Sample records for nuclear reactors technology

  1. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  2. Fast Breeder Reactors in Sweden: Vision and Reality.

    PubMed

    Fjaestad, Maja

    2015-01-01

    The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and '60s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy. Sweden had advanced plans for a nuclear breeder program, but canceled them in the middle of the 1970s with the rise of nuclear skepticism. The article investigates the nuclear breeder as a technological vision. The nuclear breeder reactor is an example of a technological future that did not meet its industrial expectations. But that does not change the fact that the breeder was an influential technology. Decisions about the contemporary reactors were taken with the idea that in a foreseeable future they would be replaced with the efficient breeder. The article argues that general themes in the history of the breeder reactor can deepen our understanding of the mechanisms behind technological change.

  3. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, Stuart Andrew

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  4. Current Abstracts Nuclear Reactors and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`smore » Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.« less

  5. Nuclear Reactors and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests inmore » NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.« less

  6. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    NASA Astrophysics Data System (ADS)

    Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-01

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  7. 75 FR 51025 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle... meeting. SUMMARY: This notice announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT... back end of the nuclear fuel cycle. The Commission will provide advice and make recommendations on...

  8. 75 FR 36648 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY: Office of Nuclear Energy, DOE. ACTION: Notice of open meeting correction. On June 21, 2010, the Department of Energy published a notice announcing an open meeting of the Reactor...

  9. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developedmore » to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.« less

  10. Advanced Demonstration and Test Reactor Options Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petti, David Andrew; Hill, R.; Gehin, J.

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercializationmore » of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy”. Advanced reactors are defined in this study as reactors that use coolants other than water. Advanced reactor technologies have the potential to expand the energy applications, enhance the competitiveness, and improve the sustainability of nuclear energy.« less

  11. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  12. Application of Molten Salt Reactor Technology to Nuclear Electric Propulsion Mission

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) and planetary surface power missions require reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional gas cooled, liquid metal, and heat pipe space reactors.

  13. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  14. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  15. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    NASA Astrophysics Data System (ADS)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  16. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less

  17. Developing the European Center of Competence on VVER-type nuclear power reactors

    NASA Astrophysics Data System (ADS)

    Geraskin, Nikolay; Pironkov, Lyubomir; Kulikov, Evgeny; Glebov, Vasily

    2017-09-01

    This paper presents the results of the European educational projects CORONA and CORONA-II which are dedicated to preserving and further developing nuclear knowledge and competencies in the area of VVER-type nuclear power reactors technologies (Water-Water Energetic Reactor, WWER or VVER). The development of the European Center of Competence for VVER-technology is focused on master's degree programmes. The specifics of a systematic approach to training in the area of VVER-type nuclear power reactors technologies are analysed. This paper discusses enhancement of the training opportunities of the European Center that have arisen from advances in methodology and distance education. With a special attention paid to the European Nuclear Education Network (ENEN), the possibilities of further development of the international cooperation between European countries and educational institutions are examined.

  18. 75 FR 35001 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open... facsimile (202) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional information may also be...

  19. 75 FR 61139 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open...) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional information will be available at http...

  20. SoLid Detector Technology

    NASA Astrophysics Data System (ADS)

    Labare, Mathieu

    2017-09-01

    SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.

  1. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  2. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclearmore » waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.« less

  3. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    NASA Astrophysics Data System (ADS)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.

  4. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  5. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    NASA Astrophysics Data System (ADS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").

  6. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  7. Small reactor power system for space application

    NASA Technical Reports Server (NTRS)

    Shirbacheh, M.

    1987-01-01

    A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.

  8. 75 FR 68629 - Massachusetts Institute of Technology Reactor Notice of Issuance of Renewed Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-020; NRC-2010-0313] Massachusetts Institute of Technology Reactor Notice of Issuance of Renewed Facility Operating; License No. R-37 The U.S. Nuclear... Institute of Technology (the licensee), which authorizes continued operation of the Massachusetts Institute...

  9. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  10. New Technological Platform for the National Nuclear Energy Strategy Development

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Rachkov, V. I.

    2017-12-01

    The paper considers the need to update the development strategy of Russia's nuclear power industry and various approaches to the large-scale nuclear power development. Problems of making decisions on fast neutron reactors and closed nuclear fuel cycle (NFC) arrangement are discussed. The current state of the development of fast neutron reactors and closed NFC technologies in Russia is considered and major problems are highlighted.

  11. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen (Technical Monitor)

    2002-01-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multimegawatt nuclear reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multimegawatt gas-cooled and liquid metal concepts.

  12. Preliminary design studies on a nuclear seawater desalination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibisono, A. F.; Jung, Y. H.; Choi, J.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclearmore » heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)« less

  13. Early Program Development

    NASA Image and Video Library

    1963-01-01

    This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.

  14. Developing the European Center of Competence on VVER-Type Nuclear Power Reactors

    ERIC Educational Resources Information Center

    Geraskin, Nikolay; Pironkov, Lyubomir; Kulikov, Evgeny; Glebov, Vasily

    2017-01-01

    This paper presents the results of the European educational projects CORONA and CORONA-II which are dedicated to preserving and further developing nuclear knowledge and competencies in the area of VVER-type nuclear power reactors technologies (Water-Water Energetic Reactor, WWER or VVER). The development of the European Center of Competence for…

  15. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    NASA Astrophysics Data System (ADS)

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  16. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political opposition specific to sodium. In conclusion, research and technology breakthroughs in nuclear power are needed for shaping a sustainable low carbon future. International cooperation is key for sharing costs of research and development of the required novel technologies and cost of first experimental reactors needed to demonstrate enabling technologies. At the same time technology breakthroughs are developed, pre-normative research is required to support codification work and harmonized regulations that will ultimately apply to safety and security features of resulting innovative reactor types and fuel cycles.

  17. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-06-10

    scale pressurized water reactors suitable for destroyer-sized vessels or for alternative nuclear power systems using thorium liquid salt technology...or to design a new reactor type potentially using a thorium liquid salt reactor developed for maritime use. The committee recommends an increase of...either using a pressurized water reactor or a thorium liquid salt reactor . (Page 158) Senate The Senate Armed Services Committee, in its report

  18. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.

  19. Long-term proliferation and safeguards issues in future technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keisch, B.; Auerbach, C.; Fainberg, A.

    1986-02-01

    The purpose of the task was to assess the effect of potential new technologies, nuclear and non-nuclear, on safeguards needs and non-proliferation policies, and to explore possible solutions to some of the problems envisaged. Eight subdivisions were considered: New Enrichment Technologies; Non-Aqueous Reprocessing Technologies; Fusion; Accelerator-Driven Reactor Systems; New Reactor Types; Heavy Water and Deuterium; Long-Term Storage of Spent Fuel; and Other Future Technologies (Non-Nuclear). For each of these subdivisions, a careful review of the current world-wide effort in the field provided a means of subjectively estimating the viability and qualitative probability of fruition of promising technologies. Technologies for whichmore » safeguards and non-proliferation requirements have been thoroughly considered by others were not restudied here (e.g., the Fast Breeder Reactor). The time scale considered was 5 to 40 years for possible initial demonstration although, in some cases, a somewhat optimistic viewpoint was embraced. Conventional nuclear-material safeguards are only part of the overall non-proliferation regime. Other aspects are international agreements, export controls on sensitive technologies, classification of information, intelligence gathering, and diplomatic initiatives. The focus here is on safeguards, export controls, and classification.« less

  20. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  1. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George W. Griffith

    2011-10-01

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows formore » ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.« less

  2. Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Hill, T. J.; Stanley, M. L.; Martinell, J. S.

    1993-01-01

    The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.

  3. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  4. Nuclear Energy Policy

    DTIC Science & Technology

    2009-12-10

    Small Modular Reactors Rising cost estimates for large conventional nuclear power plants—widely projected to be $6 billion or more—have contributed to growing interest in proposals for smaller, modular reactors. Ranging from about 40 to 350 megawatts of electrical capacity, such reactors would be only a fraction of the size of current commercial reactors. Several modular reactors would be installed together to make up a power block with a single control room, under most concepts. Modular reactor concepts would use a variety of technologies,

  5. A Practical Approach to Starting Fission Surface Power Development

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.

  6. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  7. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  8. Evaluation Metrics Applied to Accident Tolerant Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner

    2014-10-01

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuelsmore » and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.« less

  9. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  10. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  11. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  12. Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach

    NASA Astrophysics Data System (ADS)

    Passerini, Stefano

    For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test the robustness of the conclusions presented in the MIT Fuel Cycle Study. These conclusions are found to still hold, even when considering alternative technologies and different sets of simulation assumptions. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. Optimization metrics of interest for different stakeholders in the fuel cycle (economics, fuel resource utilization, high level waste, transuranics/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then successfully used to arrive at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify non-inferior solutions according to Pareto's dominance approach to optimization. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  13. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  14. Transmutation of Isotopes --- Ecological and Energy Production Aspects

    NASA Astrophysics Data System (ADS)

    Gudowski, Waclaw

    2000-01-01

    This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional nuclear power. In this context a lot of hopes and expectations have been expressed for novel systems called Accelerator-Driven Systems, Accelerator-Driven Transmutation of Waste or just Hybrid Reactors. All these names are used for description of the same nuclear system combining a powerful particle accelerator with a subcritical reactor. A careful analysis of possible environmental impact of ATW together with limitation of this technology is presented also in this paper.

  15. Characterization of alternative electric generation technologies for the SPS comparative assessment. Volume 1: Summary of central station technologies

    NASA Astrophysics Data System (ADS)

    1980-08-01

    The technologies selected for the detailed characterization were: solar technology; terrestrial photovoltaic (200 MWe); coal technologies; conventional high sulfur coal combustion with advanced fine gas desulfurization (1250 MWe), and open cycle gas turbine combined cycle plant with low Btu gasifier (1250 MWe); and nuclear technologies: conventional light water reactor (1250 MWe), liquid metal fast breeder reactor (1250 MWe), and magnetic fusion reactor (1320 MWe). A brief technical summary of each power plant design is given.

  16. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Nuclear Materials and Equipment * Nuclear Regulatory Commission, Office of International Programs, Tel. (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  17. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors, Enrichment, Reprocessing, Fuel Fabrication, and Heavy Water...-6050. 10 CFR 205.300 through 205.379 and part 590. Nuclear Materials and Equipment * Nuclear Regulatory...

  18. From Confrontation to Cooperation: 8th International Seminar on Nuclear War

    NASA Astrophysics Data System (ADS)

    Zichichi, A.; Dardo, M.

    1992-09-01

    The Table of Contents for the full book PDF is as follows: * OPENING SESSION * A. Zichichi: Opening Statements * R. Nicolosi: Opening Statements * MESSAGES * CONTRIBUTIONS * "The Contribution of the Erice Seminars in East-West-North-South Scientific Relations" * 1. LASER TECHNOLOGY * "Progress in laser technology" * "Progress in laboratory high gain ICF: prospects for the future" * "Applications of laser in metallurgy" * "Laser tissue interactions in medicine and surgery" * "Laser fusion" * "Compact X-ray lasers in the laboratory" * "Alternative method for inertial confinement" * "Laser technology in China" * 2. NUCLEAR AND CHEMICAL SAFETY * "Reactor safety and reactor design" * "Thereotical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core" * "How really to attain reactor safely" * "The problem of chemical weapons" * "Long terms genetic effects of nuclear and chemical accidents" * "Features of the brain which are of importance in understanding the mode of operation of toxic substances and of radiation" * "CO2 and ultra safe reactors" * 3. USE OF MISSILES * "How to convert INF technology for peaceful scientific purposes" * "Beating words into plowshares: a proposal for the peaceful uses of retired nuclear warheads" * "Some thoughts on the peaceful use of retired nuclear warheads" * "Status of the HEFEST project" * 4. OZONE * "Status of the ozone layer problem" * 5. CONVENTIONAL AND NUCLEAR FORCE RESTRUCTURING IN EUROPE * 6. CONFLICT AVOIDANCE MODEL * 7. GENERAL DISCUSSION OF THE WORLD LAB PROJECTS * "East-West-North-South Collaboration in Subnuclear Physics" * "Status of the World Lab in the USSR" * CLOSING SESSION

  19. Proceedings of the 1994 international meeting on reduced enrichment for research and test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    This meeting brought together participants in the international effort to minimize and eventually eliminate the use of highly enriched uranium in civilian nuclear programs. Papers cover the following topics: National programs; fuel cycle; nuclear fuels; analyses; advanced reactors; and reactor conversions. Selected papers have been indexed separately for inclusion to the Energy Science and Technology Database.

  20. AGC 2 Irradiated Material Properties Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  1. AGC 2 Irradiation Creep Strain Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, William E.; Rohrbaugh, David T.; Swank, W. David

    2016-08-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  2. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    PubMed

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  3. The history and perspective of Romania-USA cooperation in the field of technologic transfer of TRIGA reactor concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciocaanescu, M.; Ionescu, M.

    1996-08-01

    The cooperation between Romania and the USA in the field of technologic transfer of nuclear research reactor technology began with the steady state 14 MW{sub t} TRIGA reactor, installed at INR Pitesti, Romania. It is the first in the range of TRIGA reactors proposed as a materials testing reactor. The first criticality was reached in November 19, 1979 and first operation at 14 MW{sub t} level was in February 1980. The paper will present the short history of this cooperation and the perspective for a new cooperation for building a Nuclear Heating Plant using the TRIGA reactor concept for demonstrationmore » purpose. The energy crisis is a world-wide problem which affects each country in different ways because the resources and the consumption are unfairly distributed. World-wide research points out that the fossil fuel sources are not to be considered the main energy sources for the long term as they are limited.« less

  4. The WPI reactor-readying for the next generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobek, L.M.

    1993-01-01

    Built in 1959, the 10-kW open-pool nuclear training reactor at Worcester Polytechnic Institute (WPI) was one of the first such facilities in the nation located on a university campus. Since then, the reactor and its related facilities have been used to train two generations of nuclear engineers and scientists for the nuclear industry. With the use of nuclear technology playing an increasing role in many segments of the economy, WPI with its nuclear reactor facility is committed to continuing its mission of training future nuclear engineers and scientists. The WPI reactor includes a 6-in. beam port, graphite thermal column, andmore » in-core sample facility. The reactor, housed in an open 8000-gal tank of water, is designed so that the core is readily accessible. Both the control console and the peripheral counting equipment used for student projects and laboratory exercises are located in the reactor room. This arrangement provides convenience and flexibility in using the reactor for foil activations in neutron flux measurements, diffusion measurements, radioactive decay measurements, and the neutron activation of samples for analysis. In 1988, the reactor was successfully converted to low-enriched uranium fuel.« less

  5. History of nuclear technology development in Japan

    NASA Astrophysics Data System (ADS)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  6. History of nuclear technology development in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp; General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  7. A roadmap for nuclear energy technology

    NASA Astrophysics Data System (ADS)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge to tackle the licensing and demonstration challenges for these advanced reactor concepts, realization of their enormous potential is not likely, at least in the U.S.

  8. Energy spectrum of 208Pb(n,x) reactions

    NASA Astrophysics Data System (ADS)

    Tel, E.; Kavun, Y.; Özdoǧan, H.; Kaplan, A.

    2018-02-01

    Fission and fusion reactor technologies have been investigated since 1950's on the world. For reactor technology, fission and fusion reaction investigations are play important role for improve new generation technologies. Especially, neutron reaction studies have an important place in the development of nuclear materials. So neutron effects on materials should study as theoretically and experimentally for improve reactor design. For this reason, Nuclear reaction codes are very useful tools when experimental data are unavailable. For such circumstances scientists created many nuclear reaction codes such as ALICE/ASH, CEM95, PCROSS, TALYS, GEANT, FLUKA. In this study we used ALICE/ASH, PCROSS and CEM95 codes for energy spectrum calculation of outgoing particles from Pb bombardment by neutron. While Weisskopf-Ewing model has been used for the equilibrium process in the calculations, full exciton, hybrid and geometry dependent hybrid nuclear reaction models have been used for the pre-equilibrium process. The calculated results have been discussed and compared with the experimental data taken from EXFOR.

  9. Development of RF plasma simulations of in-reactor tests of small models of the nuclear light bulb fuel region

    NASA Technical Reports Server (NTRS)

    Roman, W. C.; Jaminet, J. F.

    1972-01-01

    Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.

  10. Safety and core design of large liquid-metal cooled fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  11. ANALYTICAL CHEMISTRY IN NUCLEAR REACTOR TECHNOLOGY. Analysis of Reactor Fuels, Fission-Product Mixtures and Related Materials: Analytical Chemistry of Plutonium and the Transplutonic Elements. Third Conference, Gatlinburg, Tennessee, October 26-29, 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-01-01

    Thirty-one papers and 10 summaries of papers presented at the Third Conference on Analytical Chemistry in Nuclear Reactor Technology held at Gatlinburg, Tennessee, October 26 to 29, 1959, are given. The papers are grouped into four sections: general, analytical chemistry of fuels, analytical chemistry of plutonium and the transplutonic elements, and the analysis of fission-product mixtures. Twenty-seven of the papers are covered by separate abstracts. Four were previously abstracted for NSA. (M.C.G.)

  12. Neutron induced fission of 237Np - status, challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ruskov, Ivan; Goverdovski, Andrei; Furman, Walter; Kopatch, Yury; Shcherbakov, Oleg; Hambsch, Franz-Josef; Oberstedt, Stephan; Oberstedt, Andreas

    2018-03-01

    Nowadays, there is an increased interest in a complete study of the neutron-induced fission of 237Np. This is due to the need of accurate and reliable nuclear data for nuclear science and technology. 237Np is generated (and accumulated) in the nuclear reactor core during reactor operation. As one of the most abundant long-lived isotopes in spent fuel ("waste"), the incineration of 237Np becomes an important issue. One scenario for burning of 237Np and other radio-toxic minor actinides suggests they are to be mixed into the fuel of future fast-neutron reactors, employing the so-called transmutation and partitioning technology. For testing present fission models, which are at the basis of new generation nuclear reactor developments, highly accurate and detailed neutron-induced nuclear reaction data is needed. However, the EXFOR nuclear database for 237Np on neutron-induced capture cross-section, σγ, and fission cross-section, σf, as well as on the characteristics of capture and fission resonance parameters (Γγ, Γf, σoΓf, fragments mass-energy yield distributions, multiplicities of neutrons vn and γ-rays vγ), has not been updated for decades.

  13. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  14. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  15. Guideline for Performing Systematic Approach to Evaluate and Qualify Legacy Documents that Support Advanced Reactor Technology Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honma, George

    The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will bemore » used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).« less

  16. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  17. Kilopower: Small and Affordable Fission Power Systems for Space

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Don; Gibson, Marc

    2017-01-01

    The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.

  18. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 2, technologies 1: Reactors, heat transport, integration issues

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objectives of the Megawatt Class Nuclear Space Power System (MCNSPS) study are summarized and candidate systems and subsystems are described. Particular emphasis is given to the heat rejection system and the space reactor subsystem.

  19. Autonomous Control of Space Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Merk, John

    2013-01-01

    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints.

  20. Development of the Technology of Vortex Diagnostics to Improve the Safety of Operation of Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Mitrofanova, O. V.; Ivlev, O. A.; Pozdeeva, I. G.; Urtenov, D. S.

    2017-11-01

    The results of studies are aimed at developing theoretical foundations and instrumentation system to ensure a technology of vortex diagnostics of the state of flows of fluids for nuclear power installations with power water reactors and fast neutrons reactors with liquid-metal coolants. The technology of vortex diagnostics is based on the study of acoustic, magneto-hydrodynamic and resonant effects related to the formation of stable vortex structures. For creation a system of monitoring and diagnostics of the crisis phenomena due to hydrodynamics of the flow, it is proposed to use acoustic method to record the radiation of elastic waves in the fluids caused by the dynamic local rearrangement of its structure.

  1. Development of Inspection and Repair Technology for Heat Exchanger Tubes in Fast Breeder Reactors

    DTIC Science & Technology

    2009-06-01

    Technology for Heat Exchanger Tubes in Fast Breeder Reactors Akihiko NISHIMURA *1 , Takahisa SHOBU, Kiyoshi OKA, Toshihiko YAMAGUCHI, Yukihiro SHIMADA...fast breeder reactors (FBRs). It comprises a laser processing head combined with an eddy current testing unit. Ultrashort laser pulse ablation is used...be applied in the main- tenance of large structures such as nuclear reactors and chemical factories [1]. Internal access to a blanket cooling pipe

  2. Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel

    DOE PAGES

    Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...

