Science.gov

Sample records for nuclear reactions fission

  1. Fission Activities of the Nuclear Reactions Group in Uppsala

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Jansson, K.; Koning, A.; Lantz, M.; Mattera, A.; Prokofiev, A. V.; Rakopoulos, V.; Sjöstrand, H.; Solders, A.; Tarrío, D.; Österlund, M.; Pomp, S.

    This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.

  2. Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction

    SciTech Connect

    Moller, Peter; Iwamoto, A; Ichikawa, I

    2010-09-10

    The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

  3. Heavy-ion versus {sup 3}He/{sup 4}He fusion-fission reactions: Angular momentum dependence of dissipation in nuclear fission

    SciTech Connect

    Ye, W.

    2011-09-15

    The stochastic Langevin model is employed to study dissipation properties in fission in the {sup 16}O + {sup 181}Ta {yields}{sup 197}Tl system by analyzing prescission neutron yields measured in this reaction. It has been found that the {sup 197}Tl nuclei undergo fission that is not in accordance with the standard Bohr-Wheeler statistical theory. A detailed comparison with previously published work in which fission excitation functions measured in {sup 3,4}He + {sup 197}Au {yields}{sup 200,201}Tl are shown to be in excellent agreement with the fission width formula predicted by the traditional models of nuclear fission suggests that nuclear dissipation strength may have an angular momentum dependence in addition to the known deformation and temperature dependence. Implications for the basic understanding of the observed abnormal rise in prescission particles at high energy and the need for further experimental confirmations are discussed.

  4. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  5. Effects of nuclear orientation on fusion and fission process for reactions using actinide target nuclei

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-04-30

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, triple-humped distribution was observed, which consists of symmetric fission and asymmetric fission peaked at A{sub L}/A{sub H}approx =90/178. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. We also report the results on the fragment mass distributions for {sup 36,34}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  6. Dynamical Aspects of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Kliman, J.; Itkis, M. G.; Gmuca, Š.

    2008-11-01

    Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttgé ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / Ş. Mişicu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselský. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of

  7. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  8. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  9. Technical Application of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  10. Benchmarking nuclear fission theory

    DOE PAGES

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  11. Fifty years with nuclear fission. Volume 1

    SciTech Connect

    Behrens, J.W.; Carlson, A.D.

    1989-12-31

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ``Fifty Years with Nuclear Fission,`` in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  12. Dynamics of fission and heavy ion reactions

    SciTech Connect

    Nix, J.R.; Sierk, A.J.

    1984-05-01

    Recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear motion such as occurs in fission and heavy ion reactions are discussed. With the goal of finding observable quantities that depend upon the magnitude and mechanism of nuclear dissipation, one-body dissipation and two-body viscosity within the framework of a generalized Fokker-Planck equation for the time dependence of the distribution function in phase space of collective coordinates and momenta are considered. Proceeding in two separate directions, the generalized Hamilton equations of motion for the first moments of the distribution function with a new shape parametrization and other technical innovations are first solved. This yields the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as the energy required for fusion in symmetric heavy-ion reactions and the mass transfer and capture cross section in asymmetric heavy-ion reactions. In a second direction, we specialize to an inverted-oscillator fission barrier and use Kramers' stationary solution to calculate the mean time from the saddle point to scission for a heavy-ion-induced fission reaction for which experimental information is becoming available. 25 references.

  13. Nuclear Fission Research at IRMM

    SciTech Connect

    Hambsch, Franz-Josef

    2005-05-24

    The Institute for Reference Materials and Measurements (IRMM) will celebrate its 45th anniversary in 2005. With its 150-MeV Geel Electron Linear Accelerator (GELINA) and 7-MV Van de Graaff accelerator as multi-purpose neutron sources, it served the nuclear physics community for this period.The research in the field of nuclear fission was focused in recent years on both the measurement and calculation of fission cross sections, and the measurement of fission fragment properties.Fission cross sections were determined for 233Pa and 234U; the fission process was studied in the resolved resonance region of 239Pu(n,f) and for 251Cf(nth,f). These measurements derive their interest from accelerator driven systems, the thorium fuel cycle, high temperature reactors, safety issues of current reactors, and basic physics. The measurements are supported by several modeling efforts that aim at improving model codes and nuclear data evaluation.

  14. Low-energy fission investigated in reactions of 750 AMeV238U-ions with Pb and Be targets. I. Nuclear charge distributions

    NASA Astrophysics Data System (ADS)

    Armbruster, P.; Bernas, M.; Czajkowski, S.; Geissel, H.; Aumann, T.; Dessagne, Ph.; Donzaud, C.; Hanelt, E.; Heinz, A.; Hesse, M.; Kozhuharov, C.; Miehe, Ch.; Münzenberg, G.; Pfützner, M.; Schmidt, K.-H.; Schwab, W.; Stéphan, C.; Sümmerer, K.; Tassan-Got, L.; Voss, B.

    1996-12-01

    Charge distributions of fragments from low energy nuclear fission are investigated in reactions of highly fissile238U projectiles at relativistic energies (750 A·MeV) with a heavy (Pb) and a light (Be) target. The fully stripped fission fragments are separated by the Fragment Separator (FRS). Their high kinetic energies in the laboratory system allow the identification of all atomic numbers by using Multiple-Sampling Ionization Chambers (MUSIC). The elemental distributions of fragments observed at larger magnetic rigidities than the238U projectiles show asymmetric break-up and odd-even effects. They indicate a low energy fission process, induced mainly by dissociation in the electro-magnetic field for the U/Pb-system, or by peripheral nuclear interactions for the U/Be-system.

  15. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately.

  16. Effects of nuclear orientation on fusion and fission process for reactions using {sup 238}U target nucleus

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-06-01

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, asymmetric fission mode peaked at A{sub L}/A{sub H}approx =90/178 was observed. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. The fragment mass distributions are compared to those for {sup 36}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  17. [Fission product yields of 60 fissioning reactions]. Final report

    SciTech Connect

    Rider, B.F.

    1995-05-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ``Evaluation and Compilation of Fission Product Yields 1993,`` LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set.

  18. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs and 90Sr on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, H.; Otsu, H.; Sakurai, H.; Ahn, D. S.; Aikawa, M.; Doornenbal, P.; Fukuda, N.; Isobe, T.; Kawakami, S.; Koyama, S.; Kubo, T.; Kubono, S.; Lorusso, G.; Maeda, Y.; Makinaga, A.; Momiyama, S.; Nakano, K.; Niikura, M.; Shiga, Y.; Söderström, P.-A.; Suzuki, H.; Takeda, H.; Takeuchi, S.; Taniuchi, R.; Watanabe, Ya.; Watanabe, Yu.; Yamasaki, H.; Yoshida, K.

    2016-03-01

    We have studied spallation reactions for the fission products 137Cs and 90Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of 137Cs and 90Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  19. Experiments on nuclear fission induced by radioactive beams

    SciTech Connect

    Skobelev, N.K.

    1994-07-01

    The cross sections of {sup 209}Bi nuclear fission induced by secondary beams of {sup 6}He and {sup 4}He are measured under identical conditions. The experimental data are in good agreement with earlier results on the fission cross section of the {sup 4}He + {sup 209}Bi reaction. The measured values of the cross section of {sup 209}Bi fission induced by {sup 6}He ions are much higher than the cross sections of fission induced by {alpha}-particles. It is found that the fission threshold for the {sup 6}He + {sup 209}Bi reaction is shifted as compared to that of the {sup 4}He + {sup 209}Bi reaction. Various factors that can be responsible for the observed peculiarities in the {sup 209}Bi fission induced by the {sup 6}He ions are analyzed. 25 refs., 5 figs.

  20. Compound Nucleus Reactions in LENR, Analogy to Uranium Fission

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George; Philberth, Karl

    2008-03-01

    The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.

  1. Effects of deformations and orientations in the fission of the actinide nuclear system 254Fm* formed in the 11B + 243Am reaction

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Sharma, Manoj K.; Gupta, Raj K.

    2012-12-01

    We have studied the decay of actinide nuclear system 254Fm* formed in 11B + 243Am reaction using the dynamical cluster decay model (DCM), with choices of spherical, quadrupole deformation β2 alone and higher multipole deformations β2-β4. For β2 deformations, the optimum orientations θiopt are used whereas for higher multipole deformations the compact orientations θic of decaying fragments are taken in to account. Besides static-β2 deformations, the effects of dynamical-β2 deformations are also explored. The calculated cross sections find excellent agreement with the available experimental data with spherical as well as deformed choices of fragmentations, enabling us to account for the role of important nuclear deformation effects in the 11B-induced nuclear reaction. Spontaneous decay of 254Fm with cold elongated configuration and optimum orientation is also worked out. The mass distributions of excited fermium isotopes in the neighborhood of 254Fm* are also explored. In addition, the roles of temperature, angular momentum, and fission fragment anisotropies are investigated in the context of the chosen reaction.

  2. Nuclear fission of Fm isotopes

    SciTech Connect

    Asano, T.; Wada, T.; Ohta, M.; Chiba, S.

    2010-06-01

    Multi-modal fission has been systematically investigated for the series of isotopes of Fm and Cf. The multi-dimensional Langevin-type stochastic differential equation is used for the dynamical calculation. The primary fission mode changes from mass-asymmetric fission to mass-symmetric fission with the increase of neutron numbers for both Fm and Cf cases.

  3. Neutron capture studies: 1, Multiple capture reactions and implications for calculated beta-delayed fission rates: 2, The nuclear level structure of 238Np

    SciTech Connect

    Hoff, R.W.

    1988-02-19

    Astrophysical r-process calculations of transbismuth elements are of interest because certain actinide pairs can be treated as chronometers in determining the duration of nucleosynthesis. For one such calculation where a particularly long galactic age was derived, 21 + 2 - 4 Gyr, we present evidence that the effect of beta-delayed fission appears to be seriously overestimated in uranium decay chains with A = 252 to 257. With this conclusion, it follows that this estimate of the galactic age must be considered more uncertain than if the calculated rates of beta-delayed fission were found to be acceptable. The nuclear level structure of 238Np has been investigated using the 237Np(n,..gamma..)238Np reaction and the alpha decay of 242mAm as experimental probes. Having established a level scheme for 238Np that includes 47 excited levels and 93 secondary transitions, we find a high degree of correspondence between the experimental band structure and that of a semi-empirical model developed to predict excitations in odd-odd deformed nuclei. 35 refs., 4 figs., 3 tabs.

  4. Nuclear fission and the transuranium elements

    SciTech Connect

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.

  5. Fifty years with nuclear fission. Volume 2

    SciTech Connect

    Behrens, J.W.; Carlson, A.D.

    1989-12-31

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ``Fifty years with nuclear fission,`` in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately.

  6. Macroscopic and microscopic aspects in nuclear fission

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.

    1989-10-01

    Nuclear macroscopic properties are determined as statistical averages and it is then recognized that several levels of macroscopic descriptions may exist. By zooming the averaging scale the gross shell structures are distinguished from the macroscopic background and a theory can be formed consistently combining both the macroscopic and microscopic features. The shell structure varies in the fissioning nucleus on its way to scission leading to a double-humped shape of the fission barrier. This is due to modifications of the classical periodic paths responsible for the quantal non-uniformity of the single-particle phase space. Briefly results of the combined theory for the fission process are outlined.

  7. Indirect Methods for Nuclear Reaction Data

    SciTech Connect

    Escher, J E; Dietrich, F S

    2005-11-18

    Several indirect approaches for obtaining reaction cross sections are briefly reviewed. The Surrogate Nuclear Reactions method, which aims at determining cross sections for compound-nuclear reactions, is discussed in some detail. The validity of the Weisskopf-Ewing approximation in the Surrogate approach is studied for the example of neutron-induced fission of an actinide nucleus.

  8. Fifty years of nuclear fission: Nuclear data and measurements series

    SciTech Connect

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.

  9. Microscopic description of complex nuclear decay: Multimodal fission

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-07-01

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  10. Microscopic description of complex nuclear decay: Multimodal fission

    SciTech Connect

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-07-15

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  11. Future challenges for nuclear data research in fission (u)

    SciTech Connect

    Chadwick, Mark B

    2010-01-01

    I describe some high priority research areas in nuclear fission, where applications in nuclear reactor technologies and in modeling criticality in general are demanding higher accuracies in our databases. We focus on fission cross sections, fission neutron spectra, and fission product data.

  12. Fission fragment mass distributions in reactions forming the {sup 213}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Deshmukh, N. N.; Rath, P. K.; Singh, N. L.; Nayak, B. K.; Thomas, R. G.; Choudhury, R. K.; Sugathan, P.; Jhingan, A.; Negi, D.; Prasad, E.

    2011-03-15

    The fission fragment mass angle correlations and mass ratio distributions have been investigated for the two systems {sup 16}O+{sup 197}Au and {sup 27}Al+{sup 186}W, leading to the same compound nucleus {sup 213}Fr around the Coulomb barrier energies. Systematic analysis of the variance of the mass distributions as a function of temperature and angular momentum suggests true compound nuclear fission for both the reactions, indicating the absence of nonequilibrium fission processes.

  13. Mass-asymmetric fission in the 40ca+142Nd reaction

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S.; Palshetkar, C. S.; Rafferty, D. C.; Simenel, C.; Wakhle, A.; Ramachandran, K.; Khuyagbaatar, J.; Dullmann, Ch. E.; Lommel, B.; Kindler, B.

    2016-09-01

    Shell effects play a major role in fission. Mass-asymmetric fission observed in the spontaneous and low energy fission of actinide nuclei was explained by incorporating the fragment shell properties in liquid drop model. Asymmetric fission has also been observed in the low energy fission of neutron-deficient 180Hg nuclei in recent β-delayed fission experiments. This low-energy β-delayed fission has been explained in terms of strong shell effects in pre-scission configurations associated with the system after capture. Calculations predicted asymmetric fission for heavier Hg isotopes as well, at compound nuclear excitation energy as high as 40 MeV. To explore the evolution of fission fragment mass distribution as a function of neutron and proton numbers and also with excitation energy, fission fragment mass distributions have been measured for the 40Ca+142Nd reaction forming the compound nucleus 182Hg at energies around the capture barrier, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass-asymmetric fission is observed in this reaction at an excitation energy of 33.6 MeV. The results are consistent with the β-delayed fission measurements and indicate the presence of shell effects even at higher exciation energies.

  14. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  15. Nuclear organisation and RNAi in fission yeast.

    PubMed

    Woolcock, Katrina J; Bühler, Marc

    2013-06-01

    Over the last decade, the fission yeast Schizosaccharomyces pombe has been used extensively for investigating RNA interference (RNAi)-mediated heterochromatin assembly. However, only recently have studies begun to shed light on the 3D organisation of chromatin and the RNAi machinery in the fission yeast nucleus. These studies indicate association of repressive and active chromatin with different regions of the nuclear periphery, similar to other model organisms, and clustering of functionally related genomic features. Unexpectedly, RNAi factors were shown to associate with nuclear pores and were implicated in the regulation of genomic features outside of the well-studied heterochromatic regions. Nuclear organisation is likely to contribute to substrate specificity of the RNAi pathway. However, further studies are required to elucidate the exact mechanisms and functional importance of this nuclear organisation.

  16. Isospin effect on probing nuclear dissipation with fission cross sections

    NASA Astrophysics Data System (ADS)

    Tian, J.; Ye, W.

    2016-08-01

    Nuclear dissipation retards fission. Using the stochastic Langevin model, we calculate the drop of fission cross section caused by friction over its standard statistical-model value, σfdrop, as a function of the presaddle friction strength for fissioning nuclei 195Bi, 202Bi, and 209Bi as well as for different angular momenta. We find that friction effects on σfdrop are substantially enhanced with increasing isospin of the Bi system and become greater with decreasing angular momentum. Our findings suggest that in experiments, to better constrain the strength of presaddle dissipation through the measurement of fission excitation functions, it is optimal to yield those compound systems with a high isospin and a low spin. Furthermore, we analyze the data of fission excitation functions of 210Po and 209Bi systems, which are populated in p +209Bi and p +208Pb reactions and which have a high isospin and a low spin, and find that Langevin calculations with a presaddle friction strength of (3-5) ×10-21 s-1 describe these experimental fission data very well.

  17. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    NASA Technical Reports Server (NTRS)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  18. Microscopic theory of nuclear fission: a review

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to

  19. Multimodal Fission in Heavy-Ion Induced Reactions

    SciTech Connect

    Pokrovskiy, I. V.; Bogachev, A. A.; Iitkis, M. G.; Iitkis, J. M.; Kondratiev, N. A.; Kozulin, E. M.; Dorvaux, O.; Rowley, N.; Schmitt, Ch.; Stuttge, L.

    2006-08-14

    Mass, energy and folding angle distributions of the fission fragments as well as multiplicities of neutron and gamma-quanta emissions accompanying the fission process were measured for fission of 226Th, 227Pa and 234Pu compound nuclei produced in reactions with 18O and 26Mg projectiles over a wide energy range. Data were analyzed with respect to the presence of fission modes. Asymmetric fission was observed even at very high initial excitation for all the measured systems. The so-called fission mode S1 (caused by the proton shell Z{approx}50 and neutron shell N{approx}82 in heavy fragment) was found to be dominant in asymmetric fission of 234Pu. Reactions with not full linear momentum transfer were observed in the folding spectra for all the measured systems.

  20. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    NASA Astrophysics Data System (ADS)

    Kaplan, Abdullah; Capali, Veli; Ozdogan, Hasan

    2015-07-01

    Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi) due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS). In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f), (γ,f), (p,f), (n,f) and (3He,f) reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  1. The Dispute over Nuclear Fission.

    ERIC Educational Resources Information Center

    Sime, Ruth Lewin

    1996-01-01

    Reveals the stormy relationship and ongoing controversy surrounding the scientific collaboration of Otto Hahn and Lise Meitner. Discusses the controversial 1944 Nobel Prize award to Hahn (ignoring the equal contribution of Meitner), the reaction of the scientific community, and the post-war years of both Meitner and Hahn. (MJP)

  2. Maruhn-Greiner Maximum of Uranium Fission for Confirmation of Low Energy Nuclear Reactions LENR via a Compound Nucleus with Double Magic Numbers

    NASA Astrophysics Data System (ADS)

    Hora, H.; Miley, G. H.

    2007-12-01

    One of the most convincing facts about LENR due to deuterons of very high concentration in host metals as palladium is the measurement of the large scale minimum of the reaction probability depending on the nucleon number A of generated elements at A = 153 where a local maximum was measured. This is similar to the fission of uranium at A = 119 where the local maximum follows from the Maruhn-Greiner theory if the splitting nuclei are excited to about MeV energy. The LENR generated elements can be documented any time after the reaction by SIMS or K-shell X-ray excitation to show the very unique distribution with the local maximum. An explanation is based on the strong Debye screening of the Maxwellian deuterons within the degenerate rigid electron background especially within the swimming electron layer at the metal surface or at interfaces. The deuterons behave like neutrals at distances of about 2 picometers. They may form clusters due to soft attraction in the range above thermal energy. Clusters of 10 pm diameter may react over long time probabilities (megaseconds) with Pd nuclei leading to a double magic number compound nucleus which splits like in fission to the A = 153 element distribution.

  3. NUCLEAR FISSION CHAIN REACTING SYSTEM

    DOEpatents

    Anderson, H.L.; Brown, H.S.

    1961-06-27

    The patent describes a reactor consisting of a plurality of tubes passing through a body of heavy water or graphite, a heat exchanger, means for flowing UF/sub 6/ through the tubes and the heat exchangar, and means for bleeding off some of the UF/sub 6/ and separating plutonium therefrom. A specific suggestion contained is that the amount of the UF/sub 6/ outside the reaction unit be a multiple of that within it.

  4. Lasers from fission. [nuclear pumping feasibility experiments

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.; Helmick, H. H.

    1975-01-01

    The feasibility of the nuclear pumping of lasers was demonstrated in three experiments conducted independently at three different laboratories. In this context nuclear pumping of lasers is understood to be the excitation of a laser by the kinetic energy of the fission fragments only. A description is given of research concerned with the use of nuclear energy for the excitation of gas lasers. Experimental work was supplemented by theoretical research. Attention is given to a nuclear pumped He-Xe laser, a nuclear pumped CO laser, and a neon-nitrogen laser pumped by alpha particles. Studies involving uranium hexafluoride admixture to laser media are discussed along with research on uranium hexafluoride-fueled reactors.

  5. Structure of matter, radioactivity, and nuclear fission. Volume 3

    SciTech Connect

    Not Available

    1986-01-01

    Subject matter includes structure of matter (what is matter, forces holding atoms together, visualizing the atom, the chemical elements, atomic symbols, isotopes, radiation from the atom), radioactivity (what holds the nucleus together, can one element change into another element, radiation from the nucleus, half-life, chart of the nuclides), and nuclear fission (nuclear energy release, the fission process, where does fission energy go, radiation and radioactivity resulting from fission).

  6. Nuclear Fission and Fission{minus}Product Spectroscopy: Second International Workshop. Proceedings

    SciTech Connect

    Fioni, G.; Faust, H.; Oberstedt, S.; Hambsch, F.

    1998-10-01

    These proceedings represent papers presented at the Second International Workshop on Nuclear Fission and Fission{minus}Product Spectroscopy held in Seyssins, France in April, 1998. The objective was to bring together the specialists in the field to overview the situation and to assess our present understanding of the fission process. The topics presented at the conference included nuclear waste management, incineration, neutron driven transmutation, leakage etc., radioactive beams, neutron{minus}rich nuclei, neutron{minus}induced and spontaneous fission, ternary fission phenomena, angular momentum, parity and time{minus}reversal phenomena, and nuclear fission at higher excitation energy. Modern spectroscopic tools for gamma spectroscopy as applied to fission were also discussed. There were 53 papers presented at the conference,out of which 3 have been abstracted for the Energy,Science and Technology database.(AIP)

  7. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  8. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  9. The Future of Energy from Nuclear Fission

    SciTech Connect

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel

  10. Unified description of fission in fusion and spallation reactions

    SciTech Connect

    Mancusi, Davide; Charity, Robert J.; Cugnon, Joseph

    2010-10-15

    We present a statistical-model description of fission, in the framework of compound-nucleus decay, which is found to simultaneously reproduce data from both heavy-ion-induced fusion reactions and proton-induced spallation reactions at around 1 GeV. For the spallation reactions, the initial compound-nucleus population is predicted by the Liege intranuclear cascade model. We are able to reproduce experimental fission probabilities and fission-fragment mass distributions in both reactions types with the same parameter sets. However, no unique parameter set was obtained for the fission probability. The introduction of fission transients can be offset by an increase of the ratio of level-density parameters for the saddle-point and ground-state configurations. Changes to the finite-range fission barriers could be offset by a scaling of the Bohr-Wheeler decay width as predicted by Kramers. The parameter sets presented allow accurate prediction of fission probabilities for excitation energies up to 300 MeV and spins up to 60 ({h_bar}/2{pi}).

  11. Nuclear fission with mean-field instantons

    SciTech Connect

    Skalski, Janusz

    2008-06-15

    We present a description of nuclear spontaneous fission, and generally of quantum tunneling, in terms of instantons, that is, periodic imaginary-time solutions to time-dependent mean-field equations. This description allows comparisons to be made with the more familiar generator coordinate (GCM) and adiabatic time-dependent Hartree-Fock (ATDHF) methods. It is shown that the action functional whose value for the instanton is the quasiclassical estimate of the decay exponent fulfills the minimum principle when additional constraints are imposed on trial fission paths. In analogy with mechanics, these are conditions of energy conservation and the velocity-momentum relations. In the adiabatic limit, the instanton method reduces to the time-odd ATDHF equation, with collective mass including the time-odd Thouless-Valatin term, while the GCM mass completely ignores velocity-momentum relations. This implies that GCM inertia generally overestimates the instanton-related decay rate. The very existence of the minimum principle offers hope for a variational search for instantons. After the inclusion of pairing, the instanton equations and the variational principle can be expressed in terms of the imaginary-time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory. The adiabatic limit of this theory reproduces ATDHFB inertia.

  12. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  13. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    NASA Astrophysics Data System (ADS)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  14. Mini-fission fusion explosive devices (mini-nukes) for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2005-11-01

    Nuclear pulse propulsion demands low-yield nuclear explosive devices. Because the critical mass of a fission explosive is rather large, this leads to extravagant fission devices with a very low fuel burn-up. For non-fission ignited pure fusion microexplosions the problem is the large ignition apparatus (laser, particle beam, etc.). Fission ignited large fusion explosive devices are for obvious reasons even less desirable. A third category (mini-nukes) are devices where the critical mass of the fission explosive is substantially reduced by its coupling to a DT fusion reaction, with the DT fusion neutrons increasing the fission rate. Whereas in pure fission devices a reduction of the critical mass is achieved by the implosive compression of the fissile core with a chemical high explosive, in the third category the implosion must at the same time heat the DT surrounding the fissile core to a temperature of ⩾107K, at which enough fusion neutrons are generated to increase the fission rate which in turn further increases the temperature and fusion neutron production rate. As has been shown by the author many years ago, such mini-nukes lead to astonishingly small critical masses. In their application to nuclear pulse propulsion the combustion products from the chemical high explosive are further heated by the neutrons and are becoming part of the propellant.

  15. Monitoring system for a liquid-cooled nuclear fission reactor

    DOEpatents

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  16. Fission fragment mass distributions in reactions populating 200Pb

    NASA Astrophysics Data System (ADS)

    Chaudhuri, A.; Sen, A.; Ghosh, T. K.; Banerjee, K.; Sadhukhan, Jhilam; Bhattacharya, S.; Roy, P.; Roy, T.; Bhattacharya, C.; Asgar, Md. A.; Dey, A.; Kundu, S.; Manna, S.; Meena, J. K.; Mukherjee, G.; Pandey, R.; Rana, T. K.; Srivastava, V.; Dubey, R.; Kaur, Gurpreet; Saneesh, N.; Sugathan, P.; Bhattacharya, P.

    2016-08-01

    The fission fragment mass distributions have been measured in the reactions 16O+184W and 19F+181Ta populating the same compound nucleus 200Pb* at similar excitation energies. It is found that the widths of the mass distributions increase monotonically with excitation energy, indicating the absence of quasifission for both reactions. This is contrary to two recent claims of the presence of quasifission in the above-mentioned reactions.

  17. Energy from nuclear fission()

    NASA Astrophysics Data System (ADS)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  18. Fission of nuclei with Z=102-112 produced in reactions with {sup 22}Ne and {sup 48}Ca ions

    SciTech Connect

    Itkis, M. G.; Oganessian, Yu. Ts.; Kozulin, E. M.; Kondratiev, N. A.; Krupa, L.; Pokrovsky, I. V.; Polyakov, A. N.; Ponomarenko, V. A.; Prokhorova, E. V.; Pustylnik, B. I.; Vakatov, V. I.; Rusanov, A. Ya.

    1998-12-21

    The talk presents new results obtained in the study of fission of superheavy nuclei {sup 256}No, {sup 270}Sg and {sup 286}112 formed in reactions with {sup 22}Ne and {sup 48}Ca ions at energies near or considerably lower than the Coulomb barrier. The experiments have been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (FLNR) with the use of the time-of-flight spectrometer of fission fragments CORSET.

  19. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  20. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGES

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  1. SOURCE OF PRODUCTS OF NUCLEAR FISSION

    DOEpatents

    Harteck, P.; Dondes, S.

    1960-03-15

    A source of fission product recoil energy suitable for use in radiation chemistry is reported. The source consists of thermal neutron irradiated glass wool having a diameter of 1 to 5 microns and containing an isotope fissionable by thermal neutrons, such as U/sup 235/.

  2. Generation of Gravitational Waves with Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio; Baker, Robert M. L.

    2006-01-01

    The problem of efficient generation of High Frequency Gravitational Waves (HFGWs) and pulses of Gravitational Radiation might find a reasonably simple solution by employing nuclear matter, especially isomers. A fissioning isomer not only rotates at extremely high frequency (~ 3.03×1024 s-1), but is also highly deformed in the first stages of fission (the nucleus is rotating and made asymmetric ``before'' fission). Thus one achieves significant impulsive forces (e.g., 3.67×108 N) acting over extremely short time spans (e.g., 3.3×10-22 s). Alternatively, a pulsed particle beam, which could include antimatter, could trigger nuclear reactions and build up a coherent GW as the particles move through a target mass. The usual difficulty with HFGWs generated by nuclear reactions is the small dimensions of their nuclear-reaction volumes, that is, the small moment of inertia and submicroscopic radii of gyration (e.g., 10-16 m) of the nuclear-mass system. Such a difficulty is overcome by utilizing clusters of nuclear material, whose nuclear reactions are in synchronization (through the use of a computer controlled logic system) and are at a large distance apart, e.g., meters, kilometers, etc. The effective radius of gyration of the overall nuclear mass system is enormous and if the quadrupole formalism holds even approximately, then significant HFGW is generated, for example up to 8.5×1010 W to 1.64×1025 W bursts for the transient asymmetrical spinning nucleus case. In this preliminary analysis, possible conceptual designs of reactors suitable for the generation of HFGWs are discussed as well as applications to space technology. In an optimized dual-beam design, GW amplitudes on the order of A ~ 0.005 are theoretically achieved in the laboratory, which might have interesting general-relativity and nuclear-physics consequences.

  3. A new set-up for the simultaneous measurement of neutron-induced capture and fission reactions

    SciTech Connect

    Guerrero, C.; Berthoumieux, E.; Cano-Ott, D.; Gunsing, F.; Andriamonje, S.

    2011-07-01

    The measurement of the capture cross section of fissile elements, of upmost importance for the design of innovative nuclear reactors and the management of nuclear waste, involves particular difficulties related to the {gamma}-ray background produced in the fission reactions. These difficulties are the reason why five out of the six actinide {sigma}(n,{gamma}) measurements in the NEA High Request Priority List are fissile isotopes. At n-TOF we have combined the Total Absorption Calorimeter capture detector with a set of three {sup 235}U loaded MicroMegas fission detectors for measuring simultaneously the two reactions: capture and fission. In a first test measurement we have succeeded in measuring simultaneously with high efficiency the {sup 235}U capture and fission cross sections, disentangling accurately the two types of reactions. (authors)

  4. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  5. Microscopic Description of Complex Nuclear Decay: Multimodal Fission

    SciTech Connect

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, Witold

    2009-01-01

    This year marks the 70th anniversary of the discovery of nuclear fission. While there is little question of the societal importance of fission (e.g., to current and future energy needs), our understanding of this process is still fairly rudimentary due to the intricacy of the problem. Theoretically, fission represents an extreme example of the large-amplitude collective motion: the tunneling of a large, self-bound, superfluid system of mutually interacting particles. In this work, we describe a study of spontaneous fission using the self-consistent nuclear density functional theory and state-of-the-art computational tools. We did not impose any symmetry on the mean field so that the nuclear densities were allowed to acquire arbitrary shapes characterized by elongation, reflection-asymmetry, triaxiality, necking, etc. Here we show that the observed half-lives of nuclei undergoing bimodal fission can be explained in terms of competing pathways corresponding to different geometries of fission products. This is an important step in providing a many-body description of fundamental nuclear decay.

  6. Chemistry of fission product iodine under nuclear reactor accident conditions

    SciTech Connect

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs.

  7. The fusion-fission process in the reaction 34S +186W near the interaction barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.; Vardaci, E.

    2015-02-01

    The reaction 34S +186W at Elab=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF-γ coincidence method is of better use then the γ - γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  8. Fission Yields and Other Diagnostics for Nuclear Performance

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.

    2014-06-01

    I summarize advances in our understanding of basic nuclear physics cross sections and decay properties that are needed to characterize the magnitude and energy-dependence of a neutron flux, and to determine the amount of fission burnup in plutonium fuel. The number of fissions that have occurred in a neutron environment can be deduced from measurements of the fission products created, providing that the fission product yields are known accurately. I describe how our understanding of plutonium fission product yields has improved in recent years through a meta-analysis of various measured data, and through identification of fission product yield incident-energy dependencies over the 0.2-2 MeV fast energy region. This led to the resolution of a previous discrepancy between the Los Alamos and Lawrence Livermore National Laboratories in their plutonium yield assessments in the fast energy region, although more experimental work is still needed to resolve discrepancies at 14 MeV. Work is also described that has improved our understanding of (n,2n) cross sections that are used as diagnostics of the high-energy neutron spectrum - both on plutonium and americium, and on the radiochemical detectors yttrium, iridium, and thulium. Finally, some observations are made on the importance of continuing to develop our Evaluated Nuclear Data Files (ENDF) database using physics insights from differential cross section and integral laboratory experiments and from nuclear theory advances.

  9. Fission Yields and Other Diagnostics for Nuclear Performance

    SciTech Connect

    Chadwick, M.B.

    2014-06-15

    I summarize advances in our understanding of basic nuclear physics cross sections and decay properties that are needed to characterize the magnitude and energy-dependence of a neutron flux, and to determine the amount of fission burnup in plutonium fuel. The number of fissions that have occurred in a neutron environment can be deduced from measurements of the fission products created, providing that the fission product yields are known accurately. I describe how our understanding of plutonium fission product yields has improved in recent years through a meta-analysis of various measured data, and through identification of fission product yield incident-energy dependencies over the 0.2-2 MeV fast energy region. This led to the resolution of a previous discrepancy between the Los Alamos and Lawrence Livermore National Laboratories in their plutonium yield assessments in the fast energy region, although more experimental work is still needed to resolve discrepancies at 14 MeV. Work is also described that has improved our understanding of (n,2n) cross sections that are used as diagnostics of the high-energy neutron spectrum – both on plutonium and americium, and on the radiochemical detectors yttrium, iridium, and thulium. Finally, some observations are made on the importance of continuing to develop our Evaluated Nuclear Data Files (ENDF) database using physics insights from differential cross section and integral laboratory experiments and from nuclear theory advances.

  10. Insights into nuclear structure and the fission process from spontaneous fission

    SciTech Connect

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V.

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  11. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  12. Compilation of fission product yields Vallecitos Nuclear Center

    SciTech Connect

    Rider, B.F.

    1980-01-01

    This document is the ninth in a series of compilations of fission yield data made at Vallecitos Nuclear Center in which fission yield measurements reported in the open literature and calculated charge distributions have been utilized to produce a recommended set of yields for the known fission products. The original data with reference sources, as well as the recommended yields are presented in tabular form for the fissionable nuclides U-235, Pu-239, Pu-241, and U-233 at thermal neutron energies; for U-235, U-238, Pu-239, and Th-232 at fission spectrum energies; and U-235 and U-238 at 14 MeV. In addition, U-233, U-236, Pu-240, Pu-241, Pu-242, Np-237 at fission spectrum energies; U-233, Pu-239, Th-232 at 14 MeV and Cf-252 spontaneous fission are similarly treated. For 1979 U234F, U237F, Pu249H, U234He, U236He, Pu238F, Am241F, Am243F, Np238F, and Cm242F yields were evaluated. In 1980, Th227T, Th229T, Pa231F, Am241T, Am241H, Am242Mt, Cm245T, Cf249T, Cf251T, and Es254T are also evaluated.

  13. Thermohydraulic and nuclear modeling of natural fission reactors

    NASA Astrophysics Data System (ADS)

    Viggato, Jason Charles

    Experimental verification of proposed nuclear waste storage schemes in geologic repositories is not possible, however, a natural analog exists in the form of ancient natural reactors that existed in uranium-rich ores. Two billion years ago, the enrichment of natural uranium was high enough to allow a sustained chain reaction in the presence of water as a moderator. Several natural reactors occurred in Gabon, Africa and were discovered in the early 1970's. These reactors operated at low power levels for hundreds of thousands of years. Heated water generated from the reactors also leached uranium from the surrounding rock strata and deposited it in the reactor cores. This increased the concentration of uranium in the core over time and served to "refuel" the reactor. This has strong implications in the design of modern geologic repositories for spent nuclear fuel. The possibility of accidental fission events in man-made repositories exists and the geologic evidence from Oklo suggests how those events may progress and enhance local concentrations of uranium. Based on a review of the literature, a comprehensive code was developed to model the thermohydraulic behavior and criticality conditions that may have existed in the Oklo reactor core. A two-dimensional numerical model that incorporates modeling of fluid flow, temperatures, and nuclear fission and subsequent heat generation was developed for the Oklo natural reactors. The operating temperatures ranged from about 456 K to about 721 K. Critical reactions were observed for a wide range of concentrations and porosity values (9 to 30 percent UO2 and 10 to 20 percent porosity). Periodic operation occurred in the computer model prediction with UO2 concentrations of 30 percent in the core and 5 percent in the surrounding material. For saturated conditions and 30 percent porosity, the model predicted temperature transients with a period of about 5 hours. Kuroda predicted 3 to 4 hour durations for temperature transients

  14. Nuclear fission of neutron-deficient protactinium nuclides

    SciTech Connect

    Nishinaka, I.; Nagame, Y.; Tsukada, K.; Ikezoe, H.; Sueki, K.; Nakahara, H.; Tanikawa, M.; Ohtsuki, T.

    1997-08-01

    Fragment velocity, kinetic energy, mass yield, and element yield distributions in the fission of neutron-deficient Pa isotopes produced in the reactions of {sup 16}O and {sup 18}O on {sup 209}Bi have been measured at incident beam energies near and above the Coulomb barriers by the time-of-flight and radiochemical methods. An asymmetric mass-division component has been observed. Measured fission cross sections were compared with the results of statistical model calculations which take into account two fission barrier heights for symmetric and asymmetric yields. The fission barrier height deduced for the asymmetric fission is found slightly lower than that for the symmetric one. The difference between the two barrier heights in the fission of the present protactinium nuclides (N{approximately}135) is considerably smaller than that in the neutron-rich nuclide of {sup 233}Pa (N{approximately}142), indicating that the difference sensitively depends on the neutron number of the fissioning nuclide. {copyright} {ital 1997} {ital The American Physical Society}

  15. Nuclear data requirements for fission reactor neutronics calculations.

    SciTech Connect

    Finck, P.

    1998-06-29

    The paper discusses current European nuclear data measurement and evaluation requirements for fission reactor technology applications and problems involved in meeting the requirements. Reference is made to the NEA High Priority Nuclear Data Request List and to the production of the new JEFF-3 library of evaluated nuclear data. There are requirements for both differential (or basic) nuclear data measurements and for different types of integral measurement critical facility measurements and isotopic sample irradiation measurements. Cross-section adjustment procedures are being used to take into account the simpler types of integral measurement, and to define accuracy needs for evaluated nuclear data.

