss, Monika; Nuss, Andrew B; Meyer, Jason M; Sonenshine, Daniel E; Roe, R Michael; Waterhouse, Robert M; Sattelle, David B; de la Fuente, José; Ribeiro, Jose M; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R; Walenz, Brian P; Koren, Sergey; Hostetler, Jessica B; Thiagarajan, Mathangi; Joardar, Vinita S; Hannick, Linda I; Bidwell, Shelby; Hammond, Martin P; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L; Almeida, Francisca C; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W; Bonzon-Kulichenko, Elena; Buckingham, Steven D; Caffrey, Daniel R; Caimano, Melissa J; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J; Giraldo-Calderón, Gloria I; Grabowski, Jeffrey M; Jiang, David; Khalil, Sayed M S; Kim, Donghun; Kocan, Katherine M; Koči, Juraj; Kuhn, Richard J; Kurtti, Timothy J; Lees, Kristin; Lang, Emma G; Kennedy, Ryan C; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D; Sakamoto, Joyce M; Sánchez-Gracia, Alejandro; Severo, Maiara S; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P; Vázquez, Jesús; Vieira, Filipe G; Villar, Margarita; Wespiser, Adam R; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V; Barker, Stephen C; Shao, Renfu; Zdobnov, Evgeny M; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H F; Nelson, David R; Unger, Maria F; Tubio, Jose M C; Tu, Zhijian; Robertson, Hugh M; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R; Lawson, Daniel; Wikel, Stephen K; Nene, Vishvanath M; Fraser, Claire M; Collins, Frank H; Birren, Bruce; Nelson, Karen E; Caler, Elisabet; Hill, Catherine A
2016-02-09
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.
Role of Nuclear Lamina in Gene Repression and Maintenance of Chromosome Architecture in the Nucleus.
Shevelyov, Y Y; Ulianov, S V
2018-04-01
Nuclear lamina is a protein meshwork composed of lamins and lamin-associated proteins that lines the nuclear envelope from the inside and forms repressive transcription compartment. The review presents current data on the contribution of nuclear lamina to the repression of genes located in this compartment and on the mechanisms of chromatin attachment to the nuclear envelope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Mingyuan, E-mail: hanming@umich.edu; Ke, Hanz
Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversionmore » of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of {sub 126}-LQxxLxxxGL-{sub 135}. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine arteritis virus.« less
Neutron Capture Gamma-Ray Libraries for Nuclear Applications
NASA Astrophysics Data System (ADS)
Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.
2011-06-01
The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.
Garcia-Higuera, I; Kuang, Y; Denham, J; D'Andrea, A D
2000-11-01
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with 8 complementation groups. Four of the FA genes have been cloned, and at least 3 of the encoded proteins, FANCA, FANCC, and FANCG/XRCC9, interact in a multisubunit protein complex. The FANCG protein binds directly to the amino terminal nuclear localization sequence (NLS) of FANCA, suggesting that FANCG plays a role in regulating FANCA nuclear accumulation. In the current study the functional consequences of FANCG/FANCA binding were examined. Correction of an FA-G cell line with the FANCG complementary DNA (cDNA) resulted in FANCA/FANCG binding, prolongation of the cellular half-life of FANCA, and an increase in the nuclear accumulation of the FA protein complex. Similar results were obtained upon correction of an FA-A cell line, with a reciprocal increase in the half-life of FANCG. Patient-derived mutant forms of FANCA, containing an intact NLS sequence but point mutations in the carboxy-terminal leucine zipper region, bound FANCG in the cytoplasm. The mutant forms failed to translocate to the nucleus of transduced cells, thereby suggesting a model of coordinated binding and nuclear translocation. These results demonstrate that the FANCA/FANCG interaction is required to maintain the cellular levels of both proteins. Moreover, at least one function of FANCG and FANCA is to regulate the nuclear accumulation of the FA protein complex. Failure to accumulate the nuclear FA protein complex results in the characteristic spectrum of clinical and cellular abnormalities observed in FA.
Rogers, Jason V; Rose, Mark D
2014-12-02
During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. Copyright © 2015 Rogers and Rose.
Rogers, Jason V.; Rose, Mark D.