    2017-03-26

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less

  3. Early Program Development

    NASA Image and Video Library

    2004-04-15

    This artist's concept illustrates the NERVA (Nuclear Engine for Rocket Vehicle Application) engine's hot bleed cycle in which a small amount of hydrogen gas is diverted from the thrust nozzle, thus eliminating the need for a separate system to drive the turbine. The NERVA engine, based on KIWI nuclear reactor technology, would power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which the Marshall Space Flight Center had development responsibility.

  4. Editorial

    DOE PAGES

    Whittle, K. R.; Edmondson, P. D.

    2015-07-01

    The development of nuclear materials for the next generation of reactor technology, e.g. GenIV and fusion, is at a critical juncture, with an increasing body of research into the long-term effects of radiation damage on materials being examined. As it is hopefully evident from the papers in this journal issue, there are many pertinent and challenging topics for research in this exciting and challenging area of research, driving forward the development of new materials and the next generation of nuclear reactor technologies.

  5. Spent fuel data base: commercial light water reactors. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  6. Liquid-Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  7. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computationalmore » tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe 2+) irradiation.« less

  8. A Power Conversion Concept for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission under development by the Office of Space Science at NASA Headquarters. ITMO is examining the potential of Nuclear Electric Propulsion (NEP) technology to efficiently deliver scientific payloads to three Jovian moons: Callisto, Ganymede, and Europa. A critical element of the NEP vehicle is the reactor power system, consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD). The emphasis of this paper is on the non-nuclear elements of the reactor power system.

  9. Short- and long-term responses to molybdenum-99 shortages in nuclear medicine.

    PubMed

    Ballinger, J R

    2010-11-01

    Most nuclear medicine studies use (99)Tc(m), which is the decay product of (99)Mo. The world supply of (99)Mo comes from only five nuclear research reactors and availability has been much reduced in recent times owing to problems at the largest reactors. In the short-term there are limited actions that can be taken owing to capacity issues on alternative imaging modalities. In the long-term, stability of (99)Mo supply will rely on a combination of replacing conventional reactors and developing new technologies.

  10. Short- and long-term responses to molybdenum-99 shortages in nuclear medicine

    PubMed Central

    Ballinger, J R

    2010-01-01

    Most nuclear medicine studies use 99Tcm, which is the decay product of 99Mo. The world supply of 99Mo comes from only five nuclear research reactors and availability has been much reduced in recent times owing to problems at the largest reactors. In the short-term there are limited actions that can be taken owing to capacity issues on alternative imaging modalities. In the long-term, stability of 99Mo supply will rely on a combination of replacing conventional reactors and developing new technologies. PMID:20965898

  11. Natural Disasters and Safety Risks at Nuclear Power Stations

    NASA Astrophysics Data System (ADS)

    Tutnova, T.

    2012-04-01

    In the aftermath of Fukushima natural-technological disaster the global opinion on nuclear energy divided even deeper. While Germany, Italy and the USA are currently reevaluating their previous plans on nuclear growth, many states are committed to expand nuclear energy output. In China and France, where the industry is widely supported by policymakers, there is little talk about abandoning further development of nuclear energy. Moreover, China displays the most remarkable pace of nuclear development in the world: it is responsible for 40% of worldwide reactors under construction, and aims at least to quadruple its nuclear capacity by 2020. In these states the consequences of Fukushima natural-technological accident will probably result in safety checks and advancement of new reactor technologies. Thus, China is buying newer reactor design from the USA which relies on "passive safety systems". It means that emergency power generators, crucial for reactor cooling in case of an accident, won't depend on electricity, so that tsunami won't disable them like it happened in the case of Fukushima. Nuclear energy managed to draw lessons from previous nuclear accidents where technological and human factors played crucial role. But the Fukushima lesson shows that the natural hazards, nevertheless, were undervalued. Though the ongoing technological advancements make it possible to increase the safety of nuclear power plants with consideration of natural risks, it is not just a question of technology improvement. A necessary action that must be taken is the reevaluation of the character and sources of the potential hazards which natural disasters can bring to nuclear industry. One of the examples is a devastating impact of more than one natural disaster happening at the same time. This subject, in fact, was not taken into account before, while it must be a significant point in planning sites for new nuclear power plants. Another important lesson unveiled is that world nuclear industry needs advanced mechanisms of international oversight. The natural-technological disaster that happens in a particular country is a matter of concern of the global community. Hence, the urgent necessity is to develop and adopt a joint mechanism for international consultation in case of serious accident at a nuclear power plant. It is also necessary to work out the list of constraining provisions for building and operating nuclear plants in regions where potential risks of natural-technological catastrophes exist. These provisions should include risk estimate for every particular region, as well as the list of preventive measures to secure the safe operation of nuclear plants located at those sites. As it was stated before, the synergy effects of more than one potential hazard must be taken into account. The main goal of my report is to represent possible methods for mitigating nuclear safety risks associated with natural hazards and technological disasters, review the effectiveness of existing standards and oversight mechanisms, encourage a cooperative discussion of these issues.

  12. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story ofmore » fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.« less

  13. Control console replacement at the WPI Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  14. Alternative nuclear technologies

    NASA Astrophysics Data System (ADS)

    Schubert, E.

    1981-10-01

    The lead times required to develop a select group of nuclear fission reactor types and fuel cycles to the point of readiness for full commercialization are compared. Along with lead times, fuel material requirements and comparative costs of producing electric power were estimated. A conservative approach and consistent criteria for all systems were used in estimates of the steps required and the times involved in developing each technology. The impact of the inevitable exhaustion of the low- or reasonable-cost uranium reserves in the United States on the desirability of completing the breeder reactor program, with its favorable long-term result on fission fuel supplies, is discussed. The long times projected to bring the most advanced alternative converter reactor technologies the heavy water reactor and the high-temperature gas-cooled reactor into commercial deployment when compared to the time projected to bring the breeder reactor into equivalent status suggest that the country's best choice is to develop the breeder. The perceived diversion-proliferation problems with the uranium plutonium fuel cycle have workable solutions that can be developed which will enable the use of those materials at substantially reduced levels of diversion risk.

  15. Taming The Next Set of Strategic Weapons Threats

    DTIC Science & Technology

    2006-06-01

    Reactors Victor Gilinsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6. Coping with Biological Threats after...Regime (MTCR) is not yet optimized to cope with these challenges. Finally, nuclear technologies have become much more difficult to control. New...resistance of the most popular type of power reactor concludes that the current international nuclear safeguards system needs to be modified to cope

  16. Development concept for a small, split-core, heat-pipe-cooled nuclear reactor

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Breitwieser, R.; Niederauer, G. F.

    1974-01-01

    There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.

  17. Transient Effects in Turbulence Modelling.

    DTIC Science & Technology

    1979-12-01

    plenum region of a liquid-metal- cooled fast breeder reactor (LMFBR). The efficient heat transfer characteristics of liquid metal coolant, combined...Transients in Generalized Liquid-Metal Fast Breeder Reactor Outlet Plenums," Nuclear Technology, Vol. 44, July 1979, p. 210. 135 15. Lorenz, J. J., "MIX... Sodium Coolant in the Outlet Plenum of a Fast Nuclear Reactor ," Int. J. Heat Mass Transfer, Vol. 21, 1978, pp. 1565-1579. 19. Chen, Y. B., Golay, M. W

  18. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have been done to appropriately size components in the loop. Sensitivity analysis has been done to find the optimum design for the loop.

  19. Reactor technology assessment and selection utilizing systems engineering approach

    NASA Astrophysics Data System (ADS)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  20. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less

  2. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick

    2017-01-01

    The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  3. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, Dave I.; McClure, Patrick

    2017-01-01

    The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  4. Development of an advanced antineutrino detector for reactor monitoring

    DOE PAGES

    Classen, T.; Bernstein, A.; Bowden, N. S.; ...

    2014-11-05

    We present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. Our paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass permore » detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.« less

  5. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less

  6. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Blanford; E. Keldrauk; M. Laufer

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement,more » and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.« less

  7. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 3, Sessions 12-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, R.C.; Feiner, F.

    This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. 75 FR 62892 - Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-020; NRC-2010-0313] Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No Significant Impact Correction In notice document 2010-24809 beginning on page 61220 in the issue of Monday, October 4, 2010, make the...

  9. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  10. Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors.

    PubMed

    Laffont, Guillaume; Cotillard, Romain; Roussel, Nicolas; Desmarchelier, Rudy; Rougeault, Stéphane

    2018-06-02

    The harsh environment associated with the next generation of nuclear reactors is a great challenge facing all new sensing technologies to be deployed for on-line monitoring purposes and for the implantation of SHM methods. Sensors able to resist sustained periods at very high temperatures continuously as is the case within sodium-cooled fast reactors require specific developments and evaluations. Among the diversity of optical fiber sensing technologies, temperature resistant fiber Bragg gratings are increasingly being considered for the instrumentation of future nuclear power plants, especially for components exposed to high temperature and high radiation levels. Research programs are supporting the developments of optical fiber sensors under mixed high temperature and radiative environments leading to significant increase in term of maturity. This paper details the development of temperature-resistant wavelength-multiplexed fiber Bragg gratings for temperature and strain measurements and their characterization for on-line monitoring into the liquid sodium used as a coolant for the next generation of fast reactors.

  11. A brief history of design studies on innovative nuclear reactors

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2014-09-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less

  13. Nuclear powerplants for mobile applications.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  14. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  15. Nuclear Rocket Technology Conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the conference, and Mr. Roy V. Humble. Dr. John C. Eward served as general chairman for the conference.

  16. Science And Technology In Rapid Crisis Response. Volume 7, September 2011

    DTIC Science & Technology

    2011-09-01

    Nuclear Reactor Accident at Fukushima Daiichi .... 16 From the Eyes of the Marines: III MEF’s Assistance in Japan Relief Efforts ............ 20 Chilean...by the radiological hazards at the Fukushima Daiichi Nuclear Power Plant. Although this project is in its early stages, the team hopes to have...OBSERVATIONS ON THE U.S. GOVERNMENT RESPONSE TO THE “GREAT EAST JAPAN EARTHQUAKE” AND THE NUCLEAR REACTOR ACCIDENT AT FUKUSHIMA DAIICHI CAPT Jim

  17. A Lesson from the Nuclear Industry: Professionalism and Technology.

    ERIC Educational Resources Information Center

    Roth, Gene L.; Widen, W. C.

    1991-01-01

    Focuses on an innovative approach to instill professionalism in workers such as reactor operators and other nuclear power workers. It may be used by technology instructors to send a message to their students: regardless of the advanced state of technology, the human element provides the key to desirable outcomes. (Author/JOW)

  18. Nuclear Technology Series. Course 7: Reactor Operations.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 8: Reactor Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 9: Reactor Auxiliary Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 12: Reactor Physics.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, Alicia L.

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navymore » while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.« less

  3. Control console replacement at the WPI Reactor. [Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  4. Legal and Regulatroy Obstacles to Nuclear Fission Technology in Space

    NASA Astrophysics Data System (ADS)

    Force, Melissa K.

    2013-09-01

    In forecasting the prospective use of small nuclear reactors for spacecraft and space-based power stations, the U.S. Air Force describes space as "the ultimate high ground," providing access to every part of the globe. But is it? A report titled "Energy Horizons: United States Air Force Energy Science &Technology Vision 2011-2026," focuses on core Air Force missions in space energy generation, operations and propulsion and recognizes that investments into small modular nuclear fission reactors can be leveraged for space-based systems. However, the report mentions, as an aside, that "potential catastrophic outcomes" are an element to be weighed and provides no insight into the monumental political and legal will required to overcome the mere stigma of nuclear energy, even when referring only to the most benign nuclear power generation systems - RTGs. On the heels of that report, a joint Department of Energy and NASA team published positive results from the demonstration of a uranium- powered fission reactor. The experiment was perhaps most notable for exemplifying just how effective the powerful anti-nuclear lobby has been in the United States: It was the first such demonstration of its kind in nearly fifty years. Space visionaries must anticipate a difficult war, consisting of multiple battles that must be waged in order to obtain a license to fly any but the feeblest of nuclear power sources in space. This paper aims to guide the reader through the obstacles to be overcome before nuclear fission technology can be put to use in space.

  5. Neutrino Physics with Nuclear Reactors: An Overview

    NASA Astrophysics Data System (ADS)

    Ochoa-Ricoux, J. P.

    Nuclear reactors provide an excellent environment for studying neutrinos and continue to play a critical role in unveiling the secrets of these elusive particles. A rich experimental program with reactor antineutrinos is currently ongoing, and leads the way in precision measurements of several oscillation parameters and in searching for new physics, such as the existence of light sterile neutrinos. Ongoing experiments have also been able to measure the flux and spectral shape of reactor antineutrinos with unprecedented statistics and as a function of core fuel evolution, uncovering anomalies that will lead to new physics and/or to an improved understanding of antineutrino emission from nuclear reactors. The future looks bright, with an aggressive program of next generation reactor neutrino experiments that will go after some of the biggest open questions in the field. This includes the JUNO experiment, the largest liquid scintillator detector ever constructed which will push the limits of this detection technology.

  6. An intrinsically safe facility for forefront research and training on nuclear technologies

    NASA Astrophysics Data System (ADS)

    Mansani, L.; Monti, S.; Ricco, G.; Ricotti, M.

    2014-04-01

    In this short paper the motivations for the development of fast spectrum lead-cooled reactors are briefly summarized. In particular the importance of subcritical research reactors, like the one described in this Focus Point, for the investigation of various scientifical and technological aspects and the training of students, is discussed.

  7. Preconceptual design of a fluoride high temperature salt-cooled engineering demonstration reactor: Motivation and overview

    DOE PAGES

    Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; ...

    2016-12-21

    Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less

  8. Preconceptual design of a fluoride high temperature salt-cooled engineering demonstration reactor: Motivation and overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.

    Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less

  9. SP-100 program developments

    NASA Technical Reports Server (NTRS)

    Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.; Verga, R. L.; Wiley, R. L.

    1985-01-01

    An update is provided on the status of the Sp-100 Space Reactor Power Program. The historical background that led to the program is reviewed and the overall program objectives and development approach are discussed. The results of the mission studies identify applications for which space nuclear power is desirable and even essential. Results of a series of technology feasibility experiments are expected to significantly improve the earlier technology data base for engineering development. The conclusion is reached that a nuclear reactor space power system can be developed by the early 1990s to meet emerging mission performance requirements.

  10. Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingersoll, Daniel T

    2007-01-01

    Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less

  11. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  12. SP-100 design, safety, and testing

    NASA Technical Reports Server (NTRS)

    Cox, Carl. M.; Mahaffey, Michael M.; Smith, Gary L.

    1991-01-01

    The SP-100 Program is developing a nuclear reactor power system that can enhance and/or enable future civilian and military space missions. The program is directed to develop space reactor technology to provide electrical power in the range of tens to hundreds of kilowatts. The major nuclear assembly test is to be conducted at the Hanford Site near Richland, Washington, and is designed to validate the performance of the 2.4-MWt nuclear and heat transport assembly.

  13. Potential civil mission applications for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Beatty, R. G. G.

    1985-01-01

    It is pointed out that the energy needs of spacecraft over the last 25 years have been met by photovoltaic arrays with batteries, primary fuel cells, and radioisotope thermoelectric generators (RTG). However, it might be difficult to satisfy energy requirements for the next generation of space missions with the currently used energy sources. Applications studies have emphasized the need for a lighter, cheaper, and more compact high-energy source than the scaling up of current technologies would permit. These requirements could be satisfied by a nuclear reactor power system. The joint NASA/DOD/DOE SP-100 program is to explore and evaluate this option. Critical elements of the technology are also to be developed, taking into account space reactor systems of the 100 kW class. The present paper is concerned with some of the civil mission categories and concepts which are enabled or significantly enhanced by the performance characteristics of a nuclear reactor energy system.

  14. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  15. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  16. Studies of breakeven prices and electricity supply potentials of nuclear fusion by a long-term world energy and environment model

    NASA Astrophysics Data System (ADS)

    Tokimatsu, K.; Asaoka, Y.; Konishi, S.; Fujino, J.; Ogawa, Y.; Okano, K.; Nishio, S.; Yoshida, T.; Hiwatari, R.; Yamaji, K.

    2002-11-01

    In response to social demand, this paper investigates the breakeven price (BP) and potential electricity supply of nuclear fusion energy in the 21st century by means of a world energy and environment model. We set the following objectives in this paper: (i) to reveal the economics of the introduction conditions of nuclear fusion; (ii) to know when tokamak-type nuclear fusion reactors are expected to be introduced cost-effectively into future energy systems; (iii) to estimate the share in 2100 of electricity produced by the presently designed reactors that could be economically selected in the year. The model can give in detail the energy and environment technologies and price-induced energy saving, and can illustrate optimal energy supply structures by minimizing the costs of total discounted energy systems at a discount rate of 5%. The following parameters of nuclear fusion were considered: cost of electricity (COE) in the nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and regional nuclear fusion capacity projection. The investigations are carried out for three nuclear fusion projections one of which includes tritium breeding constraints, four future CO2 concentration constraints, and technological assumptions on fossil fuels, nuclear fission, CO2 sequestration, and anonymous innovative technologies. It is concluded that: (1) the BPs are from 65 to 125 mill kW-1 h-1 depending on the introduction year of nuclear fusion under the 550 ppmv CO2 concentration constraints; those of a business-as-usual (BAU) case are from 51 to 68 mill kW-1h-1. Uncertainties resulting from the CO2 concentration constraints and the technological options influenced the BPs by plus/minus some 10 30 mill kW-1h-1, (2) tokamak-type nuclear fusion reactors (as presently designed, with a COE range around 70 130 mill kW-1h-1) would be favourably introduced into energy systems after 2060 based on the economic criteria under the 450 and 550 ppmv CO2 concentration constraint, but not selected under the BAU case and 650 ppmv CO2 concentration constraint, and (3) the share of electricity in 2100 produced by the presently designed tokamak-type nuclear fusion reactors (introduced after 2060) is well below 30%. It should be noted that these conclusions are based upon varieties of uncertainties in scenarios and data assumptions on nuclear fusion as well as technological options.

  17. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  18. Nuclear Technology Series. Course 6: Instrumentation and Control of Reactors and Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  20. Reactor physics teaching and research in the Swiss nuclear engineering master

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  1. A brief history of design studies on innovative nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USAmore » and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.« less

  2. Plant maintenance and advanced reactors issue, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada;more » Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.« less

  3. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: (301) 594-4715. 21 U.S.C. 301 et seq. Natural Gas and Electric Power Department of Energy, Office of.... (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  4. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: (301) 594-4715. 21 U.S.C. 301 et seq. Natural Gas and Electric Power Department of Energy, Office of.... (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  5. Nuclear power: levels of safety.

    PubMed

    Lidsky, L M

    1988-02-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the "nuclear establishment" itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired.

  6. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    NASA Astrophysics Data System (ADS)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  7. Safety features of subcritical fluid fueled systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, C.R.

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitativemore » in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.« less

  8. CIRFT Data Update and Data Analyses for Spent Nuclear Fuel Vibration Reliability Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong

    The objective of this research is to collect experimental data on spent nuclear fuel (SNF) from pressurized water reactors (PWRs), including the H. B. Robinson Nuclear Power Station (HBR), Catawba Nuclear Station, North Anna Nuclear Power Station (NA), and the Limerick Nuclear Power Station (LMK) boiling water reactor (BWR). Data will be collected under simulated transportation environments using the cyclic integrated reversible-bending fatigue tester (CIRFT), an enabling hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). These data will be used to support ongoing SNF modeling activities and to address regulatory issues associated with SNF transport.

  9. The prospect of nuclear energy in Türkiye especially after Fukushima accident

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer

    2014-09-01

    Türkiye considers since mid-50's to use nuclear electricity, but Government and bureaucracy have continuously postponed reactor construction. However, since 2010 the case has gained a real shape. Official agreement has been signed for the construction of 4 units of Russian VVER type reactors with installed power of 4×1200 MWel. It is expected that they will begin to deliver electricity early 20's. Further negotiations are being conducted with Japanese Mitsubashi and French AREVA. The target is to have nuclear electricity by 2023 at the 100th anniversary of Turkish Republic. Turkish Nuclear Energy Strategy aims; • Decrease country's dependency on foreign suppliers of energy sources • Provide fuel supply mix diversification • Utilization of environmentally friendly energy production technologies Possess advanced and prestigious power generation technologies.

