Science.gov

Sample records for nuclear receptor shp

  1. New Insights into Orphan Nuclear Receptor SHP in Liver Cancer

    PubMed Central

    Zou, An; Lehn, Sarah; Magee, Nancy; Zhang, Yuxia

    2015-01-01

    Small heterodimer partner (SHP; NR0B2) is a unique orphan nuclear receptor (NR) that contains a putative ligand-binding domain but lacks a DNA-binding domain. SHP is a transcriptional corepressor affecting diverse metabolic processes including bile acid synthesis, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology via interaction with multiple NRs and transcriptional factors (TFs). Hepatocellular carcinoma (HCC) is one of the most deadly human cancers worldwide with few therapeutic options and poor prognosis. Recently, it is becoming clear that SHP plays an antitumor role in the development of liver cancer. In this review, we summarize the most recent findings regarding the new SHP interaction partners, new structural insights into SHP’s gene repressing activity, and SHP protein posttranslational modifications by bile acids. We also discuss the pleiotropic role of SHP in regulating cell proliferation, apoptosis, DNA methylation, and inflammation that are related to antitumor role of SHP in HCC. Improving our understanding of SHP’s antitumor role in the development of liver cancer will provide new insights into developing novel treatments or prevention strategies. Future research will focus on developing more efficacious and specific synthetic SHP ligands for pharmaceutical applications in liver cancer and several metabolic diseases such as hypercholesterolemia, obesity, diabetes, and fatty liver disease. PMID:26504773

  2. Structural insights into gene repression by the orphan nuclear receptor SHP.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Zechner, Christoph; Suino-Powell, Kelly M; Kliewer, Steven A; Melcher, Karsten; Mangelsdorf, David J; Xu, H Eric

    2014-01-14

    Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP-EID1 interface are highly conserved. Their mutation diminishes SHP-EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors.

  3. Structural insights into gene repression by the orphan nuclear receptor SHP

    PubMed Central

    Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; Zechner, Christoph; Suino-Powell, Kelly M.; Kliewer, Steven A.; Melcher, Karsten; Mangelsdorf, David J.; Xu, H. Eric

    2014-01-01

    Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP–EID1 interface are highly conserved. Their mutation diminishes SHP–EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors. PMID:24379397

  4. The orphan nuclear receptor SHP regulates PGC-1alpha expression and energy production in brown adipocytes.

    PubMed

    Wang, Li; Liu, Jun; Saha, Pradip; Huang, Jiansheng; Chan, Lawrence; Spiegelman, Bruce; Moore, David D

    2005-10-01

    Brown adipocytes increase energy production in response to induction of PGC-1alpha, a dominant regulator of energy metabolism. We have found that the orphan nuclear receptor SHP (NR0B2) is a negative regulator of PGC-1alpha expression in brown adipocytes. Mice lacking SHP show increased basal expression of PGC-1alpha, increased energy expenditure, and resistance to diet-induced obesity. Increased PGC-1alpha expression in SHP null brown adipose tissue is not due to beta-adrenergic activation, since it is also observed in primary cultures of SHP(-/-) brown adipocytes that are not exposed to such stimuli. In addition, acute inhibition of SHP expression in cultured wild-type brown adipocytes increases basal PGC-1alpha expression, and SHP overexpression in SHP null brown adipocytes decreases it. The orphan nuclear receptor ERRgamma is expressed in BAT and its transactivation of the PGC-1alpha promoter is potently inhibited by SHP. We conclude that SHP functions as a negative regulator of energy production in BAT.

  5. Distinct repressive properties of the mammalian and fish orphan nuclear receptors SHP and DAX-1.

    PubMed

    Park, Yun-Yong; Teyssier, Catherine; Vanacker, Jean-Marc; Choi, Hueng-Sik

    2007-06-30

    It has been suggested that the structure and function of nuclear receptors are evolutionally conserved. Here, we compare the molecular functions of the nile tilapia (Oreochromis niloticus) small heterodimer partner (nSHP/NR0B2) and the Dosage-sensitive sex reversal AHC critical region on X chromosome gene 1 (nDAX-1/NR0B1) with those of human SHP and DAX-1 (hSHP and hDAX-1, respectively). We found that, upon transient cotransfection of human cells, nDAX-1 repressed the activity of tilapia SF-1 (nSF-1) but not that of human SF-1, although the physical interaction with human SF-1 was retained. Similarly, nSHP repressed the activity of nSF-1, whereas hSHP did not, pointing to divergent evolution of SHP/SF-1 in fish and human. We thus propose that the repressive functions of SHP and DAX-1 have been conserved in fish and mammals although with different transcriptional targets and mechanisms. These differences provide new insights into the physiological diversification of atypical orphan nuclear receptors during vertebrate evolution. PMID:17646707

  6. Enhanced ethanol catabolism in orphan nuclear receptor SHP-null mice.

    PubMed

    Park, Jung Eun; Lee, Mikang; Mifflin, Ryan; Lee, Yoon Kwang

    2016-05-15

    Deficiency of the orphan nuclear hormone receptor small heterodimer partner (SHP, NR0B2) protects mice from diet-induced hepatic steatosis, in part, via repression of peroxisome proliferator-activated receptor (PPAR)-γ2 (Pparg2) gene expression. Alcoholic fatty liver diseases (AFLD) share many common pathophysiological features with non-AFLD. To study the role of SHP and PPARγ2 in AFLD, we used a strategy of chronic ethanol feeding plus a single binge ethanol feeding to challenge wild-type (WT) and SHP-null (SHP(-/-)) mice with ethanol. The ethanol feeding induced liver fat accumulation and mRNA expression of hepatic Pparg2 in WT mice, which suggests that a high level of PPARγ2 is a common driving force for fat accumulation induced by ethanol or a high-fat diet. Interestingly, ethanol-fed SHP(-/-) mice displayed hepatic fat accumulation similar to that of ethanol-fed WT mice, even though their Pparg2 expression level remained lower. Mortality of SHP(-/-) mice after ethanol binge feeding was significantly reduced and their acetaldehyde dehydrogenase (Aldh2) mRNA level was higher than that of their WT counterparts. After an intoxicating dose of ethanol, SHP(-/-) mice exhibited faster blood ethanol clearance and earlier wake-up time than WT mice. Higher blood acetate, the end product of ethanol metabolism, and lower acetaldehyde levels were evident in the ethanol-challenged SHP(-/-) than WT mice. Ethanol-induced inflammatory responses and lipid peroxidation were also lower in SHP(-/-) mice. The current data show faster ethanol catabolism and extra fat storage through conversion of acetate to acetyl-CoA before its release into the circulation in this ethanol-feeding model in SHP(-/-) mice.

  7. Interactions Between Nuclear receptor SHP and FOXA1 Maintain Oscillatory Homocysteine Homeostasis in Mice

    PubMed Central

    Tsuchiya, Hiroyuki; da Costa, Kerry-Ann; Lee, Sangmin; Renga, Barbara; Jaeschke, Hartmut; Yang, Zhihong; Orena, Stephen J.; Goedken, Michael J.; Zhang, Yuxia; Kong, B; Lebofsky, Margitta; Rudraiah, Swetha; Smalling, Rana; Guo, Grace; Fiorucci, Stefano; Zeisel, Steven H.; Wang, Li

    2015-01-01

    BACKGROUND & AIMS Hyperhomocysteinemia is often associated with liver and metabolic diseases. We studied nuclear receptors that mediate oscillatory control of homocysteine homeostasis in mice. METHODS We studied mice with disruptions in Nr0b2 (called SHP-null mice) Bhmt, or both genes (BHMT-null/SHP-null mice), along with mice with wild-type copies of these genes (controls). Hyperhomocysteinemia was induced by feeding mice alcohol (the NIAAA binge model) or chow diets along with water containing 0.18% DL-homocysteine. Some mice were placed on diets containing cholic acid (1%) or cholestyramine (2%), or high-fat diets (60%). Serum and livers were collected over a 24 hr light–dark cycle and analyzed by RNA-seq, metabolomic, and quantitative PCR, immunoblot, and chromatin immunoprecipitation assays. RESULTS SHP-null mice had altered timing in expression of genes that regulate homocysteine metabolism, compared with control mice. Oscillatory production of S-adenosylmethionine, betaine, choline, phosphocholine, glyceophosphocholine, cystathionine, cysteine, hydrogen sulfide, glutathione disulfide, and glutathione, differed between SHP-null mice and control mice. SHP inhibited transcriptional activation of Bhmt and Cth by FOXA1. Expression of Bhmt and Cth was decreased when mice were fed cholic acid but increased when they were placed on diets containing cholestyramine or high-fat content. Diets containing ethanol or homocysteine induced hyperhomocysteinemia and glucose intolerance in control but not SHP-null mice. In BHMT-null and BHMT-null/SHP-null mice fed a control liquid, lipid vacuoles were observed in livers. Ethanol feeding induced accumulation of macrovesicular lipid vacuoles to the greatest extent in BHMT-null and BHMT-null/SHP-null mice. CONCLUSIONS Disruption of Shp in mice alters timing of expression of genes that regulate homocysteine metabolism and the liver responses to ethanol and homocysteine. SHP inhibits the transcriptional activation of Bhmt and Cth

  8. Synergistic activation of the human orphan nuclear receptor SHP gene promoter by basic helix–loop–helix protein E2A and orphan nuclear receptor SF-1

    PubMed Central

    Kim, Han-Jong; Kim, Joon-Young; Park, Yun-Yong; Choi, Hueng-Sik

    2003-01-01

    The orphan nuclear receptor small heterodimer partner (SHP; NR0B2) is an unusual orphan nuclear receptor that lacks a conventional DNA-binding domain and acts as a modulator of transcriptional activities of a number of nuclear receptors. We have previously reported that the orphan nuclear receptor ERRγ activates the SHP promoter. In this study, we have found that basic helix–loop–helix (bHLH) transcription factors, the E2A proteins (E47, E12 and E2/5), activated the human but not the mouse SHP promoter. In contrast, the tissue-specific E47 heterodimer partner BETA2 repressed the E47- mediated transactivation of the human SHP (hSHP) promoter. Using serial deletions and E-box mutant constructs of the hSHP promoter, we identified two E-boxes (E6 and E7) as E47-responsive E-boxes, which are not conserved in the mouse SHP promoter. Moreover, gel shift, chromatin immunoprecipitation (ChIP) and northern blot assays demonstrated that E47 directly binds to the hSHP promoter in vivo and in vitro and that Id proteins inhibited E47 binding to the hSHP promoter. Finally, we found that E47 and steroidogenic factor 1 (SF-1), a regulator of the SHP promoter, synergistically activate the human but not the mouse SHP promoter. Our findings suggest that the E2A proteins differentially regulate the human and mouse SHP promoters and cooperate with orphan nuclear receptor SF-1 for transcriptional activation of the hSHP promoter. PMID:14627819

  9. Regulation of miR-200c by nuclear receptors PPAR{alpha}, LRH-1 and SHP

    SciTech Connect

    Zhang, Yuxia; Yang, Zhihong; Whitby, Richard; Wang, Li

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Knockdown of PPAR{alpha} and LRH-1 abolishes miR-200c inhibition of HCC cell migration. Black-Right-Pointing-Pointer SHP represses miR-200c expression via inhibition of the activity of PPAR{alpha} and LRH-1. Black-Right-Pointing-Pointer RJW100 exhibits strong ability to downregulate ZEB1 and ZEB2 proteins. -- Abstract: We investigated regulation of miR-200c expression by nuclear receptors. Ectopic expression of miR-200c inhibited MHCC97H cell migration, which was abrogated by the synergistic effects of PPAR{alpha} and LRH-1 siRNAs. The expression of miR-200c was decreased by PPAR{alpha}/LRH-1 siRNAs and increased by SHP siRNAs, and overexpression of the receptors reversed the effects of their respective siRNAs. SHP siRNAs also drastically enhanced the ability of the LRH-1 agonist RJW100 to induce miR-200c and downregulate ZEB1 and ZEB2 proteins. Co-expression of PPAR{alpha} and LRH-1 moderately transactivated the miR-200c promoter, which was repressed by SHP co-expression. RJW100 caused strong activation of the miR-200c promoter. This is the first report to demonstrate that miR-200c expression is controlled by nuclear receptors.

  10. Bile acid regulates c-Jun expression through the orphan nuclear receptor SHP induction in gastric cells

    SciTech Connect

    Park, Won Il; Park, Min Jung; An, Jin Kwang; Choi, Yung Hyun; Kim, Hye Young; Cheong, JaeHun Yang, Ung Suk

    2008-05-02

    Bile reflux is considered to be one of the most important causative factors in gastric carcinogenesis, due to the attendant inflammatory changes in the gastric mucosa. In this study, we have assessed the molecular mechanisms inherent to the contribution of bile acid to the transcriptional regulation of inflammatory-related genes. In this study, we demonstrated that bile acid induced the expression of the SHP orphan nuclear receptor at the transcriptional level via c-Jun activation. Bile acid also enhanced the protein interaction of NF-{kappa}B and SHP, thereby resulting in an increase in c-Jun expression and the production of the inflammatory cytokine, TNF{alpha}. These results indicate that bile acid performs a critical function in the regulation of the induction of inflammatory-related genes in gastric cells, and that bile acid-mediated gene expression provides a pre-clue for the development of gastric cellular malformation.

  11. Orphan nuclear receptor SHP regulates iron metabolism through inhibition of BMP6-mediated hepcidin expression

    PubMed Central

    Kim, Don-Kyu; Kim, Yong-Hoon; Jung, Yoon Seok; Kim, Ki-Sun; Jeong, Jae-Ho; Lee, Yong-Soo; Yuk, Jae-Min; Oh, Byung-Chul; Choy, Hyon E.; Dooley, Steven; Muckenthaler, Martina U.; Lee, Chul-Ho; Choi, Hueng-Sik

    2016-01-01

    Small heterodimer partner (SHP) is a transcriptional corepressor regulating diverse metabolic processes. Here, we show that SHP acts as an intrinsic negative regulator of iron homeostasis. SHP-deficient mice maintained on a high-iron diet showed increased serum hepcidin levels, decreased expression of the iron exporter ferroportin as well as iron accumulation compared to WT mice. Conversely, overexpression of either SHP or AMP-activated protein kinase (AMPK), a metabolic sensor inducing SHP expression, suppressed BMP6-induced hepcidin expression. In addition, an inhibitory effect of AMPK activators metformin and AICAR on BMP6-mediated hepcidin gene expression was significantly attenuated by ablation of SHP expression. Interestingly, SHP physically interacted with SMAD1 and suppressed BMP6-mediated recruitment of the SMAD complex to the hepcidin gene promoter by inhibiting the formation of SMAD1 and SMAD4 complex. Finally, overexpression of SHP and metformin treatment of BMP6 stimulated mice substantially restored hepcidin expression and serum iron to baseline levels. These results reveal a previously unrecognized role for SHP in the transcriptional control of iron homeostasis. PMID:27688041

  12. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors.

    PubMed

    Seol, W; Choi, H S; Moore, D D

    1996-05-31

    SHP is an orphan member of the nuclear hormone receptor superfamily that contains the dimerization and ligand-binding domain found in other family members but lacks the conserved DNA binding domain. In the yeast two-hybrid system, SHP interacted with several conventional and orphan members of the receptor superfamily, including retinoid receptors, the thyroid hormone receptor, and the orphan receptor MB67. SHP also interacted directly with these receptors in vitro. In mammalian cells, SHP specifically inhibited transactivation by the superfamily members with which it interacted. These results suggest that SHP functions as a negative regulator of receptor-dependent signaling pathways. PMID:8650544

  13. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.

    PubMed

    Chen, Ying-Nan P; LaMarche, Matthew J; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G; Dobson, Jason R; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J; Sellers, William R; Stams, Travis; Fortin, Pascal D

    2016-07-01

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers. PMID:27362227

  14. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke

    PubMed Central

    Shi, Zhong-Qing; Sunico, Carmen R.; McKercher, Scott R.; Cui, Jiankun; Feng, Gen-Sheng; Nakamura, Tomohiro; Lipton, Stuart A.

    2013-01-01

    Overproduction of nitric oxide (NO) can cause neuronal damage, contributing to the pathogenesis of several neurodegenerative diseases and stroke (i.e., focal cerebral ischemia). NO can mediate neurotoxic effects at least in part via protein S-nitrosylation, a reaction that covalently attaches NO to a cysteine thiol (or thiolate anion) to form an S-nitrosothiol. Recently, the tyrosine phosphatase Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) and its downstream pathways have emerged as important mediators of cell survival. Here we report that in neurons and brain tissue NO can S-nitrosylate SHP-2 at its active site cysteine, forming S-nitrosylated SHP-2 (SNO–SHP-2). We found that NMDA exposure in vitro and transient focal cerebral ischemia in vivo resulted in increased levels of SNO–SHP-2. S-Nitrosylation of SHP-2 inhibited its phosphatase activity, blocking downstream activation of the neuroprotective physiological ERK1/2 pathway, thus increasing susceptibility to NMDA receptor-mediated excitotoxicity. These findings suggest that formation of SNO–SHP-2 represents a key chemical reaction contributing to excitotoxic damage in stroke and potentially other neurological disorders. PMID:23382182

  15. SHP-2 Mediates C-type Lectin Receptors-induced Syk Activation and Anti-fungal TH17 Responses

    PubMed Central

    Deng, Zihou; Ma, Shixin; Zhou, Hao; Zang, Aiping; Fang, Yiyuan; Li, Tiantian; Shi, Huanjing; Liu, Mei; Du, Min; Taylor, Patricia R.; Zhu, Helen H.; Chen, Jiangye; Meng, Guangxun; Li, Fubin; Chen, Changbin; Zhang, Yan; Jia, Xin-Ming; Lin, Xin; Zhang, Xiaoming; Pearlman, Eric; Li, Xiaoxia; Feng, Gen-Sheng; Xiao, Hui

    2015-01-01

    SUMMARY Fungal infection stimulates the canonical C-type lectin receptors (CLRs) signaling pathway via Syk activation. Here we show that SHP-2 plays a crucial role in mediating CLRs-induced Syk activation. Genetic ablation of Shp-2 (Ptpn11) in dendritic cells (DCs) and macrophages impaired Syk-mediated signaling and abrogated pro-inflammatory gene expression following fungal stimulation. Mechanistically, SHP-2 operates as a scaffold facilitating the recruitment of Syk to dectin-1 or FcRγ, through its N-SH2 domain and a previously unrecognized C-terminal ITAM motif. We demonstrate that DC-derived SHP-2 is crucial for the induction of IL-1β, IL-6 and IL-23, and anti-fungal TH17 cell responses to control Candida albicans infection. Together, these data reveal a mechanism by which SHP-2 mediates Syk activation in response to fungal infections PMID:25915733

  16. Gene silencing by nuclear orphan receptors.

    PubMed

    Zhang, Ying; Dufau, Maria L

    2004-01-01

    Nuclear orphan receptors represent a large and diverse subgroup in the nuclear receptor superfamily. Although putative ligands for these orphan members remain to be identified, some of these receptors possess intrinsic activating, inhibitory, or dual regulatory functions in development, differentiation, homeostasis, and reproduction. In particular, gene-silencing events elicited by chicken ovalbumin upstream promoter-transcription factors (COUP-TFs); dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX-1); germ cell nuclear factor (GCNF); short heterodimer partner (SHP); and testicular receptors 2 and 4 (TR2 and TR4) are among the best characterized. These orphan receptors are critical in controlling basal activities or hormonal responsiveness of numerous target genes. They employ multiple and distinct mechanisms to mediate target gene repression. Complex cross-talk exists between these orphan receptors at their cognate DNA binding elements and an array of steroid?nonsteroid hormone receptors, other transcriptional activators, coactivators and corepressors, histone modification enzyme complexes, and components of basal transcriptional components. Therefore, perturbation induced by these orphan receptors at multiple levels, including DNA binding activities, receptor homo- or heterodimerization, recruitment of cofactor proteins, communication with general transcriptional machinery, and changes at histone acetylation status and chromatin structures, may contribute to silencing of target gene expression in a specific promoter or cell-type context. Moreover, the findings derived from gene-targeting studies have demonstrated the significance of these orphan receptors' function in physiologic settings. Thus, COUP-TFs, DAX-1, GCNF, SHP, and TR2 and 4 are known to be required for multiple physiologic and biologic functions, including neurogenesis and development of the heart and vascular system steroidogenesis and sex

  17. The Kaposi's Sarcoma-Associated Herpesvirus G Protein-Coupled Receptor Contains an Immunoreceptor Tyrosine-Based Inhibitory Motif That Activates Shp2 ▿

    PubMed Central

    Philpott, Nicola; Bakken, Thomas; Pennell, Christopher; Chen, Liwei; Wu, Jie; Cannon, Mark

    2011-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) is a constitutively active, highly angiogenic homologue of the interleukin-8 (IL-8) receptors that signals in part via the cytoplasmic protein tyrosine phosphatase Shp2. We show that vGPCR contains a bona fide immunoreceptor tyrosine-based inhibitory motif (ITIM) that binds and constitutively activates Shp2. PMID:21047965

  18. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion

    PubMed Central

    Zhou, Yi; Mohan, Aron; Moore, Douglas C.; Lin, Liangjun; Zhou, Frank Li; Cao, Jay; Wu, Qian; Qin, Yi-Xian; Reginato, Anthony M.; Ehrlich, Michael G.; Yang, Wentian

    2015-01-01

    Genes that regulate osteoclast (OC) development and function in both physiologic and disease conditions remain incompletely understood. Shp2 (the Src homology-2 domain containing protein tyrosine phosphatase 2), a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, is implicated in regulating M-CSF and receptor activator of nuclear factor-κB ligand (RANKL)–evoked signaling; its role in osteoclastogenesis and bone homeostasis, however, remains unknown. Using a tissue-specific gene knockout approach, we inactivated Shp2 expression in murine OCs. Shp2 mutant mice are phenotypically osteopetrotic, featuring a marked increase of bone volume (BV)/total volume (TV) (+42.8%), trabeculae number (Tb.N) (+84.1%), structure model index (+119%), and a decrease of trabecular thickness (Tb.Th) (−34.1%) and trabecular spacing (Tb.Sp) (−41.0%). Biochemical analyses demonstrate that Shp2 is required for RANKL-induced formation of giant multinucleated OCs by up-regulating the expression of nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1), a master transcription factor that is indispensable for terminal OC differentiation. Shp2 deletion, however, has minimal effect on M-CSF–dependent survival and proliferation of OC precursors. Instead, its deficiency aborts the fusion of OC precursors and formation of multinucleated OCs and decreases bone matrix resorption. Moreover, pharmacological intervention of Shp2 is sufficient to prevent preosteoclast fusion in vitro. These findings uncover a novel mechanism through which Shp2 regulates osteoclastogenesis by promoting preosteoclast fusion. Shp2 or its signaling partners could potentially serve as pharmacological targets to regulate the population of OCs locally and/or systematically, and thus treat OC-related diseases, such as periprosthetic osteolysis and osteoporosis.—Zhou, Y., Mohan, A., Moore, D. C., Lin, L., Zhou, F. L., Cao, J., Wu, Q., Qin, Y.–X., Reginato, A. M., Ehrlich, M. G., Yang, W. SHP2

  19. Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease.

    PubMed

    Benet, Marta; Guzmán, Carla; Pisonero-Vaquero, Sandra; García-Mediavilla, M Victoria; Sánchez-Campos, Sonia; Martínez-Chantar, M Luz; Donato, M Teresa; Castell, José Vicente; Jover, Ramiro

    2015-04-01

    The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-deficient mice), and nutritional (mice fed a methionine- and choline-deficient diet). Among the different transcription factors investigated, CCAAT-enhancer-binding protein α (C/EBPα) showed the strongest dominant-repressive effect on SHP expression in HepG2 and human hepatocytes. Reporter assays revealed that the inhibitory effect of C/EBPα and steatotic drugs colocalize between -340 and -509 base pair of the SHP promoter, and mutation of a predicted C/EBPα response element at -473 base pair abolished SHP repression by both C/EBPα and drugs. Moreover, inhibition of major stress signaling pathways demonstrated that the mitogen-activated protein kinase kinase 1/2 pathway activates, while the phosphatidylinositol 3 kinase pathway represses SHP in a C/EBP-dependent manner. We conclude that SHP is downregulated by several steatotic drugs and in advanced NAFLD. These conditions can activate signals that target C/EBPα and consequently repress SHP, thus favoring the progression and severity of NAFLD. PMID:25576488

  20. A hematopoietic cell-driven mechanism involving SLAMF6 receptor, SAP adaptors and SHP-1 phosphatase regulates NK cell education.

    PubMed

    Wu, Ning; Zhong, Ming-Chao; Roncagalli, Romain; Pérez-Quintero, Luis-Alberto; Guo, Huaijian; Zhang, Zhanguang; Lenoir, Christelle; Dong, Zhongjun; Latour, Sylvain; Veillette, André

    2016-04-01

    Activation of natural killer (NK) cells by hematopoietic target cells is controlled by the SLAM family of receptors and by the associated SAP family of adaptors. Here we found that SLAM receptors also enhanced NK cell activation by nonhematopoietic target cells, which lack ligands for SLAM receptors. This function was mediated by SLAMF6, a homotypic SLAM receptor found on NK cells and other hematopoietic cells, and was regulated by SAP adaptors, which uncoupled SLAM receptors from phosphatase SHP-1 and diminished the effect of SLAMF6 on NK cell responsiveness toward nonhematopoietic cells. Thus, in addition to their role in NK cell activation by hematopoietic cells, the SLAM-SAP pathways influence responsiveness toward nonhematopoietic targets by a process akin to NK cell 'education'.

  1. LXXLL motifs and AF-2 domain mediate SHP (NR0B2) homodimerization and DAX1 (NR0B1)-DAX1A heterodimerization.

    PubMed

    Iyer, Anita K; Zhang, Yao-Hua; McCabe, Edward R B

    2007-01-01

    Small heterodimer partner (SHP; NR0B2) is an unusual orphan member of the nuclear receptor superfamily that functions as a corepressor of other nuclear receptors through heterodimeric interactions. Mutations in SHP are associated with mild obesity and insulin resistance. The protein domain structure of SHP is similar to Dosage-sensitive sex reversal adrenal hypoplasia congenita (AHC) critical region on the X chromosome, gene 1 (DAX1; NR0B1). Mutations in DAX1 cause AHC with associated hypogonadotropic hypogonadism. DAX1A is an alternatively spliced isoform of DAX1 that lacks the last 80 amino acids of the DAX1 C-terminal repressor domain and is replaced by a novel 10-amino acid motif. We have previously shown homodimerization of SHP and DAX1 individually, heterodimerization of DAX1 with SHP, and heterodimerization of DAX1 with DAX1A. In these studies, we investigated the domains and residues of SHP involved in SHP homodimerization and DAX1-SHP heterodimerization and also further characterized DAX1-DAX1 homodimerization and DAX1-DAX1A heterodimerization. We showed involvement of the SHP LXXLL motifs and AF-2 domain in SHP homodimerization and DAX1-SHP heterodimerization. We demonstrated redundancy of the LXXLL motifs in DAX1 homodimerization. While DAX1A subcellular localization is mostly cytoplasmic, DAX1-DAX1A heterodimers existed in the nucleus, suggesting differential functions for DAX1A in each compartment. We showed that the AF-2 domain of DAX1 is involved in DAX1-DAX1A heterodimerization. These results indicate that NR0B family members use similar mechanisms for homodimerization as well as heterodimerization. These resemble coactivator-receptor interactions that may have potential functional consequences for molecular mechanisms of the NR0B family. PMID:17686645

  2. SHP1-ing thymic selection.

    PubMed

    Gascoigne, Nicholas R J; Brzostek, Joanna; Mehta, Monika; Acuto, Oreste

    2016-09-01

    Thymocyte development and maintenance of peripheral T-cell numbers and functions are critically dependent on T-cell receptor (TCR) signal strength. SHP1 (Src homology region 2 domain-containing phosphatase-1), a tyrosine phosphatase, acts as a negative regulator of TCR signal strength. Moreover, germline SHP1 knockout mice have shown impaired thymic development. However, this has been recently questioned by an analysis of SHP1 conditional knockout mice, which reported normal thymic development of SHP1 deficient thymocytes. Using this SHP1 conditional knockout mice, in this issue of the European Journal of Immunology, Martinez et al. [Eur. J. Immunol. 2016. 46: 2103-2110] show that SHP1 indeed does have a role in the negative regulation of TCR signal strength in positively selected thymocytes, and in the final maturation of single positive thymocytes. They report that thymocyte development in such mice shows loss of mature, post-selection cells. This is due to increased TCR signal transduction in thymocytes immediately post positive-selection, and increased cell death in response to weak TCR ligands. Thus, SHP1-deficiency shows strong similarities to deficiency in the T-cell specific SHP1-associated protein Themis. PMID:27600672

  3. Dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1) (NR0B1) and small heterodimer partner (SHP) (NR0B2) form homodimers individually, as well as DAX1-SHP heterodimers.

    PubMed

    Iyer, Anita K; Zhang, Yao-Hua; McCabe, Edward R B

    2006-10-01

    Dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1) (NR0B1), and small heterodimer partner (SHP) (NR0B2) are atypical nuclear receptor superfamily members that function primarily as corepressors through heterodimeric interactions with other nuclear receptors. Mutations in DAX1 cause adrenal hypoplasia congenita, and mutations in SHP lead to mild obesity and insulin resistance, but the mechanisms are unclear. We investigated the existence and subcellular localization of DAX1 and SHP homodimers and the dynamics of homodimerization. We demonstrated DAX1 homodimerization in the nucleus and cytoplasm, and dissociation of DAX1 homodimers upon heterodimerization with steroidogenic factor 1 (SF1) or ligand-activated estrogen receptor-alpha (ERalpha). DAX1 homodimerization involved an interaction between its amino and carboxy termini involving its LXXLL motifs and activation function (AF)-2 domain. We observed SHP homodimerization in the nucleus of mammalian cells and showed dissociation of SHP homodimers upon heterodimerization with ligand-activated ERalpha. We observed DAX1-SHP heterodimerization in the nucleus of mammalian cells and demonstrated the involvement of the LXXLL motifs and AF-2 domain of DAX1 in this interaction. We further demonstrate heterodimerization of DAX1 with its alternatively spliced isoform, DAX1A. This is the first evidence of homodimerization of individual members of the unusual NR0B nuclear receptor family and heterodimerization between its members. Our results suggest that DAX1 forms antiparallel homodimers through the LXXLL motifs and AF-2 domain. These homodimers may function as holding reservoirs in the absence of heterodimeric partners. The formation of DAX1 and SHP homodimers and DAX1-SHP and DAX1-DAX1A heterodimers suggests the possibility of novel functions independent of their coregulator roles, suggesting additional complexity in the molecular mechanisms of DAX1 and SHP action

  4. Historical overview of nuclear receptors.

    PubMed

    Gustafsson, Jan-Ake

    2016-03-01

    This review summarizes the birth of the field of nuclear receptors, from Jensen's discovery of estrogen receptor alpha, Gustafsson's discovery of the three-domain structure of the glucocorticoid receptor, the discovery of the glucocorticoid response element and the first partial cloning of the glucocorticoid receptor. Furthermore the discovery of the novel receptors called orphan receptors is described.

  5. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function.