  16. Introducing Nuclear Data Evaluations of Prompt Fission Neutron Spectra

    SciTech Connect

    Neudecker, Denise

    2015-06-17

    Nuclear data evaluations provide recommended data sets for nuclear data applications such as reactor physics, stockpile stewardship or nuclear medicine. The evaluated data are often based on information from multiple experimental data sets and nuclear theory using statistical methods. Therefore, they are collaborative efforts of evaluators, theoreticians, experimentalists, benchmark experts, statisticians and application area scientists. In this talk, an introductions is given to the field of nuclear data evaluation at the specific example of a recent evaluation of the outgoing neutron energy spectrum emitted promptly after fission from 239Pu and induced by neutrons from thermal to 30 MeV.

  17. Membrane Fission Reactions of the Mammalian ESCRT Pathway

    PubMed Central

    McCullough, John; Colf, Leremy A.; Sundquist, Wesley I.

    2014-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission. PMID:23527693

  18. Scaling laws in {sup 3}He induced nuclear fission

    SciTech Connect

    Rubehn, T.; Jing, K.X.; Moretto, L.G.; Phair, L.; Tso, K.; Wozniak, G.J.

    1996-12-01

    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. Furthermore, the method applied in this paper allows for the model-independent determination of the nuclear shell effects. {copyright} {ital 1996 The American Physical Society.}

  19. Shell effects in fission, quasifission and multinucleon transfer reaction

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.; Kozulina, N. I.; Loktev, T. A.; Novikov, K. V.; Harca, I.

    2014-05-01

    Results of the study of mass-energy distributions of binary fragments for a wide range of nuclei with Z= 82-122 produced in reactions of ions located between 22Ne and 136Xe at energies close and below the Coulomb barrier are reported. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission, quasifission and multinucleon transfer reactions are discussed. The observed peculiarities of the mass and energy distributions of reaction fragments are determined by the shell structure of the formed fragments. Special attention is paid on the symmetric fragment features in order to clarify the origin of these fragments (fission or quasifission). The influence of shell effects on the fragment yield in quasifission and multinucleon transfer reactions is considered. It is noted that the major part of the asymmetric quasifission fragments peaks around the region of the Z=82 and N=126 (double magic lead) and Z=28 and N=50 shells; moreover the maximum of the yield of the quasifission component is a mixing between all these shells. Hence, shell effects are everywhere present and determine the basic characteristics of fragment mass distributions.

  20. A brief history of the Delayed'' discovery of nuclear fission

    SciTech Connect

    Holden, N.E.

    1989-08-01

    This year marks the Fiftieth Anniversary of the discovery of Nuclear Fission. In the early 1930's, the neutron was discovered, followed by the discovery of artificial radioactivity and then the use of the neutron to produce artificial radioactivity. The first experiments resulting in the fission of uranium took place in 1934. A paper which speculated on fission as an explanation was almost immediately published, yet no one took it seriously not even the author herself. Why did it take an additional five years before anyone realized what had occurred This is an abnormally long time in a period when discoveries, particularly in nuclear physics, seemed to be almost a daily occurrence. The events which led up to the discovery are recounted, with an attempt made to put them into their historical perspective. The role played by Mendeleev's Periodic Table, the role of the natural radioactive decay chain of uranium, the discovery of protactinium, the apparent discovery of masurium (technetium) and a speculation on the reason why Irene Curie may have missed the discovery of nuclear fission will all be discussed. 43 refs.

  1. Detecting fission from special nuclear material sources

    SciTech Connect

    Rowland, Mark S.; Snyderman, Neal J.

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  2. Quark catalysis of exothermal nuclear reactions.

    PubMed

    Zweig, G

    1978-09-15

    This article discusses circumstances under which free quarks catalyze exothermal nuclear reactions. It also presents possible methods for removing quarks sequestered by nuclear reaction products. Stable quarks that are negatively charged and significantly heavier than electrons attract positively charged nuclei to form new states of matter. The nuclei and quarks are closely bound, and presumably interact through both electromagnetic and nuclear forces. Nuclear fusion and fission are possible, as well as a new class of plural reactions in which either a quark isobar, isotope, or isotone is created in each individual reaction, with catalysis resulting in the overall system because the net transfer of charge, neutrons, or protons to the quarks is zero. The quark with quantum numbers of üü is a promising catalytic candidate. A satisfactory understanding of which reactions are or are not possible awaits the isolation of free quarks and a description of their strong interactions with matter. Finally, other kinds of stable negatively charged particles (such as heavy leptons), if discovered, can catalyze deuterium fusion reactions if thermal neutrons are used to liberate He(3)-bound catalytic particles. PMID:17743618

  3. Laser induced nuclear reactions

    SciTech Connect

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-16

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10{sup 19} W/cm{sup 2}. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that {mu}Ci of {sup 62}Cu can be generated via the ({gamma},n) reaction by a laser with an intensity of about 10{sup 19} Wcm{sup -2}.

  4. Measurements of Fission and Radioactive Capture Reaction Rates Inside the Fuel of the Ipen/MB-01

    NASA Astrophysics Data System (ADS)

    Mura, Luís Felipe L.; Bitelli, Ulysses d'Utra; Fanaro, Leda C. C. B.

    2011-05-01

    This work presents the measures of the nuclear reaction rates along the radial direction of the fuel pellet by irradiation and posterior gamma spectrometry of a thin slice of fuel pellet of UO2 at 4.3% enrichment. From its irradiation, the rate of radioactive capture and fission had been measured as a function of the radius of the pellet disk using a Ortec GMX HPGe detector. Lead collimators had been used for this purpose. Simulating the fuel pellet in the pin fuel of the IPEN/MB-01 reactor, a thin UO2 disk is used, being inserted in the interior of a dismountable fuel rod. This fuel rod is then placed in the central position of the IPEN/MB-01 reactor core and irradiated during 1 h under a neutron flux of 5 ×108 n/cm2 s. In gamma spectrometry, 10 collimators with different diameters have been used; consequently, the nuclear reactions of radioactive capture that occurs in atoms of 238U and the fission that occurs on both 235U and 238U are measured in function of 10 different regions (diameter of collimator) of the UO2 fuel pellet disk. Nuclear fission produces different fission products such as 143Ce with a yield fission of 5.9% which decay is monitored in this work. Corrections in geometric efficiency due to introduction of collimators on HPGe detection system were estimated using photon transport of MCNP-4C code. Some calculated values of nuclear reaction rate of radioactive capture and fission along the radial direction of the fuel pellet obtained by Monte Carlo methodology, using the MCNP-4C code, are presented and compared to the experimental data showing very good agreement.

  5. Description of true and delayed ternary nuclear fission accompanied by the emission of various third particles

    SciTech Connect

    Kadmensky, S. G. Kadmensky, S. S.; Lyubashevsky, D. E.

    2010-08-15

    The mechanisms and the features of the main types of nuclear ternary fission (that is, true ternary fission, in which a third particle is emitted before the rupture of the fissioning nucleus into fragments, and delayed ternary fission, in which a third particle is emitted from fission fragments going apart) are investigated within quantum-mechanical fission theory. The features of T-odd asymmetry in true ternary nuclear fission induced by cold polarized neutrons are investigated for the cases where alpha particles, prescission neutrons, and photons appear as third particles emitted by fissioning nuclei, the Coriolis interaction of the spin of the polarized fissioning nucleus with the spin of the third particle and the interference between the fission amplitudes for neutron resonances excited in the fissioning nucleus in the case of projectile-neutron capture being taken into account. For the cases where third particles emitted by fission fragments are evaporated neutrons or photons, T-odd asymmetries in delayed ternary nuclear fission induced by cold polarized neutrons are analyzed with allowance for the mechanism of pumping of large fission-fragment spins oriented orthogonally to the fragment-emission direction and with allowance for the interference between the fission amplitudes for neutron resonances.

  6. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOEpatents

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  7. [Biological effects of nuclear fission products. Repeated exposures].

    PubMed

    Vasilenko, I Ia

    1994-01-01

    The results of experimental studies on the repeated exposure to radioiodine (131I) and nuclear fission products (NFP) are presented, the doses used being equal to those resulted in radiation disease under first and second input. The animals satisfactory withstood the repeated exposure. The residual injuries appeared slightly. The animals' state was satisfactory during 5 years. Blastomogenic effect of NFP was revealed in remote periods.

  8. Fission control system for nuclear reactor

    DOEpatents

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  9. An Act of Scientific Creativity: Meitner, Frisch, and Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Stuewer, Roger H.

    2002-04-01

    The dominant event that lay in the background to Werner Heisenberg's fateful meeting with Niels Bohr in occupied Copenhagen in September 1941 was the discovery and interpretation of nuclear fission three years earlier. Michael Frayn has explored that meeting in his play "Copenhagen" in an act of extraordinary literary creativity. In this talk I will explore Lise Meitner's and Otto Robert Frisch's interpretation of nuclear fission as an act of extraordinary scientific creativity. My aim is to understand historically how it was possible for Meitner and Frisch, and only Meitner and Frisch, to arrive at their interpretation as they talked and walked in the snow in the small Swedish village of Kungälv over the Christmas holidays in December 1938. This will require us to examine the history of the liquid-drop model of the nucleus over the preceding decade, from George Gamow's conception of that model in 1928, through Heisenberg and Carl Friedrich von Weizsäcker's extension of it between 1933 and 1936, and finally through Bohr's use of it in his theory of the compound nucleus between 1936 and 1938. We will see how Meitner and Frisch combined their different knowledge of these developments creatively to arrive at their momentous interpretation of nuclear fission.

  10. Fission Study of Actinide Nuclei Using Multi-nucleon Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, R.; Makii, Hiroyuki; Nishinaka, Ichiro; Orlandi, Riccardo; Smallcombe, James; Tsukada, Kazuaki; Chiba, Satoshi; Ohtsuki, Tsutomu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    We have developed a set up to measure fission properties of excited compound nuclei populated by multi-nucleon transfer reactions. This approach has an advantage that we can study fission of neutron-rich nuclei which cannot be accessed by particle or charged-particle capture reactions. Unique feature in our setup is that we can produce fission data for many nuclei depending on different transfer channels. Also wide excitation energy range can be covered in this set up, allowing us to measure the excitation energy dependence of the fission properties. Preliminary data obtained in the 18O + 238U reaction will be presented.

  11. Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field.

    PubMed

    Hollenbach, D F; Herndon, J M

    2001-09-25

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having (3)He/(4)He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.

  12. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field

    PubMed Central

    Hollenbach, D. F.; Herndon, J. M.

    2001-01-01

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483

  13. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Hollenbach, D. F.; Herndon, J. M.

    2001-09-01

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.

  14. Transfer reactions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  15. Nuclear Design of the HOMER-15 Mars Surface Fission Reactor

    SciTech Connect

    Poston, David I.

    2002-07-01

    The next generation of robotic missions to Mars will most likely require robust power sources in the range of 3 to 20 kWe. Fission systems are well suited to provide safe, reliable, and economic power within this range. The goal of this study is to design a compact, low-mass fission system that meets Mars surface power requirements, while maintaining a high level of safety and reliability at a relatively low cost. The Heat pipe Power System (HPS) is one possible approach for producing near-term, low-cost, space fission power. The goal of the HPS project is to devise an attractive space fission system that can be developed quickly and affordably. The primary ways of doing this are by using existing technology and by designing the system for inexpensive testing. If the system can be designed to allow highly prototypic testing with electrical heating, then an exhaustive test program can be carried out quickly and inexpensively, and thorough testing of the actual flight unit can be performed - which is a major benefit to reliability. Over the past 4 years, three small HPS proof-of-concept technology demonstrations have been conducted, and each has been highly successful. The Heat pipe-Operated Mars Exploration Reactor (HOMER) is a derivative of the HPS designed especially for producing power on the surface of Mars. The HOMER-15 is a 15-kWt reactor that couples with a 3-kWe Stirling engine power system. The reactor contains stainless-steel (SS)-clad uranium nitride (UN) fuel pins that are structurally and thermally bonded to SS/sodium heat pipes. Fission energy is conducted from the fuel pins to the heat pipes, which then carry the heat to the Stirling engine. This paper describes conceptual design and nuclear performance the HOMER-15 reactor. (author)

  16. Role of shape dependence of dissipation on nuclear fission

    SciTech Connect

    Sadhukhan, Jhilam; Pal, Santanu

    2010-03-15

    We examine the validity of extending Kramers' expression for fission width to systems with shape-dependent dissipations. For a system with a shape-dependent dissipation, Kramers' width obtained with the presaddle dissipation strength is found to be different from the stationary width obtained from the corresponding Langevin equations. It is demonstrated that the probability of a hot compound nucleus undergoing fission depends on both the presaddle and the postsaddle dynamics of collective nuclear motion. The predictions for prescission neutron multiplicity and evaporation residue cross section from statistical model calculations are also found to be different from those obtained from Langevin dynamical calculations when a shape-dependent dissipation is considered. For systems with shape-dependent dissipations, we conclude that the strength of 'presaddle dissipation' determined by fitting experimental data in statistical model calculations does not represent the true strength of presaddle dissipation.

  17. Low-Energy Fusion-Fission Dynamics of Heavy Nuclear Systems

    SciTech Connect

    Zagrebaev, Valery; Greiner, Walter

    2006-08-14

    A new approach is proposed for a unified description of strongly coupled deep-inelastic (DI) scattering, fusion, fission, and quasi-fission (QF) processes of heavy ion collisions. A unified driving-potential and a unified set of dynamic Langevin-type equations of motion are used in this approach. This makes it possible to perform a full (continuous) time analysis of the evolution of heavy nuclear systems, starting from the approaching stage, moving up to the formation of the compound nucleus or emerging into two final fragments. The calculated mass, charge, energy and angular distributions of the reaction products agree well with the corresponding experimental data for heavy and superheavy nuclear systems. Collisions of very heavy nuclei (such as 238U+248Cm) are investigated as an alternative way for production of superheavy elements. Large charge and mass transfer was found in these reactions due to the inverse (anti-symmetrizing) quasi-fission process leading to formation of surviving superheavy long-lived neutron-rich nuclei.

  18. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  19. Nuclear excitation and precompound nuclear reactions

    SciTech Connect

    De, A.; Ray, S.; Ghosh, S.K.

    1988-06-01

    The angular distribution of nucleons emitted in nucleon-induced precompound nuclear reactions are calculated taking into account the effect of excitation on the kinematics of nucleon-nucleon scattering inside the target-plus-projectile system. The results are compared with quantum mechanical calculations and those of reaction models based on a pure nucleon-nucleon collision picture.

  20. Results of a first generation least expensive approach to fission module tests: Non-nuclear testing of a fission system

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob; Sena, J. Tom

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal-hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .

  1. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    SciTech Connect

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Hanappe, F.; Piot, J.; Schmitt, C.; Vardaci, E.

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  2. Proceedings of the XVIIIth international symposium on nuclear physics

    SciTech Connect

    Marten, H.; Seeliger, D.

    1992-01-01

    This book contains the proceedings of the XVIII International Symposium on nuclear physics. Topics covered include: fission fragment distributions; fundamental fission problems; theory of nuclear fission; fragment de-excitation; ternary fission; spontaneous-fission and decay; induced fission; heavy-ion reactions; and applications of fission.

  3. Nuclear reaction studies

    SciTech Connect

    Alexander, J.M.; Lacey, R.A.

    1994-11-01

    Research focused on the statistical and dynamical properties of ``hot`` nuclei formed in symmetric heavy-ion reactions. Theses included ``flow`` measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study {sup 40}Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs.

  4. Fission xenon in trinities from the first nuclear test

    NASA Astrophysics Data System (ADS)

    Meshik, Alexander; Pravdivtseva, Olga; Hohenberg, Charles

    2008-04-01

    Trinitites, greenish glassy remnants found in the crater of the first nuclear test, refer to the molten material of the desert where the Trinity test was conducted. Recently the Los Alamos Lab^1 suggested that the sand was first vaporized by the fireball and then precipitated onto a cooler desert surface forming trinitites. We measured the Xe mass-spectra during stepped pyrolysis of two trinitites and found an unusual Xe isotopic structure, dominated by ^132Xe and ^131Xe compared to the nominal fission yield spectra, which cannot be due to n-capture or any other nuclear processes. This structure is caused by the chemical separation of the immediate neutron-rich fission products, a process similar to CFF observed in the Oklo natural reactor^2. When quantitatively applied to our observations it suggests that 17 min after the test one of the samples had a temperature of 1390^oC, while 5 min after the test the other was at 1320^oC. These results contribute to a reconstruction of the cooling history of the trinities and a demonstration of which formation scenario is the more likely. ^1V. Montoya et al, Denver X-ray Conf. (2007), ^2A. Meshik, C. Hohenberg and O. Pravdivtseva, PRL 93, 182302 (2004).

  5. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component. PMID:20566512

  6. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  7. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  8. Nuclear Reactions: Studying Peaceful Applications in the Middle and Secondary School.

    ERIC Educational Resources Information Center

    Szymanski Sunal, Cynthia; Sunal, Dennis W.

    1999-01-01

    Asserts that students must learn about nuclear fission and fusion in the social studies curriculum to help them develop a foundation for considering the social issues associated with the everyday use of nuclear reactions. Gives background on the two types of reactions and provides three lessons for middle and secondary classrooms. (CMK)

  9. Table of superdeformed nuclear bands and fission isomers

    SciTech Connect

    Firestone, R.B.; Singh, B.

    1994-06-01

    A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding and deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.

  10. Measurement/Evaluation Techniques and Nuclear Data Associated with Fission of 239Pu by Fission Spectrum Neutrons

    SciTech Connect

    Baisden, P; Bauge, E; Ferguson, J; Gilliam, D; Granier, T; Jeanloz, R; McMillan, C; Robertson, D; Thompson, P; Verdon, C; Wilkerson, C; Young, P

    2010-03-16

    This Panel was chartered to review and assess new evaluations of work on fission product data, as well as the evaluation process used by the two U.S. nuclear weapons physics laboratories. The work focuses on fission product yields resulting from fission spectrum neutrons incident on plutonium, and includes data from measurements that had not been previously published as well as new or revised fission product cumulative yield data, and related quantities such as Q values and R values. This report documents the Panel's assessment of the work presented by Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). Based on the work presented we have seven key observations: (1) Experiments conducted in the 1970s at LANL, some of which were performed in association with a larger, NIST-led, program, have recently been documented. A preliminary assessment of this work, which will be referred to in this document as ILRR-LANL, shows it to be technically sound. (2) LLNL has done a thorough, unbiased review and evaluation of the available literature and is in the process of incorporating the previously unavailable LANL data into its evaluation of key fission product yields. The results of the LLNL effort, which includes a preliminary evaluation of the ILRR-LANL data, have been documented. (3) LANL has also conducted an evaluation of fission product yields for fission spectrum neutrons on plutonium including a meta-analysis of benchmark data as part of a planned upgrade to the ENDF/B compilation. We found that the approach of using meta-analysis provides valuable additional insight for evaluating the sparse data sets involved in this assessment. (4) Both laboratories have provided convincing evidence for energy dependence in the fission product yield of {sup 147}Nd produced from the bombardment of {sup 239}Pu with fission spectrum neutrons over an incident neutron energy range of 0.2 to 1.9 MeV. (5) Consistent, complete, and explicit treatment of

  11. EXTENSION OF THE NUCLEAR REACTION MODEL CODE EMPIRE TO ACTINIDES NUCLEAR DATA EVALUATION.

    SciTech Connect

    CAPOTE,R.; SIN, M.; TRKOV, A.; HERMAN, M.; CARLSON, B.V.; OBLOZINSKY, P.

    2007-04-22

    Recent extensions and improvements of the EMPIRE code system are outlined. They add new capabilities to the code, such as prompt fission neutron spectra calculations using Hauser-Feshbach plus pre-equilibrium pre-fission spectra, cross section covariance matrix calculations by Monte Carlo method, fitting of optical model parameters, extended set of optical model potentials including new dispersive coupled channel potentials, parity-dependent level densities and transmission through numerically defined fission barriers. These features, along with improved and validated ENDF formatting, exclusive/inclusive spectra, and recoils make the current EMPIRE release a complete and well validated tool for evaluation of nuclear data at incident energies above the resonance region. The current EMPIRE release has been used in evaluations of neutron induced reaction files for {sup 232}Th and {sup 231,233}Pa nuclei in the fast neutron region at IAEA. Triple-humped fission barriers and exclusive pre-fission neutron spectra were considered for the fission data evaluation. Total, fission, capture and neutron emission cross section, average resonance parameters and angular distributions of neutron scattering are in excellent agreement with the available experimental data.

  12. Allowance for the tunnel effect in the entrance channel of fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.

    2016-05-01

    A two-stage model is developed in order to describe fusion-fission reactions. The process in the course of which colliding ions approach each other is simulated at the first stage, the deformations and relative orientations of the ions being taken into account. The first stage of the calculation is completed as soon as colliding nuclei touch each other. A continuous nuclear system (monosystem) is formed at this instant. The emerging distributions of the angular momenta of this system and of its potential and internal energies at the point of touching are used as input data that are necessary for triggering the second stage of the calculation. The evolution of collective coordinates that describe the shape of the monosystem is calculated at the second stage. The description of this evolution is terminated either at the instant of its fission or upon the release of a major part of its excess energy via particle and photon emission. In the latter case, the probability for the fission of the monosystem or a further decrease in its excitation energy becomes extremely small. The ion-collision process and the evolution of the monosystem formed after primary nuclei come into contact are simulated on the basis of stochastic Langevin equations. The quantities appearing in them (which include the potential energy and inertial and friction parameters) are determined with allowance for the shell structure of nuclei. The tunneling of colliding nuclei through the Coulomb barrier is taken into account, and the effect of this phenomenon on model predictions is studied.

  13. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  14. NUCLEAR REACTION MODELING FOR RIA ISOL TARGET DESIGN

    SciTech Connect

    S. MASHNIK; ET AL

    2001-03-01

    Los Alamos scientists are collaborating with researchers at Argonne and Oak Ridge on the development of improved nuclear reaction physics for modeling radionuclide production in ISOL targets. This is being done in the context of the MCNPX simulation code, which is a merger of MCNP and the LAHET intranuclear cascade code, and simulates both nuclear reaction cross sections and radiation transport in the target. The CINDER code is also used to calculate the time-dependent nuclear decays for estimating induced radioactivities. They give an overview of the reaction physics improvements they are addressing, including intranuclear cascade (INC) physics, where recent high-quality inverse-kinematics residue data from GSI have led to INC spallation and fission model improvements; and preequilibrium reactions important in modeling (p,xn) and (p,xnyp) cross sections for the production of nuclides far from stability.

  15. Light charged particles emitted in fission reactions induced by protons on 208Pb

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Paradela, C.; Ayyad, Y.; Casarejos, E.; Alvarez-Pol, H.; Audouin, L.; Bélier, G.; Boutoux, G.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2016-09-01

    Light charged particles emitted in proton-induced fission reactions on 208Pb have been measured at different kinetic energies: 370 A ,500 A , and 650 A MeV. The experiment was performed by the SOFIA Collaboration at the GSI facilities in Darmstadt (Germany). The inverse kinematics technique was combined with a setup especially designed to measure light charged particles in coincidence with fission fragments. This measurement allowed us, for the first time, to obtain correlations between the light charged particles emitted during the fission process and the charge distributions of the fission fragments. These correlations were compared with different model calculations to assess the ground-to-saddle dynamics. The results confirm that transient and dissipative effects are required for an accurate description of the fission observables.

  16. Research on fission fragment excitation of gases and nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Davie, R. N.; Davis, J. F.; Fuller, J. L.; Paternoster, R. R.; Shipman, G. R.; Sterritt, D. E.; Helmick, H. H.

    1974-01-01

    Experimental investigations of fission fragment excited gases are reported along with a theoretical analysis of population inversions in fission fragment excited helium. Other studies reported include: nuclear augmentation of gas lasers, direct nuclear pumping of a helium-xenon laser, measurements of a repetitively pulsed high-power CO2 laser, thermodynamic properties of UF6 and UF6/He mixtures, and nuclear waste disposal utilizing a gaseous core reactor.

  17. Realistic development and testing of fission systems at a non-nuclear testing facility

    NASA Astrophysics Data System (ADS)

    Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .

  18. Nuclear reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    2016-05-01

    In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant αs is large enough (~ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss the application of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  19. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  20. Nuclear reactions from lattice QCD

    DOE PAGES

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  1. Nuclear reactions from lattice QCD

    SciTech Connect

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  2. Assessment of fission product yields data needs in nuclear reactor applications

    SciTech Connect

    Kern, K.; Becker, M.; Broeders, C.

    2012-07-01

    Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEF code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)

  3. Prompt muon-induced fission: A probe for nuclear friction in large-amplitude collective motion

    SciTech Connect

    Oberacker, V.E.; Umar, A.S.; Wells, J.C.; Strayer, M.R.; Maruhn, J.A.; Reinhard, P.G.

    1998-01-01

    Excited muonic atoms in the actinide region may induce prompt fission by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. The authors solve the time dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point.

  4. Thermal Simulator Development: Non-Nuclear Testing of Space Fission Systems

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky E.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system. At the NASA MSFC Early Flight Fission Test Facility (EFF-TF), highly designed electric heaters are used to simulate the heat from nuclear fuel to test space fission power and propulsion systems. To allow early utilization, nuclear system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. In this test strategy, highly designed electric heaters are used to simulate the heat from nuclear fuel, allowing one to develop a significant understanding of individual components and integrated system operation without the cost, time and safety concerns associated with nuclear testing.

  5. Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Sooby, Elizabeth; Adams, Marvin; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Phongikaroon, Supathorn; Pogue, Nathaniel; Sattarov, Akhdiyor; Simpson, Michael; Tripathy, Prabhat; Tsevkov, Pavel

    2013-04-01

    The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

  6. Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle

    SciTech Connect

    Sooby, Elizabeth; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Pogue, Nathaniel; Sattarov, Akhdiyor; Adams, Marvin; Tsevkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael; Tripathy, Prabhat

    2013-04-19

    The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

  7. Impact of nuclear fission on r-process nucleosynthesis and origin of solar r-process elements

    SciTech Connect

    Shibagaki, Shota; Kajino, Toshitaka; Mathews, Grant J.; Chiba, Satoshi

    2015-02-24

    Binary neutron star mergers (NSMs) are expected to be main production sites of r-process elements. Their ejecta are extremely neutron-rich (Y{sub e}<0.1), and the r-process path proceeds along the neutron drip line and enters the region of fissile nuclei. In this situation, although superheavy nuclei may be synthesized and the r-process path may reach the island of stability, those are sensitive to theoretical models of nuclear masses and nuclear fission. In this study, we carry out r-process nucleosynthesis simulations in the NSMs. Our new nuclear reaction network code include new theoretical models of nuclear masses and nuclear fission. Our r-process simulation of a binary NSM shows that the final r-process elemental abundances exhibit flat pattern for A∼110-160, and several fission cycling operate in extremely neutron-rich conditions of the NSM. We find that the combination of the NSMs and the magnetorotational supernovae can reproduce the solar r-process elements. We discuss the validity of this interpretation.

  8. Impact of nuclear fission on r-process nucleosynthesis and origin of solar r-process elements

    NASA Astrophysics Data System (ADS)

    Shibagaki, Shota; Kajino, Toshitaka; Mathews, Grant J.; Chiba, Satoshi

    2015-02-01

    Binary neutron star mergers (NSMs) are expected to be main production sites of r-process elements. Their ejecta are extremely neutron-rich (Ye<0.1), and the r-process path proceeds along the neutron drip line and enters the region of fissile nuclei. In this situation, although superheavy nuclei may be synthesized and the r-process path may reach the island of stability, those are sensitive to theoretical models of nuclear masses and nuclear fission. In this study, we carry out r-process nucleosynthesis simulations in the NSMs. Our new nuclear reaction network code include new theoretical models of nuclear masses and nuclear fission. Our r-process simulation of a binary NSM shows that the final r-process elemental abundances exhibit flat pattern for A˜110-160, and several fission cycling operate in extremely neutron-rich conditions of the NSM. We find that the combination of the NSMs and the magnetorotational supernovae can reproduce the solar r-process elements. We discuss the validity of this interpretation.

  9. Nuclear Reactions for Astrophysics and Other Applications

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  10. Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on Pu239

    NASA Astrophysics Data System (ADS)

    Talou, P.; Becker, B.; Kawano, T.; Chadwick, M. B.; Danon, Y.

    2011-06-01

    Prompt fission neutrons following the thermal and 0.5 MeV neutron-induced fission reaction of Pu239 are calculated using a Monte Carlo approach to the evaporation of the excited fission fragments. Exclusive data such as the multiplicity distribution P(ν), the average multiplicity as a function of fragment mass ν¯(A), and many others are inferred in addition to the most used average prompt fission neutron spectrum χ(Ein,Eout), as well as average neutron multiplicity ν¯. Experimental information on these more exclusive data help constrain the Monte Carlo model parameters. The calculated average total neutron multiplicity is ν¯c=2.871 in very close agreement with the evaluated value ν¯e=2.8725 present in the ENDF/B-VII.0 library. The neutron multiplicity distribution P(ν) is in very good agreement with the evaluation by Holden and Zucker. The calculated average spectrum differs in shape from the ENDF/B-VII.0 spectrum, evaluated with the Madland-Nix model. In particular, we predict more neutrons in the low-energy tail of the spectrum (below about 300 keV) than the Madland-Nix calculations, casting some doubts on how much scission neutrons contribute to the shape of the low-energy tail of the spectrum. The spectrum high-energy tail is very sensitive to the total kinetic energy distribution of the fragments as well as to the total excitation energy sharing at scission. Present experimental uncertainties on measured spectra above 6 MeV are too large to distinguish between various theoretical hypotheses. Finally, comparisons of the Monte Carlo results with experimental data on ν¯(A) indicate that more neutrons are emitted from the light fragments than the heavy ones, in agreement with previous works.

  11. Mini Fission-Fusion-Fission Explosions (Mini-Nukes). A Third Way Towards the Controlled Release of Nuclear Energy by Fission and Fusion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2004-06-01

    Chemically ignited nuclear microexplosions with a fissile core, a DT reflector and U238 (Th232) pusher, offer a promising alternative to magnetic and inertial confinement fusion, not only burning DT, but in addition U238 (or Th232), and not depending on a large expensive laser of electric pulse power supply. The prize to be paid is a gram size amount of fissile material for each microexplosion, but which can be recovered by breeding in U238. In such a "mini-nuke" the chemical high explosive implodes a spherical metallic shell onto a smaller shell, with the smaller shell upon impact becoming the source of intense black body radiation which vaporizes the ablator of a spherical U238 (Th232) pusher, with the pusher accelerated to a velocity of ˜200 km/s, sufficient to ignite the DT gas placed in between the pusher and fissile core, resulting in a fast fusion neutron supported fission reaction in the core and pusher. Estimates indicate that a few kg of high explosives are sufficient to ignite such a "mini-nuke", with a gain of ˜103, releasing an energy equivalent to a few tons of TNT, still manageable for the microexplosion to be confined in a reactor vessel. A further reduction in the critical mass is possible by replacing the high explosive with fast moving solid projectiles. For light gas gun driven projectiles with a velocity of ˜ 10 km/s, the critical mass is estimated to be 0.25 g, and for magnetically accelerated 25 km/s projectiles it is as small as ˜ 0.05 g. With the much larger implosion velocities, reached by laser- or particle beam bombardment of the outer shell, the critical mass can still be much smaller with the fissile core serving as a fast ignitor. Increasing the implosion velocity decreases the overall radius of the fission-fusion assembly in inverse proportion to this velocity, for the 10 km/s light gas gun driven projectiles from 10 cm to 5 cm, for the 25 km/s magnetically projectiles down to 2 cm, and still more for higher implosion velocities.

  12. Mass-resolved angular distribution of fission products in the 20Ne+232Th reaction

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Guin, R.

    2013-08-01

    Mass-resolved angular distributions of fission product were measured in the 20Ne + 232Th reaction at Elab = 125.6 and 142.5 MeV using the recoil catcher technique followed by offline γ-ray spectrometry. Angular anisotropy was found to decrease with increasing asymmetry of mass division. Angular anisotropies of the fission products in the symmetric region were significantly higher compared to those calculated using the statistical saddle-point model. Experimental anisotropies could be explained after considering the contribution from pre-equilibrium fission. Use of barrier energies corresponding to different mass asymmetry values in the calculations could reasonably reproduce the mass dependence of angular anisotropies. The role of barrier energies in governing the angular anisotropy indicates that the mass dependence of anisotropy may possibly be a distinguishing feature of pre-equilibrium fission from quasifission, in which the composite system escapes into the exit channel without being captured inside the saddle point.

  13. Reaction models in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Descouvemont, Pierre

    2016-05-01

    We present different reaction models commonly used in nuclear astrophysics, in particular for the nucleosynthesis of light elements. Pioneering works were performed within the potential model, where the internal structure of the colliding nuclei is completely ignored. Significant advances in microscopic cluster models provided the first microscopic description of the 3He(α,&gamma)7 Be reaction more than thirty years ago. In this approach, the calculations are based on an effective nucleon-nucleon interaction, but the cluster approximation should be made to simplify the calculations. Nowadays, modern microscopic calculations are able to go beyond the cluster approximation, and aim at finding exact solutions of the Schrödinger equation with realistic nucleon-nucleon interactions. We discuss recent examples on the d+d reactions at low energies.

  14. The fusion fission and quasi-fission processes in the reaction 48Ca + 208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Prokhorova, E. V.; Bogachev, A. A.; Itkis, M. G.; Itkis, I. M.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Pashkevich, V. V.; Rusanov, A. Ya.

    2008-04-01

    Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb → 256No at the energies E=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission "shoulders" corresponding to the light fragment masses ˜60-90 u and complimentary heavy fragment masses. The quasi-fission "shoulders" have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses M=130-135 u and the TKE of ≈233 MeV.

  15. Fission product partitioning in aerosol release from simulated spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Rasmussen, G.; Konings, R. J. M.

    2015-10-01

    Aerosols created by the vaporization of simulated spent nuclear fuel (simfuel) were produced by laser heating techniques and characterised by a wide range of post-analyses. In particular attention has been focused on determining the fission product behaviour in the aerosols, in order to improve the evaluation of the source term and consequently the risk associated with release from spent fuel sabotage or accidents. Different simulated spent fuels were tested with burn-up up to 8 at. %. The results from the aerosol characterisation were compared with studies of the vaporization process by Knudsen Effusion Mass Spectrometry and thermochemical equilibrium calculations. These studies permit an understanding of the aerosol gaseous precursors and the gaseous reactions taking place during the aerosol formation process.

  16. Spontaneous Fission Modes and Lifetimes of Superheavy Elements in the Nuclear Density Functional Theory

    SciTech Connect

    Staszczak, A,

    2013-01-01

    Background: The reactions with the neutron-rich 48Ca beam and actinide targets resulted in the detection of new superheavy (SH) nuclides with Z=104 118. The unambiguous identification of the new isotopes, however, still poses a problem because their -decay chains terminate by spontaneous fission (SF) before reaching the known region of the nuclear chart. The understanding of the competition between -decay and SF channels in SH nuclei is, therefore, of crucial importance for our ability to map the SH region and to assess its extent.

    Purpose: We perform self-consistent calculations of the competing decay modes of even-even SH isotopes with 108 Z 126 and 148 N 188.

    Methods: We use the state-of-the-art computational framework based on self-consistent symmetry-unrestricted nuclear density functional theory capable of describing the competition between nuclear attraction and electrostatic repulsion. We apply the SkM* Skyrme energy density functional. The collective mass tensor of the fissioning superfluid nucleus is computed by means of the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (HFB) approach. This paper constitutes a systematic self-consistent study of spontaneous fission in the SH region, carried out at a full HFB level, that simultaneously takes into account both triaxiality and reflection asymmetry.

    Results: Breaking axial symmetry and parity turns out to be crucial for a realistic estimate of collective action; it results in lowering SF lifetimes by more than 7 orders of magnitude in some cases. We predict two competing SF modes: reflection symmetric modes and reflection asymmetric modes.

    Conclusions: The shortest-lived SH isotopes decay by SF; they are expected to lie in a narrow corridor formed by 280Hs, 284Fl, and 118284Uuo that separates the regions of SH nuclei synthesized in cold-fusion and hot-fusion reactions. The region of long-lived SH nuclei is expected to be centered on 294Ds with a total half-life of

  17. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    NASA Astrophysics Data System (ADS)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  18. Discovery of a new mode of nuclear fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Schaedel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1986-01-01

    We measured the mass and kinetic-energy partitioning in the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). Surprisingly, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We interpret this as a new mode of fission in which there is mixture of liquid-drop-like and fragment-shell-directed symmetric fission.

  19. Non-equilibrium fission processes in intermediate energy nuclear collisions

    SciTech Connect

    Loveland, W.; Casey, C.; Xu, Z.; Seaborg, G.T.; Aleklett, K.; Sihver, L.

    1989-04-01

    We have measured the target fragment yields, angular and energy distributions for the interaction of 12-16 MeV/A/sup 32/S with /sup 165/Ho and /sup 197/Au and for the interaction of 32 and 44 MeV/A /sup 40/Ar with /sup 197/Au. The Au fission fragments associated with the peripheral collision peak in the folding angle distribution originate in a normal, ''slow'' fission process in which statistical equilibrium has been established. At the two lowest projectile energies, the Au fission fragments associated with the central collision peak in the folding angle distribution originate in part from ''fast'' (/tau//approximately//sup /minus/23/s), non-equilibrium processes. Most of the Ho fission fragments originate in non- equilibrium processes. The fast, non-equilibrium process giving rise to these fragments has many of the characteristics of ''fast fission'', but the cross sections associated with these fragments are larger than one would expect from current theories of ''fast fission. '' 14 refs., 8 figs.

  20. Cross sections and barriers for nuclear fission induced by high-energy nucleons

    SciTech Connect

    Grudzevich, O. T.; Yavshits, S. G.