  10. The present situations and perspectives on utilization of research reactors in Thailand

    NASA Astrophysics Data System (ADS)

    Chongkum, Somporn

    2002-01-01

    The Thai Research Reactor 1/Modification 1, a TRIGA Mark III reactor, went critical on November 7, 1977. It has been playing a central role in the development of both Office of Atomic Energy for Peace (OAEP) and nuclear application in Thailand. It has a maximum power of 2 MW (thermal) at steady state and a pulsing capacity of 2000 MW. The highest thermal neutron flux at a central thimber is 1×10 13 n/cm 2/s, which is extensively utilized for radioisotope production, neutron activation analysis and neutron beam experiments, i.e. neutron scattering, prompt gamma analysis and neutron radiography. Following the nuclear technological development, the OAEP is in the process of establishing the Ongkharak Nuclear Research Center (ONRC). The center is being built in Nakhon Nayok province, 60 km northeast of Bangkok. The centerpiece of the ONRC is a multipurpose 10 MW TRIGA research reactor. Facilities are included for the production of radioisotopes for medicine, industry and agriculture, neutron transmutation doping of silicon, and neutron capture therapy. The neutron beam facilities will also be utilized for applied research and technology development as well as training in reactor operations, performance of experiments and reactor physics. This paper describes a recent program of utilization as well as a new research reactor for enlarging the perspectives of its utilization in the future.

  11. Development of advanced technological systems for accelerator transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P.

    1995-10-01

    A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.

  12. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  13. JPRS Report, Science & Technology, China

    DTIC Science & Technology

    1992-09-24

    Yuhong; YUHANG XUEBAO, No 3, Jul 92] 23 Improvement of Manufacturing Process and Analysis of Tensile Strength of SiC/Al Preform Wire [Wan Hong...centered on 600MW pressur- ized-water reactor nuclear power plants . Complete devel- opment of the 200MW nuclear low-temperature heat supply reactor...grain yields, substan- tially reduce the amounts of farm chemicals used; develop plant genetic atlas research, try to make major research

  14. Impact of the proposed energy tax on nuclear electric generating technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunds, T.A.; Lamont, A.D.; Pasternak, A.D.

    1993-05-01

    The President`s new economic initiatives include an energy tax that will affect the costs of power from most electric generating technologies. The tax on nuclear power could be applied in a number of different ways at several different points in the fuel cycle. These different approaches could have different effects on the generation costs and benefits of advanced reactors. The Office of Nuclear Energy has developed models for assessing the costs and benefits of advanced reactor cycles which must be updated to take into account the impacts of the proposed tax. This report has been prepared to assess the spectrummore » of impacts of the energy tax on nuclear power and can be used in updating the Office`s economic models. This study was conducted in the following steps. First, the most authoritative statement of the proposed tax available at this time was obtained. Then the impacts of the proposed tax on the costs of nuclear and fossil fueled generation were compared. Finally several other possible approaches to taxing nuclear energy were evaluated. The cost impact on several advanced nuclear technologies and a current light water technology were computed. Finally, the rationale for the energy tax as applied to various electric generating methods was examined.« less

  15. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne L.

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less

  16. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less

  17. Small modular reactors are 'crucial technology'

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2018-03-01

    Small modular nuclear reactors (SMRs) offer a way for the UK to reduce carbon dioxide emissions from electricity generation, while allowing the country to meet the expected increase in demand for electricity from electric vehicles and other uses.

  18. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology demonstration unit (TDU). In November, 2011 testing of a 37-pin core simulator (designed in conjunction with Los Alamos National Laboratory) for use with the TDU will occur. Previous testing at the EFFTF has included the thermal and mechanical coupling of a pumped NaK loop to Stirling engines (provided by GRC). Testing related to heat pipe cooled systems, gas cooled systems, heat exchangers, and other technologies has also been performed. Integrated TDU testing will begin at GRC in 2013. Thermal simulators developed at the EFF-TF are capable of operating over the temperature and power range typically of interest to compact reactors. Small and large diameter simulators have been developed, and simulators (coupled with the facility) are able to closely match the axial and radial power profile of all potential systems of interest. A photograph of the TDU core simulator during assembly is provided in Figure 2.

  19. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  20. Study Neutronic of Small Pb-Bi Cooled Non-Refuelling Nuclear Power Plant Reactor (SPINNOR) with Hexagonal Geometry Calculation

    NASA Astrophysics Data System (ADS)

    Nur Krisna, Dwita; Su'ud, Zaki

    2017-01-01

    Nuclear reactor technology is growing rapidly, especially in developing Nuclear Power Plant (NPP). The utilization of nuclear energy in power generation systems has been progressing phase of the first generation to the fourth generation. This final project paper discusses the analysis neutronic one-cooled fast reactor type Pb-Bi, which is capable of operating up to 20 years without refueling. This reactor uses Thorium Uranium Nitride as fuel and operating on power range 100-500MWtNPPs. The method of calculation used a computer simulation program utilizing the SRAC. SPINNOR reactor is designed with the geometry of hexagonal shaped terrace that radially divided into three regions, namely the outermost regions with highest percentage of fuel, the middle regions with medium percentage of fuel, and most in the area with the lowest percentage. SPINNOR fast reactor operated for 20 years with variations in the percentage of Uranium-233 by 7%, 7.75%, and 8.5%. The neutronic calculation and analysis show that the design can be optimized in a fast reactor for thermal power output SPINNOR 300MWt with a fuel fraction 60% and variations of Uranium-233 enrichment of 7%-8.5%.

  1. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and the role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: the role of nuclear power; the role of electricity; generating electricity with the…

  2. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: (1) "The Role of Nuclear Power"; (2) "The Role of Electricity"; (3)…

  3. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    NASA Astrophysics Data System (ADS)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  4. Autonomous Control of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less

  5. Evaluation of nuclear-facility decommissioning projects. Summary report: Ames Laboratory Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-07-01

    This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, is included.

  6. Overview of nuclear energy: Present and projected use

    NASA Astrophysics Data System (ADS)

    Stanculescu, Alexander

    2012-06-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  7. LWRS ATR Irradiation Testing Readiness Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Testmore » Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics« less

  8. The prospect of nuclear energy in Türkiye especially after Fukushima accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şahin, Sümer, E-mail: ssahin@atilim.edu.tr

    2014-09-30

    Türkiye considers since mid-50's to use nuclear electricity, but Government and bureaucracy have continuously postponed reactor construction. However, since 2010 the case has gained a real shape. Official agreement has been signed for the construction of 4 units of Russian VVER type reactors with installed power of 4×1200 MW{sub el}. It is expected that they will begin to deliver electricity early 20's. Further negotiations are being conducted with Japanese Mitsubashi and French AREVA. The target is to have nuclear electricity by 2023 at the 100{sup th} anniversary of Turkish Republic. Turkish Nuclear Energy Strategy aims; • Decrease country's dependency onmore » foreign suppliers of energy sources • Provide fuel supply mix diversification • Utilization of environmentally friendly energy production technologies Possess advanced and prestigious power generation technologies.« less

  9. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallbert, Bruce Perry; Thomas, Kenneth David

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  10. Propulsion and Power Technologies for the NASA Exploration Vision: A Research Perspective

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2004-01-01

    Future propulsion and power technologies for deep space missions are profiled in this viewgraph presentation. The presentation includes diagrams illustrating possible future travel times to other planets in the solar system. The propulsion technologies researched at Marshall Space Flight Center (MSFC) include: 1) Chemical Propulsion; 2) Nuclear Propulsion; 3) Electric and Plasma Propulsion; 4) Energetics. The presentation contains additional information about these technologies, as well as space reactors, reactor simulation, and the Propulsion Research Laboratory (PRL) at MSFC.

  11. Evaluation of nuclear facility decommissioning projects. Summary report: North Carolina State University Research and Training Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-08-01

    This document summarizes information from the decommissioning of the NCSUR-3 (R-3), a 10 KWt university research and training reactor. The decommissioning data were placed in a computerized information retrieval/manipulation system which permits future utilization of this information in pre-decommissioning activities with other university reactors of similar design. The information is presented both in some detail in its computer output form and also as a manually assembled summarization which highlights the more significant aspects of the decommissioning project. Decommissioning data from a generic study, NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, and the decommissioning ofmore » the Ames Laboratory Research Reactor (ALRR), a 5 MWt research reactor, is also included for comparison.« less

  12. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  13. JPRS Report, Science & Technology, Japan.

    DTIC Science & Technology

    1988-08-03

    SHIMBUN, 4 Feb 88] 72 Advanced Reactor Design System To Be Developed [GENSHIRYOKU SANGYO SHIMBUN, 4 Feb 88] 73 Functional Testing on " Mutsu ...new types of reactors. 13008 74 NUCLEAR ENGINEERING FUNCTIONAL TESTING ON " MUTSU " SCHEDULED 43062060c Tokyo GENSHIRYOKU SANGYO SHIMBUN in Japanese...and to rebuild the power supply rectifiers used in the instrumentation controls on the nuclear powered ship, the " Mutsu ," which was launched on 27

  14. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, M. L.; Peko, D.; Farmer, M.

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less

  15. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, M. L.

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less

  16. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to themore » knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.« less

  17. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5×1019 n/cm2, and a maximum gamma dose of 2×103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  18. Neutron Scattering Facilities

    Science.gov Websites

    Low Energy Neutron Source (LENS), Indiana University Cyclotron Facility, USA McMaster Nuclear Reactor Research, Gaithersburg, Maryland, USA Peruvian Institute of Nuclear Energy (IPEN), Lima, Peru Spallation Nuclear Science and Technology Organisation, Lucas Heights, Australia High-flux Advanced Neutron

  19. U.S. Department of Energy Office of Nuclear Technology Research and Eevelopment ((NTRD) comprehensive summary of QA assessments for FY17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trost, Alan L.

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) has developed a research and development (R&D) roadmap for its research, development, and demonstration (RD&D) activities to ensure nuclear energy remains a compelling and viable energy option for the U.S. The roadmap defines NE RD&D activities and objectives that address the challenges to research, develop and demonstrate options to the current U.S commercial fuel cycle to enable the safe, secure, economic, and sustainable expansion of nuclear energy, while minimizing proliferation and terrorism risks expanding the use of nuclear power. The roadmap enables the development of technologies and other solutionsmore » that can improve the reliability, sustain the safety, and extend the life of current reactors. In addition, it will help to develop improvements in the affordability of the new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals.« less

  20. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  1. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLanc, Katya Le; Powers, David; Joe, Jeffrey

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologiesmore » that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.« less

  2. Nuclear power technology requirements for NASA exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1990-01-01

    It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.

  3. Application of Reactor Antineutrinos: Neutrinos for Peace

    NASA Astrophysics Data System (ADS)

    Suekane, F.

    2013-02-01

    In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

  4. Testing piezoelectric sensors in a nuclear reactor environment

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian T.; Suprock, Andy; Tittmann, Bernhard

    2017-02-01

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this work piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65×1020 nf/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 × 1020 nf/cm2, Zinc Oxide is capable of transduction up to at least 6.27 × 1020 nf/cm2, and Aluminum Nitride is capable of transduction up to at least 8.65 × 1020 nf/cm2.

  5. Space or terrestrial energy?

    NASA Astrophysics Data System (ADS)

    Boulet, L.

    Consideration is given to the possibility of generating sufficient energy at acceptable costs on earth to offset the need to build solar power satellite systems (SPS). Electricity usage, one of the basic driving forces of developed nations, grows with the population. Currently comprising 33 pct of the total world energy used, electricity is projected to grow to a 50-55 pct share in the 21st century. Future terrestrial electrical energy sources include carbon-based fuels, nuclear (fusion or fission), and the renewable solar technologies. Carbon-based fuel supplies can last until 2030 AD, about the same as fission plants with recycled fuel. Breeder reactors would stretch the nuclear fuels to the year 3000. Solar technologies offer more immediate solutions than fusion reactors and can produce 50 pct of the power available from the construction of the maximum number of nuclear power plants. The addition of SPS would further augment the total. Combinations of all the technologies are recommended, with local research for the most appropriate technology for each nation.

  6. Neutron physics with accelerators

    NASA Astrophysics Data System (ADS)

    Colonna, N.; Gunsing, F.; Käppeler, F.

    2018-07-01

    Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.

  7. A Research Reactor Concept to Support NTP Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael J.; Blue, T. E.; Gerrish, Harold P.; Hardin, Leroy A.

    2014-01-01

    In support of efforts for research into the design and development of man rated Nuclear Thermal Propulsion (NTP), the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed NTP based research reactor (NTPRR). The proposed NTPRR would be licensed by NASA and operated jointly by NASA and university partners. The purpose of the NTPRR would be used to perform further research into the technologies and systems needed for a successful NTP project and promote nuclear training and education.

  8. Plant maintenance and advanced reactors issue, 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    2004-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Optimism about the future of nuclear power, by Ruth G. Shaw, Duke Power Company; Licensed in three countries, by GE Energy; Enhancing public acceptance, by Westinghouse Electric Company; Standardized MOV program, by Ted Neckowicz, Exelon; Inservice testing, by Steven Unikewicz, U.S. Nuclear Regulatory Commission; Asian network for education, Fatimah Mohd Amin, Malaysian Institute for Nuclear Technology Research; and, Cooling water intake optimization, by Jeffrey M. Jones and Bert Mayer, P.E., Framatome ANP.

  9. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich andmore » Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)« less

  10. Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.

    PubMed

    Merk, B; Litskevich, D; Gregg, R; Mount, A R

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.

  11. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Lance Kyungwoo

    Long-term planning for nuclear energy systems has been an area of interest for policy planners and systems designers to assess and manage the complexity of the system and the long-term, wide-ranging societal impacts of decisions. However, traditional planning tools are often poorly equipped to cope with the deep parametric, structural, and value uncertainties in long-term planning. A more robust, multiobjective decision-making method is applied to a model of the nuclear fuel cycle to address the many sources of complexity, uncertainty, and ambiguity inherent to long-term planning. Unlike prior studies that rely on assessing the outcomes of a limited set of deployment strategies, solutions in this study arise from optimizing behavior against multiple incommensurable objectives, utilizing goal-seeking multiobjective evolutionary algorithms to identify minimax regret solutions across various demand scenarios. By excluding inferior and infeasible solutions, the choice between the Pareto optimal solutions depends on a decision-maker's preferences for the defined outcomes---limiting analyst bias and increasing transparency. Though simplified by the necessity of reducing computational burdens, the nuclear fuel cycle model captures important phenomena governing the behavior of the nuclear energy system relevant to the decision to close the fuel cycle---incorporating reactor population dynamics, material stocks and flows, constraints on material flows, and outcomes of interest to decision-makers. Technology neutral performance criteria are defined consistent with the Generation IV International Forum goals of improved security and proliferation resistance based on structural features of the nuclear fuel cycle, natural resource sustainability, and waste production. A review of safety risks and the economic history of the development of nuclear technology suggests that safety and economic criteria may not be decisive criteria as the safety risks posed by alternative fuel cycles may be comparable in aggregate and economic performance is uncertain and path dependent. Technology strategies impacting reactor lifetimes and advanced reactor introduction dates are evaluated against a high, medium, and phaseout scenarios of nuclear energy demand. Non-dominated, minimax regret solutions are found with the NSGA-II multiobjective evolutionary algorithm. Results suggest that more aggressive technology strategies featuring the early introduction of breeder and burner reactors, possibly combined with lifetime extension of once-through systems, tend to dominate less aggressive strategies under more demanding growth scenarios over the next century. Less aggressive technology strategies that delay burning and breeding tend to be clustered in the minimax regret space, suggesting greater sensitivity to shifts in preferences. Lifetime extension strategies can unexpectedly result in fewer deployments of once-through systems, permitting the growth of advanced systems to meet demand. Both breeders and burners are important for controlling plutonium inventories with breeders achieving lower inventories in storage by locking material in reactor cores while burners can reduce the total inventory in the system. Other observations include the indirect impacts of some performance measures, the relatively small impact of technology strategies on the waste properties of all material in the system, and the difficulty of phasing out nuclear energy while meeting all objectives with the specified technology options.

  12. VVER Reactor Safety in Eastern Europe and Former Soviet Union

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Demetra

    2012-02-01

    VVER Soviet-designed reactors that operate in Eastern Europe and former Soviet republics have heightened international concern for years due to major safety deficiencies. The governments of countries with VVER reactors have invested millions of dollars toward improving the safety of their nuclear power plants. Most of these reactors will continue to operate for the foreseeable future since they provide urgently-needed electrical power. Given this situation, this paper assesses the radiological consequences of a major nuclear accident in Eastern Europe. The paper also chronicles the efforts launched by the international nuclear community to improve the safety of the reactors and notes the progress made so far through extensive collaborative efforts in Armenia, Bulgaria, the Czech Republic, Hungary, Kazakhstan, Lithuania, Russia, Slovakia, and Ukraine to reduce the risks of nuclear accidents. Western scientific and technical staff collaborated with these countries to improve the safety of their reactor operations by strengthening the ability of the regulator to perform its oversight function, installing safety equipment and technologies, investing time in safety training, and working diligently to establish an enduring safety culture. Still, continued safety improvement efforts are necessary to ensure safe operating practices and achieve timely phase-out of older plants.

  13. Performance Assessment of the Commercial CFD Software for the Prediction of the Reactor Internal Flow

    NASA Astrophysics Data System (ADS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku

    2014-06-01

    As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.

  14. The physics design of accelerator-driven transmutation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venneri, F.

    1995-10-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, lessmore » expensive and more environmentally sound approach to nuclear power.« less

  15. Technologies for Upgrading Light Water Reactor Outlet Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessmentmore » of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.« less

  16. In Space Nuclear Power as an Enabling Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Houts, Michael

    2000-01-01

    Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably reach the outer planets for scientific exploration.

  17. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzek, G.J.

    1983-07-01

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

  18. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boing, L.E.; Henley, D.R.; Manion, W.J.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document inmore » their evaluation process. 73 refs., 26 figs., 69 tabs.« less

  19. GEM*STAR: Time for an Alternative Way Forward

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2011-10-01

    The presumption that nuclear reactors will retain their role in global energy production is constantly being challenged - even more so following recent events at Fukushima. Nuclear energy, despite being ``green,'' has inexorably been coupled in the public mind with three paramount concerns: safety, weapons proliferation, and waste (and then ultimately cost). Over the past four decades, the safety of deployed fleets has greatly improved, yet the capital and political costs of a ``nuclear energy option'' appear insurmountable in several countries. The US approach to civilian nuclear energy has become deeply entrenched, first through choices made by the military, and then by the deployed nuclear reactor fleet. This extends to the research agencies as well, to the point where basic sciences and nuclear energy operate in separate spheres. But technologies and priorities have changed, and the time has arrived where a transformative re-think of nuclear energy is not only possible, but urgent. And nuclear physicists are uniquely positioned to accomplish this. This talk will show that by asking, and answering,``what would an accelerator-driven civilian nuclear energy program look like,'' ADNA Corporation's GEM*STAR design directly addresses all three fundamental concerns: safety, proliferation, and waste - and also the final hurdle: cost. GEM*STAR is not an ``add-on'' (to either Project-X, or GEN III+), but rather a base-line energy production capacity, for either electricity or transport fuel production. It integrates and advances the molten-salt reactor technology developed at ORNL, the MW beam accelerator technologies developed by basic sciences, and a reactor/target design optimized for accelerator driven-systems. The results include: the ability to use LWR spent fuel without reprocessing or additional waste; the ability to use natural uranium; no critical mass ever present; orders-of-magnitude less volatile radioactivity in the core; more efficient use of, and deeper burn of actinides, without additional waste; proliferation resistance (no enrichment or reprocessing); high-tolerance to ``beam-trips'' and ultimately, and perhaps most importantly, lower cost electricity or diesel fuel than any currently envisioned new energy source.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkateswara Rao

    The need for sustainable and secure nuclear energy is summarized. Driven by economics and public-private partnerships, the technology is evolving. Cost control and regulatory simplification are needed for a nuclear renaissance. Small modular reactors--simple, scalable, and inherently safe--may be the future.

  1. Problems and prospects connected with development of high-temperature filtration technology at nuclear power plants equipped with VVER-1000 reactors

    NASA Astrophysics Data System (ADS)

    Shchelik, S. V.; Pavlov, A. S.