    PubMed

    Zhang, Yuxia; Liu, Chune; Barbier, Olivier; Smalling, Rana; Tsuchiya, Hiroyuki; Lee, Sangmin; Delker, Don; Zou, An; Hagedorn, Curt H; Wang, Li

    2016-01-01

    Bile acid (BA) metabolism is tightly controlled by nuclear receptor signaling to coordinate regulation of BA synthetic enzymes and transporters. Here we reveal a molecular cascade consisting of the antiapoptotic protein BCL2, nuclear receptor Shp, and long non-coding RNA (lncRNA) H19 to maintain BA homeostasis. Bcl2 was overexpressed in liver of C57BL/6J mice using adenovirus mediated gene delivery for two weeks. Hepatic overexpression of Bcl2 caused drastic accumulation of serum BA and bilirubin levels and dysregulated BA synthetic enzymes and transporters. Bcl2 reactivation triggered severe liver injury, fibrosis and inflammation, which were accompanied by a significant induction of H19. Bcl2 induced rapid SHP protein degradation via the activation of caspase-8 pathway. The induction of H19 in Bcl2 overexpressed mice was contributed by a direct loss of Shp transcriptional repression. H19 knockdown or Shp re-expression largely rescued Bcl2-induced liver injury. Strikingly different than Shp, the expression of Bcl2 and H19 was hardly detectable in adult liver but was markedly increased in fibrotic/cirrhotic human and mouse liver. We demonstrated for the first time a detrimental effect of Bcl2 and H19 associated with cholestatic liver fibrosis and an indispensable role of Shp to maintain normal liver function. PMID:26838806

  6. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function

    PubMed Central

    Zhang, Yuxia; Liu, Chune; Barbier, Olivier; Smalling, Rana; Tsuchiya, Hiroyuki; Lee, Sangmin; Delker, Don; Zou, An; Hagedorn, Curt H.; Wang, Li

    2016-01-01

    Bile acid (BA) metabolism is tightly controlled by nuclear receptor signaling to coordinate regulation of BA synthetic enzymes and transporters. Here we reveal a molecular cascade consisting of the antiapoptotic protein BCL2, nuclear receptor Shp, and long non-coding RNA (lncRNA) H19 to maintain BA homeostasis. Bcl2 was overexpressed in liver of C57BL/6J mice using adenovirus mediated gene delivery for two weeks. Hepatic overexpression of Bcl2 caused drastic accumulation of serum BA and bilirubin levels and dysregulated BA synthetic enzymes and transporters. Bcl2 reactivation triggered severe liver injury, fibrosis and inflammation, which were accompanied by a significant induction of H19. Bcl2 induced rapid SHP protein degradation via the activation of caspase-8 pathway. The induction of H19 in Bcl2 overexpressed mice was contributed by a direct loss of Shp transcriptional repression. H19 knockdown or Shp re-expression largely rescued Bcl2-induced liver injury. Strikingly different than Shp, the expression of Bcl2 and H19 was hardly detectable in adult liver but was markedly increased in fibrotic/cirrhotic human and mouse liver. We demonstrated for the first time a detrimental effect of Bcl2 and H19 associated with cholestatic liver fibrosis and an indispensable role of Shp to maintain normal liver function. PMID:26838806

  7. The Phosphotyrosine Phosphatase SHP-2 Participates in a Multimeric Signaling Complex and Regulates T Cell Receptor (TCR) coupling to the Ras/Mitogen-activated Protein Kinase (MAPK) Pathway in Jurkat T Cells

    PubMed Central

    Frearson, Julie A.; Alexander, Denis R.

    1998-01-01

    Src homology 2 (SH2) domain–containing phosphotyrosine phosphatases (SHPs) are increasingly being shown to play critical roles in protein tyrosine kinase–mediated signaling pathways. The role of SHP-1 as a negative regulator of T cell receptor (TCR) signaling has been established. To further explore the function of the other member of this family, SHP-2, in TCR-mediated events, a catalytically inactive mutant SHP-2 was expressed under an inducible promoter in Jurkat T cells. Expression of the mutant phosphatase significantly inhibited TCR-induced activation of the extracellular-regulated kinase (ERK)-2 member of the mitogen-activated protein kinase (MAPK) family, but had no effect on TCR-ζ chain tyrosine phosphorylation or TCR-elicited Ca2+ transients. Inactive SHP-2 was targeted to membranes resulting in the selective increase in tyrosine phosphorylation of three membrane-associated candidate SHP-2 substrates of 110 kD, 55-60 kD, and 36 kD, respectively. Analysis of immunoprecipitates containing inactive SHP-2 also indicated that the 110-kD and 36-kD Grb-2–associated proteins were putative substrates for SHP-2. TCR-stimulation of Jurkat T cells expressing wild-type SHP-2 resulted in the formation of a multimeric cytosolic complex composed of SHP-2, Grb-2, phosphatidylinositol (PI) 3′-kinase, and p110. A significant proportion of this complex was shown to be membrane associated, presumably as a result of translocation from the cytosol. Catalytically inactive SHP-2, rather than the wild-type PTPase, was preferentially localized in complex with Grb-2 and the p85 subunit of PI 3′-kinase, suggesting that the dephosphorylating actions of SHP-2 may regulate the association of these signaling molecules to the p110 complex. Our results show that SHP-2 plays a critical role in linking the TCR to the Ras/MAPK pathway in Jurkat T cells, and also provide some insight into the molecular interactions of SHP-2 that form the basis of this signal transduction process

  8. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    SciTech Connect

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  9. A PKC-SHP1 signaling axis desensitizes Fcγ receptor signaling by reducing the tyrosine phosphorylation of CBL and regulates FcγR mediated phagocytosis

    PubMed Central

    2014-01-01

    Background Fcγ receptors mediate important biological signals in myeloid cells including the ingestion of microorganisms through a process of phagocytosis. It is well-known that Fcγ receptor (FcγR) crosslinking induces the tyrosine phosphorylation of CBL which is associated with FcγR mediated phagocytosis, however how signaling molecules coordinate to desensitize these receptors is unclear. An investigation of the mechanisms involved in receptor desensitization will provide new insight into potential mechanisms by which signaling molecules may downregulate tyrosine phosphorylation dependent signaling events to terminate important signaling processes. Results Using the U937IF cell line, we observed that FcγR1 crosslinking induces the tyrosine phosphorylation of CBL, which is maximal at 5 min. followed by a kinetic pattern of dephosphorylation. An investigation of the mechanisms involved in receptor desensitization revealed that pretreatment of U937IF or J774 cells with PMA followed by Fcγ receptor crosslinking results in the reduced tyrosine phosphorylation of CBL and the abrogation of downstream signals, such as CBL-CRKL binding, Rac-GTP activation and the phagocytic response. Pretreatment of J774 cells with GF109203X, a PKC inhibitor was observed to block dephosphorylation of CBL and rescued the phagocytic response. We demonstrate that the PKC induced desensitization of FcγR/ phagocytosis is associated with the inactivation of Rac-GTP, which is deactivated in a hematopoietic specific phosphatase SHP1 dependent manner following ITAM stimulation. The effect of PKC on FcγR signaling is augmented by the transfection of catalytically active SHP1 and not by the transfection of catalytic dead SHP1 (C124S). Conclusions Our results suggest a functional model by which PKC interacts with SHP1 to affect the phosphorylation state of CBL, the activation state of Rac and the negative regulation of ITAM signaling i.e. Fcγ receptor mediated phagocytosis. These findings

  10. Bridging cell surface receptor with nuclear receptors in control of bile acid homeostasis

    PubMed Central

    Li, Shuangwei; Ni, Andrew; Feng, Gen-sheng

    2015-01-01

    Bile acids (BAs) are traditionally considered as “physiological detergents” for emulsifying hydrophobic lipids and vitamins due to their amphipathic nature. But accumulating clinical and experimental evidence shows an association between disrupted BA homeostasis and various liver disease conditions including hepatitis infection, diabetes and cancer. Consequently, BA homeostasis regulation has become a field of heavy interest and investigation. After identification of the Farnesoid X Receptor (FXR) as an endogenous receptor for BAs, several nuclear receptors (SHP, HNF4α, and LRH-1) were also found to be important in regulation of BA homeostasis. Some post-translational modifications of these nuclear receptors have been demonstrated, but their physiological significance is still elusive. Gut secrets FGF15/19 that can activate hepatic FGFR4 and its downstream signaling cascade, leading to repressed hepatic BA biosynthesis. However, the link between the activated kinases and these nuclear receptors is not fully elucidated. Here, we review the recent literature on signal crosstalk in BA homeostasis. PMID:25500873

  11. A role for the SHP-2 tyrosine phosphatase in nerve growth-induced PC12 cell differentiation.

    PubMed Central

    Wright, J H; Drueckes, P; Bartoe, J; Zhao, Z; Shen, S H; Krebs, E G

    1997-01-01

    SHP-1 and SHP-2 are intracellular protein tyrosine phosphatases containing two adjacent src homology 2 domains that target these phosphatases to cell surface receptor signaling complexes and play a role in receptor signal transduction. In this report the PC12 cell system was used to investigate the potential roles of SHP-1 and SHP-2 in the induction of neuronal differentiation by nerve growth factor (NGF). By using neurite outgrowth as a marker for differentiation, the effects of transfected constructs of SHP-1 and SHP-2 were assessed. Overexpression of a catalytically inactive SHP-2, but not a catalytically inactive SHP-1, blocked NGF-stimulated neurite outgrowth. The mitogen-activated protein kinase (MAPK) signaling cascade is important for the morphological differentiation in PC12 cells, and both SHP-1 and SHP-2 have been implicated to act upstream of MAPK in other receptor signaling systems. A positive role for SHP-2 but not SHP-1 in the activation of MAPK by NGF was demonstrated by introduction of the SHP-2 phosphatase mutants along with hemagglutinin-tagged MAPK. Coexpression studies with the SHP-2 mutant along with mutant forms of MAPK kinase suggested that SHP-2 functions upstream of MAPK kinase and MAPK in NGF-induced neurite outgrowth. Images PMID:9285826

  12. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2.

    PubMed

    Gavrieli, Maya; Watanabe, Norihiko; Loftin, Susan K; Murphy, Theresa L; Murphy, Kenneth M

    2003-12-26

    B and T lymphocytes express receptors providing positive and negative co-stimulatory signals. We recently identified a novel co-stimulatory molecule, B and T lymphocyte attenuator (BTLA), which exerts inhibitory effects on B and T lymphocytes. The cytoplasmic domain of murine and human BTLA share three conserved tyrosine-based signaling motifs, a Grb-2 recognition consensus, and two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Phosphorylation of the cytoplasmic domain of BTLA induced the association with the protein tyrosine phosphatases SHP-1 and SHP-2. Association of SHP-1 and SHP-2 to other receptors can involve recruitment to either a single receptor ITIM or to two receptor ITIMs. Here, we analyzed the requirements of BTLA interaction with SHP-1 and SHP-2 in a series of murine and human BTLA mutants. For human BTLA, mutations of either Y257 or Y282, but not Y226, abrogated association with both SHP-1 and SHP-2. For murine BTLA, mutation of either Y274 or Y299, but not Y245, also abrogated association with both SHP-1 and SHP-2. These results indicate that for both murine and human BTLA, association with SHP-1 or SHP-2 requires both of conserved ITIM motifs and does not involve the conserved Grb-2 consensus. Thus, similar to the bisphosphoryl tyrosine-based activation motif (BTAM) by which the Grb-2 associated binder (Gab1), PDGF receptor, and PECAM-1 recruit SHP-2, BTLA also relies on dual ITIMs for its association with the phosphatases SHP-1 and SHP-2. PMID:14652006

  13. Nuclear hormone receptors in podocytes

    PubMed Central

    2012-01-01

    Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses. PMID:22995171

  14. Schistosoma mansoni Soluble Egg Antigens Induce Expression of the Negative Regulators SOCS1 and SHP1 in Human Dendritic Cells via Interaction with the Mannose Receptor

    PubMed Central

    Klaver, Elsenoor J.; Kuijk, Loes M.; Lindhorst, Thisbe K.; Cummings, Richard D.; van Die, Irma

    2015-01-01

    Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses. PMID:25897665

  15. Schistosoma mansoni Soluble Egg Antigens Induce Expression of the Negative Regulators SOCS1 and SHP1 in Human Dendritic Cells via Interaction with the Mannose Receptor.

    PubMed

    Klaver, Elsenoor J; Kuijk, Loes M; Lindhorst, Thisbe K; Cummings, Richard D; van Die, Irma

    2015-01-01

    Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses. PMID:25897665

  16. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    SciTech Connect

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  17. Nuclear Receptors and Endocrine Disruptors in Fetal and Neonatal Testes: A Gapped Landscape

    PubMed Central

    Rouiller-Fabre, Virginie; Guerquin, Marie Justine; N’Tumba-Byn, Thierry; Muczynski, Vincent; Moison, Delphine; Tourpin, Sophie; Messiaen, Sébastien; Habert, René; Livera, Gabriel

    2015-01-01

    During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food, and many consumer products), several can act as endocrine disrupting compounds (EDCs), thus interfering with the endocrine system. Phthalates, bisphenol A (BPA), and diethylstilbestrol (DES) have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review, we discuss the role of classical nuclear receptors (genomic pathway) in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA, and DES. Among the nuclear receptors, we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR), androgen receptor (AR), estrogen receptors (ERα and β), liver X receptors (LXR), and small heterodimer partner (SHP). First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models) of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s). We also point-out the involvement of other receptors and nuclear receptor-independent pathways. PMID:25999913

  18. Rapid TCR-mediated SHP-1 S591 phosphorylation regulates SHP-1 cellular localization and phosphatase activity

    PubMed Central

    Liu, Yin; Kruhlak, Michael J.; Hao, Jian-Jiang; Shaw, Stephen

    2007-01-01

    Since the tyrosine phosphatase SHP-1 plays a major role in regulating T-cell signaling, we investigated regulation thereof by Ser/Thr phosphorylation. We found that TCR stimulation induced fast (≤1min) and transient phosphorylation of SHP-1 S591 in both Jurkat and human peripheral blood T-cells (PBT). Phosphorylation of S591 in T-cells could be mediated artificially by a constitutive active PKC-theta construct, but the dose dependence of inhibition by PKC inhibitors indicated that PKCs were not the relevant basophilic kinase in the physiologic response. S591 phosphorylation inhibited phosphatase function since a S591D mutant had lower activity than the S591A mutant. Additional evidence that S591 phosphorylation alters SHP-1 function was provided by studies of Jurkat cells stably expressing SHP-1 wildtype or mutants. In those cells, S591D mutation reduced the capacity of transfected SHP-1 to inhibit TCR-induced phosphorylation of PLC-γ1. Interestingly, SHP-1 Y536 phosphorylation (previously shown to augment phosphatase activity) was also induced in PBT by TCR signal but at a much later time compared to S591 (~30 min). S591 phosphorylation also altered cellular distribution of SHP-1 because: 1) SHP-1 in lipid rafts and a sheared membrane fraction was hypo-phosphorylated; 2) In stably transfected Jurkat cell lines, S591D mutant protein had reduced presence in both lipid raft and the sheared membrane fraction; 3) S591 phosphorylation prevented nuclear localization of a C-terminal GFP tagged SHP-1 construct. Our studies also shed light on an additional mechanism regulating SHP-1 nuclear localization, namely conformational autoinhibition. These findings highlight elegant regulation of SHP-1 by sequential phosporylation of serine then tyrosine. PMID:17575265

  19. Lack of Phosphotyrosine Phosphatase SHP-1 Expression in Malignant T-Cell Lymphoma Cells Results from Methylation of the SHP-1 Promoter

    PubMed Central

    Zhang, Qian; Raghunath, Puthiyaveettil N.; Vonderheid, Eric; Ødum, Niels; Wasik, Mariusz A.

    2000-01-01

    SHP-1 is an important negative regulator of signaling by several receptors including receptors for interleukin-2 (IL-2R) and other cytokines. SHP-1 acts by dephosphorylating the receptors and receptor-associated kinases such as IL-2R-associated Jak3 kinase. We found that SHP-1 protein was not detectable or greatly diminished in most (six of seven) T cell lines derived from various types of T cell lymphomas and all (eight of eight) cutaneous T-cell lymphoma tissues with a transformed, large-cell morphology. All T-cell lymphoma lines tested (eight of eight) expressed diminished amounts or no detectable SHP-1 mRNA. These T cell lines did not, however, carry any mutations in the SHP-1 gene-coding, splice-junction, and promoter regions. Importantly, SHP-1 DNA promoter region in the T cell lines was resistant to digestion with three different methylation-sensitive restriction enzymes. This resistance was reversed by treatment of the cells with a demethylating agent, 5-deoxyazacytidine. The treatment resulted also in the expression of SHP-1 mRNA and, less frequently, SHP-1 protein. The expression of SHP-1 protein was associated with dephosphorylation of the Jak3 kinase. These results show that lack of SHP-1 expression is frequent in malignant T cells and results from methylation of the SHP-1 gene promoter. Furthermore, they indicate that SHP-1 loss may play a role in the pathogenesis of T cell lymphomas by permitting persistence of signals generated by IL-2R and, possibly, other receptor complexes. PMID:11021818

  20. Nuclear Receptors, RXR, and the Big Bang.

    PubMed

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism.

  1. Nuclear Receptors, RXR & the Big Bang

    PubMed Central

    Evans, Ronald M.; Mangelsdorf, David J.

    2014-01-01

    Summary Isolation of genes encoding the receptors for steroids, retinoids, vitamin D and thyroid hormone, and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors, and in particular of the retinoid X receptor (RXR), positioned nuclear receptors at the epicenter of the “Big Bang” of molecular endocrinology. This review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multi-cellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  2. Nuclear Receptors, RXR, and the Big Bang.

    PubMed

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  3. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  4. Targeting nuclear receptors with marine natural products.

    PubMed

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-27

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.

  5. The Role of Small Heterodimer Partner (SHP) in NAFLD Improvement after Vertical Sleeve Gastrectomy in Mice

    PubMed Central

    Myronovych, Andriy; Salazar-Gonzales, Rosa-Maria; Ryan, Karen K.; Miles, Lili; Zhang, Wujuan; Jha, Pinky; Wang, Li; Setchell, Kenneth DR; Seeley, Randy J; Kohli, Rohit

    2014-01-01

    Objective Bile acids (BA) are elevated after vertical sleeve gastrectomy (VSG) and farnesoid-X-receptor (FXR) is critical to the success of murine VSG. BA down-regulate hepatic lipogenesis by activating the FXR-small heterodimer partner (SHP) pathway. We tested the role of SHP in fatty liver disease (NAFLD) improvement after VSG. Design and Methods Wild type (WT), SHP liver-transgenic (SHP-Tg) and SHP knockout (SHP-KO) high-fat diet (HFD) fed mice underwent either VSG or Sham surgery. Body weight, BA level & composition, steatosis and BA metabolism gene expression were evaluated. Results Obese WT mice post-VSG lost weight, reduced steatosis, decreased plasma alanine aminotransferase (ALT), had more BA absorptive ileal area, and elevated serum BA. Obese SHP-Tg mice post-VSG also lost weight and had decreased steatosis. SHP-KO mice were however resistant to steatosis despite weight gain on a HFD. Further SHP-KO mice that underwent VSG lost weight but developed hepatic inflammation and had increased ALT. Conclusions VSG produces weight loss independent of SHP status. SHP ablation creates a pro-inflammatory phenotype which is exacerbated after VSG despite weight loss. These inflammatory alterations are possibly related to factors extrinsic to a direct manifestation of NASH. PMID:25376397

  6. Nuclear receptors and nonalcoholic fatty liver disease.

    PubMed

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  7. Nuclear receptors and nonalcoholic fatty liver disease.

    PubMed

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  8. What are Nuclear Receptor Ligands?

    PubMed Central

    Sladek, Frances M.

    2010-01-01

    Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation. PMID:20615454

  9. SHP-2 expression negatively regulates NK cell function1,2

    PubMed Central

    Purdy, Amanda K.; Campbell, Kerry S.

    2009-01-01

    Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2)4 is required for full activation of Ras/ERK in many cytokine and growth factor receptor signaling pathways. In contrast, SHP-2 inhibits activation of human natural killer (NK) cells upon recruitment to killer cell Ig-like receptors (KIR)4. To determine how SHP-2 impacts NK cell activation in KIR-dependent or KIR-independent signaling pathways, we employed knockdown and overexpression strategies in NK-like cell lines and analyzed the consequences on functional responses. In response to stimulation with susceptible target cells, SHP-2-silenced NK cells had elevated cytolytic activity and IFN-γ production, whereas cells overexpressing wild type or gain-of-function mutants of SHP-2 exhibited dampened activities. Increased levels of SHP-2 expression over this range significantly suppressed microtubule organizing center (MTOC)4 polarization and granzyme B release in response to target cells. Interestingly, NK-target cell conjugation was only reduced by overexpressing SHP-2, but not potentiated in SHP-2-silenced cells, indicating that conjugation is not influenced by physiological levels of SHP-2 expression. KIR-dependent inhibition of cytotoxicity was unaffected by significant reductions in SHP-2 levels, presumably because KIR were still capable of recruiting the phosphatase under these limiting conditions. In contrast, the general suppressive effect of SHP-2 on cytotoxicity and cytokine release was much more sensitive to changes in cellular SHP-2 levels. In summary, our studies have identified a new, KIR-independent role for SHP-2 in dampening NK cell activation in response to tumor target cells in a concentration-dependent manner. This suppression of activation impacts MTOC-based cytoskeletal rearrangement and granule release. PMID:19915046

  10. DAX1: Increasing complexity in the roles of this novel nuclear receptor.

    PubMed

    McCabe, Edward R B

    2007-02-01

    DAX1 (NR0B1) is a nuclear receptor with a characteristic C-terminal ligand binding domain, but an atypical DNA binding domain. Mutations in the DAX1 gene cause adrenal hypoplasia congenita (AHC) establishing its biological importance. Recent studies highlight the complexities of DAX1 regulation and function. There is considerable phenotypic variability in AHC suggesting the existence of DAX1 modifier genes and environmental influences on DAX1 function. The findings of an alternatively spliced DAX1A, more common than DAX1 in all tissues except testis, of DAX1 homodimers, and of DAX1 heterodimers with a number of transcription factor partners including DAX1A and SHP point to an expanded transcription regulatory network under DAX1 control. Model organisms (mice and zebrafish) are being used to identify other DAX1 functions and modifier genes to understand the pathogenesis of AHC and the lack of genotype-phenotype correlation. PMID:17210221

  11. The Nuclear Receptor Superfamily at Thirty.

    PubMed

    McEwan, Iain J

    2016-01-01

    The human genome codes for 48 members of the nuclear receptor superfamily, half of which have known ligands. Natural ligands for nuclear receptors are generally lipophilic in nature and include steroid hormones, bile acids, fatty acids, thyroid hormones, certain vitamins, and prostaglandins. Nuclear receptors regulate gene expression programs controlling development, differentiation, metabolic homeostasis and reproduction, in both a temporal and a tissue-selective manner. Since the original cloning of the cDNAs for the estrogen and glucocorticoid receptors, large strides have been made in our understanding of the structure and function of this family of transcription factors and their role in pathophysiology. PMID:27246330

  12. Nuclear receptors in transgenerational epigenetic inheritance.

    PubMed

    Ozgyin, Lilla; Erdős, Edina; Bojcsuk, Dóra; Balint, Balint L

    2015-07-01

    Nuclear Receptors are ligand-activated transcription factors that translate information about the lipid environment into specific genetic programs, a property that renders them good candidates to be mediators of rapid adaptation changes of a species. Lipid-based morphogens, endocrine hormones, fatty acids and xenobiotics might act through this class of transcription factors making them regulators able to fine-tune physiological processes. Here we review the basic concepts and current knowledge on the process whereby small molecules act through nuclear receptors and contribute to transgenerational changes. Several molecules shown to cause transgenerational changes like phthalates, BPA, nicotine, tributylin bind and activate nuclear receptors like ERs, androgen receptors, glucocorticoid receptors or PPARγ. A specific subset of observations involving nuclear receptors has focused on the effects of environmental stress or maternal behaviour on the development of transgenerational traits. While these effects do not involve environmental ligands, they change the expression levels of Estrogen and glucocorticoid receptors of the second generation and consequently initiate an altered genetic program in the second generation. In this review we summarize the available literature about the role of nuclear receptors in transgenerational inheritance.

  13. Evolution of the nuclear receptor gene superfamily.

    PubMed Central

    Laudet, V; Hänni, C; Coll, J; Catzeflis, F; Stéhelin, D

    1992-01-01

    Nuclear receptor genes represent a large family of genes encoding receptors for various hydrophobic ligands such as steroids, vitamin D, retinoic acid and thyroid hormones. This family also contains genes encoding putative receptors for unknown ligands. Nuclear receptor gene products are composed of several domains important for transcriptional activation, DNA binding (C domain), hormone binding and dimerization (E domain). It is not known whether these genes have evolved through gene duplication from a common ancestor or if their different domains came from different independent sources. To test these possibilities we have constructed and compared the phylogenetic trees derived from two different domains of 30 nuclear receptor genes. The tree built from the DNA binding C domain clearly shows a common progeny of all nuclear receptors, which can be grouped into three subfamilies: (i) thyroid hormone and retinoic acid receptors, (ii) orphan receptors and (iii) steroid hormone receptors. The tree constructed from the central part of the E domain which is implicated in transcriptional regulation and dimerization shows the same distribution in three subfamilies but two groups of receptors are in a different position from that in the C domain tree: (i) the Drosophila knirps family genes have acquired very different E domains during evolution, and (ii) the vitamin D and ecdysone receptors, as well as the FTZ-F1 and the NGF1B genes, seem to have DNA binding and hormone binding domains belonging to different classes. These data suggest a complex evolutionary history for nuclear receptor genes in which gene duplication events and swapping between domains of different origins took place. PMID:1312460

  14. Tumoral Prostate Shows Different Expression Pattern of Somatostatin Receptor 2 (SSTR2) and Phosphotyrosine Phosphatase SHP-1 (PTPN6) According to Tumor Progression

    PubMed Central

    Cariaga-Martinez, Ariel Ernesto; Lorenzati, María Angelica; Riera, Mario Alejandro; Cubilla, Marisa Angelica; De La Rossa, Andrés; Giorgio, Ernesto Martín; Tiscornia, María Mercedes; Gimenez, Esteban Mariano; Rojas, María Eugenia; Chaneton, Bárbara Julieta; Rodríguez, Dora Isabel; Zapata, Pedro Darío

    2009-01-01

    Prostate proliferation is dependent of androgens and many peptide hormones. Recent reports suggest that SSTR2 and SHP-1 were two fundamental components on antiproliferative effect of somatostatin. Many studies on SHP-1 revealed that the expression of this protein was diminished or abolished in several of the cancer cell lines and tissues examined. However, it is necessary to confront the cell lines data with real situation in cancer cases. Our studies have shown that epithelial expressions of both proteins, SHP-1 and SSTR2, in normal and benign hyperplasia are localized in the luminal side of duct and acinar cells. Also, SSTR2 is expressed in stromal cells. In malignant prostate tissue, SHP-1 was diminished in 28/45 cases or absent in 12/45 cases, whereas SSTR2 epithelial was diminished in 38/45 cases or lost in only 2/45 cases. The intensity of immunostained was highly negative correlated with Gleason grade for two proteins. PMID:19365586

  15. Interdependent regulation of intracellular acidification and SHP-1 in apoptosis.

    PubMed

    Thangaraju, M; Sharma, K; Liu, D; Shen, S H; Srikant, C B

    1999-04-01

    The G protein-coupled receptor agonist somatostatin (SST)-induces apoptosis in MCF-7 human breast cancer cells. This is associated with induction of wild-type p53, Bax, and an acidic endonuclease. We have shown recently that its cytotoxic signaling is mediated via membrane-associated SHP-1 and is dependent on decrease in intracellular pH (pHi) to 6.5. Here we investigated the relationship between intracellular acidification and SHP-1 in cytotoxic signaling. Clamping of pHi at 7.25 by the proton-ionophore nigericin abolished SST-signaled apoptosis without affecting its ability to regulate SHP-1, p53, and Bax. Apoptosis could be induced by nigericin clamping of pHi to 6.5. Such acidification-induced apoptosis was not observed at pHi <6.0 or >6.7. pHi-dependent apoptosis was associated with the translocation of SHP-1 to the membrane, enhanced in cells overexpressing SHP-1, and was abolished by its inactive mutant SHP-1C455S. Acidification caused by inhibition of Na+/H+ exchanger and H+ ATPase (pHi = 6.55 and 6.65, respectively) also triggered apoptosis. The effect of concurrent inhibition of Na+/H+ exchanger and H(+)-ATPase on pHi and apoptosis was comparable with that of SST. Acidification-induced, SHP-1-dependent apoptosis occurred in breast cancer cell lines in which SST was cytotoxic (MCF-7 and T47D) or not (MDA-MB-231). We conclude that: (a) SST-induced SHP-1-dependent acidification occurs subsequent to or independent of the induction of p53 and Bax; (b) SST-induced intracellular acidification may arise due to inhibition of Na+/H+ exchanger and H(+)-ATPase; and (c) SHP-1 is necessary not only for agonist-induced acidification but also for the execution of acidification-dependent apoptosis. We suggest that combined targeting of SHP-1 and intracellular acidification may lead to a novel strategy of anticancer therapy bypassing the need for receptor-mediated signaling.

  16. An extract of Perilla stem inhibits Src homology phosphatase-1 (SHP)-1 and influences insulin signaling.

    PubMed

    Peng, Liu; Lei, Zhang; Xiao-na, Xie; Deli, Wang; Jing, Sun; Yong-sen, Wang; Zhi, Wang; Shu, Xing; Jun-feng, Ma; Wan-nan, Li; Xue-qi, Fu

    2015-03-01

    Protein tyrosine phosphatases (PTPs) are enzymes that catalyze protein tyrosine dephosphorylation of which Src homology phosphatase-1 (SHP-1) is one of the best-validated, a widely distributed intracellular tyrosine phosphatase that contains two SH2 domains. Down regulation of SHP-1 tyrosine phosphatases was significantly increased sensitivity to insulin in insulin signaling pathway. Through in vitro enzymatic reaction kinetics experiment, we found that the extract of Perilla stem was a potential inhibitor to δSHP-1, the catalytic domain of SHP-1 protein tyrosine phosphatase, and its IC(50) was 4ug/ml, and was more sensitive towards SHP-1than other PTPs, which indicated that SHP-1 might be a target of the extract of Perilla stem. It can strengthened the level of tyrosine phosphorylation of insulin receptor (IR) and extracellular signal-regulated protein kinase (ERK) in HepG2 cells, and then activated the insulin signaling pathway through inhibiting the protein phosphorylation of SHP-1. These results demonstrated that the extract of Perilla stem could play an important role for diabetes treatment through inhibiting the level of SHP-1 in insulin signaling pathway.