    2013-03-15

    The cross sections for the fission of {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu target nuclei that was induced by 20- to 1000-MeV neutrons and protons were calculated. The respective calculations were based on the multiconfiguration-fission (MCFx) model, which was used to describe three basic stages of the interaction of high-energy nucleons with nuclei: direct processes (intranuclear cascade), equilibration of the emerging compound system, and the decay of the compound nucleus (statistical model). Fission barriers were calculated within the microscopic approach for isotopic chains formed by 15 to 20 nuclei of the required elements. The calculated fission cross sections were compared with available experimental data. It was shown that the input data set and the theoretical model used made it possible to predict satisfactorily cross section for nuclear fission induced by 20- to 1000-MeV nucleons.

  1. Radiation re-solution of fission gas in non-oxide nuclear fuel

    NASA Astrophysics Data System (ADS)

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called "homogenous" atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  2. Deexcitation Modes in Spallation Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Velasco, F. G.; Guzmán, F.; Rodriguez, O.; Tumbarell, O.; Souza, D. A.; Samana, A. R.; Andrade-II, E.; Bernal Castillo, J. L.; Deppman, A.

    2016-08-01

    Spallation nuclear reactions in the range of 0.2 to 1.2 GeV are studied using the CRISP code. A new approach for the deexcitation stage of the compound nucleus was introduced. For the calculations of the level densities, this approach is based on the Back-shifted Fermi gas model (BSFG), which takes into account pairing effects and shell corrections, whereas the calculation of the fission barriers were performed by means of the Extended Thomas-Fermi plus Strutinsky Integral (ETFSI) method, which is a high-speed approximation to the Hartree-Fock method with pairing correlations treated as in the usual BCS plus blocking approach. This procedure is more appropriate to calculate level densities for exotic nuclei. Satisfactory results were obtained and compared with experimental data obtained in the GSI experiments. As another important result, we highlight some directions for the development of a qualitatively superior version of the CRISP code with the implementation of more realistic and suitable physical models to be applied in stable and exotic nuclei that participate in the process. This new version of the code includes several substantial changes in the decay of the hot compound nucleus which allow satisfactory agreement with the experimental data and a reduction of the adjustment parameters.

  3. Extended optical model for fission

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  4. Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors.

    SciTech Connect

    Olson, Craig Lee; Mehlhorn, Thomas Alan; Cipiti, Benjamin B.; Rochau, Gary Eugene

    2007-09-01

    Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

  5. Neutron multiplicities in spontaneous fission and nuclear structure studies

    SciTech Connect

    Hamilton, J.H.; Kormicki, J.; Lu, Q.

    1993-12-31

    New insights into the fission process can be gained by better quantitative knowledge of how the energy released in fission is distributed between the kinetic energy of the two fragments, the excitation energy of the two fragments and the number of neutrons emitted. Studies of prompt gamma-rays emitted in spontaneous fission (SF) with large arrays of Compton suppressed Ge detector arrays are providing new quantitative answers to longstanding questions concerning fission as well as new insights into the structure of neutron-rich nuclei. For the first time the triple gamma coincidence technique was employed in spontaneous fission studies. Studies of SF of {sup 252}Cf and {sup 242}Pu have been carried out. These {gamma}-{gamma}-{gamma} data provide powerful ways to identify uniquely gamma rays from a particular nucleus in the very complex gamma-ray spectra given off by the over 100 different nuclei produced. The emphasis of this paper is on the first quantitative measurements of the multiplicities of the neutrons emitted in SF and the energy levels populated in the fragments. Indeed, in the break up into Mo-Ba pairs, we have identified for the first time fragments associated with from zero up to ten neutrons emitted and observed the excited energy states populated in these nuclei. The zero neutron emission pairs like {sup 104}Mo- {sup 148}Ba, {sup 106}Mo- {sup 146}Ba and {sup 104}Zr- {sup 148}Ce observed in this work are particularly interesting because they represent a type of cold fission or a new mode of cluster radioactivity as proposed by Greiner, Sandulescu and co-workers. These data provide new insights into the processes of cluster radioactivity and cold fission.

  6. The role of off-line mass spectrometry in nuclear fission.

    PubMed

    De Laeter, J R

    1996-01-01

    The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of

  7. Description of the Fusion-Fission Reactions in the Framework of Dinuclear System Conception

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2016-05-01

    Within the dinuclear system model fusion-fission reactions 78Kr+40Ca and 86Kr+48Ca is investigated. The charge distributions of the decay products are predicted at bombarding energy 10 MeV/nucleon. The competition is treated between complete fusion followed by the decay of compound nucleus and quasifission channels. The possible explanation of the odd-even staggering in the yield of the final reaction products at high excitation energies is discussed.

  8. Fission barriers for Po nuclei produced in complete fusion reactions with heavy ions

    SciTech Connect

    Sagaidak, R. N.; Andreyev, A. N.

    2009-05-15

    Evaporation residues and fission excitation functions obtained in complete fusion reactions leading to Po compound nuclei have been analyzed in the framework of the standard statistical model. Macroscopic fission barriers deduced from the cross-section data analysis are compared with the predictions of various theoretical models and available data. A drop in the Po barriers with the decrease in a neutron number was found, which is stronger than predicted by any theory. The presence of entrance channel effects and collective excitations in the compound nucleus decay is considered as a possible reason for the barrier reduction.

  9. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    SciTech Connect

    Chadwick, M.B.; Herman, M.; Author : Chadwick,M.B.; Herman,M.; Oblozinsky,P.; Dunn,M.E.; Danon,Y.; Kahler,A.C.; Smith,D.L.; Pritychenko,B.; Arbanas,G.; Arcilla,R.; Brewer,R.; Brown,D.A.; Capote,R.; Carlson,A.D.; Cho,Y.S.; Derrien,H.; Guber,K.; Hale,G.M.; Hoblit,S.; Holloway,S.: Johnson,T.D.; Kawano,T.; Kiedrowski,B.C.; Kim,H.; Kunieda,S.; Larson,N.M.; Leal,L.; Lestone,J.P.; Little,R.C.; McCutchan,E.A.; MacFarlane,R.E.; MacInnes,M.; Mattoon,C.M.; McKnight,R.D.; Mughabghab,S.F.; Nobre,G.P.A.; Palmiotti,G.; Palumbo,A.; Pigni,M.T.; Pronyaev,V.G.; Sayer,R.O.; Sonzogni,A.A.; Summers,N.C.; Talou,P.; Thompson,I.J.; Trkov,A.; Vogt,R.L.; van der Marck,S.C.; Wallner,A.; White,M.C.; Wiarda,D.; Young,P.G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides {sup 235,238}U and {sup 239}Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on {sup 239}Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0

  10. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  11. Testing JEFF-3.1.1 and ENDF/B-VII.1 Decay and Fission Yield Nuclear Data Libraries with Fission Pulse Neutron Emission and Decay Heat Experiments

    NASA Astrophysics Data System (ADS)

    Cabellos, O.; de Fusco, V.; Diez de la Obra, C. J.; Martinez, J. S.; Gonzalez, E.; Cano-Ott, D.; Alvarez-Velarde, F.

    2014-04-01

    The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.

  12. Direct Reactions for Nuclear Structure and Nuclear Astrophysics

    SciTech Connect

    Jones, Katherine Louise

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  13. Towards many-body based nuclear reaction modelling

    NASA Astrophysics Data System (ADS)

    Hilaire, Stéphane; Goriely, Stéphane

    2016-06-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic expressions. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical principles, when dealing with very exotic nuclei. Thanks to the high computer power available today, all the ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. This concerns nuclear masses, optical model potential, nuclear level densities, photon strength functions, as well as fission barriers. All these nuclear model ingredients, traditionally given by phenomenological expressions, now have a microscopic counterpart implemented in the TALYS nuclear reaction code. We are thus now able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. Perspectives for the coming years will be drawn on the improvements one can expect.

  14. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation

    NASA Astrophysics Data System (ADS)

    Herman, M.; Capote, R.; Carlson, B. V.; Obložinský, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V.

    2007-12-01

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions (∽ keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approach (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with γ-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and γ-ray strength functions. The results can be converted into ENDF-6 formatted files using the

  15. Initiation of nuclear reactions in femtosecond laser plasma

    SciTech Connect

    Golovinski, P. A.; Mikhin, E. A.

    2013-01-15

    Mechanisms of electron interaction with a nucleus via a direct electron-nucleus collision and via bremsstrahlung generated in electron scattering on a nucleus in a femtosecond laser plasma are considered. The description of this interaction is simplified substantially by using the instantaneous-impact and equivalent-photon approximations. The yields of photons, electron-positron pairs, and products of nuclear reactions initiated by a laser pulse for some nuclei are calculated. In particular, this is done for {sup 235}U, {sup 236}U, {sup 238}U, and {sup 232}Th fission in a laser field of intensity 10{sup 20} to 10{sup 22} W/cm{sup 2}.

  16. A separate effect study of the influence of metallic fission products on CsI radioactive release from nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Beneš, O.; Konings, R. J. M.

    2015-10-01

    The chemistry of cesium and iodine is of main importance to quantify the radioactive release in case of a nuclear reactor accident, or sabotage involving irradiated nuclear materials. We studied the interaction of CsI with different metallic fission products such as Mo and Ru. These elements can be released from nuclear fuel when exposed to oxidising conditions, as in the case of contact of overheated nuclear fuel with air (e.g. in a spent fuel cask sabotage, uncovering of a spent fuel pond, or air ingress accidents). Experiments were performed by vaporizing mixtures of the compounds in air, and analysing the produced aerosols in view of a possible gas-gas and gas-aerosol reactions between the compounds. These results were compared with the gaseous species predicted by thermochemical equilibrium calculations and experimental equilibrium vaporization tests using Knudsen Effusion Mass Spectrometry.

  17. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  18. Mechanical and molecular basis for the symmetrical division of the fission yeast nuclear envelope.

    PubMed

    Castagnetti, Stefania; Božič, Bojan; Svetina, Saša

    2015-06-28

    In fission yeast Schizosaccharomyces pombe, the nuclear envelope remains intact throughout mitosis and undergoes a series of symmetrical morphological changes when the spindle pole bodies (SPBs), embedded in the nuclear envelope, are pushed apart by elongating spindle microtubules. These symmetrical membrane shape transformations do not correspond to the shape behavior of an analogous system based on lipid vesicles. Here we report that the symmetry of the dividing fission yeast nucleus is ensured by SPB-chromosome attachments, as loss of kinetochore clustering in the vicinity of SPBs results in the formation of abnormal asymmetric shapes with long membrane tethers. We integrated these findings in a biophysical model, which explains the symmetry of the nuclear shapes on the basis of forces exerted by chromosomes clustered at SPBs on the extending nuclear envelope. Based on this analysis we conclude that the fission yeast nuclear envelope exhibits the same mechanical properties as simple lipid vesicles, but interactions with other cellular components, such as chromosomes, influence the nuclear shape during mitosis, allowing the formation of otherwise energetically unfavorable symmetrical dumbbell structures upon spindle elongation. The model allows us to explain the appearance of abnormal asymmetric shapes in fission yeast mutants with mis-segregated chromosomes as well as with altered nuclear membrane composition.

  19. Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Putnam, Gabriel

    2012-01-01

    The focus of the presented work is on the creation of a system of grazing incidence, supermirror waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron guides are a well known tool for directing neutrons from the confined and hazardous central core to a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence mirrors are a known method of directing and safely using neutrons, no method has been disclosed for capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The presented work is in the process of fabricating a functional, highly curved, neutron supermirror using known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror compositions, and sources for enabling sustained fission with applicability to the propulsion and energy goals of NASA and other agencies. Should research into this concept prove feasible, it would lead to development of a high energy density, low mass power source potentially capable of sustaining fission with a fraction of the standard critical mass for a given material and a broadening of feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This

  20. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  1. Measurement of Neutron-Induced, Angular-Momentum-Dependent Fission Probabilities Direct Reactions

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon; Jovanovic, Igor; Burke, Jason; Casperson, Robert

    2015-04-01

    The surrogate method has previously been used to successfully measure (n , f) cross sections of a variety of difficult to produce actinide isotopes. These measurements are inaccurate at excitation energies below 1.5 MeV where the distribution of angular momentum states populated in the compound nucleus created by neutron absorption significantly differs from that arising from direct reactions. A method to measure the fission probability of individual angular momentum states arising from 239 Pu(d , pf) and 239 Pu(α ,α' f) reactions has been developed. This method consists on charged particle detectors with 40 keV FWHM resolution at 13 angles up and downstream of the beam. An array of photovoltaic (solar) cells is used to measure the angular distribution of fission fragments with high angular resolution. This distribution uniquely identifies the populated angular momentum states. These are fit to expected distributions to determine the contribution of each state. The charged particle and fission matrix obtained from these measurements determines fission probabilities of specific angular momentum states in the transition nucleus. Development of this scheme and first results will be discussed. This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2012-DN-130-NF0001.

  2. Fission fragment mass distribution studies in 30Si +180Hf reaction

    NASA Astrophysics Data System (ADS)

    Shamlath, A.; Shareef, M.; Prasad, E.; Sugathan, P.; Thomas, R. G.; Jhingan, A.; Appannababu, S.; Nasirov, A. K.; Vinodkumar, A. M.; Varier, K. M.; Yadav, C.; Babu, B. R. S.; Nath, S.; Mohanto, G.; Mukul, Ish; Singh, D.; Kailas, S.

    2016-01-01

    Fission fragment mass-angle and mass ratio distributions have been measured for the 30Si + 180Hf reaction in the beam energy range 128-148 MeV. Quasifission signature is observed in this reaction, forming the compound system 210Rn. The results are compared with a very asymmetric reaction 16O + 194Pt, forming the same compound nucleus. Calculations assuming saddle point, scission point and DNS models have been performed to interpret the experimental results. The results strongly suggest the entrance channel dependence of quasifission in heavy ion collisions.

  3. An Inconvenient History: the Nuclear-Fission Display in the Deutsches Museum

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    2010-06-01

    One of the longstanding attractions of the Deutsches Museum in Munich, Germany, has been its display of the apparatus associated with the discovery of nuclear fission. Although the discovery involved three scientists, Otto Hahn, Lise Meitner, and Fritz Strassmann, the fission display was designated for over 30 years as the Arbeitstisch von Otto Hahn (Otto Hahn’s Worktable), with Strassmann mentioned peripherally and Meitner not at all, and it was not until the early 1990s that the display was revised to include all three codiscoverers more equitably. I examine the creation of the fission display in the context of the postwar German culture of silencing the National Socialist past, and trace the eventual transformation of the display into a contemporary exhibit that more accurately represents the scientific history of the fission discovery.

  4. Future research program on prompt γ-ray emission in nuclear fission

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  5. Non-Nuclear Testing of Fission Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Robert G.; Pearson, J. Boise; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky E.; Emrich, William J.; Garber, Anne E.; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; Polzin, Kurt A.; Schoenfeld, Michael P.; Webster, Kenneth L.

    2011-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing also provides an excellent way for screening potential advanced fuels and materials prior to nuclear testing, and for investigating innovative geometries and operating regimes. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA s Marshall Space Flight Center (MSFC).

  6. Vesicle-Like Biomechanics Governs Important Aspects of Nuclear Geometry in Fission Yeast

    PubMed Central

    Lim H. W., Gerald; Huber, Greg; Torii, Yoshihiro; Hirata, Aiko; Miller, Jonathan; Sazer, Shelley

    2007-01-01

    It has long been known that during the closed mitosis of many unicellular eukaryotes, including the fission yeast (Schizosaccharomyces pombe), the nuclear envelope remains intact while the nucleus undergoes a remarkable sequence of shape transformations driven by elongation of an intranuclear mitotic spindle whose ends are capped by spindle pole bodies embedded in the nuclear envelope. However, the mechanical basis of these normal cell cycle transformations, and abnormal nuclear shapes caused by intranuclear elongation of microtubules lacking spindle pole bodies, remain unknown. Although there are models describing the shapes of lipid vesicles deformed by elongation of microtubule bundles, there are no models describing normal or abnormal shape changes in the nucleus. We describe here a novel biophysical model of interphase nuclear geometry in fission yeast that accounts for critical aspects of the mechanics of the fission yeast nucleus, including the biophysical properties of lipid bilayers, forces exerted on the nuclear envelope by elongating microtubules, and access to a lipid reservoir, essential for the large increase in nuclear surface area during the cell cycle. We present experimental confirmation of the novel and non-trivial geometries predicted by our model, which has no free parameters. We also use the model to provide insight into the mechanical basis of previously described defects in nuclear division, including abnormal nuclear shapes and loss of nuclear envelope integrity. The model predicts that (i) despite differences in structure and composition, fission yeast nuclei and vesicles with fluid lipid bilayers have common mechanical properties; (ii) the S. pombe nucleus is not lined with any structure with shear resistance, comparable to the nuclear lamina of higher eukaryotes. We validate the model and its predictions by analyzing wild type cells in which ned1 gene overexpression causes elongation of an intranuclear microtubule bundle that deforms the

  7. Anomalous anisotropies of fission fragments in near- and sub-barrier fusion-fussion reactions

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Jun, Lu; Ming, Ruan; Kan, Xu

    1992-03-01

    Fission cross sections and angular distributions have been measured for the reactions of 16O + 232Th and238U, and19F + 208Pb and232Th at near- and sub-barrier energies. The fission excitation functions are rather well reproduced on the basis of Wong model or coupled channels theory. However, the models which reproduce the sub-barrier fusion cross sections fail to account for the experimental anisotropies of fission fragments. It is found that the observed anisotropies are much larger than expected. For the first time it has been observed that the anisotropies as a function of the center-of-mass energy show a peak centered near 4.5 MeV below the fusion barrier for several reaction systems. The present approaches fail to explain these anomalies. For 19F + 208Pb systems, our results confirm the prediction of an approximately constant value for the mean square spin of the compound nucleus produced in far sub-barrier fusion reaction.

  8. Influence of the shell structure of colliding nuclei in fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Litnevsky, V. L.; Pashkevich, V. V.; Kosenko, G. I.; Ivanyuk, F. A.

    2012-03-01

    We describe the fusion-fission processes within a two-stage reaction model. In the first stage (the approach phase) we calculate the properties of the system at the touching point. In the second stage we describe the evolution of the compact system. It is assumed that in the approach process the colliding ions are oriented “nose to nose”; i.e., their symmetry axes coincide. The distributions at the touching point obtained at the first step are used as the initial conditions for the evolution of a compact system. Both the approach phase and the evolution of the compact system are described in terms of Langevin equations for the collective coordinates (deformation parameters). At both stages the shell structure of the colliding ions and that of the compound nucleus are taken into account. Within this model we obtain information on the touching probability and on the observables measured in the fusion-fission reactions (mass and energy distributions of the fission fragments, the touching and fusion cross sections, and the evaporation residue cross sections). Results obtained for the reactions 16,18O+208Pb→224,226Th and 48Ca+208Pb→256No, involving nuclei that are spherical in their ground state, are compared with the available experimental data.

  9. Politics, Chemistry, and the Discovery of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Wiesner, Emilie; Settle, Frank A., Jr.

    2001-07-01

    The discovery of fission is an interesting scientific saga involving the fundamentals of chemistry and physics. It is played out in the late 1930s on a European stage. Lise Meitner and Otto Hahn head a cast of characters that include scientific notables Fritz Strassmann, Otto Frisch, James Chadwick, Enrico Fermi, Ida Noddack, Irene Curie, and Neils Bohr. The plot includes the scientific method, the interdependence of chemistry and physics, the influence of external politics, and human frailty. The events surrounding this discovery did not allow the scientists involved to receive equal recognition. Fortunately, the passage of time and extensive historical research are restoring equality.

  10. Quadrupole Collective Inertia in Nuclear Fission: Cranking Approximation

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Dobaczewski, J.; Nazarewicz, Witold

    2011-01-01

    Collective mass tensor derived from the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) approach is compared with that obtained in the Gaussian Overlap Approximation (GOA) to the generator coordinate method. Illustrative calculations are carried out for one-dimensional quadrupole fission pathways in ^{256}Fm. It is shown that the collective mass exhibits strong variations with the quadrupole collective coordinate. These variations are related to the changes in the intrinsic shell structure. The differences between collective inertia obtained in cranking and perturbative cranking approximations to ATDHFB, and within GOA, are discussed.

  11. Instabilities in fissioning plasmas as applied to the gas-core nuclear rocket-engine

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The compressional wave spectrum excited in a fissioning uranium plasma confined in a cavity such as a gas cored nuclear reactor, is studied. Computer results are presented that solve the fluid equations for this problem including the effects of spatial gradients, nonlinearities, and neutron density gradients in the reactor. Typically the asymptotic fluctuation level for the plasma pressure is of order 1 percent.

  12. Fusion hindrance and quasi-fission in heavy-ion induced reactions: disentangling the effect of different parameters

    SciTech Connect

    Fioretto, E.; Stefanini, A. M.; Behera, B. R.; Corradi, L.; Gadea, A.; Latina, A.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chizhov, A. Yu.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Sagaidak, R. N.; Voskressensky, V. M.; Courtin, S.

    2006-04-26

    Experimental results on the fusion inhibition effect near the Coulomb barrier due to the onset of the quasi-fission mechanism are presented. The investigation was focused on reactions induced by 48Ca projectiles on different heavy targets and comparing them to reactions induced by light ions such as 12C and 16O leading to the same compound nuclei. Cross sections and angular distributions of evaporation residues and fission fragments have been measured.

  13. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  14. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    SciTech Connect

    Capote, R. , E-Mail: r.capotenoy@iaea.org; Herman, M.; Oblozinsky, P.; Young, P.G.; Goriely, S.; Belgya, T.; Ignatyuk, A.V.; Koning, A.J.; Hilaire, S.; Plujko, V.A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M.B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V.M.; Reffo, G.

    2009-12-15

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains

  15. RIPL-Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    SciTech Connect

    Capote, R.; Herman, M.; Capote,R.; Herman,M.; Oblozinsky,P.; Young,P.G.; Goriely,S.; Belgy,T.; Ignatyuk,A.V.; Koning,A.J.; Hilaire,S.; Pljko,V.A.; Avrigeanu,M.; Bersillon,O.; Chadwick,M.B.; Fukahori,T.; Ge, Zhigang; Han,Yinl,; Kailas,S.; Kopecky,J.; Maslov,V.M.; Reffo,G.; Sin,M.; Soukhovitskii,E.Sh.; Talou,P

    2009-12-01

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains

  16. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    NASA Astrophysics Data System (ADS)

    Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.

    2009-12-01

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains

  17. Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.

    PubMed

    Gonzalez, Yanira; Saito, Akira; Sazer, Shelley

    2012-01-01

    In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.

  18. Low Energy Nuclear Reactions: 2007 Update

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  19. Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission)

    SciTech Connect

    Karnaukhov, V. A.; Oeschler, H.; Budzanowski, A.; Avdeyev, S. P.; Botvina, A. S.; Cherepanov, E. A.; Karcz, W.; Kirakosyan, V. V.; Rukoyatkin, P. A.; Skwirczynska, I.; Norbeck, E.

    2008-12-15

    Critical temperature T{sub c} for the nuclear liquid-gas phase transition is estimated from both the multifragmentation and fission data. In the first case, the critical temperature is obtained by analysis of the intermediate-mass-fragment yields in p(8.1 GeV) + Au collisions within the statistical model of multifragmentation. In the second case, the experimental fission probability for excited {sup 188}Os is compared with the calculated one with T{sub c} as a free parameter. It is concluded for both cases that the critical temperature is higher than 15 MeV.

  20. Energy dependence of nuclear charge distribution in neutron induced fission of Z-even nuclei

    NASA Astrophysics Data System (ADS)

    Roshchenko, V. A.; Piksaikin, V. M.; Isaev, S. G.; Goverdovski, A. A.

    2006-07-01

    For the first time the distribution of nuclear charge of fission products with mass numbers 87, 88, 89, 91, 93, 94, 95, 137, 138, 139, and 140 and their complementary products have been studied for neutron induced fission of U235 and Pu239 in the energy range from thermal up to 1.2 MeV. The energy dependences of the cumulative yields of Br87, Br88, Br89, Br91, Kr93, Rb94, Rb95, I137, I138, I139, and I140 have been obtained by delayed neutron measurements. The most probable charge ZP(A)in the appropriate isobaric β-decay chains was estimated. The results were analyzed in terms of the deviation ΔZP(A') of the most probable charge of isobaric β-decay chains from the unchanged charge distribution before prompt neutron emission (nuclear charge polarization) and they are compared with experimental data of other authors and with predictions from Nethaway's ZP-formula and Wahl's ZP-model. We show that the nuclear charge polarization of primary fission fragments <ΔZP(A')> before prompt neutron evaporation decreases as the excitation energy of the compound nucleus increases. This decrease is more pronounced for fission of U235. The energy dependencies of ΔZP(A') and ΔZP(ZP) obtained in the present work show an attenuation of the odd-even effects in the charge distribution as the excitation energy of the compound nucleus increases.

  1. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Phongikaroon, Supathorn; Sattarov, Akhdiyor; Simpson, Michael; Sooby, Elizabeth; Tsvetkov, Pavel

    2013-04-01

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  2. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    SciTech Connect

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael

    2013-04-19

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  3. The Search for Transuranium Elements and the Discovery of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    The synthesis of new, artificial elements beyond uranium was at the cutting-edge of physical research in the 1930s, and nearly half a dozen transuranium elements were reported between 1934 and 1938. Nuclear physicists and radiochemists collaborated closely, but each field introduced fundamental assumptions that proved to be false: that nuclear changes would always be small, and that transuranium elements would resemble transition elements chemically. With its surprise ending in the discovery of nuclear fission, the misguided transuranium project can be viewed as an example of the illogical progress of scientific discovery. It is also an example of an interdisciplinary collaboration that was flawed yet crucial, for although chemists and physicists both contributed to the delay in discovering fission, their collaboration was essential in leading them to it in the end.

  4. Investigation of Shell Effects in the Fusion-Fission Process in the Reaction 34S + 186W Near the Interaction Barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Kozulin, E. M.; Bogachev, A.; Dmitriev, S. N.; Itkis, J.; Knyazheva, G.; Loktev, T.; Novikov, K.; Vardaci, E.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.

    2015-06-01

    The reaction 34S + 186W at Elab = 160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays coincident with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. The coupling of the ORGAM and CORSET setups enables the FF-γ coincident measurement which offers the opportunity to extract the isotopic distribution of the fragments of different masses formed in the aforementioned reaction and to find the exact neutron multiplicity, the average spin and average angular momenta. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  5. EXFOR Library of Experimental Nuclear Reaction Data

    DOE Data Explorer

    The EXFOR library contains an extensive compilation of experimental nuclear reaction data up to 1 GeV. Neutron reactions have been compiled systematically since the discovery of the neutron, while charged particle(up to carbon) and photon reactions have been covered less extensively. Files contain nuclear reaction data such as cross sections, spectra, angular distributions, polarizations, etc, along with information on experimental technique, error analysis, and applied standards. Numerous search parameters include: target, beam, product, experimental method, and even author and publication names. The library contains data from more than 20,000 experiments. (Specialized Interface)

  6. Radiation re-solution of fission gas in non-oxide nuclear fuel

    SciTech Connect

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called ‘‘homogenous’’ atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  7. Neutron Radiography and Fission Mapping Measurements of Nuclear Materials with Varying Composition and Shielding

    SciTech Connect

    Mullens, James Allen; McConchie, Seth M; Hausladen, Paul; Mihalczo, John T; Grogan, Brandon R; Sword, Eric D

    2011-01-01

    Neutron radiography and fission mapping measurements were performed on four measurement objects with varying composition and shielding arrangements at the Idaho National Laboratory's Zero Power Physics Reactor (ZPPR) facility. The measurement objects were assembled with ZPPR reactor plate materials comprising plutonium, natural uranium, or highly enriched uranium and were presented as unknowns for characterization. As a part of the characterization, neutron radiography was performed using a deuterium-tritium (D-T) neutron generator as a source of time and directionally tagged 14 MeV neutrons. The neutrons were detected by plastic scintillators placed on the opposite side of the object, using the time-correlation-based data acquisition of the Nuclear Materials Identification System developed at Oak Ridge National Laboratory. Each object was measured at several rotations with respect to the neutron source to obtain a tomographic reconstruction of the object and a limited identification of materials via measurement of the neutron attenuation. Large area liquid scintillators with pulse shape discrimination were used to detect the induced fission neutrons. A fission site map reconstruction was produced by time correlating the induced fission neutrons with each tagged neutron from the D-T neutron generator. This paper describes the experimental configuration, the ZPPR measurement objects used, and the neutron imaging and fission mapping results.

  8. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-05-05

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  9. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  10. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-06

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  11. Measurement of neutron multiplicity from fission of {sup 228}U and nuclear dissipation

    SciTech Connect

    Singh, Hardev; Behera, B. R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Jhingan, Akhil; Singh, R. P.; Sugathan, P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Ranjeet; Mandal, S.; Shidling, P. D.; Viesti, G.

    2009-12-15

    Pre- and post-scission neutron multiplicities are measured at different excitation energies of the compound nucleus {sup 228}U populated using the {sup 19}F+{sup 209}Bi reaction. The measured yield of pre-scission and total neutrons are compared with the statistical model calculation for the decay of a compound nucleus. The statistical model calculations are performed using the Bohr-Wheeler transition state fission width as well as the dissipative dynamical fission width due to Kramers. Comparison between the measured and the calculated values shows that, while the Bohr-Wheeler fission width grossly underestimates the pre-scission neutron yield, a large amount of dissipation is required in the Kramers width to fit the experimental pre-scission multiplicities. Various factors contributing to the large excitation energy dependence of the fitted values of the dissipation coefficient are discussed.

  12. Overview of beneficial uses of nuclear fission products

    SciTech Connect

    Sivinski, J.S.

    1980-01-01

    Recoverable or reprocessed nuclear wastes as conservable resources with significant potential benefits for use as heat sources, or as radiation sources for industrial, agricultural, and medical applications are reviewed. (LCL)

  13. Fission fragment charge and mass distributions in 239Pu(n, f ) in the adiabatic nuclear energy density functional theory

    DOE PAGES

    Regnier, D.; Dubray, N.; Schunck, N.; Verriere, M.

    2016-05-13

    Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.

  14. Compilation of Nuclear Reaction Data from RIBF

    NASA Astrophysics Data System (ADS)

    Makinaga, Ayano; Ebata, Shuichiro; Aikawa, Masayuki; Furutachi, Naoya; Ichinkhorloo, Dagvadorj; Katō, Kiyoshi; Odsuren, Myagmarjav; Devi, Vidya; Otuka, Naohiko; Kohama, Akihisa; Otsu, Hideaki; Sakurai, Hiroyoshi

    Nuclear reaction data are useful in many fields, e.g., nuclear physics, astrophysics, nuclear engineering, and radiation therapy. It is therefore desirable to make such data freely available through a database. One such database is the EXFOR library, which is maintained under international cooperation. For the benefit of nuclear data users worldwide, the experimental nuclear data obtained at the RIKEN Radioisotope Beam Factory (RIBF) are continuously transmitted into the EXFOR library. We are effectively improving the completeness and usability of the data produced at the RIBF. In addition, a new format is being discussed to create convenient access to the databases for experimentalists and users.

  15. Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel

    SciTech Connect

    Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G.; Mann, T.

    2013-04-19

    We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

  16. Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G.; Mann, T.

    2013-04-01

    We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

  17. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    SciTech Connect

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew; Cizewski, Jolie A; Krucken, Reiner; Clark, R M; Fallon, Paul; Lee, I Yang; Macchiavelli, Agusto O; Becker, John A; Younes, Walid

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

  18. Insights on fission products behaviour in nuclear severe accident conditions by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Bès, R.; Martin, Ph; Pontillon, Y.; Ducros, G.; Solari, P. L.

    2016-04-01

    Many research programs have been carried out aiming to understand the fission products behaviour during a Nuclear Severe Accident. Most of these programs used highly radioactive irradiated nuclear fuel, which requires complex instrumentation. Moreover, the radioactive character of samples hinders an accurate chemical characterisation. In order to overcome these difficulties, SIMFUEL stand out as an alternative to perform complementary tests. A sample made of UO2 doped with 11 fission products was submitted to an annealing test up to 1973 K in reducing atmosphere. The sample was characterized before and after the annealing test using SEM-EDS and XAS at the MARS beam-line, SOLEIL Synchrotron. It was found that the overall behaviour of several fission products (such as Mo, Ba, Pd and Ru) was similar to that observed experimentally in irradiated fuels and consistent with thermodynamic estimations. The experimental approach presented in this work has allowed obtaining information on chemical phases evolution under nuclear severe accident conditions, that are yet difficult to obtain using irradiated nuclear fuel samples.

  19. Multidimensionally constrained relativistic Hartree-Bogoliubov study of spontaneous nuclear fission

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lu, Bing-Nan; Nikšić, Tamara; Vretenar, Dario

    2015-12-01

    Background: Recent microscopic studies, based on the theoretical framework of nuclear energy density functionals, have analyzed dynamic (least action) and static (minimum energy) fission paths, and it has been shown that in addition to the important role played by nonaxial and/or octupole collective degrees of freedom, fission paths crucially depend on the approximations adopted in calculating the collective inertia. Purpose: To analyze effects of triaxial and octupole deformations, as well as approximations to the collective inertia, on the symmetric and asymmetric spontaneous fission dynamics, and compare with results of recent studies based on the self-consistent Hartree-Fock-Bogoliubov (HFB) method. Methods: Deformation energy surfaces, collective potentials, and perturbative and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic Hartree-Bogoliubov (MDC-RHB) model, with the energy density functionals PC-PK1 and DD-PC1. Pairing correlations are treated in the Bogoliubov approximation using a separable pairing force of finite range. The least-action principle is employed to determine dynamic spontaneous fission paths. Results: The dynamics of spontaneous fission of 264Fm and 250Fm is explored. The fission paths, action integrals, and the corresponding half-lives predicted by the functionals PC-PK1 and DD-PC1 are compared and, in the case of 264Fm, discussed in relation with recent results obtained using the HFB model based on the Skyrme functional SkM* and a density dependent mixed pairing interaction. Conclusions: The inclusion of nonaxial quadrupole and octupole shape degrees of freedom is essential for a quantitative analysis of fission dynamics. The action integrals and, consequently, the half-lives crucially depend on the approximation used to calculate the effective collective inertia along the fission path. The perturbative cranking approach underestimates the effects of structural

  20. Public reactions to nuclear waste

    SciTech Connect

    Dunlap, R.E.; Kraft, M.E.; Rosa, E.A.

    1993-12-31

    For many scientists, engineers, and regulators, the public controversy over siting a repository for high-level nuclear wastes exemplifies the clash between rational scientific judgment and irrational public attitudes. Even many who are more sympathetic to public concerns about risk and management believe the controversy is exacerbated by incompatibilities between good science and public participation in regulatory decision-making. Understanding the incompatibilities, however, is crucial to managing science and technology in a democratic society and provides an important motivation to study the relationship between public opinion and nuclear waste policy. In this book, Dunlap and his colleagues present a solid base of empirical research on the subject, and the strength of the collection is the careful unraveling of social factors and context to explain the overwhelmingly negative public view of nuclear waste and its management.

  1. Nuclear chain reaction: forty years later

    SciTech Connect

    Sachs, R.G.

    1984-01-01

    The proceedings from a 1982 symposium 40 years after the first controlled nuclear chain reaction took place in Chicago covers four sessions and public discussion. The session covered the history of the chain reaction; peaceful uses in technology, medicine, and biological science; peaceful uses in power generation; and nuclear weapons control. Among the speakers were Eugene Wigner, Glenn Seaborg, Alvin Weinberg, and others who participated in the first chain reaction experiments. The proceedings reflect differences of opinion among the scientists as well as the general public. References, slides, and tables used to illustrate the individual talks are included with the papers.

  2. An IF-FISH Approach for Covisualization of Gene Loci and Nuclear Architecture in Fission Yeast.

    PubMed

    Kim, K-D; Iwasaki, O; Noma, K

    2016-01-01

    Recent genomic studies have revealed that chromosomal structures are formed by a hierarchy of organizing processes ranging from gene associations, including interactions among enhancers and promoters, to topologically associating domain formations. Gene associations identified by these studies can be characterized by microscopic analyses. Fission yeast is a model organism, in which gene associations have been broadly mapped across the genome, although many of those associations have not been further examined by cell biological approaches. To address the technically challenging process of the visualization of associating gene loci in the fission yeast nuclei, we provide, in detail, an IF-FISH procedure that allows for covisualizing both gene loci and nuclear structural markers such as the nuclear membrane and nucleolus. PMID:27423862

  3. An IF-FISH Approach for Covisualization of Gene Loci and Nuclear Architecture in Fission Yeast.

    PubMed

    Kim, K-D; Iwasaki, O; Noma, K

    2016-01-01

    Recent genomic studies have revealed that chromosomal structures are formed by a hierarchy of organizing processes ranging from gene associations, including interactions among enhancers and promoters, to topologically associating domain formations. Gene associations identified by these studies can be characterized by microscopic analyses. Fission yeast is a model organism, in which gene associations have been broadly mapped across the genome, although many of those associations have not been further examined by cell biological approaches. To address the technically challenging process of the visualization of associating gene loci in the fission yeast nuclei, we provide, in detail, an IF-FISH procedure that allows for covisualizing both gene loci and nuclear structural markers such as the nuclear membrane and nucleolus.

  4. Fission products behaviour in UO2 submitted to nuclear severe accident conditions

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Bès, R.; Martin, P.; Pontillon, Y.; Solari, P. L.; Salome, M.

    2016-05-01

    The objective of this work was to study the molybdenum chemistry in UO2 based materials, known as SIMFUELS. These materials could be used as an alternative to irradiated nuclear fuels in the study of fission products behaviour during a nuclear severe accident. UO2 samples doped with 12 stable isotopes of fission products were submitted to annealing tests in conditions representative to intermediate steps of severe accidents. Samples were characterized by SEM-EDS and XAS. It was found that Mo chemistry seems to be more complex than what is normally estimated by thermodynamic calculations: XAS spectra indicate the presence of Mo species such as metallic Mo, MoO2, MoO3 and Cs2MoO4.

  5. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  6. Heavy element fission products on earth

    NASA Astrophysics Data System (ADS)

    Shukoliukov, Iu. A.