2014-01-01
During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide–sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p’s functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. PMID:25467943
The Activities of the European Consortium on Nuclear Data Development and Analysis for Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, U., E-mail: ulrich.fischer@kit.edu; Avrigeanu, M.; Avrigeanu, V.
This paper presents an overview of the activities of the European Consortium on Nuclear Data Development and Analysis for Fusion. The Consortium combines available European expertise to provide services for the generation, maintenance, and validation of nuclear data evaluations and data files relevant for ITER, IFMIF and DEMO, as well as codes and software tools required for related nuclear calculations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
..., Office of Nuclear Reactor Regulation. [FR Doc. 2010-1309 Filed 1-22-10; 8:45 am] BILLING CODE 7590-01-P ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-282 and 50-306; NRC-2010-0022] License Nos. DPR-42 and DPR-60; Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambier, Linda; Pomies, Pascal, E-mail: pascal.pomies@crbm.cnrs.fr
2011-06-17
Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletalmore » muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.« less
Karyopherin alpha 1 regulates satellite cell proliferation and survival by modulating nuclear import
Choo, Hyo-Jung; Cutler, Alicia; Rother, Franziska; Bader, Michael; Pavlath, Grace K.
2016-01-01
Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self -renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells. The best characterized nuclear import pathway is classical nuclear import which depends on a classical nuclear localization signal (cNLS) in a cargo protein and the heterodimeric import receptors, karyopherin alpha (KPNA) and beta (KPNB). Multiple KPNA1 paralogs exist and can differ in importing specific cNLS proteins required for cell differentiation and function. We show that transcripts for six Kpna paralogs underwent distinct changes in mouse satellite cells during muscle regeneration accompanied by changes in cNLS proteins in nuclei. Depletion of KPNA1, the most dramatically altered KPNA, caused satellite cells in uninjured muscle to prematurely activate, proliferate and undergo apoptosis leading to satellite cell exhaustion with age. Increased proliferation of satellite cells led to enhanced muscle regeneration at early stages of regeneration. In addition, we observed impaired nuclear localization of two key KPNA1 cargo proteins: p27, a cyclin-dependent kinase inhibitor associated with cell cycle control and lymphoid enhancer factor 1, a critical co-transcription factor for β-catenin. These results indicate that regulated nuclear import of proteins by KPNA1 is critical for satellite cell proliferation and survival and establish classical nuclear import as a novel regulatory mechanism for controlling satellite cell fate. PMID:27434733
Facility Targeting, Protection and Mission Decision Making Using the VISAC Code
NASA Technical Reports Server (NTRS)
Morris, Robert H.; Sulfredge, C. David
2011-01-01
The Visual Interactive Site Analysis Code (VISAC) has been used by DTRA and several other agencies to aid in targeting facilities and to predict the associated collateral effects for the go, no go mission decision making process. VISAC integrates the three concepts of target geometric modeling, damage assessment capabilities, and an event/fault tree methodology for evaluating accident/incident consequences. It can analyze a variety of accidents/incidents at nuclear or industrial facilities, ranging from simple component sabotage to an attack with military or terrorist weapons. For nuclear facilities, VISAC predicts the facility damage, estimated downtime, amount and timing of any radionuclides released. Used in conjunction with DTRA's HPAC code, VISAC also can analyze transport and dispersion of the radionuclides, levels of contamination of the surrounding area, and the population at risk. VISAC has also been used by the NRC to aid in the development of protective measures for nuclear facilities that may be subjected to attacks by car/truck bombs.
Genetics Home Reference: anhidrotic ectodermal dysplasia with immune deficiency
... The proteins produced from these two genes regulate nuclear factor-kappa-B. Nuclear factor-kappa-B is a group of related ... proteins with impaired function, which reduces activation of nuclear factor-kappa-B. These changes disrupt certain signaling ...