  17. An extract of Perilla stem inhibits Src homology phosphatase-1 (SHP)-1 and influences insulin signaling.

    PubMed

    Peng, Liu; Lei, Zhang; Xiao-na, Xie; Deli, Wang; Jing, Sun; Yong-sen, Wang; Zhi, Wang; Shu, Xing; Jun-feng, Ma; Wan-nan, Li; Xue-qi, Fu

    2015-03-01

    Protein tyrosine phosphatases (PTPs) are enzymes that catalyze protein tyrosine dephosphorylation of which Src homology phosphatase-1 (SHP-1) is one of the best-validated, a widely distributed intracellular tyrosine phosphatase that contains two SH2 domains. Down regulation of SHP-1 tyrosine phosphatases was significantly increased sensitivity to insulin in insulin signaling pathway. Through in vitro enzymatic reaction kinetics experiment, we found that the extract of Perilla stem was a potential inhibitor to δSHP-1, the catalytic domain of SHP-1 protein tyrosine phosphatase, and its IC(50) was 4ug/ml, and was more sensitive towards SHP-1than other PTPs, which indicated that SHP-1 might be a target of the extract of Perilla stem. It can strengthened the level of tyrosine phosphorylation of insulin receptor (IR) and extracellular signal-regulated protein kinase (ERK) in HepG2 cells, and then activated the insulin signaling pathway through inhibiting the protein phosphorylation of SHP-1. These results demonstrated that the extract of Perilla stem could play an important role for diabetes treatment through inhibiting the level of SHP-1 in insulin signaling pathway. PMID:25730798

  18. Antagonism or Synergism: Role of Tyrosine Phosphatases SHP-1 and SHP-2 in Growth Factor Signaling

    PubMed Central

    Wang, Ning; Li, Zhe; Ding, Ronghua; Frank, Gerald D.; Senbonmatsu, Takaaki; Landon, Erwin J.; Inagami, Tadashi; Zhao, Zhizhuang Joe

    2008-01-01

    SHP-1 and SHP-2 are two SH2 domain-containing tyrosine phosphatases with major pathological implications in cell growth regulating signaling. They share significant overall sequence identity, but their biological functions are often opposite. SHP-1 is generally considered as a negative signal transducer while SHP-2 as a positive one. However, the precise role of each enzyme in shared signaling pathways is not well defined. In this study, we investigated the interaction of these two enzymes in a single cell system by knocking down their expressions with siRNAs and analyzing the effects on epidermal growth factor signaling. Interestingly, knockdown of either SHP-1 or SHP-2 caused significant reduction in the activation of ERK1/2 but not Akt. Furthermore, SHP-1, SHP-2, and Gab1 formed a signaling complex, and SHP-1 and SHP-2 interact with each other. The interaction of SHP-1 with Gab1 is mediated by SHP-2 since it was abrogated by knockdown of SHP-2 and SHP-2, but not SHP-1, binds directly to tyrosine phosphorylated Gab1. Together, the data revealed that both SHP-1 and SHP-2 have a positive role in epidermal growth factor-induced ERK1/2 activation and that they act cooperatively rather than antagonistically. The interaction of SHP-1 and SHP-2 may be responsible for hitherto unexpected novel regulatory mechanism of cell signaling by tyrosine phosphatases. PMID:16762922

  19. Nuclear receptors in stem cell biology.

    PubMed

    Shi, Yanhong; Sun, Guoqiang; Stewart, Richard

    2006-01-01

    Batteries of transcription factors have been proposed to control stem cell self-renewal and lineage progression by eliciting cascades of gene expression. Nuclear receptors provide an ideal model to study the transcriptional regulation of gene expression because they can activate as well as repress gene expression through ligand binding and recruitment of transcriptional coactivators or corepressors. Recent progress in defining specific roles of some nuclear receptors and their coregulators in stem cell self-renewal and differentiation provides a first glimpse of the regulatory events involved and is the beginning of a very promising area of research. This review summarizes the current state of knowledge regarding nuclear receptors and their roles in stem cell biology. These studies not only facilitate an understanding of stem cell biology but also provide a basis for the development of therapeutic drugs for the treatment of a variety of diseases.

  20. NUREBASE: database of nuclear hormone receptors.

    PubMed

    Duarte, Jorge; Perrière, Guy; Laudet, Vincent; Robinson-Rechavi, Marc

    2002-01-01

    Nuclear hormone receptors are an abundant class of ligand activated transcriptional regulators, found in varying numbers in all animals. Based on our experience of managing the official nomenclature of nuclear receptors, we have developed NUREBASE, a database containing protein and DNA sequences, reviewed protein alignments and phylogenies, taxonomy and annotations for all nuclear receptors. The reviewed NUREBASE is completed by NUREBASE_DAILY, automatically updated every 24 h. Both databases are organized under a client/server architecture, with a client written in Java which runs on any platform. This client, named FamFetch, integrates a graphical interface allowing selection of families, and manipulation of phylogenies and alignments. NUREBASE sequence data is also accessible through a World Wide Web server, allowing complex queries. All information on accessing and installing NUREBASE may be found at http://www.ens-lyon.fr/LBMC/laudet/nurebase.html.

  1. Structure-based discovery of antagonists of nuclear receptor LRH-1.

    PubMed

    Benod, Cindy; Carlsson, Jens; Uthayaruban, Rubatharshini; Hwang, Peter; Irwin, John J; Doak, Allison K; Shoichet, Brian K; Sablin, Elena P; Fletterick, Robert J

    2013-07-01

    Liver receptor homolog 1 (nuclear receptor LRH-1, NR5A2) is an essential regulator of gene transcription, critical for maintenance of cell pluripotency in early development and imperative for the proper functions of the liver, pancreas, and intestines during the adult life. Although physiological hormones of LRH-1 have not yet been identified, crystallographic and biochemical studies demonstrated that LRH-1 could bind regulatory ligands and suggested phosphatidylinositols as potential hormone candidates for this receptor. No synthetic antagonists of LRH-1 are known to date. Here, we identify the first small molecule antagonists of LRH-1 activity. Our search for LRH-1 modulators was empowered by screening of 5.2 million commercially available compounds via molecular docking followed by verification of the top-ranked molecules using in vitro direct binding and transcriptional assays. Experimental evaluation of the predicted ligands identified two compounds that inhibit the transcriptional activity of LRH-1 and diminish the expression of the receptor's target genes. Among the affected transcriptional targets are co-repressor SHP (small heterodimer partner) as well as cyclin E1 (CCNE1) and G0S2 genes that are known to regulate cell growth and proliferation. Treatments of human pancreatic (AsPC-1), colon (HT29), and breast adenocarcinoma cells T47D and MDA-MB-468 with the LRH-1 antagonists resulted in the receptor-mediated inhibition of cancer cell proliferation. Our data suggest that specific antagonists of LRH-1 could be used as specific molecular probes for elucidating the roles of the receptor in different types of malignancies.

  2. Structure-based Discovery of Antagonists of Nuclear Receptor LRH-1*

    PubMed Central

    Benod, Cindy; Carlsson, Jens; Uthayaruban, Rubatharshini; Hwang, Peter; Irwin, John J.; Doak, Allison K.; Shoichet, Brian K.; Sablin, Elena P.; Fletterick, Robert J.

    2013-01-01

    Liver receptor homolog 1 (nuclear receptor LRH-1, NR5A2) is an essential regulator of gene transcription, critical for maintenance of cell pluripotency in early development and imperative for the proper functions of the liver, pancreas, and intestines during the adult life. Although physiological hormones of LRH-1 have not yet been identified, crystallographic and biochemical studies demonstrated that LRH-1 could bind regulatory ligands and suggested phosphatidylinositols as potential hormone candidates for this receptor. No synthetic antagonists of LRH-1 are known to date. Here, we identify the first small molecule antagonists of LRH-1 activity. Our search for LRH-1 modulators was empowered by screening of 5.2 million commercially available compounds via molecular docking followed by verification of the top-ranked molecules using in vitro direct binding and transcriptional assays. Experimental evaluation of the predicted ligands identified two compounds that inhibit the transcriptional activity of LRH-1 and diminish the expression of the receptor's target genes. Among the affected transcriptional targets are co-repressor SHP (small heterodimer partner) as well as cyclin E1 (CCNE1) and G0S2 genes that are known to regulate cell growth and proliferation. Treatments of human pancreatic (AsPC-1), colon (HT29), and breast adenocarcinoma cells T47D and MDA-MB-468 with the LRH-1 antagonists resulted in the receptor-mediated inhibition of cancer cell proliferation. Our data suggest that specific antagonists of LRH-1 could be used as specific molecular probes for elucidating the roles of the receptor in different types of malignancies. PMID:23667258

  3. Role of Nuclear Receptors in Blastocyst Implantation

    PubMed Central

    Vasquez, YM; DeMayo, FJ

    2013-01-01

    The regulation of blastocyst implantation in the uterus is orchestrated by the ovarian hormones estrogen and progesterone. These hormones act via their nuclear receptors to direct the transcriptional activity of the endometrial compartments and create a defined period in which the uterus is permissive to embryo implantation termed the “window of receptivity”. Additional members of the nuclear receptor family have also been described to have a potential role in endometrial function. Much of what we know about the function of these nuclear receptors during implantation we have learned from the use of mouse models. Transgenic murine models with targeted gene ablation have allowed us to identify a complex network of paracrine signaling between the endometrial epithelium and stroma. While some of the critical molecules have been identified, the mechanism underlying the intricate communication between endometrial compartments during the implantation window has not been fully elucidated. Defining this mechanism will help identify markers of a receptive uterine environment, ultimately providing a useful tool to help improve the fertility outlook for reproductively challenged couples. The aim of this review is to outline our current understanding of how nuclear receptors and their effector molecules regulate blastocyst implantation in the endometrium. PMID:23994285

  4. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  5. Nuclear receptors and pathogenesis of pancreatic cancer

    PubMed Central

    Polvani, Simone; Tarocchi, Mirko; Tempesti, Sara; Galli, Andrea

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease. PMID:25232244

  6. Minireview: Conversing With Chromatin: The Language of Nuclear Receptors

    PubMed Central

    2014-01-01

    Nuclear receptors are transcription factors that are activated by physiological stimuli to bind DNA in the context of chromatin and regulate complex biological pathways. Major advances in nuclear receptor biology have been aided by genome scale examinations of receptor interactions with chromatin. In this review, we summarize the roles of the chromatin landscape in regulating nuclear receptor function. Chromatin acts as a central integrator in the nuclear receptor-signaling axis, operating in distinct temporal modalities. Chromatin effects nuclear receptor action by specifying its genomic localization and interactions with regulatory elements. On receptor binding, changes in chromatin operate as an effector of receptor signaling to modulate transcriptional events. Chromatin is therefore an integral component of the pathways that guide nuclear receptor action in cell-type-specific and cell state-dependent manners. PMID:24196351

  7. Minireview: Conversing with chromatin: the language of nuclear receptors.

    PubMed

    Biddie, Simon C; John, Sam

    2014-01-01

    Nuclear receptors are transcription factors that are activated by physiological stimuli to bind DNA in the context of chromatin and regulate complex biological pathways. Major advances in nuclear receptor biology have been aided by genome scale examinations of receptor interactions with chromatin. In this review, we summarize the roles of the chromatin landscape in regulating nuclear receptor function. Chromatin acts as a central integrator in the nuclear receptor-signaling axis, operating in distinct temporal modalities. Chromatin effects nuclear receptor action by specifying its genomic localization and interactions with regulatory elements. On receptor binding, changes in chromatin operate as an effector of receptor signaling to modulate transcriptional events. Chromatin is therefore an integral component of the pathways that guide nuclear receptor action in cell-type-specific and cell state-dependent manners. PMID:24196351

  8. Regulation of acidification and apoptosis by SHP-1 and Bcl-2.

    PubMed

    Thangaraju, M; Sharma, K; Leber, B; Andrews, D W; Shen, S H; Srikant, C B

    1999-10-01

    Recruitment of the SH2 domain containing cytoplasmic protein-tyrosine phosphatase SHP-1 to the membrane by somatostatin (SST) is an early event in its antiproliferative signaling that induces intracellular acidification-dependent apoptosis in breast cancer cells. Fas ligation also induces acidification-dependent apoptosis in a manner requiring the presence of SHP-1 at the membrane. Moreover, we have recently reported that SHP-1 is required not only for acidification, but also for apoptotic events that follow acidification (Thangaraju, M., Sharma, K., Liu, D., Shen, S. H., and Srikant, C. B. (1999) Cancer Res. 59, 1649-1654). Here we show that ectopically expressed SHP-1 was predominantly membrane-associated and amplified the cytotoxic signaling initiated upon SST receptor activation and Fas ligation. The catalytically inactive mutant of SHP-1 (SHP-1C455S) abolished the ability of the SST agonists to signal apoptosis by preventing the recruitment of wild type SHP-1 to the membrane. Overexpression of the anti-apoptotic protein Bcl-2 in MCF-7 cells inhibited SST-induced apoptosis upstream of acidification by inhibiting p53-dependent induction of Bax as well as by raising the resting pH(i) and attenuating SST-induced decrease in pH(i). By contrast, Bcl-2 failed to prevent apoptosis triggered by direct acidification. These data demonstrate that (i) membrane-associated SHP-1 is required for receptor-mediated cytotoxic signaling that causes intracellular acidification and apoptosis, and (ii) Bcl-2 acts distal to SHP-1 and p53 to prevent SST-induced acidification but cannot inhibit the apoptotic events that ensue intracellular acidification.

  9. CD5-mediated inhibition of TCR signaling proceeds normally in the absence of SHP-1

    PubMed Central

    DONG, BAOXIA; SOMANI, ALLY-KHAN; LOVE, PAUL E.; ZHENG, XUAN; CHEN, XIEQUN; ZHANG, JINYI

    2016-01-01

    The CD5 transmembrane glycoprotein functions as a co-receptor in the signaling pathway linking T-cell antigen receptor (TCR) engagement to activation and differentiation. Although CD5 effects on TCR signaling have been shown to be primarily inhibitory, the underlying mechanisms remain unclear. In view of recent data revealing the ability of CD5 to associate with the SHP-1 tyrosine phosphatase, a protein that also downregulates TCR signaling, we examined the role of SHP-1 in modulating CD5 function using thymocytes from SHP-1-deficient viable motheaten (mev) mice. The results revealed the association of SHP-1 with CD5 to be markedly increased following TCR stimulation and indicated that this interaction was enhanced by and was dependent on CD5 tyrosine phosphorylation. However, there was no difference of the tyrosine phosphorylation status of CD5 between resting and TCR-stimulated cells in SHP-1-deficient compared to wild-type thymocytes. Lack of SHP-1 activity did not affect the levels of CD5 surface expression, CD5 co-immunoprecipitable tyrosine phosphatase activity and intracellular calcium increase following co-crosslinking of the TCR and CD5. Similarly, an analysis of T-cell thymocyte populations in mev mice expressing an H-Y transgene as well as a construct mediating T-cell restricted CD5 overexpression, revealed that the reduction in the positive selection conferred by CD5 overexpression was unaffected by SHP-1 deficiency. CD5 is not a SHP-1 substrate and SHP-1 is not required for and possibly not involved in the CD5-mediated modulation of TCR signaling. PMID:27221212

  10. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  11. The tyrosine phosphatase SHP-2 controls urokinase-dependent signaling and functions in human vascular smooth muscle cells

    SciTech Connect

    Kiyan, Julia Haller, Hermann; Dumler, Inna

    2009-04-01

    The urokinase (uPA)/urokinase receptor (uPAR) multifunctional system is an important mediator of functional behaviour of human vascular smooth muscle cells (VSMC). uPAR associates with platelet-derived growth factor receptor {beta} (PDGFR-{beta}), which serves as a transmembrane adaptor for uPAR in VSMC, to transduce intracellular signaling and initiate functional changes. The precise and rapid propagation of these signaling cascades demands both strict and flexible regulatory mechanisms that remain unexplored. We provide evidence that the tyrosine phosphatase SHP-2 mediates these processes. uPA regulated SHP-2 phosphorylation, catalytic activity, and its co-localization and association with the PDGFR-{beta}. Active PDGFR-{beta} was required for the uPA-induced SHP-2 phosphorylation. uPAR-directed STAT1 pathway was disturbed in cells expressing SHP-2 inactive mutant. Both, cell proliferation and migration were impaired in VSMC with downregulated SHP-2. Elucidating the underlying mechanisms, we found that uPA induced SHP-2 recruitment to lipid rafts. Disruption of rafts abolished uPA-related control of SHP-2 phosphorylation, its association with PDGFR-{beta} and finally the VSMC functional responses. Our results demonstrate that SHP-2 plays an important role in uPA-directed signaling and functional control of human VSMC and suggest that this phosphatase might contribute to the pathogenesis of the uPA-related vascular remodeling.

  12. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  13. SHP2 phosphatase promotes mast cell chemotaxis toward stem cell factor via enhancing activation of the Lyn/Vav/Rac signaling axis.

    PubMed

    Sharma, Namit; Everingham, Stephanie; Ramdas, Baskar; Kapur, Reuben; Craig, Andrew W B

    2014-05-15

    SHP2 protein-tyrosine phosphatase (encoded by Ptpn11) positively regulates KIT (CD117) signaling in mast cells and is required for mast cell survival and homeostasis in mice. In this study, we uncover a role of SHP2 in promoting chemotaxis of mast cells toward stem cell factor (SCF), the ligand for KIT receptor. Using an inducible SHP2 knockout (KO) bone marrow-derived mast cell (BMMC) model, we observed defects in SCF-induced cell spreading, polarization, and chemotaxis. To address the mechanisms involved, we tested whether SHP2 promotes activation of Lyn kinase that was previously shown to promote mast cell chemotaxis. In SHP2 KO BMMCs, SCF-induced phosphorylation of the inhibitory C-terminal residue (pY507) was elevated compared with control cells, and phosphorylation of activation loop (pY396) was diminished. Because Lyn also was detected by substrate trapping assays, these results are consistent with SHP2 activating Lyn directly by dephosphorylation of pY507. Further analyses revealed a SHP2- and Lyn-dependent pathway leading to phosphorylation of Vav1, Rac activation, and F-actin polymerization in SCF-treated BMMCs. Treatment of BMMCs with a SHP2 inhibitor also led to impaired chemotaxis, consistent with SHP2 promoting SCF-induced chemotaxis of mast cells via a phosphatase-dependent mechanism. Thus, SHP2 inhibitors may be useful to limit SCF/KIT-induced mast cell recruitment to inflamed tissues or the tumor microenvironment.

  14. Nuclear Receptors in Bone Physiology and Diseases

    PubMed Central

    Youn, Min-Young; Inoue, Kazuki; Takada, Ichiro; Kouzmenko, Alexander; Kato, Shigeaki

    2013-01-01

    During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders. PMID:23589826

  15. Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization.

    PubMed

    Zhao, Lifang; Xia, Jingyan; Li, Tiantian; Zhou, Hui; Ouyang, Wei; Hong, Zhuping; Ke, Yuehai; Qian, Jing; Xu, Feng

    2016-08-15

    Macrophages can polarize and differentiate to regulate initiation, development, and cessation of inflammation during pulmonary infection with nontypeable Haemophilus influenzae (NTHi). However, the underlying molecular mechanisms driving macrophage phenotypic differentiation are largely unclear. Our study investigated the role of Shp2, a Src homology 2 domain-containing phosphatase, in the regulation of pulmonary inflammation and bacterial clearance. Shp2 levels were increased upon NTHi stimulation. Selective inhibition of Shp2 in mice led to an attenuated inflammatory response by skewing macrophages toward alternatively activated macrophage (M2) polarization. Upon pulmonary NTHi infection, Shp2(-/-) mice, in which the gene encoding Shp2 in monocytes/macrophages was deleted, showed an impaired inflammatory response and decreased antibacterial ability, compared with wild-type controls. In vitro data demonstrated that Shp2 regulated activated macrophage (M1) gene expression via activation of p65-nuclear factor-κB signaling, independent of p38 and extracellular regulated kinase-mitogen-activated proteins kinase signaling pathways. Taken together, our study indicates that Shp2 is required to orchestrate macrophage function and regulate host innate immunity against pulmonary bacterial infection.

  16. Families of Nuclear Receptors in Vertebrate Models: Characteristic and Comparative Toxicological Perspective

    PubMed Central

    Zhao, Yanbin; Zhang, Kun; Giesy, John P.; Hu, Jianying

    2015-01-01

    Various synthetic chemicals are ligands for nuclear receptors (NRs) and can cause adverse effects in vertebrates mediated by NRs. While several model vertebrates, such as mouse, chicken, western clawed frog and zebrafish, are widely used in toxicity testing, few NRs have been well described for most of these classes. In this report, NRs in genomes of 12 vertebrates are characterized via bioinformatics approaches. Although numbers of NRs varied among species, with 40–42 genes in birds to 66–74 genes in teleost fishes, all NRs had clear homologs in human and could be categorized into seven subfamilies defined as NR0B-NR6A. Phylogenetic analysis revealed conservative evolutionary relationships for most NRs, which were consistent with traditional morphology-based systematics, except for some exceptions in Dolphin (Tursiops truncatus). Evolution of PXR and CAR exhibited unexpected multiple patterns and the existence of CAR possibly being traced back to ancient lobe-finned fishes and tetrapods (Sarcopterygii). Compared to the more conservative DBD of NRs, sequences of LBD were less conserved: Sequences of THRs, RARs and RXRs were ≥90% similar to those of the human, ERs, AR, GR, ERRs and PPARs were more variable with similarities of 60%–100% and PXR, CAR, DAX1 and SHP were least conserved among species. PMID:25711679

  17. Families of Nuclear Receptors in Vertebrate Models: Characteristic and Comparative Toxicological Perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Yanbin; Zhang, Kun; Giesy, John P.; Hu, Jianying

    2015-02-01

    Various synthetic chemicals are ligands for nuclear receptors (NRs) and can cause adverse effects in vertebrates mediated by NRs. While several model vertebrates, such as mouse, chicken, western clawed frog and zebrafish, are widely used in toxicity testing, few NRs have been well described for most of these classes. In this report, NRs in genomes of 12 vertebrates are characterized via bioinformatics approaches. Although numbers of NRs varied among species, with 40-42 genes in birds to 66-74 genes in teleost fishes, all NRs had clear homologs in human and could be categorized into seven subfamilies defined as NR0B-NR6A. Phylogenetic analysis revealed conservative evolutionary relationships for most NRs, which were consistent with traditional morphology-based systematics, except for some exceptions in Dolphin (Tursiops truncatus). Evolution of PXR and CAR exhibited unexpected multiple patterns and the existence of CAR possibly being traced back to ancient lobe-finned fishes and tetrapods (Sarcopterygii). Compared to the more conservative DBD of NRs, sequences of LBD were less conserved: Sequences of THRs, RARs and RXRs were >=90% similar to those of the human, ERs, AR, GR, ERRs and PPARs were more variable with similarities of 60%-100% and PXR, CAR, DAX1 and SHP were least conserved among species.

  18. Prediction of nuclear hormone receptor response elements.

    PubMed

    Sandelin, Albin; Wasserman, Wyeth W

    2005-03-01

    The nuclear receptor (NR) class of transcription factors controls critical regulatory events in key developmental processes, homeostasis maintenance, and medically important diseases and conditions. Identification of the members of a regulon controlled by a NR could provide an accelerated understanding of development and disease. New bioinformatics methods for the analysis of regulatory sequences are required to address the complex properties associated with known regulatory elements targeted by the receptors because the standard methods for binding site prediction fail to reflect the diverse target site configurations. We have constructed a flexible Hidden Markov Model framework capable of predicting NHR binding sites. The model allows for variable spacing and orientation of half-sites. In a genome-scale analysis enabled by the model, we show that NRs in Fugu rubripes have a significant cross-regulatory potential. The model is implemented in a web interface, freely available for academic researchers, available at http://mordor.cgb.ki.se/NHR-scan.

  19. Intestinal nuclear receptors in HDL cholesterol metabolism

    PubMed Central

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  20. Nuclear hormone receptors put immunity on sterols

    PubMed Central

    Santori, Fabio R.

    2015-01-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and non-classic (all others) NHRs; 17 non-classic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and non-sterol intermediates and derivatives, is a source of ligands for many classic and non-classic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review we summarize the roles of non-classic NHRs and their potential ligands in the immune system. PMID:26222181

  1. Nuclear hormone receptors put immunity on sterols.

    PubMed

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.

  2. Bis-methionyl coordination in the crystal structure of the heme-binding domain of the streptococcal cell surface protein Shp

    PubMed Central

    Aranda, Roman; Worley, Chad E.; Liu, Mengyao; Bitto, Eduard; Cates, M. Susan; Olson, John S.; Lei, Benfang; Phillips, George N.

    2008-01-01

    Surface proteins Shr, Shp, and the ATP-binding cassette (ABC) transporter HtsABC are believed to make up the machinery for heme uptake in Streptococcus pyogenes. Shp transfers its heme to HtsA, the lipoprotein component of HtsABC, providing the only experimentally demonstrated example of direct heme transfer from a surface protein to an ABC transporter in Gram-positive bacteria. To understand the structural basis of heme transfer in this system, the heme-binding domain of Shp (Shp180) was crystallized, and its structure determined to a resolution of 2.1 Å. Shp180 exhibits an immunoglobulin-like β-sandwich fold that has been recently found in other pathogenic bacterial cell surface heme-binding proteins, suggesting that the mechanisms of heme acquisition are conserved. Shp shows minimal amino acid sequence identity to these heme-binding proteins and the structure of Shp180 reveals a unique heme-iron coordination with the axial ligands being two methionines from the same Shp molecule. A negative electrostatic surface of protein structure surrounding the heme pocket may serve as a docking interface for heme transfer from the more basic outer cell wall heme receptor protein Shr. The crystal structure of Shp180 reveals two exogenous, weakly bound hemins, which form a large interface between the two Shp180 molecules in the asymmetric unit. These “extra” hemins form a stacked pair with a structure similar to that observed previously for free hemin dimers in aqueous solution. The propionates of the protein-bound heme coordinate to the iron atoms of the exogenous hemin dimer, contributing to the stability of the protein interface. Gel filtration and analytical ultracentrifugation studies indicate that both full-length Shp and Shp180 are monomeric in dilute aqueous solution. PMID:17920629

  3. Ubiquitylation of Nuclear Receptors: New Linkages and Therapeutic Implications

    PubMed Central

    Helzer, Kyle T.; Hooper, Christopher; Miyamoto, Shigeki; Alarid, Elaine T.

    2015-01-01

    The nuclear receptor superfamily is a group of transcriptional regulators that control multiple aspects of both physiology and pathology, and are broadly recognized as viable therapeutic targets. While receptor-modulating drugs have been successful in many cases, the discovery of new drug targets is still an active area of research, because resistance to nuclear receptor-targeting therapies remains a significant clinical challenge. Many successful targeted therapies have harnessed the control of receptor activity by targeting events within the nuclear receptor signaling pathway. In this review, we explore the role of nuclear receptor ubiquitylation and discuss how the expanding roles of ubiquitin might be leveraged to identify additional entry points to control receptor function for future therapeutic development. PMID:25943391

  4. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    PubMed

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  5. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unu...

  6. Nuclear receptors as therapeutic targets in cholestatic liver diseases

    PubMed Central

    Zollner, Gernot; Trauner, Michael

    2009-01-01

    Cholestasis results in intrahepatic accumulation of cytotoxic bile acids, which cause liver damage ultimately leading to biliary fibrosis and cirrhosis. Cholestatic liver injury is counteracted by a variety of adaptive hepatoprotective mechanisms including alterations in bile acid transport, synthesis and detoxification. The underlying molecular mechanisms are mediated mainly at a transcriptional level via a complex network involving nuclear receptors including the farnesoid X receptor, pregnane X receptor, vitamin D receptor and constitutive androstane receptor, which target overlapping, although not identical, sets of genes. Because the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis, therapeutic targeting of these receptors via specific and potent agonists may further enhance the hepatic defence against toxic bile acids. Activation of these receptors results in repression of bile acid synthesis, induction of phases I and II bile acid hydroxylation and conjugation and stimulation of alternative bile acid export while limiting hepatocellular bile acid import. Furthermore, the use of nuclear receptor ligands may not only influence bile acid transport and metabolism but may also directly target hepatic fibrogenesis and inflammation. Many drugs already used to treat cholestasis and its complications such as pruritus (e.g. ursodeoxycholic acid, rifampicin, fibrates) may act via activation of nuclear receptors. More specific and potent nuclear receptor ligands are currently being developed. This article will review the current knowledge on nuclear receptors and their potential role in the treatment of cholestatic liver diseases. PMID:19133988

  7. Cysteine Sulfinic Acid Decarboxylase Regulation: A Role for FXR and SHP in Murine Hepatic Taurine Metabolism

    PubMed Central

    Kerr, Thomas A.; Matsumoto, Yuri; Matsumoto, Hitoshi; Xie, Yan; Hirschberger, Lawrence L.; Stipanuk, Martha H.; Anakk, Sayeepriyadarshini; Moore, David D.; Watanabe, Mitsuhiro; Kennedy, Susan

    2014-01-01

    Background Bile acid synthesis is regulated by nuclear receptors including farnesoid X receptor (FXR) and small heterodimer partner (SHP), and by fibroblast growth factor15/19 (FGF15/19). Because bile acid synthesis involves amino acid conjugation, we hypothesized that hepatic cysteine sulfinic acid decarboxylase (CSAD) (a key enzyme in taurine synthesis) is regulated by bile acids. Aims To investigate CSAD regulation by bile acids and CSAD regulatory mechanisms. Methods Mice were fed a control diet or a diet supplemented with either 0.5% cholate or 2% cholestyramine. To gain mechanistic insight into CSAD regulation, we utilized GW4064 (FXR agonist), FGF19, or T-0901317 (LXR agonist) and Shp−/− mice. Tissue mRNA expression was determined by qRT-PCR. Amino acids were measured by HPLC. Results Mice supplemented with dietary cholate exhibited reduced hepatic CSAD mRNA expression while those receiving cholestyramine exhibited increased hepatic CSAD mRNA expression. Activation of FXR suppressed CSAD mRNA expression whereas hepatic CSAD mRNA expression was increased in Shp−/− mice. Hepatic hypotaurine concentration (the product of CSAD) was higher in Shp−/− mice with a corresponding increase in serum (but not hepatic) taurine-conjugated bile acids. FGF19 administration suppressed hepatic CYP7A1 mRNA but did not change CSAD mRNA expression. LXR activation induced CYP7A1 mRNA yet failed to induce CSAD mRNA expression. Conclusion CSAD mRNA expression is physiologically regulated by bile acids in a feedback fashion via mechanisms involving SHP and FXR but not FGF15/19 or LXR. These novel findings implicate bile acids as regulators of CSAD mRNA via mechanisms shared in part with CYP7A1. PMID:24033844

  8. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration.

    PubMed

    Voena, Claudia; Conte, Chiara; Ambrogio, Chiara; Boeri Erba, Elisabetta; Boccalatte, Francesco; Mohammed, Shabaz; Jensen, Ole N; Palestro, Giorgio; Inghirami, Giorgio; Chiarle, Roberto

    2007-05-01

    Anaplastic large cell lymphomas (ALCL) are mainly characterized by the reciprocal translocation t(2;5)(p23;q35) that involves the anaplastic lymphoma kinase (ALK) gene and generates the fusion protein NPM-ALK with intrinsic tyrosine kinase activity. NPM-ALK triggers several signaling cascades, leading to increased cell growth, resistance to apoptosis, and changes in morphology and migration of transformed cells. To search for new NPM-ALK interacting molecules, we developed a mass spectrometry-based proteomic approach in HEK293 cells expressing an inducible NPM-ALK and identified the tyrosine phosphatase Shp2 as a candidate substrate. We found that NPM-ALK was able to bind Shp2 in coprecipitation experiments and to induce its phosphorylation in the tyrosine residues Y542 and Y580 both in HEK293 cells and ALCL cell lines. In primary lymphomas, antibodies against the phosphorylated tyrosine Y542 of Shp2 mainly stained ALK-positive cells. In ALCL cell lines, Shp2-constitutive phosphorylation was dependent on NPM-ALK, as it significantly decreased after short hairpin RNA (shRNA)-mediated NPM-ALK knock down. In addition, only the constitutively active NPM-ALK, but not the kinase dead NPM-ALK(K210R), formed a complex with Shp2, Gab2, and growth factor receptor binding protein 2 (Grb2), where Grb2 bound to the phosphorylated Shp2 through its SH2 domain. Shp2 knock down by specific shRNA decreased the phosphorylation of extracellular signal-regulated kinase 1/2 and of the tyrosine residue Y416 in the activation loop of Src, resulting in impaired ALCL cell proliferation and growth disadvantage. Finally, migration of ALCL cells was reduced by Shp2 shRNA. These findings show a direct involvement of Shp2 in NPM-ALK lymphomagenesis, highlighting its critical role in lymphoma cell proliferation and migration.

  9. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  10. Studying Nuclear Receptor Complexes in the Cellular Environment.

    PubMed

    Schaufele, Fred

    2016-01-01

    The ligand-regulated structure and biochemistry of nuclear receptor complexes are commonly determined by in vitro studies of isolated receptors, cofactors, and their fragments. However, in the living cell, the complexes that form are governed not just by the relative affinities of isolated cofactors for the receptor but also by the cell-specific sequestration or concentration of subsets of competing or cooperating cofactors, receptors, and other effectors into distinct subcellular domains and/or their temporary diversion into other cellular activities. Most methods developed to understand nuclear receptor function in the cellular environment involve the direct tagging of the nuclear receptor or its cofactors with fluorescent proteins (FPs) and the tracking of those FP-tagged factors by fluorescence microscopy. One of those approaches, Förster resonance energy transfer (FRET) microscopy, quantifies the transfer of energy from a higher energy "donor" FP to a lower energy "acceptor" FP attached to a single protein or to interacting proteins. The amount of FRET is influenced by the ligand-induced changes in the proximities and orientations of the FPs within the tagged nuclear receptor complexes, which is an indicator of the structure of the complexes, and by the kinetics of the interaction between FP-tagged factors. Here, we provide a guide for parsing information about the structure and biochemistry of nuclear receptor complexes from FRET measurements in living cells.