    Current data on the products of spontaneous fission in radioactive minerals, lithospheric rocks, and atmosphere are presented. Methods of nuclear geochronology are discussed together with the role of Pu-244 in the isotopic balance of the earth. Natural chain fission reactions are examined with particular reference to the Oklo phenomenon. The discussion covers geological and chemical features of the Oklo deposits, evaluation of the Oklo fission-product data, and prospects for discovering other natural reactors of this type.

  7. Experimental nuclear reaction data collection EXFOR

    SciTech Connect

    Semkova, V.; Otuka, N.; Simakov, S. P.; Zerkin, V.

    2011-07-01

    The International Network of Nuclear Reaction Data Centres (NRDC) constitutes a worldwide cooperation of 14 nuclear data centres. The main activity of the NRDC Network is collection and compilation of experimental nuclear reaction cross section data and the related bibliographic information in the EXFOR and CINDA databases as well as dissemination of nuclear reaction data and associated documentation to users. The database contains information and numerical data from more than about 19000 experiments consisting of more than 140000 datasets. EXFOR is kept up to date by constantly adding newly published experimental information. Tools developed for data dissemination utilise modern database technologies with fast online capabilities over the Internet. Users are provided with sophisticated search options, a user-friendly retrieval interface for downloading data in different formats, and additional output options such as improved data plotting capabilities. The present status of the EXFOR database will be presented together with the latest development for data access and retrieval. (authors)

  8. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  9. Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs

    SciTech Connect

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.

    2012-10-20

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm,{sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

  10. Fission and quasifission modes in heavy-ion-induced reactions leading to the formation of Hs{sup *}

    SciTech Connect

    Itkis, I. M.; Kozulin, E. M.; Itkis, M. G.; Knyazheva, G. N.; Bogachev, A. A.; Chernysheva, E. V.; Krupa, L.; Oganessian, Yu. Ts.; Zagrebaev, V. I.; Rusanov, A. Ya.; Goennenwein, F.; Dorvaux, O.; Stuttge, L.; Hanappe, F.; Vardaci, E.; Goes Brennand, E. de

    2011-06-15

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U, and {sup 58}Fe+{sup 208}Pb have been measured. All reactions lead to Hs isotopes. At energies below the Coulomb barrier the bimodal fission of Hs{sup *}, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U, leading to the formation of a similar compound nucleus, the main part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier fusion-fission is the main process leading to the formation of symmetric fragments for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies.

  11. Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs

    NASA Astrophysics Data System (ADS)

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.

    2012-10-01

    Mass and energy distributions of binary reaction products obtained in the reactions 22Ne+249Cf,26Mg+248Cm,36S+238U and 58Fe+208Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction 26Mg+248Cm, is observed. In the reaction 36S+238U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the 58Fe+208Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

  12. Multilayer Network Analysis of Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-08-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  13. Multilayer Network Analysis of Nuclear Reactions.

    PubMed

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-08-25

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, (4)He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  14. Multilayer Network Analysis of Nuclear Reactions

    PubMed Central

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-01-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart. PMID:27558995

  15. Multilayer Network Analysis of Nuclear Reactions.

    PubMed

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-01-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, (4)He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart. PMID:27558995

  16. MEANS FOR TERMINATING NUCLEAR REACTIONS

    DOEpatents

    Cooper, C.M.

    1959-02-17

    An apparatus is presented for use in a reactor of the heterogeneous, fluid cooled type for the purpose of quickly terminating the reaction, the coolant being circulated through coolant tubes extending through the reactor core. Several of the tubes in the critical region are connected through valves to a tank containing a poisoning fluid having a high neutron capture crosssection and to a reservoir. When it is desired to quickly terminate the reaction, the valves are operated to permit the flow of the poisoning fluid through these particular tubes and into the reservoir while normal coolant is being circulated through the remaining tubes. The apparatus is designed to prevent contamination of the primary coolant by the poisoning fluid.

  17. Actinide incineration in fusion-fission hybrid-A model nuclear synergy

    NASA Astrophysics Data System (ADS)

    Taczanowski, Stefan

    2012-06-01

    The alliance of fusion with fission is a cause worthy of great efforts, as being able to ease (if not even to solve) serious problems that both these forms of nuclear energy are facing. Very high investment costs caused by tokamak enormous size, material consumption and difficult technology put in doubt whether alone the minute demand for fuel raw material (Li) and lack of danger of uncontrolled supercriticality prove sufficient for making it competitive. Preliminary evaluations demonstrated that a radical shift of energy production i.e. the energy gain from plasma to fission blanket is feasible [1]. A reduction in the fusion component to about 2% at given system power allows for a radical drop in plasma Q down to the values of ˜0.2-0.3 achievable in small systems [2] (e.g. mirrors) of sizes comparable to fission reactors. As a result in a Fusion-Driven Actinide Incinerator (FDI) both radiations from the plasma: corpuscular (i.e. neutrons and ions) and photons are drastically reduced. Thus are too, first of all - the neutron induced radiation damage: DPA and gas production, then plasma-wall interactions. The fundamental safety of the system has been proved by simulation of its collapse that has shown preservation its subcriticality. Summarizing, all the above problems may be solved with synergic union of fusion with fission embodied in the concept of FDI - small and less expensive.

  18. Effective moment of inertia for several fission reaction systems induced by nucleons, light particles, and heavy ions

    NASA Astrophysics Data System (ADS)

    Soheyli, S.

    2011-10-01

    The effective moment of inertia of the compound nucleus is calculated for several fission reaction systems induced by nucleons, light particles, and heavy ions. The determination of this quantity for these systems is based upon the comparison between the experimental data of the fission fragment angular distributions as well as the prediction of the standard saddle-point statistical model. For the systems, the two cases, namely with and without neutron emission corrections, were considered. Afterward, our theoretical results are compared with the data obtained from the rotational liquid drop model as well as the Sierk model and satisfactory agreements were found. We also calculated the quadrupole deformation and mass asymmetry parameters of the fissioning nuclei at the saddle point by two methods, the first method is based on an ellipsoid shape assumption for the fissioning nucleus, and the other is based on dinuclear system model, since in heavy ion induced fission reactions, the compound nuclei which undergo fission can be considered as states of two touching clusters (dinuclear system). Afterward, the results of these two methods were compared and satisfactory agreements were found between them.

  19. Competition between fusion-fission and quasifission processes in the {sup 32}S+{sup 184}W reaction

    SciTech Connect

    Zhang, H. Q.; Zhang, C. L.; Lin, C. J.; Liu, Z. H.; Yang, F.; Nasirov, A. K.; Mandaglio, G.; Manganaro, M.; Giardina, G.

    2010-03-15

    The angular distributions of fission fragments for the {sup 32}S+{sup 184}W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1, and 144.4 MeV are measured. The experimental fission excitation function is obtained. The anisotropy (A{sub exp}) is found by extrapolating each fission fragment angular distribution. The measured fission cross sections of the {sup 32}S+{sup 182,184}W reaction are decomposed into fusion-fission, quasifission, and fast-fission contributions by the dinuclear system model (DNS). The angular momentum distributions of the dinuclear system and compound nucleus calculated by the DNS model are used to reproduce the experimental capture and fusion excitation functions for both reactions and quantities K{sub 0}{sup 2}, , and A{sub exp}, which characterize angular distributions of the fission products at the considered range of beam energy. The total evaporation residue excitation function for the {sup 32}S+{sup 184}W reaction calculated in the framework of the advanced statistical model is close to the available experimental data only up to about E{sub c.m.}approx =160 MeV. The underestimation of the experimental data at high excitation energies E{sub c.m.}>160 MeV is explained by the fact that the statistical model cannot reproduce the cross section of evaporation residues formed by the nonequilibrium mechanism, that is, without formation of the compound nucleus in the statistical equilibrium state.

  20. Mobile fission and activation products in nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Grambow, Bernd

    2008-12-01

    When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.

  1. Mobile fission and activation products in nuclear waste disposal.

    PubMed

    Grambow, Bernd

    2008-12-12

    When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.

  2. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    SciTech Connect

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  3. The Nuclear Reactions in Standard BBN

    NASA Astrophysics Data System (ADS)

    Serpico, Pasquale D.

    2005-07-01

    Nowadays, the Cosmic Microwave Background (CMB) anisotropy studies accurately determine the baryon fraction ω showing an overall and striking agreement with previous determinations of ω obtained from Big Bang Nucleosynthesis (BBN). However, a deeper comparison of BBN predictions with the determinations of the primordial light nuclide abundances shows some tension, motivating an effort to further improve the accuracy of theoretical predictions, as well as to better evaluate systematics in both observations and nuclear reactions measurements. We present some results of an important step towards an increasing precision of BBN predictions, namely an updated and critical review of the nuclear network, and a new protocol to perform the nuclear data regression.

  4. Separation of the rare-earth fission product poisons from spent nuclear fuel

    DOEpatents

    Christian, Jerry D.; Sterbentz, James W.

    2016-08-30

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2 in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.

  5. Fission and binary fragmentation reactions in {sup 80}Se+{sup 208}Pb and {sup 80}Se+{sup 232}Th systems

    SciTech Connect

    Thomas, R. G.; Saxena, A.; Sahu, P. K.; Kailas, S.; Kapoor, S. S.; Choudhury, R. K.; Govil, I. M.; Barbui, M.; Cinausero, M.; Prete, G.; Rizzi, V.; Fabris, D.; Lunardon, M.; Moretto, S.; Viesti, G.; Nebbia, G.; Pesente, S.; Dalena, B.; D'Erasmo, G.; Fiore, E. M.

    2007-02-15

    Fission and binary fragmentation of the excited nuclear systems of Z=116 and 124 were investigated using the reactions induced by {sup 80}Se beams on {sup 208}Pb and {sup 232}Th targets at bombarding energies ranging from 470 to 630 MeV. The mass and kinetic energy of the binary reaction products were reconstructed by measuring their velocities by the time-of-flight method and the angles of emission using multiwire proportional chambers. Total neutron multiplicities were measured in coincidence with the fragments, using an array of neutron detectors. The fragment mass-energy correlation was studied for the two systems. The average total kinetic energy (TKE) of fragments for the {sup 80}Se+{sup 208}Pb system agrees with earlier measurements and with Viola's systematics in the mass symmetric region for compound nucleus fission, whereas for the {sup 80}Se+{sup 232}Th system, the TKE values are significantly lower. This is also consistent with higher values of total neutron multiplicities observed for the case of {sup 80}Se+{sup 232}Th at comparable available energies. From an extrapolation of the measured total neutron multiplicities for the mass symmetric region to zero compound nucleus excitation energy, the average number of prompt neutrons expected to be emitted in the spontaneous fission of the superheavy Z=116 has been estimated to be {nu}{sub tot}{sup sf}=10{+-}2, which is consistent with the value derived for the same compound nucleus populated in the {sup 56}Fe+{sup 232}Th reaction in an earlier work. In the case of the {sup 80}Se+{sup 232}Th system, similar analysis was carried out by taking the average TKE from Viola's systematics for estimating the available energy for particle emission corresponding to compound nucleus fission. In this way, by extrapolating the observed neutron multiplicities to zero compound nucleus excitation energy, a value of {nu}{sub tot}{sup sf}=15{+-}2 was obtained for the spontaneous fission of the superheavy Z=124 nucleus. The

  6. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  7. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  8. Deuterium cluster model for low energy nuclear reactions (LENR)

    NASA Astrophysics Data System (ADS)

    Miley, George; Hora, Heinrich

    2007-11-01

    For studying the possible reactions of high density deuterons on the background of a degenerate electron gas, a summary of experimental observations resulted in the possibility of reactions in pm distance and more than ksec duration similar to the K-shell electron capture [1]. The essential reason was the screening of the deuterons by a factor of 14 based on the observations. Using the bosonic properties for a cluster formation of the deuterons and a model of compound nuclear reactions [2], the measured distribution of the resulting nuclei may be explained as known from the Maruhn-Greiner theory for fission. The local maximum of the distribution at the main minimum indicates the excited states of the compound nuclei during their intermediary state. This measured local maximum may be an independent proof for the deuteron clusters at LENR. [1] H. Hora, G.H. Miley et al. Physics Letters A175, 138 (1993) [2] H. Hora and G.H. Miley, APS March Meeting 2007, Program p. 116

  9. Transport-theoretical description of nuclear reactions

    NASA Astrophysics Data System (ADS)

    Buss, O.; Gaitanos, T.; Gallmeister, K.; van Hees, H.; Kaskulov, M.; Lalakulich, O.; Larionov, A. B.; Leitner, T.; Weil, J.; Mosel, U.

    2012-03-01

    In this review we first outline the basics of transport theory and its recent generalization to off-shell transport. We then present in some detail the main ingredients of any transport method using in particular the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of this theory as an example. We discuss the potentials used, the ground state initialization and the collision term, including the in-medium modifications of the latter. The central part of this review covers applications of GiBUU to a wide class of reactions, starting from pion-induced reactions over proton and antiproton reactions on nuclei to heavy-ion collisions (up to about 30 AGeV). A major part concerns also the description of photon-, electron- and neutrino-induced reactions (in the energy range from a few 100 MeV to a few 100 GeV). For this wide class of reactions GiBUU gives an excellent description with the same physics input and the same code being used. We argue that GiBUU is an indispensable tool for any investigation of nuclear reactions in which final-state interactions play a role. Studies of pion-nucleus interactions, nuclear fragmentation, heavy-ion reactions, hypernucleus formation, hadronization, color transparency, electron-nucleus collisions and neutrino-nucleus interactions are all possible applications of GiBUU and are discussed in this article.

  10. Nuclear reactions for nucleosynthesis beyond Fe

    SciTech Connect

    Rauscher, Thomas

    2015-10-15

    Many more nuclear transitions have to be known in the determination of stellar reactivities for trans-iron nucleosynthesis than for reactions of light nuclei. This requires different theoretical and experimental approaches. Some of the issues specific for trans-iron nucleosynthesis are discussed.

  11. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    NASA Astrophysics Data System (ADS)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  12. The nuclear reaction code McGNASH.

    SciTech Connect

    Talou, P.; Chadwick, M. B.; Chadwick, M B; Young, P. G. ,; Kawano, T.

    2004-01-01

    McGNASH is a modern statitistical/preequilibrium nuclear reaction code, being developed at Los Alamos, which can simulate neutron-, proton- and photon-induced reactions in the energy range from a few-keV to about 150 MeV. It is written in modern Fortran 95 scientific language, offering new capabilities both for the developer and the user. McGNASH is still in a development stage, and a first public release is planned for later in 2005. The statisticaUpre-equilibrium nuclear reaction code GNASH has been used successfully over the years to compute neutron-, proton- and photon-induced reactions cross sections on a variety of nuclei targets, and for incident particle energies from tens of keV up to 150-200 MeV. This code has been instrumental in producing numerous nuclear data evaluation files for various ENDF libraries around the World, and in particular the ENDFB-VI and pre-ENDFB-VII libraries in the US. More recently, GNASH was used extensively for the creation of the LA1501ibrary, including data on neutron- and proton-induced reactions up to 150 MeV incident energy. We are now developing a modern version of the code, called McGNASH.

  13. Neutron Emission in Fission and Quasi-Fission

    NASA Astrophysics Data System (ADS)

    Itkis, I.; Bogatchev, A. A.; Chizhov, A. Yu.; Itkis, M. G.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Korzyukov, I. V.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovski, I. V.; Prokhorova, E. V.; Sagaidak, R. N.; Voskressenski, V. M.; Rusanov, A. Ya.; Corradi, L.; Stefanini, A. M.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chubarian, G.; Hanappe, F.; Materna, T.; Dorvaux, O.; Rowley, N.; Stuttge, L.; Giardina, G.

    2005-09-01

    The work presents the results of the study of characteristics of the neutron emission in fission and quasi-fission of heavy and super-heavy nuclei, produced in the reactions with heavy ions. These experiments have been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR), tandem accelerator in Legnaro (LNL) and VIVITRON accelerator in Strasbourg (IReS) with the use of the time-of-flight spectrometer of fission fragments CORSET and neutron multidetector DEMON. Mass-energy distributions (MED) of the 48Ca + 168Er, 208Pb, 238U and 18O + 208Pb reactions products at energies close to and below the Coulomb barrier have been studied. The pre- and post-fission neutron multiplicities as a function of the fragment mass have been obtained. A significant yield of the asymmetric component observed in the fragment mass distributions in the case of 18O + 208Pb reaction denotes the multimodal nature of the fission process. At the same time an increase in the yield of fragment masses ML ≅ 75-85 and MH ≅ 200-210 in the case 48Ca+208Pb, 238U reactions and ML ≅ 75-85 and MH ≅ 130-140 in the case 48Ca+168Er is rather connected with a quasi-fission process. The obtained neutron multiplicities dependences on fragment masses showed the validity of these assumptions.

  14. Results of a First Generation Propellant Energy Source Module Testing: Non-Nuclear Testing of Fission System

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob

    1999-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal- hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made.

  15. Brownian shape motion on five-dimensional potential-energy surfaces:nuclear fission-fragment mass distributions.

    PubMed

    Randrup, Jørgen; Möller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  16. Brownian Shape Motion on Five-Dimensional Potential-Energy Surfaces:Nuclear Fission-Fragment Mass Distributions

    SciTech Connect

    Randrup, Joergen; Moeller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  17. Linear Free Energy Correlations for Fission Product Release from the Fukushima-Daiichi Nuclear Accident

    SciTech Connect

    Abrecht, David G.; Schwantes, Jon M.

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln χ = -α (ΔGrxn°(TC))/(RTC)+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn(TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  18. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    PubMed

    Abrecht, David G; Schwantes, Jon M

    2015-03-01

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  19. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    PubMed

    Abrecht, David G; Schwantes, Jon M

    2015-03-01

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores. PMID:25675358

  20. Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on {sup 239}Pu

    SciTech Connect

    Talou, P.; Kawano, T.; Becker, B.; Danon, Y.; Chadwick, M. B.

    2011-06-15

    Prompt fission neutrons following the thermal and 0.5 MeV neutron-induced fission reaction of {sup 239}Pu are calculated using a Monte Carlo approach to the evaporation of the excited fission fragments. Exclusive data such as the multiplicity distribution P({nu}), the average multiplicity as a function of fragment mass {nu}-bar(A), and many others are inferred in addition to the most used average prompt fission neutron spectrum {chi}(E{sub in},E{sub out}), as well as average neutron multiplicity {nu}-bar. Experimental information on these more exclusive data help constrain the Monte Carlo model parameters. The calculated average total neutron multiplicity is {nu}-bar{sub c}=2.871 in very close agreement with the evaluated value {nu}-bar{sub e}=2.8725 present in the ENDF/B-VII.0 library. The neutron multiplicity distribution P({nu}) is in very good agreement with the evaluation by Holden and Zucker. The calculated average spectrum differs in shape from the ENDF/B-VII.0 spectrum, evaluated with the Madland-Nix model. In particular, we predict more neutrons in the low-energy tail of the spectrum (below about 300 keV) than the Madland-Nix calculations, casting some doubts on how much scission neutrons contribute to the shape of the low-energy tail of the spectrum. The spectrum high-energy tail is very sensitive to the total kinetic energy distribution of the fragments as well as to the total excitation energy sharing at scission. Present experimental uncertainties on measured spectra above 6 MeV are too large to distinguish between various theoretical hypotheses. Finally, comparisons of the Monte Carlo results with experimental data on {nu}-bar(A) indicate that more neutrons are emitted from the light fragments than the heavy ones, in agreement with previous works.

  1. Nuclear reactions used for superheavy element research

    SciTech Connect

    Stoyer, M A

    2008-02-26

    Some of the most fascinating questions about the limits of nuclear stability are confronted in the heaviest nuclei. How many more new elements can be synthesized? What are the nuclear and chemical properties of these exotic nuclei? Does the 'Island of Stability' exist and can we ever explore the isotopes inhabiting that nuclear region? This paper will focus on the current experimental research on the synthesis and characterization of superheavy nuclei with Z > 112 from the Dubna/Livermore collaboration. Reactions using 48Ca projectiles from the U400 cyclotron and actinide targets ({sup 233,238}U, {sup 237}Np, {sup 242,244}Pu, {sup 243}Am, {sup 245,248}Cm, {sup 249}Cf) have been investigated using the Dubna Gas Filled Recoil Separator in Dubna over the last 8 years. In addition, several experiments have been performed to investigate the chemical properties of some of the observed longer-lived isotopes produced in these reactions. Some comments will be made on nuclear reactions used for the production of the heaviest elements. A summary of the current status of the upper end of the chart of nuclides will be presented.

  2. The Oklo natural reactors - Cumulative fission yields and nuclear characteristics of Reactor Zone 9

    NASA Astrophysics Data System (ADS)

    Loss, R. D.; de Laeter, J. R.; Rosman, K. J. R.; Benjamin, T. M.; Curtis, D. B.

    1988-07-01

    The isotopic composition of Mo, Ru, Pd, Ag, Cd, Sn, Te, Nd, and U have been measured by solid source mass spectrometry in eight uraninite samples from Reactor Zone 9 at the Oklo natural reactors. Cumulative fission yields for most of these elements have been derived after correcting for the primordial component of the element concerned. Neutron capture reactions on a number of nuclides with significant thermal cross sections, and fission chains in which one of the precursor nuclides has a lengthy half-life, are examined to provide information on the relative mobilities of the elements involved. The proportions of U-235, U-238, and Pu-239 are found to be 88, 8, and 4 percent, respectively. It is shown that almost half of the fissioning U-235 nuclides were produced from the alpha-decay of Pu-239. The integrated neutron flux in the zone was calculated to be about 3.6 X 10 to the 20th n/cu cm.

  3. Table of superdeformed nuclear bands and fission isomers (from Nuclear Data Sheets, v.78, issue 1, May 1996)

    SciTech Connect

    Singh, B.; Firestone, R B.; Chu, S Y.F.

    1996-05-01

    As part of a committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Data File (ENSDF) and the Table of Isotopes, the author have been updating the information on superdeformed and hyperdeformed nuclear bands. As of February, 1996, they have compiled data for 161 superdeformed bands and 47 fission isomers identified in 93 nuclides for this publication. This is an increase of 75 superdeformed bands and 20 new nuclides since the first edition in 1994. Partial data for superdeformed bands and fission isomers are shown in the band drawings. For each nuclide there is a complete level table listing both normal (taken from the ENSDF file) and superdeformed band assignments; level energy, spin, parity, half-life, magnetic moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra. For superdeformed and hyperdeformed bands they provide the following quantities: level energies; level half-lives; level spins; and gamma ray energies.

  4. Hadron Cancer Therapy: Role of Nuclear Reactions

    DOE R&D Accomplishments Database

    Chadwick, M. B.

    2000-06-20

    Recently it has become feasible to calculate energy deposition and particle transport in the body by proton and neutron radiotherapy beams, using Monte Carlo transport methods. A number of advances have made this possible, including dramatic increases in computer speeds, a better understanding of the microscopic nuclear reaction cross sections, and the development of methods to model the characteristics of the radiation emerging from the accelerator treatment unit. This paper describes the nuclear reaction mechanisms involved, and how the cross sections have been evaluated from theory and experiment, for use in computer simulations of radiation therapy. The simulations will allow the dose delivered to a tumor to be optimized, whilst minimizing the dos given to nearby organs at risk.

  5. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  6. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the 6Li/7Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant 6Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis

  7. Cross Sections Calculations of ( d, t) Nuclear Reactions up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Tel, E.; Yiğit, M.; Tanır, G.

    2013-04-01

    In nuclear fusion reactions two light atomic nuclei fuse together to form a heavier nucleus. Fusion power is the power generated by nuclear fusion processes. In contrast with fission power, the fusion reaction processes does not produce radioactive nuclides. The fusion will not produce CO2 or SO2. So the fusion energy will not contribute to environmental problems such as particulate pollution and excessive CO2 in the atmosphere. Fusion powered electricity generation was initially believed to be readily achievable, as fission power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2010, more than 60 years after the first attempts, commercial power production is still believed to be unlikely before 2050. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. In the fusion reactor, tritium self-sufficiency must be maintained for a commercial power plant. Therefore, for self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( d, t) nuclear reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. Since the experimental data of charged particle induced reactions are scarce, self-consistent calculation and analyses using nuclear theoretical models are very important. In this study, ( d, t) cross sections for target nuclei 19F, 50Cr, 54Fe, 58Ni, 75As, 89Y, 90Zr, 107Ag, 127I, 197Au and 238U have been investigated up to 50 MeV deuteron energy. The excitation functions for ( d, t) reactions have been calculated by pre-equilibrium reaction mechanism. Calculation results have been also compared with the available measurements in

  8. On-site gamma-ray spectroscopic measurements of fission gas release in irradiated nuclear fuel.

    PubMed

    Matsson, I; Grapengiesser, B; Andersson, B

    2007-01-01

    An experimental, non-destructive in-pool, method for measuring fission gas release (FGR) in irradiated nuclear fuel has been developed. Using the method, a significant number of experiments have been performed in-pool at several nuclear power plants of the BWR type. The method utilises the 514 keV gamma-radiation from the gaseous fission product (85)Kr captured in the fuel rod plenum volume. A submergible measuring device (LOKET) consisting of an HPGe-detector and a collimator system was utilised allowing for single rod measurements on virtually all types of BWR fuel. A FGR database covering a wide range of burn-ups (up to average rod burn-up well above 60 MWd/kgU), irradiation history, fuel rod position in cross section and fuel designs has been compiled and used for computer code benchmarking, fuel performance analysis and feedback to reactor operators. Measurements clearly indicate the low FGR in more modern fuel designs in comparison to older fuel types.

  9. Nuclear structure and shapes from prompt gamma ray spectroscopy of fission products

    SciTech Connect

    Ahmad, I.; Morss, L.R.; Durell, J.L.

    1996-10-01

    Many nuclear shape phenomena are predicted to occur in neutron-rich nuclei. The best source for the production of these nuclides is the spontaneous fission which produces practically hundreds of nuclides with yields of greater than 0.1 % per decay. Measurements of coincident gamma rays with large Ge arrays have recently been made to obtain information on nuclear structures and shapes of these neutron- rich nuclei. Among the important results that have been obtained from such measurements are octupole correlations in Ba isotopes, triaxial shapes in Ru nuclei, two-phonon vibrations in {sup 106}Mo and level lifetimes and quadrupole moments in Nd isotopes and A=100 nuclei. These data have been used to test theoretical models.

  10. PERCOLATION ON GRAIN BOUNDARY NETWORKS: APPLICATION TO FISSION GAS RELEASE IN NUCLEAR FUELS

    SciTech Connect

    Paul C. Millett

    2012-02-01

    The percolation behavior of grain boundary networks is characterized in two- and three-dimensional lattices with circular macroscale cross-sections that correspond to nuclear fuel elements. The percolation of gas bubbles on grain boundaries, and the subsequent percolation of grain boundary networks is the primary mechanism of fission gas release from nuclear fuels. Both radial cracks and radial gradients in grain boundary property distributions are correlated with the fraction of grain boundaries vented to the free surfaces. Our results show that cracks surprisingly do not significantly increase the percolation of uniform grain boundary networks. However, for networks with radial gradients in boundary properties, the cracks can considerably raise the vented grain boundary content.

  11. Direct nuclear-pumped lasers using the He-3/n,p/H-3 reaction

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Jalufka, N. W.; Hohl, F.

    1978-01-01

    A description is presented of experimental results concerning a specific class of direct nuclear-pumped lasers classified as 'volumetric nuclear lasers'. In the considered laser system a fissioning gas, He-3, is mixed with the lasing gas to form a homogeneous mixture, resulting in uniform volume excitation. In typical volumetric nuclear lasers a fast-burst reactor is used as a source of neutrons which penetrate a polyethylene moderator. Here the fast neutrons are thermalized. After thermalization, neutrons scatter into the laser cell. Nuclear reactions produce a proton of 0.56 MeV and a tritium ion of 0.19. These ions produce secondary electrons which pump the laser medium creating a population inversion. The results reported demonstrate direct nuclear pumping of He-3-Ar, Xe, Kr, and Cl with the considered system.

  12. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later.

    PubMed

    Hanson, Susan K; Pollington, Anthony D; Waidmann, Christopher R; Kinman, William S; Wende, Allison M; Miller, Jeffrey L; Berger, Jennifer A; Oldham, Warren J; Selby, Hugh D

    2016-07-19

    This paper describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products (95)Zr and (97)Zr. By measuring both the perturbation of the (95)Mo/(96)Mo and (97)Mo/(96)Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the (95)Zr and (97)Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test. PMID:27382169

  13. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later.

    PubMed

    Hanson, Susan K; Pollington, Anthony D; Waidmann, Christopher R; Kinman, William S; Wende, Allison M; Miller, Jeffrey L; Berger, Jennifer A; Oldham, Warren J; Selby, Hugh D

    2016-07-19

    This paper describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products (95)Zr and (97)Zr. By measuring both the perturbation of the (95)Mo/(96)Mo and (97)Mo/(96)Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the (95)Zr and (97)Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.

  14. Random matrices and chaos in nuclear physics: Nuclear reactions

    SciTech Connect

    Mitchell, G. E.; Richter, A.; Weidenmueller, H. A.

    2010-10-15

    The application of random-matrix theory (RMT) to compound-nucleus (CN) reactions is reviewed. An introduction into the basic concepts of nuclear scattering theory is followed by a survey of phenomenological approaches to CN scattering. The implementation of a random-matrix approach into scattering theory leads to a statistical theory of CN reactions. Since RMT applies generically to chaotic quantum systems, that theory is, at the same time, a generic theory of quantum chaotic scattering. It uses a minimum of input parameters (average S matrix and mean level spacing of the CN). Predictions of the theory are derived with the help of field-theoretical methods adapted from condensed-matter physics and compared with those of phenomenological approaches. Thorough tests of the theory are reviewed, as are applications in nuclear physics, with special attention given to violation of symmetries (isospin and parity) and time-reversal invariance.

  15. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis

    PubMed Central

    Asakawa, Haruhiko; Yang, Hui-Ju; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-01-01

    Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called “open mitosis.” In contrast, many fungi undergo a process termed “closed mitosis” in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called “anaphase II”) when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This “virtual” nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis. PMID:26870731

  16. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis.

    PubMed

    Asakawa, Haruhiko; Yang, Hui-Ju; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-01-01

    Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called "open mitosis." In contrast, many fungi undergo a process termed "closed mitosis" in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called "anaphase II") when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This "virtual" nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis. PMID:26870731

  17. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis.

    PubMed

    Asakawa, Haruhiko; Yang, Hui-Ju; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-01-01

    Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called "open mitosis." In contrast, many fungi undergo a process termed "closed mitosis" in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called "anaphase II") when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This "virtual" nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis.

  18. Improved Modeling of Prompt Fission Neutron Spectra for Nuclear Data Evaluations

    NASA Astrophysics Data System (ADS)

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; Kahler, Albert C.; White, Morgan C.

    2015-10-01

    The prompt fission neutron spectra (PFNS) of major actinides such as 239Pu and 235U are quantities of interest for nuclear physics application areas including reactor physics and national security. Nuclear data evaluations provide recommended data for those application areas based on nuclear theory and experiments. Here, we present improvements made to the effective models predicting the PFNS up to incident neutron energies of 30 MeV and their impact on evaluations. These models describe relevant physics processes better than those used for the current US nuclear data library ENDF/B-VII.1. In addition, the use of higher-fidelity models such as Monte Carlo Hauser-Feshbach calculations will be discussed in the context of future PFNS evaluations. (LA-UR-15-24763) This work was carried out under the auspices of the US Department of Energy, National Nuclear Security Administration and Office of Science, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  19. Probing nuclear shapes close to the fission limit with the giant dipole resonance in {sup 216}Rn

    SciTech Connect

    Kmiecik, M.; Maj, A.; Brekiesz, M.; Krolas, W.; Meczynski, W.; Styczen, J.; Zieblinski, M.; Million, B.; Bracco, A.; Camera, F.; Benzoni, G.; Leoni, S.; Wieland, O.; Brambilla, S.; Herskind, B.; Kicinska-Habior, M.; Dubray, N.; Dudek, J.; Schunck, N.

    2004-12-01

    The gamma-ray decay of the giant dipole resonance (GDR) in the compound nucleus {sup 216}Rn formed with the reaction {sup 18}O+{sup 198}Pt at the bombarding energy of 96 MeV was investigated. High-energy gamma-ray spectra in coincidence with both prompt and delayed low-energy transitions were measured. The obtained GDR width at the average temperature {approx_equal}1 MeV was found to be larger than that at T=0 MeV and to be approximately constant as a function of spin. The measured width value of 7 MeV is found to be consistent with the predictions based on calculations of the nuclear shape distribution using the newest approach for the treatment of the fission barrier within the liquid drop model. The present study is the first investigation of the giant dipole resonance width from the fusion-evaporation decay channel in this nuclear mass range.

  20. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    DOE PAGES

    Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method frommore » being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.« less

  1. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    PubMed

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  2. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    PubMed

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-01-01

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications. PMID:27087555

  3. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    NASA Astrophysics Data System (ADS)

    Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-04-01

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  4. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    PubMed Central

    Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-01-01

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications. PMID:27087555

  5. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  6. Fusion, fission, and quasi-fission using TDHF

    NASA Astrophysics Data System (ADS)

    Umar, Sait; Oberacker, Volker

    2014-03-01

    We study fusion, fission, and quasi-fission reactions using the time-dependent Hartee-Fock (TDHF) approach together with the density-constrained TDHF method for fusion. The only input is the Skyrme NN interaction, there are no adjustable parameters. We discuss the identification of quasi-fission in 40Ca+238U, the scission dynamics in symmetric fission of 264Fm, as well as calculating heavy-ion interaction potentials V (R) , mass parameters M (R) , and total fusion cross sections from light to heavy systems. Some of the effects naturally included in these calculations are: neck formation, mass exchange, internal excitations, deformation effects, as well as nuclear alignment for deformed systems. Supported by DOE grant DE-FG02-96ER40975.

  7. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.

    PubMed

    Bitton, Danny A; Atkinson, Sophie R; Rallis, Charalampos; Smith, Graeme C; Ellis, David A; Chen, Yuan Y C; Malecki, Michal; Codlin, Sandra; Lemay, Jean-François; Cotobal, Cristina; Bachand, François; Marguerat, Samuel; Mata, Juan; Bähler, Jürg

    2015-06-01

    Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5'-3' exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼ 0.24% in wild type and ∼ 1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.

  8. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast

    PubMed Central

    Bitton, Danny A.; Atkinson, Sophie R.; Rallis, Charalampos; Smith, Graeme C.; Ellis, David A.; Chen, Yuan Y.C.; Malecki, Michal; Codlin, Sandra; Lemay, Jean-François; Cotobal, Cristina; Bachand, François; Marguerat, Samuel; Mata, Juan; Bähler, Jürg

    2015-01-01

    Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5′-3′ exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼0.24% in wild type and ∼1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance. PMID:25883323

  9. The Politics of Forgetting: Otto Hahn and the German Nuclear-Fission Project in World War II

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    2012-03-01

    As the co-discoverer of nuclear fission and director of the Kaiser Wilhelm Institute for Chemistry, Otto Hahn (1879-1968) took part in Germany`s nuclear-fission project throughout the Second World War. I outline Hahn's efforts to mobilize his institute for military-related research; his inclusion in high-level scientific structures of the military and the state; and his institute's research programs in neutron physics, isotope separation, transuranium elements, and fission products, all of potential military importance for a bomb or a reactor and almost all of it secret. These activities are contrasted with Hahn's deliberate misrepresentations after the war, when he claimed that his wartime work had been nothing but "purely scientific" fundamental research that was openly published and of no military relevance.

  10. Forging the link between nuclear reactions and nuclear structure

    NASA Astrophysics Data System (ADS)

    Dickhoff, W. H.

    2016-06-01

    A review of the recent applications of the dispersive optical model (DOM) is presented. Emphasis is on the nonlocal implementation of the DOM that is capable of describing ground-state properties accurately when data like the nuclear charge density are available. The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied mostly on data from the (e, e' p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The DOM, conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. We have recently introduced a nonlocal dispersive optical potential for both the real and imaginary part. Nonlocal absorptive potentials yield equivalent elastic differential cross sections for 40Ca as compared to local ones but change the l-dependent absorption profile suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e' p) and (p, 2p) reactions are correctly described, including the energy distribution of about 10% high-momentum protons obtained at Jefferson Lab. The nonlocal DOM allows a complete description of experimental data both above (up to 200 MeV) and below the Fermi energy in 40Ca. It is further demonstrated that elastic nucleon-nucleus scattering data constrain the spectral strength in the continuum of orbits that are nominally bound in the independent-particle model. Extension of this analysis to 48Ca allows a prediction of the neutron skin of this nucleus that is larger than most predictions made so far.

  11. Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Shozugawa, Katsumi; Nogawa, Norio; Matsuo, Motoyuki

    2012-04-01

    The Great Eastern Japan Earthquake on March 11, 2011, damaged reactor cooling systems at Fukushima Dai-ichi nuclear power plant. The subsequent venting operation and hydrogen explosion resulted in a large radioactive nuclide emission from reactor containers into the environment. Here, we collected environmental samples such as soil, plant species, and water on April 10, 2011, in front of the power plant main gate as well as 35 km away in Iitate village, and observed gamma-rays with a Ge(Li) semiconductor detector. We observed activation products ((239)Np and (59)Fe) and fission products ((131)I, (134)Cs ((133)Cs), (137)Cs, (110m)Ag ((109)Ag), (132)Te, (132)I, (140)Ba, (140)La, (91)Sr, (91)Y, (95)Zr, and (95)Nb). (239)Np is the parent nuclide of (239)Pu; (59)Fe are presumably activation products of (58)Fe obtained by corrosion of cooling pipes. The results show that these activation and fission products, diffused within a month of the accident.