Photoneutron Reaction Data for Nuclear Physics and Astrophysics
NASA Astrophysics Data System (ADS)
Utsunomiya, Hiroaki; Renstrøm, Therese; Tveten, Gry Merete; Gheorghe, Ioana; Filipescu, Dan Mihai; Belyshev, Sergey; Stopani, Konstantin; Wang, Hongwei; Fan, Gongtao; Lui, Yiu-Wing; Symochko, Dmytro; Goriely, Stephane; Larsen, Ann-Cecilie; Siem, Sunniva; Varlamov, Vladimir; Ishkhanov, Boris; Glodariu, Tudor; Krzysiek, Mateusz; Takenaka, Daiki; Ari-izumi, Takashi; Amano, Sho; Miyamoto, Shuji
2018-05-01
We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Toru; Ohashi, Sachiyo; Kobayashi, Shunsuke
In cancer cells, anticancer reagents often trigger nuclear accumulation of YB-1, which participates in the progression of cancer malignancy. YB-1 has a non-canonical nuclear localization signal (YB-NLS). Here we found that four nucleocytoplasmic-shuttling RNA-binding proteins and p53 interact specifically with the YB-NLS and co-accumulate with YB-1 in the nucleus of actinomycin D-treated cells. To elucidate the roles of these YB-NLS-binding proteins, we performed a dominant-negative experiment in which a large excess of YB-NLS interacts with the YB-NLS-binding proteins, and showed inhibitory effects on actinomycin D-induced nuclear transport of endogenous YB-1 and subsequent MDR1 gene expression. Furthermore, the YB-NLS-expressing cells weremore » also found to show increased drug sensitivity. Our results suggest that these YB-NLS-associating proteins are key factors for nuclear translocation/accumulation of YB-1 in cancer cells. - Highlights: • Four nucleocytoplasmic-shuttling proteins and p53 associate with YB-NLS. • They showed nuclear co-accumulation with YB-1 in actinomycin D-treated cells. • Overexpression of YB-NLS was carried out to take YB-NLS-binding proteins from YB-1. • YB-NLS inhibited actinomycin D-induced nuclear localization of endogenous YB-1. • YB-NLS suppressed actinomycin D-induced expression of MDR1.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-025 and 52-026; NRC-2008-0252] Southern Nuclear... Atomic Energy Act and Title 10 of the Code of Federal Regulations (10 CFR) Part 52, ``Licenses... of 10 CFR Part 52. The information submitted by the applicant includes certain administrative...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-025 and 52-026; NRC-2008-0252] Southern Nuclear... Atomic Energy Act and Title 10 of the Code of Federal Regulations (10 CFR) Part 52, ``Licenses... of 10 CFR Part 52. The information submitted by the applicant includes certain administrative...
ERIC Educational Resources Information Center
Askew, Jennifer; Gray, Ron
2017-01-01
Near the end of World War II, the United States dropped the first nuclear bomb ever used in warfare. The bomb was code named "Little Boy." The fission-type nuclear bomb exploded with the energy equivalent of approximately 13 kilotons of TNT. This article describes a 16 day model-based inquiry (MBI) unit on nuclear chemistry that…
Kubota, Sho; Morii, Mariko; Yuki, Ryuzaburo; Yamaguchi, Noritaka; Yamaguchi, Hiromi; Aoyama, Kazumasa; Kuga, Takahisa; Tomonaga, Takeshi; Yamaguchi, Naoto
2015-04-24
Protein-tyrosine phosphorylation regulates a wide variety of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine kinases induce global nuclear structure changes, which we called chromatin structural changes. However, the mechanisms are not fully understood. In this study we identify protein kinase A anchoring protein 8 (AKAP8/AKAP95), which associates with chromatin and the nuclear matrix, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of AKAP8 is induced by several tyrosine kinases, such as Src, Fyn, and c-Abl but not Syk. Nucleus-targeted Lyn and c-Src strongly dissociate AKAP8 from chromatin and the nuclear matrix in a kinase activity-dependent manner. The levels of tyrosine phosphorylation of AKAP8 are decreased by substitution of multiple tyrosine residues on AKAP8 into phenylalanine. Importantly, the phenylalanine mutations of AKAP8 inhibit its dissociation from nuclear structures, suggesting that the association/dissociation of AKAP8 with/from nuclear structures is regulated by its tyrosine phosphorylation. Furthermore, the phenylalanine mutations of AKAP8 suppress the levels of nuclear tyrosine kinase-induced chromatin structural changes. In contrast, AKAP8 knockdown increases the levels of chromatin structural changes. Intriguingly, stimulation with hydrogen peroxide induces chromatin structural changes accompanied by the dissociation of AKAP8 from nuclear structures. These results suggest that AKAP8 is involved in the regulation of chromatin structural changes through nuclear tyrosine phosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
de Saint Jean, C.; Habert, B.; Archier, P.; Noguere, G.; Bernard, D.; Tommasi, J.; Blaise, P.