  11. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    PubMed Central

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  12. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    PubMed

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  13. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    PubMed

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  14. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury

    PubMed Central

    Stedman, Catherine A. M.; Liddle, Christopher; Coulter, Sally A.; Sonoda, Junichiro; Alvarez, Jacqueline G. A.; Moore, David D.; Evans, Ronald M.; Downes, Michael

    2005-01-01

    Cholestasis is associated with accumulation of bile acids and lipids, and liver injury. The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors that coordinate protective hepatic responses to potentially toxic stimuli, including bile acids. We investigated the role of these receptors in the regulation of bile acid and lipid metabolism in a bile duct ligation (BDL) model of cholestasis applied to receptor knockout mice. Hepatic damage from bile acid accumulation was increased in both CAR knockout (CARKO) and PXR knockout mice, but bile acid concentrations were lower in CARKO mice. High-density lipoprotein (HDL) cholesterol was elevated in CARKO mice, and serum total cholesterol increased less in CARKO or PXR knockout mice than WT mice after BDL. Gene expression analysis of the BDL knockout animals demonstrated that, in response to cholestasis, PXR and CAR both repressed and induced the specific hepatic membrane transporters Oatp-c (organic anion transporting polypeptide C) and Oatp2 (Na+-dependent organic anion transporter 2), respectively. Induction of the xenobiotic transporter multidrug resistance protein 1 in cholestasis was independent of either PXR or CAR, in contrast to the known pattern of induction of multidrug resistance protein 1 by xenobiotics. These results demonstrate that CAR and PXR influence cholesterol metabolism and bile acid synthesis, as well as multiple detoxification pathways, and suggest their potential role as therapeutic targets for the treatment of cholestasis and lipid disorders. PMID:15684063

  15. Advanced glycation end product Nε-carboxymethyllysine induces endothelial cell injury: the involvement of SHP-1-regulated VEGFR-2 dephosphorylation.

    PubMed

    Liu, Shing Hwa; Sheu, Wayne Huey Herng; Lee, Maw Rong; Lee, Wen Jane; Yi, Yu Chiao; Yang, Tzung Jie; Jen, Jen Fon; Pan, Hung Chuan; Shen, Chin Chang; Chen, Wen Bao; Tien, Hsing Ru; Sheu, Meei Ling

    2013-06-01

    N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications.

  16. The Orphan Nuclear Receptors at Their 25th Year Reunion

    PubMed Central

    Mullican, Shannon E.; DiSpirito, Joanna R.; Lazar, Mitchell A.

    2013-01-01

    The Nuclear Receptor superfamily includes many receptors identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology and the molecular pathology of disease. Here we provide a compendium of these so-called Orphan Receptors, and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise. PMID:24096517

  17. Hairless is a nuclear receptor corepressor essential for skin function

    PubMed Central

    Thompson, Catherine C.

    2009-01-01

    The activity of nuclear receptors is modulated by numerous coregulatory factors. Corepressors can either mediate the ability of nuclear receptors to repress transcription, or can inhibit transactivation by nuclear receptors. As we learn more about the mechanisms of transcriptional repression, the importance of repression by nuclear receptors in development and disease has become clear. The protein encoded by the mammalian Hairless (Hr) gene was shown to be a corepressor by virtue of its functional similarity to the well-established corepressors N-CoR and SMRT. Mutation of the Hr gene results in congenital hair loss in both mice and men. Investigation of Hairless function both in vitro and in mouse models in vivo has revealed a critical role in maintaining skin and hair by regulating the differentiation of epithelial stem cells, as well as a putative role in regulating gene expression via chromatin remodeling. PMID:20087431

  18. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  19. Nuclear receptors and cholesterol metabolism in the intestine.

    PubMed

    Moschetta, Antonio

    2015-02-01

    Nuclear receptors are involved in many important function and mediate signaling by factors including hormones, vitamins and a number of endogenous ligands and xenobiotics, several of which are involved in lipid metabolism. This review focuses on the liver X receptor (LXR), which is an important regulator of whole-body cholesterol, fatty acid, and glucose homeostasis that binds to LXR response elements as a heterodimer with retinoid X receptors, and the farnesoid X receptor (FXR), which is a bile acid receptor involved in feedback inhibition of bile acid synthesis, and thus cholesterol catabolism. These nuclear receptors regulate gene programs that control intestinal and hepatic lipid homeostasis through their effects on cholesterol transport and catabolism.

  20. Functions of Shp2 in cancer

    PubMed Central

    Zhang, Jie; Zhang, Fei; Niu, Ruifang

    2015-01-01

    Diagnostics and therapies have shown evident advances. Tumour surgery, chemotherapy and radiotherapy are the main techniques in treat cancers. Targeted therapy and drug resistance are the main focus in cancer research, but many molecular intracellular mechanisms remain unknown. Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) is associated with breast cancer, leukaemia, lung cancer, liver cancer, gastric cancer, laryngeal cancer, oral cancer and other cancer types. Signalling pathways involving Shp2 have also been discovered. Shp2 is related to many diseases. Mutations in the ptpn11 gene cause Noonan syndrome, LEOPARD syndrome and childhood leukaemia. Shp2 is also involved in several cancer-related processes, including cancer cell invasion and metastasis, apoptosis, DNA damage, cell proliferation, cell cycle and drug resistance. Based on the structure and function of Shp2, scientists have investigated specific mechanisms involved in cancer. Shp2 may be a potential therapeutic target because this phosphatase is implicated in many aspects. Furthermore, Shp2 inhibitors have been used in experiments to develop treatment strategies. However, conflicting results related to Shp2 functions have been presented in the literature, and such results should be resolved in future studies. PMID:26088100

  1. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity.

    PubMed

    Matalon, Omri; Fried, Sophia; Ben-Shmuel, Aviad; Pauker, Maor H; Joseph, Noah; Keizer, Danielle; Piterburg, Marina; Barda-Saad, Mira

    2016-01-01

    Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells.

  2. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  3. ROR nuclear receptors: structures, related diseases, and drug discovery

    PubMed Central

    Zhang, Yan; Luo, Xiao-yu; Wu, Dong-hai; Xu, Yong

    2015-01-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that regulate metabolism, development and immunity. The NR superfamily is one of the major classes of drug targets for human diseases. Retinoic acid receptor-related orphan receptor (ROR) α, β and γ belong to the NR superfamily, and these receptors are still considered as 'orphan' receptors because the identification of their endogenous ligands has been controversial. Recent studies have demonstrated that these receptors are regulated by synthetic ligands, thus emerge as important drug targets for the treatment of multiple sclerosis, rheumatoid arthritis, psoriasis, etc. Studying the structural basis and ligand development of RORs will pave the way for a better understanding of the roles of these receptors in human diseases. Here, we review the structural basis, disease relevance, strategies for ligand identification, and current status of development of therapeutic ligands for RORs. PMID:25500868

  4. Dissociation of SHP-1 from spinophilin during platelet activation exposes an inhibitory binding site for protein phosphatase-1 (PP1).

    PubMed

    Ma, Peisong; Foote, Darci C; Sinnamon, Andrew J; Brass, Lawrence F

    2015-01-01

    We have recently shown that a critical regulatory node in the platelet signaling network lies immediately downstream of platelet receptors for thrombin and TxA2. This node is comprised of a scaffold protein (spinophilin, SPL), a protein tyrosine phosphatase (SHP-1), and either of the two members of the Regulators of G protein Signaling family predominantly expressed in platelets (RGS10 or RGS18). The SPL/RGS/SHP-1 complex is present in resting platelets, dissociating when thrombin or TxA2, but not ADP or collagen, activate SHP-1 and release RGS10 and RGS18 to dampen signaling. Here we demonstrate an additional regulatory role for spinophilin, showing that dissociation of SHP-1 from spinophilin is followed by an increase in the binding of spinophilin to PP1, a serine/threonine phosphatase whose binding site maps to a region close to the SHP-1 binding site. The increase in PP1 binding to spinophilin is limited to platelet agonists that cause dissociation of the complex and is selective for the α and γ isoforms of PP1. Studies in cell culture show that SHP-1 and PP1 can compete for binding to spinophilin and that binding inhibits PP1 activity since over-expression of wild type spinophilin, but not spinophilin with a disabled PP1 binding site, causes an increase in the phosphorylation of myosin light chain, a well-characterized PP1 substrate. Collectively, these results indicate that in addition to regulating RGS protein availability in resting platelets, spinophilin can serve as a time-dependent, agonist- and isoform-selective regulator of PP1, inhibiting its activity when decay of the SPL/RGS/SHP-1 complex releases SHP-1 from spinophilin, exposing a binding site for PP1.

  5. Dissociation of SHP-1 from Spinophilin during Platelet Activation Exposes an Inhibitory Binding Site for Protein Phosphatase-1 (PP1)

    PubMed Central

    Ma, Peisong; Foote, Darci C.; Sinnamon, Andrew J.; Brass, Lawrence F.

    2015-01-01

    We have recently shown that a critical regulatory node in the platelet signaling network lies immediately downstream of platelet receptors for thrombin and TxA2. This node is comprised of a scaffold protein (spinophilin, SPL), a protein tyrosine phosphatase (SHP-1), and either of the two members of the Regulators of G protein Signaling family predominantly expressed in platelets (RGS10 or RGS18). The SPL/RGS/SHP-1 complex is present in resting platelets, dissociating when thrombin or TxA2, but not ADP or collagen, activate SHP-1 and release RGS10 and RGS18 to dampen signaling. Here we demonstrate an additional regulatory role for spinophilin, showing that dissociation of SHP-1 from spinophilin is followed by an increase in the binding of spinophilin to PP1, a serine/threonine phosphatase whose binding site maps to a region close to the SHP-1 binding site. The increase in PP1 binding to spinophilin is limited to platelet agonists that cause dissociation of the complex and is selective for the α and γ isoforms of PP1. Studies in cell culture show that SHP-1 and PP1 can compete for binding to spinophilin and that binding inhibits PP1 activity since over-expression of wild type spinophilin, but not spinophilin with a disabled PP1 binding site, causes an increase in the phosphorylation of myosin light chain, a well-characterized PP1 substrate. Collectively, these results indicate that in addition to regulating RGS protein availability in resting platelets, spinophilin can serve as a time-dependent, agonist- and isoform-selective regulator of PP1, inhibiting its activity when decay of the SPL/RGS/SHP-1 complex releases SHP-1 from spinophilin, exposing a binding site for PP1. PMID:25785436

  6. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).

    PubMed

    Wheadon, Helen; Edmead, Christine; Welham, Melanie J

    2003-11-15

    The cytosolic SHP-2 (Src homology protein tyrosine phosphatase 2) has previously been implicated in IL-3 (interleukin-3) signalling [Bone, Dechert, Jirik, Schrader and Welham (1997) J. Biol. Chem. 272, 14470 -14476; Craddock and Welham (1997) J. Biol. Chem. 272, 29281-29289; Welham, Dechert, Leslie, Jirik and Schrader (1994) J. Biol. Chem. 269, 23764-23768; Qu, Nguyen, Chen and Feng (2001) Blood 97, 911-914]. To investigate the role of SHP-2 in IL-3 signalling in greater detail, we have inducibly expressed WT (wild-type) or two potentially substrate-trapping mutant forms of SHP-2, generated by mutation of Asp-425 to Ala (D425A) or Cyst-459 to Ser (C459S), in IL-3-dependent BaF/3 cells. Effects on IL-3-induced tyrosine phosphorylation, signal transduction and functional responses were examined. Expression of C459S SHP-2 protected the beta-chain of the murine IL-3R (IL-3 receptor), the adaptor protein Gab2 (Grb2-associated binder 2), and a cytosolic protein of 48 kDa from tyrosine dephosphorylation, consistent with them being bona fide substrates of SHP-2 in IL-3 signalling. The tyrosine phosphorylation of a 135 kDa transmembrane protein was also protected upon expression of C459S SHP-2. We have identified the inhibitory immunoreceptor PECAM-1 (platelet endothelial cell adhesion molecule-1)/CD31 (cluster determinant 31) as a component of this 135 kDa substrate and also show that IL-3 can induce tyrosine phosphorylation of PECAM-1. Expression of WT, C459S and D425A forms of SHP-2 had little effect on IL-3-driven proliferation or STAT5 (signal transduction and activators of transcription) phosphorylation or activation of protein kinase B. However, expression of WT SHP-2 increased ERK (extracellular-signal-regulated kinase) activation. Interestingly, expression of C459S SHP-2 decreased ERK activation at later times after IL-3 stimulation, but potentiated IL-3-induced activation of Jun N-terminal kinases. In addition, expression of C459S SHP-2 decreased cell survival in

  7. Pan-cancer analyses of the nuclear receptor superfamily

    PubMed Central

    Long, Mark D.; Campbell, Moray J.

    2016-01-01

    Nuclear receptors (NR) act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate). Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV) we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g. NR3C2/MR and NR5A2/LRH-1)) whereas others were uniquely down-regulated in one tumor (e.g. NR1B3/RARG). The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression. PMID:27200367

  8. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers

    PubMed Central

    Kojetin, Douglas J.; Matta-Camacho, Edna; Hughes, Travis S.; Srinivasan, Sathish; Nwachukwu, Jerome C.; Cavett, Valerie; Nowak, Jason; Chalmers, Michael J.; Marciano, David P.; Kamenecka, Theodore M.; Shulman, Andrew I.; Rance, Mark; Griffin, Patrick R.; Bruning, John B.; Nettles, Kendall W.

    2015-01-01

    A subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA). This SCA network acts as a signalling rheostat to integrate signals between dimer partners, ligands and coregulator-binding sites, thereby affecting signal transmission in RXR heterodimers. These findings define rules guiding how NRs integrate two ligand-dependent signalling pathways into RXR heterodimer-specific responses. PMID:26289479

  9. ERAP140, a conserved tissue-specific nuclear receptor coactivator.

    PubMed

    Shao, Wenlin; Halachmi, Shlomit; Brown, Myles

    2002-05-01

    We report here the identification and characterization of a novel nuclear receptor coactivator, ERAP140. ERAP140 was isolated in a screen for ER alpha-interacting proteins using the ER alpha ligand binding domain as a probe. The ERAP140 protein shares no sequence and has little structural homology with other nuclear receptor cofactors. However, homologues of ERAP140 have been identified in mouse, Drosophila, and Caenorhabditis elegans. The expression of ERAP140 is cell and tissue type specific and is most abundant in the brain, where its expression is restricted to neurons. In addition to interacting with ER alpha, ERAP140 also binds ER beta, TR beta, PPAR gamma, and RAR alpha. ERAP140 interacts with ER alpha via a noncanonical interaction motif. The ER alpha-ERAP140 association can be competed by coactivator NR boxes, indicating ERAP140 binds ER alpha on a surface similar to that of other coactivators. ERAP140 can enhance the transcriptional activities of nuclear receptors with which it interacts. In vivo, ERAP140 is recruited by estrogen-bound ER alpha to the promoter region of endogenous ER alpha target genes. Furthermore, the E(2)-induced recruitment of ERAP140 to the promoter follows a cyclic pattern similar to that of other coactivators. Our results suggest that ERAP140 represents a distinct class of nuclear receptor coactivators that mediates receptor signaling in specific target tissues. PMID:11971969

  10. Elevated copper impairs hepatic nuclear receptor function in Wilson's disease.

    PubMed

    Wooton-Kee, Clavia Ruth; Jain, Ajay K; Wagner, Martin; Grusak, Michael A; Finegold, Milton J; Lutsenko, Svetlana; Moore, David D

    2015-09-01

    Wilson's disease (WD) is an autosomal recessive disorder that results in accumulation of copper in the liver as a consequence of mutations in the gene encoding the copper-transporting P-type ATPase (ATP7B). WD is a chronic liver disorder, and individuals with the disease present with a variety of complications, including steatosis, cholestasis, cirrhosis, and liver failure. Similar to patients with WD, Atp7b⁻/⁻ mice have markedly elevated levels of hepatic copper and liver pathology. Previous studies have demonstrated that replacement of zinc in the DNA-binding domain of the estrogen receptor (ER) with copper disrupts specific binding to DNA response elements. Here, we found decreased binding of the nuclear receptors FXR, RXR, HNF4α, and LRH-1 to promoter response elements and decreased mRNA expression of nuclear receptor target genes in Atp7b⁻/⁻ mice, as well as in adult and pediatric WD patients. Excessive hepatic copper has been described in progressive familial cholestasis (PFIC), and we found that similar to individuals with WD, patients with PFIC2 or PFIC3 who have clinically elevated hepatic copper levels exhibit impaired nuclear receptor activity. Together, these data demonstrate that copper-mediated nuclear receptor dysfunction disrupts liver function in WD and potentially in other disorders associated with increased hepatic copper levels.

  11. Recent progress on nuclear receptor RORγ modulators.

    PubMed

    Cyr, Patrick; Bronner, Sarah M; Crawford, James J

    2016-09-15

    The retinoic acid receptor-related orphan receptor RORγ plays key roles in the development and differentiation of TH17 cells, and thus in IL-17 expression, thymocyte development and regulation of metabolism. With the recent progression into phase 2 clinical trials of both oral and topically administered inverse agonists, and with others close behind, there is significant interest in the discovery of RORγ modulators. This digest covers key developments around RORγ agonists, antagonists and inverse agonists; orthosteric and allosteric binders; and aims to summarize the available information concerning the potential utility of RORγ modulators. PMID:27542308

  12. Female breast carcinomas: nuclear and cytoplasmic proteins versus steroid receptors.

    PubMed

    Bryś, M; Romanowicz-Makowska, H; Nawrocka, A; Krajewska, W M

    2000-01-01

    Nuclear and cytoplasmic proteins of human female breast cancer were analysed by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Oestrogen receptor and progesterone receptor expression was determined by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method. The electropherograms were developed by silver nitrate staining and quantitative analysis was carried out by video densitometer using the software Gel-Pro Analyzer. Nuclear and cytoplasmic proteins of breast carcinomas and normal tissue differed both qualitatively and quantitatively. Nuclear polypeptides of 108, 53 and 48 kD as well as the 36 kD cytoplasmic polypeptide were specific for tumour samples, while the 51 kD nuclear polypeptide was detected only in normal tissue. Quantitative differences in band density were noted in the 32 kD nuclear polypeptide. This polypeptide was expressed in greatest concentration in infiltrating ductal carcinomas which also indicated the greatest oestrogen receptor gene expression. This relationship appeared to be statistically significant (p < 0.005). No correlations were evident between the 32 kD protein expression and the progesterone receptor gene expression in any of the tissue types examined, nor between the 32 kD protein and the patient's age or tumour grade. PMID:10756981

  13. Recent progresses in identifying nuclear receptors and their families.

    PubMed

    Xiao, Xuan; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Nuclear receptors (NRs) are members of a large superfamily of evolutionarily related DNA-binding transcription factors. They regulate diverse functions, such as homeostasis, reproduction, development and metabolism. As nuclear receptors bind small molecules that can easily be modified by drug design, and control functions associated with major diseases (e.g. cancer, osteoporosis and diabetes), they are promising pharmacological targets. According to their different action mechanisms or functions, NR superfamily has been classified into seven families: NR1 (thyroid hormone like), NR2 (HNF4-like), NR3 (estrogen like), NR4 (nerve growth factor IB-like), NR5 (fushi tarazu-F1 like), NR6 (germ cell nuclear factor like), and NR0 (knirps or DAX like). With the avalanche of protein sequences generated in the postgenomic age, Scientists are facing the following challenging problems. Given an uncharacterized protein sequence, how can we identify whether it is a nuclear receptor? If it is, what family even subfamily it belongs to? To address these problems, many cheminformatics tools have been developed for nuclear receptor prediction. The current review is mainly focused on this field, including the functions, computational methods and limitations of these tools. PMID:23647541

  14. Limited proteolysis for assaying ligand binding affinities of nuclear receptors.

    PubMed

    Benkoussa, M; Nominé, B; Mouchon, A; Lefebvre, B; Bernardon, J M; Formstecher, P; Lefebvre, P

    1997-01-01

    The binding of natural or synthetic ligands to nuclear receptors is the triggering event leading to gene transcription activation or repression. Ligand binding to the ligand binding domain of these receptors induces conformational changes that are evidenced by an increased resistance of this domain to proteases. In vitro labeled receptors were incubated with various synthetic or natural agonists or antagonists and submitted to trypsin digestion. Proteolysis products were separated by SDS-PAGE and quantified. The amount of trypsin-resistant fragments was proportional to receptor occupancy by the ligand, and allowed the determination of dissociation constants (kDa). Using the wild-type or mutated human retinoic acid receptor alpha as a model, kDa values determined by classical competition binding assays using tritiated ligands are in agreement with those measured by the proteolytic assay. This method was successfully extended to human retinoic X receptor alpha, glucocorticoid receptor, and progesterone receptor, thus providing a basis for a new, faster assay to determine simultaneously the affinity and conformation of receptors when bound to a given ligand.

  15. Regulation of the cytosolic sulfotransferases by nuclear receptors

    PubMed Central

    Runge-Morris, Melissa; Kocarek, Thomas A.; Falany, Charles N.

    2013-01-01

    The cytosolic sulfotransferases (SULTs) are a multigene family of enzymes that catalyze the transfer of a sulfonate group from the physiologic sulfate donor, 3′-phosphoadenosine-5′-phosphosulfate, to a nucleophilic substrate to generate a polar product that is more amenable to elimination from the body. As catalysts of both xenobiotic and endogenous metabolism, the SULTs are major points of contact between the external and physiological environments, and modulation of SULT-catalyzed metabolism can not only affect xenobiotic disposition, but it can also alter endogenous metabolic processes. Therefore, it is not surprising that SULT expression is regulated by numerous members of the nuclear receptor (NR) superfamily that function as sensors of xenobiotics as well as endogenous molecules, such as fatty acids, bile acids, and oxysterols. These NRs include the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, and estrogen-related receptors. This review summarizes current information about NR regulation of SULT expression. Because species differences in SULT subfamily composition and tissue-, sex-, development-, and inducer-dependent regulation are prominent, these differences will be emphasized throughout the review. In addition, because of the central role of the SULTs in cellular physiology, the effect of NR-mediated SULT regulation on physiological and pathophysiological processes will be discussed. Gaps in current knowledge that require further investigation are also highlighted. PMID:23330539

  16. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2016-03-01

    Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'.

  17. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2016-03-01

    Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'. PMID:26159912

  18. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  19. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-06-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  20. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-06-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors.

  1. Comparison between different forms of estrogen cytosol receptor and the nuclear receptor extracted by micrococcal nuclease.

    PubMed

    Rochefort, H; André, J

    1978-11-01

    As an approach to the mechanism of the nuclear translocation of estrogen receptor, the estradiol nuclear receptor (RN) of lamb endometrium was extracted with micrococcal nuclease at 2--4 degrees and compared to the "native" 8S and to the Ca2+-transformed cytosol receptors. After extensive digestion of chromatin, giving up to 10% perchloric acid-soluble DNA and a majority of nucleosome monomers, up to 80% of the RN was extracted and under low ionic strength. This RN was found to be completely different from the partially proteolyzed Ca2+-transformed cytosol receptor. It migrated with a sedimentation constant of 4 and 6 S. The Stokes radius of the predominant form as determined by ACA 34 chromatography was 5.3 nm. The calculated apparent molecular weights were 130,000 and 90,000, respectively. The RN was able to bind DNA and was eluted from a diethylaminoethyl cellulose column at 0.23 and 0.30 M KCl. We conclude that the mechanism proposed by Puca et al., according to which the Ca2+-transformed cytosol receptor is split by a Ca2+ receptor-transforming factor into a smaller form able to cross the nuclear membrane, is very unlikely. PMID:698961

  2. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1

    PubMed Central

    Ishikawa, Eri; Kosako, Hidetaka; Yasuda, Tomoharu; Ohmuraya, Masaki; Araki, Kimi; Kurosaki, Tomohiro; Saito, Takashi; Yamasaki, Sho

    2016-01-01

    Thymic selection shapes an appropriate T cell antigen receptor (TCR) repertoire during T cell development. Here, we show that a serine/threonine kinase, protein kinase D (PKD), is crucial for thymocyte positive selection. In T cell-specific PKD-deficient (PKD2/PKD3 double-deficient) mice, the generation of CD4 single positive thymocytes is abrogated. This defect is likely caused by attenuated TCR signalling during positive selection and incomplete CD4 lineage specification in PKD-deficient thymocytes; however, TCR-proximal tyrosine phosphorylation is not affected. PKD is activated in CD4+CD8+ double positive (DP) thymocytes on stimulation with positively selecting peptides. By phosphoproteomic analysis, we identify SH2-containing protein tyrosine phosphatase-1 (SHP-1) as a direct substrate of PKD. Substitution of wild-type SHP-1 by phosphorylation-defective mutant (SHP-1S557A) impairs generation of CD4+ thymocytes. These results suggest that the PKD–SHP-1 axis positively regulates TCR signalling to promote CD4+ T cell development. PMID:27670070

  3. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  4. Genome-wide identification, evolution and expression analysis of nuclear receptor superfamily in Nile tilapia, Oreochromis niloticus.

    PubMed

    Cheng, Yun-Ying; Tao, Wen-Jing; Chen, Jin-Lin; Sun, Li-Na; Zhou, Lin-Yan; Song, Qiang; Wang, De-Shou

    2015-09-10

    The nuclear receptor (NR) superfamily, which is divided into 7 subfamilies, constitutes one of the largest classes of transcription factors. In this study, through comprehensive database search, we identified all NRs (including 4 novel members) from the tilapia (75), common carp (137), zebrafish (73), fugu (73), tetraodon (72), stickleback (70), medaka (69), coelacanth (55), spotted gar (51) and elephant shark (50). For 21 NRs, two duplicates were found in teleosts, while only one in tetrapods. These duplicates, except those of DAX1, SHP and GCNF found in the elephant shark, were derived from 3R (third round of genome duplication). The linkage duplication of 5 syntenic blocks (comprising 14 duplicated NR couples) in teleosts further supported their 3R origin. Based on transcriptome data from adult tilapia, 53 NRs were found to be expressed in more than one tissue (brain, head kidney, heart, liver, kidney, muscle, ovary and testis), and 4 were tissue-specific, indicating their essential roles in the corresponding tissue. Based on the XX and XY gonadal transcriptome data from four developmental stages, 65 NRs were detected in gonads, with 21, 31, 11 and 29 expressed sexual dimorphically at 5, 30, 90 and 180days after hatching, respectively. The expression of four selected genes was examined by in situ hybridization (ISH) and quantitative PCR (qPCR) to validate the spatial and temporal expression profiles of NRs. Comparative analyses of the expression profiles of duplicated NRs revealed divergence in gene expression as well as gene function. Our results demonstrated that NRs may play important roles in sex determination and gonadal development in teleosts.

  5. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation

    PubMed Central

    Wong, Madeline M; Guo, Chun; Zhang, Jinsong

    2014-01-01

    Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy. PMID:25374920

  6. SHP-1: the next checkpoint target for cancer immunotherapy?

    PubMed

    Watson, H Angharad; Wehenkel, Sophie; Matthews, James; Ager, Ann

    2016-04-15

    The immense power of the immune system is harnessed in healthy individuals by a range of negative regulatory signals and checkpoints. Manipulating these checkpoints through inhibition has resulted in striking immune-mediated clearance of otherwise untreatable tumours and metastases; unfortunately, not all patients respond to treatment with the currently available inhibitors of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Combinatorial studies using both anti-CTLA-4 and anti-PD-1 demonstrate synergistic effects of targeting multiple checkpoints, paving the way for other immune checkpoints to be targeted. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a widely expressed inhibitory protein tyrosine phosphatase (PTP). In T-cells, it is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation makes it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen receptor (CAR) T-cells. This review will discuss the potential value of SHP-1 inhibition in future tumour immunotherapy.

  7. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  8. Application of phosphorylation site-specific antibodies to measure nuclear receptor signaling: characterization of novel phosphoantibodies for estrogen receptor α

    PubMed Central

    Al-Dhaheri, Mariam H.; Rowan, Brian G.

    2006-01-01

    An understanding of posttranslational events in nuclear receptor signaling is crucial for drug design and clinical therapeutic strategies. Phosphorylation is a well-characterized posttranslational modification that regulates subcellular localization and function of nuclear receptors and coregulators. Although the role of single phosphorylation sites in nuclear receptor function has been described, the contribution of combinations of multiple phosphorylation sites to receptor function remains unclear. The development of phosphoantibodies to each phosphorylation site in a nuclear receptor is a powerful tool to address the role of phosphorylation in multiply phosphorylated receptors. However, phosphoantibodies must be rigorously validated prior to use. This review describes the general methodology for design, characterization and validation of phosphoantibodies using the example of eight phosphoantibodies raised against phosphorylation sites in estrogen receptor α (ERα). PMID:16741565

  9. The yeast nuclear import receptor is required for mitosis.

    PubMed Central

    Loeb, J D; Schlenstedt, G; Pellman, D; Kornitzer, D; Silver, P A; Fink, G R

    1995-01-01

    The nuclear import system is highly conserved among eukaryotes. Here we report the effects of a conditional mutation in SRP1, which encodes a Saccharomyces cerevisiae homolog of the vertebrate nuclear import receptor importin. Importin was isolated as a factor required for the initial targeting step of a nuclear import substrate to the nuclear envelope in a mammalian in vitro assay. We show that yeast Srp1 is similarly required for protein import. In addition, Srp1 is also required for the execution of mitosis: we demonstrate that cells containing a conditional mutation of SRP1 arrest with a G2/M phenotype in a manner analogous to classic cdc mutants. This defect may be due to the failure of the mutant to degrade the mitotic cyclin Clb2 and other proteins required for mitosis. The requirement of a nuclear import receptor for cell cycle-regulated proteolysis implies that import of cell cycle regulators into the nucleus is critical for cell cycle progression. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7644471

  10. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis

    PubMed Central

    Han, Sang Jun; O'Malley, Bert W.

    2014-01-01

    BACKGROUND Endometriosis is defined as the colonization and growth of endometrial tissue at anatomic sites outside the uterine cavity. Up to 15% of reproductive-aged women in the USA suffer from painful symptoms of endometriosis, such as infertility, pelvic pain, menstrual cycle abnormalities and increased risk of certain cancers. However, many of the current clinical treatments for endometriosis are not sufficiently effective and yield unacceptable side effects. There is clearly an urgent need to identify new molecular mechanisms that critically underpin the initiation and progression of endometriosis in order to develop more specific and effective therapeutics which lack the side effects of current therapies. The aim of this review is to discuss how nuclear receptors (NRs) and their coregulators promote the progression of endometriosis. Understanding the pathogenic molecular mechanisms for the genesis and maintenance of endometriosis as modulated by NRs and coregulators can reveal new therapeutic targets for alternative endometriosis treatments. METHODS This review was prepared using published gene expression microarray data sets obtained from patients with endometriosis and published literature on NRs and their coregulators that deal with endometriosis progression. Using the above observations, our current understanding of how NRs and NR coregulators are involved in the progression of endometriosis is summarized. RESULTS Aberrant levels of NRs and NR coregulators in ectopic endometriosis lesions are associated with the progression of endometriosis. As an example, endometriotic cell-specific alterations in gene expression are correlated with a differential methylation status of the genome compared with the normal endometrium. These differential epigenetic regulations can generate favorable cell-specific NR and coregulator milieus for endometriosis progression. Genetic alterations, such as single nucleotide polymorphisms and insertion/deletion polymorphisms of NR

  11. An evolving understanding of nuclear receptor coregulator proteins

    PubMed Central

    Millard, Christopher J.; Watson, Peter J.; Fairall, Louise; Schwabe, John W.R.

    2014-01-01

    Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin; and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge. PMID:24203923

  12. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila.