  12. Alloy waste forms for metal fission products and actinides isolated by spent nuclear fuel treatment

    SciTech Connect

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-10-01

    Waste form alloys are being developed at Argonne National Laboratory for the disposal of remnant metallic wastes from an electrometallurgical process developed to treat spent nuclear fuel. This metal waste form consists of the fuel cladding (stainless steel or Zircaloy), noble metal fission products (e.g., Ru, Pd, Mo and Tc), and other metallic wastes. The main constituents of the metal waste stream are the cladding hulls (85 to 90 wt%); using the hulls as the dominant alloying component minimizes the overall waste volume as compared to vitrification or metal encapsulation. Two nominal compositions for the waste form are being developed: (1) stainless steel-15 wt% zirconium for stainless steel-clad fuels and (2) zirconium-8 wt% stainless steel for Zircaloy-clad fuels. The noble metal fission products are the primary source of radiation in the metal waste form. However, inclusion of actinides in the metal waste form is being investigated as an option for interim or ultimate storage. Simulated waste form alloys were prepared and analyzed to determine the baseline alloy microstructures and the microstructural distribution of noble metals and actinides. Corrosion tests of the metal waste form alloys indicate that they are highly resistant to corrosion.

  13. Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Shozugawa, Katsumi; Nogawa, Norio; Matsuo, Motoyuki

    2012-04-01

    The Great Eastern Japan Earthquake on March 11, 2011, damaged reactor cooling systems at Fukushima Dai-ichi nuclear power plant. The subsequent venting operation and hydrogen explosion resulted in a large radioactive nuclide emission from reactor containers into the environment. Here, we collected environmental samples such as soil, plant species, and water on April 10, 2011, in front of the power plant main gate as well as 35 km away in Iitate village, and observed gamma-rays with a Ge(Li) semiconductor detector. We observed activation products ((239)Np and (59)Fe) and fission products ((131)I, (134)Cs ((133)Cs), (137)Cs, (110m)Ag ((109)Ag), (132)Te, (132)I, (140)Ba, (140)La, (91)Sr, (91)Y, (95)Zr, and (95)Nb). (239)Np is the parent nuclide of (239)Pu; (59)Fe are presumably activation products of (58)Fe obtained by corrosion of cooling pipes. The results show that these activation and fission products, diffused within a month of the accident. PMID:22266366

  14. Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method

    SciTech Connect

    Kawano, T.; Talou, P.; Lynn, J. E.; Chadwick, M. B.; Madland, D. G.

    2009-08-15

    We calculate nuclear cross sections on excited nuclei in the fast neutron energy range. We partition the whole process into two contributions: the direct reaction part and the compound nuclear reactions. A coupled-channels method is used for calculating the direct transition of the nucleus from the initial excited state, which is a member of the ground-state rotational band, to the final ground and excited low-lying levels. This process is strongly affected by the channel coupling. The compound nuclear reactions on the excited state are calculated with the statistical Hauser-Feshbach model, with the transmission coefficients obtained from the coupled-channels calculation. The calculations are performed for a strongly deformed nucleus {sup 169}Tm, and selected cross sections for the ground and first excited states are compared. The calculation is also made for actinides to investigate possible modification to the fission cross section when the target is excited. It is shown that both the level coupling for the entrance channel, and the different target spin, change the fission cross section.

  15. Transition from Asymmetric to Symmetric Fission in the 235U(n,f) Reaction

    SciTech Connect

    Younes, W; Becker, J A; Bernstein, L A; Garrett, P E; McGrath, C A; McNabb, D P; Nelson, R O; Johns, G D; Wilburn, W S; Drake, D M

    2001-07-19

    Prompt {gamma} rays from the neutron-induced fission of {sup 235}U have been studied using the GEANIE spectrometer situated at the LANSCE/WNR ''white'' neutron facility. Gamma-ray production cross sections for 29 ground-state-band transitions in 18 even-even fission fragments were obtained as a function of incident neutron energy, using the time-of-flight technique. Independent yields were deduced from these cross sections and fitted with standard formulations of the fragment charge and mass distributions to study the transition from asymmetric to symmetric fission. The results are interpreted in the context of the disappearance of shell structure at high excitation energies.

  16. On the role of energy separated in fission process, excitation energy and reaction channels effects in the isomeric ratios of fission product 135Xe in photofission of actinide elements

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Mishinski, G. V.; Zhemenik, V. I.

    2016-07-01

    In this work we present the isomeric ratio of fission product 135Xe in the photo-fission of actinide elements 232Th, 233U and 237Np induced by end-point bremsstrahlung energies of 13.5, 23.5 and 25.0 MeV which were determined by the method of inert gaseous flow. The data were analyzed, discussed and compared with the similar data from literature to examine the role of energy separated in fission process, excitation energy and reaction channels effects.

  17. Investigation of the 238U(d ,p ) surrogate reaction via the simultaneous measurement of γ -decay and fission probabilities

    NASA Astrophysics Data System (ADS)

    Ducasse, Q.; Jurado, B.; Aïche, M.; Marini, P.; Mathieu, L.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Tornyi, T.; Wilson, J. N.; Barreau, G.; Boutoux, G.; Czajkowski, S.; Giacoppo, F.; Gunsing, F.; Hagen, T. W.; Lebois, M.; Lei, J.; Méot, V.; Morillon, B.; Moro, A. M.; Renstrøm, T.; Roig, O.; Rose, S. J.; Sérot, O.; Siem, S.; Tsekhanovich, I.; Tveten, G. M.; Wiedeking, M.

    2016-08-01

    We investigated the 238U(d ,p ) reaction as a surrogate for the n +238U reaction. For this purpose we measured for the first time the γ -decay and fission probabilities of *239U simultaneously and compared them to the corresponding neutron-induced data. We present the details of the procedure to infer the decay probabilities, as well as a thorough uncertainty analysis, including parameter correlations. Calculations based on the continuum-discretized coupled-channels method and the distorted-wave Born approximation (DWBA) were used to correct our data from detected protons originating from elastic and inelastic deuteron breakup. In the region where fission and γ emission compete, the corrected fission probability is in agreement with neutron-induced data, whereas the γ -decay probability is much higher than the neutron-induced data. We have performed calculations of the decay probabilities with the statistical model and of the average angular momentum populated in the 238U(d ,p ) reaction with the DWBA to interpret these results.

  18. On the combination of delayed neutron and delayed gamma techniques for fission rate measurement in nuclear fuel

    SciTech Connect

    Perret, G.; Jordan, K. A.

    2011-07-01

    Novel techniques to measure newly induced fissions in spent fuel after re-irradiation at low power have been developed and tested at the Proteus zero-power research reactor. The two techniques are based on the detection of high energy gamma-rays emitted by short-lived fission products and delayed neutrons. The two techniques relate the measured signals to the total fission rate, the isotopic composition of the fuel, and nuclear data. They can be combined to derive better estimates on each of these parameters. This has potential for improvement in many areas. Spent fuel characterisation and safeguard applications can benefit from these techniques for non-destructive assay of plutonium content. Another application of choice is the reduction of uncertainties on nuclear data. As a first application of the combination of the delayed neutron and gamma measurement techniques, this paper shows how to reduce the uncertainties on the relative abundances of the longest delayed neutron group for thermal fissions in {sup 235}U, {sup 239}Pu and fast fissions in {sup 238}U. The proposed experiments are easily achievable in zero-power research reactors using fresh UO{sub 2} and MOX fuel and do not require fast extraction systems. The relative uncertainties (1{sigma}) on the relative abundances are expected to be reduced from 13% to 4%, 16% to 5%, and 38% to 12% for {sup 235}U, {sup 238}U and {sup 239}Pu, respectively. (authors)

  19. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    SciTech Connect

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  20. Nuclear criticality safety basics for personnel working with nuclear fissionable materials. Phase I

    SciTech Connect

    Vausher, A.L.

    1984-10-01

    DOE order 5480.1A, Chapter V, ''Safety of Nuclear Facilities,'' establishes safety procedures and requirements for DOE nuclear facilities. The ''Nuclear Criticality Safety Basic Program - Phase I'' is documented in this report. The revised program has been developed to clearly illustrate the concept of nuclear safety and to help the individual employee incorporate safe behavior in his daily work performance. Because of this, the subject of safety has been approached through its three fundamentals: scientific basis, engineering criteria, and administrative controls. Only basics of these three elements were presented. 5 refs.

  1. NNDC PERSPECTIVE ON NUCLEAR REACTION DATABASES AND ORELA.

    SciTech Connect

    OBLOZINSKY, P.

    2005-07-14

    We discuss perspective of the National Nuclear Data Center on nuclear reaction databases, focusing on contributions from the ORELA machine over more than 3 decades. We conclude that ORELA had profound impact on nuclear reaction databases, in particular CSISRS and ENDF. In addition, ORELA contributed considerable amount of data included in the recent Atlas of Neutron Resonances, along with data of critical importance for nuclear reaction model calculations by codes such as EMPIRE.

  2. Monte Carlo Models for the Production of beta-delayed Gamma Rays Following Fission of Special Nuclear Materials

    SciTech Connect

    Pruet, J; Prussin, S; Descalle, M; Hall, J

    2004-02-03

    A Monte Carlo method for the estimation of {beta}-delayed {gamma}-ray spectra following fission is described that can accommodate an arbitrary time-dependent fission rate and photon collection history. The method invokes direct sampling of the independent fission yield distributions of the fissioning system, the branching ratios for decay of individual fission products and the spectral distributions for photon emission for each decay mode. Though computationally intensive, the method can provide a detailed estimate of the spectrum that would be recorded by an arbitrary spectrometer, and can prove useful in assessing the quality of evaluated data libraries, for identifying gaps in these libraries, etc. The method is illustrated by a first comparison of calculated and experimental spectra from decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general purpose transport calculations, where detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may be unnecessary, it is shown that an accurate and simple parameterization of a {gamma}-ray source function can be obtained. These parametrizations should provide high-quality average spectral distributions that should prove useful in calculations describing photons escaping from thick attenuating media.

  3. Code System to Calculate Nuclear Reaction Cross Sections by Evaporation Model.

    2000-11-27

    Version: 00 Both STAPRE and STAPREF are included in this package. STAPRE calculates energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and a gamma-ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement in the 1976 STAPRE program relates to level density approach, implemented in subroutine ZSTDE. Generalized superfluid model is incorporated, boltzman-gasmore » modeling of intrinsic state density and semi-empirical modeling of a few-quasiparticle effects in total level density at equilibrium and saddle deformations of actinide nuclei. In addition to the activation cross sections, particle and gamma-ray production spectra are calculated. Isomeric state populations and production cross sections for gamma rays from low excited levels are obtained, too. For fission a single or a double humped barrier may be chosen.« less

  4. Fission fragment angular distributions in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb

    SciTech Connect

    Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Reddy, A. V. R.; Pujari, P. K.; Goswami, A.; Ramachandran, K.

    2009-06-15

    Fission fragment angular distributions have been measured in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb to investigate the contribution from noncompound nucleus fission. Parameters for statistical model calculations were fixed using fission cross section data in the {sup 16}O+{sup 188}Os reaction. Experimental anisotropies were in reasonable agreement with those calculated using the statistical saddle point model for both reactions. The present results are also consistent with those of mass distribution studies in the fission of {sup 202}Po, formed in the reactions with varying entrance channel mass asymmetry. However, the present studies do not show a large fusion hindrance as reported in the pre-actinide region based on the measurement of evaporation residue cross section.

  5. Biological significance of nuclear localization of mitogen-activated protein kinase Pmk1 in fission yeast.

    PubMed

    Sánchez-Mir, Laura; Franco, Alejandro; Madrid, Marisa; Vicente-Soler, Jero; Villar-Tajadura, M Antonia; Soto, Teresa; Pérez, Pilar; Gacto, Mariano; Cansado, José

    2012-07-27

    Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.

  6. Determination of fission gas release of spent nuclear fuel in puncturing test and in leaching experiments under anoxic conditions

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Metz, V.; Wegen, D. H.; Herm, M.; Papaioannou, D.; Bohnert, E.; Gretter, R.; Müller, N.; Nasyrow, R.; de Weerd, W.; Wiss, T.; Kienzler, B.

    2016-10-01

    During reactor operation the fission gases Kr and Xe are formed within the UO2 matrix of nuclear fuel. Their quantification is important to evaluate their impact on critical parameters regarding the fuel behaviour during irradiation and (long-term) interim storage, such as internal pressure of the fuel rod and fuel swelling. Moreover the content of Kr and Xe in the plenum of a fuel rod and their content in the UO2 fuel itself are widely used as indicators for the release properties of 129I, 137Cs, and other safety relevant radionuclides with respect to final disposal of spent nuclear fuel. The present study deals with the fission gas release from spent nuclear fuel exposed to simulated groundwater in comparison with the fission gas previously released to the fuel rod plenum during irradiation in reactor. In a unique approach we determined both the Kr and Xe inventories in the plenum by means of a puncturing test and in leaching experiments with a cladded fuel pellet and fuel fragments in bicarbonate water under 3.2 bar H2 overpressure. The fractional inventory of the fission gases released during irradiation into the plenum was (8.3 ± 0.9) %. The fraction of inventory of fission gases released during the leaching experiments was (17 ± 2) % after 333 days of leaching of the cladded pellet and (25 ± 2) % after 447 days of leaching of the fuel fragments, respectively. The relatively high release of fission gases in the experiment with fuel fragments was caused by the increased accessibility of water to the Kr and Xe occluded in the fuel.

  7. Venting of fission products and shielding in thermionic nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Salmi, E. W.

    1972-01-01

    Most thermionic reactors are designed to allow the fission gases to escape out of the emitter. A scheme to allow the fission gases to escape is proposed. Because of the low activity of the fission products, this method should pose no radiation hazards.

  8. Nuclear Reactions X-Sections By Evaporation Model, Gamma-Cascades

    2000-06-27

    Calculation of energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and gamma ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement to the 1976 STAPRE program (NEA 0461) relates to level density approach, implemwnted in subroutine ZSTDE. Generalized superfluid model is incorporated, Boltzman-gas modelling of intrinsic state density and semi-empirical modelling ofmore » a few quasiparticle effects in total level density in equilibrium and saddle deformations of actinide nuclei.« less

  9. Forging the link between nuclear reactions and nuclear structure.

    PubMed

    Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J

    2014-04-25

    A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64  MeV/A.

  10. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  11. Design and operation of gamma scan and fission gas sampling systems for characterization of irradiated commercial nuclear fuel

    SciTech Connect

    Knox, C.A.; Thornhill, R.E.; Mellinger, G.B.

    1989-09-01

    One of the primary objectives of the Materials Characterization Center (MCC) is to acquire and characterize spent fuels used in waste form testing related to nuclear waste disposal. The initial steps in the characterization of a fuel rod consist of gamma scanning the rod and sampling the gas contained in the fuel rod (referred to as fission gas sampling). The gamma scan and fission gas sampling systems used by the MCC are adaptable to a wide range of fuel types and have been successfully used to characterize both boiling water reactor (BWR) and pressurized water reactor (PWR) fuel rods. This report describes the design and operation of systems used to gamma scan and fission gas sample full-length PWR and BWR fuel rods. 1 ref., 10 figs., 1 tab.

  12. HETEROGENEOUS NUCLEAR REACTOR EMPLOYING SMALL UNCLAD BODIES OF FISSIONABLE MATERIAL AS FUEL

    DOEpatents

    Hyman, H.H.; Katz, J.J.

    1961-05-01

    A nuclear reactor in which fuel pellets are continuously dissolved in a moderator liquid is described. The fuel pellets are fed into the top of elongated baskets which are submerged in moderator liquid, and a portion of the moderator liquid is continuously withdrawn and processed to recove r reaction products.

  13. Nuclear physics reactions of astrophysical importance

    NASA Astrophysics Data System (ADS)

    O'Malley, Patrick D.

    2012-05-01

    Understanding the origin of elements in the universe is one of the main goals of nuclear science and astrophysics today. Achieving this goal involves determining how the elements and their isotopes formed and being able to predict their abundances. At the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL), an experimental program has been established to use transfer reactions (such as (p,d) or (d,p)) to study the properties of many nuclei important to understanding the origins of various elements. Three measurements were done to aid in the determination of the origins of different light isotopes. Big Bang Nucleosynthesis calculations, constrained by the Wilkinson Microwave Anisotropy Probe results, produce primordial 7Li abundances almost a factor of four larger than those extrapolated from observations. Since primordial 7Li is believed to be mostly produced by the beta decay of 7Be, one proposed solution to this discrepancy is a resonant enhancement of the 7Be(d, p)2α reaction rate through the 5/2+ 16.7-MeV state in 9B. The 2H(7Be,d) 7Be reaction was used to search for such a resonance; none was observed. An upper limit on the width of the proposed resonance was deduced. 19F is believed to have formed in Asymptotic Giant Branch stars, but current models cannot reproduce the observed abundances of this nucleus. One of the key reactions responsible for the creation of 19F is 15N(α,γ). Therefore, it is important to understand reactions that might destroy 15N, such as 15N(n,γ). The magnitude of the 15N( n,γ) reaction rate depends directly on the neutron spectroscopic factors of low-lying 16N levels. Currently the measured spectroscopic factors differ from those expected from theory by a factor of 2. A study has been done to resolve this discrepancy using the d( 15N,p) reaction. The spectroscopic factors were all found to be

  14. Non-nuclear Testing of Reactor Systems in the Early Flight Fission Test Facilities (EFF-TF)

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the &sign and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are "non-nuclear" in nature (e.g. system s nuclear operations are understood). For many systems. thermal simulators can he used to closely mimic fission heat deposition. Axial power profile, radial power profile. and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other NASA centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004.

  15. Nuclear reactions in Monte Carlo codes.

    PubMed

    Ferrari, A; Sala, P R

    2002-01-01

    The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references.

  16. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  17. Ion transport of Fr nuclear reaction products

    SciTech Connect

    Behr, J.A.; Cahn, S.B.; Dutta, S.B.

    1993-04-01

    Experiments planned for fundamental studies of radioactive atoms in magneto-optic traps require efficient deceleration and transport of nuclear reaction products to energies and locations where they can be trapped. The authors have built a low-energy ion transport system for Francium and other alkalis. A thick Au target is held on a W rod at 45{degrees} to the accelerator beam direction. The heavy-ion fusion reaction 115 MeV {sup 18}O + {sup 197}Au produces {sup 211,210,209}Fr recoil products which are stopped in the target. The target is heated to close to the melting point of Au to allow the Fr to diffuse to the surface, where it is ionized due to Au`s high work function, and is directly extracted by an electrode at 90{degrees} to the accelerator beam direction. The Fr is transported by electrostatic optics {approximately}1 m to a catcher viewed by an {alpha} detector: {ge}15% of the Fr produced in the target reaches the catcher. 2{times}10{sup 5} Fr/sec have been produced at the catcher, yielding at equilibrium a sample of 3x10{sup 7}Fr nuclei. This scheme physically decouples the target diffusion from the surface neutralization process, which can occur at a lower temperature more compatible with the neutral-atom trap.

  18. Basic results of investigations of scission neutrons in nuclear fission at low excitation energies

    SciTech Connect

    Petrov, G. A. Gagarski, A. M.; Guseva, I. S.; Sokolov, V. E.; Val'ski, G. V.; Vorobiev, A. S.; Krinitcin, D. O.; Shcherbakov, O. A.; Nikolaev, D. V.; Pleva, Yu. S.; Petrova, V. I.; Zavarukhina, T. A.

    2008-07-15

    To estimate the main characteristics of neutrons emitted shortly before the scission of a fissioning nucleus, various experiments sensitive to the presence of these scission neutrons in thermal-neutron-induced fission of {sup 235}U and spontaneous fission of {sup 252}Cf were performed. The results of the experiments were analyzed within theoretical calculations allowing for various possible neutron-emission mechanisms, including the possibility of the emergence of neutrons from the scission of a nucleus.

  19. Fission-suppressed blankets for fissile fuel breeding fusion reactors

    NASA Astrophysics Data System (ADS)

    Lee, J. D.; Moir, R. W.

    1981-07-01

    Two blanket concepts for deuterium-tritium (DT) fusion reactors are presented which maximize fissile fuel production while at the same time suppress fission reactions. By suppressing fission reactions, the reactor will be less hazardous, and therefore easier to design, develop, and license. A fusion breeder operating a given nuclear power level can produce much more fissile fuel by suppressing fission reactions. The two blankets described use beryllium for neutron multiplication. One blanket uses two separate circulating molten salts: one salt for tritium breeding and the other salt for U-233 breeding. The other uses separate solid forms of lithium and thorium for breeding and helium for cooling.

  20. Hydrogen generation arising from the {sup 59}Ni(n,p) reaction and its impact on fission-fusion correlations

    SciTech Connect

    Greenwood, L.R.; Garner, A.F.

    1996-04-01

    Whilte the influence of transmutant helium on radiation-induced microstructural evolution has often been studied, there is a tendency to overlook the influence of concurrently-generated hydrogen. There have been some recent speculation and studies, however, that suggest that the influence of hydrogen may be enhanced in the presence of large amounts of helium, especially at lower irradiation temperatures typical of projected ITER operation. The impact of the (n,p) reaction on both hydrogen generation rates and displacement rates are evaluated in this paper for a variety of neutron spectra employed in fission-fusion correlation.

  1. Seminar on Fission VI

    NASA Astrophysics Data System (ADS)

    Wagemans, Cyriel; Wagemans, Jan; D'Hondt, Pierre

    2008-04-01

    Topical reviews. Angular momentum in fission / F. Gönnenwein ... [et al.]. The processes of fusion-fission and quasi-fission of heavy and super-heavy nuclei / M. G. Itkis ... [et al.] -- Fission cross sections and fragment properties. Minor-actinides fission cross sections and fission fragment mass yields via the surrogate reaction technique / B. Jurado ... [et al.]. Proton-induced fission on actinide nuclei at medium energy / S. Isaev ... [et al.]. Fission cross sections of minor actinides and application in transmutation studies / A. Letourneau ... [et al.]. Systematics on even-odd effects in fission fragments yields: comparison between symmetric and asymmetric splits / F. Rejmund, M Caamano. Measurement of kinetic energy distributions, mass and isotopic yields in the heavy fission products region at Lohengrin / A. Bail ... [et al.] -- Ternary fission. On the Ternary [symbol] spectrum in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Energy degrader technique for light-charged particle spectroscopy at LOHENGRIN / A. Oberstedt, S. Oberstedt, D. Rochman. Ternary fission of Cf isotopes / S. Vermote ... [et al.]. Systematics of the triton and alpha particle emission in ternary fission / C. Wagemans, S. Vermote, O. Serot -- Neutron emission in fission. Scission neutron emission in fission / F.-J. Hambsch ... [et al.]. At and beyond the Scission point: what can we learn from Scission and prompt neutrons? / P. Talou. Fission prompt neutron and gamma multiplicity by statistical decay of fragments / S. Perez-Martin, S. Hilaire, E. Bauge -- Fission theory. Structure and fission properties of actinides with the Gogny force / H. Goutte ... [et al.]. Fission fragment properties from a microscopic approach / N. Dubray, H. Goutte, J.-P. Delaroche. Smoker and non-smoker neutron-induced fission rates / I. Korneev ... [et al.] -- Facilities and detectors. A novel 2v2E spectrometer in Manchester: new development in identification of fission fragments / I. Tsekhanovich ... [et al

  2. Heavy-ion fission probability calculations at high excitation energy

    SciTech Connect

    D'Arrigo, A.; Giardina, G.; Taccone, A. Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina, Messina Istituto di Tecniche Spettroscopiche del Consiglio Nazionale delle Ricerche, Messina )

    1991-12-01

    In the framework of the statistical theory of nuclear reactions we calculated the fission probability {ital P}{sub {ital f}} of the {sup 153}Tb, {sup 158}Er, {sup 159}Dy, {sup 175}Hf, {sup 179}Ta, {sup 186}Os, and {sup 188}Os nuclei with a mass number {ital A}=150--200 produced by heavy-ion reactions. Starting from the spectra of the single-particle levels as determined by Nix and Moeller, and utilizing a formalism we developed, we determined the excitation energy dependence of the effective level density parameters for the fission and the neutron emission channels. The agreement between the fission probability calculations and the experimental data was reached when a nonadiabatic estimate of the collective effects was used to calculate the nuclear level density. In the fission process at high excitation energies induced by ions heavier than the {alpha} particle, an energy dependence of the effective fission barrier has to be used.

  3. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    NASA Astrophysics Data System (ADS)

    Hirdt, J. A.; Brown, D. A.

    2016-01-01

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  4. Search for instantaneous radiation near the instant of break momentum of various fissioning nuclear systems at low excitation energies

    SciTech Connect

    Vorobyev, A. S. Val'ski, G. V.; Gagarskii, A. M.; Guseva, I. S.; Petrov, G. A.; Petrova, V. I.; Serebrin, A. Yu.; Sokolov, V. E.; Shcherbakov, O. A.

    2011-12-15

    The main results of studying the properties of 'instantaneous' neutrons and {gamma} photons during the fission of {sup 233,235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) nuclei and spontaneous fission of {sup 252}Cf, which were performed on the WWR-M reactor at the St. Petersburg Nuclear Physics Institute, Russian Academy of Sciences, are presented. Along with obtaining the main characteristics of the instantaneous radiation from fission fragments, these studies were also aimed at gaining deeper insight into such exotic processes as the emission of break neutrons and {gamma} photons from a fissioning nucleus near the break point. These investigations were performed on different experimental setups using different analytical methods. This approach allowed us not only to find but also to reduce to minimum possible systematic effects. The yields of break neutrons were found to be about (5-7) Multiplication-Sign 10{sup -2} of the total number of neutrons per {sup 233,235}U(n, f) fission event and approximately twice as much for {sup 239}Pu(n, f) and {sup 252}Cf. The coefficient of T-odd asymmetry for {gamma} photons is in agreement with the estimate obtained on the assumption that the observed effect is mainly related to the {gamma} photons emitted by excited fragments with highly oriented angular momenta. This fact gave grounds to conclude that the desired break {gamma} photons cannot be reliably selected (within the obtained experimental accuracy) against the much larger background of {gamma} photons from fission fragments.

  5. Our 50-year odyssey with fission: Summary

    SciTech Connect

    Nix, J.R.

    1989-01-01

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs.

  6. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions

  7. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup

  8. Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Pomp, S.; Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Hellesen, C.; Koning, A. J.; Lantz, M.; Österlund, M.; Rochman, D.; Simutkin, V.; Sjöstrand, H.; Solders, A.

    2015-01-01

    We describe the research program of the nuclear reactions research group at Uppsala University concerning experimental and theoretical efforts to quantify and reduce nuclear data uncertainties relevant for the nuclear fuel cycle. We briefly describe the Total Monte Carlo (TMC) methodology and how it can be used to study fuel cycle and accident scenarios, and summarize our relevant experimental activities. Input from the latter is to be used to guide the nuclear models and constrain parameter space for TMC. The TMC method relies on the availability of good nuclear models. For this we use the TALYS code which is currently being extended to include the GEF model for the fission channel. We present results from TALYS-1.6 using different versions of GEF with both default and randomized input parameters and compare calculations with experimental data for 234U(n,f) in the fast energy range. These preliminary studies reveal some systematic differences between experimental data and calculations but give overall good and promising results.

  9. Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method

    SciTech Connect

    Pomp, S.; Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Hellesen, C.; Koning, A.J.; Lantz, M.; Österlund, M.; Rochman, D.; Simutkin, V.; Sjöstrand, H.; Solders, A.

    2015-01-15

    We describe the research program of the nuclear reactions research group at Uppsala University concerning experimental and theoretical efforts to quantify and reduce nuclear data uncertainties relevant for the nuclear fuel cycle. We briefly describe the Total Monte Carlo (TMC) methodology and how it can be used to study fuel cycle and accident scenarios, and summarize our relevant experimental activities. Input from the latter is to be used to guide the nuclear models and constrain parameter space for TMC. The TMC method relies on the availability of good nuclear models. For this we use the TALYS code which is currently being extended to include the GEF model for the fission channel. We present results from TALYS-1.6 using different versions of GEF with both default and randomized input parameters and compare calculations with experimental data for {sup 234}U(n,f) in the fast energy range. These preliminary studies reveal some systematic differences between experimental data and calculations but give overall good and promising results.

  10. Databases and tools for nuclear astrophysics applications. BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Goriely, S.; Jorissen, A.; Chen, G. L.; Arnould, M.

    2013-01-01

    An update of a previous description of the BRUSLIB + NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-Hartree-Fock-Bogoliubov model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8 ≤ Z ≤ 110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100 000 Hauser-Feshbach neutron-, proton-, α-, and γ-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer reactions and 19 charged-particle radiative captures on stable targets with mass numbers A < 16. NACRE II features the inclusion of experimental data made available after the publication of NACRE in 1999 and up to 2011. In addition, the extrapolation of the available data to the very low energies of astrophysical relevance is improved through the systematic use of phenomenological potential models. Uncertainties in the rates are also evaluated on this basis. Finally, the latest release v10.0 of the web-based tool NETGEN is presented. In addition to the data already used in the previous NETGEN package, it contains in a fully documented form the new BRUSLIB and NACRE II data, as well as new experiment-based radiative neutron capture cross sections. The full new versions of BRUSLIB, NACRE II, and NETGEN are available electronically from the nuclear database at http://www.astro.ulb.ac.be/NuclearData. The nuclear material is presented in

  11. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.

    2008-11-15

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  12. Fission product iodine release and retention in nuclear reactor accidents— experimental programme at PSI

    NASA Astrophysics Data System (ADS)

    Bruchertseifer, H.; Cripps, R.; Guentay, S.; Jaeckel, B.

    2003-01-01

    Iodine radionuclides constitute one of the most important fission products of uranium and plutonium. If the volatile forms would be released into the environment during a severe accident, a potential health hazard would then ensue. Understanding its behaviour is an important prerequisite for planning appropriate mitigation measures. Improved and extensive knowledge of the main iodine species and their reactions important for the release and retention processes in the reactor containment is thus mandatory. The aim of PSI's radiolytical studies is to improve the current thermodynamic and kinetic databases and the models for iodine used in severe accident computer codes. Formation of sparingly soluble silver iodide (AgI) in a PWR containment sump can substantially reduce volatile iodine fraction in the containment atmosphere. However, the effectiveness is dependent on its radiation stability. The direct radiolytic decomposition of AgI and the effect of impurities on iodine volatilisation were experimentally determined at PSI using a remote-controlled and automated high activity 188W/Re generator (40 GBq/ml). Low molecular weight organic iodides are difficult to be retained in engineered safety systems. Investigation of radiolytic decomposition of methyl iodide in aqueous solutions, combined with an on-line analysis of iodine species is currently under investigation at PSI.

  13. A proline-tyrosine nuclear localization signal (PY-NLS) is required for the nuclear import of fission yeast PAB2, but not of human PABPN1.

    PubMed

    Mallet, Pierre-Luc; Bachand, François

    2013-03-01

    Nuclear poly(A)-binding proteins (PABPs) are evolutionarily conserved proteins that play key roles in eukaryotic gene expression. In the fission yeast Schizosaccharomyces pombe, the major nuclear PABP, Pab2, functions in the maturation of small nucleolar RNAs as well as in nuclear RNA decay. Despite knowledge about its nuclear functions, nothing is known about how Pab2 is imported into the nucleus. Here, we show that Pab2 contains a proline-tyrosine nuclear localization signal (PY-NLS) that is necessary and sufficient for its nuclear localization and function. Consistent with the role of karyopherin β2 (Kapβ2)-type receptors in the import of PY-NLS cargoes, we show that the fission yeast ortholog of human Kapβ2, Kap104, binds to recombinant Pab2 and is required for Pab2 nuclear localization. The absence of arginine methylation in a basic region N-terminal to the PY-core motif of Pab2 did not affect its nuclear localization. However, in the context of a sub-optimal PY-NLS, we found that Pab2 was more efficiently targeted to the nucleus in the absence of arginine methylation, suggesting that this modification can affect the import kinetics of a PY-NLS cargo. Although a sequence resembling a PY-NLS motif can be found in the human Pab2 ortholog, PABPN1, our results indicate that neither a functional PY-NLS nor Kapβ2 activity are required to promote entry of PABPN1 into the nucleus of human cells. Our findings describe the mechanism by which Pab2 is imported into the nucleus, providing the first example of a PY-NLS import system in fission yeast. In addition, this study suggests the existence of alternative or redundant nuclear import pathways for human PABPN1.

  14. A Multigroup Reaction Cross-Section Collapsing Code and Library of 154-Group Fission-Product Cross Sections.

    1983-03-23

    Version 01/02 The code reads multigroup cross sections from a compatible data file and collapses user-selected reaction cross sections to any few-group structure using one of a variety of user neutron flux spectrum options given below: Option Flux description 1 Built-in function including Maxwellian, fission, fusion and slowing-down regions and requiring user-specified parameters and energy-region boundaries. 2 Set of log-log flux-energy interpolation points read from input cross-section data file. 3 Set of log-log flux-energy interpolationmore » points read from user-supplied card input. 4 - 6 Histogram flux values read from user-supplied card input in arbitrary group structure in units of flux-per unit-energy, flux-per-unit lethargy, or integral group flux. LAFPX-E may be used to collapse any set of multigroup reaction cross sections furnished in the required format. However, the code was developed for, and is furnished with, a library of 154-group fission-product cross sections processed from ENDF/B-IV with a typical light water reactor (LWR) flux spectrum and temperature. Four-group radiative capture cross sections produced for LWR calculations are tabulated in the code documentation and are incorporated in the EPRI-CINDER data library, RSIC Code Package CCC-309.« less

  15. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    NASA Astrophysics Data System (ADS)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  16. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  17. Solar He-3: Information from nuclear reactions in flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.

    1974-01-01

    Information on solar He-3 from nuclear reactions in flares was considered. Consideration was also given to the development of models for these reactions as well as the abundance of He-3 in the photosphere. Data show that abundances may be explained by nuclear reactions of flare acceleration protons and alpha particles with the ambient atmosphere, provided that various assumptions are made on the directionality of the interacting beams and acceleration of the particles after production.

  18. Experimental Observation of Nuclear Reactions in Palladium and Uranium - Possible Explanation by Hydrex Mode

    SciTech Connect

    Dufour, J.; Murat, D.; Dufour, X.; Foos, J

    2001-07-15

    Experiments with uranium are presented that show a highly exothermal reaction, which can only be of nuclear origin. One striking point of these results is that they clearly show that what is being observed is not some kind of fusion reaction of the deuterium present (only exceedingly small amounts of it are present). This is a strong indication that hydrogen can trigger nuclear reactions that seem to involve the nuclei of the lattice (which would yield a fission-like pattern of products). Confronted with a situation where some experiments in the field yield a fusion-like pattern of products (CF experiments) and others a fissionlike one (LENR experiments), one can reasonably wonder whether one is not observing two aspects of the same phenomenon. Thus, it is proposed to describe CF and LENR reactions as essentially the same phenomenon based on the possible existence of a still hypothetical proton/electron resonance, which would catalyze fissionlike reactions with a neutron sink. Finally, a series of experiments is proposed to assess this hypothesis.

  19. Potential Link between the NIMA Mitotic Kinase and Nuclear Membrane Fission during Mitotic Exit in Aspergillus nidulans

    PubMed Central

    Davies, Jonathan R.; Osmani, Aysha H.; De Souza, Colin P. C.; Bachewich, Catherine; Osmani, Stephen A.

    2004-01-01

    We have isolated TINC as a NIMA-interacting protein by using the yeast two-hybrid system and have confirmed that TINC interacts with NIMA in Aspergillus nidulans. The TINC-NIMA interaction is stabilized in the absence of phosphatase inhibitors and in the presence of kinase-inactive NIMA, suggesting that the interaction is enhanced when NIMA is not fully activated. TINC is a cytoplasmic protein. TINC homologues and a TINC-like protein (A. nidulans HETC) are conserved in other filamentous fungi. Neither deletion of tinC nor deletion of both tinC and A. nidulans hetC is lethal, but deletion of tinC does produce cold sensitivity as well as osmotic sensitivity. Expression of an amino-terminal-truncated form of TINC (ΔN-TINC) inhibits colony growth in Aspergillus and localizes to membrane-like structures within the cell. Examination of cell cycle progression in these cells reveals that they progress through multiple defective mitoses. Many cells contain large polyploid single nuclei, while some appear to have separated masses of DNA. Examination of the nuclear envelopes of cells containing more than one DNA mass reveals that both DNA masses are contained within a single nuclear envelope, indicating that nuclear membrane fission is defective. The ability of these cells to separate DNA segregation from nuclear membrane fission suggests that this coordination is normally a regulated process in A. nidulans. Additional experiments demonstrate that expression of ΔN-TINC results in premature NIMA disappearance in mitotic samples. We propose that TINC's interaction with NIMA and the cell cycle defects produced by ΔN-TINC expression suggest possible roles for TINC and NIMA during nuclear membrane fission. PMID:15590818

  20. Potential link between the NIMA mitotic kinase and nuclear membrane fission during mitotic exit in Aspergillus nidulans.

    PubMed

    Davies, Jonathan R; Osmani, Aysha H; De Souza, Colin P C; Bachewich, Catherine; Osmani, Stephen A

    2004-12-01

    We have isolated TINC as a NIMA-interacting protein by using the yeast two-hybrid system and have confirmed that TINC interacts with NIMA in Aspergillus nidulans. The TINC-NIMA interaction is stabilized in the absence of phosphatase inhibitors and in the presence of kinase-inactive NIMA, suggesting that the interaction is enhanced when NIMA is not fully activated. TINC is a cytoplasmic protein. TINC homologues and a TINC-like protein (A. nidulans HETC) are conserved in other filamentous fungi. Neither deletion of tinC nor deletion of both tinC and A. nidulans hetC is lethal, but deletion of tinC does produce cold sensitivity as well as osmotic sensitivity. Expression of an amino-terminal-truncated form of TINC (DeltaN-TINC) inhibits colony growth in Aspergillus and localizes to membrane-like structures within the cell. Examination of cell cycle progression in these cells reveals that they progress through multiple defective mitoses. Many cells contain large polyploid single nuclei, while some appear to have separated masses of DNA. Examination of the nuclear envelopes of cells containing more than one DNA mass reveals that both DNA masses are contained within a single nuclear envelope, indicating that nuclear membrane fission is defective. The ability of these cells to separate DNA segregation from nuclear membrane fission suggests that this coordination is normally a regulated process in A. nidulans. Additional experiments demonstrate that expression of DeltaN-TINC results in premature NIMA disappearance in mitotic samples. We propose that TINC's interaction with NIMA and the cell cycle defects produced by DeltaN-TINC expression suggest possible roles for TINC and NIMA during nuclear membrane fission. PMID:15590818

  1. Nuclear Structure and Reaction Mechanism Studies with Multinucleon Reactions

    SciTech Connect

    Regan, P. H.; Jones, G. A.; Podolyak, Zs.; Abdullah, M.; Gelletly, W.; Langdown, S. D.; Wollel, G.; De Angelis, G.; Gadea, A.; Kroell, Th.; Marginean, N.; Martinez, T.; Napoli, D. R.; Rusu, C.; Tonev, D.; Zhang, Y. H.; Ur, C. A.; Axiotis, M.; Bazzacco, D.; Farnea, E.