2010-10-01
In the [eV;MeV] energy range, modelling of the neutron induced reactions are based on nuclear reaction models having parameters. Estimation of co-variances on cross sections or on nuclear reaction model parameters is a recurrent puzzle in nuclear data evaluation. Major breakthroughs were asked by nuclear reactor physicists to assess proper uncertainties to be used in applications. In this paper, mathematical methods developped in the CONRAD code[2] will be presented to explain the treatment of all type of uncertainties, including experimental ones (statistical and systematic) and propagate them to nuclear reaction model parameters or cross sections. Marginalization procedure will thus be exposed using analytical or Monte-Carlo solutions. Furthermore, one major drawback found by reactor physicist is the fact that integral or analytical experiments (reactor mock-up or simple integral experiment, e.g. ICSBEP, …) were not taken into account sufficiently soon in the evaluation process to remove discrepancies. In this paper, we will describe a mathematical framework to take into account properly this kind of information.
Caetano-Anollés, Gustavo; Wang, Minglei; Caetano-Anollés, Derek
2013-01-01
The genetic code shapes the genetic repository. Its origin has puzzled molecular scientists for over half a century and remains a long-standing mystery. Here we show that the origin of the genetic code is tightly coupled to the history of aminoacyl-tRNA synthetase enzymes and their interactions with tRNA. A timeline of evolutionary appearance of protein domain families derived from a structural census in hundreds of genomes reveals the early emergence of the ‘operational’ RNA code and the late implementation of the standard genetic code. The emergence of codon specificities and amino acid charging involved tight coevolution of aminoacyl-tRNA synthetases and tRNA structures as well as episodes of structural recruitment. Remarkably, amino acid and dipeptide compositions of single-domain proteins appearing before the standard code suggest archaic synthetases with structures homologous to catalytic domains of tyrosyl-tRNA and seryl-tRNA synthetases were capable of peptide bond formation and aminoacylation. Results reveal that genetics arose through coevolutionary interactions between polypeptides and nucleic acid cofactors as an exacting mechanism that favored flexibility and folding of the emergent proteins. These enhancements of phenotypic robustness were likely internalized into the emerging genetic system with the early rise of modern protein structure. PMID:23991065
Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul
2012-01-01
Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.
Schiavo, G; Strillacci, M G; Ribani, A; Bovo, S; Roman-Ponce, S I; Cerolini, S; Bertolini, F; Bagnato, A; Fontanesi, L
2018-06-01
Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA-originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last. A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein-coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage. © 2018 Stichting International Foundation for Animal Genetics.
NDEC: A NEA platform for nuclear data testing, verification and benchmarking
NASA Astrophysics Data System (ADS)
Díez, C. J.; Michel-Sendis, F.; Cabellos, O.; Bossant, M.; Soppera, N.
2017-09-01
The selection, testing, verification and benchmarking of evaluated nuclear data consists, in practice, in putting an evaluated file through a number of checking steps where different computational codes verify that the file and the data it contains complies with different requirements. These requirements range from format compliance to good performance in application cases, while at the same time physical constraints and the agreement with experimental data are verified. At NEA, the NDEC (Nuclear Data Evaluation Cycle) platform aims at providing, in a user friendly interface, a thorough diagnose of the quality of a submitted evaluated nuclear data file. Such diagnose is based on the results of different computational codes and routines which carry out the mentioned verifications, tests and checks. NDEC also searches synergies with other existing NEA tools and databases, such as JANIS, DICE or NDaST, including them into its working scheme. Hence, this paper presents NDEC, its current development status and its usage in the JEFF nuclear data project.
Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki
2012-06-06
Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spentmore » fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.« less
NASA Astrophysics Data System (ADS)
Gusev, Oleg; Sugimoto, Manabu; Novikova, Nataliya; Sychev, Vladimir; Okuda, Takashi; Kikawada, Takahiro
2012-07-01
Anhydrobiotic chironomid larvae of Polypedilum vanderplanki (Diptera) can withstand prolonged complete desiccation as well as other external stresses including ionizing radiation. Recent experiments showed that this insect is able to survive long-tern exposure to real outer space. At the same time, we found that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. Analysis of several remote populations of the chironomid in Africa that desiccation-related DNA damage might be a driving genetic force for rapid radiation within the species. First results of ongoing genome project suggest that origin and evolution of anhydrobiosis in this single insect species related to rapid duplication of the genes, coding late embryogenesis abundant proteins (LEA) and other molecular agents directly involved in desiccation resistance in the cells. Analysis of genome-wide mRNA expression profiles in the larvae subjected to desiccation shows that joint-activity of large multiple-genes coding regions in the genome involved in control of anhydrobiosis-related molecular adaptations in the chironomid.
Nguyen, Thong T; Suryamohan, Kushal; Kuriakose, Boney; Janakiraman, Vasantharajan; Reichelt, Mike; Chaudhuri, Subhra; Guillory, Joseph; Divakaran, Neethu; Rabins, P E; Goel, Ridhi; Deka, Bhabesh; Sarkar, Suman; Ekka, Preety; Tsai, Yu-Chih; Vargas, Derek; Santhosh, Sam; Mohan, Sangeetha; Chin, Chen-Shan; Korlach, Jonas; Thomas, George; Babu, Azariah; Seshagiri, Somasekar
2018-06-12
We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.
Evaluation of the finite element fuel rod analysis code (FRANCO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Feltus, M.A.
1994-12-31
Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.« less
ASME Code Efforts Supporting HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.K. Morton
2010-09-01
In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less
ASME Code Efforts Supporting HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.K. Morton
2011-09-01
In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less
ASME Code Efforts Supporting HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.K. Morton
2012-09-01
In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less
Multi-scale modeling of irradiation effects in spallation neutron source materials
NASA Astrophysics Data System (ADS)
Yoshiie, T.; Ito, T.; Iwase, H.; Kaneko, Y.; Kawai, M.; Kishida, I.; Kunieda, S.; Sato, K.; Shimakawa, S.; Shimizu, F.; Hashimoto, S.; Hashimoto, N.; Fukahori, T.; Watanabe, Y.; Xu, Q.; Ishino, S.
2011-07-01
Changes in mechanical property of Ni under irradiation by 3 GeV protons were estimated by multi-scale modeling. The code consisted of four parts. The first part was based on the Particle and Heavy-Ion Transport code System (PHITS) code for nuclear reactions, and modeled the interactions between high energy protons and nuclei in the target. The second part covered atomic collisions by particles without nuclear reactions. Because the energy of the particles was high, subcascade analysis was employed. The direct formation of clusters and the number of mobile defects were estimated using molecular dynamics (MD) and kinetic Monte-Carlo (kMC) methods in each subcascade. The third part considered damage structural evolutions estimated by reaction kinetic analysis. The fourth part involved the estimation of mechanical property change using three-dimensional discrete dislocation dynamics (DDD). Using the above four part code, stress-strain curves for high energy proton irradiated Ni were obtained.
NASA Astrophysics Data System (ADS)
Tsilanizara, A.; Gilardi, N.; Huynh, T. D.; Jouanne, C.; Lahaye, S.; Martinez, J. M.; Diop, C. M.
2014-06-01
The knowledge of the decay heat quantity and the associated uncertainties are important issues for the safety of nuclear facilities. Many codes are available to estimate the decay heat. ORIGEN, FISPACT, DARWIN/PEPIN2 are part of them. MENDEL is a new depletion code developed at CEA, with new software architecture, devoted to the calculation of physical quantities related to fuel cycle studies, in particular decay heat. The purpose of this paper is to present a probabilistic approach to assess decay heat uncertainty due to the decay data uncertainties from nuclear data evaluation like JEFF-3.1.1 or ENDF/B-VII.1. This probabilistic approach is based both on MENDEL code and URANIE software which is a CEA uncertainty analysis platform. As preliminary applications, single thermal fission of uranium 235, plutonium 239 and PWR UOx spent fuel cell are investigated.
Zhou, Carol L Ecale
2015-01-01
In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.