    PubMed

    Sieber, Matthew H; Thummel, Carl S

    2009-12-01

    Triacylglycerol (TAG) homeostasis is an integral part of normal physiology and essential for proper energy metabolism. Here we show that the single Drosophila ortholog of the PXR and CAR nuclear receptors, DHR96, plays an essential role in TAG homeostasis. DHR96 mutants are sensitive to starvation, have reduced levels of TAG in the fat body and midgut, and are resistant to diet-induced obesity, while DHR96 overexpression leads to starvation resistance and increased TAG levels. We show that DHR96 function is required in the midgut for the breakdown of dietary fat and that it exerts this effect through the CG5932 gastric lipase, which is essential for TAG homeostasis. This study provides insights into the regulation of dietary fat metabolism in Drosophila and demonstrates that the regulation of lipid metabolism is an ancestral function of the PXR/CAR/DHR96 nuclear receptor subfamily. PMID:19945405

  13. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    SciTech Connect

    Barbarin, Alice; Séité, Paule; Godet, Julie; Bensalma, Souheyla; Muller, Jean-Marc; Chadéneau, Corinne

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  14. Regulation of avoidant behaviors and pain by the anti-inflammatory tyrosine phosphatase SHP-1

    PubMed Central

    HUDSON, CHAD A.; CHRISTOPHI, GEORGE P.; CAO, LING; GRUBER, ROSS C.

    2007-01-01

    The protein tyrosine phosphatase SHP-1 is a critical regulator of cytokine signaling and inflammation. Mice homozygous for a null allele at the SHP-1 locus have a phenotype of severe inflammation and are hyper-responsive to the TLR4 ligand LPS. TLR4 stimulation in the CNS has been linked to both neuropathic pain and sickness behaviors. To determine if reduction in SHP-1 expression affects LPS-induced behaviors, responses of heterozygous SHP-1-deficient (me/+) and wild-type (+/+) mice to LPS were measured. Chronic (4-week) treatment with LPS induced avoidant behaviors indicative of fear/anxiety in me/+, but not +/+, mice. These behaviors were correlated with a LPS-induced type 2 cytokine, cytokine receptor, and immune effector arginase profile in the brains of me/+ mice not found in +/+ mice. Me/+ mice also had a constitutively greater level of TLR4 in the CNS than +/+ mice. Additionally, me/+ mice displayed constitutively increased thermal sensitivity compared to +/+ mice, measured by the tail-flick test. Moreover, me/+ glial cultures were more responsive to LPS than +/+ glia. Therefore, the reduced expression of SHP-1 in me/+ imparts haploinsufficiency with respect to the control of CNS TLR4 and pain signaling. Furthermore, type 2 cytokines become prevalent during chronic TLR4 hyperstimulation in the CNS and are associated positively with behaviors that are usually linked to type 1 pro-inflammatory cytokines. These findings question the notion that type 2 immunity is solely anti-inflammatory in the CNS and indicate that type 2 immunity induces/potentiates CNS inflammatory processes. PMID:18250891

  15. Minireview: Evolution of NURSA, the Nuclear Receptor Signaling Atlas.

    PubMed

    McKenna, Neil J; Cooney, Austin J; DeMayo, Francesco J; Downes, Michael; Glass, Christopher K; Lanz, Rainer B; Lazar, Mitchell A; Mangelsdorf, David J; Moore, David D; Qin, Jun; Steffen, David L; Tsai, Ming-Jer; Tsai, Sophia Y; Yu, Ruth; Margolis, Ronald N; Evans, Ronald M; O'Malley, Bert W

    2009-06-01

    Nuclear receptors and coregulators are multifaceted players in normal metabolic and homeostatic processes in addition to a variety of disease states including cancer, inflammation, diabetes, obesity, and atherosclerosis. Over the past 7 yr, the Nuclear Receptor Signaling Atlas (NURSA) research consortium has worked toward establishing a discovery-driven platform designed to address key questions concerning the expression, organization, and function of these molecules in a variety of experimental model systems. By applying powerful technologies such as quantitative PCR, high-throughput mass spectrometry, and embryonic stem cell manipulation, we are pursuing these questions in a series of transcriptomics-, proteomics-, and metabolomics-based research projects and resources. The consortium's web site (www.nursa.org) integrates NURSA datasets and existing public datasets with the ultimate goal of furnishing the bench scientist with a comprehensive framework for hypothesis generation, modeling, and testing. We place a strong emphasis on community input into the development of this resource and to this end have published datasets from academic and industrial laboratories, established strategic alliances with Endocrine Society journals, and are developing tools to allow web site users to act as data curators. With the ongoing support of the nuclear receptor and coregulator signaling communities, we believe that NURSA can make a lasting contribution to research in this dynamic field. PMID:19423650

  16. Minireview: Evolution of NURSA, the Nuclear Receptor Signaling Atlas.

    PubMed

    McKenna, Neil J; Cooney, Austin J; DeMayo, Francesco J; Downes, Michael; Glass, Christopher K; Lanz, Rainer B; Lazar, Mitchell A; Mangelsdorf, David J; Moore, David D; Qin, Jun; Steffen, David L; Tsai, Ming-Jer; Tsai, Sophia Y; Yu, Ruth; Margolis, Ronald N; Evans, Ronald M; O'Malley, Bert W

    2009-06-01

    Nuclear receptors and coregulators are multifaceted players in normal metabolic and homeostatic processes in addition to a variety of disease states including cancer, inflammation, diabetes, obesity, and atherosclerosis. Over the past 7 yr, the Nuclear Receptor Signaling Atlas (NURSA) research consortium has worked toward establishing a discovery-driven platform designed to address key questions concerning the expression, organization, and function of these molecules in a variety of experimental model systems. By applying powerful technologies such as quantitative PCR, high-throughput mass spectrometry, and embryonic stem cell manipulation, we are pursuing these questions in a series of transcriptomics-, proteomics-, and metabolomics-based research projects and resources. The consortium's web site (www.nursa.org) integrates NURSA datasets and existing public datasets with the ultimate goal of furnishing the bench scientist with a comprehensive framework for hypothesis generation, modeling, and testing. We place a strong emphasis on community input into the development of this resource and to this end have published datasets from academic and industrial laboratories, established strategic alliances with Endocrine Society journals, and are developing tools to allow web site users to act as data curators. With the ongoing support of the nuclear receptor and coregulator signaling communities, we believe that NURSA can make a lasting contribution to research in this dynamic field.

  17. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering.

    PubMed

    Kodama, A; Matozaki, T; Fukuhara, A; Kikyo, M; Ichihashi, M; Takai, Y

    2000-08-01

    Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase-type HGF/SF receptor c-Met. We have previously shown that Rho small G protein (Rho) is involved in the HGF/SF-induced scattering of Madin-Darby canine kidney (MDCK) cells by regulating at least the assembly and disassembly of stress fibers and focal adhesions, but it remains unknown how c-Met regulates Rho activity. We have found here a novel signaling pathway of c-Met consisting of SHP-2-Rho that regulates the assembly and disassembly of stress fibers and focal adhesions in MDCK cells. SHP-2 is a protein-tyrosine phosphatase that contains src homology-2 domains. Expression of a dominant negative mutant of SHP-2 (SHP-2-C/S) markedly increased the formation of stress fibers and focal adhesions in MDCK cells and inhibited their scattering. C3, a Clostridium botulinum ADP-ribosyltransferase, and Y-27632, a specific inhibitor for ROCK, reversed the stimulatory effect of SHP-2-C/S on stress fiber formation and the inhibitory effect on cell scattering. Vav2 is a GDP/GTP exchange protein for Rho. Expression of a dominant negative mutant of Vav2 blocked the stimulatory effect of SHP-2-C/S on stress fiber formation. Conversely, expression of mutants of Vav2 that increased stress fiber formation inhibited HGF/SF-induced cell scattering. These results indicate that SHP-2 physiologically modulates the activity of Rho to form stress fibers and focal adhesions and thereby regulates HGF/SF-induced cell scattering. In addition, Vav2 may be involved in the SHP-2-Rho pathway.

  18. Porcine mononuclear leukocyte nuclear thyroid hormone receptors: Effects of cold exposure on receptor kinetics

    SciTech Connect

    D'Alesandro, M.; Reed, L.; Malik, M.; Quesada, M.; Hesslink, R.; Castro, S.; Homer, L.; Young, B. Univ. of Alberta, Edmonton )

    1991-03-11

    Changes in kinetic characteristics of the triiodothyronine (T{sub 3}) receptor may be a mechanism involved in the thermoregulatory action of T{sub 3} at the nuclear level. To study this, the authors analyzed changes in T{sub 3} nuclear receptor kinetics in cold exposed swine and compared them with similar animals housed at thermoneutral temperature. Receptors were from isolated nuclear extracts of circulating mononuclear leukocytes (MNL). Scatchard analysis indicates the presence of a single class of binding sites. The authors were unable to detect differences in the equilibrium dissociation constant (Kd) or the maximum binding capacity (MBC, fmol/up DNA) between the two groups. The Kd for T{sub 3} in the control group was 1.17 {plus minus} 0.11 nmol/L and 1.25 {plus minus} 0.19 nmol/L in the cold exposed group. The MBC was 0.43 {plus minus} 0.04 fmol/ug DNA in the control group and 0.40 {plus minus} 0.06 fmol/L in the cold exposed group. In competition studies using thyroid hormone analogues, 10{sup {minus}7} M reverse T{sub 3} and 3,5-diiodothyronine resulted in approximately 50% displacement from the porcine receptor. TRIAC and L-T{sub 4} had no effect at 10{sup {minus}7} M. The porcine values for both Kd and MBC are similar to those previously reported for human MNL. Although T{sub 3} production and serum T{sub 3} values in the cold exposed group are nearly double the control group (Reed et al., FASEB 1991), continuous short-term cold exposure had no significant effect on MNL nuclear T{sub 3} receptor kinetics.

  19. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine.

    PubMed

    De Mattia, Elena; Cecchin, Erika; Roncato, Rossana; Toffoli, Giuseppe

    2016-09-01

    Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine. PMID:27561454

  20. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine.

    PubMed

    De Mattia, Elena; Cecchin, Erika; Roncato, Rossana; Toffoli, Giuseppe

    2016-09-01

    Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine.

  1. PNRC: a proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors including orphan receptors SF1 (steroidogenic factor 1) and ERRalpha1 (estrogen related receptor alpha-1).

    PubMed

    Zhou, D; Quach, K M; Yang, C; Lee, S Y; Pohajdak, B; Chen, S

    2000-07-01

    PNRC (proline-rich nuclear receptor coregulatory protein) was identified using bovine SF1 (steroidogenic factor 1) as the bait in a yeast two-hybrid screening of a human mammary gland cDNA expression library. PNRC is unique in that it has a molecular mass of 35 kDa, significantly smaller than most of the coregulatory proteins reported so far, and it is proline-rich. PNRC's nuclear localization was demonstrated by immunofluorescence and Western blot analyses. In the yeast two-hybrid assays, PNRC interacted with the orphan receptors SF1 and ERRalpha1 in a ligand-independent manner. PNRC was also found to interact with the ligand-binding domains of all the nuclear receptors tested including estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), thyroid hormone receptor (TR), retinoic acid receptor (RAR), and retinoid X receptor (RXR) in a ligand-dependent manner. Functional AF2 domain is required for nuclear receptors to bind to PNRC. Furthermore, in vitro glutathione-S-transferase pull-down assay was performed to demonstrate a direct contact between PNRC and nuclear receptors such as SF1. Coimmunoprecipitation experiment using Hela cells that express PNRC and ER was performed to confirm the interaction of PNRC and nuclear receptors in vivo in a ligand-dependent manner. PNRC was found to function as a coactivator to enhance the transcriptional activation mediated by SF1, ERR1 (estrogen related receptor alpha-1), PR, and TR. By examining a series of deletion mutants of PNRC using the yeast two-hybrid assay, a 23-amino acid (aa) sequence in the carboxy-terminal region, aa 278-300, was shown to be critical and sufficient for the interaction with nuclear receptors. This region is proline rich and contains a SH3-binding motif, S-D-P-P-S-P-S. Results from the mutagenesis study demonstrated that the two conserved proline (P) residues in this motif are crucial for PNRC to interact with the nuclear receptors. The exact 23

  2. Harnessing the nuclear receptor PPARγ to inhibit the growth of lung adenocarcinoma by rewiring metabolic circuitries.

    PubMed

    Yenerall, Paul; Kittler, Ralf

    2015-01-01

    Altered metabolism and nuclear receptor activity have been reported in various cancer types. Here, we discuss our recent finding that the metabolic state of lung adenocarcinoma cells expressing the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) can be modulated by thiazolidinediones, culminating in accumulation of reactive oxygen species and decreased proliferation. PMID:27308443

  3. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  4. Inhibition of androgen receptor (AR) function by the reproductive orphan nuclear receptor DAX-1.

    PubMed

    Holter, Elin; Kotaja, Noora; Mäkela, Sari; Strauss, Leena; Kietz, Silke; Jänne, Olli A; Gustafsson, Jan-Ake; Palvimo, Jorma J; Treuter, Eckardt

    2002-03-01

    DAX-1 (NROB1) is an atypical member of the nuclear receptor family that is predominantly expressed in mammalian reproductive tissues. While a receptor function of DAX-1 remains enigmatic, previous work has indicated that DAX-1 inhibits the activity of the orphan receptor steroidogenic factor 1 and the estrogen receptors (ERs), presumably via direct occupation of the coactivator-binding surface and subsequent recruitment of additional corepressors. In vivo evidence points at a particular role of DAX-1 for the development and maintenance of male reproductive functions. In this study, we have identified the androgen receptor (AR) NR3C4 as a novel target for DAX-1. We show that DAX-1 potently inhibits ligand-dependent transcriptional activation as well as the interaction between the N- and C-terminal activation domains of AR. We provide evidence for direct interactions of the two receptors that involve the N-terminal repeat domain of DAX-1 and the C-terminal ligand-binding and activation domain of AR. Moreover, DAX-1, known to shuttle between the cytoplasm and the nucleus, is capable of relocalizing AR in both cellular compartments, suggesting that intracellular tethering is associated with DAX-1 inhibition. These results implicate novel inhibitory mechanisms of DAX-1 action with particular relevance for the modulation of androgen-dependent gene transcription in the male reproductive system. PMID:11875111

  5. Regulation of hepatic energy metabolism by the nuclear receptor PXR.

    PubMed

    Hakkola, Jukka; Rysä, Jaana; Hukkanen, Janne

    2016-09-01

    The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  6. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    PubMed

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells.

  7. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    NASA Astrophysics Data System (ADS)

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors.

  8. Bile acid nuclear receptor FXR and digestive system diseases

    PubMed Central

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-01-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  9. Bile acid nuclear receptor FXR and digestive system diseases.

    PubMed

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-03-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  10. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  11. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  12. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  13. Minireview: Nuclear Receptor and Coregulator Proteomics—2012 and Beyond

    PubMed Central

    Malovannaya, Anna; Qin, Jun

    2012-01-01

    The focus of our decade-long National Institutes of Health-sponsored NURSA Proteomics Atlas was to catalog and understand the composition of the steady-state interactome for all nuclear receptor coregulator complexes in a human cell. In this Perspective, we present a summary of the proteomics of coregulator complexes with examples of how one might use the NURSA data for future exploitation. The application of this information to the identification of the coregulator proteins that contribute to the molecular basis of polygenic diseases is emphasized. PMID:22745194

  14. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway.

    PubMed

    Krautwald, S; Büscher, D; Kummer, V; Buder, S; Baccarini, M

    1996-11-01

    Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways. PMID:8887625

  15. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway.

    PubMed Central

    Krautwald, S; Büscher, D; Kummer, V; Buder, S; Baccarini, M

    1996-01-01

    Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways. PMID:8887625

  16. Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor.

    PubMed

    Xie, Wen; Yeuh, Mei-Fei; Radominska-Pandya, Anna; Saini, Simrat P S; Negishi, Yoichi; Bottroff, Bobbie Sue; Cabrera, Geraldine Y; Tukey, Robert H; Evans, Ronald M

    2003-04-01

    Through a multiplex promoter spanning 218 kb, the phase II UDP-glucuronosyltransferase 1A (UGT1) gene encodes at least eight differently regulated mRNAs whose protein products function as the principal means to eliminate a vast array of steroids, heme metabolites, environmental toxins, and drugs. The orphan nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) were originally identified as sensors able to respond to numerous environmentally derived foreign compounds (xenobiotics) to promote detoxification by phase I cytochrome P450 genes. In this report, we show that both receptors can induce specific UGT1A isoforms including those involved in estrogen, thyroxin, bilirubin, and carcinogen metabolism. Transgenic mice expressing a constitutively active form of human PXR show markedly increased UGT activity toward steroid, heme, and carcinogens, enhanced bilirubin clearance, as well as massively increased steroid clearance. The ability of PXR and constitutive androstane receptor and their ligands to transduce both the phase I and phase II adaptive hepatic response defines a unique transcriptional interface that bridges the ingestion and metabolism of environmental compounds to body physiology. PMID:12644700

  17. Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery.

    PubMed

    Kojetin, Douglas J; Burris, Thomas P

    2013-01-01

    Nuclear receptors are targets for a wide range of ligands, both natural and synthetic, that regulate their activity and provide a means to pharmacologically modulate the receptor. Recent emphasis in the nuclear receptor field has focused on selective nuclear receptor modulators, which can display graded transcriptional responses and tissue selective pharmacological responses that deviate from the prototypical agonist or antagonist. Understanding the molecular mechanism of action of these selective modulators will provide significant insight toward the development of the next generation of modulators. Although most nuclear receptor structural studies have primarily focused on obtaining ligand-receptor cocrystal structures, recent studies implicate an important role for protein dynamics in the mechanism of action of nuclear receptor ligands. Here we review nuclear receptor studies reporting how ligands modulate the conformational dynamics of the nuclear receptor ligand-binding domain (LBD). A particular emphasis is placed on protein NMR and hydrogen/deuterium exchange (HDX) techniques and how they provide complementary information that, when combined with crystallography, provide detailed insight into the function of nuclear receptors.

  18. Nuclear hormone receptor architecture - form and dynamics: The 2009 FASEB Summer Conference on Dynamic Structure of the Nuclear Hormone Receptors.

    PubMed

    McEwan, Iain J; Nardulli, Ann M

    2009-01-01

    Nuclear hormone receptors (NHRs) represent a large and diverse family of ligand-activated transcription factors involved in regulating development, metabolic homeostasis, salt balance and reproductive health. The ligands for these receptors are typically small hydrophobic molecules such as steroid hormones, thyroid hormone, vitamin D3 and fatty acid derivatives. The first NHR structural information appeared approximately 20 years ago with the solution and crystal structures of the DNA binding domains and was followed by the structure of the agonist and antagonist bound ligand binding domains of different NHR members. Interestingly, in addition to these defined structural features, it has become clear that NHRs also possess significant structural plasticity. Thus, the dynamic structure of the NHRs was the topic of a recent stimulating and informative FASEB Summer Research Conference held in Vermont. PMID:20087432

  19. Nuclear receptors and microRNAs: Who regulates the regulators in neural stem cells?

    PubMed

    Eendebak, Robert J A H; Lucassen, Paul J; Fitzsimons, Carlos P

    2011-03-01

    In this mini-review, we focus on regulatory loops between nuclear receptors and microRNAs, an emerging class of small RNA regulators of gene expression. Evidence supporting interactions between microRNAs and nuclear receptors in the regulation of gene expression networks is discussed in relation to its possible role in neural stem cell self renewal and differentiation. Furthermore, we discuss possible disturbances of the regulatory loops between microRNAs and nuclear receptors in human neurodegenerative disease. Finally, we discuss the possible use of nuclear receptors as pharmacological entry points to regulate neural stem cell self-renewal and differentiation.

  20. Characterization of DNA complexes formed by the nuclear receptor constitutive androstane receptor.

    PubMed

    Frank, Christian; Gonzalez, Manuel Macias; Oinonen, Carita; Dunlop, Thomas W; Carlberg, Carsten

    2003-10-31

    The nuclear receptor constitutive androstane receptor (CAR) acts as a xenobiotic sensor and regulates the expression of enzymes, such as several cytochromes P450s and the UDP-glucuronosyltransferase (UGT) type 1A1. CAR binds as a heterodimer with the retinoid X receptor (RXR) to specific DNA sites, called response elements (REs). Clusters of CAR REs, referred to as phenobarbital response enhancer modules (PBREMs), have been identified in several CAR target genes. In this study we confirm that REs formed by direct repeats of two AGTTCA hexamers with 4 spacing nucleotides are optimal for the binding of CAR-RXR heterodimers. In addition, we found that the heterodimers also form complexes on everted repeat-type arrangements with 8 spacing nucleotides. We also observed that CAR is able to bind DNA as a monomer and to interact in this form with different coregulators even in the presence of RXR. Systematic variation of the nucleotides 5'-flanking to both AGTTCA hexamers showed that the dinucleotide sequence modulates the DNA complex formation of CAR monomers and CAR-RXR heterodimer by a factor of up to 20. The highest preference was found for the sequence AG and lowest for CC. The increased DNA affinity of CAR is mediated by the positively charged arginines 90 and 91 located in the carboxyl-terminal extension of the DNA-binding domain of the receptor. Furthermore, we show that one of the three CAR REs of the human UGT1A1 PBREM is exclusively bound by CAR monomers and this is regulated by ligands that bind to this nuclear receptor. This points to a physiological role for CAR monomers. Therefore, both CAR-RXR heterodimers and CAR monomers can contribute to the gene activating function of PBREMs in CAR target genes. PMID:12896978

  1. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney

    PubMed Central

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  2. Nuclear receptors and the Warburg effect in cancer

    PubMed Central

    Thome, James L.; Campbell, Moray J.

    2016-01-01

    In 1927 Otto Warburg established that tumours derive energy primarily from the conversion of glucose to lactic acid and only partially through cellular respiration involving oxygen. In the 1950s he proposed that all causes of cancer reflected different mechanisms of disabling cellular respiration in favour of fermentation (now termed aerobic glycolysis). The role of aberrant glucose metabolism in cancer is now firmly established. The shift away from oxidative phosphorylation towards the metabolically expensive aerobic glycolysis is somewhat counter-intuitive given its wasteful nature. Multiple control processes are in place to maintain cellular efficiency and it is likely that these mechanisms are disrupted to facilitate the shift to the reliance on aerobic glycolysis. One such process of cell control is mediated by the nuclear receptor superfamily. This large family of transcription factors plays a significant role in sensing environmental cues and controlling decisions on proliferation, differentiation and cell death for example, to regulate glucose uptake and metabolism and to modulate the actions of oncogenes and tumour suppressors. In this review we highlight mechanisms by which nuclear receptors actions are altered during tumorigenic transformation and can serve to enhance the shift to aerobic glycolysis. At the simplest level, a basic alteration in NR behaviour can serve to enhance glycolytic flux thus providing a basis for enhanced survival within the tumour micro-environment. Ameliorating the enhanced NR activity in this context may help to sensitize cancer cells to Warburg targeted therapies and may provide future drug targets. PMID:24895240

  3. Role of nuclear receptors in breast cancer stem cells

    PubMed Central

    Papi, Alessio; Orlandi, Marina

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse. PMID:27022437

  4. Nuclear receptors and the Warburg effect in cancer.

    PubMed

    Thorne, James L; Campbell, Moray J

    2015-10-01

    In 1927 Otto Warburg established that tumours derive energy primarily from the conversion of glucose to lactic acid and only partially through cellular respiration involving oxygen. In the 1950s he proposed that all causes of cancer reflected different mechanisms of disabling cellular respiration in favour of fermentation (now termed aerobic glycolysis). The role of aberrant glucose metabolism in cancer is now firmly established. The shift away from oxidative phosphorylation towards the metabolically expensive aerobic glycolysis is somewhat counter-intuitive given its wasteful nature. Multiple control processes are in place to maintain cellular efficiency and it is likely that these mechanisms are disrupted to facilitate the shift to the reliance on aerobic glycolysis. One such process of cell control is mediated by the nuclear receptor superfamily. This large family of transcription factors plays a significant role in sensing environmental cues and controlling decisions on proliferation, differentiation and cell death for example, to regulate glucose uptake and metabolism and to modulate the actions of oncogenes and tumour suppressors. In this review we highlight mechanisms by which nuclear receptors actions are altered during tumorigenic transformation and can serve to enhance the shift to aerobic glycolysis. At the simplest level, a basic alteration in NR behaviour can serve to enhance glycolytic flux thus providing a basis for enhanced survival within the tumour micro-environment. Ameliorating the enhanced NR activity in this context may help to sensitize cancer cells to Warburg targeted therapies and may provide future drug targets.

  5. The role of nuclear hormone receptors in cutaneous wound repair

    PubMed Central

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S.

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25529612

  6. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney.

    PubMed

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  7. Nuclear receptors and the Warburg effect in cancer.

    PubMed

    Thorne, James L; Campbell, Moray J

    2015-10-01

    In 1927 Otto Warburg established that tumours derive energy primarily from the conversion of glucose to lactic acid and only partially through cellular respiration involving oxygen. In the 1950s he proposed that all causes of cancer reflected different mechanisms of disabling cellular respiration in favour of fermentation (now termed aerobic glycolysis). The role of aberrant glucose metabolism in cancer is now firmly established. The shift away from oxidative phosphorylation towards the metabolically expensive aerobic glycolysis is somewhat counter-intuitive given its wasteful nature. Multiple control processes are in place to maintain cellular efficiency and it is likely that these mechanisms are disrupted to facilitate the shift to the reliance on aerobic glycolysis. One such process of cell control is mediated by the nuclear receptor superfamily. This large family of transcription factors plays a significant role in sensing environmental cues and controlling decisions on proliferation, differentiation and cell death for example, to regulate glucose uptake and metabolism and to modulate the actions of oncogenes and tumour suppressors. In this review we highlight mechanisms by which nuclear receptors actions are altered during tumorigenic transformation and can serve to enhance the shift to aerobic glycolysis. At the simplest level, a basic alteration in NR behaviour can serve to enhance glycolytic flux thus providing a basis for enhanced survival within the tumour micro-environment. Ameliorating the enhanced NR activity in this context may help to sensitize cancer cells to Warburg targeted therapies and may provide future drug targets. PMID:24895240

  8. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    EPA Science Inventory

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  9. Requirements for heterodimerization between the orphan nuclear receptor Nurr1 and retinoid X receptors.

    PubMed

    Sacchetti, Paola; Dwornik, Hélène; Formstecher, Pierre; Rachez, Christophe; Lefebvre, Philippe

    2002-09-20

    The nuclear receptor nurr1 is a transcription factor involved in the development and maintenance of neurons synthesizing the neurotransmitter dopamine. Although the lack of nurr1 expression has dramatic consequences for these cells either in terms of differentiation or survival, the mechanisms by which nurr1 controls gene transcription still remain unclear. In the intent to understand better the modalities of action of this nuclear receptor, we have undertaken a systematic analysis of the transcriptional effects and DNA binding properties of nurr1 as a monomer or when forming dimers with the different isotypes of the retinoic X receptor (RXR). Here, we show that nurr1 acts as a gene activator independently of RXR and through an AF2-independent mechanism. In addition, heterodimerization with RXR is isotype-specific, involves multiple domains in the C-terminal region of nurr1, and requires RXR binding to DNA. RXR(alpha)-nurr1 and RXRgamma-nurr1 heterodimers bind direct repeat response elements and display no specific requirements with respect to half-site spacing. However, the retinoid responsiveness of DNA-bound heterodimers requires the reiteration of at least three nurr1 binding sites, thereby limiting retinoid-induced nurr1 transcriptional activity to specific direct response elements.

  10. Immunological quantitation of nuclear steroid receptors to optimize the biological classification of breast tumors.

    PubMed

    Díez-Gibert, O; Huguet, J; Rosel, P; Bonnín, M R; Navarro, M A

    1998-01-01

    We used immunological methods to determine cytosolic and nuclear steroid receptors to evaluate the advantages of nuclear receptor measurement in the selection of breast cancer patients for treatment. Around 75% of tumors showed coincidence between nuclear and cytosolic receptors (+/+ or -/-) for estrogen receptor (ER) and for progesterone receptor (PgR). Only cytosolic receptors were detected in around 20% of tumors. Distributed in the ER/PgR phenotypes according to the nuclear or cytosolic receptors, 64% of tumors remained in the same subgroup, whereas 16% of tumors were classified as hormone dependent according to cytosolic and independent according to nuclear receptors, which could be considered as 'false-positive' results. 6% of tumors would be classified as negative according to cytosolic receptors but positive according to nuclear receptors and would correspond to 'false-negative' results by conventional methods. Cytosolic receptor results may overrate the hormone dependence and cause some 'misclassifications' of patients. This could partially explain the lack of response to therapy in some cases.

  11. Functional interaction of nuclear receptor coactivator 4 with aryl hydrocarbon receptor

    SciTech Connect

    Kollara, Alexandra; Brown, Theodore J. . E-mail: brown@mshri.on.ca

    2006-07-28

    Aryl hydrocarbon receptor (AhR) transcriptional activity is enhanced by interaction with p160 coactivators. We demonstrate here that NcoA4, a nuclear receptor coactivator, interacts with and amplifies AhR action. NcoA4-AhR and NcoA4-ARNT interactions were demonstrated by immunoprecipitation in T47D breast cancer and COS cells and was independent of ligand. Overexpression of NcoA4 enhanced AhR transcriptional activity 3.2-fold in the presence of dioxin, whereas overexpression of a splice variant, NcoA4{beta}, as well as a variant lacking the C-terminal region enhanced AhR transcriptional activity by only 1.6-fold. Enhanced AhR signaling by NcoA4 was independent of the LXXLL and FXXLF motifs or of the activation domain. NcoA4 protein localized to cytoplasm in the absence of dioxin and in both the cytoplasm and nucleus following dioxin treatment. NcoA4-facilitation of AhR activity was abolished by overexpression of androgen receptor, suggesting a potential competition of AhR and androgen receptor for NcoA4. These findings thus demonstrate a functional interaction between NcoA4 and AhR that may alter AhR activity to affect disease development and progression.

  12. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    SciTech Connect

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.

  13. Bmal1 is a direct transcriptional target of the orphan nuclear receptor, NR2F1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orphan nuclear receptor NR2F1 (also known as COUP-TFI, Chicken Ovalbumin Upstream Promoter Transcription Factor I) is a highly conserved member of the nuclear receptor superfamily. NR2F1 plays a critical role during embryonic development, particularly in the central and peripheral nervous systems a...

  14. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis

    PubMed Central

    Hyter, Stephen; Indra, Arup K

    2013-01-01

    Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management. PMID:23395795

  15. Inflammation: a role for NR4A orphan nuclear receptors?

    PubMed

    McMorrow, Jason P; Murphy, Evelyn P

    2011-04-01

    Inflammation is paradoxical; it is essential for protection following biological, chemical or physical stimuli, but inappropriate or misdirected inflammation is responsible for tissue injury in a variety of inflammatory diseases. The polarization of immune cells is critical in controlling the stages of inflammatory response. The acute phase of inflammation is characterized by a T-lymphocyte:Th2 cytokine profile and involves a co-ordinated migration of immune cells to the site of injury where production of cytokines and acute-phase proteins brings about healing. However, persistent inflammation can result in inappropriate and prolonged T-lymphocyte:Th1 cytokine-mediated action and reaction of self-molecules, leading to a chronic phase in diseases such as RA (rheumatoid arthritis), Ps (psoriasis) and atherosclerosis. The inflammatory response is also controlled by activated macrophage cells, with classically activated (M1) cells producing a wide variety of pro-inflammatory mediators, while alternatively activated (M2) macrophages participate in anti-inflammatory response. Members of the NR4A subfamily (NR4A1/NUR77, NR4A2/NURR1 and NR4A3/NOR1) of orphan NRs (nuclear receptors) have emerged as key transcriptional regulators of cytokine and growth factor action in diseases affecting our aging population. As ligand-independent and constitutively active receptors, the activity of these transcription factors is tightly controlled at the level of expression, post-translational modification and subcellular localization. NR4A subfamily members are aberrantly expressed in inflamed human synovial tissue, psoriatic skin, atherosclerotic lesions, lung and colorectal cancer cells. Significantly, prolonged or inappropriate inflammatory responses contribute to the pathogenesis of these diseases. In activated cells, NR4A receptors are rapidly and potently induced, suggesting that these receptors may act as important transcriptional mediators of inflammatory signals. NR4A receptors

  16. Ginkgetin Blocks Constitutive STAT3 Activation and Induces Apoptosis through Induction of SHP-1 and PTEN Tyrosine Phosphatases.