    2013-07-01

    Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.

  2. Modular fabrication and characterization of complex silicon carbide composite structures Advanced Reactor Technologies (ART) Research Final Report (Feb 2015 – May 2017)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifa, Hesham

    Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less

  3. DOE-NE Proliferation and Terrorism Risk Assessment: FY12 Plans Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadasivan, Pratap

    2012-06-21

    This presentation provides background information on FY12 plans for the DOE Office of Nuclear Energy Proliferation and Terrorism Risk Assessment program. Program plans, organization, and individual project elements are described. Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism - Goal is to enable the use of risk information to inform NE R&D programmore » planning.« less

  4. Japanese suppliers in transition from domestic nuclear reactor vendors to international suppliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.; Reich, W.J.; Rowan, W.J.

    1994-06-27

    Japan is emerging as a major leader and exporter of nuclear power technology. In the 1990s, Japan has the largest and strongest nuclear power supply industry worldwide as a result of the largest domestic nuclear power plant construction program. The Japanese nuclear power supply industry has moved from dependence on foreign technology to developing, design, building, and operating its own power plants. This report describes the Japanese nuclear power supply industry and examines one supplier--the Mitsubishi group--to develop an understanding of the supply industry and its relationship to the utilities, government, and other organizations.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Middleton, Bobby

    Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)’s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.

  6. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  7. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  8. Regulatory Risk Reduction for Advanced Reactor Technologies – FY2016 Status and Work Plan Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland

    2016-08-01

    Millions of public and private sector dollars have been invested over recent decades to realize greater efficiency, reliability, and the inherent and passive safety offered by advanced nuclear reactor technologies. However, a major challenge in experiencing those benefits resides in the existing U.S. regulatory framework. This framework governs all commercial nuclear plant construction, operations, and safety issues and is highly large light water reactor (LWR) technology centric. The framework must be modernized to effectively deal with non-LWR advanced designs if those designs are to become part of the U.S energy supply. The U.S. Department of Energy’s (DOE) Advanced Reactor Technologiesmore » (ART) Regulatory Risk Reduction (RRR) initiative, managed by the Regulatory Affairs Department at the Idaho National Laboratory (INL), is establishing a capability that can systematically retire extraneous licensing risks associated with regulatory framework incompatibilities. This capability proposes to rely heavily on the perspectives of the affected regulated community (i.e., commercial advanced reactor designers/vendors and prospective owner/operators) yet remain tuned to assuring public safety and acceptability by regulators responsible for license issuance. The extent to which broad industry perspectives are being incorporated into the proposed framework makes this initiative unique and of potential benefit to all future domestic non-LWR applicants« less

  9. Annual Report to Congress of the Atomic Energy Commission for 1969

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1970-01-31

    The document represents the 1969 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1969'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Byproduct Nuclear Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Space Nuclear Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less

  10. Annual Report to Congress of the Atomic Energy Commission for 1968

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1969-01-31

    The document represents the 1968 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1968'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Nuclear Byproduct Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less

  11. Nuclear Security for Floating Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology aremore » proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states« less

  12. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    NASA Technical Reports Server (NTRS)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  13. Developments and Tendencies in Fission Reactor Concepts

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.

  14. Energy in perspective: an orientation conference for educators. [28 presentations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKlveen, J.W.

    An awareness of energy and the pertinent economic, environmental, and risk/benefit consideration must be presented to the public. A logical beginning point is in the classroom, through knowledgeable and motivated educators. Ms. Carolyn Warner, Superintendent of Public Instruction, State of Arizona, presented the first paper, Energy and the Educator. Papers on all aspects of energy were presented at the conference by experts from throughout the United States. The papers were: Energy Resources: World and U.S.A.; Coal Technology: Mining, Energy Generation, Wastes, and Environmental Considerations; Energy Conservation; Arizona's Energy Resources and Development; Gas and Oil: Natural Gas, S.N.G., Oil, Oil Shale,more » and Tar Sands; Geothermal Energy Perspective; Solar Energy; Solar Technology; Natural Radiation Environment; Fission Theory; Arizona's Palo Verde Nuclear Generation Complex; Gas Cooled Reactors, Liquid Metal Reactors and Alternatives; Radioactive Wastes: Disposal Alternatives; Reactor Safety; Nuclear Safeguards; Fusion Power; Genetic and Somatic Radiation Effects; Energy Economics; Religion, Philosophy, and Energy; Nuclear Studies in Fine Arts and Archeology; Nuclear Methods Applied to Agriculture and Food Preservation; Nuclear Methods in Criminology; Environmental Impact of Energy Generation; and Risk and Insurance Consideration--Energy for Tomorrow. The tours to energy installations conducted during the conference and demonstration related to energy are cited. (MCW)« less

  15. Power-Conversion Concept Designed for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission being developed by NASA's Office of Space Science under Project Prometheus. JIMO is examining the potential of nuclear electric propulsion (NEP) technology to efficiently deliver scientific payloads to three of Jupiter's moons: Callisto, Ganymede, and Europa. A critical element of the NEP spacecraft is the space reactor power system (SRPS), consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD).

  16. Expert judgments about RD&D and the future of nuclear energy.

    PubMed

    Anadón, Laura D; Bosetti, Valentina; Bunn, Matthew; Catenacci, Michela; Lee, Audrey

    2012-11-06

    Probabilistic estimates of the cost and performance of future nuclear energy systems under different scenarios of government research, development, and demonstration (RD&D) spending were obtained from 30 U.S. and 30 European nuclear technology experts. We used a novel elicitation approach which combined individual and group elicitation. With no change from current RD&D funding levels, experts on average expected current (Gen. III/III+) designs to be somewhat more expensive in 2030 than they were in 2010, and they expected the next generation of designs (Gen. IV) to be more expensive still as of 2030. Projected costs of proposed small modular reactors (SMRs) were similar to those of Gen. IV systems. The experts almost unanimously recommended large increases in government support for nuclear RD&D (generally 2-3 times current spending). The majority expected that such RD&D would have only a modest effect on cost, but would improve performance in other areas, such as safety, waste management, and uranium resource utilization. The U.S. and E.U. experts were in relative agreement regarding how government RD&D funds should be allocated, placing particular focus on very high temperature reactors, sodium-cooled fast reactors, fuels and materials, and fuel cycle technologies.

  17. Standards in nuclear science and technology. A bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-09-01

    Abstracts of 1803 U. S. and non-U. S. publications concerning a broad range of standards used in nuclear science and technology are included. The publication dates span the period 1962 through 1972, inclusive. Abstracts are arranged chronologically within four categories entitled Reactors and Engineering, Instruments and Calibration, Radiation and Radiation Protection, and Miscellaneous. A subject index is also included. (auth)

  18. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less

  19. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. P. Short; D. Gaston; C. R. Stanek

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the developmentmore » of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.« less

  20. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE PAGES

    Melin, Alexander M.; Kisner, Roger A.

    2018-04-03

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  1. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  2. Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list

    PubMed Central

    Litskevich, D.; Gregg, R.; Mount, A. R.

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604

  3. Nuclear Energy Policy

    DTIC Science & Technology

    2010-05-27

    small modular reactors and extend the lives and improve the operation of existing commercial nuclear power plants. 40 Interdisciplinary MIT Study, The Future of Nuclear Power, Massachusetts Institute of Technology, 2003, p. 79. 41 Gronlund, Lisbeth, David Lochbaum, and Edwin Lyman, Nuclear Power in a Warming World, Union of Concerned Scientists, December 2007. 42 Travis Madsen, Tony Dutzik, and Bernadette Del Chiaro, et al., Generating Failure: How Building Nuclear Power Plants

  4. A nuclear driven metallic vapor MHD coupled with MPD thrusters

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim; Kumar, Ratan

    1991-01-01

    Nuclear energy as a source of power for space missions, represents an enabling technology for advanced and ambitious space applications. Nuclear fuel in a gaseous or liquid form has been configured as a promising and practical candidate in this regard. The present study investigates and performs a feasibility analysis of an innovative concept for space power generation and propulsion. The system embodies a conceptual nuclear reactor with an MHD generator and coupled to MPD thrusters. The reactor utilizes liquid uranium in droplet form as fuel and superheated metallic vapor as the working fluid. This ultrahigh temperature vapor core reactor brings forward varied and challenging technical issues, and it has been addressed to in this paper. A parametric study of the conceived system has been performed in a qualitative and quantitative manner. Preliminary results show enough promise for further indepth analysis of this novel system.

  5. Nuclear Reactors for Space Power, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  6. Annual Report to Congress of the Atomic Energy Commission for 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less

  7. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is expected within the next 30 to 50 years, as predicted by the Hubbert model and confirmed by other global energy consumption prognoses. Having invested national resources into the development of NGNP, the technology and experience accumulated during the project needs to be documented clearly and in sufficient detail for young engineers coming on-board at both DOE and NASA to acquire it. Hands on training on reactor operation, test rigs of turbomachinery, and heat exchanger components, as well as computational tools will be needed. Senior scientist/engineers involved with the development of NGNP should also be encouraged to participate as lecturers, instructors, or adjunct professors at local universities having engineering (mechanical, electrical, nuclear/chemical, and/or materials) as one of their fields of study.

  8. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas J.; Kapernick, Richard J.; Bragg-Sitton, Shannon M.

    2004-02-01

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  9. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  10. Research, Development and Demonstration (RD&D) Needs for Light Water Reactor (LWR) Technologies A Report to the Reactor Technology Subcommittee of the Nuclear Energy Advisory Committee (NEAC) Office of Nuclear Energy U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.; Adams, Bradley J.

    The LWR RD&D Working Group developed a detailed list of RD&D suggestions and recommendations, which are provided in Appendix D. The Working Group then undertook a systematic ranking process, described in Appendix E. The results of the ranking process are not meant to be a strict set of priorities, but rather should provide insight into how the items generally ranked within the Working Group. Future discussions and investigation into these items could provide information that would support a change in these priorities or in their emphasis. The results of this prioritization are provided below. Note that in general, many RD&Dmore » ideas are applicable to both new Advanced Light Water Reactor (ALWR) plants and currently operating plants.« less

  11. Spent Nuclear Fuel Alternative Technology Decision Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies andmore » ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.« less

  12. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  13. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  14. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.« less

  15. Reactor Monitoring with Antineutrinos - A Progress Report

    NASA Astrophysics Data System (ADS)

    Bernstein, Adam

    2012-08-01

    The Reactor Safeguards regime is the name given to a set of protocols and technologies used to monitor the consumption and production of fissile materials in nuclear reactors. The Safeguards regime is administered by the International Atomic Energy Agency (IAEA), and is an essential component of the global Treaty on Nuclear Nonproliferation, recently renewed by its 189 remaining signators. (The 190th, North Korea, withdrew from the Treaty in 2003). Beginning in Russia in the 1980s, a number of researchers worldwide have experimentally demonstrated the potential of cubic meter scale antineutrino detectors for non-intrusive real-time monitoring of fissile inventories and power output of reactors. The detectors built so far have operated tens of meters from a reactor core, outside of the containment dome, largely unattended and with remote data acquisition for an entire 1.5 year reactor cycle, and have achieved levels of sensitivity to fissile content of potential interest for the IAEA safeguards regime. In this article, I will describe the unique advantages of antineutrino detectors for cooperative monitoring, consider the prospects and benefits of increasing the range of detectability for small reactors, and provide a partial survey of ongoing global research aimed at improving near-field and far field monitoring and discovery of nuclear reactors.

  16. NRC Licensing Status Summary Report for NGNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland; Kinsey, James Carl

    2014-11-01

    The Next Generation Nuclear Plant (NGNP) Project, initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy (DOE) pursuant to provisions of the Energy Policy Act of 2005, is based on research and development activities supported by the Department of Energy Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. The NGNP will be licensed for construction andmore » operation by the Nuclear Regulatory Commission (NRC). However, not all elements of current regulations (and their related implementation guidance) can be applied to HTGR technology at this time. Certain policies established during past LWR licensing actions must be realigned to properly accommodate advanced HTGR technology. A strategy for licensing HTGR technology was developed and executed through the cooperative effort of DOE and the NRC through the NGNP Project. The purpose of this report is to provide a snapshot of the current status of the still evolving pre-license application regulatory framework relative to commercial HTGR technology deployment in the U.S. The following discussion focuses on (1) describing what has been accomplished by the NGNP Project up to the time of this report, and (2) providing observations and recommendations concerning actions that remain to be accomplished to enable the safe and timely licensing of a commercial HTGR facility in the U.S.« less

  17. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    NASA Astrophysics Data System (ADS)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  18. Cyber security evaluation of II&C technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Ken

    The Light Water Reactor Sustainability (LWRS) Program is a research and development program sponsored by the Department of Energy, which is conducted in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) tomore » address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. The II&C Pathway is conducted by Idaho National Laboratory (INL). Cyber security is a common concern among nuclear utilities and other nuclear industry stakeholders regarding the digital technologies that are being developed under this program. This concern extends to the point of calling into question whether these types of technologies could ever be deployed in nuclear plants given the possibility that the information in them can be compromised and the technologies themselves can potentially be exploited to serve as attack vectors for adversaries. To this end, a cyber security evaluation has been conducted of these technologies to determine whether they constitute a threat beyond what the nuclear plants already manage within their regulatory-required cyber security programs. Specifically, the evaluation is based on NEI 08-09, which is the industry’s template for cyber security programs and evaluations, accepted by the Nuclear Regulatory Commission (NRC) as responsive to the requirements of the nuclear power plant cyber security regulation found in 10 CFR 73.54. The evaluation was conducted by a cyber security team with expertise in nuclear utility cyber security programs and experience in conducting these evaluations. The evaluation has determined that, for the most part, cyber security will not be a limiting factor in the application of these technologies to nuclear power plant applications.« less

  19. Transuranic inventory reduction in repository by partitioning and transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, C.H.; Kazimi, M.S.

    1992-01-01

    The promise of a new reprocessing technology and the issuance of Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission regulations concerning a geologic repository rekindle the interest in partitioning and transmutation of transuranic (TRU) elements from discharged reactor fuel as a high level waste management option. This paper investigates the TRU repository inventory reduction capability of the proposed advanced liquid metal reactors (ALMRs) and integral fast reactors (IFRs) as well as the plutonium recycled light water reactors (LWRs).

  20. The thermal circuit of a nuclear power station's unit built around a supercritical-pressure water-cooled reactor

    NASA Astrophysics Data System (ADS)

    Silin, V. A.; Zorin, V. M.; Tagirov, A. M.; Tregubova, O. I.; Belov, I. V.; Povarov, P. V.

    2010-12-01

    Main results obtained from calculations of the steam generator and thermal circuit of the steam turbine unit for a nuclear power unit with supercritical-pressure water coolant and integral layout are presented. The obtained characteristics point to the advisability of carrying out further developments of this promising nuclear power technology.

  1. Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor

    NASA Astrophysics Data System (ADS)

    Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat

    2013-08-01

    Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.

  2. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  3. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Astrophysics Data System (ADS)

    Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.

    The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichman, K.; Tsao, J.; Mayfield, M.

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less

  5. JPRS Report, Science & Technology, Japan, Fine Ceramics Industry Basic Issues Forum

    DTIC Science & Technology

    1990-10-12

    Department, Nagoya Industrial Technology Testing Station, Agency of Industrial Science & Technology Tetsuya Uchino Director, Asahi Glass Co, Ltd...12.5) (100) Steel 15 3 30 75 16 8 132 (22.7) (56.8) (12.2) (100) Glass , 12 13 73 2 16 15 119 Earth & Rock (10.9) (61.3) (13.4) (100) Share, by...fil- ters, burners Nuclear Power Equipment P&S Materials used in nuclear fusion reactors R&D Materials used to fix waste products in glass , materials

  6. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less

  7. The integral fast reactor and its role in a new generation of nuclear power plants, Tokai, Japan, November 19-21, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.R.

    1986-01-01

    This report presents information on the Integral Fast Reactor and its role in the future. Information is presented in the areas of: inherent safety; other virtues of sodium-cooled breeder; and solving LWR fuel cycle problems with IFR technologies. (JDB)

  8. On-line condition monitoring applications in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastiemian, H. M.; Feltus, M. A.

    2006-07-01

    Existing signals from process instruments in nuclear power plants can be sampled while the plant is operating and analyzed to verify the static and dynamic performance of process sensors, identify process-to-sensor problems, detect instrument anomalies such as venturi fouling, measure the vibration of the reactor vessel and its internals, or detect thermal hydraulic anomalies within the reactor coolant system. These applications are important in nuclear plants to satisfy a variety of objectives such as: 1) meeting the plant technical specification requirements; 2) complying with regulatory regulations; 3) guarding against equipment and process degradation; 4) providing a means for incipient failuremore » detection and predictive maintenance; or 5) identifying the root cause of anomalies in equipment and plant processes. The technologies that are used to achieve these objectives are collectively referred to as 'on-line condition monitoring.' This paper presents a review of key elements of these technologies, provides examples of their use in nuclear power plants, and illustrates how they can be integrated into an on-line condition monitoring system for nuclear power plants. (authors)« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernander, O.; Haga, I.; Segerberg, F.

    BS>From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). Although the present status of the boiling water reactor is one of proven technology, design refinements and technical innovations are still being made to further improve reliability, economy and safety. The new standard ASEA- ATOM BWR features a number of such refinements and design improvements involving main circulation punips, containment design, refuelling system and off-gas treatment plant. In some respects the nuclear and hydraulic design of the ASEA- ATOM BWR differs from that adopted by other BWR manufacturers. Since the Oskarshamn I plant was the first nuclear power station havingmore » these features an extensive physics and hydraulics test program was made during the reactor start- up. The results of these tests have fully confirmed the ability of calculation methods to predict the behavior of the reactor. (auth)« less

  10. Summary of space nuclear reactor power systems, 1983--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressedmore » from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.« less

  11. Summary of space nuclear reactor power systems, 1983 - 1992

    NASA Astrophysics Data System (ADS)

    Buden, D.

    1993-08-01

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987-88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  12. Evaluating the Cost, Safety, and Proliferation Risks of Small Floating Nuclear Reactors.

    PubMed

    Ford, Michael J; Abdulla, Ahmed; Morgan, M Granger

    2017-11-01

    It is hard to see how our energy system can be decarbonized if the world abandons nuclear power, but equally hard to introduce the technology in nonnuclear energy states. This is especially true in countries with limited technical, institutional, and regulatory capabilities, where safety and proliferation concerns are acute. Given the need to achieve serious emissions mitigation by mid-century, and the multidecadal effort required to develop robust nuclear governance institutions, we must look to other models that might facilitate nuclear plant deployment while mitigating the technology's risks. One such deployment paradigm is the build-own-operate-return model. Because returning small land-based reactors containing spent fuel is infeasible, we evaluate the cost, safety, and proliferation risks of a system in which small modular reactors are manufactured in a factory, and then deployed to a customer nation on a floating platform. This floating small modular reactor would be owned and operated by a single entity and returned unopened to the developed state for refueling. We developed a decision model that allows for a comparison of floating and land-based alternatives considering key International Atomic Energy Agency plant-siting criteria. Abandoning onsite refueling is beneficial, and floating reactors built in a central facility can potentially reduce the risk of cost overruns and the consequences of accidents. However, if the floating platform must be built to military-grade specifications, then the cost would be much higher than a land-based system. The analysis tool presented is flexible, and can assist planners in determining the scope of risks and uncertainty associated with different deployment options. © 2017 Society for Risk Analysis.

  13. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactormore » with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible. The successful completion of two big D and D projects (HDR and KKN), which reached green field conditions, are showing quite the contrary. Moreover, research on D and D technologies offers the possibility to educate students on a field of nuclear technology, which will be very important in the future. In these days D and D companies are seeking for a lot of young engineers and this will not change in the coming years. (authors)« less

  14. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    NASA Astrophysics Data System (ADS)

    Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.

    2018-04-01

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.

  15. U.S.-Russian Cooperation in Science and Technology: A Case Study of the TOPAZ Space-Based Nuclear Reactor International Program

    NASA Astrophysics Data System (ADS)

    Dabrowski, Richard S.