Delcourt, Vivian; Lucier, Jean-François; Gagnon, Jules; Beaudoin, Maxime C; Vanderperre, Benoît; Breton, Marc-André; Motard, Julie; Jacques, Jean-François; Brunelle, Mylène; Gagnon-Arsenault, Isabelle; Fournier, Isabelle; Ouangraoua, Aida; Hunting, Darel J; Cohen, Alan A; Landry, Christian R; Scott, Michelle S
2017-01-01
Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open-reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins. PMID:29083303
Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; ...
2016-01-01
Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via highmore » performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.« less
Role of Temperature Stress on Chloroplast Biogenesis and Protein Import in Pea1[OA
Dutta, Siddhartha; Mohanty, Sasmita; Tripathy, Baishnab C.
2009-01-01
Modulation of photosynthesis and chloroplast biogenesis, by low and high temperatures, was studied in 12-d-old pea (Pisum sativum) plants grown at 25°C and subsequently exposed to 7°C or 40°C up to 48 h. The decline in variable chlorophyll a fluorescence/maximum chlorophyll a fluorescence and estimated electron transport rate in temperature-stressed plants was substantially restored when they were transferred to room temperature. The ATP-driven import of precursor of small subunit of Rubisco (pRSS) into plastids was down-regulated by 67% and 49% in heat-stressed and chill-stressed plants, respectively. Reduction in binding of the pRSS to the chloroplast envelope membranes in heat-stressed plants could be due to the down-regulation of Toc159 gene/protein expression. In addition to impaired binding, reduced protein import into chloroplast in heat-stressed plants was likely due to decreased gene/protein expression of certain components of the TOC complex (Toc75), the TIC complex (Tic20, Tic32, Tic55, and Tic62), stromal Hsp93, and stromal processing peptidase. In chill-stressed plants, the gene/protein expression of most of the components of protein import apparatus other than Tic110 and Tic40 were not affected, suggesting the central role of Tic110 and Tic40 in inhibition of protein import at low temperature. Heating of intact chloroplasts at 35°C for 10 min inhibited protein import, implying a low thermal stability of the protein import apparatus. Results demonstrate that in addition to decreased gene and protein expression, down-regulation of photosynthesis in temperature-stressed plants is caused by reduced posttranslational import of plastidic proteins required for the replacement of impaired proteins coded by nuclear genome. PMID:19403728
Strategies for investigating nuclear-cytoplasmic tRNA dynamics in yeast and mammalian cells.
Pierce, Jacqueline B; Chafe, Shawn C; Eswara, Manoja B K; van der Merwe, George; Mangroo, Dev
2014-01-01
Nuclear-cytoplasmic tRNA transport involves multiple pathways that are segregated by the involvement of distinct proteins. The tRNA export process begins in the nucleolus, where the functionality of newly produced tRNAs are tested by aminoacylation, and ends with the delivery of the exported aminoacyl tRNAs to the eukaryotic elongation factor eEF-1A for utilization in protein synthesis in the cytoplasm. Recent studies have identified a number of proteins that participate in nuclear tRNA export in both yeast and mammals. However, genetic and biochemical evidence suggest that additional components, which have yet to be identified, also participate in nuclear-cytoplasmic tRNA trafficking. Here we review key strategies that have led to the identification and characterization of proteins that are involved in the nuclear tRNA export process in yeasts and mammals. The approaches described will greatly facilitate the identification and delineation of the roles of new proteins involved in nuclear export of tRNAs to the cytoplasm. Copyright © 2014 Elsevier Inc. All rights reserved.
Bao, Xun X; Spanos, Christos; Kojidani, Tomoko; Lynch, Eric M; Rappsilber, Juri; Hiraoka, Yasushi; Haraguchi, Tokuko; Sawin, Kenneth E
2018-05-29
Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe , the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the g-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs. © 2018, Bao et al.
Bao, Xun X; Spanos, Christos; Kojidani, Tomoko; Lynch, Eric M; Rappsilber, Juri; Hiraoka, Yasushi; Haraguchi, Tokuko
2018-01-01
Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the γ-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs. PMID:29809148
Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S
1999-03-05
Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.