    PubMed

    Baek, Seung Ho; Lee, Jae Hwi; Ko, Jeong-Hyeon; Lee, Hanwool; Nam, Dongwoo; Lee, Seok Geun; Yang, Woong Mo; Um, Jae-Young; Lee, Junhee; Kim, Sung-Hoon; Shim, Bum Sang; Ahn, Kwang Seok

    2016-04-01

    Ginkgetin, a biflavone from Ginkgo biloba leaves, is known to exhibit antiinflammatory, antifungal, neuroprotective, and antitumor activities, but its precise mechanism of action has not been fully elucidated. Because the aberrant activation of STAT3 has been linked with regulation of inflammation, proliferation, invasion, and metastasis of tumors, we hypothesized that ginkgetin modulates the activation of STAT3 in tumor cells. We found that ginkgetin clearly suppressed constitutive phosphorylation of STAT3 through inhibition of the activation of upstream JAK1 and c-Src kinases and nuclear translocation of STAT3 on both A549 and FaDu cells. Treatment with sodium pervanadate reversed the ginkgetin-induced down-modulation of STAT3, thereby indicating a critical role for a PTP. We also found that ginkgetin strongly induced the expression of the SHP-1 and PTEN proteins and its mRNAs. Further, deletion of SHP-1 and PTEN genes by siRNA suppressed the induction of SHP-1 and PTEN, and reversed the inhibition of STAT3 activation. Ginkgetin induced apoptosis as characterized by an increased accumulation of cells in subG1 phase, positive Annexin V binding, loss of mitochondrial membrane potential, down-regulation of STAT3-regulated gene products, and cleavage of PARP. Overall, ginkgetin abrogates STAT3 signaling pathway through induction of SHP-1 and PTEN proteins, thus attenuating STAT3 phosphorylation and tumorigenesis. PMID:27059688

  17. SHP2-interacting Transmembrane Adaptor Protein (SIT), A Novel Disulfide-linked Dimer Regulating Human T Cell Activation

    PubMed Central

    Marie-Cardine, Anne; Kirchgessner, Henning; Bruyns, Eddy; Shevchenko, Andrej; Mann, Matthias; Autschbach, Frank; Ratnofsky, Sheldon; Meuer, Stefan; Schraven, Burkhart

    1999-01-01

    T lymphocytes express several low molecular weight transmembrane adaptor proteins that recruit src homology (SH)2 domain–containing intracellular molecules to the cell membrane via tyrosine-based signaling motifs. We describe here a novel molecule of this group termed SIT (SHP2 interacting transmembrane adaptor protein). SIT is a disulfide-linked homodimeric glycoprotein that is expressed in lymphocytes. After tyrosine phosphorylation by src and possibly syk protein tyrosine kinases SIT recruits the SH2 domain–containing tyrosine phosphatase SHP2 via an immunoreceptor tyrosine-based inhibition motif. Overexpression of SIT in Jurkat cells downmodulates T cell receptor– and phytohemagglutinin-mediated activation of the nuclear factor of activated T cells (NF-AT) by interfering with signaling processes that are probably located upstream of activation of phospholipase C. However, binding of SHP2 to SIT is not required for inhibition of NF-AT induction, suggesting that SIT not only regulates NF-AT activity but also controls NF-AT unrelated pathways of T cell activation involving SHP2. PMID:10209036

  18. Chemical and biological profiling of an annotated compound library directed to the nuclear receptor family.

    PubMed

    Cases, Montserrat; García-Serna, Ricard; Hettne, Kristina; Weeber, Marc; van der Lei, Johan; Boyer, Scott; Mestres, Jordi

    2005-01-01

    Nuclear receptors form a family of ligand-activated transcription factors that regulate a wide variety of biological processes and are thus generally considered relevant targets in drug discovery. We have constructed an annotated compound library directed to nuclear receptors (NRacl) as a means for integrating the chemical and biological data being generated within this family. Special care has been put in the appropriate storage of annotations by using hierarchical classification schemes for both molecules and nuclear receptors, which takes the ability to extract knowledge from annotated compound libraries to another level. Analysis of NRacl has ultimately led to the identification of scaffolds with highly promiscuous nuclear receptor profiles and to the classification of nuclear receptor groups with similar scaffold promiscuity patterns. This information can be exploited in the design of probing libraries for deorphanization activities as well as for devising screening batteries to address selectivity issues.

  19. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis

    PubMed Central

    Kim, Jihye; Sato, Mitsuo; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Larsen, Jill E.; Minna, John D.; Cha, Jeong-Heon; Jeong, Yangsik

    2015-01-01

    Lung cancer is caused by combinations of diverse genetic mutations. Here, to understand the relevance of nuclear receptors (NRs) in the oncogene-associated lung cancer pathogenesis, we investigated the expression profile of the entire 48 NR members by using QPCR analysis in a panel of human bronchial epithelial cells (HBECs) that included precancerous and tumorigenic HBECs harboring oncogenic K-rasV12 and/or p53 alterations. The analysis of the profile revealed that oncogenic alterations accompanied transcriptional changes in the expression of 19 NRs in precancerous HBECs and 15 NRs according to the malignant progression of HBECs. Amongst these, peroxisome proliferator-activated receptor gamma (PPARγ), a NR chosen as a proof-of-principle study, showed increased expression in precancerous HBECs, which was surprisingly reversed when these HBECs acquired full in vivo tumorigenicity. Notably, PPARγ activation by thiazolidinedione (TZD) treatment reversed the increased expression of pro-inflammatory cyclooxygenase 2 (COX2) in precancerous HBECs. In fully tumorigenic HBECs with inducible expression of PPARγ, TZD treatments inhibited tumor cell growth, clonogenecity, and cell migration in a PPARγ-sumoylation dependent manner. Mechanistically, the sumoylation of liganded-PPARγ decreased COX2 expression and increased 15-hydroxyprostaglandin dehydrogenase expression. This suggests that ligand-mediated sumoylation of PPARγ plays an important role in lung cancer pathogenesis by modulating prostaglandin metabolism. PMID:26244663

  20. Nuclear receptor coactivators facilitate vitamin D receptor homodimer action on direct repeat hormone response elements.

    PubMed

    Takeshita, A; Ozawa, Y; Chin, W W

    2000-03-01

    Vitamin D receptor (VDR) is a ligand-dependent transcription factor that regulates target gene expression. Although VDR forms stable heterodimer complex with retinoid X receptors (RXRs) on vitamin D-response elements (VDREs), it is still not clear whether VDR/RXR heterodimers are the only VDR complexes responsible for vitamin D-mediated gene transcription. In this report, we analyzed the effect of nuclear receptor coactivators (SRC-1 and TRAM-1) on VDR homodimer and VDR/RXR heterodimer formation by electrophoretic mobility shift assay. We found that VDR forms stable homodimers after interaction with the coactivators on a VDRE (DR+3). Of particular note, DR+4 and DR+5 hormone-response elements (HREs) may also support such interactions. Cotransfection experiments revealed further that the coactivators enhance ligand-induced VDR transcription on these elements. Our studies suggest the important role of VDR homodimers, in addition to VDR/RXR heterodimers, in vitamin D-induced transactivation. Thus, specific coactivator-VDR interactions on HREs may determine target gene transactivation.

  1. CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant.

    PubMed

    Sauvé, F; McBroom, L D; Gallant, J; Moraitis, A N; Labrie, F; Giguère, V

    2001-01-01

    Coregulators for nuclear receptors (NR) are factors that either enhance or repress their transcriptional activity. Both coactivators and corepressors have been shown to use similar but functionally distinct NR interacting determinants containing the core motifs LxxLL and PhixxPhiPhi, respectively. These interactions occur through a hydrophobic cleft located on the surface of the ligand-binding domain (LBD) of the NR and are regulated by ligand-dependent activation function 2 (AF-2). In an effort to identify novel coregulators that function independently of AF-2, we used the LBD of the orphan receptor RVR (which lacks AF-2) as bait in a yeast two-hybrid screen. This strategy led to the cloning of a nuclear protein referred to as CIA (coactivator independent of AF-2 function) that possesses both repressor and activator functions. Strikingly, we observed that CIA not only interacts with RVR and Rev-ErbAalpha in a ligand-independent manner but can also form complexes with estrogen receptor alpha (ERalpha) and ERbeta in vitro and enhances ERalpha transcriptional activity in the presence of estradiol (E(2)). CIA-ERalpha interactions were found to be independent of AF-2 and enhanced by the antiestrogens EM-652 and ICI 182,780 but not by 4-hydroxytamoxifen and raloxifene. We further demonstrate that CIA-ERalpha interactions require the presence within CIA of a novel bifunctional NR recognition determinant containing overlapping LxxLL and PhixxPhiPhi motifs. The identification and functional characterization of CIA suggest that hormone binding can create a functional coactivator interaction interface in the absence of AF-2.

  2. Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis

    PubMed Central

    Su, Jung-Chen; Mar, Ai-Chung; Wu, Szu-Hsien; Tai, Wei-Tien; Chu, Pei-Yi; Wu, Chia-Yun; Tseng, Ling-Ming; Lee, Te-Chang; Chen, Kuen-Feng; Liu, Chun-Yu; Chiu, Hao-Chieh; Shiau, Chung-Wai

    2016-01-01

    Patients with triple-negative breast cancer (TNBC) had an increased likelihood of distant recurrence and death, as compared with those with non-TNBC subtype. Regorafenib is a multi-receptor tyrosine kinase (RTK) inhibitor targeting oncogenesis and has been approved for metastatic colorectal cancer and advanced gastrointestinal stromal tumor. Recent studies suggest regorafenib acts as a SHP-1 phosphatase agonist. Here, we investigated the potential of regorafenib to suppress metastasis of TNBC cells through targeting SHP-1/p-STAT3/VEGF-A axis. We found a significant correlation between cancer cell migration and SHP-1/p-STAT3/VEGF-A expression in human TNBC cells. Clinically, high VEGF-A expression is associated with worse disease-free and distant metastasis-free survival. Regorafenib induced significant anti-migratory effects, in association with downregulation of p-STAT3 and VEGF-A. To exclude the role of RTK inhibition in regorafenib-induced anti-metastasis, we synthesized a regorafenib derivative, SC-78, that had minimal effect on VEGFR2 and PDGFR kinase inhibition, while having more potent effects on SHP-1 activation. SC-78 demonstrated superior in vitro and in vivo anti-migration to regorafenib. Furthermore, VEGF-A dependent autocrine/paracrine loops were disrupted by regorafenib and SC-78. This study implies that SHP-1/p-STAT3/VEGF-A axis is a potential therapeutic target for metastatic TNBC, and the more potent SC-78 may be a promising lead for suppressing metastasis of TNBC. PMID:27364975

  3. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    PubMed Central

    Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana

    2016-01-01

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug’s impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and

  4. Hepatocyte growth factor (HGF) signals through SHP2 to regulate primary mouse myoblast proliferation

    SciTech Connect

    Li, Ju; Reed, Sarah A.; Johnson, Sally E.

    2009-08-01

    Niche localized HGF plays an integral role in G{sub 0} exit and the return to mitotic activity of adult skeletal muscle satellite cells. HGF actions are regulated by MET initiated intracellular signaling events that include recruitment of SHP2, a protein tyrosine phosphatase. The importance of SHP2 in HGF-mediated signaling was examined in myoblasts and primary cultures of satellite cells. Myoblasts stably expressing SHP2 (23A2-SHP2) demonstrate increased proliferation rates by comparison to controls or myoblasts expressing a phosphatase-deficient SHP2 (23A2-SHP2DN). By comparison to 23A2 myoblasts, treatment of 23A2-SHP2 cells with HGF does not further increase proliferation rates and 23A2-SHP2DN myoblasts are unresponsive to HGF. Importantly, the effects of SHP2 are independent of downstream ERK1/2 activity as inclusion of PD98059 does not blunt the HGF-induced proliferative response. SHP2 function was further evaluated in primary satellite cell cultures. Ectopic expression of SHP2 in satellite cells tends to decrease proliferation rates and siSHP2 causes an increase the percentage of dividing myogenic cells. Interestingly, treatment of satellite cells with high concentrations of HGF (50 ng/ml) inhibits proliferation, which can be overcome by knockdown of SHP2. From these results, we conclude that HGF signals through SHP2 in myoblasts and satellite cells to directly alter proliferation rates.

  5. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis

    PubMed Central

    Watson, Neva B.; Schneider, Karin M.; Massa, Paul T.

    2015-01-01

    Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the central nervous system causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator SHP-1, which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler’s murine encephalomyelitis virus infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification with loss of ambulation in wild type mice. Surprisingly, although similar extensive myofiber infection and inflammation is observed in SHP-1-deficient (SHP-1−/−) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1−/− muscle, and an increased infiltration of immature monocytes/macrophages correlated with absence of clinical disease in SHP-1−/− mice, while mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus-induced myopathy. PMID:25681345

  6. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR

    PubMed Central

    2013-01-01

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism. PMID:22414897

  7. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR.

    PubMed

    Calkin, Anna C; Tontonoz, Peter

    2012-03-14

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism.

  8. ATP-dependent release of glucocorticoid receptors from the nuclear matrix.

    PubMed Central

    Tang, Y; DeFranco, D B

    1996-01-01

    Glucocorticoid receptors (GRs) have the capacity to shuttle between the nuclear and cytoplasmic compartments, sharing that trait with other steroid receptors and unrelated nuclear proteins of diverse function. Although nuclear import of steroid receptors, like that of nearly all other karyophilic proteins examined to date, requires ATP, there appear to be different energetic requirements for export of proteins, including steroid receptors, from nuclei. In an attempt to reveal which steps, if any, in the nuclear export pathway utilized by steroid receptors require ATP, we have used indirect immunofluorescence to visualize GRs within cells subjected to a reversible ATP depletion. Under conditions which lead to >95% depletion of cellular ATP levels within 90 min, GRs remain localized within nuclei and do not efflux into the cytoplasm. Under analogous conditions of ATP depletion, transfected progesterone receptors are also retained within nuclei. Importantly, GRs which accumulate within nuclei of ATP-depleted cells are distinguished from nuclear receptors in metabolically active cells by their resistance to in situ extraction with a hypotonic, detergent-containing buffer. GRs in ATP-depleted cells are not permanently trapped in this nuclear compartment, as nuclear receptors rapidly regain their capacity to be extracted upon restoration of cellular ATP, even in the absence of de novo protein synthesis. More extensive extraction of cells with high salt and detergent, coupled with DNase I digestion, established that a significant fraction of GRs in ATP-depleted cells are associated with an RNA-containing nuclear matrix. Quantitative Western blot (immunoblot) analysis confirmed the dramatic increase in GR binding to the nuclear matrix of ATP-depleted cells, while confocal microscopy revealed that GRs are bound to the matrix throughout all planes of the nucleus. ATP depletion does not lead to wholesale collapse of nuclear proteins onto the matrix, as the interaction of a

  9. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    PubMed Central

    Li, Guodong; L. Guo, Grace

    2015-01-01

    The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs) are ligands of farnesoid X receptor (FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration. PMID:26579433

  10. Orphan Nuclear Receptor Estrogen-Related Receptor γ (ERRγ) Is Key Regulator of Hepatic Gluconeogenesis*

    PubMed Central

    Kim, Don-Kyu; Ryu, Dongryeol; Koh, Minseob; Lee, Min-Woo; Lim, Donghyun; Kim, Min-Jung; Kim, Yong-Hoon; Cho, Won-Jea; Lee, Chul-Ho; Park, Seung Bum; Koo, Seung-Hoi; Choi, Hueng-Sik

    2012-01-01

    Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in hepatic gluconeogenesis and demonstrate a beneficial impact of the inverse agonist GSK5182. Hepatic ERRγ expression was increased by fasting-dependent activation of the cAMP-response element-binding protein-CRTC2 pathway. Overexpression of ERRγ induced Pck1 and G6PC gene expression and glucose production in primary hepatocytes, whereas abolition of ERRγ gene expression attenuated forskolin-mediated induction of gluconeogenic gene expression. Deletion and mutation analyses of the Pck1 promoter showed that ERRγ directly regulates the Pck1 gene transcription via ERR response elements of the Pck1 promoter as confirmed by ChIP assay and in vivo imaging analysis. We also demonstrate that GSK5182, an inverse agonist of ERRγ, specifically inhibits the transcriptional activity of ERRγ in a PGC-1α dependent manner. Finally, the ERRγ inverse agonist ameliorated hyperglycemia through inhibition of hepatic gluconeogenesis in db/db mice. Control of hepatic glucose production by an ERRγ-specific inverse agonist is a new potential therapeutic approach for the treatment of type 2 diabetes. PMID:22549789

  11. Nuclear receptor coregulators: modulators of pathology and therapeutic targets

    PubMed Central

    Lonard, David M.; O’Malley, Bert W.

    2013-01-01

    The nuclear receptor superfamily includes transcription factors that transduce steroid, thyroid and retinoid hormones and other ligands in conjunction with coregulators. To date, over 350 coregulators have been reported in the literature, and advances in proteomic analyses of coregulator protein complexes have revealed that a far greater number of coregulator-interacting proteins also exist. Coregulator dysfunction has been implicated in diverse pathological states, genetic syndromes and cancer. A hallmark of disease related to the disruption of normal coregulator function is the pleiotropic effect on animal physiology, which is frequently manifested as the dysregulation of metabolic and neurological systems. Coregulators have broad physiological and pathological functions that make them promising new drug targets for diseases such as hormone-dependent cancers. Advances in proteomics, genomics and transcriptomics have provided novel insights into the biology of coregulators at a system-wide level and will lead the way to a new understanding of how coregulators can be evaluated in the context of complex and multifaceted genetic factors, hormones, diet, the environment and stress. Ultimately, better knowledge of the associations that exist between coregulator function and human diseases is expected to expand the indications for the use of future coregulator-targeted drugs. PMID:22733267

  12. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    NASA Astrophysics Data System (ADS)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) – tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  13. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    NASA Astrophysics Data System (ADS)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  14. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    PubMed Central

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-01-01

    Using a series of immunoprecipitation (IP) – tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway. PMID:26839216

  15. Orphan nuclear receptor small heterodimer partner inhibits angiotensin II- stimulated PAI-1 expression in vascular smooth muscle cells.

    PubMed

    Lee, Kyeong-Min; Seo, Hye-Young; Kim, Mi-Kyung; Min, Ae-Kyung; Ryu, Seong-Yeol; Kim, Yoon-Nyun; Park, Young Joo; Choi, Hueng-Sik; Lee, Ki-Up; Park, Wan-Ju; Park, Keun-Gyu; Lee, In-Kyu

    2010-01-31

    Angiotensin II is a major effector molecule in the development of cardiovascular disease. In vascular smooth muscle cells (VSMCs), angiotensin II promotes cellular proliferation and extracellular matrix accumulation through the upregulation of plasminogen activator inhibitor-1 (PAI-1) expression. Previously, we demonstrated that small heterodimer partner (SHP) represses PAI-1 expression in the liver through the inhibition of TGF-beta signaling pathways. Here, we investigated whether SHP inhibited angiotensin II-stimulated PAI-1 expression in VSMCs. Adenovirus-mediated overexpression of SHP (Ad- SHP) in VSMCs inhibited angiotensin II- and TGF-beta-stimulated PAI-1 expression. Ad-SHP also inhibited angiotensin II-, TGF-beta- and Smad3-stimulated PAI-1 promoter activity, and angiotensin II-stimulated AP-1 activity. The level of PAI-1 expression was significantly higher in VSMCs of SHP(-/-) mice than wild type mice. Moreover, loss of SHP increased PAI-1 mRNA expression after angiotensin II treatment. These results suggest that SHP inhibits PAI-1 expression in VSMCs through the suppression of TGF-beta/Smad3 and AP-1 activity. Thus, agents that target the induction of SHP expression in VSMCs might help prevent the development and progression of atherosclerosis.

  16. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  17. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  18. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate.

    PubMed

    Tyagi, R K; Amazit, L; Lescop, P; Milgrom, E; Guiochon-Mantel, A

    1998-11-01

    Steroid hormone receptors are, in most cases, mainly nuclear proteins that undergo a continuous nucleocytoplasmic shuttling. The mechanism of the nuclear export of these proteins remains largely unknown. To approach this problem experimentally in vivo, we have prepared cell lines permanently coexpressing the wild-type nuclear progesterone receptor (PR) and a cytoplasmic receptor mutant deleted of its nuclear localization signal (NLS) [(deltaNLS)PR]. Each receptor species was deleted from the epitope recognized by a specific monoclonal antibody, thus allowing separated observation of the two receptor forms in the same cells. Administration of hormone provoked formation of heterodimers during nucleocytoplasmic shuttling and import of (deltaNLS)PR into the nucleus. Washing out of the hormone allowed us to follow the export of (deltaNLS)PR into the cytoplasm. Microinjection of BSA coupled to a NLS inhibited the export of (deltaNLS)PR. On the contrary, microinjection of BSA coupled to a nuclear export signal (NES) was without effect. Moreover, leptomycin B, which inhibits NES-mediated export, was also without effect. tsBN2 cells contain a thermosensitive RCC1 protein (Ran GTP exchange protein). At the nonpermissive temperature, the nuclear export of (deltaNLS)PR could be observed, whereas the export of NES-BSA was suppressed. Microinjection of GTPgammaS confirmed that the export of (deltaNLS)PR was not dependent on GTP hydrolysis. These experiments show that the nuclear export of PR is not NES mediated but probably involves the NLS. It does not involve Ran GTP, and it is not dependent on the hydrolysis of GTP. The nucleocytoplasmic shuttling of steroid hormone receptors thus appears to utilize mechanisms different from those previously described for some viral, regulatory, and heterogeneous ribonuclear proteins. PMID:9817595

  19. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.

    PubMed

    Lumba, Shelley; Cutler, Sean; McCourt, Peter

    2010-01-01

    Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.

  20. Possible mechanisms and function of nuclear trafficking of the colony-stimulating factor-1 receptor.

    PubMed

    Rovida, Elisabetta; Dello Sbarba, Persio

    2014-10-01

    Receptor tyrosine kinases (RTK) have long being studied with respect to the "canonical" signaling. This includes ligand-induced activation of a receptor tyrosine kinase at the cell surface that leads to receptor dimerization, followed by its phosphorylation in the intracellular domain and activation. The activated receptor then recruits cytoplasmic signaling molecules including other kinases. Activation of the downstream signaling cascade frequently leads to changes in gene expression following nuclear translocation of downstream targets. However, RTK themselves may localize within the nucleus, as either full-length molecules or cleaved fragments, with or without their ligands. Significant differences in this mechanism have been reported depending on the individual RTK, cellular context or disease. Accumulating evidences indicate that the colony-stimulating factor-1 receptor (CSF-1R) may localize within the nucleus. To date, however, little is known about the mechanism of CSF-1R nuclear shuttling, as well as the functional role of nuclear CSF-1R.

  1. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor.

    PubMed Central

    Cavaillès, V; Dauvois, S; L'Horset, F; Lopez, G; Hoare, S; Kushner, P J; Parker, M G

    1995-01-01

    A conserved region in the hormone-dependent activation domain AF2 of nuclear receptors plays an important role in transcriptional activation. We have characterized a novel nuclear protein, RIP140, that specifically interacts in vitro with this domain of the estrogen receptor. This interaction was increased by estrogen, but not by anti-estrogens and the in vitro binding capacity of mutant receptors correlates with their ability to stimulate transcription. RIP140 also interacts with estrogen receptor in intact cells and modulates its transcriptional activity in the presence of estrogen, but not the anti-estrogen 4-hydroxytamoxifen. In view of its widespread expression in mammalian cells, RIP140 may interact with other members of the superfamily of nuclear receptors and thereby act as a potential co-activator of hormone-regulated gene transcription. Images PMID:7641693

  2. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression (S)

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  3. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  4. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors

    EPA Science Inventory

    The bacteriostat triclosan (2,4,40-trichloro-20-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergenc...

  5. LASSO-ing Potential Nuclear Receptor Agonists and Antagonists: A New Computational Method for Database Screening

    EPA Science Inventory

    Nuclear receptors (NRs) are important biological macromolecular transcription factors that are implicated in multiple biological pathways and may interact with other xenobiotics that are endocrine disruptors present in the environment. Examples of important NRs include the androg...

  6. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  7. Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer's disease.

    PubMed

    Savage, Julie C; Jay, Taylor; Goduni, Elanda; Quigley, Caitlin; Mariani, Monica M; Malm, Tarja; Ransohoff, Richard M; Lamb, Bruce T; Landreth, Gary E

    2015-04-22

    Alzheimer's disease (AD) is characterized by a robust inflammatory response elicited by the accumulation and subsequent deposition of amyloid (Aβ) within the brain. The brain's immune cells migrate to and invest their processes within Aβ plaques but are unable to efficiently phagocytose and clear plaques from the brain. Previous studies have shown that treatment of myeloid cells with nuclear receptor agonists increases expression of phagocytosis-related genes. In this study, we elucidate a novel mechanism by which nuclear receptors act to enhance phagocytosis in the AD brain. Treatment of murine models of AD with agonists of the nuclear receptors PPARγ, PPARδ, LXR, and RXR stimulated microglial phagocytosis in vitro and rapidly induced the expression of the phagocytic receptors Axl and MerTK. In murine models of AD, we found that plaque-associated macrophages expressed Axl and MerTK and treatment of the cells with an RXR agonist further induced their expression, coincident with the rapid reduction in plaque burden. Further characterization of MerTK(+)/Axl(+) macrophages revealed that they also expressed the phagocytic receptor TREM2 and high levels of CD45, consistent with a peripheral origin of these cells. Importantly, in an ex vivo slice assay, nuclear receptor agonist treatment reversed the AD-related suppression of phagocytosis through a MerTK-dependent mechanism. Thus, nuclear receptor agonists increase MerTK and Axl expression on plaque-associated immune cells, consequently licensing their phagocytic activity and promoting plaque clearance.

  8. How does oxygen rise drive evolution? Clues from oxygen-dependent biosynthesis of nuclear receptor ligands

    SciTech Connect

    Jiang, Ying-Ying; Kong, De-Xin; Qin, Tao; Zhang, Hong-Yu

    2010-01-08

    It is well known that oxygen rise greatly facilitated biological evolution. However, the underlying mechanisms remain elusive. Recently, Raymond and Segre revealed that molecular oxygen allows 1000 more metabolic reactions than can occur in anoxic conditions. From the novel metabolites produced in aerobic metabolism, we serendipitously found that some of the metabolites are signaling molecules that target nuclear receptors. Since nuclear signaling systems are indispensable to superior organisms, we speculated that aerobic metabolism may facilitate biological evolution through promoting the establishment of nuclear signaling systems. This hypothesis is validated by the observation that most (97.5%) nuclear receptor ligands are produced by aerobic metabolism, which is further explained in terms of the chemical criteria (appropriate volume and rather high hydrophobicity) of nuclear receptor ligands that aerobic metabolites are more ready than anaerobic counterparts to satisfy these criteria.

  9. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities.

  10. The HR97 (NR1L) Group of Nuclear Receptors: A New Group up of Nuclear Receptors Discovered in Daphnia species

    PubMed Central

    Li, Yangchun; Ginjupalli, Gautam K.; Baldwin, William S.

    2014-01-01

    The recently sequenced Daphnia pulex genome revealed the NR1L nuclear receptor group consisting of three novel receptors. Phylogenetic studies show that this group is related to the NR1I group (CAR/PXR/VDR) and the NR1J group (HR96), and were subsequently named HR97a/b/g. Each of the HR97 paralogs from Daphnia magna, a commonly used crustacean in toxicity testing, was cloned, sequenced, and partially characterized. Phylogenetic analysis indicates that the HR97 receptors are present in primitive arthropods such as the chelicerates but lost in insects. qPCR and immunohistochemistry demonstrate that each of the receptors is expressed near or at reproductive maturity, and that HR97g, the most ancient of the HR97 receptors, is primarily expressed in the gastrointestinal tract, mandibular region, and ovaries, consistent with a role in reproduction. Transactivation assays using an HR97a/b/g-GAL4 chimera indicate that unlike Daphnia HR96 that is promiscuous with respect to ligand recognition, the HR97 receptors do not respond to many of the ligands that activate CAR/PXR/HR96 nuclear receptors. Only three putative ligands of HR97 receptors were identified in this study: pyriproxyfen, methyl farnesoate, and arachidonic acid. Only arachidonic acid, which acts as an inverse agonist, alters HR97g activity at concentrations that would be considered within physiologically relevant ranges. Overall, this study demonstrates that, although closely related to the promiscuous receptors in the NR1I and NR1J groups, the HR97 receptors are mostly likely not multi-xenobiotic sensors, but rather may perform physiological functions, potentially in reproduction, unique to crustaceans and other non-insect arthropod groups. PMID:25092536

  11. PPARs: Nuclear Receptors Controlled by, and Controlling, Nutrient Handling through Nuclear and Cytosolic Signaling.

    PubMed

    Moreno, Maria; Lombardi, Assunta; Silvestri, Elena; Senese, Rosalba; Cioffi, Federica; Goglia, Fernando; Lanni, Antonia; de Lange, Pieter

    2010-01-01

    Peroxisome proliferator-activated receptors (PPARs), which are known to regulate lipid homeostasis, are tightly controlled by nutrient availability, and they control nutrient handling. In this paper, we focus on how nutrients control the expression and action of PPARs and how cellular signaling events regulate the action of PPARs in metabolically active tissues (e.g., liver, skeletal muscle, heart, and white adipose tissue). We address the structure and function of the PPARs, and their interaction with other nuclear receptors, including PPAR cross-talk. We further discuss the roles played by different kinase pathways, including the extracellular signal-regulated kinases/mitogen-activated protein kinase (ERK MAPK), AMP-activated protein kinase (AMPK), Akt/protein kinase B (Akt/PKB), and the NAD+-regulated protein deacetylase SIRT1, serving to control the activity of the PPARs themselves as well as that of a key nutrient-related PPAR coactivator, PPARgamma coactivator-1alpha (PGC-1alpha). We also highlight how currently applied nutrigenomic strategies will increase our understanding on how nutrients regulate metabolic homeostasis through PPAR signaling.

  12. The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor.

    PubMed

    Casa, Angelo J; Hochbaum, Daniel; Sreekumar, Sreeja; Oesterreich, Steffi; Lee, Adrian V

    2015-11-01

    Fulvestrant, a selective estrogen receptor down-regulator (SERD) is a pure competitive antagonist of estrogen receptor alpha (ERα). Fulvestrant binds ERα and reduces the receptor's half-life by increasing protein turnover, however, its mechanism of action is not fully understood. In this study, we show that removal of the ERα nuclear localization sequence (ERΔNLS) resulted in a predominantly cytoplasmic ERα that was degraded in response to 17-β-estradiol (E2) but was resistant to degradation by fulvestrant. ERΔNLS bound the ligands and exhibited receptor interaction similar to ERα, indicating that the lack of degradation was not due to disruption of these processes. Forcing ERΔNLS into the nucleus with a heterologous SV40-NLS did not restore degradation, suggesting that the NLS domain itself, and not merely receptor localization, is critical for fulvestrant-induced ERα degradation. Indeed, cloning of the endogenous ERα NLS onto the N-terminus of ERΔNLS significantly restored both its nuclear localization and turnover in response to fulvestrant. Moreover, mutation of the sumoylation targets K266 and K268 within the NLS impaired fulvestrant-induced ERα degradation. In conclusion, our study provides evidence for the unique role of the ERα NLS in fulvestrant-induced degradation of the receptor.