    2006-08-14

    This contribution reports on the results of an experiment to study the near-yrast states in selenium- and osmium-like nuclei, following their population in thick-target, multinucleon transfer reactions between an 82Se beam and a 192Os target. The experimental results for the level scheme for 84Se are presented together with investigations into the use of multi-dimensional gamma-ray energy gating to investigate angular momentum population in such heavy-ion binary reactions.

  2. Quantification of Uncertainties due to 235,238U, 239,240,241Pu and Fission Products Nuclear Data Uncertainties for a PWR Fuel Assembly

    NASA Astrophysics Data System (ADS)

    da Cruz, D. F.; Rochman, D.; Koning, A. J.

    2014-04-01

    Uncertainty analysis on reactivity and discharged inventory for a typical PWR fuel element as a result of uncertainties in 235,238U, 239,240,241Pu, and fission products nuclear data was performed. The Total Monte-Carlo (TMC) method was applied using the deterministic transport code DRAGON. The nuclear data used in this study is from the JEFF-3.1 evaluations, with the exception of the nuclear data files for U, Pu and fission products isotopes, which are taken from the nuclear data library TENDL-2012. Results show that the calculated total uncertainty in keff (as result of uncertainties in nuclear data of the considered isotopes) is virtually independent on fuel burnp and amounts to 700 pcm. The uncertainties in inventory of the discharged fuel is dependent on the element considered and lies in the range 1-15% for most fission products, and is below 5% for the most important actinides.

  3. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    SciTech Connect

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.

  4. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  5. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    SciTech Connect

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  6. Nuclear reactions and synthesis of new transuranium species

    SciTech Connect

    Seaborg, G.T.

    1983-01-01

    In this short review, I shall describe the special aspects of heavy ion nuclear reaction mechanisms operative in the transuranium region, the role of new techniques, possible nuclear reactions for the production of additional transuranium elements and nuclear species and the importance of work in this region for the development of nuclear models and theoretical concepts. This discussion should make it clear that a continuing supply of leements and isotopes, some fo them relatively short-lived, produced by the HFIR-TRU facilities, will be a requirement for future synthesis of new elements and isotopes.

  7. Nuclear pumped gas laser research

    NASA Technical Reports Server (NTRS)

    Thom, K.

    1976-01-01

    Nuclear pumping of lasers by fission-fragments from nuclear chain reactions is discussed. Application of the newly developed lasers to spacecraft propulsion or onboard power, to lunar bases for industrial processing, and to earth for utilization of power without pollution and hazards is envisioned. Emphasis is placed on the process by which the fission-fragement kinetic energy is converted into laser light.

  8. Nuclear reaction modeling, verification experiments, and applications

    SciTech Connect

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  9. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  10. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  11. Microscopic effective reaction theory for direct nuclear reactions

    NASA Astrophysics Data System (ADS)

    Ogata, Kazuyuki; Minomo, Kosho; Toyokawa, Masakazu; Kohno, Michio; Matsumoto, Takuma; Yahiro, Masanobu; Kikuchi, Yuma; Fukui, Tokuro; Yoshida, Kazuki; Mizuyama, Kazuhito

    2016-06-01

    Some recent activities with the microscopic effective reaction theory (MERT) on elastic, inelastic, breakup, transfer, and knockout processes are reviewed briefly. As a possible alternative to MERT, a description of elastic and inelastic scattering with the continuum particle-vibration coupling (cPVC) method is also discussed.

  12. Low-Energy Nuclear Reactions Resulting as Picometer Interactions with Similarity to K-Shell Electron Capture

    NASA Astrophysics Data System (ADS)

    Hora, H.; Miley, G. H.; Li, X. Z.; Kelly, J. C.; Osman, F.

    2006-02-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons or deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockroft-Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the "life after death" heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of picometers with reaction probability times U of about megaseconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the picometer-megasecond reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas.

  13. The nuclear structure and low-energy reactions (NSLER) collaboration

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; NSLER Collaboration

    2006-09-01

    The long-term vision of the Nuclear Structure and Low-Energy Reactions (NSLER) collaboration is to arrive at a comprehensive and unified description of nuclei and their reactions that is grounded in the interactions between the constituent nucleons. For this purpose, we will develop a universal energy density functional for nuclei and replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that will deliver maximum predictive power with minimal uncertainties that are well quantified. Nuclear structure and reactions play an essential role in the science to be investigated at rare isotope facilities, and in nuclear physics applications to the Science-Based Stockpile Stewardship Program, next-generation reactors, and threat reduction. We anticipate an expansion of the computational techniques and methods we currently employ, and developments of new treatments, to take advantage of petascale architectures and demonstrate the capability of the leadership class machines to deliver new science heretofore impossible.

  14. Electromagnetic studies of nuclear structure and reactions

    SciTech Connect

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  15. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    SciTech Connect

    Wright, A.L.

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art.

  16. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  17. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast.

    PubMed

    Steglich, Babett; Strålfors, Annelie; Khorosjutina, Olga; Persson, Jenna; Smialowska, Agata; Javerzat, Jean-Paul; Ekwall, Karl

    2015-03-01

    In eukaryotic cells, local chromatin structure and chromatin organization in the nucleus both influence transcriptional regulation. At the local level, the Fun30 chromatin remodeler Fft3 is essential for maintaining proper chromatin structure at centromeres and subtelomeres in fission yeast. Using genome-wide mapping and live cell imaging, we show that this role is linked to controlling nuclear organization of its targets. In fft3∆ cells, subtelomeres lose their association with the LEM domain protein Man1 at the nuclear periphery and move to the interior of the nucleus. Furthermore, genes in these domains are upregulated and active chromatin marks increase. Fft3 is also enriched at retrotransposon-derived long terminal repeat (LTR) elements and at tRNA genes. In cells lacking Fft3, these sites lose their peripheral positioning and show reduced nucleosome occupancy. We propose that Fft3 has a global role in mediating association between specific chromatin domains and the nuclear envelope.

  18. Advanced modeling of prompt fission neutrons

    SciTech Connect

    Talou, Patrick

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  19. Accelerator-Driven Subcritical Fission in a Molten Salt Core: Green Nuclear Power for the New Millennium

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter

    2011-10-01

    Scientists at Texas A&M University, Brookhaven National Lab, and Idaho National Lab are developing a design for accelerator-drive subcritical fission in a molten salt core (ADSMS). Three high-power proton beams are delivered to spallation targets in a molten salt core, where they provide ˜3% of the fast neutrons required to sustain 600 MW of fission. The proton beams are produced by a flux-coupled stack of superconducting strong-focusing cyclotrons. The fuel consists of a eutectic of sodium chloride with either spent nuclear fuel from a conventional U power reactor (ADSMS-U) or thorium (ADSMS-Th). The subcritical core cannot go critical under any failure mode. The core cannot melt down even if all power is suddenly lost to the facility for a prolonged period. The ultra-fast neutronics of the core makes it possible to operate in an isobreeding mode, in which neutron capture breeds the fertile nuclide into a fissile nuclide at the same rate that fission burns the fissile nuclide, and consumes 90% of the fertile inventory instead of the 5% consumed in the original use in a conventional power plant. The ultra-fast neutronics produces a very low equilibrium inventory of the long-lived minor actinides, ˜10^4 less than what is produced in conventional power plants. ADSMS offers a method to safely produce the energy needs for all mankind for the next 3000 years.

  20. Nuclear Reaction and Structure Databases of the National Nuclear Data Center

    SciTech Connect

    Pritychenko, B.; Arcilla, R.; Herman, M. W.; Oblozinsky, P.; Rochman, D.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2006-03-13

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. In 2004, the NNDC migrated all databases into modern relational database software, installed new generation of Linux servers and developed new Java-based Web service. This nuclear database development means much faster, more flexible and more convenient service to all users in the United States. These nuclear reaction and structure database developments as well as related Web services are briefly described.

  1. Concentration-triggered fission product release from zirconia: consequences for nuclear safety

    NASA Astrophysics Data System (ADS)

    Gentils, A.; Thomé, L.; Jagielski, J.; Garrido, F.

    2002-02-01

    Crystalline oxide ceramics, more particularly zirconia and spinel, are promising matrices for plutonium and minor actinide transmutation. An important issue concerning these materials is the investigation of their ability to confine radiotoxic elements resulting from the fission of actinides. This letter reports the study of the release, upon annealing or irradiation at high temperature, of one of the most toxic fission product (Cs) in zirconia. The foreign species are introduced by ion implantation and the release is studied by Rutherford backscattering experiments. The results emphasize the decisive influence of the fission product concentration on the release properties. The Cs mobility in zirconia is strongly increased when the impurity concentration exceeds a threshold of the order of a few atomic per cent. Irradiation with medium-energy heavy ions is shown to enhance Cs outdiffusion with respect to annealing at the same temperature.

  2. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  3. Fine-Group Cross Section Library Based on JEFF3.1 for Nuclear Fission Applications.

    2009-10-16

    Version 00 The NJOY-99.160 data processing system was used for the MATJEFF31.BOLIB library generation to assure the consistency with the previous generation of the VITJEFF31.BOLIB /6/ twin library, based on the same GENDF cross section data file. In particular it used a revised version of the GROUPR /7/ module, originally developed in ENEA-Bologna before the free release of an analogous GROUPR revised version with NJOY-99.161, in order to correctly deal with the non-Cartesian interpolation schemes,more » contained in 69 JEFF-3.1 evaluated nuclear data files. The TRANSX-2.15 /8/ code was then used to obtain the total (prompt + delayed) fission spectra for U-235, U-238 and Pu-239. These data, contained in the MATJEFF31.BOLIB package, are available in tabulated form as in the VITJEFF31.BOLIB library package. On the contrary the VITAMIN-B6, VITJEF22.BOLIB /9/ and MATJEF22.BOLIB /10/ similar library packages contain in tabulated form only the prompt components. MATJEFF31.BOLIB is a pseudo-problem-independent library based on the Bondarenko /11/ (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. The library contains 176 nuclides at 4 temperatures, obtained for the most part with 6 to 8 values for the background cross section. Thermal scattering cross sections were processed at all temperatures available in the JEFF-3.1 thermal scattering law data file for 6 additional bound nuclides (H-1 in light water (H-H2O), H-1 in polyethylene (H-CH2), H-1 in zirconium hydride (H-ZrH) (not contained in VITAMIN-B6, VITJEF22.BOLIB and MATJEF22.BOLIB), H-2 in heavy water (H2-D2O), C in graphite (C-GPH) and Be in beryllium metal (Be-TH)). From MATJEFF31.BOLIB it is easily possible to generate, with the use of the TRANSX code, working libraries of collapsed and self-shielded cross sections in GOXS or FIDO-ANISN format for calculations with the DOORS /12/, DANTSYS /13/ and PARTISN /14/ deterministic transport systems and the MORSE /15/ Monte

  4. Fine-Group Cross Section Library Based on JEFF3.1 for Nuclear Fission Applications.

    SciTech Connect

    ROBERTO,; ORSI,

    2009-10-16

    Version 00 The NJOY-99.160 data processing system was used for the MATJEFF31.BOLIB library generation to assure the consistency with the previous generation of the VITJEFF31.BOLIB /6/ twin library, based on the same GENDF cross section data file. In particular it used a revised version of the GROUPR /7/ module, originally developed in ENEA-Bologna before the free release of an analogous GROUPR revised version with NJOY-99.161, in order to correctly deal with the non-Cartesian interpolation schemes, contained in 69 JEFF-3.1 evaluated nuclear data files. The TRANSX-2.15 /8/ code was then used to obtain the total (prompt + delayed) fission spectra for U-235, U-238 and Pu-239. These data, contained in the MATJEFF31.BOLIB package, are available in tabulated form as in the VITJEFF31.BOLIB library package. On the contrary the VITAMIN-B6, VITJEF22.BOLIB /9/ and MATJEF22.BOLIB /10/ similar library packages contain in tabulated form only the prompt components. MATJEFF31.BOLIB is a pseudo-problem-independent library based on the Bondarenko /11/ (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. The library contains 176 nuclides at 4 temperatures, obtained for the most part with 6 to 8 values for the background cross section. Thermal scattering cross sections were processed at all temperatures available in the JEFF-3.1 thermal scattering law data file for 6 additional bound nuclides (H-1 in light water (H-H2O), H-1 in polyethylene (H-CH2), H-1 in zirconium hydride (H-ZrH) (not contained in VITAMIN-B6, VITJEF22.BOLIB and MATJEF22.BOLIB), H-2 in heavy water (H2-D2O), C in graphite (C-GPH) and Be in beryllium metal (Be-TH)). From MATJEFF31.BOLIB it is easily possible to generate, with the use of the TRANSX code, working libraries of collapsed and self-shielded cross sections in GOXS or FIDO-ANISN format for calculations with the DOORS /12/, DANTSYS /13/ and PARTISN /14/ deterministic transport systems and the MORSE /15/ Monte Carlo

  5. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  6. Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models

    NASA Astrophysics Data System (ADS)

    Razavi, Rohallah; Rahmatinejad, Azam; Kakavand, Tayeb; Taheri, Fariba; Aghajani, Maghsood; Khooy, Asghar

    2016-02-01

    In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.

  7. In vitro splicing reactions in Drosophila Kc nuclear extracts.

    PubMed

    Rio, Donald C

    2014-08-01

    This protocol describes how to generate and analyze products and intermediates in a pre-mRNA splicing reaction. The reaction relies on the use of labeled, capped, synthetic pre-mRNAs, prepared by in vitro transcription, and Drosophila Kc cell culture nuclear extracts. The pre-mRNA substrate is incubated in the nuclear extract under splicing conditions for 1-2 h. The products of the reaction are purified by phenol:chloroform extraction and precipitation with ethanol, and then loaded directly onto a denaturing urea-acrylamide gel. Visualization of the splicing reactions will reveal the pre-mRNA, the spliced mRNA, and the intermediates generated by the first step of splicing. For inefficient reactions, a more sensitive detection method, such as RNase protection, primer extension, or RT-PCR (reverse transcription-polymerase chain reaction), may be required.

  8. Development of the quantum theory of T-odd asymmetries for prescission and evaporated third particles in ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.; Kadmensky, S. S.

    2011-10-15

    A comparative analysis of the results obtained by experimentally and theoretically studying T-odd asymmetries for various third particles in the true and delayed ternary nuclear fission induced by cold polarized neutrons was performed. It was confirmed that the appearance of these asymmetries was associated with the effect of rotation of a polarized system undergoing fission on the angular distributions of prescission and evaporated third particles with respect to the direction along which the emerging fission fragments flew apart, this effect being determined by the Coriolis interaction of the rotational and the internalmotion of the fissioning system. A quantum-mechanical description of particle motion in a rotating coordinate system was generalized to the case where gamma-ray emission was present. It was shown that the separation of the motions of an axially symmetric fissile system into a rotational and an internal motion was valid in the external region as well, where ternary-fission products had already been formed, if it was considered that the motion of fission fragments was tightly connected with the system symmetry axis, which rotated in the laboratory frame. It was found that the dependence of the fissile-system moment of inertia appearing in the Coriolis interaction Hamiltonian on the distance between the fission fragments flying apart generated an additional phase in the amplitude of the radial distribution of fission fragments. It was shown that this phase might change sizably the contribution of the interference between fission amplitudes of neutron resonances excited in a fissile compound nucleus to the absolute values of T -odd asymmetries, especially for third particles such as neutrons and photons, which interacted only slightly with fission fragments.

  9. Opportunities in nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Nunes, Filomena

    2015-10-01

    The last decade has seen important advances in the area of low energy nuclear physics. New measurements have provided crucial insight into the behavior of nuclei at the limits of stability, including the mapping of the neutron dripline up to Oxygen, investigations of unbound nuclear states, and the discovery of new super-heavy elements. In parallel we have seen a revolution in low-energy nuclear theory, moving toward quantified predictability, rooted in the underlying inter-nucleon forces. But the next decade offers even more opportunities with a new generation factory of rare isotopes, and the anticipated developments in high performance computing. The Facility for Rare Isotope Beams coupled with new state-of-the-art detectors will allow us to access a large fraction of the necessary information for the r-process responsible for making at least half of the heavy elements in our universe. FRIB will provide the needed intensities to study global nuclear properties, shell structure, and collective phenomena far from stability. Key measurements are anticipated, at various facilities, which will inform symmetry tests with rare isotopes. We expect to put strict constraints on the equation of state. These and many other opportunities will be highlighted in this overview talk.

  10. From Stopping to Viscosity in Nuclear Reactions

    SciTech Connect

    Danielewicz, Pawel; Barker, Brent; Shi Lijun

    2009-05-07

    Data on stopping in intermediate-energy central heavy-ion collisions are analyzed following transport theory based on the Boltzmann equation. In consequence, values of nuclear shear viscosity are inferred. The inferred values are significantly larger than obtained for free nucleon dispersion relations and free nucleon-nucleon cross sections.

  11. Feasibility study of nuclear transmutation by negative muon capture reaction using the PHITS code

    NASA Astrophysics Data System (ADS)

    Abe, Shin-ichiro; Sato, Tatsuhiko

    2016-06-01

    Feasibility of nuclear transmutation of fission products in high-level radioactive waste by negative muon capture reaction is investigated using the Particle and Heave Ion Transport code System (PHITS). It is found that about 80 % of stopped negative muons contribute to transmute target nuclide into stable or short-lived nuclide in the case of 135Cs, which is one of the most important nuclide in the transmutation. The simulation result also indicates that the position of transmutation is controllable by changing the energy of incident negative muon. Based on our simulation, it takes approximately 8.5 × 108years to transmute 500 g of 135Cs by negative muon beam with the highest intensity currently available.

  12. Rhn1, a nuclear protein, is required for suppression of meiotic mRNAs in mitotically dividing fission yeast.

    PubMed

    Sugiyama, Tomoyasu; Sugioka-Sugiyama, Rie; Hada, Kazumasa; Niwa, Ryusuke

    2012-01-01

    In the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR)-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in meiotic mRNA suppression in vegetative fission yeast. Rhn1 is homologous to budding yeast Rtt103 and localizes to one or a few discrete nuclear dots in growing vegetative cells. Rhn1 colocalizes with a pre-mRNA 3'-end processing factor, Pcf11, and with the 5'-3' exoribonuclease, Dhp1; moreover, Rhn1 coimmunoprecipitates with Pcf11. Loss of rhn1 results in elevated sensitivity to high temperature, to thiabendazole (TBZ), and to UV. Interestingly, meiotic mRNAs--including moa1(+), mcp5(+), and mug96(+)--accumulate in mitotic rhn1Δ cells. Accumulation of meiotic mRNAs also occurs in strains lacking Lsk1, a kinase that phosphorylates serine 2 (Ser-2) in the C-terminal domain (CTD) of RNA polymerase II (Pol II), and in strains lacking Sen1, an ATP-dependent 5'-3' RNA/DNA helicase: notably, both Lsk1 and Sen1 have been implicated in termination of Pol II-dependent transcription. Furthermore, RNAi knockdown of cids-2, a Caenorhabditis elegans ortholog of rhn1(+), leads to elevated expression of a germline-specific gene, pgl-1, in somatic cells. These results indicate that Rhn1 contributes to the suppression of meiotic mRNAs in vegetative fission yeast and that the mechanism by which Rhn1 downregulates germline-specific transcripts may be conserved in unicellular and multicellular organisms.

  13. Split-Doa10: A Naturally Split Polytopic Eukaryotic Membrane Protein Generated by Fission of a Nuclear Gene

    PubMed Central

    Stuerner, Elisabeth; Kuraku, Shigehiro; Hochstrasser, Mark; Kreft, Stefan G.

    2012-01-01

    Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12–16 transmembrane helices (TMs), but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS). A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH) and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments. PMID:23071509

  14. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the 6Li/7Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant 6Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones

  15. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  16. Ternary fission of nuclei into comparable fragments

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2015-07-01

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  17. Cement As a Waste Form for Nuclear Fission Products: The Case of (90)Sr and Its Daughters.

    PubMed

    Dezerald, Lucile; Kohanoff, Jorge J; Correa, Alfredo A; Caro, Alfredo; Pellenq, Roland J-M; Ulm, Franz J; Saúl, Andrés

    2015-11-17

    One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after β-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage.

  18. Cement As a Waste Form for Nuclear Fission Products: The Case of (90)Sr and Its Daughters.

    PubMed

    Dezerald, Lucile; Kohanoff, Jorge J; Correa, Alfredo A; Caro, Alfredo; Pellenq, Roland J-M; Ulm, Franz J; Saúl, Andrés

    2015-11-17

    One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after β-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage. PMID:26513644

  19. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  20. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  1. Inhibition of splicing and nuclear retention of pre-mRNA by spliceostatin A in fission yeast

    SciTech Connect

    Lo, Chor-Wai; Kaida, Daisuke; Nishimura, Shinichi; Matsuyama, Akihisa; Yashiroda, Yoko; Taoka, Hiroshi; Ishigami, Ken; Watanabe, Hidenori; Nakajima, Hidenori; Tani, Tokio; Horinouchi, Sueharu; Yoshida, Minoru

    2007-12-21

    Nuclear retention of pre-mRNAs is tightly regulated by several security mechanisms that prevent pre-mRNA export into the cytoplasm. Recently, spliceostatin A, a methylated derivative of a potent antitumor microbial metabolite FR901464, was found to cause pre-mRNA accumulation and translation in mammalian cells. Here we report that spliceostatin A also inhibits splicing and nuclear retention of pre-mRNA in a fission yeast strain that lacks the multidrug resistance protein Pmd1. As observed in mammalian cells, spliceostatin A is bound to components of the SF3b complex in the spliceosome. Furthermore, overexpression of nup211, a homolog of Saccharomyces cerevisiae MLP1, suppresses translation of pre-mRNAs accumulated by spliceostatin A. These results suggest that the SF3b complex has a conserved role in pre-mRNA retention, which is independent of the Mlp1 function.

  2. Low-energy nuclear reaction studies with RI beams in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Teranishi, T.; Kato, S.

    2003-07-01

    After a brief discussion on the recent development in nuclear astrophysics, two reaction studies of typical astrophysical reactions at low energies where nuclear reactions play the main contributions to the nucleosynthesis in the universe, are discussed. One is the proton capture reaction, 11C(p, γ)12N, studied by the direct method using a 11C beam produced with a new low-energy RIB separator CRIB at CNS, Japan. The second one is the 13C(α, n)16O rearrangement reaction, which is believed to be the main neutron source for the s-process at low temperatures, investigated by an indirect method using the direct α-transfer reaction 13C(6Li, d)17O. Detailed investigations are suggested on the nuclear reactions relevant.

  3. Competition between fusion and quasi-fission in heavy ion induced reactions

    SciTech Connect

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab.

  4. Super-asymmetric fission in the 245Cm(n th, f) reaction at the Lohengrin fission-fragment mass separator

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Tsekhanovich, I.; Gönnenwein, F.; Sokolov, V.; Storrer, F.; Simpson, G.; Serot, O.

    2004-04-01

    Mass, isotopic yields and single-fragment kinetic energy measurements for thermal-neutron induced fission of 245Cm at the Lohengrin fission-product mass separator are described. Using an ionization chamber coupled to the mass separator, we have measured the mass and isotopic yields from fragment mass A=67 up to A=77 over three yield decades. This considerably extends the data set previously known for the light peak. A full set of data is now available for this actinide in the super-asymmetric mass region. The results of mass and isotopic yields are compared with those of other compound nuclei to highlight the shell effect at mass 70 for the 246Cm ★ compound-nucleus system. Also, the present results are compared to the data from the European library JEF2 and the evaluation from Wahl's Zp model.

  5. Number-Theory in Nuclear-Physics in Number-Theory: Non-Primality Factorization As Fission VS. Primality As Fusion; Composites' Islands of INstability: Feshbach-Resonances?

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2011-10-01

    Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 × 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 × 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 × 4 = 2 × 2 × 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 × 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information/computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!

  6. Number-Theory in Nuclear-Physics in Number-Theory: Non-Primality Factorization As Fission VS. Primality As Fusion; Composites' Islands of INstability: Feshbach-Resonances?

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2011-04-01

    Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 x 2]; (4+1)=(fusion)=5; (5+1)=(fission)=6[=2 x 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 x 4 = 2 x 2 x 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 x 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information and computing non-Shore factorization, millennium-problem Riemann-hypotheses physics-proof as numbers/digits Goodkin Bose-Einstein Condensation intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!

  7. True ternary fission, the collinear decay into fragments of similar size in the 252Cf(sf) and 235U(nth, f) reactions

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.

    2014-06-01

    The collinear cluster decay in 252Cf(sf, fff), with three cluster fragments of different masses (e.g. 132Sn, 52-48Ca, 68-72Ni), which has been observed by the FOBOS group in JINR, has established a new decay mode of heavy nuclei, the collinear cluster tripartition (CCT). The same type of ternary fission decay has been observed in the reaction 235U(nth, fff). This kind of “true ternary fission” of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present note we discuss true ternary fission (TFFF) into three nuclei of almost equal size (e.g. Z=98→Zi=32, 34, 32) in the same systems. The possible fission channels are predicted from potential-energy (PES) calculations. These PES's show pronounced minima for several ternary fragmentation decays, e.g. for 252Cf(sf) and for 235U(nth, f). They suggest the existence of a variety of collinear ternary fission modes. The TFFF-decays chosen in this letter have very similar dynamical features as the previously observed collinear CCT-decays. The data obtained in the above mentioned experiments allow us to extract the yield for these TFFF-decays in both systems by using specific gates on the measured parameters. These yields are a few 1.0ṡ10-6/(binary fission).

  8. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    SciTech Connect

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs. (TEM)

  9. Research in Heavy Ion Nuclear Reactions

    SciTech Connect

    Petitt, G.A.; Nelson, W.H.; He, Xiaochun; Lee, W.

    1999-04-14

    This is the final progress report for the experimental nuclear physics program at Georgia State University (GSU) under the leadership of Gus Petitt. In June, 1996, Professor Petitt retired for health reasons and the DOE contract was extended for another year to enable the group to continue it's work. This year has been a productive one. The group has been heavily involved in the E866 experiment at Fermilab where we have taken on the responsibility of developing a new level-3 trigger for the experiment. Bill Lee, the graduate student in our group expects to obtain his thesis data from the run extension currently in progress, which focuses on the A dependence of J/{psi}'s and {Upsilon}'s from beryllium, tungsten, and iron targets. In the past year and a half the GSU group has led the development of a new level-3 software trigger system for E866. Our work on this project is described.

  10. Realistic fission model and the r-process in neutron star mergers

    SciTech Connect

    Shibagaki, S.; Kajino, T.; Chiba, S.; Mathews, G. J.

    2014-05-09

    About half of heavy elements are considered to be produced by the rapid neutron-capture process, r-process. The neutron star merger is one of the viable candidates for the astrophysical site of r-process nucleosynthesis. Nuclear fission reactions play an important role in the r-process of neutron star mergers. However theoretical predictions about fission properties of neutron-rich nuclei have some uncertainties. Especially, their fission fragment distributions are totally unknown and the phenomenologically extrapolated distribution was often applied to nucleosynthesis calculations. In this study, we have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions. We discuss the effects on the r-process in neutron star mergers from the nuclear fission of heavy neutron-rich actinide elements. We also discuss how variations in the fission fragment distributions affect the abundance pattern.

  11. Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast.

    PubMed

    Cooper, Katrina F; Khakhina, Svetlana; Kim, Stephen K; Strich, Randy

    2014-01-27

    Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyperfission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, coimmunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C.

  12. Excitation function calculations for α + 93Nb nuclear reactions

    NASA Astrophysics Data System (ADS)

    Yiǧit, M.; Tel, E.; Sarpün, İ. H.

    2016-10-01

    In this study, the excitation functions of alpha-induced reactions on the 93Nb target nucleus were calculated by using ALICE-ASH code. The hybrid model, Weisskopf-Ewing model and geometry dependent hybrid model in this code were used to understand the alpha-niobium interaction. The contribution on the nuclear interaction of compound and pre-compound processes, with variation of the incident alpha particle energy, was presented. Furthermore, the reaction cross sections were calculated by using different level density models such as Superfluid nuclear model, Fermi gas model and Kataria-Ramamurthy Fermi gas model. Obtaining a good agreement between the calculated and the measured cross sections, the exciton numbers and the nuclear level density models were varied. Finally, the proper choice of the exciton numbers and the nuclear level density models was found to be quite important in order to obtain the more realistic cross section values.

  13. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  14. In-beam Fission Study at JAEA

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  15. US nuclear reaction data program in support of basic research

    SciTech Connect

    Bhat, M.R.; Chadwick, M.B.; Smith, M.S.

    1997-06-01

    Information about the US Nuclear Reaction Data Network (USNRDN) such as its members, work in progress, summaries of meetings, and organizational details may be found in its WWW Homepage. This paper is an overview of the data support provided by the network for basic research in nuclear astrophysics, radioactive ion beams, high energy heavy-ion and electron interactions and related activities involving all aspects of data stewardship.

  16. EXFOR SYSTEMS MANUAL NUCLEAR REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format.

  17. Development of the Experimental Photo-Nuclear Reaction Database in Hokkaido University

    NASA Astrophysics Data System (ADS)

    Makinaga, A.

    2015-10-01

    Nuclear databases are important tools to apply nuclear phenomena to various fields of nuclear engineering. It is now recognized that the databases must be further developed for photo-nuclear reaction data for nuclear security, safety and nonproliferation applications. Hokkaido University Nuclear Reaction Data Centre (JCPRG) has contributed to the Experimental Nuclear Reaction Data Library (EXFOR) which is developed by the International Network of Nuclear Reaction Data Centres under coordination by IAEA. We report here on the recent compilation of the nuclear data files for the photonuclear reaction.

  18. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2016-03-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  19. Nuclear reactions induced by high-energy alpha particles

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  20. Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C.

    PubMed

    Khakhina, Svetlana; Cooper, Katrina F; Strich, Randy

    2014-09-15

    The yeast cyclin C-Cdk8 kinase forms a complex with Med13p to repress the transcription of genes involved in the stress response and meiosis. In response to oxidative stress, cyclin C displays nuclear to cytoplasmic relocalization that triggers mitochondrial fission and promotes programmed cell death. In this report, we demonstrate that Med13p mediates cyclin C nuclear retention in unstressed cells. Deleting MED13 allows aberrant cytoplasmic cyclin C localization and extensive mitochondrial fragmentation. Loss of Med13p function resulted in mitochondrial dysfunction and hypersensitivity to oxidative stress-induced programmed cell death that were dependent on cyclin C. The regulatory system controlling cyclin C-Med13p interaction is complex. First, a previous study found that cyclin C phosphorylation by the stress-activated MAP kinase Slt2p is required for nuclear to cytoplasmic translocation. This study found that cyclin C-Med13p association is impaired when the Slt2p target residue is substituted with a phosphomimetic amino acid. The second step involves Med13p destruction mediated by the 26S proteasome and cyclin C-Cdk8p kinase activity. In conclusion, Med13p maintains mitochondrial structure, function, and normal oxidative stress sensitivity through cyclin C nuclear retention. Releasing cyclin C from the nucleus involves both its phosphorylation by Slt2p coupled with Med13p destruction.

  1. A,B,C`s of nuclear science

    SciTech Connect

    Noto, V.A.; Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R.

    1995-08-07

    This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

  2. Public reactions to nuclear waste: Citizens' views of repository siting

    SciTech Connect

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada.

  3. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR). International Collaboration Between Nuclear Reaction Data Centres (NRDC)

    SciTech Connect

    Otuka, N.; Pritychenko, B.; Otuka, N.; Dupont, E.; Semkova, V.; Pritychenko, B.; Blokhin, A. I.; Aikawa, M.; Babykina, S.; Bossant, M.; Chen, G.; Dunaeva, S.; Forrest, R. A.; Fukahori, T.; Furutachi, N.; Ganesan, S.; Ge, Z.; Gritzay, O. O.; Herman, M.; Hlavac, S.; Kato, K.; Lalremruata, B.; Lee, Y. O.; Makinaga, A.; Matsumoto, K.; Mikhaylyukova, M.; Pikulina, G.; Pronyaev, V. G.; Saxena, A.; Schwerer, O.; Simakov, S. P.; Soppera, N.; Suzuki, R.; Takacs, S.; Tao, X.; Taova, S.; Tarkanyi, F.; Varlamov, V. V.; Wang, J.; Yang, S. C.; Zerkin, V.; Zhuang, Y.

    2014-06-01

    The International Network of Nuclear Reaction Data Centres (NRDC) coordinated by the IAEA Nuclear Data Section (NDS) successfully collaborates in the maintenance and development of the EXFOR library. Likewise, as the scope of published data expands (e.g. to higher energy, to heavier projectile) to meet the needs of research and applications, it has become a challenging task to maintain both the completeness and accuracy of the EXFOR library. Evolution of the library highlighting recent developments is described.

  4. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC)

    SciTech Connect

    Otuka, N.; Dupont, E.; Semkova, V.; Pritychenko, B.; Blokhin, A.I.; Aikawa, M.; Babykina, S.; Bossant, M.; Chen, G.; Dunaeva, S.; Forrest, R.A.; Fukahori, T.; Furutachi, N.; Ganesan, S.; Ge, Z.; Gritzay, O.O.; Herman, M.; Hlavač, S.; and others

    2014-06-15

    The International Network of Nuclear Reaction Data Centres (NRDC) coordinated by the IAEA Nuclear Data Section (NDS) successfully collaborates in the maintenance and development of the EXFOR library. As the scope of published data expands (e.g. to higher energy, to heavier projectile) to meet the needs of research and applications, it has become a challenging task to maintain both the completeness and accuracy of the EXFOR library. Evolution of the library highlighting recent developments is described.

  5. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report.

  6. Decoherence in nuclear collisions: Towards a new understanding of near Coulomb barrier nuclear reactions

    SciTech Connect

    Evers, M.; Dasgupta, M.; Hinde, D. J.

    2010-04-26

    To understand the underlying physical processes that might lead to loss of quantum coherence, high precision quasi-elastic excitation functions at sub-barrier energies were measured. Results show transfer events to high excitation energies, which may be impossible to model in a coherent picture. This points to the need to explicitly include quantum decoherence in nuclear reaction models and ultimately to a new understanding of near Coulomb barrier nuclear reactions.

  7. Indirect measurement of nuclear reactions of astrophysical interest

    SciTech Connect

    Liu, W. P.; Li, Z. H.; Bai, X. X.; Wang, Y. B.; Guo, B.; Lian, G.; Su, J.; Zeng, S.; Wang, B. X.; Yan, S. Q.; Li, Y. J.; Li, E. T.; Jin, S. J.

    2010-05-12

    Systematic indirect measurements of nuclear astrophysical reactions using the unstable ion beam facility GIRAFFE in CIAE were performed. We have measured the angular distributions of transfer reactions, such as {sup 8}Li(d,p){sup 9}Li, {sup 8}Li(d,n){sup 9}Be and {sup 8}Li(p,d){sup 7}Li in inverse kinematics, and derived the astrophysical S-factors or reaction rates for {sup 8}Li(n,gamma){sup 9}Li and {sup 8}Li(p,gamma){sup 9}Be by using asymptotic normalization coefficient (ANC) or spectroscopic factor methods.

  8. New Global Calculation of Nuclear Masses and Fission Barriers for Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Möller, P.; Sierk, A. J.; Bengtsson, R.; Ichikawa, T.; Iwamoto, A.

    2008-05-01

    The FRDM(1992) mass model [1] has an accuracy of 0.669 MeV in the region where its parameters were determined. For the 529 masses that have been measured since, its accuracy is 0.46 MeV, which is encouraging for applications far from stability in astrophysics. We are developing an improved mass model, the FRDM(2008). The improvements in the calculations with respect to the FRDM(1992) are in two main areas. (1) The macroscopic model parameters are better optimized. By simulation (adjusting to a limited set of now known nuclei) we can show that this actually makes the results more reliable in new regions of nuclei. (2) The ground-state deformation parameters are more accurately calculated. We minimize the energy in a four-dimensional deformation space (ɛ2, V3, V4, V6,) using a grid interval of 0.01 in all 4 deformation variables. The (non-finalized) FRDM (2008-a) has an accuracy of 0.596 MeV with respect to the 2003 Audi mass evaluation before triaxial shape degrees of freedom are included (in progress). When triaxiality effects are incorporated preliminary results indicate that the model accuracy will improve further, to about 0.586 MeV. We also discuss very large-scale fission-barrier calculations in the related FRLDM (2002) model, which has been shown to reproduce very satisfactorily known fission properties, for example barrier heights from 70Se to the heaviest elements, multiple fission modes in the Ra region, asymmetry of mass division in fission and the triple-humped structure found in light actinides. In the superheavy region we find barriers consistent with the observed half-lives. We have completed production calculations and obtain barrier heights for 5254 nuclei heavier than A = 170 for all nuclei between the proton and neutron drip lines. The energy is calculated for 5009325 different shapes for each nucleus and the optimum barrier between ground state and separated fragments is determined by use of an ``immersion'' technique.

  9. New Global Calculation of Nuclear Masses and Fission Barriers for Astrophysical Applications

    SciTech Connect

    Moeller, P.; Sierk, A. J.; Bengtsson, R.; Ichikawa, T.; Iwamoto, A.