Effects of Cluster Porosity on the Tensile Properties of Butt-Weldments in T-1 Steel
1974-11-01
i 12 Boiler and Pressure Vessel Code .19 In this code, the algebraic difference between the largest and smallest principal stresses is defined...Report U1LU- HN(J 7l-2()24 (University ot Illinois. 1971). "Nuclear Power Components.’* ASME Boiler and Pressure Vessel Code . Section HI. Subsections
Yeh, Chung-Hsin; Kuo, Pao-Lin; Wang, Ya-Yun; Wu, Ying-Yu; Chen, Mei-Feng; Lin, Ding-Yen; Lai, Tsung-Hsuan; Chiang, Han-Sun; Lin, Ying-Hung
2015-01-01
Male infertility affects approximately 50% of all infertile couples. The male-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile or immature sperm, and sperm with structural defects such as those caused by premature chromosomal condensation and DNA damage. Our previous studies based on a knockout mice model indicated that SEPT12 proteins are critical for the terminal morphological formation of sperm. SEPT12 mutations in men result in teratozospermia and oligozospermia. In addition, the spermatozoa exhibit morphological defects of the head and tail, premature chromosomal condensation, and nuclear damage. However, the molecular functions of SEPT12 during spermatogenesis remain unclear. To determine the molecular functions of SEPT12, we applied a yeast 2-hybrid system to identify SEPT12 interactors. Seven proteins that interact with SEPT12 were identified: SEPT family proteins (SEPT4 and SEPT6), nuclear or nuclear membrane proteins (protamine 2, sperm-associated antigen 4, and NDC1 transmembrane nucleoproine), and sperm-related structural proteins (pericentriolar material 1 and obscurin-like 1). Sperm-associated antigen 4 (SPAG4; also known as SUN4) belongs to the SUN family of proteins and acts as a linker protein between nucleoskeleton and cytoskeleton proteins and localizes in the nuclear membrane. We determined that SEPT12 interacts with SPAG4 in a male germ cell line through coimmunoprecipitation. During human spermiogenesis, SEPT12 is colocalized with SPAG4 near the nuclear periphery in round spermatids and in the centrosome region in elongating spermatids. Furthermore, we observed that SEPT12/SPAG4/LAMINB1 formed complexes and were coexpressed in the nuclear periphery of round spermatids. In addition, mutated SEPT12, which was screened from an infertile man, affected the integration of these nuclear envelope complexes through coimmunoprecipitation. This was the first study that suggested that SEPT proteins link to the SUN/LAMIN complexes during the formation of nuclear envelopes and are involved in the development of postmeiotic germ cells.
Galigniana, Mario D; Echeverría, Pablo C; Erlejman, Alejandra G; Piwien-Pilipuk, Graciela
2010-01-01
In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling. All members of the steroid receptor family are known to form large oligomeric structures with the heat-shock proteins of 90-kDa (hsp90) and 70-kDa (hsp70), the small acidic protein p23, and a tetratricopeptide repeat (TPR) -domain protein such as FK506-binding proteins (FKBPs), cyclophilins (CyPs) or the serine/threonine protein phosphatase 5 (PP5). It has always been stated that the dissociation of the chaperone heterocomplex (a process normally referred to as receptor "transformation") is the first step that permits the nuclear import of steroid receptors. However the experimental evidence is consistent with a model where the chaperone machinery is required for the retrotransport of the receptor through the cytoplasm and also facilitates the passage through the nuclear pore. Recent evidence indicates that the hsp90-based chaperone system also interacts with structures of the nuclear pore such as importin β and the integral nuclear pore glycoprotein Nup62 facilitating the passage of the untransformed receptor through the nuclear pore.
HIstome--a relational knowledgebase of human histone proteins and histone modifying enzymes.
Khare, Satyajeet P; Habib, Farhat; Sharma, Rahul; Gadewal, Nikhil; Gupta, Sanjay; Galande, Sanjeev
2012-01-01
Histones are abundant nuclear proteins that are essential for the packaging of eukaryotic DNA into chromosomes. Different histone variants, in combination with their modification 'code', control regulation of gene expression in diverse cellular processes. Several enzymes that catalyze the addition and removal of multiple histone modifications have been discovered in the past decade, enabling investigations of their role(s) in normal cellular processes and diverse pathological conditions. This sudden influx of data, however, has resulted in need of an updated knowledgebase that compiles, organizes and presents curated scientific information to the user in an easily accessible format. Here, we present HIstome, a browsable, manually curated, relational database that provides information about human histone proteins, their sites of modifications, variants and modifying enzymes. HIstome is a knowledgebase of 55 human histone proteins, 106 distinct sites of their post-translational modifications (PTMs) and 152 histone-modifying enzymes. Entries have been grouped into 5 types of histones, 8 types of post-translational modifications and 14 types of enzymes that catalyze addition and removal of these modifications. The resource will be useful for epigeneticists, pharmacologists and clinicians. HIstome: The Histone Infobase is available online at http://www.iiserpune.ac.in/∼coee/histome/ and http://www.actrec.gov.in/histome/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Jin; He, Jianfeng, E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn; Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn
The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of themore » Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.« less
Quality control of mRNP biogenesis: networking at the transcription site.