    2014-08-01

    The TOPAZ International Program (TIP) was the final name given to a series of projects to purchase and test the TOPAZ-II, a space-based nuclear reactor of a type that had been further developed in the Soviet Union than in the United States. In the changing political situation associated with the break-up of the Soviet Union it became possible for the United States to not just purchase the system, but also to employ Russian scientists, engineers and testing facilities to verify its reliability. The lessons learned from the TIP illuminate some of the institutional and cultural challenges to U.S. - Russian cooperation in technology research which remain true today.

  16. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  17. The NASA CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-08-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  18. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less

  19. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 1: Objectives, summary results and introduction

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.

  20. A model for the release, dispersion and environmental impact of a postulated reactor accident from a submerged commercial nuclear power plant

    NASA Astrophysics Data System (ADS)

    Bertch, Timothy Creston

    1998-12-01

    Nuclear power plants are inherently suitable for submerged applications and could provide power to the shore power grid or support future underwater applications. The technology exists today and the construction of a submerged commercial nuclear power plant may become desirable. A submerged reactor is safer to humans because the infinite supply of water for heat removal, particulate retention in the water column, sedimentation to the ocean floor and inherent shielding of the aquatic environment would significantly mitigate the effects of a reactor accident. A better understanding of reactor operation in this new environment is required to quantify the radioecological impact and to determine the suitability of this concept. The impact of release to the environment from a severe reactor accident is a new aspect of the field of marine radioecology. Current efforts have been centered on radioecological impacts of nuclear waste disposal, nuclear weapons testing fallout and shore nuclear plant discharges. This dissertation examines the environmental impact of a severe reactor accident in a submerged commercial nuclear power plant, modeling a postulated site on the Atlantic continental shelf adjacent to the United States. This effort models the effects of geography, decay, particle transport/dispersion, bioaccumulation and elimination with associated dose commitment. The use of a source term equivalent to the release from Chernobyl allows comparison between the impacts of that accident and the postulated submerged commercial reactor plant accident. All input parameters are evaluated using sensitivity analysis. The effect of the release on marine biota is determined. Study of the pathways to humans from gaseous radionuclides, consumption of contaminated marine biota and direct exposure as contaminated water reaches the shoreline is conducted. The model developed by this effort predicts a significant mitigation of the radioecological impact of the reactor accident release with a submerged commercial nuclear power plant. The two box models predict the most of the radio-ecological impact occurs during the first eight days after release. The most significant risk to humans is from consumption of biota. The reduction in impact to humans from a large radioactive release makes the concept worthy of further study.

  1. NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia D. Gentillon

    2010-09-01

    Projects for the Very High Temperature Reactor Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The Very High Temperature Reactor Technology Development Office has established the NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory to ensure that very high temperature reactor data are (1) qualified for use, (2) stored in amore » readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities.« less

  2. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  3. JPRS Report, Science & Technology, USSR: Chemistry.

    DTIC Science & Technology

    1988-12-23

    Escape Accidents at Nuclear Power Plant With Water Moderated Reactors [S. A. Kabakehi, M. A. Budayev, et al.; KHIMIYA VYSOKIKH ENERGIY, Vol 22 No 4...water on the reactor surface also lowered loss of radicals. In general, the extent and temperature function Study of Radicals Desorbing From Surface... reactor sur- Alcohols With Oxygen face, by adsorption of the reagents and reaction products 184100 13f Moscow KHIMICHESKA YA FIZIKA on this surface and the

  4. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Rene Gerardo; Hutchinson, Jesson D.; Mcclure, Patrick Ray

    2015-08-20

    The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and evaluate the operational performance of a compact reactor configuration that closely resembles the flight unit to be used by NASA to execute a deep space exploration mission. The reactor design will include heat pipes coupled to Stirling engines to demonstrate how one can generate electricity when extracting energy from a “nuclear generated” heat source. This series of experiments is a larger scale follow up to the DUFF series of experiments1,2 that were performed using the Flat-Top assembly.

  5. Teleoperated systems for nuclear reactors: Inspection and maintenance

    NASA Technical Reports Server (NTRS)

    Dorokhov, V. P.; Dorokhov, D. V.; Eperin, A. P.

    1994-01-01

    The present paper describes author's work in the field of teleoperated equipment for inspection and maintenance of the RBML technological channels and graphite laying, emergency operations. New technological and design solutions of teleoperated robotic systems developed for Leningradsky Power Plant are discussed.

  6. Technical solutions to nonproliferation challenges

    NASA Astrophysics Data System (ADS)

    Satkowiak, Lawrence

    2014-05-01

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  7. Technical solutions to nonproliferation challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satkowiak, Lawrence

    2014-05-09

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversionmore » of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.« less

  8. Current status of nuclear engineering education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palladino, N.J.

    1975-09-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of themore » present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs. (auth)« less

  9. The status of power supplies for primary electric propulsion in the U.S.A.

    NASA Technical Reports Server (NTRS)

    Jones, R. M.; Scott-Monck, J. A.

    1984-01-01

    This paper reviews the status of and requirements on solar electric and nuclear electric power supplies for primary electric propulsion missions. The power supply requirements of power level, specific mass (kg/kWe) and lifetime are defined as a function of the mission and electric propulsion system characteristics for planetary missions. The technology status of planar and concentrator arrays is discussed. Nuclear reactors and thermoelectric, thermionic, Brayton and Rankine conversion technologies are reviewed, as well as recent nuclear power system design concepts and program activity. Technology projections for power supplies applicable to primary electric propulsion missions are included.

  10. Conceptual Design of Low-Temperature Hydrogen Production and High-Efficiency Nuclear Reactor Technology

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Ogawa, Takashi

    Hydrogen, a potential alternative energy source, is produced commercially by methane (or LPG) steam reforming, a process that requires high temperatures, which are produced by burning fossil fuels. However, as this process generates large amounts of CO2, replacement of the combustion heat source with a nuclear heat source for 773-1173K processes has been proposed in order to eliminate these CO2 emissions. In this paper, a novel method of nuclear hydrogen production by reforming dimethyl ether (DME) with steam at about 573K is proposed. From a thermodynamic equilibrium analysis of DME steam reforming, the authors identified conditions that provide high hydrogen production fraction at low pressure and temperatures of about 523-573K. By setting this low-temperature hydrogen production process upstream from a turbine and nuclear reactor at about 573K, the total energy utilization efficiency according to equilibrium mass and heat balance analysis is about 50%, and it is 75%for a fast breeder reactor (FBR), where turbine is upstream of the reformer.

  11. Thermos reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labrousse, M.; Lerouge, B.; Dupuy, G.

    1978-04-01

    THERMOS is a water reactor designed to provide hot water up to 120/sup 0/C for district heating or for desalination applications. It is a 100-MW reactor based on proven technology: oxide fuel plate elements, integrated primary circuit, and reactor vessel located in the bottom of a pool. As in swimming pool reactors, the pool is used for biological shielding, emergency core cooling, and fission product filtering (in case of an accident). Before economics, safety is the main characteristic of the concept: no fuel failure admitted, core under water in any accidental configuration, inspection of every ''nuclear'' component, and double-wall containment.

  12. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  13. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. R. Allen; J. B. Benson; J. A. Foster

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities ismore » granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.« less

  14. ICP-MS analysis of fission product diffusion in graphite for High-Temperature Gas-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Carter, Lukas M.

    Release of radioactive fission products from nuclear fuel during normal reactor operation or in accident scenarios is a fundamental safety concern. Of paramount importance are the understanding and elucidation of mechanisms of chemical interaction, nuclear interaction, and transport phenomena involving fission products. Worldwide efforts to reduce fossil fuel dependence coupled with an increasing overall energy demand have generated renewed enthusiasm toward nuclear power technologies, and as such, these mechanisms continue to be the subjects of vigorous research. High-Temperature Gas-Cooled Reactors (HTGRs or VHTRs) remain one of the most promising candidates for the next generation of nuclear power reactors. An extant knowledge gap specific to HTGR technology derives from an incomplete understanding of fission product transport in major core materials under HTGR operational conditions. Our specific interest in the current work is diffusion in reactor graphite. Development of methods for analysis of diffusion of multiple fission products is key to providing accurate models for fission product release from HTGR core components and the reactor as a whole. In the present work, a specialized diffusion cell has been developed and constructed to facilitate real-time diffusion measurements via ICP-MS. The cell utilizes a helium gas-jet system which transports diffusing fission products to the mass spectrometer using carbon nanoparticles. The setup was designed to replicate conditions present in a functioning HTGR, and can be configured for real-time release or permeation measurements of single or multiple fission products from graphite or other core materials. In the present work, we have analyzed release rates of cesium in graphite grades IG-110, NBG-18, and a commercial grade of graphite, as well as release of iodine in IG-110. Additionally we have investigated infusion of graphite samples with Cs, I, Sr, Ag, and other surrogate fission products for use in release or profile measurements of diffusion coefficients.

  15. Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne; Honma, George

    This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical informationmore » is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.« less

  16. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco

    Tightly coupled nuclear-renewable hybrid energy systems (N-R HESs) are an option that can generate zero-carbon, dispatchable electricity and provide zero-carbon energy for industrial processes at a lower cost than alternatives. N-R HESs are defined as systems that are managed by a single entity and link a nuclear reactor that generates heat, a thermal power cycle for heat to electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy. This report provides results of an analysis of two N-R HES scenarios. The first is a Texas-synthetic gasoline scenario that includes four subsystems: amore » nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second is an Arizona-desalination scenario with its four subsystems a nuclear reactor, thermal power cycle, solar photovoltaics, and a desalination plant. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives where the energy is provided by natural gas.« less

  17. Defining the "proven technology" technical criterion in the reactor technology assessment for Malaysia's nuclear power program

    NASA Astrophysics Data System (ADS)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul; Manan, Jamal Abdul Nasir Abd

    2015-04-01

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that "proven technology" is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for "proven technology" is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the "proven technology" term according to a specific country's requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of "proven technology" that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia's definition of "proven technology".

  18. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trond Bjornard; John Hockert

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactormore » types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.« less

  19. The Nuclear Renaissance in the U.S.

    ScienceCinema

    Buongiorno, Jacopo

    2018-04-23

    Nuclear power currently provides 20% of the electricity generation in the U.S. and about 16% worldwide.  As a carbon-free energy source, nuclear is receiving a lot of attention by industry, lawmakers and environmental groups, as they attempt to resolve the issue of man-made climate change.  For the first time in 30 years several U.S. electric utilities have applied for construction and operation licenses of new nuclear power plants.  This talk will review the safety, operational and economic record of the existing U.S. commercial reactor fleet, will provide an overview of the reactor designs considered for the new wave of plant construction, and will discuss several research projects being conducted at the Massachusetts Institute of Technology to support the expansion of nuclear power in the U.S. and overseas.

  20. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  1. Light Water Reactor Sustainability Program Integrated Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution tomore » the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.« less

  2. A preliminary systems-engineering study of an advanced nuclear-electrolytic hydrogen-production facility

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Donakowski, T. D.; Tison, R. R.

    1975-01-01

    An advanced nuclear-electrolytic hydrogen-production facility concept was synthesized at a conceptual level with the objective of minimizing estimated hydrogen-production costs. The concept is a closely-integrated, fully-dedicated (only hydrogen energy is produced) system whose components and subsystems are predicted on ''1985 technology.'' The principal components are: (1) a high-temperature gas-cooled reactor (HTGR) operating a helium-Brayton/ammonia-Rankine binary cycle with a helium reactor-core exit temperature of 980 C, (2) acyclic d-c generators, (3) high-pressure, high-current-density electrolyzers based on solid-polymer electrolyte technology. Based on an assumed 3,000 MWt HTGR the facility is capable of producing 8.7 million std cu m/day of hydrogen at pipeline conditions, 6,900 kPa. Coproduct oxygen is also available at pipeline conditions at one-half this volume. It has further been shown that the incorporation of advanced technology provides an overall efficiency of about 43 percent, as compared with 25 percent for a contemporary nuclear-electric plant powering close-coupled contemporary industrial electrolyzers.

  3. Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R. E.

    1960-02-01

    The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)

  4. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  5. Advanced Space Nuclear Reactors from Fiction to Reality

    NASA Astrophysics Data System (ADS)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  6. High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  7. Leasing of Nuclear Power Plants With Using Floating Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Yu.N.; Gabaraev, B.A.; Reshetov, V.A.

    2002-07-01

    The proposal to organize and realize the international program on leasing of Nuclear Power Plant (NPP) reactor compartments is brought to the notice of potential partners. The proposal is oriented to the construction of new NPPs or to replacement of worked-out reactor units of the NPPs in operation on the sites situated near water area and to the use of afloat technologies for construction, mounting and transportation of reactor units as a Reactor Compartment Block Module (RCBM). According to the offered project the RCBM is fabricated in factory conditions at the largest Russian defense shipbuilding plant - State Unitary Enterprisemore » 'Industrial Association SEVMASHPREDPRIYATIE' (SEVMASH) in the city of Severodvinsk of the Arkhangelsk region. After completion of assembling, testing and preliminary licensing the RCBM is given buoyancy by means of hermetic sealing and using pontoons and barges. The RCBM delivery to the NPP site situated near water area is performed by sea route. The RCBM is brought to the place of its installation with the use of appropriate hydraulic structures (canals, shipping locks), then is lowered on the basement constructed beforehand and incorporated into NPP scheme, of which the components are installed in advance. Floating means can be detached from the RCBM and used repeatedly for other RCBMs. Further procedure of NPP commissioning and its operation is carried out according to traditional method by power company in the framework of RCBM leasing with enlisting the services of firm-manufacturer's specialists either to provide reactor plant operation and concomitant processes or to perform author's supervision of operation. After completion of lifetime and reactor unloading the RCBM is dismantled with using the same afloat technology and taken away from NPP site to sea area entirely, together with its structures (reactor vessel, heat exchangers, pumps, pipelines and other equipment). Then RCBM is transported by shipping route to a firm-manufacturer, for subsequent reprocessing, utilization and storage. Nuclear fuel and radioactive wastes are removed from NPP site also. Use of leasing method removes legal problems connected with the transportation of radioactive materials through state borders as the RCBM remains a property of the state-producer at all stages of its life cycle. (authors)« less

  8. Bimodal Nuclear Thermal Rocket Analysis Developments

    NASA Technical Reports Server (NTRS)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  9. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.

  10. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  11. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  12. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  13. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Astrophysics Data System (ADS)

    Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  14. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    DOE PAGES

    Durham, J. M.; Poulson, D.; Bacon, J.; ...

    2018-04-10

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less

  15. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, J. M.; Poulson, D.; Bacon, J.

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less

  16. JPRS Report, Proliferation Issues

    DTIC Science & Technology

    1991-08-08

    from its processing plant at Valindaba, and fuel-fabrication plants at Valindaba and Pelindaba. where fuel rods for use at the Koeberg nuclear-power...construction of the fourth one. The pulsed reactor uses special elements of nuclear fuel The site of the proposed fourth nuclear power plant can enabling...chemical, and biological weapons, including delivery systems and the transfer of weapons-relevant technologies.] AFRICA SOUTH AFRICA Civilian Uses for

  17. Among Demons and Wizards: The Nuclear Energy Discourse in Sweden and the Re-Enchantment of the World

    ERIC Educational Resources Information Center

    Anshelm, Jonas

    2010-01-01

    In 1956, the Swedish Parliament decided to invest in a national nuclear energy program. The decision rested on the conviction that it would be in the interest of the nation to use the assets of natural uranium, the advanced reactor technology, and the expertise on nuclear physics that the country had at its disposal. Since the decision concerned…

  18. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  19. Nuclear data activities at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Radeck, D.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-10-01

    Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility n_TOF will be presented.

  20. MSTD 2007 Publications and Patents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W E

    2008-04-01

    The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less

  1. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affectmore » reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).« less

  2. Convective cooling in a pool-type research reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, Susan; Usman, Shoaib

    2016-01-01

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.

  3. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    NASA Technical Reports Server (NTRS)

    Wright, Steven A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiff, Scott D.; Dazeley, Steven; Reyna, David

    The current state-of-the-art in antineutrino detection is such that it is now possible to remotely monitor the operational status, power levels and fissile content of nuclear reactors in real-time. This non-invasive and incorruptible technique has been demonstrated at civilian power reactors in both Russia and the United States and has been of interest to the IAEA Novel Technologies Unit for several years. Expert's meetings were convened at IAEA headquarters in 2003 and again in 2008. The latter produced a report in which antineutrino detection was called a 'highly promising technology for safeguards applications' at nuclear reactors and several near-term goalsmore » and suggested developments were identified to facilitate wider applicability. Over the last few years, we have been working to achieve some of these goals and improvements. Specifically, we have already demonstrated the successful operation of non-toxic detectors and most recently, we are testing a transportable, above-ground detector system, which is fully contained within a standard 6 meter ISO container. If successful, such a system could allow easy deployment at any reactor facility around the world. As well, our previously demonstrated ability to remotely monitor the data and respond in real-time to reactor operational changes could allow the verification of operator declarations without the need for costly site-visits. As the global nuclear power industry expands around the world, the burden on maintaining operational histories and safeguarding inventories will increase greatly. Such a system for providing remote data to verify operator's declarations could greatly reduce the need for frequent site inspections while still providing a robust warning of anomalies requiring further investigation.« less

  5. Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebak, Raul B.; Lou, Xiaoyuan

    Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1) Evaluate nuclear related properties of AM 316L SS, including microstructure, tensile properties, impact toughness, stress corrosion cracking (SCC), corrosion fatigue (CF), irradiation effects, and irradiation assisted stress corrosion cracking (IASCC). (2) Understand the correlations among laser processing, heat treatment, microstructure and SCC/irradiation properties; (3) Optimize and improve the manufacturing process to achieve enhanced nuclear application properties; (4) Fabricate, evaluate, qualify and test a prototype reactor component to demonstrate the commercial viability and cost benefit; (5) Create regulatory approval path and commercialization plans for the production of a commercial reactor component.« less

  6. Accident analysis of heavy water cooled thorium breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k,more » and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.« less

  7. Accident analysis of heavy water cooled thorium breeder reactor

    NASA Astrophysics Data System (ADS)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.

  8. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-6, Protective Coating Inspection.

    ERIC Educational Resources Information Center

    Espy, John

    This sixth in a series of eight modules for a course titled Mechanical Inspection describes the duties of the nuclear quality assurance/quality control technician that are associated with protective coatings, and the national standards that govern the selection, application, and inspection of protective coatings for the reactor containment…

  9. The novel implicit LU-SGS parallel iterative method based on the diffusion equation of a nuclear reactor on a GPU cluster

    NASA Astrophysics Data System (ADS)

    Zhang, Jilin; Sha, Chaoqun; Wu, Yusen; Wan, Jian; Zhou, Li; Ren, Yongjian; Si, Huayou; Yin, Yuyu; Jing, Ya

    2017-02-01

    GPU not only is used in the field of graphic technology but also has been widely used in areas needing a large number of numerical calculations. In the energy industry, because of low carbon, high energy density, high duration and other characteristics, the development of nuclear energy cannot easily be replaced by other energy sources. Management of core fuel is one of the major areas of concern in a nuclear power plant, and it is directly related to the economic benefits and cost of nuclear power. The large-scale reactor core expansion equation is large and complicated, so the calculation of the diffusion equation is crucial in the core fuel management process. In this paper, we use CUDA programming technology on a GPU cluster to run the LU-SGS parallel iterative calculation against the background of the diffusion equation of the reactor. We divide one-dimensional and two-dimensional mesh into a plurality of domains, with each domain evenly distributed on the GPU blocks. A parallel collision scheme is put forward that defines the virtual boundary of the grid exchange information and data transmission by non-stop collision. Compared with the serial program, the experiment shows that GPU greatly improves the efficiency of program execution and verifies that GPU is playing a much more important role in the field of numerical calculations.

  10. Electrically Heated Testing of the Kilowatt Reactor Using Stirling Technology (KRUSTY) Experiment Using a Depleted Uranium Core

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James

    2017-01-01

    The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site. Fabrication, assembly, and testing of the depleted uranium core has allowed for higher fidelity system level testing at GRC, and has validated the fabrication methods to be used on the highly enriched uranium core that will supply heat for the DAF KRUSTY demonstration.