  13. The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1.

    PubMed

    Sablin, Elena P; Woods, April; Krylova, Irina N; Hwang, Peter; Ingraham, Holly A; Fletterick, Robert J

    2008-11-25

    The Dax-1 protein is an enigmatic nuclear receptor that lacks an expected DNA binding domain, yet functions as a potent corepressor of nuclear receptors. Here we report the structure of Dax-1 bound to one of its targets, liver receptor homolog 1 (LRH-1). Unexpectedly, Dax-1 binds to LRH-1 using a new module, a repressor helix built from a family conserved sequence motif, PCFXXLP. Mutations in this repressor helix that are linked with human endocrine disorders dissociate the complex and attenuate Dax-1 function. The structure of the Dax-1:LRH-1 complex provides the molecular mechanism for the function of Dax-1 as a potent transcriptional repressor. PMID:19015525

  14. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    PubMed Central

    Vázquez, Mary Carmen; Rigotti, Attilio; Zanlungo, Silvana

    2012-01-01

    Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition. PMID:22132343

  15. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.

    PubMed

    Rühl, R; Landrier, J F

    2016-01-01

    Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors.

  16. Epithelial Tyrosine Phosphatase SHP-2 Protects against Intestinal Inflammation in Mice

    PubMed Central

    Coulombe, Geneviève; Leblanc, Caroline; Cagnol, Sébastien; Maloum, Faiza; Lemieux, Étienne; Perreault, Nathalie; Feng, Gen-Sheng; Boudreau, François

    2013-01-01

    Polymorphisms of PTPN11 encoding SHP-2 are biomarkers for ulcerative colitis (UC) susceptibility. However, their functional relevance is unknown. We thus investigated the role of epithelial SHP-2 in the control of intestinal homeostasis. Mice with an intestinal epithelial cell-specific SHP-2 deletion (SHP-2IEC-KO mice) were generated. Control and SHP-2IEC-KO mice were monitored for clinical symptoms and sacrificed for histological staining and Western blot analyses. Cytokines and chemokines, as well as intestinal permeability, were quantified. SHP-2 mRNA expression was evaluated in control and UC patients. SHP-2IEC-KO mice showed growth retardation compared to control littermates and rapidly developed severe colitis. Colon architecture was markedly altered with infiltration of immune cells, crypt abscesses, neutrophil accumulation, and reduced goblet cell numbers. Decreased expression of claudins was associated with enhanced intestinal permeability in mutant SHP-2IEC-KO mice. Inflammatory transcription factors Stat3 and NF-κB were hyperactivated early in the mutant colonic epithelium. Levels of several epithelial chemokines and cytokines were markedly enhanced in SHP-2IEC-KO mice. Of note, antibiotic treatment remarkably impaired the development of colitis in SHP-2IEC-KO mice. Finally, SHP-2 mRNA levels were significantly reduced in intestinal biopsy specimens from UC patients. Our results establish intestinal epithelial SHP-2 as a critical determinant for prevention of gut inflammation. PMID:23530062

  17. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling.

    PubMed

    Noda, Saori; Takahashi, Atsushi; Hayashi, Takeru; Tanuma, Sei-ichi; Hatakeyama, Masanori

    2016-01-22

    SHP2, encoded by the PTPN11 gene, is a protein tyrosine phosphatase that plays a key role in the proliferation of cells via RAS-ERK activation. SHP2 also promotes Wnt signaling by dephosphorylating parafibromin. Germline missense mutations of PTPN11 are found in more than half of patients with Noonan syndrome (NS) and LEOPARD syndrome (LS), both of which are congenital developmental disorders with multiple common symptoms. However, whereas NS-associated PTPN11 mutations give rise to gain-of-function SHP2 mutants, LS-associated SHP2 mutants are reportedly loss-of-function mutants. To determine the phosphatase activity of LS-associated SHP2 more appropriately, we performed an in vitro phosphatase assay using tyrosine-phosphorylated parafibromin, a biologically relevant substrate of SHP2 and the positive regulator of Wnt signaling that is activated through SHP2-mediated dephosphorylation. We found that LS-associated SHP2 mutants (Y279C, T468M, Q506P, and Q510E) exhibited a substantially reduced phosphatase activity toward parafibromin when compared with wild-type SHP2. Furthermore, each of the LS-associated mutants displayed a differential degree of decrease in phosphatase activity. Deviation of the SHP2 catalytic activity from a certain range, either too strong or too weak, may therefore lead to similar clinical outcomes in NS and LS, possibly through an imbalanced Wnt signal caused by inadequate dephosphorylation of parafibromin.

  18. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes.

    PubMed

    Yin, Kelvin; Smith, Aaron G

    2016-10-01

    The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis. PMID:27544210

  19. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes.

    PubMed

    Yin, Kelvin; Smith, Aaron G

    2016-10-01

    The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis.

  20. SHP-2 phosphatase activity is required for PECAM-1-dependent cell motility.

    PubMed

    Zhu, Jing-Xu; Cao, Gaoyuan; Williams, James T; Delisser, Horace M

    2010-10-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in endothelial cell motility during angiogenesis. Although there is evidence that SHP-2 plays a role in PECAM-1-dependent cell motility, the molecular basis of the activity of SHP-2 in this process has not been defined. To investigate the requirement of SHP-2 in PECAM-1-dependent cell motility, studies were done in which various constructs of SHP-2 were expressed in cell transfectants expressing PECAM-1. We observed that the levels of PECAM-1 tyrosine phosphorylation and SHP-2 association with PECAM-1 were significantly increased in cells expressing a phosphatase-inactive SHP-2 mutant, suggesting that the level of PECAM-1 tyrosine phosphorylation, and thus SHP-2 binding are regulated in part by bound, catalytically active SHP-2. We subsequently found that expression of PECAM-1 stimulated wound-induced migration and the formation of filopodia (a morphological feature of motile cells). These activities were associated with increased mitogen-activated protein kinase (MAPK) activation and the dephosphorylation of paxillin (an event implicated in the activation of MAPK). The phosphatase-inactive SHP-2 mutant, however, suppressed these PECAM-1-dependent phenomena, whereas the activity of PECAM-1 expressing cells was not altered by expression of wild-type SHP-2 or SHP-2 in which the scaffold/adaptor function had been disabled. Pharmacological inhibition of SHP-2 phosphatase activity also suppressed PECAM-1-dependent motility. Furthermore, PECAM-1 expression also stimulates tube formation, but none of the SHP-2 constructs affected this process. These findings therefore suggest a model for the involvement of SHP-2 in PECAM-1-dependent motility in which SHP-2, recruited by its interaction with PECAM-1, targets paxillin to ultimately activate the MAPK pathway and downstream events required for cell motility. PMID:20631249

  1. Nuclear localization of Formyl-Peptide Receptor 2 in human cancer cells.

    PubMed

    Cattaneo, Fabio; Parisi, Melania; Fioretti, Tiziana; Sarnataro, Daniela; Esposito, Gabriella; Ammendola, Rosario

    2016-08-01

    Current models of G protein-coupled receptors (GPCRs) signaling describe binding of external agonists to cell surface receptors which, in turn, trigger several biological responses. New paradigms indicate that GPCRs localize to and signal at the nucleus, thus regulating distinct signaling cascades. The formyl-peptide receptor FPR2 belongs to the GPCR super-family and is coupled to PTX-sensitive Gi proteins. We show by western blot analysis, immunofluorescence experiments and radioligand binding assays that FPR2 is expressed at nuclear level in CaLu-6 and AGS cells. Nuclear FPR2 is a functional receptor, since it participates in intra-nuclear signaling, as assessed by decreased G protein-FPR2 association and enhanced ERK2, c-Jun and c-Myc phosphorylation upon stimulation of intact nuclei with the FPR2 agonist, WKYMVm. We analyzed FPR2 sequence for the search of a nuclear localization sequence (NLS) and we found a stretch of basic aminoacids (227-KIHKK-231) in the third cytoplasmic loop of the receptor. We performed single (K230A) and multiple (H229A/K230A/K231A) mutagenesis of NLS. The constructs were individually overexpressed in HEK293 cells and immunofluorescence and western blot analysis showed that nuclear localization or translocation of FPR2 depends on the integrity of the H(229) and K(231) residues within the NLS. PMID:27177968

  2. Nuclear Compartmentalization of α1-Adrenergic Receptor Signaling in Adult Cardiac Myocytes

    PubMed Central

    Wu, Steven C.

    2015-01-01

    Abstract: Although convention dictates that G protein-coupled receptors localize to and signal at the plasma membrane, accumulating evidence suggests that G protein-coupled receptors localize to and signal at intracellular membranes, most notably the nucleus. In fact, there is now significant evidence indicating that endogenous alpha-1 adrenergic receptors (α1-ARs) localize to and signal at the nuclei in adult cardiac myocytes. Cumulatively, the data suggest that α1-ARs localize to the inner nuclear membrane, activate intranuclear signaling, and regulate physiologic function in adult cardiac myocytes. Although α1-ARs signal through Gαq, unlike other Gq-coupled receptors, α1-ARs mediate important cardioprotective functions including adaptive/physiologic hypertrophy, protection from cell death (survival signaling), positive inotropy, and preconditioning. Also unlike other Gq-coupled receptors, most, if not all, functional α1-ARs localize to the nuclei in adult cardiac myocytes, as opposed to the sarcolemma. Together, α1-AR nuclear localization and cardioprotection might suggest a novel model for compartmentalization of Gq-coupled receptor signaling in which nuclear Gq-coupled receptor signaling is cardioprotective. PMID:25264754

  3. Akt and SHP-1 are DC-intrinsic checkpoints for tumor immunity

    PubMed Central

    Prestwood, Tyler R.; Spitzer, Matthew H.; Linde, Ian L.; Chabon, Jonathan; Reticker-Flynn, Nathan E.; Bhattacharya, Nupur; Zhang, Hong; Zhang, Xiangyue; Basto, Pamela A.; Burt, Bryan M.; Alonso, Michael N.; Engleman, Edgar G.

    2016-01-01

    BM-derived DC (BMDC) are powerful antigen-presenting cells. When loaded with immune complexes (IC), consisting of tumor antigens bound to antitumor antibody, BMDC induce powerful antitumor immunity in mice. However, attempts to employ this strategy clinically with either tumor-associated DC (TADC) or monocyte-derived DC (MoDC) have been disappointing. To investigate the basis for this phenomenon, we compared the response of BMDC, TADC, and MoDC to tumor IgG-IC. Our findings revealed, in both mice and humans, that upon exposure to IgG-IC, BMDC internalized the IC, increased costimulatory molecule expression, and stimulated autologous T cells. In contrast, TADC and, surprisingly, MoDC remained inert upon contact with IC due to dysfunctional signaling following engagement of Fcγ receptors. Such dysfunction is associated with elevated levels of the Src homology region 2 domain–containing phosphatase-1 (SHP-1) and phosphatases regulating Akt activation. Indeed, concomitant inhibition of both SHP-1 and phosphatases that regulate Akt activation conferred upon TADC and MoDC the capacity to take up and process IC and induce antitumor immunity in vivo. This work identifies the molecular checkpoints that govern activation of MoDC and TADC and their capacity to elicit T cell immunity. PMID:27812544

  4. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers.

    PubMed

    Roshan-Moniri, Mani; Hsing, Michael; Butler, Miriam S; Cherkasov, Artem; Rennie, Paul S

    2014-12-01

    Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers. PMID:25455729

  5. [The Biological Function of SHP2 in Human Disease].

    PubMed

    Li, S M

    2016-01-01

    Tyrosyl phosphorylation participates in various pathological and physiological processes, which are regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). The Src homology-2 domain containing phosphatase SHP2 (encoded by PTPN11) is an important phosphatase, which was found to be implicated in the regulation of genetic disease, development, metabolic, neurological, muscle, skeletal disease and cancer. Germline mutations in PTPN11 cause the Noonan Syndrome, LEOPARD syndrome and metachondromatosis. Somatic PTPN11 mutations occur in hematologic malignancies and in solid tumors. SHP2 is also an important component in oncogenic signaling pathways. It may play different roles in different stages and positions of human cancers. Whether SHP2 is an oncogene or cancer suppressor gene remains to be elucidated. Elucidation of the regulatory mechanisms of SHP2 in human disease will provide new insights into disease and new targets for therapy. Here, we summarized the structural basis and recent research progression on SHP2 in various human disease, including genetic and cancer diseases. PMID:27028808

  6. Orphan nuclear receptor DAX-1 acts as a novel corepressor of liver X receptor alpha and inhibits hepatic lipogenesis.

    PubMed

    Nedumaran, Balachandar; Kim, Gwang Sik; Hong, Sungpyo; Yoon, Young-Sil; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, Young Chul; Koo, Seung-Hoi; Choi, Hueng-Sik

    2010-03-19

    DAX-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is a member of the nuclear receptor superfamily that can repress diverse nuclear receptors and has a key role in adreno-gonadal development. Our previous report has demonstrated that DAX-1 can inhibit hepatocyte nuclear factor 4alpha transactivity and negatively regulate gluconeogenic gene expression (Nedumaran, B., Hong, S., Xie, Y. B., Kim, Y. H., Seo, W. Y., Lee, M. W., Lee, C. H., Koo, S. H., and Choi, H. S. (2009) J. Biol. Chem. 284, 27511-27523). Here, we further expand the role of DAX-1 in hepatic energy metabolism. Transfection assays have demonstrated that DAX-1 can inhibit the transcriptional activity of nuclear receptor liver X receptor alpha (LXRalpha). Physical interaction between DAX-1 and LXRalpha was confirmed Immunofluorescent staining in mouse liver shows that LXRalpha and DAX-1 are colocalized in the nucleus. Domain mapping analysis shows that the entire region of DAX-1 is involved in the interaction with the ligand binding domain region of LXRalpha. Competition analyses demonstrate that DAX-1 competes with the coactivator SRC-1 for repressing LXRalpha transactivity. Chromatin immunoprecipitation assay showed that endogenous DAX-1 recruitment on the SREBP-1c gene promoter was decreased in the presence of LXRalpha agonist. Overexpression of DAX-1 inhibits T7-induced LXRalpha target gene expression, whereas knockdown of endogenous DAX-1 significantly increases T7-induced LXRalpha target gene expression in HepG2 cells. Finally, overexpression of DAX-1 in mouse liver decreases T7-induced LXRalpha target gene expression, liver triglyceride level, and lipid accumulation. Overall, this study suggests that DAX-1, a novel corepressor of LXRalpha, functions as a negative regulator of lipogenic enzyme gene expression in liver. PMID:20080977

  7. Importin {beta}-type nuclear transport receptors have distinct binding affinities for Ran-GTP

    SciTech Connect

    Hahn, Silvia; Schlenstedt, Gabriel

    2011-03-18

    Highlights: {yields} Determination of binding properties of nuclear transport receptor/Ran-GTP complexes. {yields} Biosensor measurements provide constants for dissociation, on-rates, and off-rates. {yields} The affinity of receptors for Ran-GTP is widely divergent. {yields} Dissociation constants differ for three orders of magnitude. {yields} The cellular concentration of yeast Ran is not limiting. -- Abstract: Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin {beta} family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of {beta}-receptors and of other Ran-binding proteins was determined. We found that the number of {beta}-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.

  8. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    PubMed

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  9. Elevated copper impairs hepatic nuclear receptor function in Wilson’s disease

    PubMed Central

    Wooton-Kee, Clavia Ruth; Jain, Ajay K.; Wagner, Martin; Grusak, Michael A.; Finegold, Milton J.; Lutsenko, Svetlana; Moore, David D.

    2015-01-01

    Wilson’s disease (WD) is an autosomal recessive disorder that results in accumulation of copper in the liver as a consequence of mutations in the gene encoding the copper-transporting P-type ATPase (ATP7B). WD is a chronic liver disorder, and individuals with the disease present with a variety of complications, including steatosis, cholestasis, cirrhosis, and liver failure. Similar to patients with WD, Atp7b–/– mice have markedly elevated levels of hepatic copper and liver pathology. Previous studies have demonstrated that replacement of zinc in the DNA-binding domain of the estrogen receptor (ER) with copper disrupts specific binding to DNA response elements. Here, we found decreased binding of the nuclear receptors FXR, RXR, HNF4α, and LRH-1 to promoter response elements and decreased mRNA expression of nuclear receptor target genes in Atp7b–/– mice, as well as in adult and pediatric WD patients. Excessive hepatic copper has been described in progressive familial cholestasis (PFIC), and we found that similar to individuals with WD, patients with PFIC2 or PFIC3 who have clinically elevated hepatic copper levels exhibit impaired nuclear receptor activity. Together, these data demonstrate that copper-mediated nuclear receptor dysfunction disrupts liver function in WD and potentially in other disorders associated with increased hepatic copper levels. PMID:26241054

  10. Competitive Agonists and Antagonists of Steroid Nuclear Receptors: Evolution of the Concept or Its Reversal.

    PubMed

    Smirnova, O V

    2015-10-01

    The mechanisms displaying pure and mixed steroid agonist/antagonist activity as well as principles underlying in vivo action of selective steroid receptor modulators dependent on tissue or cell type including interaction with various types of nuclear receptors are analyzed in this work. Mechanisms of in vitro action for mixed agonist/antagonist steroids are discussed depending on: specific features of their interaction with receptor hormone-binding pocket; steroid-dependent allosteric modulation of interaction between hormone-receptor complex and hormone response DNA elements; features of interacting hormone-receptor complex with protein transcriptional coregulators; level and tissue-specific composition of transcriptional coregulators. A novel understanding regarding context-selective modulators replacing the concept of steroid agonists and antagonists is discussed.

  11. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors.

    PubMed

    Kojima, Hiroyuki; Takeuchi, Shinji; Van den Eede, Nele; Covaci, Adrian

    2016-03-14

    Organophosphate flame retardants (OPFRs) have been used in a wide variety of applications and detected in several environmental matrices, including indoor air and dust. Continuous human exposure to these chemicals is of growing concern. In this study, the agonistic and/or antagonistic activities of 12 primary OPFR-metabolites against ten human nuclear receptors were examined using cell-based transcriptional assays, and compared to those of their parent compounds. As a result, 3-hydroxylphenyl diphenyl phosphate and 4-hydroxylphenyl diphenyl phosphate showed more potent estrogen receptor α (ERα) and ERβ agonistic activity than did their parent, triphenyl phosphate (TPHP). In addition, these hydroxylated TPHP-metabolites also showed ERβ antagonistic activity at higher concentrations and exhibited pregnane X receptor (PXR) agonistic activity as well as androgen receptor (AR) and glucocorticoid receptor (GR) antagonistic activities at similar levels to those of TPHP. Bis(2-butoxyethyl) 3'-hydroxy-2-butoxyethyl phosphate and 2-hydroxyethyl bis(2-butoxyethyl) phosphate act as PXR agonists at similar levels to their parent, tris(2-butoxyethyl) phosphate. On the other hand, seven diester OPFR-metabolites and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate did not show any receptor activity. Taken together, these results suggest that hydroxylated TPHP-metabolites show increased estrogenicity compared to the parent compound, whereas the diester OPFR-metabolites may have limited nuclear receptor activity compared to their parent triester OPFRs.

  12. Orphan nuclear receptor NGFI-B forms dimers with nonclassical interface.

    PubMed

    Calgaro, Marcos R; Neto, Mario de Oliveira; Figueira, Ana Carolina M; Santos, Maria A M; Portugal, Rodrigo V; Guzzi, Carolina A; Saidemberg, Daniel M; Bleicher, Lucas; Vernal, Javier; Fernandez, Pablo; Terenzi, Hernán; Palma, Mario Sergio; Polikarpov, Igor

    2007-08-01

    The orphan receptor nerve growth factor-induced B (NGFI-B) is a member of the nuclear receptor's subfamily 4A (Nr4a). NGFI-B was shown to be capable of binding both as a monomer to an extended half-site containing a single AAAGGTCA motif and also as a homodimer to a widely separated everted repeat, as opposed to a large number of nuclear receptors that recognize and bind specific DNA sequences predominantly as homo- and/or heterodimers. To unveil the structural organization of NGFI-B in solution, we determined the quaternary structure of the NGFI-B LBD by a combination of ab initio procedures from small-angle X-ray scattering (SAXS) data and hydrogen-deuterium exchange followed by mass spectrometry. Here we report that the protein forms dimers in solution with a radius of gyration of 2.9 nm and maximum dimension of 9.0 nm. We also show that the NGFI-B LBD dimer is V-shaped, with the opening angle significantly larger than that of classical dimer's exemplified by estrogen receptor (ER) or retinoid X receptor (RXR). Surprisingly, NGFI-B dimers formation does not occur via the classical nuclear receptor dimerization interface exemplified by ER and RXR, but instead, involves an extended surface area composed of the loop between helices 3 and 4 and C-terminal fraction of the helix 3. Remarkably, the NGFI-B dimer interface is similar to the dimerization interface earlier revealed for glucocorticoid nuclear receptor (GR), which might be relevant to the recognition of cognate DNA response elements by NGFI-B and to antagonism of NGFI-B-dependent transcription exercised by GR in cells.

  13. The Nuclear Receptors of Biomphalaria glabrata and Lottia gigantea: Implications for Developing New Model Organisms

    PubMed Central

    Kaur, Satwant; Jobling, Susan; Jones, Catherine S.; Noble, Leslie R.; Routledge, Edwin J.; Lockyer, Anne E.

    2015-01-01

    Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different. PMID:25849443

  14. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  15. Nuclear hormone receptor coregulator: role in hormone action, metabolism, growth, and development.

    PubMed

    Mahajan, Muktar A; Samuels, Herbert H

    2005-06-01

    Nuclear hormone receptor coregulator (NRC) (also referred to as activating signal cointegrator-2, thyroid hormone receptor-binding protein, peroxisome proliferator activating receptor-interacting protein, and 250-kDa receptor associated protein) belongs to a growing class of nuclear cofactors widely known as coregulators or coactivators that are necessary for transcriptional activation of target genes. The NRC gene is also amplified and overexpressed in breast, colon, and lung cancers. NRC is a 2063-amino acid protein that harbors a potent N-terminal activation domain (AD1) and a second more centrally located activation domain (AD2) that is rich in Glu and Pro. Near AD2 is a receptor-interacting domain containing an LxxLL motif (LxxLL-1), which interacts with a wide variety of ligand-bound nuclear hormone receptors with high affinity. A second LxxLL motif (LxxLL-2) located in the C-terminal region of NRC is more restricted in its nuclear hormone receptor specificity. The intrinsic activation potential of NRC is regulated by a C-terminal serine, threonine, leucine-regulatory domain. The potential role of NRC as a cointegrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known transcriptional regulators including CBP/p300. Recent studies in mice indicate that deletion of both NRC alleles leads to embryonic lethality resulting from general growth retardation coupled with developmental defects in the heart, liver, brain, and placenta. NRC(-/-) mouse embryo fibroblasts spontaneously undergo apoptosis, indicating the importance of NRC as a prosurvival and antiapoptotic gene. Studies with 129S6 NRC(+/-) mice indicate that NRC is a pleiotropic regulator that is involved in growth, development, reproduction, metabolism, and wound healing.

  16. Nuclear β-adrenergic receptors modulate gene expression in adult rat heart

    PubMed Central

    Vaniotis, George; Del Duca, Danny; Trieu, Phan; Rohlicek, Charles V.; Hébert, Terence E.; Allen, Bruce G.

    2016-01-01

    Both β1- and β3-adrenergic receptors (β1ARs and β3ARs) are present on nuclear membranes in adult ventricular myocytes. These nuclear-localized receptors are functional with respect to ligand binding and effector activation. In isolated cardiac nuclei, the non-selective βAR agonist isoproterenol stimulated de novo RNA synthesis measured using assays of transcription initiation (Boivin et al., 2006 Cardiovasc Res. 71:69–78). In contrast, stimulation of endothelin receptors, another G protein-coupled receptor (GPCR) that localizes to the nuclear membrane, resulted in decreased RNA synthesis. To investigate the signalling pathway(s) involved in GPCR-mediated regulation of RNA synthesis, nuclei were isolated from intact adult rat hearts and treated with receptor agonists in the presence or absence of inhibitors of different mitogen-activated protein kinase (MAPK) and PI3K/PKB pathways. Components of p38, JNK, and ERK1/2 MAP kinase cascades as well as PKB were detected in nuclear preparations. Inhibition of PKB with triciribine, in the presence of isoproterenol, converted the activation of the βAR from stimulatory to inhibitory with regards to RNA synthesis, while ERK1/2, JNK and p38 inhibition reduced both basal and isoproterenol-stimulated activity. Analysis by qPCR indicated an increase in the expression of 18 S rRNA following isoproterenol treatment and a decrease in NFκB mRNA. Further qPCR experiments revealed that isoproterenol treatment also reduced the expression of several other genes involved in the activation of NFκB, while ERK1/2 and PKB inhibition substantially reversed this effect. Our results suggest that GPCRs on the nuclear membrane regulate nuclear functions such as gene expression and this process is modulated by activation/inhibition of downstream protein kinases within the nucleus. PMID:20732414

  17. The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases

    PubMed Central

    Park, Benjamin V.; Pan, Fan

    2015-01-01

    Nuclear receptors play an essential role in cellular environmental sensing, differentiation, development, homeostasis, and metabolism and are thus highly conserved across multiple species. The anti-inflammatory role of nuclear receptors in immune cells has recently gained recognition. Nuclear receptors play critical roles in both myeloid and lymphoid cells, particularly in helper CD4+ T-cell type 17 (Th17) and regulatory T cells (Treg). Th17 and Treg have a major impact on cellular fate through their interactions with cytokine signaling pathways. Recent studies have emphasized the interactions between nuclear receptors and the known cytokine signals and how these interactions affect the expression and function of master transcription factors in Th17 and Treg subsets. This review will focus on the most recent discoveries concerning the roles of nuclear receptors in regulating the Th17/Treg cell-fate determination. PMID:25958843

  18. SHP1 tyrosine phosphatase negatively regulates NPM-ALK tyrosine kinase signaling.

    PubMed

    Honorat, Jean-François; Ragab, Ashraf; Lamant, Laurence; Delsol, Georges; Ragab-Thomas, Jeannie

    2006-05-15

    Anaplastic large-cell lymphoma (ALCL) is frequently associated with the 2;5 translocation and expresses the NPM-ALK fusion protein, which possesses a constitutive tyrosine kinase activity. We analyzed SHP1 tyrosine phosphatase expression and activity in 3 ALK-positive ALCL cell lines (Karpas 299, Cost, and SU-DHL1) and in lymph node biopsies (n = 40). We found an inverse correlation between the level of NPM-ALK phosphorylation and SHP1 phosphatase activity. Pull-down and coimmunoprecipitation experiments demonstrated a SHP1/NPM-ALK association. Furthermore, confocal microscopy performed on ALCL cell lines and biopsy specimens showed the colocalization of the 2 proteins in cytoplasmic bodies containing Y664-phosphorylated NPM-ALK. Dephosphorylation of NPM-ALK by SHP1 demonstrated that NPM-ALK was a SHP1 substrate. Downregulation of SHP1 expression by RNAi in Karpas cells led to hyperphosphorylation of NPM-ALK, STAT3 activation, and increase in cell proliferation. Furthermore, SHP1 overexpression in 3T3 fibroblasts stably expressing NPM-ALK led to the decrease of NPM-ALK phosphorylation, lower cell proliferation, and tumor progression in nude mice. These findings show that SHP1 is a negative regulator of NPM-ALK signaling. The use of tissue microarrays revealed that 50% of ALK-positive ALCLs were positive for SHP1. Our results suggest that SHP1 could be a critical enzyme in ALCL biology and a potential therapeutic target.

  19. Tightly bound nuclear progesterone receptor is not phosphorylated in primary chick oviduct cultures.

    PubMed Central

    Garcia, T; Jung-Testas, I; Baulieu, E E

    1986-01-01

    Oviduct cells from estradiol-treated chicks were grown in primary culture. After 3-5 days of culture in medium containing estradiol, 90% of the cellular progesterone binding sites were detected in the cytosol. After exposure to [3H]progesterone at 37 degrees C, 80% of the progesterone binding sites were found in nuclear fractions. Progesterone receptor phosphorylation was assessed after incubating the cells with [32P]orthophosphate. Receptor components were immunoprecipitated with a specific polyclonal antibody (IgG-G3) and analyzed by NaDodSO4/PAGE and autoradiography. In the cytosol, constant amounts of 32P-labeled 110-kDa subunit (the B subunit, one of the progesterone-binding components of the receptor) and of the non-steroid-binding heat shock protein hsp90 were found, whether cells had been exposed to progesterone or not. No 32P-labeled 79-kDa subunit (the A subunit, another progesterone-binding subunit) was detected. Various procedures were used to solubilize nuclear progesterone receptor (0.5 M KCl, micrococcal nuclease, NaDodSO4), and in no case was 32P-labeled B subunit detected in the extracts. However, nonradioactive B subunit was detected by immunoblot in a nuclear KCl extract of progesterone-treated cells. These results suggest that the fraction of the B subunit that becomes strongly attached to nuclear structures is not phosphorylated upon exposure of cells to progesterone. Images PMID:3463987

  20. Application of an in silico liver model to determine nuclear receptor mediated pathways in liver cancer

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs in rodents can result in increased incidence of liver tumors. These are generally thought to develop through a non-genotoxic mechanism with...

  1. In vivo measurement of atrial natriuretic peptide receptors using nuclear imaging.

    PubMed

    Willenbrock, R; Lambert, R; Tremblay, J; Bavaria, G; Langlois, Y; Léveillé, J; Flanagan, R; Hamet, P

    1992-11-01

    We have successfully visualized atrial natriuretic peptide (ANP) receptors in vivo using nuclear imaging. 123I-Labelled ANP, injected in green vervet monkeys, was rapidly bound to ANP receptors in the kidneys and lungs. That the observed uptake was receptor mediated was demonstrated with competition studies using simultaneous injection of unlabelled ANP 99-126. It was possible to distinguish between the ANP receptor subtypes by the use of selective antagonists. Thus coinjection of ANP 102-121-des[Gln, Ser, Gly, Leu, Gly] (C-ANP), an ANP analog that selectively binds to the ANP C-receptor, decreased uptake in the kidneys by 50% but increased relative uptake in the lungs and soft tissues. This method permits for the first time, the dynamic in vivo analysis of ANP receptors and their interaction with endogenous ligand. Differences and changes in local ANP receptor concentrations and occupancy could be detected. Since ANP receptor density and affinity are influenced by various physiological and pathological conditions, clinical and diagnostic applications seem possible.

  2. Nuclear GPCRs in cardiomyocytes: an insider’s view of β-adrenergic receptor signaling

    PubMed Central

    Vaniotis, George; Allen, Bruce G.; Hébert, Terence E.

    2016-01-01

    In recent years, we have come to appreciate the complexity of G protein-coupled receptor signaling in general and β-adrenergic receptor (β-AR) signaling in particular. Starting originally from three β-AR subtypes expressed in cardiomyocytes with relatively simple, linear signaling cascades, it is now clear that there are large receptor-based networks which provide a rich and diverse set of responses depending on their complement of signaling partners and the physiological state. More recently, it has become clear that subcellular localization of these signaling complexes also enriches the diversity of phenotypic outcomes. Here, we review our understanding of the signaling repertoire controlled by nuclear β-AR subtypes as well our understanding of the novel roles for G proteins themselves in the nucleus, with a special focus, where possible, on their effects in cardiomyocytes. Finally, we discuss the potential pathological implications of alterations in nuclear β-AR signaling. PMID:21890692

  3. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    PubMed Central

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  4. The roles of nuclear receptors CAR and PXR in hepatic energy metabolism.