Eberle, Andrea B; Visa, Neus
2014-08-01
Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rosorius, O; Heger, P; Stelz, G; Hirschmann, N; Hauber, J; Stauber, R H
1999-08-01
We established a straightforward experimental system to investigate directly the requirements for nucleocytoplasmic transport in live cells. For this purpose, substrates were created containing nuclear localization signals (NLS) or nuclear export signals (NES) linked to a chimeric protein composed of the glutathione S-transferase (GST) fused to the green fluorescent protein (GFP). The combination of GST/GFP-tagging allowed us to control protein expression in bacteria and to monitor protein purification during chromatography. Following microinjection into somatic cells, nuclear export/import of the highly fluorescent substrates could be observed directly by fluorescence microscopy. This system sets the stage to quantitate, in real time, the kinetics of nuclear import/export in living cells and to evaluate qualitative differences in various NLS/NES signals and pathways.
Advances in Monte-Carlo code TRIPOLI-4®'s treatment of the electromagnetic cascade
NASA Astrophysics Data System (ADS)
Mancusi, Davide; Bonin, Alice; Hugot, François-Xavier; Malouch, Fadhel
2018-01-01
TRIPOLI-4® is a Monte-Carlo particle-transport code developed at CEA-Saclay (France) that is employed in the domains of nuclear-reactor physics, criticality-safety, shielding/radiation protection and nuclear instrumentation. The goal of this paper is to report on current developments, validation and verification made in TRIPOLI-4 in the electron/positron/photon sector. The new capabilities and improvements concern refinements to the electron transport algorithm, the introduction of a charge-deposition score, the new thick-target bremsstrahlung option, the upgrade of the bremsstrahlung model and the improvement of electron angular straggling at low energy. The importance of each of the developments above is illustrated by comparisons with calculations performed with other codes and with experimental data.
A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim
Rose, Annkatrin; Meier, Iris
2001-01-01
Ran is a small signaling GTPase that is involved in nucleocytoplasmic transport. Two additional functions of animal Ran in the formation of spindle asters and the reassembly of the nuclear envelope in mitotic cells have been recently reported. In contrast to Ras or Rho, Ran is not associated with membranes. Instead, the spatial sequestering of its accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1, appears to define the local concentration of RanGTP vs. RanGDP involved in signaling. Mammalian RanGAP is bound to the nuclear pore by a mechanism involving the attachment of small ubiquitin-related modifier protein (SUMO) to its C terminus and the subsequent binding of the SUMOylated domain to the nucleoporin Nup358. Here we show that plant RanGAP utilizes a different mechanism for nuclear envelope association, involving a novel targeting domain that appears to be unique to plants. The N-terminal WPP domain is highly conserved among plant RanGAPs and the small, plant-specific nuclear envelope-associated protein MAF1, but not present in yeast or animal RanGAP. Confocal laser scanning microscopy of green fluorescent protein (GFP) fusion proteins showed that it is necessary for RanGAP targeting and sufficient to target the heterologous protein GFP to the plant nuclear rim. The highly conserved tryptophan and proline residues of the WPP motif are necessary for its function. The 110-aa WPP domain is the first nuclear-envelope targeting domain identified in plants. Its fundamental difference to its mammalian counterpart implies that different mechanisms have evolved in plants and animals to anchor RanGAP at the nuclear surface. PMID:11752475
Chery, Joyce G; Sass, Chodon; Specht, Chelsea D
2017-09-01
We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.
Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V
2015-04-01
Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).
Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai
2014-12-01
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.