  11. Development and Testing of Space Fission Technology at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt; Pearson, J. Boise; Houts, Michael

    2008-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA-Marshall Space Flight Center (MSFC) provides a capability to perform hardware-directed activities to support multiple inspace nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations allowing for realistic thermal-hydraulic evaluations of systems. The EFF-TF is currently performing non-nuclear testing of hardware to support a technology development effort related to an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled reactor design, which builds on US and Russian space reactor technology as well as extensive US and international terrestrial liquid metal reactor experience. An important aspect of the current hardware development effort is the information and insight that can be gained from experiments performed in a relevant environment using realistic materials. This testing can often deliver valuable data and insights with a confidence that is not otherwise available or attainable. While the project is currently focused on potential fission surface power for the lunar surface, many of the present advances, testing capabilities, and lessons learned can be applied to the future development of a low-cost in-space fission power system. The potential development of such systems would be useful in fulfilling the power requirements for certain electric propulsion systems (magnetoplasmadynamic thruster, high-power Hall and ion thrusters). In addition, inspace fission power could be applied towards meeting spacecraft and propulsion needs on missions further from the Sun, where the usefulness of solar power is diminished. The affordable nature of the fission surface power system that NASA may decide to develop in the future might make derived systems generally attractive for powering spacecraft and propulsion systems in space. This presentation will discuss work on space nuclear systems that has been performed at MSFC's EFF-TF over the past 10 years. Emphasis will be place on both ongoing work related to FSP and historical work related to in-space systems potentially useful for powering electric propulsion systems.

  12. Peace and security in Northeast Asia: The nuclear issue and the Korean Peninsula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kihl, Y.W.; Hayes, P.; Scalapino, R.A.

    1996-01-01

    Korean security was the focus of world-wide attention and concern in 1993--95 with North Korea's 'suspected' nuclear weapons program. Dubbed by some as the first post-Cold War nuclear crisis, it was triggered by the United Nations Security Council's move to impose economic sanctions on North Korea. Although the immediate crisis was defused diplomatically, the nuclear time bomb continues to tick on the Korean peninsula, and the issues remain under close international surveillance. This important book examines North Korea's nuclear controversy from a variety of perspectives, including nuclear reactor technology and technology transfer, economic sanctions and incentives, strategic calculus and confidence-buildingmore » measures, the major powers, and environmental challenges that a nuclear-free zone in Korea will present.« less

  13. An historical collection of papers on nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  14. Understanding Victims of Technological Disaster: Beliefs and Worries of Three Mile Island.

    ERIC Educational Resources Information Center

    Prince-Embury, Sandra; Rooney, James

    The primary purpose of the present study was to examine how prevalent were concerns about restarting Three Mile Island nuclear reactor Unit I among people within a five-mile radius of the plant four years after the accident involving reactor Unit II. Also explored were concerns related to expectations about the restart of Unit I, perception of…

  15. Renewability and sustainability aspects of nuclear energy

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer

    2014-09-01

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, 233U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO2/RG-PuO2) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG-PuO2 + 96 % ThO2; 6 % RG-PuO2 + 94 % ThO2; 10 % RG-PuO2 + 90 % ThO2; 20 % RG-PuO2 + 80 % ThO2; 30 % RG-PuO2 + 70 % ThO2, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ˜ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ˜ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG-PuO2 fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MWth has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ˜160 kg 233U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ˜1.3.

  16. Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Ken; Lawrie, Sean; Hart, Adam

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systemsmore » of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. The Business Case Methodology (BCM) addresses the “benefit” side of the analysis—as opposed to the cost side—and how the organization evaluates discretionary projects (net present value (NPV), accounting effects of taxes, discount rates, etc.). The cost and analysis side is not particularly difficult for the organization and can usually be determined with a fair amount of precision (not withstanding implementation project cost overruns). It is in determining the "benefits" side of the analysis that utilities have more difficulty in technology projects and that is the focus of this methodology.« less

  17. TOWARD THE DEVELOPMENT OF A CONSENSUS MATERIALS DATABASE FOR PRESSURE TECHNOLGY APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, Robert W; Ren, Weiju

    The ASME construction code books specify materials and fabrication procedures that are acceptable for pressure technology applications. However, with few exceptions, the materials properties provided in the ASME code books provide no statistics or other information pertaining to material variability. Such information is central to the prediction and prevention of failure events. Many sources of materials data exist that provide variability information but such sources do not necessarily represent a consensus of experts with respect to the reported trends that are represented. Such a need has been identified by the ASME Standards Technology, LLC and initial steps have been takenmore » to address these needs: however, these steps are limited to project-specific applications only, such as the joint DOE-ASME project on materials for Generation IV nuclear reactors. In contrast to light-water reactor technology, the experience base for the Generation IV nuclear reactors is somewhat lacking and heavy reliance must be placed on model development and predictive capability. The database for model development is being assembled and includes existing code alloys such as alloy 800H and 9Cr-1Mo-V steel. Ownership and use rights are potential barriers that must be addressed.« less

  18. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  19. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 4: Concepts selection, conceptual designs, recommendations

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.

  20. Nuclear fuels - Present and future

    NASA Astrophysics Data System (ADS)

    Olander, D.

    2009-06-01

    The important developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of LWR fuels are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H 2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel rod designs, the hydride fuel with liquid-metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the very high temperature reactor and the sodium fast reactor, and the accompanying reprocessing technologies, aqueous-based UREX+1a and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the fuel's behavior under irradiation and in the reprocessing schemes are emphasized.

  1. Neutronics Analysis of SMART Small Modular Reactor using SRAC 2006 Code

    NASA Astrophysics Data System (ADS)

    Ramdhani, Rahmi N.; Prastyo, Puguh A.; Waris, Abdul; Widayani; Kurniadi, Rizal

    2017-07-01

    Small modular reactors (SMRs) are part of a new generation of nuclear reactor being developed worldwide. One of the advantages of SMR is the flexibility to adopt the advanced design concepts and technology. SMART (System integrated Modular Advanced ReacTor) is a small sized integral type PWR with a thermal power of 330 MW that has been developed by KAERI (Korea Atomic Energy Research Institute). SMART core consists of 57 fuel assemblies which are based on the well proven 17×17 array that has been used in Korean commercial PWRs. SMART is soluble boron free, and the high initial reactivity is mainly controlled by burnable absorbers. The goal of this study is to perform neutronics evaluation of SMART core with UO2 as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2006 code with JENDL 3.3 as nuclear data library.

  2. Space rocket engine on the base of the reactor-pumped laser for the interplanetary flights and earth orbital applications

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.

    2000-01-01

    In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .

  3. Cyber Mutual Assistance Workshop Report

    DTIC Science & Technology

    2018-02-01

    Information Technology, Nuclear Reactors, Materials/Waste, Defense Industrial Base, Critical Manufacturing, Food/ Agriculture Government Facilities and...Manufacturing, Food/ Agriculture Government Facilities and Chemical, Commercial Facilities [DHS 2017c]. Distributed Energy Resources (DER) are

  4. Dedicated nuclear facilities for electrolytic hydrogen production

    NASA Technical Reports Server (NTRS)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  5. The ENABLER - Based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  6. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR,more » the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.« less

  7. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadasivan, Pratap

    2012-08-24

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mixmore » of innovative methods that support the general practice of risk assessments, and selected applications.« less

  8. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  9. "What--me worry?" "Why so serious?": a personal view on the Fukushima nuclear reactor accidents.

    PubMed

    Gallucci, Raymond

    2012-09-01

    Infrequently, it seems that a significant accident precursor or, worse, an actual accident, involving a commercial nuclear power reactor occurs to remind us of the need to reexamine the safety of this important electrical power technology from a risk perspective. Twenty-five years since the major core damage accident at Chernobyl in the Ukraine, the Fukushima reactor complex in Japan experienced multiple core damages as a result of an earthquake-induced tsunami beyond either the earthquake or tsunami design basis for the site. Although the tsunami itself killed tens of thousands of people and left the area devastated and virtually uninhabitable, much concern still arose from the potential radioactive releases from the damaged reactors, even though there was little population left in the area to be affected. As a lifelong probabilistic safety analyst in nuclear engineering, even I must admit to a recurrence of the doubt regarding nuclear power safety after Fukushima that I had experienced after Three Mile Island and Chernobyl. This article is my attempt to "recover" my personal perspective on acceptable risk by examining both the domestic and worldwide history of commercial nuclear power plant accidents and attempting to quantify the risk in terms of the frequency of core damage that one might glean from a review of operational history. © 2012 Society for Risk Analysis.

  10. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.E. Craft; R. C. O'Brien; S. D. Howe

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact,more » fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.« less

  11. Radiation Effects in Fission and Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Odette, G. Robert; Wirth, Brian D.

    Since the prediction of "Wigner disease" [1] and the subsequent observation of anisotropic growth of the graphite used in the Chicago Pile, the effects of radiation on materials has been an important technological concern. The broad field of radiation effects impacts many critical advanced technologies, ranging from semiconductor processing to severe materials degradation in nuclear reactor environments. Radiation effects also occur in many natural environments, ranging from deep space to inside the Earth's crust. As selected examples that involve many basic phenomena that cross-cut and illustrate the broader impacts of radiation exposure on materials, this article focuses on modeling microstructural changes in iron-based ferritic alloys under high-energy neutron irradiation relevant to light water fission reactor pressure vessels. We also touch briefly on radiation effects in structural alloys for fusion reactor first wall and blanket structures; in this case the focus is on modeling the evolution of self-interstitial atom clusters and dislocation loops. Note, since even the narrower topic of structural materials for nuclear energy applications encompass a vast literature dating from 1942, the references included in this article are primarily limited to these two narrower subjects. Thus, the references cited here are presented as examples, rather than comprehensive bibliographies. However, the interested reader is referred to proceedings of continuing symposia series that have been sponsored by several organizations, several monographs [2-4] and key journals (e.g., Journal of Nuclear Materials, Radiation Effects and Defects in Solids).

  12. Technology for Bayton-cycle powerplants using solar and nuclear energy

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  13. Integral nuclear data validation using experimental spent nuclear fuel compositions

    DOE PAGES

    Gauld, Ian C.; Williams, Mark L.; Michel-Sendis, Franco; ...

    2017-07-19

    Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors andmore » representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. Furthermore, the database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.« less

  14. Integral nuclear data validation using experimental spent nuclear fuel compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauld, Ian C.; Williams, Mark L.; Michel-Sendis, Franco

    Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors andmore » representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. Furthermore, the database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.« less

  15. Nuclear materials safeguards for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tape, J.W.

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating internationalmore » inspection of excess weapons materials and verifying a fissile materials cutoff convention.« less

  16. Nuclear power--key to man's extraterrestrial civilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, J.A.; Buden, D.

    1982-08-01

    The start of the Third Millennium will be highlighted by the establishment of man's extraterrestrial civilization with three technical cornerstones leading to the off-planet expansion of the human resource base. These are the availability of compact energy sources for power and propulsion, the creation of permanent manned habitats in space, and the ability to process materials anywhere in the Solar System. In the 1990s and beyond, nuclear reactors could represent the prime source of both space power and propulsion. The manned and unmanned space missions of tomorrow will demand first kilowatt and then megawatt levels of power. Various nuclear powermore » plant technologies are discussed, with emphasis on derivatives from the nuclear rocket technology.« less

  17. A Comparison of Brayton and Stirling Space Nuclear Power Systems for Power Levels from 1 Kilowatt to 10 Megawatts

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.

  18. NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JE Daw; JL Rempe; BR Tittmann

    2012-09-01

    Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are lessmore » intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.« less

  19. A retrospective analysis of funding and focus in US advanced fission innovation

    NASA Astrophysics Data System (ADS)

    Abdulla, A.; Ford, M. J.; Morgan, M. G.; Victor, D. G.

    2017-08-01

    Deep decarbonization of the global energy system will require large investments in energy innovation and the deployment of new technologies. While many studies have focused on the expenditure that will be needed, here we focus on how government has spent public sector resources on innovation for a key carbon-free technology: advanced nuclear. We focus on nuclear power because it has been contributing almost 20% of total US electric generation, and because the US program in this area has historically been the world’s leading effort. Using extensive data acquired through the Freedom of Information Act, we reconstruct the budget history of the Department of Energy’s program to develop advanced, non-light water nuclear reactors. Our analysis shows that—despite spending 2 billion since the late 1990s—no advanced design is ready for deployment. Even if the program had been well designed, it still would have been insufficient to demonstrate even one non-light water technology. It has violated much of the wisdom about the effective execution of innovative programs: annual funding varies fourfold, priorities are ephemeral, incumbent technologies and fuels are prized over innovation, and infrastructure spending consumes half the budget. Absent substantial changes, the possibility of US-designed advanced reactors playing a role in decarbonization by mid-century is low.

  20. Small Nuclear Reactors for Military Installations: Capabilities, Costs, and Technological Implications

    DTIC Science & Technology

    2011-02-01

    almost entirely dependent on the national transmission grid . . . [which] is fragile, vulnerable, near its capacity limit, and outside of DOD control...has returned. A major factor in this resurgence has come from developing countries, where expressed and pro- jected demands for electricity are...rapidly growing and limited infrastructural and investment capacity generates interest in reactors that can be deployed rapidly and in- crementally.14

  1. Nuclear science and society: social inclusion through scientific education

    NASA Astrophysics Data System (ADS)

    Levy, Denise S.

    2017-11-01

    This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.

  2. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  3. Innovative nuclear thermal propulsion technology evaluation - Results of the NASA/DOE task team study

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.

  4. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  5. International trade and waste and fuel management issue, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: Innovative financing and workforce planning, by Donna Jacobs, Entergy Nuclear; Nuclear power - a long-term need, by John C. Devine, Gerald Goldsmith and Michael DeLallo, WorleyParsons; Importance of loan guarantee program, by Donald Hintz; EPC contracts for new plants, by Dave Barry, Shaw Power Group; GNEP and fuel recycling, by Alan Hanson, AREVA NC Inc.; Safe and reliable reactor, by Kiyoshi Yamauchi, Mitsubishi Heavy Industries, Ltd.; Safe, small and simple reactors, by Yoshi Sakashita, Toshiba Corporation; Nuclear power inmore » Thailand, by Tatchai Sumitra, Thailand Institute of Nuclear Technology; and, Nuclear power in Vietnam, by Tran Huu Phat, Vietnam Atomic Energy Commission. The Industry Innovation article this issue is Rectifying axial-offset-anomaly problems, by Don Adams, Tennessee Valley Authority. The Plant Profile article is Star of Stars Excellence, by Tyler Lamberts, Entergy Nuclear Operations, Inc.« less

  6. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  7. The Aviation Paradox: Why We Can 'Know' Jetliners But Not Reactors.

    PubMed

    Downer, John

    2017-01-01

    Publics and policymakers increasingly have to contend with the risks of complex, safety-critical technologies, such as airframes and reactors. As such, 'technological risk' has become an important object of modern governance, with state regulators as core agents, and 'reliability assessment' as the most essential metric. The Science and Technology Studies (STS) literature casts doubt on whether or not we should place our faith in these assessments because predictively calculating the ultra-high reliability required of such systems poses seemingly insurmountable epistemological problems. This paper argues that these misgivings are warranted in the nuclear sphere, despite evidence from the aviation sphere suggesting that such calculations can be accurate. It explains why regulatory calculations that predict the reliability of new airframes cannot work in principle, and then it explains why those calculations work in practice. It then builds on this explanation to argue that the means by which engineers manage reliability in aviation is highly domain-specific, and to suggest how a more nuanced understanding of jetliners could inform debates about nuclear energy.

  8. Tritium handling experience at Atomic Energy of Canada Limited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritiummore » powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.« less

  9. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamov, E.O.; Lebedev, V.A.; Kuznetsov, Yu.N.

    Zheleznogorsk is situated near the territorial center -- Krasnoyarsk on the Yenisei river. Mining and chemical complex is the main industrial enterprise of the town, which has been constructed for generation and used for isolation of weapons-grade plutonium. Heat supply to the chemical complex and town at the moment is largely provided by nuclear co-generation plant (NCGP) on the basis of the ADEh-2 dual-purpose reactor, generating 430 Gcal/h of heat and, partially, by coal backup peak-load boiler houses. NCGP also provides 73% of electric power consumed. In line with agreements between Russia and USA on strategic arms reduction and phasingmore » out of weapons-grade plutonium production, decommissioning of the ADEh-2 reactor by 2000 is planned. Thus, a problem arises relative to compensation for electric and thermal power generation for the needs of the town and industrial enterprises, which is now supplied by the reactor. A nuclear power plant constructed on the same site as a substituting power source should be considered as the most practical option. Basic requirements to the reactor of substituting nuclear power plant are as follows. It is to be a new generation reactor on the basis of verified technologies, having an operating prototype optimal for underground siting and permitting utmost utilization of the available mining workings and those being disengaged. NCGP with the reactor is to be constructed in the time period required and is to become competitive with other possible power sources. Analysis has shown that the VK-300 simplified vessel-type boiling reactor meets the requirements made in the maximum extent. Its design is based on the experience of the VK-50 reactor operation for a period of 30 years in Dimitrovgrad (Russia) and allows for experience in the development of the SBWR type reactors. The design of the reactor is discussed.« less

  11. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2017-01-01

    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020 (0.992±0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions. Supported in part by the Ministry of Science and Technology of China, the United States Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the MOST and MOE in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, the National Commission for Scientific and Technological Research of Chile

  12. Convective cooling in a pool-type research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipaun, Susan, E-mail: susan@nm.gov.my; Usman, Shoaib, E-mail: usmans@mst.edu

    2016-01-22

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U{sub 3}Si{sub 2}Al) in the form of rectangular plates. Gaps between the plates allow coolant to passmore » through and carry away heat. A study was carried out to map out heat flow as well as to predict the system’s performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm{sup −3}. An MSTR model consisting of 20% of MSTR’s nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s{sup −1} from the 4” pipe, and predicted pool surface temperature not exceeding 30°C.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Yury N.

    The co-generation nuclear power plant (CNPP) producing electricity and district heating heat is planned to be constructed in Archangelsk Region of Russia. Following the 'Letter of Intent' signed by Governor of Archangelsk region and by Minister of the Russian Federation for atomic energy the feasibility study of the Project has been done. The NPP will be based on the four co-generation nuclear power units with the Russian VK-300 SBWR. The innovative passive VK-300 reactor facility has been designed on the basis of well-established nuclear technologies, proven major components, the operating experience of the prototype VK-50 reactor in RIAR, Dimitrovgrad, andmore » the experience in designing such reactors as SBWR (GE) and SWR-1000 (Siemens). The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal/h. A detailed description of the results of the feasibility study is presented in the report. The results of the feasibility study have shown that the Archangelsk CGNP is feasible in terms of engineering, economics and production. (authors)« less

  14. Feasibility of EB Welded Hastelloy X and Combination of Refractory Metals

    NASA Technical Reports Server (NTRS)

    Martinez, Diana A.

    2004-01-01

    As NASA continues to expand its horizon, exploration and discovery creates the need of advancement in technology. The Jupiter Icy Moon Orbiter's (JIMO) mission to explore and document the outer surfaces, rate the possibility of holding potential life forms, etc. within the three moons (Callisto, Ganymede, and Europa) proves to be challenging. The orbiter itself consists of many sections including: the nuclear reactor and the power conversion system, the radiator panels, and the thrusters and antenna. The nuclear reactor serves as a power source, and if successfully developed, can operate for extended periods. During the duration of my tenure at NASA Glenn Research Center's (NASA GRC) Advanced Metallics Branch, I was assigned to assist Frank J. Ritzert on analyzing the feasibility of the Electron Beam Welded Hastelloy X (HX), a nickel-based superalloy, to Niobium- 1 %Zirconium (Nb-1 Zr) and other refractory metals/alloys including Tantalum, Molybdenum, Tungsten, and Rhenium alloys. This welding technique is going to be used for the nuclear reactor within JIMO.

  15. Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions

    NASA Astrophysics Data System (ADS)

    DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard

    2018-04-01

    A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.

  16. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less

  17. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  18. Synchronized fusion development considering physics, materials and heat transfer

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Liu, Y.; Duan, X. R.; Xu, M.; Li, Q.; Feng, K. M.; Zheng, G. Y.; Li, Z. X.; Wang, X. Y.; Li, B.; Zhang, G. S.