    2008-05-21

    The FRDM(1992) mass model [1] has an accuracy of 0.669 MeV in the region where its parameters were determined. For the 529 masses that have been measured since, its accuracy is 0.46 MeV, which is encouraging for applications far from stability in astrophysics. We are developing an improved mass model, the FRDM(2008). The improvements in the calculations with respect to the FRDM(1992) are in two main areas. (1) The macroscopic model parameters are better optimized. By simulation (adjusting to a limited set of now known nuclei) we can show that this actually makes the results more reliable in new regions of nuclei. (2) The ground-state deformation parameters are more accurately calculated. We minimize the energy in a four-dimensional deformation space ({epsilon}{sub 2}, {epsilon}{sub 3}, {epsilon}{sub 4}, {epsilon}{sub 6},) using a grid interval of 0.01 in all 4 deformation variables. The (non-finalized) FRDM (2008-a) has an accuracy of 0.596 MeV with respect to the 2003 Audi mass evaluation before triaxial shape degrees of freedom are included (in progress). When triaxiality effects are incorporated preliminary results indicate that the model accuracy will improve further, to about 0.586 MeV.We also discuss very large-scale fission-barrier calculations in the related FRLDM (2002) model, which has been shown to reproduce very satisfactorily known fission properties, for example barrier heights from {sup 70}Se to the heaviest elements, multiple fission modes in the Ra region, asymmetry of mass division in fission and the triple-humped structure found in light actinides. In the superheavy region we find barriers consistent with the observed half-lives. We have completed production calculations and obtain barrier heights for 5254 nuclei heavier than A = 170 for all nuclei between the proton and neutron drip lines. The energy is calculated for 5009325 different shapes for each nucleus and the optimum barrier between ground state and separated fragments is determined by

  10. A Laboratory Experiment on the Statistical Theory of Nuclear Reactions

    ERIC Educational Resources Information Center

    Loveland, Walter

    1971-01-01

    Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…

  11. Fusion-fission hybrid studies in the United States

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-05-20

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or /sup 233/U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of /sup 238/U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical.

  12. Introducing the fission-fusion reaction process: using a laser-accelerated Th beam to produce neutron-rich nuclei towards the N=126 waiting point of the r-process

    NASA Astrophysics Data System (ADS)

    Habs, D.; Thirolf, P. G.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Ma, W.; Schreiber, J.

    2011-05-01

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process (the rapid neutron-capture process) around the waiting point N=126 (Kratz et al. in Prog. Part. Nucl. Phys. 59:147, 2007; Arnould et al. in Phys. Rep. 450:97, 2007; Panov and Janka in Astron. Astrophys. 494:829, 2009) by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a polyethylene layer, CH2), where the light fission fragments of the beam fuse with the light fission fragments of the target. Using the `hole-boring' (HB) mode of laser radiation pressure acceleration (RPA) (Robinson et al. in Plasma Phys. Control. Fusion 51:024004, 2009; Henig et al. in Phys. Rev. Lett. 103:245003, 2009; Tajima et al. in Rev. Accel. Sci. Technol. 2:221, 2009) using a high-intensity, short pulse laser, bunches of 232Th with solid-state density can be generated very efficiently from a Th layer (ca. 560 nm thick), placed beneath a deuterated polyethylene foil (CD2 with ca. 520 nm), both forming the production target. Th ions laser-accelerated to about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 production target will be accelerated as well to about 7 MeV/u, also inducing the fission process of 232Th in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 1014 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again when the fragments from the thorium beam strike the Th layer of the reaction target. In contrast to classical radioactive beam facilities, where intense but low-density radioactive beams of one ion species are merged with stable targets, the novel fission-fusion process draws on the fusion between neutron-rich, short

  13. Dynamical interpretation of average fission-fragment kinetic energy systematics and nuclear scission

    SciTech Connect

    Nadtochy, P.N.; Adeev, G.D.

    2005-11-01

    A dynamical interpretation of the well-known systematics for average total kinetic energy of fission fragments over a wide range of the Coulomb parameter (600fission theory--at zero neck radius and at finite neck radius--have been applied in dynamical calculations. Both have resulted in a fairly good description of the dependence of on the Coulomb parameter. The results of dynamical calculations of within three-dimensional Langevin dynamics show that the mean distance between the centers of mass of nascent fragments at the scission configuration increases linearly with the parameter Z{sup 2}/A{sup 1/3}. This distance changes approximately from 2.35R{sub 0} for {sup 119}Xe to 2.6R{sub 0} for {sup 256}Fm. In spite of this increase in mean distance between future fragments at scission, the linear dependence of on the parameter Z{sup 2}/A{sup 1/3} remains approximately valid over a wide range of the Coulomb parameter Z{sup 2}/A{sup 1/3}.

  14. Neutrino-induced Reactions and Neutrino Scattering with Nuclear Targets

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Ha, Eunja; Yang, Ghil-Seok; Kim, Kyungsik; Kajino, T.

    2016-02-01

    We reviewed present status regarding experimental data and theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation for quasielastic region are presented for MiniBooNE data. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data. Finally, we discussed that one step-process in the reaction is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis.

  15. Analysis of prompt fission neutrons in 235U(nth,f) and fission fragment distributions for the thermal neutron induced fission of 234U

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Tarrío, D.; Hambsch, F.-J.; Göök, A.; Jansson, K.; Solders, A.; Rakopoulos, V.; Gustafsson, C.; Lantz, M.; Mattera, A.; Oberstedt, S.; Prokofiev, A. V.; Vidali, M.; Österlund, M.; Pomp, S.

    2016-06-01

    This paper presents the ongoing analysis of two fission experiments. Both projects are part of the collaboration between the nuclear reactions group at Uppsala and the JRC-IRMM. The first experiment deals with the prompt fission neutron multiplicity in the thermal neutron induced fission of 235U(n,f). The second, on the fission fragment properties in the thermal fission of 234U(n,f). The prompt fission neutron multiplicity has been measured at the JRC-IRMM using two liquid scintillators in coincidence with an ionization chamber. The first experimental campaign focused on 235U(nth,f) whereas a second experimental campaign is foreseen later for the same reaction at 5.5 MeV. The goal is to investigate how the so-called sawtooth shape changes as a function of fragment mass and excitation energy. Some harsh experimental conditions were experienced due to the large radiation background. The solution to this will be discussed along with preliminary results. In addition, the analysis of thermal neutron induced fission of 234U(n,f) will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f). Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  16. Mcp5, a meiotic cell cortex protein, is required for nuclear movement mediated by dynein and microtubules in fission yeast

    PubMed Central

    Saito, Takamune T.; Okuzaki, Daisuke; Nojima, Hiroshi

    2006-01-01

    During meiotic prophase I of the fission yeast Schizosaccharomyces pombe, oscillatory nuclear movement occurs. This promotes homologous chromosome pairing and recombination and involves cortical dynein, which plays a pivotal role by generating a pulling force with the help of an unknown dynein anchor. We show that Mcp5, the homologue of the budding yeast dynein anchor Num1, may be this putative dynein anchor. mcp5+ is predominantly expressed during meiotic prophase, and GFP-Mcp5 localizes at the cell cortex. Moreover, the mcp5Δ strain lacks the oscillatory nuclear movement. Accordingly, homologous pairing and recombination rates of the mcp5Δ strain are significantly reduced. Furthermore, the cortical localization of dynein heavy chain 1 appears to be reduced in mcp5Δ cells. Finally, the full function of Mcp5 requires its coiled-coil and pleckstrin homology (PH) domains. Our results suggest that Mcp5 localizes at the cell cortex through its PH domain and functions as a dynein anchor, thereby facilitating nuclear oscillation. PMID:16585273

  17. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors

    SciTech Connect

    Battaglia, Francine

    2008-11-29

    The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results

  18. An experimental investigation of (UF-235)6 fission nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Miley, G. H.

    1979-01-01

    A UF6 handling system was designed for use in conjunction with the existing nuclear-pumped laser vacuum system at a nuclear reactor laboratory to perform the experiments described above. A modification to separate the gas fill system from the vacuum system and thus greatly reduce its volume is described as well as operating procedures for the first controlled nuclear pumping experiments with UF6 vapor contained in the laser cell.

  19. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    NASA Astrophysics Data System (ADS)

    Skobelev, N. K.

    2016-07-01

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable (6Li) and radioactive (6He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and 3He beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei (6Li and 3He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.

  20. New Results on Helium and Tritium Gas Production From Ternary Fission

    NASA Astrophysics Data System (ADS)

    Serot, O.; Wagemans, C.; Heyse, J.

    2005-05-01

    Ternary fission constitutes an important source of helium and tritium gas production in nuclear reactors and in used fuel elements. Data related to this production are therefore requested by nuclear industry. In the present paper, we report results from measurements of the 4He and 3H emission probabilities (denoted LRA/B and t/B, respectively). These measurements concern both thermal neutron-induced fission reactions as well as spontaneous fission decays. For spontaneous fission, data are reported for nuclides ranging from 238Pu up to 252Cf. For thermal neutron-induced fission, results cover target nuclei between 229Th and 251Cf. Based on these and other results, semi-empirical relations are proposed. These correlations are only valid if spontaneous fission data and neutron-induced fission data are considered separately, which shows the impact of the fissioning nucleus-excitation energy on the ternary particle-emission process. In this way, t/B and LRA/B values could be evaluated for fissioning systems not investigated so far. These results could be used for the ternary fission-yield evaluation of the JEFF3.1 library.

  1. Unified ab initio approaches to nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-05-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.

  2. Nuclear fuel cycle analysis of the SABR fusion-fission hybrid transmutation reactor

    NASA Astrophysics Data System (ADS)

    Sommer, Chris; Stacey, Weston; Petrovic, Bojan

    2009-11-01

    Various fuel cycles have been designed and analyzed for the Subcritical Advanced Burner Reactor (SABR). SABR is a sodium cooled fast reactor fueled with transuranics (TRU) from spent fuel of light water reactors and driven by a tokamak fusion neutron source based on ITER physics and technology. SABR employs a four batch fuel cycle using an out-to-in shuffling pattern, with the fuel being reprocessed at the end of each cycle. The reprocessing method assumes recovery rates of 99.9% of the actinides and 0.1% of the fission products remain in the recycled fuel. The reprocessing fuel cycles were analyzed to find an optimal cycle length in terms of burn up, power distribution, and materials limitations. Fuel cycles are analyzed using CEA's ERANOS2.0 code, with fuel residence times limited by radiation damage at 100, 150 and 200 dpa.

  3. Effects of nuclear deformation in dinuclear systems: Application to the fission process

    SciTech Connect

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Ivanova, S. P. Scheid, W.

    2006-02-15

    The relative yields of fission fragments, the mean values of their total kinetic energy, and the variances of their distributions with respect to the total kinetic energy are described within the improved scission-point model. It is shown that, for fixed charge and mass numbers of fragments, the potential energy of the precision configuration as a function of the deformation parameters of the fragments has several minima. The scission at these minima leads to a relative enhancement of the yields of the fragments that have the corresponding values of the total kinetic energy and to the appearance of a fine structure in the mass-energy distribution, this structure being different from that induced by the even-odd effect.

  4. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2016-03-01

    Experimental access to full isotopic fragment distributions is very important to determine the features of the fission process. However, the isotopic identification of fission fragments has been, in the past, partial and scarce. A solution based on the use of inverse kinematics to study transfer-induced fission of exotic actinides was carried out at GANIL, resulting in the first experiment accessing the full identification of a collection of fissioning systems and their corresponding fission fragment distribution. In these experiments, a 238U beam at 6.14 AMeV impinged on a carbon target to produce fissioning systems from U to Am by transfer reactions, and Cf by fusion reactions. Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  5. Measurement of Neutron Induced and Spontaneous Fission in Pu-242 at DANCE

    NASA Astrophysics Data System (ADS)

    Chyzh, Andrii; Wu, C. Y.; Henderson, R.; Couture, A.; Lee, H. Y.; Ullmann, J.; O'Donnell, J. M.; Jandel, M.; Haight, R. C.; Bredeweg, T. A.; Dance Collaboration

    2013-10-01

    Neutron capture and fission reactions are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study neutron induced and spontaneous fission in 242Pu. 2 measurements were performed in 2013. The first experiment was done without the incident neutron beam with the fission tagging ability to study γ-rays emitted in the spontaneous fission of 242Pu. The second one - with the neutron beam to measure both the neutron capture and fission reactions. This is the first direct measurement of prompt fission γ-rays in 242Pu. The γ-ray multiplicity, γ-ray energy, and total energy of γ-rays per fission in 242Pu will be presented. These distributions of the 242Pu spontaneous fission will be compared to those in the 241Pu neutron induced fission. This work was performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Direct reactions for nuclear structure required for fundamental symmetry tests

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Rand, E. T.; Diaz Varela, A.; Ball, G. C.; Bildstein, V.; Faestermann, T.; Hadinia, B.; Hertenberger, R.; Jamieson, D. S.; Jigmeddorj, B.; Leach, K. G.; Svensson, C. E.; Wirth, H.-F.

    2016-09-01

    A program of nuclear structure studies to support fundamental symmetry tests has been initiated. Motivated by the search for an electric dipole moment in 199Hg, the structure in the vicinity has been explored via direct reaction studies. To date, these have included the 198,200Hg(d, d') inelastic scattering reactions, with the aim to obtain information on the E2 and E3 strength distributions, and the 198Hg(d, p) and 200Hg(d, t) reactions to obtain information on the single-particle states in 199Hg. The studies using the 200Hg targets have been fully analyzed using the FRESCO reaction code yielding the E2 and E3 strength distribution to 4 MeV in excitation energy, and the (d, t) single- particle strength to over 3 MeV in excitation energy.

  7. Characterization of the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast

    SciTech Connect

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We cloned the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast. Black-Right-Pointing-Pointer The ptr5{sup +} gene was found to encode nucleoporin 85 (Nup85). Black-Right-Pointing-Pointer Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. Black-Right-Pointing-Pointer Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. Black-Right-Pointing-Pointer Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A){sup +} RNA transport] 1 to 11, which accumulate poly(A){sup +} RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5-1 mutant shows dots- or a ring-like accumulation of poly(A){sup +} RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5{sup +} gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5-1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5-1 mutation. In addition, we found that the ptr5-1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5-1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  8. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    NASA Astrophysics Data System (ADS)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  9. Sigma: Web Retrieval Interface for Nuclear Reaction Data

    SciTech Connect

    Pritychenko,B.; Sonzogni, A.A.

    2008-06-24

    The authors present Sigma, a Web-rich application which provides user-friendly access in processing and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The main interface includes browsing using a periodic table and a directory tree, basic and advanced search capabilities, interactive plots of cross sections, angular distributions and spectra, comparisons between evaluated and experimental data, computations between different cross section sets. Interactive energy-angle, neutron cross section uncertainties plots and visualization of covariance matrices are under development. Sigma is publicly available at the National Nuclear Data Center website at www.nndc.bnl.gov/sigma.

  10. Sigma: Web Retrieval Interface for Nuclear Reaction Data

    SciTech Connect

    Pritychenko, B. Sonzogni, A.A.

    2008-12-15

    We present Sigma, a Web-rich application which provides user-friendly access in processing and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The main interface includes browsing using a periodic table and a directory tree, basic and advanced search capabilities, interactive plots of cross sections, angular distributions and spectra, comparisons between evaluated and experimental data, computations between different cross section sets. Interactive energy-angle, neutron cross section uncertainties plots and visualization of covariance matrices are under development. Sigma is publicly available at the National Nuclear Data Center website at (http://www.nndc.bnl.gov/sigma)

  11. A New Method of Prompt Fission Neutron Energy Spectrum Unfolding

    SciTech Connect

    Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.

    2010-11-25

    The prompt neutron emission in spontaneous fission of {sup 252}Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the {sup 252}Cf(sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 10{sup 7} fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  12. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  13. BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-10-01

    Nuclear reaction rates are quantities of fundamental importance in astrophysics. Substantial efforts have been devoted in the last decades to measuring or calculating them. This paper presents a detailed description of the Brussels nuclear reaction rate library BRUSLIB and of the nuclear network generator NETGEN. BRUSLIB is made of two parts. The first one contains the 1999 NACRE compilation based on experimental data for 86 reactions with (mainly) stable targets up to Si. BRUSLIB provides an electronic link to the published, as well as to a large body of unpublished, NACRE data containing adopted rates, as well as lower and upper limits. The second part of BRUSLIB concerns nuclear reaction rate predictions to complement the experimentally-based rates. An electronic access is provided to tables of rates calculated within a statistical Hauser-Feshbach approximation, which limits the reliability of the rates to reactions producing compound nuclei with a high enough level density. These calculations make use of global and coherent microscopic nuclear models for the quantities entering the rate calculations. The use of such models makes the BRUSLIB rate library unique. A description of the Nuclear Network Generator NETGEN that complements the BRUSLIB package is also presented. NETGEN is a tool to generate nuclear reaction rates for temperature grids specified by the user. The information it provides can be used for a large variety of applications, including Big Bang nucleosynthesis, the energy generation and nucleosynthesis associated with the non-explosive and explosive hydrogen to silicon burning stages, or the synthesis of the heavy nuclides through the s-, α- and r-, rp- or p-processes.

  14. Nuclear Reaction Analysis of Helium Retention in 6H SiC as a function of irradiation and annealing

    NASA Astrophysics Data System (ADS)

    Bissell, L. J.; Smith, R. J.; Shutthanadan, V.; Adams, E. M.; Thevuthasan, S.; Jiang, W.; Weber, W. J.; Zhang, Y.

    2002-10-01

    Silicon carbide has been proposed as a coating material in nuclear fuel, and silicon carbide composites have been proposed as cladding material in advanced gas-cooled and light water reactors. As such, the effects of irradiation and fission gases on the performance of SiC in the reactor environment are critical in several ways. Since He serves as a fission gas, low-energy He (< 50 keV) will be colliding with coolant gas and outer surface cladding layers. As such, it is important to understand He retention in SiC under advanced reactor operating conditions. We investigated He retention in single crystal 6H SiC as a function of irradiation dose and annealing temperature using nuclear reaction analysis (NRA) via the 3He(D,alpha)1H reaction. Helium ions with 40 keV energy were implanted in the SiC to a depth of ˜360 nm at room temperature under high vacuum conditions. The samples were then transferred to another high vacuum chamber where the NRA was performed using a 1.0 MeV D+ beam. Helium retention was studied as a function of D+ irradiation dose from 5 x 10^(16) to 4 x 10^(18) D+ /cm2, and as a function of annealing temperature ranging from 300 1600 K. No significant helium loss was observed under this dosage range, and only annealing temperatures above 1400 K caused measurable loss of helium. These results will be discussed along with the details associated with the 3He(D,alpha)1H nuclear reaction.

  15. The fission yeast NIMA kinase Fin1p is required for spindle function and nuclear envelope integrity

    PubMed Central

    Krien, Michael J.E.; West, Robert R.; John, Ulrik P.; Koniaras, Kalli; McIntosh, J.Richard; O’Connell, Matthew J.

    2002-01-01

    NIMA kinases appear to be the least functionally conserved mitotic regulators, being implicated in chromosome condensation in fungi and in spindle function in metazoans. We demonstrate here that the fission yeast NIMA homologue, Fin1p, can induce profound chromosome condensation in the absence of the condensin and topoisomerase II, indicating that Fin1p-induced condensation differs from mitotic condensation. Fin1p expression is transcriptionally and post-translationally cell cycle-regulated, with Fin1p kinase activity maximal from the metaphase–anaphase transition to G1. Fin1p is localized to the spindle pole body and fin1Δ cells are hypersensitive to anti-microtubule drugs, synthetically lethal with a number of spindle mutants and require the spindle checkpoint for viability. Moreover, fin1Δ cells show unusual and extensive elaborations of the nuclear envelope. These data support a role for Fin1p in spindle function and nuclear envelope transactions at or after the metaphase– anaphase transition that may be generally applicable to other NIMA-family members. PMID:11927555

  16. Search for the inverse fission of uranium

    NASA Astrophysics Data System (ADS)

    Loveland, W.; Yanez, R.; Beckerman, J.; Leonard, M.; Pettersson, G.; Gross, C. J.; Shapira, D.; Liang, J. F.; Kohley, Z.; Varner, R. L.

    2011-10-01

    A search for the ``inverse fission'' of uranium has been made. Two ``inverse fission'' reactions were studied, the reaction of 124Sn + 100Mo and the reaction of 132Sn + 100Mo. In the former case, evaporation residues were searched for using (a) in-beam α-spectroscopy, (b) post-irradiation α-spectroscopy and (c) in-beam detection of recoiling evaporation residues while in the latter case, the evaporation residue, 230U was searched for using post irradiation radio-analytical techniques. Data acquisition and analysis is on-going with expected upper limits or production cross sections of < 1 microbarn. The implications of these results for determining the fusion probability, PCN, in the collisions of massive nuclei are discussed. This work was supported in part by the USDOE Office of Nuclear Physics under Grant DE-FG06-97ER41026 and Contract No. DE-AC02-06CH11357.

  17. Approximate penetration factors for nuclear reactions of astrophysical interest

    NASA Technical Reports Server (NTRS)

    Humblet, J.; Fowler, W. A.; Zimmerman, B. A.

    1987-01-01

    The ranges of validity of approximations of P(l), the penetration factor which appears in the parameterization of nuclear-reaction cross sections at low energies and is employed in the extrapolation of laboratory data to even lower energies of astrophysical interest, are investigated analytically. Consideration is given to the WKB approximation, P(l) at the energy of the total barrier, approximations derived from the asymptotic expansion of G(l) for large eta, approximations for small values of the parameter x, applications of P(l) to nuclear reactions, and the dependence of P(l) on channel radius. Numerical results are presented in tables and graphs, and parameter ranges where the danger of serious errors is high are identified.

  18. Review of ENDF/B-VI Fission-Product Cross Sections[Evaluated Nuclear Data File

    SciTech Connect

    Wright, R.Q.; MacFarlane, R.E.

    2000-04-01

    In response to concerns raised in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 93-2, the US Department of Energy (DOE) developed a comprehensive program to help assure that the DOE maintain and enhance its capability to predict the criticality of systems throughout the complex. Tasks developed to implement the response to DNFSB recommendation 93-2 included Critical Experiments, Criticality Benchmarks, Training, Analytical Methods, and Nuclear Data. The Nuclear Data Task consists of a program of differential measurements at the Oak Ridge Electron Linear Accelerator (ORELA), precise fitting of the differential data with the generalized least-squares fitting code SAMMY to represent the data with resonance parameters using the Reich-Moore formalism along with covariance (uncertainty) information, and the development of complete evaluations for selected nuclides for inclusion in the Evaluated Nuclear Data File (ENDFB).

  19. Thermal fission rates with temperature dependent fission barriers

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  20. Absence of entrance channel effects in fission fragment anisotropies of the {sup 215}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Singh, N. L.; Rath, P. K.; Kumar, G. Kiran; Thomas, R. G.; Santra, S.; Nayak, B. K.; Saxena, A.; Choudhury, R. K.; Golda, K. S.; Jhingan, A.; Kumar, R.; Sugathan, P.; Singh, Hardev

    2009-08-15

    Fission fragment angular distributions have been measured for the reactions {sup 11}B+{sup 204}Pb and {sup 18}O+{sup 197}Au, both leading to the same compound nucleus {sup 215}Fr at near barrier energies. The measured fission fragment anisotropies as a function of E{sub c.m.}/V{sub B} are found to be consistent with the predictions of the standard saddle point statistical model (SSPM) for both the systems, suggesting the absence of entrance channel effects on fission fragment anisotropies even though the entrance channel mass asymmetries for both these systems fall on either side of the Bussinaro-Gallone critical mass asymmetry. The consistency of the present results with SSPM predictions can be understood within the framework of the pre-equilibrium fission model where fission before K equilibration is severely inhibited by the high values of ratios of fission barrier height to nuclear temperature.

  1. Time-dependent Green's functions approach to nuclear reactions

    SciTech Connect

    Rios, Arnau; Danielewicz, Pawel

    2008-04-04

    Nonequilibrium Green's functions represent underutilized means of studying evolution of quantum many-body systems. In view of a rising computer power, an effort is underway to apply the Green's functions to the dynamics of central nuclear reactions. As the first step, mean-field evolution for the density matrix for colliding slabs is studied in one dimension. Strategy to extend the dynamics to correlations is described.

  2. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  3. A Transport Model for Nuclear Reactions Induced by Radioactive Beams

    SciTech Connect

    Li Baoan; Chen Liewen; Das, Champak B.; Das Gupta, Subal; Gale, Charles; Ko, C.M.; Yong, G.-C.; Zuo Wei

    2005-10-14

    Major ingredients of an isospin and momentum dependent transport model for nuclear reactions induced by radioactive beams are outlined. Within the IBUU04 version of this model we study several experimental probes of the equation of state of neutron-rich matter, especially the density dependence of the nuclear symmetry energy. Comparing with the recent experimental data from NSCL/MSU on isospin diffusion, we found a nuclear symmetry energy of Esym({rho}) {approx_equal} 31.6({rho}/{rho}0)1.05 at subnormal densities. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.

  4. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  5. A Covariance Generation Methodology for Fission Product Yields

    NASA Astrophysics Data System (ADS)

    Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.

    2016-03-01

    Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  6. Visualized kinematics code for two-body nuclear reactions

    NASA Astrophysics Data System (ADS)

    Lee, E. J.; Chae, K. Y.

    2016-05-01

    The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.

  7. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propusive force.

  8. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propulsive force.

  9. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  10. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast.

    PubMed

    Ding, Lin; Laor, Dana; Weisman, Ronit; Forsburg, Susan L

    2014-07-01

    Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically, this exploits temperature-sensitive mutations or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the anchor-away technique, originally designed in budding yeast by Laemmli lab. This method relies on a rapamycin-mediated interaction between the FRB- and FKBP12-binding domains to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof of principle.

  11. Research on fission induced plasmas and nuclear pumped lasers at the Los Alamos Scientific Laboratory

    NASA Technical Reports Server (NTRS)

    Helmick, H. H.

    1979-01-01

    A program of research on gaseous uranium and uranium plasmas is being conducted at The Los Alamos Scientific Laboratory under sponsorship of the National Aeronautics and Space Administration. The objective of this work is twofold: (1) to demonstrate the proof of principle of a gaseous uranium fueled reactor, and (2) pursue fundamental research on nuclear pumped lasers. The relevancy of the two parallel programs is embodied in the possibility of a high-performance uranium plasma reactor being used as the power supply for a nuclear pumped laser system. The accomplishments in the two above fields are summarized

  12. Rydberg phases of Hydrogen and low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  13. Neutron Capture and Fission Measurement on ^238Pu at DANCE

    NASA Astrophysics Data System (ADS)

    Chyzh, Andrii; Wu, Ching-Yen; Kwan, Elaine; Henderson, Roger; Gostic, Jolie; Couture, Aaron; Young, Hye; Ullmann, John; O'Donnell, John; Jandel, Marian; Haight, Robert; Bredeweg, Todd

    2012-10-01

    Neutron capture and fission reactions on actinides are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study the neutron capture reactions in ^238Pu. Because of extreme spontaneous α-radioactivity in ^238Pu and associated safety issues, 3 separate experiments were performed in 2010-2012. The 1st measurement was done without fission tagging on a 396-μg thick target. The 2nd one was with PPAC on the same target. The 3rd final measurement was done on a thin target with a mass of 40 μg in order to reduce α-background load on PPAC. This was the first such measurement in a laboratory environment. The absolute ^238Pu(n,γ) cross section is presented together with the prompt γ-ray multiplicity in the ^238Pu(n,f) reaction.

  14. Shell Effects in Fusion-Fission of Heavy and Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Bogatchev, A. A.; Itkis, I. M.; Jandel, M.; Kliman, J.; Kniajeva, G. N.; Kondratiev, N. A.; Korzyukov, I. V.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Voskresenski, V. M.; Zagrebaev, V. I.; Rusanov, A. Ya.; Corradi, L.; Gadea, A.; Latina, L.; Stefanini, A. M.; Szilner, S.; Trotta, M.; Vinodkumar, A. M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Äystö, J.; Khlebnikov, S. V.; Rubchenya, V. A.; Trzaska, W. H.; Vakhtin, D. N.; Goverdovski, A. A.; Hanappe, F.; Materna, T.; Dorvaux, O.; Rowley, N.; Stuttge, L.; Giardina, G.

    2003-07-01

    The process of fusion-fission of heavy and superheavy nuclei with Z=82-122 formed in the reactions with 48Ca, 58Fe and 64Ni ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy ) and the Accelerator of the Laboratory of University of Jyväskylä (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[1] and the neutron multi-detector DEMON[2,3]. As a result of the experiments, mass and energy distributions (MED) of fission fragments, cross-sections of fission, quasi-fission and evaporation residues, multiplicities of neutrons and γ-quanta and their dependence on the mechanism of formation and decay of compound systems have been studied.

  15. Graphite for the nuclear industry

    SciTech Connect

    Burchell, T.D.; Fuller, E.L.; Romanoski, G.R.; Strizak, J.P.

    1991-01-01

    Graphite finds applications in both fission and fusion reactors. Fission reactors harness the energy liberated when heavy elements, such as uranium or plutonium, fragment or fission''. Reactors of this type have existed for nearly 50 years. The first nuclear fission reactor, Chicago Pile No. 1, was constructed of graphite under a football stand at Stagg Field, University of Chicago. Fusion energy devices will produce power by utilizing the energy produced when isotopes of the element hydrogen are fused together to form helium, the same reaction that powers our sun. The role of graphite is very different in these two reactor systems. Here we summarize the function of the graphite in fission and fusion reactors, detailing the reasons for their selection and discussing some of the challenges associated with their application in nuclear fission and fusion reactors. 10 refs., 15 figs., 1 tab.

  16. Adiabatic description of dissipative processes in heavy-ion reactions and fission. II. Weak versus strong coupling and the role of the collective velocity

    SciTech Connect

    Nemes, M.C.; Weidenmueller, H.A.

    1981-09-01

    We investigate the friction and diffusion coefficients for a collective variable (nuclear shape degree of freedom, treated classically) coupled with other (intrinsic) degrees of freedom. An adiabatic representation for the intrinsic degrees of freedom is used. The results are remarkably different from those given by linear response theory: the lowest order nonvanishing contribution to the friction coefficient is proportional to Q/sup 3/. The physical origin of this behavior is discussed as well as the limits of validity of weak and strong coupling regimes, and their applicability to fission and deep inelastic scattering.

  17. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  18. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    SciTech Connect

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fission yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.

  19. The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast.

    PubMed

    Takaine, Masak; Imada, Kazuki; Numata, Osamu; Nakamura, Taro; Nakano, Kentaro

    2014-10-15

    Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei.

  20. Advances in Development of the Fission Product Extraction Process for the Separation of Cesium and Strontium from Spent Nuclear Fuel

    SciTech Connect

    JAck D. Law

    2007-09-01

    The Fission Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Advanced Fuel Cycle Initiative for the simultaneous separation of cesium (Cs) and strontium (Sr) from spent light water reactor (LWR) fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository, and when combined with the separation of americium (Am) and curium (Cm), could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with a simulated feed solution in 3.3-cm centrifugal contactors are detailed. Removal efficiencies, distribution coefficient data, coextraction of metals, and process hydrodynamic performance are discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel.

  1. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    SciTech Connect

    Gauld, I.C.

    2005-08-12

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k{sub eff}) to determine the net importance of cross sections to k{sub eff}. The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: {sup 151}Sm, {sup 103}Rh, {sup 155}Eu, {sup 150}Sm, {sup 152}Sm, {sup 153}Eu, {sup 154}Eu, and {sup 143}Nd.

  2. Nuclear structure from direct reactions with rare isotopes: observables, methods and highlights

    NASA Astrophysics Data System (ADS)

    Obertelli, Alexandre

    2016-09-01

    An overview of direct reactions employed for nuclear structure studies is presented. The basic and most used analysis methods of elastic and inelastic scattering, transfer reactions and intermediate-energy removal reactions are reviewed. The most relevant observables from direct reactions regarding the nuclear many-body problem, as well as related experimental techniques, are illustrated through recent achievements with unstable nuclei.

  3. Modelling of reaction cross sections and prompt neutron emission

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Tudora, A.; Oberstedt, S.

    2010-10-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  4. Studies of neutron induced fission and nuclear reaction for AHWR and ADS applications

    NASA Astrophysics Data System (ADS)

    Prajapati, Paresh M.

    The rapidly expanding oil sands of western Canada, the third largest reserves in the world, are creating serious challenges, such as ecological harm, labour shortages, and extensive natural gas consumption. This thesis develops three practical real options models to evaluate the feasibility of oil sands projects and to estimate the optimal rate of oil sands expansion, while accounting for the stated concerns. (Abstract shortened by UMI.).

  5. Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei

    SciTech Connect

    Quaglioni, S.

    2014-05-05

    Our ultimate goal is to develop a fundamental theory and efficient computational tools to describe dynamic processes between nuclei and to use such tools toward supporting several DOE milestones by: 1) performing predictive calculations of difficult-to-measure landmark reactions for nuclear astrophysics, such as those driving the neutrino signature of our sun; 2) improving our understanding of the structure of nuclei near the neutron drip line, which will be the focus of the DOE’s Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University; but also 3) helping to reveal the true nature of the nuclear force. Furthermore, these theoretical developments will support plasma diagnostic efforts at facilities dedicated to the development of terrestrial fusion energy.

  6. Experimental Observation of Nuclear Reactions in Palladium and Uranium

    SciTech Connect

    J. Dufour; D. Murat; X. Dufour; J. Foos

    2001-11-12

    By submitting various metals (Pd, U) containing hydrogen (from 2000 to 700 000 atoms of hydrogen for 1 000 000 atoms of the host metal) to the combined action of electrical currents and magnetic fields, we have observed a sizeable exothermal effect (from 0.1 to 8 W for 500 mg of metal used). This effect is beyond experimental errors, the energy output being typically 130 to 250{percent} of the energy input and not of chemical origin (exothermal effect in the range of 7000 MJ/mol of metal in the case of palladium and of 60 MJ/mol in the case of uranium). New chemical species also appear in the processes metals. It has been shown by a QED calculation that resonances of long lifetime (s), nuclear dimensions (fm), and low energy of formation (eV) could exist. This concept seems to look like the 'shrunken hydrogen atoms' proposed by various authors. It is indeed very different in two ways (a) being a metastable state, it needs energy to be formed (a few eV) and reverts to normal hydrogen after a few seconds, liberating back its energy of formation (it is thus not the source of the energy observed); (b) its formation can be described as the electron spin/proton nuclear spin interaction becoming first order in the lattice environment (whereas it is third order in a normal hydrogen atom). Moreover, we consider that the hydrex cannot yield a neutron because this reaction is strongly endothermic. To explain our results, we put forward the following working hypothesis: In a metal lattice and under proper conditions, the formation of such resonances (metastable state) could be favored. We propose to call them HYDREX, and we assume that they are actually formed in cold fusion (CF) and low-energy nuclear reaction (LENR) experiments. Once formed, a number of HYDREX could gather around a nucleus of the lattice to form a cluster of nuclear size and of very long life time compared to nuclear time (10{sup -22} s). In this cluster, nuclear rearrangements could take place, yielding

  7. EXFOR systems manual: Nuclear reaction data exchange format

    SciTech Connect

    McLane, V.

    1996-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. In addition to storing the data and its bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine).

  8. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    NASA Astrophysics Data System (ADS)

    Jagielski, J.; Ostaszewska, U.; Bielinski, D. M.; Grambole, D.; Romaniec, M.; Jozwik, I.; Kozinski, R.; Kosinska, A.

    2016-03-01

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H+, He+ and Ar+ studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  9. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    DOEpatents

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  10. Studies of fission hindrance in hot nuclei

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-06-01

    The study of dissipation in hot nuclear systems is a subject of great current interest. Different experimental techniques and observables have recently been utilized which axe sensitive to the dissipation in large-scale shape rearrangements, such as those encountered in heavy-ion fusion, fission and quasifission reactions. To study the dynamical shape evolution of hot nuclear systems it is necessary to measure properties (or processes) that are sensitive to the time-scale on which these shape changes occur. Several methods, such as the emission of prescission particles (n, p and {alpha}) and {gamma}-rays, have been used to study the fission time-scale in relation to these (well known) decay processes. Recently it has also been pointed out that measurements of the evaporation residue cross section, which are very sensitive to the competition between particle emission and fission, probe the fission time-scale. This paper will present recent studies of the evaporation residue cross section in the {sup 32}S+{sup 184} system carried out at the ATLAS Fragment Mass Analyzer, including the methods for obtaining absolute cross sections.

  11. Advanced scheme for high-yield laser driven nuclear reactions

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-01-01

    The use of a low contrast nanosecond laser pulse with a relatively low intensity (3  ×  1016 W cm-2) allowed the enhancing of the yield of induced nuclear reactions in advanced solid targets. In particular the ‘ultraclean’ proton-boron fusion reaction, producing energetic alpha particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as a target. A combination of the specific target composition and the laser pulse temporal shape allowed the enhancing of the yield of alpha particles up to 109 per steradian. This result can be ascribed to the interaction of the long-laser pre-pulse with the target and to the optimal target geometry and composition.

  12. Indirect measurements of nuclear astrophysics reactions at CIAE

    SciTech Connect

    Liu Weiping; Li Zhihong; Bai Xixiang; Wang Youbao; Lian Gang; Guo Bing; Zeng Sheng; Yan Shengquan; Wang Baoxiang; Su Jun; Shu Nengchuan; Chen Yongshou

    2006-11-02

    This paper described the nuclear astrophysical studies using the unstable ion beam facility GIRAFFE, by indirect measurements. We measured the angular distributions for some single proton or neutron transfer reactions, such as 7Be(d,n)8B, 11C(d,n)12N, 8Li(d,n)9Be, 8Li(d,p)9Li and 13N(d,n)14O in inverse kinematics, and derived the astrophysical S-factors or reaction rates of 7Be(p,{gamma})8B, 11C(p,{gamma})12N, 8Li(n,{gamma})9Li, 13N(p,{gamma})14O by asymptotic normalization coefficient, spectroscopic factor, and R-matrix approach at astrophysically relevant energies.

  13. A Nuclear Reaction Analysis study of fluorine uptake in flint

    SciTech Connect

    Jin, Jian-Yue; Weathers, D. L.; Picton, F.; Hughes, B. F.; Duggan, J. L.; McDaniel, F. D.; Matteson, S.