    2017-12-01

    Significant achievements have been made in the last 60 years in the development of fusion energy with the tokamak configuration. Based on the accumulated knowledge, the world is embarking on the construction and operation of ITER (International Thermonuclear Experimental Reactor) with a production of 500 MWf fusion power and the demonstration of physics Q  =  10. ITER will demonstrate D-T burn physics for a duration of a few hundred seconds to prepare for the next long-burn or steady state nuclear testing tokamak operating at much higher neutron fluence. With the evolution into a steady state nuclear device, such as the China Fusion Engineering Test Reactor (CFETR), it is necessary to examine the boundary conditions imposed by the combined development of tokamak physics, fusion materials and fusion technology for a reactor. The development of ferritic steel alloys as the structural material suitable for use at high neutron fluence leads to the use of helium as the most likely reactor coolant. This points to the fundamental technology limitation on the removal of chamber wall maximum heat flux at around 1 MW m-2 and an average heat flux of 0.1 MW m-2 for the next test reactor. Future reactor performance will then depend on the control of spatial and temporal edge heat flux peaking in order to increase the average heat flux to the chamber wall. With these severe material and technological limitations, system studies were used to scope out a few robust steady state synchronized fusion reactor (SFR) designs. As an example, a low fusion power design at 131.6 MWf, which can satisfy steady state design requirements, would have a major radius of 5.5 m and minor radius of 1.6 m. Such a design with even more advanced structural materials like W f/W composite could allow higher performance and provide a net electrical production of 62 MWe. These can be incorporated into the CFETR program.

  19. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  20. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  1. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  2. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  3. Multi-University Southeast INIE Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year.more » In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs. This will be achieved by involving the faculty in the development of state-of-the-art research facilities at the URRs and subsequently, in the utilization of these facilities, c) Facilitate the use of the URRs by the science and engineering faculty within the individual institutions and by the general community of science and engineering, d) Develop a far-reaching educational component that is capable of addressing the needs of the nuclear science and engineering community. Specifically, the aim of this component will be to perform public outreach activities, contribute to the active recruitment of the next generation of nuclear professionals, strengthen the education of nuclear engineering students, and promote nuclear engineering education for minority students.« less

  4. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.« less

  5. FALCON reactor-pumped laser description and program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1989-12-01

    The FALCON (Fission Activated Laser CONcept) reactor-pumped laser program at Sandia National Laboratories is examining the feasibility of high-power systems pumped directly by the energy from a nuclear reactor. In this concept we use the highly energetic fission fragments from neutron induced fission to excite a large volume laser medium. This technology has the potential to scale to extremely large optical power outputs in a primarily self-powered device. A laser system of this type could also be relatively compact and capable of long run times without refueling.

  6. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  7. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...

  8. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...

  9. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.; Howard, Richard H.; Rader, Jordan D.

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less

  10. Advanced In-Pile Instrumentation for Materials Testing Reactors

    NASA Astrophysics Data System (ADS)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.

    2014-08-01

    The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.

  11. Autonomous Control Capabilities for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  12. Thermionic fast spectrum reactor-converter on the basis of multi-cell TFE

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, N. N.; Kompaniets, G. V.; Poliakov, D. N.; Stepennov, B. S.; Andreev, P. V.; Zhabotinsky, E. E.; Nikolaev, Yu. V.; Lapochkin, N. V.

    2001-02-01

    Today Russian experts have technological experience in development of in-core thermionic converters for reactors of space nuclear power plants. Such a converter contains nuclear fuel inside and really represents a fuel element of a reactor. Two types of reactors can be considered on the basis of these thermionic fuel elements: with thermal or intermediate neutron spectrum, and with fast neutron spectrum. The first type is characterized by the presence of moderator in core that ensures most economical usage of nuclear fuel. The estimation shows that moderated system is the most effective in the power range of about 5 ... 100 kWe. The power systems of higher level are characterized by larger dimensions due to the presence of moderator. The second type of reactor is considered for higher power levels. This power range is about hundreds kWe. Dimensions of the fast reactor and core configuration are determined by the necessity to ensure the required net output power, on the one hand, and the necessity to ensure critical state on the other hand. In the case of using in-core thermionic fuel elements of the specified design, minimal reactor output power is determined by reactor criticality condition, and maximum reactor power output is determined by specifications and launcher capabilities. In the present paper the effective multiplication factor of a fast spectrum reactor on the basis of a multi-cell TFE developed by ``Lutch'' is considered a function of the total number of TFEs in the reactor. The MCU Monte-Carlo code, developed in Russia (Alekseev, et al., 1991), was used for computations. TFE computational models are placed in the nodes of a uniform triangular lattice and surrounded with pressure vessel and a side reflector. Ordinary fuel pins without thermionic converters were used instead of some TFEs to optimize criticality parameters, dimensions and output power of the reactor. General weight parameters of the reactor are presented in the paper. .

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattison, M.B.; Thatcher, T.A.; Knudsen, J.K.

    The US Nuclear Regulatory Commission (NRC) has been using full-power. Level 1, limited-scope risk models for the Accident Sequence Precursor (ASP) program for over fifteen years. These models have evolved and matured over the years, as have probabilistic risk assessment (PRA) and computer technologies. Significant upgrading activities have been undertaken over the past three years, with involvement from the Offices of Nuclear Reactor Regulation (NRR), Analysis and Evaluation of Operational Data (AEOD), and Nuclear Regulatory Research (RES), and several national laboratories. Part of these activities was an RES-sponsored feasibility study investigating the ability to extend the ASP models to includemore » contributors to core damage from events initiated with the reactor at low power or shutdown (LP/SD), both internal events and external events. This paper presents only the LP/SD internal event modeling efforts.« less

  14. Updated and revised neutron reaction data for 237Np

    NASA Astrophysics Data System (ADS)

    Chen, Guochang; Wang, Jimin; Cao, Wentian; Tang, Guoyou; Yu, Baosheng

    2017-09-01

    Nuclear data with high accuracy for minor actinides play an important role in nuclear technology applications, including reactor design and operation, fuel cycle, estimation of the amount of minor actinides in high burn-up reactors and the minor actinides transmutation. Based on the evaluated experimental data, the updated and revised evaluation of a full set of n+237Np nuclear data from 10-5 eV ˜ 20 MeV are carried out and recommended. Mainly revised quantities are neutron multiplicities from fission reaction, inelastic, fission, (n, 2n) and (n, γ) reaction cross sections as well as angular distribution and so on. The promising results are obtained when the renewal evaluated data of 237Np will be used to instead of the evaluated data in CENDL-3.1 database.

  15. Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less

  16. The ENABLER—based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.

  17. JHR Project: a future Material Testing Reactor working as an International user Facility: The key-role of instrumentation in support to the development of modern experimental capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignan, G.; Gonnier, C.; Lyoussi, A.

    2015-07-01

    Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less

  18. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  19. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note: A nuclear reactor... core of a nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2...

  20. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  1. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  2. Methods and strategies for future reactor safety goals

    NASA Astrophysics Data System (ADS)

    Arndt, Steven Andrew

    There have been significant discussions over the past few years by the United States Nuclear Regulatory Commission (NRC), the Advisory Committee on Reactor Safeguards (ACRS), and others as to the adequacy of the NRC safety goals for use with the next generation of nuclear power reactors to be built in the United States. The NRC, in its safety goals policy statement, has provided general qualitative safety goals and basic quantitative health objectives (QHOs) for nuclear reactors in the United States. Risk metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been used as surrogates for the QHOs. In its review of the new plant licensing policy the ACRS has looked at the safety goals, as has the NRC. A number of issues have been raised including what the Commission had in mind when it drafted the safety goals and QHOs, how risk from multiple reactors at a site should be combined for evaluation, how the combination of a new and old reactor at the same site should be evaluated, what the criteria for evaluating new reactors should be, and whether new reactors should be required to be safer than current generation reactors. As part of the development and application of the NRC safety goal policy statement the Commissioners laid out the expectations for the safety of a nuclear power plant but did not address the risk associated with current multi-unit sites, potential modular reactor sites, and hybrid sites that could contain current generation reactors, new passive reactors, and/or modular reactors. The NRC safety goals and the QHOs refer to a "nuclear power plant," but do not discuss whether a "plant" refers to only a single unit or all of the units on a site. There has been much discussion on this issue recently due to the development of modular reactors. Additionally, the risk of multiple reactor accidents on the same site has been largely ignored in the probabilistic risk assessments (PRAs) done to date, and in most risk-informed analyses and discussions. This dissertation examines potential approaches to updating the safety goals that include the establishment of new quantitative safety goal associated with the comparative risk of generating electricity by viable competing technologies and modifications of the goals to account for multi-plant reactor sites, and issues associated with the use of safety goals in both initial licensing and operational decision making. This research develops a new quantitative health objective that uses a comparable benefit risk metric based on the life-cycle risk of the construction, operation and decommissioning of a comparable non-nuclear electric generation facility, as well as the risks associated with mining and transportation. This dissertation also evaluates the effects of using various methods for aggregating site risk as a safety metric, as opposed to using single plant safety goals. Additionally, a number of important assumptions inherent in the current safety goals, including the effect of other potential negative societal effects such as the generation of greenhouse gases (e.g., carbon dioxide) have on the risk of electric power production and their effects on the setting of safety goals, is explored. Finally, the role risk perception should play in establishing safety goals has been explored. To complete this evaluation, a new method to analytically compare alternative technologies of generating electricity was developed, including development of a new way to evaluate risk perception, and a new method was developed for evaluating the risk at multiple units on a single site. To test these modifications to the safety goals a number of possible reactor designs and configurations were evaluated using these new proposed safety goals to determine the goals' usefulness and utility. The results of the analysis showed that the modifications provide measures that more closely evaluate the potential risk to the public from the operation of nuclear power plants than the current safety goals, while still providing a straight-forward process for assessment of reactor design and operation.

  3. Advanced Small Modular Reactor Economics Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic andmore » nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.« less

  4. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials mechanical properties and corrosion resistance, as well as component mock-up tests on technology loops to validate potential applications while accounting for mechanical design rules and manufacturing processes. The selection, assessment and validation of materials necessitate a large number of experiments, involving rare and expensive facilities such as research reactors, hot laboratories or corrosion loops. The modelling and the codification of the behaviour of materials will always involve the use of such technological experiments, but it is of utmost importance to develop also a predictive material science. Finally, the paper stresses the benefit of prospects of multilateral collaboration to join skills and share efforts of R&D to achieve in the nuclear field breakthroughs on materials that have already been achieved over the past decades in other industry sectors (aeronautics, metallurgy, chemistry, etc.).

  5. A 100-kWt NaK-Cooled Space Reactor Concept for an Early-Flight Mission

    NASA Astrophysics Data System (ADS)

    Poston, David I.

    2003-01-01

    A stainless-steel (SS) sodium-potassium (NaK) cooled reactor could potentially be the first step in utilizing fission technology in space. The sum of all system-level experience for liquid-metal-cooled space reactors has been with NaK, including the SNAP-10a, the only reactor ever launched by the US. This paper describes a 100-kWt NaK reactor, the NaK-100, which is designed to be developed with minimal technical risk. In additional to NaK technology heritage, the NaK-100 uses a proven fuel-form (SS/UO2) and is designed for simplified system integration and testing. The pins are placed within a solid SS prism, and the NaK flows in an annulus between the pins and the prism. The nuclear and thermal-hydraulic performance of the NaK-100 is presented, as well as the major differences between the NaK-100 and SNAP-10a.

  6. Design consideration for a nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Pawlik, E. V.

    1978-01-01

    A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.

  7. Analysis of granular flow in a pebble-bed nuclear reactor.

    PubMed

    Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z

    2006-08-01

    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

  8. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE PAGES

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  9. Physical Limitations of Nuclear Propulsion for Earth to Orbit

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Patton, Bruce; Rhys, Noah O.; Schafer, Charles F. (Technical Monitor)

    2001-01-01

    An assessment of current nuclear propulsion technology for application in Earth to Orbit (ETO) missions has been performed. It can be shown that current nuclear thermal rocket motors are not sufficient to provide single stage performance as has been stated by previous studies. Further, when taking a systems level approach, it can be shown that NTRs do not compete well with chemical engines where thrust to weight ratios of greater than I are necessary, except possibly for the hybrid chemical/nuclear LANTR (LOX Augmented Nuclear Thermal Rocket) engine. Also, the ETO mission requires high power reactors and consequently large shielding weights compared to NTR space missions where shadow shielding can be used. In the assessment, a quick look at the conceptual ASPEN vehicle proposed in 1962 in provided. Optimistic NTR designs are considered in the assessment as well as discussion on other conceptual nuclear propulsion systems that have been proposed for ETO. Also, a quick look at the turbulent, convective heat transfer relationships that restrict the exchange of nuclear energy to thermal energy in the working fluid and consequently drive the reactor mass is included.

  10. Renewability and sustainability aspects of nuclear energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şahin, Sümer, E-mail: ssahin@atilim.edit.tr

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG‐PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG‐PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG‐PuO{sub 2} + 94 % ThO{sub 2};more » 10 % RG‐PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG‐PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG‐PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ∼ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ∼ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG‐PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ∼160 kg {sup 233}U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ∼1.3.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment ofmore » advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(E i), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows to infer energy-integrated neutron cross sections, i.e. ∫₀ ∞σ(E)φ(E)dE, where φ(E) is the neutron flux “seen” by the sample. This approach, which is usually defined and led by reactor physicists, is referred to as integral and is the object of this report. These two sources of information, i.e. differential and integral, are complementary and are used by the nuclear physicists in charge of producing the evaluated nuclear data files used by the nuclear community (ENDF, JEFF…). The generation of accurate nuclear data files requires an iterative process involving reactor physicists and nuclear data evaluators. This experimental program has been funded by the ATR National Scientific User Facility (ATR-NSUF) and by the DOE Office of Science in the framework of the Recovery Act. It has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation.« less

  12. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  13. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  14. Economics and Environmental Compatibility of Fusion Reactors —Its Analysis and Coming Issues— 4.Economic Effect of Fusion in Energy Market 4.2Various Externalities of Energy Systems and the Integrated Evaluation

    NASA Astrophysics Data System (ADS)

    Ito, Keishiro

    The primacy of a nuclear fusion reactor in a competitive energy market remarkably depends on to what extent the reactor contributes to reduce the externalities of energy. The reduction effects are classified into two effects, which have quite dissimilar characteristics. One is an effect of environmental dimensions. The other is related to energy security. In this study I took up the results of EC's Extern Eproject studies as are presentative example of the former effect. Concerning the latter effect, I clarified the fundamental characteristics of externalities related to energy security and the conceptual framework for the purpose of evaluation. In the socio-economical evaluation of research into and development investments in nuclear fusions reactors, the public will require the development of integrated evaluation systems to support the cost-effect analysis of how well the reduction effects of externalities have been integrated with the effects of technological innovation, learning, spillover, etc.

  15. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael F. Simpson

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  16. Doctrinal Guidelines for Quantitative Vulnerability Assessments of Infrastructure-Related Risks. Volume I

    DTIC Science & Technology

    2011-12-01

    Services; Nuclear Reactors, Materials, and Waste; Information Technology; Communications ; Postal and Shipping; Transportation Systems; and Government...Materials, and Waste; Information Technology; Communications ; Postal and Shipping; Transportation Systems; and Government Facilities). 4 National...recommendations for best practices, including outreach and communications ; and e) Recommend how DHS can improve its risk analyses and how those analyses can

  17. POWER-BURST FACILITY (PBF) CONCEPTUAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasserman, A.A.; Johnson, S.O.; Heffner, R.E.

    1963-06-21

    A description is presented of the conceptual design of a high- performance, pulsed reactor called the Power Burst Facility (PBF). This reactor is designed to generate power bursts with initial asymptotic periods as short as 1 msec, producing energy releases large enough to destroy entire fuel subassemblies placed in a capsule or flow loop mounted in the reactor, all without damage to the reactor itself. It will be used primarily to evaluate the consequences and hazards of very rapid destructive accidents in reactors representing the entire range of current nuclear technology as applied to power generation, propulsion, and testing. Itmore » will also be used to carry out detailed studies of nondestructive reactivity feedback mechanisms in the shortperiod domain. The facility was designed to be sufficiently flexible to accommodate future cores of even more advanced design. The design for the first reactor core is based upon proven technology; hence, completion of the final design of this core will involve no significant development delays. Construction of the PBF is proposed to begin in September 1984, and is expected to take approximately 20 months to complete. (auth)« less

  18. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... draft regulatory guide (DG) DG-1271 ``Decommissioning of Nuclear Power Reactors.'' This guide describes... Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This proposed...

  19. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are contained...

  20. The ORNL Chemical Technology Division, 1950-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment thatmore » had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.« less

  1. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  2. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  3. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee

    2014-11-01

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less

  4. Current status of SPINNORs designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki

    2010-06-22

    This study discuss about the SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) and the VSPINNOR (Very Small Power Reactor, Indonesia, No On-site Refuelling) which are small lead-bismuth cooled nuclear power reactors with fast neutron spectrum that could be operated for more than 10 or 15 years without on-site refuelling. They are based on the concept of a long-life core reactor developed in Indonesia since early 1990 in collaboration with the Research Laboratory for Nuclear Reactors of the Tokyo Institute of Technology (RLNR TITech). The reactor cores are designed to have near zero (less then one effective delayed neutron fraction)more » burn-up reactivity swing during the whole course of their operation to avoid a possibility of prompt criticality accident. The basic concept is that central region of the reactor core is filled with fertile (blanket) material. During the reactor operation fissile material accumulates in this central region, which helps to compensate fissile material loss in the peripheral core region and also contributes to negative coolant loss reactivity effect. A concept of high fuel volume fraction in the core is applied to achieve smaller size of a critical reactor. In this paper we consider to add Np-237 to the fuel to enhance non proliferation characteristics of the systems. The effect of Np-237 amount variation is discussed.« less

  5. 10 CFR 2.337 - Evidence at a hearing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...

  6. 10 CFR 2.337 - Evidence at a hearing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...

  7. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  8. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  9. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  10. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  11. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  12. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  13. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  14. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  15. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  16. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  17. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  18. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a...

  19. 76 FR 14436 - University of Wisconsin, University of Wisconsin Nuclear Reactor; Notice of Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ..., University of Wisconsin Nuclear Reactor; Notice of Issuance of Environmental Assessment and Finding of No... operation of the University of Wisconsin Nuclear Reactor. This action is necessary to add supplemental... of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001...

  20. Fail-safe reactivity compensation method for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.

    The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on themore » constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.« less

  1. Light Water Reactor Sustainability Program: Integrated Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy’s 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less

  2. Structural Materials and Fuels for Space Power Plants

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  3. Nuclear Systems Kilopower Overview

    NASA Technical Reports Server (NTRS)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  4. The benefits of an advanced fast reactor fuel cycle for plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less

  5. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  6. Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.; Slattery, Stuart; Billings, Jay Jay

    The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of Energy's Office of Nuclear Energy provides a robust toolkit for the modeling and simulation of current and future advanced nuclear reactor designs. This toolkit provides these technologies organized across product lines: two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling, and high-level workflow management. The Fuels Product Line and the Reactor Product line provide advanced computational technologies that serve each respective field well, however, their current lack of integration presents a major impediment to future improvements of simulation solution fidelity. Theremore » is a desire for the capability to mix and match tools across Product Lines in an effort to utilize the best from both to improve NEAMS modeling and simulation technologies. This report details a new effort to provide this Product Line interoperability through the development of a new application called Warthog. This application couples the BISON Fuel Performance application from the Fuels Product Line and the PROTEUS Core Neutronics application from the Reactors Product Line in an effort to utilize the best from all parts of the NEAMS toolkit and improve overall solution fidelity of nuclear fuel simulations. To achieve this, Warthog leverages as much prior work from the NEAMS program as possible, and in doing so, enables interoperability between the disparate MOOSE and SHARP frameworks, and the libMesh and MOAB mesh data formats. This report describes this work in full. We begin with a detailed look at the individual NEAMS framework technologies used and developed in the various Product Lines, and the current status of their interoperability. We then introduce the Warthog application: its overall architecture and the ways it leverages the best existing tools from across the NEAMS toolkit to enable BISON-PROTEUS integration. Furthermore, we show how Warthog leverages a tool known as DataTransferKit to seamlessly enable the transfer for solution data between disparate frameworks and mesh formats. To end, we demonstrate tests for the direct software coupling of BISON and PROTEUS using Warthog, and discuss current impediments and solutions to the construction of physically realistic input models for this coupled BISON-PROTEUS system.« less

  7. East Europe Report, Scientific Affairs, No. 776.

    DTIC Science & Technology

    1983-05-11

    Washington, D.C. 20402. Correspondence pertaining to matters other than procurement may be addressed to Joint Publications Research Service, 1000...the beginning of neutrons physics--the science of the properties of the neutron and its interactions-with the nucleus and matter . The science has...media, the magnetic properties of matter and phase transitions; in the physics of nuclear reactors and nuclear technology; in developing and applying

  8. Plutonium: Advancing our Understanding to Support Sustainable Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Casella, Amanda

    With Global energy needs increasing, real energy solutions to meet demands now, are needed. Fossil fuels are not an ideal candidate to meet these needs because of their negative impact on the environment. Renewables such as wind and solar have huge potential, but still need major technological advancements (particularly in the area of battery storage) before they can effectively meet growing world needs. The best option for meeting large energy needs without a large carbon footprint is nuclear energy. Of course, nuclear energy can face a fair amount of opposition and concern. However, through modern engineering and science many ofmore » these concerns can now be addressed. Many safety concerns can be met by engineering advancements, but perhaps the biggest area of concern is what to do with the used nuclear fuel after it is removed from the reactor. Currently the United States (and several other countries) utilize an open fuel cycle, meaning fuel is only used once and then discarded. It should be noted that fuel coming out of a reactor has utilized approximately 1% of the total energy that could be produced by the uranium in the fuel rod. The answer here is to close the fuel cycle and recycle the nuclear materials. By reprocessing used nuclear fuel, all the U can be repurposed without requiring disposal. The various fission products can be removed and either discarded (hugely reduced waste volume) or more reasonably, utilized in specialty reactors to make more energy or needed research/medical isotopes. While reprocessing technology is currently advanced enough to meet energy needs, completing research to improve and better understand these techniques is still needed. Better understanding behavior of fission products is one area of important research. Despite it being discovered over 75 years ago, plutonium is still an exciting element to study because of the complex solution chemistry it exhibits. In aqueous solutions Pu can exist simultaneously in multiple oxidation states, including 3+, 4+, and 6+. It also readily forms a variety of metal-ligand complexes depending on solution pH and available ligands. Understanding of the behavior of Pu in solution remains an important area of research today, with relevance to developing sustainable nuclear fuel cycles, minimizing its impact on the environment, and detecting and preventing the spread of nuclear weapons technology.« less

  9. Nuclear reactor cavity floor passive heat removal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Tyler A.; Neeley, Gary W.; Inman, James B.