    1999-06-10

    Nuclear Reaction Analysis (NRA) using the {sup 19}F(p,{alpha}{gamma}){sup 16}O resonance reaction is a powerful method of fluorine depth profiling. We have used this method to study the fluorine uptake phenomenon in mineral flint, which could potentially develop into a method of dating archeological flint artifacts. Flint samples cut with a rock saw were immersed in aqueous fluoride solutions for different times for the uptake study. The results suggest that fluorine uptake is not a simple phenomenon, but rather a combination of several simultaneous processes. Fluorine surface adsorption appears to play an important role in developing the fluorine profiles. The surface adsorption was affected by several parameters such as pH value and fluorine concentration in the solution, among others. The problem of surface charging for the insulator materials during ion bombardment is also reported.

  14. Number-Theory in Nuclear-Physics in Number-Theory: Non-Primality Factorization As Fission VS. Primality As Fusion; Composites' Islands of INstability: Feshbach-Resonances?

    NASA Astrophysics Data System (ADS)

    Smith, A.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility/ factorization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 x 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 x 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 x 4 = 2 x 2 x 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 x 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16, ... Could inter-digit Feshbach-resonances exist??? Possible applications to: quantum-information/ computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory "short-cut" method: Rayleigh(1870)-Polya(1922)-"Anderson"(1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics; ...abound!!! Watkins [www.secamlocal.ex.ac.uk/people/staff/mrwatkin/] "Number-Theory in Physics" many interconnections: "pure"-maths number-theory to physics including Siegel [AMS Joint Mtg.(2002)-Abs.# 973-60-124] inversion of statistics on-average digits' Newcomb(1881)-Weyl(14-16)-Benford(38)-law to reveal both the quantum and BEQS (digits = bosons = digits:"spinEless-boZos"). 1881 1885 1901 1905 1925 < 1927, altering quantum-theory history!!!

  15. Feasibility of an antiproton catalyzed fission fragment rocket

    SciTech Connect

    Hdinger, D.S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fissile fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the requirement to maintain a critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in {sup 238}U, with a neutron multiplicity of 13.7 neutrons per fission. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results seen, the engine design presented is inadequate. Limitations introduced by the reaction fluid far outweigh the simplicity-of-design gained. Despite this, the basic idea of using the antiproton-U interaction as a source of spacecraft propulsion warrants further study.

  16. Constraining the level density using fission of lead projectiles

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2015-10-01

    The nuclear level density is one of the main ingredients for the statistical description of the fission process. In this work, we propose to constrain the description of this parameter by using fission reactions induced by protons and light ions on 208Pb at high kinetic energies. The experiment was performed at GSI (Darmstadt), where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to measure the atomic number of the two fission fragments in coincidence. This measurement permitted us to obtain with high precision the partial fission cross sections and the width of the charge distribution as a function of the atomic number of the fissioning system. These data and others previously measured, covering a large range in fissility, are compared to state-of-the-art calculations. The results reveal that total and partial fission cross sections cannot unambiguously constrain the level density at ground-state and saddle-point deformations and additional observables, such as the width of the charge distribution of the final fission fragments, are required.

  17. Talk About Nuclear Power

    ERIC Educational Resources Information Center

    Tremlett, Lewis

    1976-01-01

    Presents an overview of the relation of nuclear power to human health and the environment, and discusses the advantages and disadvantages of nuclear power as an energy source urging technical educators to inculcate an awareness of the problems associated with the production of energy. Describes the fission reaction process, the hazards of…

  18. Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick

    2014-10-01

    The goal of Magneto-Inertial Fusion (MIF) is to relax the extreme pressure requirements of inertial confinement fusion by magnetizing the fuel. Understanding the level of magnetization at stagnation is critical for charting the performance of any MIF concept. We show here that the secondary nuclear reactions in magnetized deuterium plasma can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The secondary neutron yields and spectra are examined and shown to be extremely sensitive to BR. In particular, embedded magnetic fields are shown to affect profoundly the isotropy of the secondary neutron spectra. Detailed modeling of these spectra along with the ratio of overall secondary to primary neutron yields is used to form the basis of a diagnostic technique used to infer BR at stagnation. Effects of gradients in density, temperature and magnetic field strength are examined, as well as other possible non-uniform fuel configurations. Computational results employing a fully kinetic treatment of charged reaction product transport and Monte Carlo treatment of secondary reactions are compared to results from recent experiments at Sandia National Laboratories' Z machine testing the MAGnetized Liner Inertial Fusion (MagLIF) concept. The technique reveals that the charged reaction products were highly magnetized in these experiments. Implications for eventual ignition-relevant experiments with deuterium-tritium fuel are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Deuteron Induced ( d,p) and ( d,2p) Nuclear Reactions up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Kara, A.

    2013-06-01

    Many studies have shown that the nuclear reactions of charged particles with nuclei are very important in many fields of nuclear physics. The interactions of deuterons with nuclei have been especially the subject of common research in the history of nuclear physics. Moreover, the knowledge of cross section for deuteron-nucleus interactions are required for various application such as space applications, accelerator driven sub-critical systems, nuclear medicine, nuclear fission reactors and controlled thermonuclear fusion reactors. Particularly, the future of controlled thermonuclear fusion reactors is largely dependent on the nuclear reaction cross section data and the selection of structural fusion materials. Finally, the reaction cross section data of deuteron induced reactions on fusion structural materials are of great importance for development and design of both experimental and commercial fusion devices. In this work, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as Al ( Aluminium), Ti ( Titanium), Cu ( Copper), Ni ( Nickel), Co ( Cobalt), Fe ( Iron), Zr ( Zirconium), Hf ( Hafnium) and Ta ( Tantalum) have been investigated. The new calculations on the excitation functions of 27 Al( d,2p) 27 Mg, 47 Ti( d,2p) 47 Sc, 65 Cu( d,2p) 65 Ni, 58 Ni( d,2p) 58 Co, 59 Co( d,2p) 59 Fe, 58 Fe( d,p) 59 Fe, 96 Zr( d,p) 97 Zr, 180 Hf ( d,p) 181 Hf and 181 Ta( d,p) 182 Ta have been carried out for incident deuteron energies up to 50 MeV. In these calculations, the equilibrium and pre-equilibrium effects for ( d,p) and ( d,2p) reactions have been investigated. The equilibrium effects are calculated according to the Weisskopf-Ewing ( WE) Model. The pre-equilibrium calculations involve the new evaluated the Geometry Dependent Hybrid Model ( GDH) and Hybrid Model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the

  20. Nuclear Structure of 97Mo from the (d, p) Reaction

    NASA Astrophysics Data System (ADS)

    Chowdhury, M. S.; Booth, W.

    The reaction 96Mo(d, p)97Mo has been studied at 12 MeV using the tandem Van de Graaff accelerator and a multi-channel magnetic spectrograph at the Atomic Weapon Research Establishment, Aldermaston, England. Angular distributions of protons are measured at 12 different angles from 5° to 87.5° at an interval of 7.5° and the reaction products are detected in nuclear emulsion plates. Thirty levels in the energy range from 0.000 to 2.458 MeV have been observed and absolute differential cross-sections for these levels have been measured. The data are analyzed in terms of the distorted-wave Born approximation (DWBA) theory of the direct reactions, and spins, parities and spectroscopic factors are deduced for various levels. Ambiguity in the spin assignments of d5/2 and d3/2 which is allowed in ln = 2(d, p) transition is removed by using the corresponding L-value of the 95 Mo(t, p)97Mo reaction at Et = 12 MeV. Determined value of the sum of spectroscopic factors for transfers of d5/2 neutrons suggests configuration mixing in the ground state of 96Mo. The properties of the levels in 97Mo are compared with previous experimental results and theoretical predictions.

  1. A Comprehensive Approach to Determination of Nuclear Data of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Chiba, Satoshi; Nishio, Katsuhisa; Aritomo, Yohihiro; Koura, Hiroyuki; Iwamoto, Osamu; Makii, Hiroyuki; Nishinaka, Ichiro; Hirose, Kentaro

    2016-02-01

    A comprehensive approach to determine nuclear data of unstable nuclei will be described. It consists of a measurement of fission and capture cross sections, mass distribution of fission fragments (independent fission yields) and number of prompt fission neutrons by the method of surrogate reactions. A multi-dimensional Langevin model is being developed to estimate the independent fission yields theoretically. Furthermore, the β decay properties of the fission fragments, almost all are neutron-rich unstable nuclei, are investigated systematically by improving the gross theory of β decay, which will yield information on the decay heat and delayed-neutron data

  2. True ternary fission

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, K. R.; Balasubramaniam, M.; von Oertzen, W.

    2015-04-01

    The study of the ternary fission of nuclei has received new interest recently. It is of general interest for nuclear dynamics, although the process is very rare. In the present work, we discuss the possibilities of true ternary fission (fragment masses A >30 ) in 252Cf for different mass splits. These mass splits are strongly favored in a collinear geometry. Based on the three cluster model (TCM), it is shown that the true ternary fission into fragments with almost equal masses is one of the possible fission modes in 252Cf . For general decays it is shown that the formation of the lightest fragment at the center has the highest probability. Further the formation of tin isotopes and/or other closed shell fragments are favored. For the decay products the presence of closed shell nuclei among the three fragments enhances the decay probabilities.

  3. Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel

    SciTech Connect

    Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

    2014-09-01

    Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10µm x 10µm) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer­ sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

  4. Traces of fission products in southeast Spain after the Fukushima nuclear accident.

    PubMed

    Piñero García, F; Ferro García, M A

    2012-12-01

    Traces of (131)I, (134)Cs and (137)Cs were measured after the Fukushima nuclear accident between 23 March and 13 April 2011 in southeast Spain. The movement of the radioactive cloud toward southeast Spain was reconstructed based on the backward and forward trajectory cluster analyses. Polar maritime air masses which had originated over North America transported the radioactive plume toward the southeast Spain. Aerosols, rainwater, vegetables and cheese were analyzed to determine the radioactive risk. The highest concentrations of (131)I, (134)Cs and (137)Cs in air samples were 2.63 ± 0.12 mBq/m(3); 0.10 ± 0.03 mBq/m(3); 0.09 ± 0.02 mBq/m(3), respectively. After precipitation on April 3rd, the maximum concentrations of (131)I, (134)Cs and (137)Cs were detected in rainwater samples, 1.10 ± 0.16 mBq/L; 0.022 ± 0.003 mBq/L; 0.05 ± 0.03 mBq/L, respectively. As a consequence, (131)I was transferred to the human food chain, and found in chard and goat cheese, 0.97 ± 0.20 Bq/kg and 0.52 ± 0.08 Bq/kg, respectively. The traces of (131)I, (134)Cs and (137)Cs detected in the different samples were so low, that there is no impact on human health or the environment in Spain after the Fukushima nuclear accident.

  5. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe.

    PubMed

    Asakawa, Haruhiko; Yang, Hui-Ju; Yamamoto, Takaharu G; Ohtsuki, Chizuru; Chikashige, Yuji; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2014-01-01

    The nuclear pore complex (NPC) is an enormous proteinaceous complex composed of multiple copies of about 30 different proteins called nucleoporins. In this study, we analyzed the composition of the NPC in the model organism Schizosaccharomyces pombe using strains in which individual nucleoporins were tagged with GFP. We identified 31 proteins as nucleoporins by their localization to the nuclear periphery. Gene disruption analysis in previous studies coupled with gene disruption analysis in the present study indicates that 15 of these nucleoporins are essential for vegetative cell growth and the other 16 nucleoporins are non-essential. Among the 16 non-essential nucleoporins, 11 are required for normal progression through meiosis and their disruption caused abnormal spore formation or poor spore viability. Based on fluorescence measurements of GFP-fused nucleoporins, we estimated the composition of the NPC in S. pombe and found that the organization of the S. pombe NPC is largely similar to that of other organisms; a single NPC was estimated as being 45.8-47.8 MDa in size. We also used fluorescence measurements of single NPCs and quantitative western blotting to analyze the composition of the Nup107-Nup160 subcomplex, which plays an indispensable role in NPC organization and function. Our analysis revealed low amounts of Nup107 and Nup131 and high amounts of Nup132 in the Nup107-Nup160 subcomplex, suggesting that the composition of this complex in S. pombe may differ from that in S. cerevisiae and humans. Comparative analysis of NPCs in various organisms will lead to a comprehensive understanding of the functional architecture of the NPC.

  6. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe

    PubMed Central

    Asakawa, Haruhiko; Yang, Hui-Ju; Yamamoto, Takaharu G; Ohtsuki, Chizuru; Chikashige, Yuji; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2014-01-01

    The nuclear pore complex (NPC) is an enormous proteinaceous complex composed of multiple copies of about 30 different proteins called nucleoporins. In this study, we analyzed the composition of the NPC in the model organism Schizosaccharomyces pombe using strains in which individual nucleoporins were tagged with GFP. We identified 31 proteins as nucleoporins by their localization to the nuclear periphery. Gene disruption analysis in previous studies coupled with gene disruption analysis in the present study indicates that 15 of these nucleoporins are essential for vegetative cell growth and the other 16 nucleoporins are non-essential. Among the 16 non-essential nucleoporins, 11 are required for normal progression through meiosis and their disruption caused abnormal spore formation or poor spore viability. Based on fluorescence measurements of GFP-fused nucleoporins, we estimated the composition of the NPC in S. pombe and found that the organization of the S. pombe NPC is largely similar to that of other organisms; a single NPC was estimated as being 45.8–47.8 MDa in size. We also used fluorescence measurements of single NPCs and quantitative western blotting to analyze the composition of the Nup107-Nup160 subcomplex, which plays an indispensable role in NPC organization and function. Our analysis revealed low amounts of Nup107 and Nup131 and high amounts of Nup132 in the Nup107-Nup160 subcomplex, suggesting that the composition of this complex in S. pombe may differ from that in S. cerevisiae and humans. Comparative analysis of NPCs in various organisms will lead to a comprehensive understanding of the functional architecture of the NPC. PMID:24637836

  7. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  8. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  9. Spontaneous fission of light californium isotopes produced in 206,207,208Pb + 34,36S reactions; new nuclide 238Cf

    NASA Astrophysics Data System (ADS)

    Lazarev, Yu. A.; Shirokovsky, I. V.; Utyonkov, V. K.; Tretyakova, S. P.; Kutner, V. B.

    1995-02-01

    In bombardments of 206,207,208Pb with 34S and 206Pb with 36S, we identified a new spontaneously fissioning isotope 238Cf with T sf ≈ T {1}/{2} = 21 ± 2 ms and obtained evidence of the production of a new isotope 237Cf with T {1}/{2} = 2.1 ± 0.3 s. The spontaneous-fission (SF) decay mode was established for 240Cf; its SF branch was estimated to be bsf ˜ 2 × 10 -2. We measured also bsf ⩽ 1.4 × 10 -4 for 242Cf and estimated bsf ˜ 10 -1 for 237Cf. The production cross sections of 238Cf in the 206,207,208Pb + 34S reactions were measured to be in the range of 0.3 to 1.1 nb. Finally, we probed the influence of the neutron excess in the N = 20 projectile 36S on cross sections of fusion-evaporation reactions occurring on lead targets.

  10. Study of Exotic Nuclear Structures via Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Takechi, Maya

    2009-10-01

    Nuclear radius is one of the most basic physical quantities to study unknown exotic nuclei. A number of radii for unstable nuclei were studied through measurements of interaction cross sections (σI) at high energies, using the Glauber-type calculation (Optical-Limit approximation (OLA) of Glauber theory) to investigate halo and skin structures of exotic nuclei. On the other hand, it was indicated that reaction cross sections (σR) at intermediate energies (from several tens to hundreds of MeV/nucleon) were more sensitive to dilute nucleon density distribution owing to large nucleon-nucleon total cross sections (σNN) compared to high-energy region. Recently, we developed a new method to deduce nucleon density distributions from the energy dependences of σ R, through the precise measurements of σ R for various nuclei and some modifications of Glauber-type calculation. Using this method, we studied nucleon density distributions of light nuclei by measuring σ R for those nuclei at HIMAC (Heavy ion Medical Accelerator in CHIBA), NIRS (National Institute of Radiological Sciences). And very recently, we deduced nuclear radii of neutron-rich Ne isotopes (^28-32Ne) which are in the island-of-inversion region by measuring σI using BigRIPS at RIBF (RI Beam Factory) to study nuclear structures of those isotopes using our method. In this workshop, results of nucleon density distributions obtained at HIMAC and results of the studies of Ne isotopes at RIBF will be introduced and discussed.

  11. On microscopic theory of radiative nuclear reaction characteristics

    NASA Astrophysics Data System (ADS)

    Kamerdzhiev, S. P.; Achakovskiy, O. I.; Avdeenkov, A. V.; Goriely, S.

    2016-07-01

    A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even-even semi-magic Sn and Ni isotopes as well as for double-magic 132Sn and 208Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed. Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.

  12. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  13. Nuclear reactions in Rb, Sr, Y, and Zr targets

    NASA Astrophysics Data System (ADS)

    Regnier, S.; Lavielle, B.; Simonoff, M.; Simonoff, G. N.

    1982-09-01

    Excitation functions of all stable or long-lived krypton isotopes were measured or estimated for incident protons and neutrons in Rb, Sr, Y, and Zr targets. Experimental data concern mostly Y and Zr targets bombarded with 0.059 to 24 GeV protons. The products 78-86Kr, 74As, 75Se, 83,84,86Rb, 85Sr, 88Y, 88,95Zr, and 92Nbm were measured using high-sensitivity mass spectrometry and nondestructive γ counting. Lighter products such as 38,39,42Ar and 12 radioactive isotopes from 7Be to 65Zn were also measured in some cases and their cross sections are given in an appendix. Most excitation functions pass through a maximum between 0.4 and 0.8 GeV, and the peak energy could depend on the ΔA value. The results, combined with a general survey of nuclear reactions in Ga to Nb targets, permitted the development of new systematics leading to the calculation of spallation-produced Kr isotopes in the moon bombarded with galactic and solar cosmic rays. Compared to cosmogenic krypton measured in nine well-documented lunar samples, 83Kr is predicted with a precision better than 33% (1σ) and the production ratios iKr/83Kr are predicted to better than 25%. It is concluded that the cosmogenic ratios 86Kr/83Kr and 81Kr/83Kr are dependent on the main target element concentrations. This should be taken into account in strontium-rich samples when calculating exposure ages of extraterrestrial materials. NUCLEAR REACTIONS 89Y and Zr, (p, spallation) E=0.059-24 GeV; measured σ(E) for 78-86Kr and 12 radioactive products. Systematics of p- and n-induced reactions in Rb, Sr, Y, and Zr. Cosmogenic krypton.

  14. Airborne fission products in the High Arctic after the Fukushima nuclear accident.

    PubMed

    Paatero, Jussi; Vira, Julius; Siitari-Kauppi, Marja; Hatakka, Juha; Holmén, Kim; Viisanen, Yrjö

    2012-12-01

    High-volume aerosol samples were collected at the Mt. Zeppelin Global Atmosphere Watch station, Ny-Ålesund, Svalbard (78°58'N, 11°53'E). The samples were analysed to find out if the radionuclide emissions from the Fukushima nuclear power plant accident in March 2011 could be detected also in the atmosphere of the High Arctic. Iodine-131 and (134)Cs and (137)Cs were observed from 25 March 2011 onwards. The maximum (131)I, (134)Cs and (137)Cs activity concentrations were 810 ± 20, 659 ± 13, and 675 ± 7 μBq/m(3), respectively. The comparison between the measured (131)I activity concentrations at Mt. Zeppelin and those calculated with the SILAM dispersion model revealed that the timing of plume movements could be rather well predicted with the model. The activity concentration levels between the measurements and the model calculations deviated. This can be due to the inaccuracies in the source term. The (134)Cs:(137)Cs activity ratio recorded in Svalbard was high compared to earlier incidents. The ratio was close to 1 which is in agreement with other studies of the Fukushima releases. This distinctive activity ratio in the Fukushima debris could be used as a tracer in Arctic radioecology studies if the activity concentrations are high enough to be detected.

  15. Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure.

    PubMed

    Grand, Ralph S; Pichugina, Tatyana; Gehlen, Lutz R; Jones, M Beatrix; Tsai, Peter; Allison, Jane R; Martienssen, Robert; O'Sullivan, Justin M

    2014-11-10

    Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking.

  16. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE PAGES

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  17. Ab initio calculations of nuclear reactions important for astrophysics

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Dohet-Eraly, Jeremy; Calci, Angelo; Horiuchi, Wataru; Hupin, Guillaume; Quaglioni, Sofia

    2016-09-01

    In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. One of the newly developed approaches is the No-Core Shell Model with Continuum (NCSMC), capable of describing both bound and scattering states in light nuclei simultaneously. We will present NCSMC results for reactions important for astrophysics that are difficult to measure at relevant low energies, such as 3He(α,γ)7Be and 3H(α,γ)7Li and 11C(p,γ)12N radiative capture, as well as the 3H(d,n)4He fusion. We will also address prospects of calculating the 2H(α,γ)6Li capture reaction within the NCSMC formalism. Prepared in part by LLNL under Contract DE-AC52-07NA27344. Supported by the U.S. DOE, OS, NP, under Work Proposal No. SCW1158, and by the NSERC Grant No. SAPIN-2016-00033. TRIUMF receives funding from the NRC Canada.

  18. TANGRA-Setup for the Investigation of Nuclear Fission Induced by 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Ruskov, I. N.; Kopatch, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Shvetsov, V. N.; Hambsch, F.-J.; Oberstedt, S.; Noy, R. Capote; Sedyshev, P. V.; Grozdanov, D. N.; Ivanov, I. Zh.; Aleksakhin, V. Yu.; Bogolubov, E. P.; Barmakov, Yu. N.; Khabarov, S. V.; Krasnoperov, A. V.; Krylov, A. R.; Obhođaš, J.; Pikelner, L. B.; Rapatskiy, V. L.; Rogachev, A. V.; Rogov, Yu. N.; Ryzhkov, V. I.; Sadovsky, A. B.; Salmin, R. A.; Sapozhnikov, M. G.; Slepnev, V. M.; Sudac, D.; Tarasov, O. G.; Valković, V.; Yurkov, D. I.; Zamyatin, N. I.; Zeynalov, Sh. S.; Zontikov, A. O.; Zubarev, E. V.

    The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn'), (n,xn'γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, with a 64-pixel Si charge-particle detector incorporated into its vacuum chamber for registering of α-particles formed in the T(d, n)4He reaction, as a source of 14.1 MeV steady-state neutrons radiation with an intensity of ∼5x107n/s; a combined iron (Fe), borated polyethylene (BPE) and lead (Pb) compact shielding-collimator; a reconfigurable multi-detector (neutron plus gamma ray detecting system); a fast computer with 2 (x16 channels) PCI-E 100 MHz ADC cards for data acquisition and hard disk storage; Linux ROOT data acquisition, visualization and analysis software. The signals from the α-particle detector are used to 'tag' the neutrons with the coincident α-particles. Counting the coincidences between the α-particle and the reaction-product detectors in a 20ns time-interval improves the effect/background-ratio by a factor of ∼200 as well as the accuracy in the neutron flux determination, which decreases noticeably the overall experimental data uncertainty.

  19. Tracking dissipation in capture reactions

    SciTech Connect

    Materna, T.; Bouchat, V.; Kinnard, V.; Hanappe, F.; Dorvaux, O.; Stuttge, L.; Schmitt, C.; Siwek-Wilczynska, K.; Aritomo, Y.; Bogatchev, A.; Prokhorova, E.; Ohta, M.

    2004-04-12

    Nuclear dissipation in capture reactions is investigated using backtracing. Combining the analysis procedure with dynamical models, the difficult and long-standing problem of competition and mixing of quasi-fission and fusion-fission is solved for the first time. At low excitation energy a new protocol able to handle low statistics data gives access to the precession neutron multiplicity in two different systems 48Ca + 208Pb, Pu. The results are in agreement with a domination of fusion-fission in the case of 256No and an equal mixing of quasi-fission and fusion-fission in the case of Z = 114. The nature of the relevant dissipation is determined as one-body dissipation.

  20. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  1. In-beam fission study for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  2. Nuclear Protein Quality Is Regulated by the Ubiquitin-Proteasome System through the Activity of Ubc4 and San1 in Fission Yeast*

    PubMed Central

    Matsuo, Yuzy; Kishimoto, Hayafumi; Tanae, Katsuhiro; Kitamura, Kenji; Katayama, Satoshi; Kawamukai, Makoto

    2011-01-01

    Eukaryotic cells monitor and maintain protein quality through a set of protein quality control (PQC) systems whose role is to minimize the harmful effects of the accumulation of aberrant proteins. Although these PQC systems have been extensively studied in the cytoplasm, nuclear PQC systems are not well understood. The present work shows the existence of a nuclear PQC system mediated by the ubiquitin-proteasome system in the fission yeast Schizosaccharomyces pombe. Asf1-30, a mutant form of the histone chaperone Asf1, was used as a model substrate for the study of the nuclear PQC. A temperature-sensitive Asf1-30 protein localized to the nucleus was selectively degraded by the ubiquitin-proteasome system. The Asf1-30 mutant protein was highly ubiquitinated at higher temperatures, and it remained stable in an mts2-1 mutant, which lacks proteasome activity. The E2 enzyme Ubc4 was identified among 11 candidate proteins as the ubiquitin-conjugating enzyme in this system, and San1 was selected among 100 candidates as the ubiquitin ligase (E3) targeting Asf1-30 for degradation. San1, but not other nuclear E3s, showed specificity for the mutant nuclear Asf1-30, but did not show activity against wild-type Asf1. These data clearly showed that the aberrant nuclear protein was degraded by a defined set of E1-E2-E3 enzymes through the ubiquitin-proteasome system. The data also show, for the first time, the presence of a nuclear PQC system in fission yeast. PMID:21324894

  3. Fission-fusion neutron source

    NASA Astrophysics Data System (ADS)

    Yu, Jinnan; Yu, Gang

    2009-04-01

    In order to meet the requirements of fusion power reactors and nuclear waste treatment, a concept of fission-fusion neutron source is proposed, which consists of a LiD assembly located in the heavy water region of the China Advanced Research Reactor. This assembly of LiD fuel rods will be irradiated with slow neutrons and will produce fusion neutrons in the central hole via the reaction 6Li(n, α). More precisely, tritium ions with a high energy of 2.739 MeV will be produced in LiD by the impinging slow neutrons. The tritium ions will in turn bombard the deuterium ions present in the LiD assembly, which will induce fusion reaction and then the production of 14 MeV neutrons. The fusion reaction rate will increase with the accumulation of tritium in LiD by the reaction between tritium and deuteron recoils produced by the 14 MeV neutrons. When the concentration of tritium reaches 0.5 · 10 22 and the fraction of fusion reactions between tritium and deuteron recoils approaches 1, the 14 MeV neutron flux is doubled and redoubled, an so forth, approaching saturation in which the tritium produced at a time t is exhausted by the fusion reactions to keep constant the tritium concentration in LiD.

  4. Screening in Low Energy Nuclear Reactions of Importance to Astrophysics

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Hora, Heinz; Luo, Nie

    2004-05-01

    Recent experiments in the LUNAR (Laboratory for Underground Nuclear Astrophysics) project have shown anonymously high electron screening may occur during acceleration driven low energy (<400 kV) ion bombardment of solid targets [1]. These effects become particularly important for E/ Ue < 100 (here E= ion energy and Ue = electron-screening potential energy). Thus these effects become significant for the understanding of reactions involved in nucleosynthesis of the elements and the interpretation of astrophysical data [1]. Another example of the behavior is the surprising threshold behavior near 18 keV for deuterons stopping in 3He gas at energies below the Bragg peak [2]. As pointed out in ref [1], the theoretical explanation for these effects is still under debate. Several researchers have proposed variations of the Trojan Horse Method (THM) to explain these effects [3]. In this paper, we propose an alternate mechanism associated with electron charge accumulation around the target atoms arising from the solid-state structure of the host. This concept will be explained in terms of density functional calculations of charge density profiles in a target undergoing ion dynamic effects [4]. REFERENCES [1] F. Strieder, et al., Naturwissenschaften (2000)88:461-467 [2] A. Formicola, et al., (2000) Eur Phys J. A 8:443-446 [3] S. Typel and H H Wolter, (2000) Few-Body System 29:75-93 [4] G. Miley and H. Hora, (2000) Nuclear Reactions in Solids, APS mtg. Lansing, MI [5] G. Miley, A. Lipson, N. Luo, and H. Hora, (2003) IEEE NSS/MIC Conf., Portland, OR

  5. Meiotic nuclear movements in fission yeast are regulated by the transcription factor Mei4 downstream of a Cds1-dependent replication checkpoint pathway.

    PubMed

    Ruan, Kun; Yamamoto, Takaharu G; Asakawa, Haruhiko; Chikashige, Yuji; Masukata, Hisao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-03-01

    In meiosis, the fission yeast nucleus displays an elongated morphology, moving back and forth within the cell; these nuclear movements continue for approximately 2 h before meiotic nuclear divisions. Meiotic DNA replication occurs in an early phase of the nuclear movements and is followed by meiotic prophase. Here we report that in mutants deficient in meiotic DNA replication, the duration of nuclear movements is strikingly prolonged to four to 5 h. We found that this prolongation was caused by the Cds1-dependent replication checkpoint, which represses expression of the mei4(+) gene encoding a meiosis-specific transcription factor. In the absence of Mei4, nuclear movements persisted for more than 8 h. In contrast, overproduction of Mei4 accelerated termination of nuclear movements to approximately 30 min. These results show that Mei4 is involved in the termination of nuclear movements and that Mei4-mediated regulatory pathways link a DNA replication checkpoint to the termination of nuclear movements.

  6. The coupled kinetics of grain growth and fission product behavior in nuclear fuel under degraded-core accident conditions

    NASA Astrophysics Data System (ADS)

    Rest, J.

    1985-04-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, and cesium release from (1) irradiated high-burnup LWR fuel in a flowing steam atmosphere during high-temperature, in-cell heating tests (performed at Oak Ridge National Laboratory) and (2) trace-irradiated LWR fuel during severe-fuel-damage (SFD) tests (performed in the PBF reactor in Idaho). A theory of grain boundary sweeping of gas bubbles has been included within the FASTGRASS-VFP formalism. This theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges, and provides a means of determining whether gas bubbles are caught up and moved along by a moving grain boundary or whether the grain boundary is only temporarily retarded by the bubbles and then breaks away. In addition, as FASTGRASS-VFP provides for a mechanistic calculation of ultra- and intergranular fission product behavior, the coupled calculation between fission gas behavior and grain growth is kinetically comprehensive. Results of the analyses demonstrate that intragranular fission product behavior during both types of tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. The effect of fuel oxidation by steam on fission product and grain growth behavior is also considered. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in high-burnup fuel are highlighted.

  7. Control of a laser inertial confinement fusion-fission power plant

    SciTech Connect

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  8. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  9. New Mechanism of Low Energy Nuclear Reactions Using Superlow

    NASA Astrophysics Data System (ADS)

    Gareev, F. A.; Zhidkova, I. E.

    2006-03-01

    We proposed a new mechanism of LENR (low energy nuclear reactions) cooperative processes in the whole system - nuclei+atoms+condensed matter can occur at smaller threshold than the corresponding ones assoiciated with free constituents. The cooperative processes can be induced and enhanced by (``superlow energy'') external fields. The excess heat is the emission of internal energy, and transmutations from LENR are the result of redistribution of the internal energy of the whole system. A review of possible stimulation mechanisms of LENR is presented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the known fundamental physical laws: The universal resonance synchronization principle, and based on it, different enhancement mechanisms of reaction rates are responsible for these processes. The excitation and ionization of atoms may play the role of a trigger for LENR. F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0511092 v1 30 Nov 2005. F.A. Gareev, In: FPB-98, Novosibirsk, June 1998, p.92; F.A.Gareev, G.F. Gareeva, in: Novosibirsk, July 2000, p.161. F.A. Gareev, I.E. Zhidkova and Yu.L. Ratis, Preprint JINR P4-2004-68, Dubna, 2004. F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0505021 9 May 2005.

  10. Measurements of yields of fission products in the reaction of {sup 238}U with high-energy p, d and n beams

    SciTech Connect

    Nolen, J.A.; Ahmad, I.; Back, B.B.

    1995-08-01

    An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.

  11. Formation of Heavy Compound Nuclei, Their Survival and Correlation with Longtime-Scale Fission

    SciTech Connect

    Karamian, S. A.; Yakushev, A.-B.

    2007-05-22

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reaction for the synthesis of Zc (110-118) nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94Kr or 100Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed.

  12. Study of the fission isomer 240mAm (S. F. ) using laser-induced nuclear polarization. [Cross section of 238U(7Li,5n) at 48 MeV

    SciTech Connect

    Beene, J. R.; Bemis, Jr., C. E.; Young, J. P.; Kramer, S. D.

    1980-01-01

    The optical isomer shift was measured for the spontaneously fissioning isomer /sup 240m/Am. This shift is approximately 27 times greater than the /sup 241/Am-/sup 243/Am isotope shift, and confirms the conventional identification of fission isomers with large deformation. The measured isomer shift is consistent with a nuclear quadrupole moment of 30.4 b, in agreement with theoretical expectations. 2 figures. (RWR)

  13. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  14. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-01

    Radioactive fission product 131I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, 134Cs and 137Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m-3 in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of 134Cs and 137Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m-3) variation of stable cesium (133Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  15. The US nuclear reaction data network. Summary of the first meeting, March 13 & 14 1996

    SciTech Connect

    1996-03-01

    The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclear Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN.

  16. Measurement of fission products yields in the quasi-mono-energetic neutron-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Mukherji, Sadhana; Suryanarayana, S. V.; Jagadeesan, K. C.; Thakare, S. V.; Sharma, S. C.

    2016-08-01

    The cumulative yields of various fission products in the 232Th(n, f) reaction at average neutron energies of 5.42, 7.75, 9.35 and 12.53 MeV have been determined by using an off-line γ-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction by using the proton energies of 7.8, 12, 16 and 20 MeV. The mass chain yields were obtained from the cumulative fission yields by using the charge distribution correction of medium energy fission. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect. On the other hand, the higher yield around mass number 133-134 and 143-144 as well as their complementary products were explained based on the standard I and standard II asymmetric mode of fission. From the mass yield data, the average value of light mass (), heavy mass (), the average number of neutrons (< ν >) and the peak-to-valley (P / V) ratios at different neutron energies of present work and literature data were obtained in the 232Th(n, f) reaction. The different parameters of the mass yield distribution in the 232Th(n, f) reaction were compared with the similar data in the 232Th(γ, f) reaction at comparable excitation energy and a surprising difference was observed.

  17. Gas-leaking fuel elements number and fission gas product coolant volumetric activities assessment in the VVER-440 nuclear power plant

    NASA Astrophysics Data System (ADS)

    Szuta, Marcin

    1992-07-01

    In a nuclear power plant it is required to monitor continuously the number of gas-leaking fuel elements and the contamination level of the primary coolant by fission gas products. It is proposed to use the radiation monitoring system equipped with the computer technics provided with the suitable program package for fulfilment this requirements. The input data to start up the program consists of the 88Kr volumetric activity measured by the radiation monitoring system and three actual technological parameters: coolant temperature at inlet, thermal power and coolant flow rate.

  18. Nuclear Chemistry: Include It in Your Curriculum.

    ERIC Educational Resources Information Center

    Atwood, Charles H.; Sheline, R. K.

    1989-01-01

    Some of the topics that might be included in a nuclear chemistry section are explored. Offers radioactivity, closed shells in nuclei, energy of nuclear processes, nuclear reactions, and fission and fusion as topics of interest. Provided are ideas and examples for each. (MVL)

  19. The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle

    SciTech Connect

    Kleykamp, H.

    1988-03-01

    A survey of work at the Kernforschungszentrum Karlsruhe is presented on the chemical state of selected fission products that are relevant in the fuel cycle of light water reactor (LWR) and fast breeder reactor fuels. The influence of fuel type and irradiation progress on the composition of the Mo-Tc-Ru-Rh-Pd fission product alloys precipitated in the oxide matrix is examined using the respective multicomponent phase diagrams. The kinetics of dissolution of these phases in nitric acid at the reprocessing stage is discussed. Composition and structure of the residues, and the reprecipitation phenomena from highly active waste (HAW), are elucidated. A second metamorphosis of the fission products is recognized during the vitrification process. The formation of Ru(Rh) oxide and Pd(Rh, U, Te) alloys in simulated vitrified HAW concentrate and in HAW concentrate from the reprocessing of irradiated LWR fuels in interpreted on the basis of heterogeneous equilibria.

  20. ADRIANA project: Identification of research infrastructures for the SFR, within the frame of European industrial initiative for sustainable nuclear fission

    SciTech Connect

    Latge, C.; Gastaldi, O.; Vala, L.; Gerbeth, G.; Homann, C.; Benoit, P.; Papin, J.; Girault, N.; Roelofs, F.; Bucenieks, I.; Paffumi, E.; Ciampichetti, A.

    2012-07-01

    Fast neutron reactors have a large potential as sustainable energy source. In particular, Sodium Fast Reactors (SFR) with a closed fuel cycle and potential for minor actinide burning may allow minimization of volume and heat load of high level waste and provide improved use of natural resources (as compared to only 1% energy recovery in the current once-through fuel cycle, with Thermal Reactors, such as EPR). The coordinating action ADRIANA (Advanced Reactor Initiative And Network Arrangement) has been initiated to set up a network dedicated to the construction and operation of research infrastructures in support of developments for the European Industrial Initiative for sustainable nuclear fission. The Project sets these objectives for the following reactor systems and related technologies: Sodium Fast Reactor (SFR), Lead Fast Reactor (LFR), Gas Fast Reactor (GFR, including very high temperature technologies), Instrumentation, diagnostics and experimental devices, Irradiation facilities and hot laboratories, Zero power reactors. Among the fast reactor systems, the sodium cooled reactor has the most comprehensive technological basis as result of the experience gained from worldwide operation of several experimental, prototype and commercial size reactors, since the forties (see Appendix I). This concept is currently considered as the reference, within the European strategy. Innovations are needed to further enhance safety, reduce capital cost and improve efficiency reliability and operability, making the Generation IV SFR an attractive option for electricity production. Currently, in France, a moderate (500 to 600 MWe) power demonstrator named ASTRID (Advanced Sodium Test Reactor for Industrial Demonstration) has been proposed and endorsed by EU. Presently, the reference configuration is a pool concept. General R and D needs have been identified and experimental facilities required to satisfy these needs have been listed for the following domains: material and