    A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluidmore » communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.« less

  10. 10 CFR 52.167 - Issuance of manufacturing license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... proposed reactor(s) can be incorporated into a nuclear power plant and operated at sites having... design and manufacture the proposed nuclear power reactor(s); (5) The proposed inspections, tests... the construction of a nuclear power facility using the manufactured reactor(s). (2) A holder of a...

  11. Five Lectures on Nuclear Reactors Presented at Cal Tech

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  12. Overview of the Westinghouse Small Modular Reactor building layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of themore » plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)« less

  13. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.

  14. Structural mechanics simulations

    NASA Technical Reports Server (NTRS)

    Biffle, Johnny H.

    1992-01-01

    Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.

  15. Nuclear choices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfson, R.

    This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects andmore » uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.« less

  16. Transmutation of Nuclear Waste and the future MYRRHA Demonstrator

    NASA Astrophysics Data System (ADS)

    Mueller, Alex C.

    2013-03-01

    While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven system. The present paper aims at a short introduction into the field that has been characterized by a high collaborative activity during the last decade in Europe, in order to focus, in its later part, on the MYRRHA project as the European ADS technology demonstrator.

  17. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...

  18. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...

  19. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... behavior of the reactor system during a loss-of-coolant accident. Comparisons to applicable experimental...

  20. Energy Innovation Hubs: A Home for Scientific Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven

    Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computermore » modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.« less

  1. Energy Innovation Hubs: A Home for Scientific Collaboration

    ScienceCinema

    Chu, Steven

    2017-12-11

    Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.

  2. Taking a fresh look at boiling heat transfer on the road to improved nuclear economics and efficiency

    DOE PAGES

    Pointer, William David; Baglietto, Emilio

    2016-05-01

    Here, in the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of today’s Light Water Reactors and their fuel. An important part of the CASL mission is the developmentmore » of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on experimental experience with the computing technology of the future.« less

  3. Interim MELCOR Simulation of the Fukushima Daiichi Unit 2 Accident Reactor Core Isolation Cooling Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Kyle W.; Gauntt, Randall O.; Cardoni, Jeffrey N.

    2013-11-01

    Data, a brief description of key boundary conditions, and results of Sandia National Laboratories’ ongoing MELCOR analysis of the Fukushima Unit 2 accident are given for the reactor core isolation cooling (RCIC) system. Important assumptions and related boundary conditions in the current analysis additional to or different than what was assumed/imposed in the work of SAND2012-6173 are identified. This work is for the U.S. Department of Energy’s Nuclear Energy University Programs fiscal year 2014 Reactor Safety Technologies Research and Development Program RC-7: RCIC Performance under Severe Accident Conditions.

  4. Calculation and Experiment of Adding Top Beryllium Shims for Iran MNSR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebadati, Javad; Rezvanifard, Mehdi; Shahabi, Iraj

    2006-07-01

    Miniature Neutron Source Reactor which is called MNSR were put into operation on June 1994 in Esfahan Nuclear Technology Center (ENTC). At that time the excess reactivity at the cold condition was 3.85 mk. After 7 years of operation and fuel consumption the reactivity was reduced to 2.90 mk. To compensate this reduction and upgrade the reactor, Beryllium Shim were used at the top of the core. This paper discusses the steps for this accurate and sensitive task. Finally a layer of 1.5 mm Beryllium were added to restore the reactor life. (authors)

  5. A Deep-Sea Simulation.

    ERIC Educational Resources Information Center

    Montes, Georgia E.

    1997-01-01

    Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)

  6. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...

  7. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...

  8. Development of the reactor antineutrino detection technology within the iDream project

    NASA Astrophysics Data System (ADS)

    Gromov, M.; Kuznetsov, D.; Murchenko, A.; Novikova, G.; Obinyakov, B.; Oralbaev, A.; Plakitina, K.; Skorokhvatov, M.; Sukhotin, S.; Chepurnov, A.; Etenko, A.

    2017-12-01

    The iDREAM (industrial Detector for reactor antineutrino monitoring) project is aimed at remote monitoring of the operating modes of the atomic reactor on nuclear power plant to ensure a technical support of IAEA non-proliferation safeguards. The detector is a scintillator spectrometer. The sensitive volume (target) is filled with a liquid organic scintillator based on linear alkylbenzene where reactor antineutrinos will be detected via inverse beta-decay reaction. We present first results of laboratory tests after physical launch. The detector was deployed at sea level without background shielding. The number of calibrations with radioactive sources was conducted. All data were obtained by means of a slow control system which was put into operation.

  9. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...

  10. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...

  11. Survey of Current and Next Generation Space Power Technologies

    DTIC Science & Technology

    2006-06-26

    different thermodynamic cycles, such as the Brayton, Rankine, and Stirling cycles, alkali metal thermal electric converters ( AMTEC ) and thermionic...efficiencies @ 1700K. The primary issue with this system is the integration of the converter technology into the nuclear reactor core. AMTEC (static...Alkali metal thermal to electric converters ( AMTECs ) are thermally powered electrochemical concentration cells that convert heat energy directly to DC

  12. The results of the investigations of Russian Research Center - {open_quotes}Kurchatov Institute{close_quotes} on molten salt applications to problems of nuclear energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, V.M.

    1995-10-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclearmore » energy systems.« less

  13. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  14. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  15. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  16. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  17. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  18. Emergency Preparedness technology support to the Health and Safety Executive (HSE), Nuclear Installations Inspectorate (NII) of the United Kingdom. Appendix A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Kula, K.R.

    1994-03-01

    The Nuclear Installations Inspectorate (NII) of the United Kingdom (UK) suggested the use of an accident progression logic model method developed by Westinghouse Savannah River Company (WSRC) and Science Applications International Corporation (SAIC) for K Reactor to predict the magnitude and timing of radioactivity releases (the source term) based on an advanced logic model methodology. Predicted releases are output from the personal computer-based model in a level-of-confidence format. Additional technical discussions eventually led to a request from the NII to develop a proposal for assembling a similar technology to predict source terms for the UK`s advanced gas-cooled reactor (AGR) type.more » To respond to this request, WSRC is submitting a proposal to provide contractual assistance as specified in the Scope of Work. The work will produce, document, and transfer technology associated with a Decision-Oriented Source Term Estimator for Emergency Preparedness (DOSE-EP) for the NII to apply to AGRs in the United Kingdom. This document, Appendix A is a part of this proposal.« less

  19. Improving online risk assessment with equipment prognostics and health monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Liu, Xiaotong; Briere, Chris

    The current approach to evaluating the risk of nuclear power plant (NPP) operation relies on static probabilities of component failure, which are based on industry experience with the existing fleet of nominally similar light water reactors (LWRs). As the nuclear industry looks to advanced reactor designs that feature non-light water coolants (e.g., liquid metal, high temperature gas, molten salt), this operating history is not available. Many advanced reactor designs use advanced components, such as electromagnetic pumps, that have not been used in the US commercial nuclear fleet. Given the lack of rich operating experience, we cannot accurately estimate the evolvingmore » probability of failure for basic components to populate the fault trees and event trees that typically comprise probabilistic risk assessment (PRA) models. Online equipment prognostics and health management (PHM) technologies can bridge this gap to estimate the failure probabilities for components under operation. The enhanced risk monitor (ERM) incorporates equipment condition assessment into the existing PRA and risk monitor framework to provide accurate and timely estimates of operational risk.« less

  20. 10 CFR 2.108 - Denial of application for failure to supply information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...

  1. 10 CFR 2.108 - Denial of application for failure to supply information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...

  2. GAIN Technology Workshops Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori Ann

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is requiredmore » to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.« less

  3. 10 CFR 2.1105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian nuclear power plant required to be licensed... nuclear fuel means fuel that has been withdrawn from a nuclear reactor following irradiation, the...

  4. 10 CFR 2.1105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian nuclear power plant required to be licensed... nuclear fuel means fuel that has been withdrawn from a nuclear reactor following irradiation, the...

  5. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  6. 10 CFR 52.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... authorization means the authorization provided by the Director of New Reactors or the Director of Nuclear... identical nuclear reactors (modules) and each module is a separate nuclear reactor capable of being operated... nuclear power reactor of the type described in 10 CFR 50.22. The approval may be for either the final...

  7. 10 CFR 140.72 - Indemnity agreements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (issued pursuant to part 50 of this chapter) authorizing the licensee to operate the nuclear reactor... the licensee to possess and store special nuclear material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after issuance of an operating license for the reactor...

  8. 10 CFR 52.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... authorization means the authorization provided by the Director of New Reactors or the Director of Nuclear... identical nuclear reactors (modules) and each module is a separate nuclear reactor capable of being operated... nuclear power reactor of the type described in 10 CFR 50.22. The approval may be for either the final...

  9. 10 CFR 52.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... authorization means the authorization provided by the Director of New Reactors or the Director of Nuclear... identical nuclear reactors (modules) and each module is a separate nuclear reactor capable of being operated... nuclear power reactor of the type described in 10 CFR 50.22. The approval may be for either the final...

  10. 10 CFR 140.72 - Indemnity agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (issued pursuant to part 50 of this chapter) authorizing the licensee to operate the nuclear reactor... the licensee to possess and store special nuclear material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after issuance of an operating license for the reactor...

  11. 10 CFR 52.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... authorization means the authorization provided by the Director of New Reactors or the Director of Nuclear... identical nuclear reactors (modules) and each module is a separate nuclear reactor capable of being operated... nuclear power reactor of the type described in 10 CFR 50.22. The approval may be for either the final...

  12. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...

  13. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...

  14. The in-depth safety assessment (ISA) pilot projects in Ukraine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, C. A.

    1998-02-10

    Ukraine operates pressurized water reactors of the Soviet-designed type, VVER. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs). After approval of the SARS by the Ukrainian Nuclear Regulatory Authority, the plants will be granted longer-term operating licenses. In September 1995, the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine issued a new contents requirement for the safety analysis reports of VVERs in Ukraine. It contains requirements in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. Themore » DBA requirements are an expanded version of the older SAR requirements. The last two requirements, on PRA and BDBA, are new. The US Department of Energy (USDOE), through the International Nuclear Safety Program (INSP), has initiated an assistance and technology transfer program to Ukraine to assist their nuclear power stations in developing a Western-type technical basis for the new SARS. USDOE sponsored In-Depth Safety Assessments (ISAs) have been initiated at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1. USDOE/INSP have structured the ISA program in such a way as to provide maximum assistance and technology transfer to Ukraine while encouraging and supporting the Ukrainian plants to take the responsibility and initiative and to perform the required assessments.« less

  15. Carter's breeder policy has failed, claims Westinghouse manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    Nuclear nations developing liquid metal fast breeder reactor (LMFBR) technology have not been dissuaded by President Carter's efforts to stop the breeder program as a way to control the proliferation of nuclear weapons. There is no evidence that Carter's policy of moral persuasion has had any impact on their efforts. A review of the eight leading countries cites their extensive progress in the areas of breeder technology and fuel reprocessing, while the US has made only slight gains. The Fast Flux Test Facility at Hanford is near completion, but the Clinch River project has been slowed to a minimum.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, M.W.; Forbes, I.A.; Turnage, J.C.

    The potential of new and future energy technologies is discussed, with information provided on availability, technical and economic feasibility, and limitations due to the form of the energy. Energy sources not presently in use (i.e., shale oil, garbage, geothermal, wind, tidal, breeder reactors, ocean thermal gradients, solar energy, and fusion) are expected to supply only 10 to 15% of the Nation's energy requirements in the year 2000. The following chapters are included: Energy Use and Supply; Extending Chemical Fuel Resources, which covers oil shale and tar sands, coal gasification and liquefaction, garbage, and biomass energy; Harnessing the Forces of Nature,more » which describes geothermal, tidal, hydro, wind, and solar energy; New Nuclear Technology (e.g., converter reactors, breeder reactors, fusion by magnetic confinement, and laser fusion); and Improving Energy Production Efficiency, with discussions on energy storage, MHD (magnetohydrodynamics), and combined cycles. (64 references) (BYB)« less

  17. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.« less

  18. A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk; Juhasz, Albert

    2007-01-01

    Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

  19. 75 FR 12311 - FirstEnergy Nuclear Operating Company; Notice of Consideration of Issuance of Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... INFORMATION CONTACT: Michael Mahoney, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission... Licensing Branch III-2, Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation. [FR... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346] FirstEnergy Nuclear Operating Company; Notice of...

  20. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  1. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  2. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  3. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  4. Development of a simple-material discrimination method with three plastic scintillator strips for visualizing nuclear reactors

    NASA Astrophysics Data System (ADS)

    Takamatsu, k.; Tanaka, h.; Shoji, d.

    2012-04-01

    The Fukushima Daiichi nuclear disaster is a series of equipment failures and nuclear meltdowns, following the T¯o hoku earthquake and tsunami on 11 March 2011. We present a new method for visualizing nuclear reactors. Muon radiography based on the multiple Coulomb scattering of cosmic-ray muons has been performed. In this work, we discuss experimental results obtained with a cost-effective simple detection system assembled with three plastic scintillator strips. Actually, we counted the number of muons that were not largely deflected by restricting the zenith angle in one direction to 0.8o. The system could discriminate Fe, Pb and C. Materials lighter than Pb can be also discriminated with this system. This method only resolves the average material distribution along the muon path. Therefore the user must make assumptions or interpretations about the structure, or must use more than one detector to resolve the three dimensional material distribution. By applying this method to time-dependent muon radiography, we can detect changes with time, rendering the method suitable for real-time monitoring applications, possibly providing useful information about the reaction process in a nuclear reactor such as burnup of fuels. In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. Monitoring the burnup of fuels as a nondestructive inspection technique can contribute to safer operation. In nuclear reactor, the total mass is conserved so that the system cannot be monitored by conventional muon radiography. A plastic scintillator is relatively small and easy to setup compared to a gas or layered scintillation system. Thus, we think this simple radiographic method has the potential to visualize a core directly in cases of normal operations or meltdown accidents. Finally, we considered only three materials as a first step in this work. Further research is required to improve the ability of imaging the material distribution in a mass-conserved system.

  5. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topicalmore » areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research experience. The project management organizational chart is provided as Figure 1. Appendices A, B, and C contain the reports on the summer research performed at the University of Tennessee by undergraduate students from South Carolina State University.« less

  6. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  7. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed under §§ 50.21(b) or 50.22 holding an operating license under this part...

  8. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  9. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed under §§ 50.21(b) or 50.22 holding an operating license under this part...

  10. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  11. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0035] Decommissioning of Nuclear Power Reactors AGENCY... Commission (NRC) is issuing Revision 1 of regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power... the NRC's regulations relating to the decommissioning process for nuclear power reactors. The revision...

  12. Fusion reactor blanket/shield design study

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Clemmer, R. G.; Harkness, S. D.; Jung, J.; Krazinski, J. L.; Mattas, R. F.; Stevens, H. C.; Youngdahl, C. K.; Trachsel, C.; Bowers, D.

    1979-07-01

    A joint study of Tokamak reactor first wall/blanket/shield technology was conducted to identify key technological limitations for various tritium breeding blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium breeding blanket concepts were evaluated according to the proposed coolant. The effort concentrated on evaluation of lithium and water cooled blanket designs and helium and molten salt cooled designs. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a Tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  13. Preliminary Framework for Human-Automation Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Spielman, Zachary Alexander

    The Department of Energy’s Advanced Reactor Technologies Program sponsors research, development and deployment activities through its Next Generation Nuclear Plant, Advanced Reactor Concepts, and Advanced Small Modular Reactor (aSMR) Programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Human Automation Collaboration (HAC) Research Project is located under the aSMR Program, which identifies developing advanced instrumentation and controls and human-machine interfaces as one of four key research areas. It is expected that the new nuclear power plant designs will employ technology significantly more advanced than the analog systems in the existing reactor fleetmore » as well as utilizing automation to a greater extent. Moving towards more advanced technology and more automation does not necessary imply more efficient and safer operation of the plant. Instead, a number of concerns about how these technologies will affect human performance and the overall safety of the plant need to be addressed. More specifically, it is important to investigate how the operator and the automation work as a team to ensure effective and safe plant operation, also known as the human-automation collaboration (HAC). The focus of the HAC research is to understand how various characteristics of automation (such as its reliability, processes, and modes) effect an operator’s use and awareness of plant conditions. In other words, the research team investigates how to best design the collaboration between the operators and the automated systems in a manner that has the greatest positive impact on overall plant performance and reliability. This report addresses the Department of Energy milestone M4AT-15IN2302054, Complete Preliminary Framework for Human-Automation Collaboration, by discussing the two phased development of a preliminary HAC framework. The framework developed in the first phase was used as the basis for selecting topics to be investigated in more detail. The results and insights gained from the in-depth studies conducted during the second phase were used to revise the framework. This report describes the basis for the framework developed in phase 1, the changes made to the framework in phase 2, and the basis for the changes. Additional research needs are identified and presented in the last section of the report.« less

  14. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  15. 10 CFR 2.603 - Acceptance and docketing of application for early review of site suitability issues in a...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...

  16. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  17. 10 CFR 2.603 - Acceptance and docketing of application for early review of site suitability issues in a...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...

  18. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  19. Nuclear Energy Present and Future

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2006-10-01

    Nuclear power plants currently generate about 20% of US and 17% of world electricity, which makes nuclear the largest non-emitting energy source in current use. Concerns about global climate change have led to a remarkable transformation of attitudes towards nuclear energy. There remain key challenges that must be faced when considering expansion of its contribution. In summary they are: Economics, Safety, Waste Disposal, and Proliferation. Electricity from legacy fission plants is highly competitive with fossil, but perceived financial risks make the large capital cost fraction a key hurdle to new-construction, and costs of 2 per installed Watt electrical are currently considered only just economically attractive. Proliferation of nuclear-weapons-enabling technology is a major concern for global stability, in which fusion may have significant technical advantages over fission. But proliferation control requires a combination of both technical and political initiatives. The feasibility of supplying process heat or hydrogen from nuclear energy inspires additional research into novel reactor concepts and associated technologies. The presentation will lay out this overall context of the nuclear energy renaissance.

  20. Advanced Instrumentation for Transient Reactor Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, Michael L.; Anderson, Mark; Imel, George

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and designmore » increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).« less

Top