    PubMed

    Konno, Yoshihiro; Negishi, Masahiko; Kodama, Susumu

    2008-01-01

    Nuclear receptors constitutive active/androstane receptor (CAR) and pregnane X receptor (PXR) were originally characterized as transcription factors regulating the hepatic genes that encode drug metabolizing enzymes. Recent works have now revealed that these nuclear receptors also play the critical roles in modulating hepatic energy metabolism. While CAR and PXR directly bind to their response sequences phenobarbital-responsive enhancer module (PBREM) and xenobiotic responsive enhancer module (XREM) in the promoter of target genes to increase drug metabolism, the receptors also cross talk with various hormone responsive transcription factors such as forkhead box O1 (FoxO1), forkhead box A2 (FoxA2), cAMP-response element binding protein, and peroxisome proliferator activated receptor gamma coactivator 1alpha (PGC 1alpha) to decrease energy metabolism through down-regulating gluconeogenesis, fatty acid oxidation and ketogenesis and up-regulating lipogenesis. In addition, CAR modulates thyroid hormone activity by regulating type 1 deiodinase in the regenerating liver. Thus, CAR and PXR are now placed at the crossroad where both xenobiotics and endogenous stimuli co-regulate liver function.

  5. Computational identification of post-translational modification-based nuclear import regulations by characterizing nuclear localization signal-import receptor interaction.

    PubMed

    Lin, Jhih-Rong; Liu, Zhonghao; Hu, Jianjun

    2014-10-01

    The binding affinity between a nuclear localization signal (NLS) and its import receptor is closely related to corresponding nuclear import activity. PTM-based modulation of the NLS binding affinity to the import receptor is one of the most understood mechanisms to regulate nuclear import of proteins. However, identification of such regulation mechanisms is challenging due to the difficulty of assessing the impact of PTM on corresponding nuclear import activities. In this study we proposed NIpredict, an effective algorithm to predict nuclear import activity given its NLS, in which molecular interaction energy components (MIECs) were used to characterize the NLS-import receptor interaction, and the support vector regression machine (SVR) was used to learn the relationship between the characterized NLS-import receptor interaction and the corresponding nuclear import activity. Our experiments showed that nuclear import activity change due to NLS change could be accurately predicted by the NIpredict algorithm. Based on NIpredict, we developed a systematic framework to identify potential PTM-based nuclear import regulations for human and yeast nuclear proteins. Application of this approach has identified the potential nuclear import regulation mechanisms by phosphorylation of two nuclear proteins including SF1 and ORC6.

  6. Nuclear receptors as pharmacological targets, where are we now?

    PubMed

    Volle, David H

    2016-10-01

    Knowledge of integrative physiology is a major challenge for scientists, as even small deregulation could lead to diseases. Cells communicate with each other to control many processes such as growth, migration, survival, or differentiation. Such interaction could be achieved via several mechanisms either through cell-cell interactions and/or through the signaling of molecules that bind to receptors on the membrane or in the target cells. The produced molecules could have either autocrine, paracrine stimulations, or even act on distant organs (endocrine signaling). PMID:27506618

  7. Nuclear receptors as pharmacological targets, where are we now?

    PubMed

    Volle, David H

    2016-10-01

    Knowledge of integrative physiology is a major challenge for scientists, as even small deregulation could lead to diseases. Cells communicate with each other to control many processes such as growth, migration, survival, or differentiation. Such interaction could be achieved via several mechanisms either through cell-cell interactions and/or through the signaling of molecules that bind to receptors on the membrane or in the target cells. The produced molecules could have either autocrine, paracrine stimulations, or even act on distant organs (endocrine signaling).

  8. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    PubMed Central

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  9. Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors.

    PubMed

    Vaniotis, George; Glazkova, Irina; Merlen, Clémence; Smith, Carter; Villeneuve, Louis R; Chatenet, David; Therien, Michel; Fournier, Alain; Tadevosyan, Artavazd; Trieu, Phan; Nattel, Stanley; Hébert, Terence E; Allen, Bruce G

    2013-09-01

    At the cell surface, βARs and endothelin receptors can regulate nitric oxide (NO) production. β-adrenergic receptors (βARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from the adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a β3AR-selective agonist, BRL 37344, increased NO synthesis whereas the β1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor l-NAME prevented isoproterenol from increasing either NO production or de novo transcription. l-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular β-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear β3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors.

  10. The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression.

    PubMed

    Swales, Karen E; Korbonits, Márta; Carpenter, Robert; Walsh, Desmond T; Warner, Timothy D; Bishop-Bailey, David

    2006-10-15

    Bile acids are present at high concentrations in breast cysts and in the plasma of postmenopausal women with breast cancer. The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that regulates bile acid homeostasis. FXR was detected in normal and tumor breast tissue, with a high level of expression in ductal epithelial cells of normal breast and infiltrating ductal carcinoma cells. FXR was also present in the human breast carcinoma cells, MCF-7 and MDA-MB-468. Activation of FXR by high concentrations of ligands induced MCF-7 and MDA-MB-468 apoptosis. At lower concentrations that had no direct effect on viability, the FXR agonist GW4064 induced expression of mRNA for the FXR target genes, small heterodimer partner (SHP), intestinal bile acid binding protein, and multidrug resistance-associated protein 2 (MRP-2), and repressed the expression of the SHP target gene aromatase. In contrast to MRP-2, mRNA for the breast cancer target genes MDR-3, MRP-1, and solute carrier transporter 7A5 were decreased. Although multidrug resistance transporters were regulated and are known FXR target genes, GW4064 had no effect on the cell death induced by the anticancer drug paclitaxel. Our findings show for the first time that FXR is expressed in breast cancer tissue and has multiple properties that could be used for the treatment of breast cancer.

  11. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent.

    PubMed

    Kren, Nancy P; Zagon, Ian S; McLaughlin, Patricia J

    2016-02-01

    Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner.

  12. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent

    PubMed Central

    Kren, Nancy P; Zagon, Ian S

    2015-01-01

    Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met5]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner. PMID:26429201

  13. Calpain-dependent cleavage of SHP-1 and SHP-2 is involved in the dephosphorylation of Jurkat T cells induced by Entamoeba histolytica.

    PubMed

    Kim, K A; Lee, Y A; Shin, M H

    2010-03-01

    Host cell death induced by Entamoeba histolytica is an important mechanism for both host defence and microbial immune evasion during human amoebiasis. However, the signalling pathways underlying cell death induced by E. histolytica are not fully understood. This study investigated the involvement of the protein tyrosine phosphatases (PTPs) SHP-1 and SHP-2 in the dephosphorylation associated with E. histolytica-induced host cell death. Incubation with E. histolytica resulted in a marked decrease in protein tyrosine phosphorylation levels and degradation of SHP-1 or SHP-2 in Jurkat cells. Pre-treatment of cells with a calpain inhibitor, calpeptin, impeded the amoeba-induced dephosporylation and cleavage of SHP-1 or SHP-2. Additionally, inhibition of PTPs with phenylarsine oxide (PAO) attenuated Entamoeba-induced dephosphorylation and DNA fragmentation in Jurkat T cells. These results suggest that calpain-dependent cleavage of SHP-1 and SHP-2 may contribute to protein tyrosine dephosphorylation in Jurkat T cell death induced by E. histolytica. PMID:20398180

  14. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    SciTech Connect

    Istrate, Monica A.; Nussler, Andreas K.; Eichelbaum, Michel; Burk, Oliver

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  15. Finerenone Impedes Aldosterone-dependent Nuclear Import of the Mineralocorticoid Receptor and Prevents Genomic Recruitment of Steroid Receptor Coactivator-1*

    PubMed Central

    Amazit, Larbi; Le Billan, Florian; Kolkhof, Peter; Lamribet, Khadija; Viengchareun, Say; Fay, Michel R.; Khan, Junaid A.; Hillisch, Alexander; Lombès, Marc; Rafestin-Oblin, Marie-Edith; Fagart, Jérôme

    2015-01-01

    Aldosterone regulates sodium homeostasis by activating the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily. Hyperaldosteronism leads todeleterious effects on the kidney, blood vessels, and heart. Although steroidal antagonists such as spironolactone and eplerenone are clinically useful for the treatment of cardiovascular diseases, they are associated with several side effects. Finerenone, a novel nonsteroidal MR antagonist, is presently being evaluated in two clinical phase IIb trials. Here, we characterized the molecular mechanisms of action of finerenone and spironolactone at several key steps of the MR signaling pathway. Molecular modeling and mutagenesis approaches allowed identification of Ser-810 and Ala-773 as key residues for the high MR selectivity of finerenone. Moreover, we showed that, in contrast to spironolactone, which activates the S810L mutant MR responsible for a severe form of early onset hypertension, finerenone displays strict antagonistic properties. Aldosterone-dependent phosphorylation and degradation of MR are inhibited by both finerenone and spironolactone. However, automated quantification of MR subcellular distribution demonstrated that finerenone delays aldosterone-induced nuclear accumulation of MR more efficiently than spironolactone. Finally, chromatin immunoprecipitation assays revealed that, as opposed to spironolactone, finerenone inhibits MR, steroid receptor coactivator-1, and RNA polymerase II binding at the regulatory sequence of the SCNN1A gene and also remarkably reduces basal MR and steroid receptor coactivator-1 recruitment, unraveling a specific and unrecognized inactivating mechanism on MR signaling. Overall, our data demonstrate that the highly potent and selective MR antagonist finerenone specifically impairs several critical steps of the MR signaling pathway and therefore represents a promising new generation MR antagonist. PMID:26203193

  16. The orphan nuclear receptor DAX-1 functions as a potent corepressor of the constitutive androstane receptor (NR1I3).

    PubMed

    Laurenzana, Elizabeth M; Chen, Tao; Kannuswamy, Malavika; Sell, Brian E; Strom, Stephen C; Li, Yong; Omiecinski, Curtis J

    2012-11-01

    Regulation of gene transcription is controlled in part by nuclear receptors that function coordinately with coregulator proteins. The human constitutive androstane receptor (CAR; NR1I3) is expressed primarily in liver and regulates the expression of genes involved in xenobiotic metabolism as well as hormone, energy, and lipid homeostasis. In this report, DAX-1, a nuclear receptor family member with corepressor properties, was identified as a potent CAR regulator. Results of transaction and mutational studies demonstrated that both DAX-1's downstream LXXLL and its PCFQVLP motifs were critical contributors to DAX-1's corepression activities, although two other LXXM/LL motifs located nearer the N terminus had no impact on the CAR functional interaction. Deletion of DAX-1's C-terminal transcription silencing domain restored CAR1 transactivation activity in reporter assays to approximately 90% of control, demonstrating its critical function in mediating the CAR repression activities. Furthermore, results obtained from mammalian two-hybrid experiments assessing various domain configurations of the respective receptors showed that full-length DAX-1 inhibited the CAR-SRC1 interaction by approximately 50%, whereas the same interaction was restored to 90% of control when the DAX-1 transcription silencing domain was deleted. Direct interaction between CAR and DAX-1 was demonstrated with both alpha-screen and coimmunoprecipitation experiments, and this interaction was enhanced in the presence of the CAR activator 6-(4-chlorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). Results obtained in primary human hepatocytes further demonstrated DAX-1 inhibition of CAR-mediated CITCO induction of the CYP2B6 target gene. The results of this investigation identify DAX-1 as a novel and potent CAR corepressor and suggest that DAX-1 functions as a coordinate hepatic regulator of CAR's biological function. PMID:22896671

  17. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes that regulate osteoclast development and function under physiological and disease conditions remain incompletely understood. Shp2, a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, was implicated in regulating M-CSF and RANKL-evoked signaling, its role in osteoclastogenesis an...

  18. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis

    PubMed Central

    Bunda, Severa; Burrell, Kelly; Heir, Pardeep; Zeng, Lifan; Alamsahebpour, Amir; Kano, Yoshihito; Raught, Brian; Zhang, Zhong-Yin; Zadeh, Gelareh; Ohh, Michael

    2015-01-01

    Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. PMID:26617336

  19. Protein Kinase A Is Part of a Mechanism That Regulates Nuclear Reimport of the Nuclear tRNA Export Receptors Los1p and Msn5p

    PubMed Central

    Pierce, Jacqueline B.; van der Merwe, George

    2014-01-01

    The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors. PMID:24297441

  20. Protein kinase A is part of a mechanism that regulates nuclear reimport of the nuclear tRNA export receptors Los1p and Msn5p.

    PubMed

    Pierce, Jacqueline B; van der Merwe, George; Mangroo, Dev

    2014-02-01

    The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.

  1. Measuring relative acetylcholine receptor agonist binding by selective proton nuclear magnetic resonance relaxation experiments.

    PubMed Central

    Behling, R W; Yamane, T; Navon, G; Sammon, M J; Jelinski, L W

    1988-01-01

    A method is presented that uses selective proton Nuclear Magnetic Resonance (NMR) relaxation measurements of nicotine in the presence of the acetylcholine receptor to obtain relative binding constants for acetylcholine, carbamylcholine, and muscarine. For receptors from Torpedo californica the results show that (a) the binding constants are in the order acetylcholine greater than nicotine greater than carbamylcholine greater than muscarine; (b) selective NMR measurements provide a rapid and direct method for monitoring both the specific and nonspecific binding of agonists to these receptors and to the lipid; (c) alpha-bungarotoxin can be used to distinguish between specific and nonspecific binding to the receptor; (d) the receptor--substrate interaction causes a large change in the selective relaxation time of the agonists even at concentrations 100x greater than that of the receptor. This last observation means that these measurements provide a rapid method to monitor drug binding when only small amounts of receptor are available. Furthermore, the binding strategies presented here may be useful for the NMR determination of the conformation of the ligand in its bound state. Images FIGURE 1 PMID:3395661

  2. Clustering Nuclear Receptors in Liver Regeneration Identifies Candidate Modulators of Hepatocyte Proliferation and Hepatocarcinoma

    PubMed Central

    Graziano, Giusi; D'Orazio, Andria; Cariello, Marica; Massafra, Vittoria; Salvatore, Lorena; Martelli, Nicola; Murzilli, Stefania; Sasso, Giuseppe Lo; Mariani-Costantini, Renato; Moschetta, Antonio

    2014-01-01

    Background & Aims Liver regeneration (LR) is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs) are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. Methods & Results We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs) and oxysterol (liver X receptors, Lxrs) sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr) and constitutive androxane receptor (Car). In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF) analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ) as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells. Conclusions Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation. PMID:25116592

  3. PRIC295, a Nuclear Receptor Coactivator, Identified from PPARα-Interacting Cofactor Complex

    PubMed Central

    Pyper, Sean R.; Viswakarma, Navin; Jia, Yuzhi; Zhu, Yi-Jun; Fondell, Joseph D.; Reddy, Janardan K.

    2010-01-01

    The peroxisome proliferator-activated receptor-α (PPARα) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPARα in rodents leads to the development of hepatocellular carcinomas. The ability of PPARα to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPARα-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPARα and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPARα, PPARγ, and ERα. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPARα and functions as a transcription coactivator under in vitro conditions and may play an important role in mediating the effects in vivo as a member of the PRIC complex with Med1 and Med24. PMID:20885938

  4. Structural and Functional Analysis of the Human Nuclear Xenobiotic Receptor PXR in Complex with RXRα

    PubMed Central

    Wallace, Bret D.; Betts, Laurie; Talmage, Garrick; Pollet, Rebecca M.; Holman, Natalie S.; Redinbo, Matthew R.

    2013-01-01

    The human nuclear xenobiotic receptor PXR recognizes a range of potentially harmful drugs and endobiotic chemicals, but must complex with the nuclear receptor RXRα to control the expression of numerous drug metabolism genes. To date, the structural basis and functional consequences of this interaction have remained unclear. Here we present 2.8 Å resolution crystal structures of the heterodimeric complex formed between the ligand binding domains (LBDs) of human PXR and RXRα. These structures establish that PXR and RXRα form a heterotetramer unprecedented in the nuclear receptor family of ligand-regulated transcription factors. We further show that both PXR and RXRα bind to the transcriptional coregulator SRC-1 with higher affinity when they are part of the PXR-RXRα heterotetramer complex than they do when each LBD is examined alone. Furthermore, we purify the full-length forms of each receptor from recombinant bacterial expression systems, and characterize their interactions with a range of direct and everted repeat DNA elements. Taken together, these data advance our understanding of PXR, the master regulator of drug metabolism gene expression in humans, in its functional partnership with RXRα. PMID:23602807

  5. Cloning and characterization of new orphan nuclear receptors and their developmental profiles during Tenebrio metamorphosis.

    PubMed

    Mouillet, J F; Bousquet, F; Sedano, N; Alabouvette, J; Nicolaï, M; Zelus, D; Laudet, V; Delachambre, J

    1999-11-01

    Five PCR fragments corresponding to a part of the DNA-binding domain of different hormone nuclear receptors were isolated from Tenebrio molitor mRNAs. The sequence identity of three of them with known Drosophila nuclear receptors strongly suggests that they are the Tenebrio orthologs of seven-up, DHR3 and beta-FTZ-F1, and thus named Tmsvp, TmHR3 and TmFTZ-F1. The full-length sequences of the other two were established. TmHR78 is either a new receptor of the DHR78 family or the same gene which has evolved rapidly, particularly in the E domain. TmGRF belongs to the GCNF1 family and its in vitro translated product binds to the extended half site TCAAGGTCA with high affinity. The periods of expression of the corresponding transcripts in epidermal cells during Tenebrio metamorphosis were analyzed as a function of 20-hydroxyecdysone titers measured in the hemolymph of the animals taken for RNA extraction. Comparison of the expression profiles of these nuclear receptors with those observed during Drosophila metamorphosis revealed similar temporal correlations as a function of ecdysteroid variations, which further supported the sequence identity data for TmSVP, TmHR3, TmFTZ-F1 and TmHR78.

  6. In vivo functional protein-protein interaction: nuclear targeted hsp90 shifts cytoplasmic steroid receptor mutants into the nucleus.

    PubMed Central

    Kang, K I; Devin, J; Cadepond, F; Jibard, N; Guiochon-Mantel, A; Baulieu, E E; Catelli, M G

    1994-01-01

    In target tissue extracts, heat shock protein hsp90 has been found associated to all unliganded steroid receptors. Modulation of important functions of these receptors, including prevention of DNA binding and optimization of transcriptional activity, has been attributed to hsp90. However no unequivocal in vivo demonstration of interaction between receptors and hsp90 has been presented. We targeted chicken hsp90, a mainly cytoplasmic protein, with the nucleoplasmin nuclear localization signal (90NLS). After transfection into COS-7 cells, 90NLS was found in the nucleus with specific immunofluorescence and confocal microscopy techniques. A human glucocorticosteroid receptor mutant devoid of NLS sequence was also expressed in COS-7 cells and found exclusively cytoplasmic. Coexpression of 90NLS and of the cytoplasmic human glucocorticosteroid receptor mutant led to complete nuclear localization of the receptor, indicating its piggyback transport by 90NLS and thus physical and functional interaction between the two proteins in the absence of hormone. The same nuclear localization was obtained after cotransfection of 90NLS and a cytoplasmic rabbit progesterone receptor mutant. Finally, coexpression of wild-type rabbit progesterone receptor (nuclear) and wildtype hsp90 (cytoplasmic) into COS-7 cells provoked partial relocalization of hsp90 into the nucleus. These experiments lay the groundwork on which to study hsp90 as a chaperone, regulating activities of steroid receptors and possibly participating in their nuclear-cytoplasmic shuttling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8278390

  7. Nuclear Membranes ETB Receptors Mediate ET-1-induced Increase of Nuclear Calcium in Human Left Ventricular Endocardial Endothelial Cells.

    PubMed

    Jules, Farah; Avedanian, Levon; Al-Khoury, Johny; Keita, Ramatoulaye; Normand, Alexandre; Bkaily, Ghassan; Jacques, Danielle

    2015-07-01

    In fetal human left ventricular endocardial endothelial cells (EECLs), both plasma membrane (PM) ET(A)R and ET(B)R were reported to mediate ET-1-induced increase of intracellular calcium [Ca](i); however, this effect was mediated by ET(A)R in right EECs (EECRs). In this study, we verified whether, as for the PM, nuclear membranes (NMs) ET-1 receptors activation in EECLs and EECRs induce an increase of nuclear calcium ([Ca](n)) and if this effect is mediated through the same receptor type as in PM. Using a plasmalemma-perforated technique and 3D confocal microscopy, our results showed that, as in PM intact cells, superfusion of nuclei of both cell types with cytosolic ET-1 induced a concentration-dependent sustained increase of [Ca](n). In EECRs, the ET(A)R antagonist prevented the effect of ET-1 on [Ca](n) without affecting EECLs. However, in both cell types, the effect of cytosolic ET-1 on [Ca](n) was prevented by the ETBR antagonist. In conclusion, both NMs' ET(A)R and ET(B)R mediated the effect of cytosolic ET-1 on [Ca](n) in EECRs. In contrast, only NMs' ET(B)R activation mediated the effect of cytosolic ET-1 in EECLs. Hence, the type of NMs' receptors mediating the effect of ET-1 on [Ca](n) are different from those of PM mediating the increase in [Ca](i).

  8. Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription?

    PubMed

    Nawaz, Zafar; O'Malley, Bert W

    2004-03-01

    The importance of the ubiquitin proteasome pathway in higher eukaryotes has been well established in cell cycle regulation, signal transduction, and cell differentiation, but has only recently been linked to nuclear hormone receptor-regulated gene transcription. Characterization of a number of ubiquitin proteasome pathway enzymes as coactivators and observations that several nuclear receptors are ubiquitinated and degraded in the course of their nuclear activities provide evidence that ubiquitin proteasome-mediated protein degradation plays an integral role in eukaryotic transcription. In addition to receptors, studies have revealed that coactivators are ubiquitinated and degraded via the proteasome. The notion that the ubiquitin proteasome pathway is involved in gene transcription is further strengthened by the fact that ubiquitin proteasome pathway enzymes are recruited to the promoters of target genes and that proteasome-dependent degradation of nuclear receptors is required for efficient transcriptional activity. These findings suggest that protein degradation is coupled with nuclear receptor coactivation activity. It is possible that the ubiquitin proteasome pathway modulates transcription by promoting remodeling and turnover of the nuclear receptor-transcription complex. In this review, we discus the possible role of the ubiquitin proteasome pathway in nuclear hormone receptor-regulated gene transcription.

  9. Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112.

    PubMed

    Chen, Liwei; Pernazza, Daniele; Scott, Latanya M; Lawrence, Harshani R; Ren, Yuan; Luo, Yunting; Wu, Xin; Sung, Shen-Shu; Guida, Wayne C; Sebti, Said M; Lawrence, Nicholas J; Wu, Jie

    2010-09-15

    The protein tyrosine phosphatase (PTP) Shp2 (PTPN11) is an attractive target for anticancer drug discovery because it mediates growth factor signaling and its gain-of-function mutants are causally linked to leukemias. We previously synthesized SPI-112 from a lead compound of Shp2 inhibitor, NSC-117199. In this study, we demonstrated that SPI-112 bound to Shp2 by surface plasmon resonance (SPR) and displayed competitive inhibitor kinetics to Shp2. Like some other compounds in the PTP inhibitor discovery efforts, SPI-112 was not cell permeable, precluding its use in biological studies. To overcome the cell permeation issue, we prepared a methyl ester SPI-112 analog (SPI-112Me) that is predicted to be hydrolyzed to SPI-112 upon entry into cells. Fluorescence uptake assay and confocal imaging suggested that SPI-112Me was taken up by cells. Incubation of cells with SPI-112Me inhibited epidermal growth factor (EGF)-stimulated Shp2 PTP activity and Shp2-mediated paxillin dephosphorylation, Erk1/2 activation, and cell migration. SPI-112Me treatment also inhibited Erk1/2 activation by a Gab1-Shp2 chimera. Treatment of Shp2(E76K) mutant-transformed TF-1 myeloid cells with SPI-112Me resulted in inhibition of Shp2(E76K)-dependent cell survival, which is associated with inhibition of Shp2(E76K) PTP activity, Shp2(E76K)-induced Erk1/2 activation, and Bcl-XL expression. Furthermore, SPI-112Me enhanced interferon-gamma (IFN-gamma)-stimulated STAT1 tyrosine phosphorylation, ISRE-luciferase reporter activity, p21 expression, and the anti-proliferative effect. Thus, the SPI-112 methyl ester analog was able to inhibit cellular Shp2 PTP activity.

  10. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract.

    PubMed

    Kowalik, Magdalena K; Rekawiecki, Robert; Kotwica, Jan

    2013-12-01

    Progesterone produced by the corpus luteum (CL) is a key regulator of normal cyclical reproductive functions in the females of mammalian species. The physiological effects of progesterone are mediated by the canonical genomic pathway after binding of progesterone to its specific nuclear progesterone receptor (PGR), which acts as a ligand-activated transcription factor and has two main isoforms, PGRA and PGRB. These PGR isoforms play different roles in the cell; PGRB acts as an activator of progesterone-responsive genes, while PGRA can inhibit the activity of PGRB. The ratio of these isoforms changes during the estrous cycle and pregnancy, and it corresponds to the different levels of progesterone signaling occurring in the reproductive tract. Progesterone exerts its effects on cells also by a non-genomic mechanism by the interaction with the progesterone-binding membrane proteins including the progesterone membrane component (PGRMC) 1 and 2, and the membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of progesterone receptors and their cellular actions enhances the role of progesterone as a factor regulating the function of the reproductive system and other organs. This paper deals with the possible involvement of nuclear and membrane-bound progesterone receptors in the function of target cells within the female reproductive tract.

  11. Nuclear receptors: potential biomarkers for assessing physiological functions of soy proteins and phytoestrogens.

    PubMed

    Xiao, Chao Wu; Wood, Carla; Gilani, G Sarwar

    2006-01-01

    Soy consumption is associated with decreased incidence of chronic diseases, including cardiovascular diseases, atherosclerosis, diabetes, osteoporosis, and certain types of cancers. However, consumption of high amounts of soy isoflavones may adversely influence endocrine functions, such as thyroid function and reproductive performance, because of their structural similarity to endogenous estrogens. Nuclear receptors are a group of transcription factors that play critical roles in the regulation of gene expression and physiological functions through direct interaction with target genes. Modulation of the abundance of these receptors, such as changing their gene expression, alters the sensitivity of the target cells or tissues to the stimulation of ligands, and eventually affects the relevant physiological functions, such as growth, development, osteogenesis, immune response, lipogenesis, reproductive process, and anticarcinogenesis. A number of studies have shown that the bioactive components in soy can modify the expression of these receptors in various tissues and cancer cells, which is believed to be a key intracellular mechanism by which soy components affect physiological functions. This review summarizes the current understanding of the modulation of nuclear receptors by soy proteins and isoflavones, and focuses especially on the receptors for estrogens, progesterone, androgen, vitamin D, retinoic acid, and thyroid hormones as well as the potential impact on physiological functions.

  12. Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes.

    PubMed Central

    Tomic, M; Jiang, C K; Epstein, H S; Freedberg, I M; Samuels, H H; Blumenberg, M

    1990-01-01

    In the epidermis, retinoids regulate the expression of keratins, the intermediate filament proteins of epithelial cells. We have cloned the 5' regulatory regions of four human epidermal keratin genes, K#5, K#6, K#10, and K#14, and engineered constructs in which these regions drive the expression of the CAT reporter gene. By co-transfecting the constructs into epithelial cells along with the vectors expressing nuclear receptors for retinoic acid (RA) and thyroid hormone, we have demonstrated that the receptors can suppress the promoters of keratin genes. The suppression is ligand dependent; it is evident both in established cell lines and in primary cultures of epithelial cells. The three RA receptors have similar effects on keratin gene transcription. Our data indicate that the nuclear receptors for RA and thyroid hormone regulate keratin synthesis by binding to negative recognition elements in the upstream DNA sequences of the keratin genes. RA thus has a twofold effect on epidermal keratin expression: qualitatively, it regulates the regulators that effect the switch from basal cell-specific keratins to differentiation-specific ones; and quantitatively, it determines the level of keratin synthesis within the cell by direct interaction of its receptors with the keratin gene promoters. Images PMID:1712634

  13. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    SciTech Connect

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin; Liu Lanhsin; Lan Zijian

    2008-02-22

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and round spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.

  14. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion

    SciTech Connect

    Karvonen, Ulla; Jaenne, Olli A.; Palvimo, Jorma J. . E-mail: jorma.palvimo@uku.fi

    2006-10-01

    In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner.

  15. Role of nuclear progesterone receptor isoforms in uterine pathophysiology

    PubMed Central

    Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam

    2015-01-01

    BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key

  16. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    SciTech Connect

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-04-11

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.

  17. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana

    PubMed Central

    Tekleyohans, Dawit G.; Wittkop, Benjamin; Snowdon, Rod J.

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner. PMID:27776173

  18. SHP2-Deficiency in Chondrocytes Deforms Orofacial Cartilage and Ciliogenesis in Mice.

    PubMed

    Kamiya, Nobuhiro; Shen, Jingling; Noda, Kazuo; Kitami, Megumi; Feng, Gen-Sheng; Chen, Di; Komatsu, Yoshihiro

    2015-11-01

    Congenital orofacial abnormalities are clinically seen in human syndromes with SHP2 germline mutations such as LEOPARD and Noonan syndrome. Recent studies demonstrate that SHP2-deficiency leads to skeletal abnormalities including scoliosis and cartilaginous benign tumor metachondromatosis, suggesting that growth plate cartilage is a key tissue regulated by SHP2. The role and cellular mechanism of SHP2 in the orofacial cartilage, however, remains unknown. Here, we investigated the postnatal craniofacial development by inducible disruption of Shp2 in chondrocytes. Shp2 conditional knockout (cKO) mice displayed severe deformity of the mandibular condyle accompanied by disorganized, expanded cartilage in the trabecular bone region, enhanced type X collagen, and reduced Erk production. Interestingly, the length of primary cilia, an antenna like organelle sensing environmental signaling, was significantly shortened, and the number of primary cilia was reduced in the cKO mice. The expression levels of intraflagellar transports (IFTs), essential molecules in the assembly and function of primary cilia, were significantly decreased. Taken together, lack of Shp2 in orofacial cartilage led to severe defects of ciliogenesis through IFT reduction, resulting in mandibular condyle malformation and cartilaginous expansion. Our study provides new insights into the molecular pathogenesis of SHP2-deficiency in cartilage and helps to understand orofacial and skeletal manifestations seen in patients with SHP2 mutations.

  19. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs

    PubMed Central

    Scott, Latanya M.; Chen, Liwei; Daniel, Kenyon G.; Brooks, Wesley H.; Guida, Wayne C.; Lawrence, Harshani R.; Sebti, Said M.; Lawrence, Nicholas J.; Wu, Jie

    2010-01-01

    Shp2 protein tyrosine phosphate (PTP) is a novel target for anticancer drug discovery. We identified estramustine phosphate as a Shp2 PTP inhibitor from the National Cancer Institute Approved Oncology Drug set. A focused structure-activity relationship study indicated that the 17- phosphate group is required for the Shp2 PTP inhibitor activity of estramustine phosphate. A search for estramustine phosphate analogs led to identification of two triperpenoids, enoxolone and celastrol, having Shp2 PTP inhibitor activity. With the previously reported PTP1B inhibitor trodusquemine, our study reveals steroids and triterpenoids with negatively charged phosphate, carboxylate, or sulfonate groups as novel pharmacophores of selective PTP inhibitors. PMID:21193311

  20. Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus

    PubMed Central

    Wang, Jianxun; Zeng, Li-Fan; Bronson, Roderick; Finnell, Michele; Terhorst, Cox; Kyttaris, Vasileios C.; Zhang, Zhong-Yin; Kontaridis, Maria I.

    2016-01-01

    Systemic lupus erythematosus (SLE) is a devastating multisystemic autoimmune disorder. However, the molecular mechanisms underlying its pathogenesis remain elusive. Some patients with Noonan syndrome, a congenital disorder predominantly caused by gain-of-function mutations in the protein tyrosine phosphatase SH2 domain–containing PTP (SHP2), have been shown to develop SLE, suggesting a functional correlation between phosphatase activity and systemic autoimmunity. To test this directly, we measured SHP2 activity in spleen lysates isolated from lupus-prone MRL/lpr mice and found it was markedly increased compared with that in control mice. Similar increases in SHP2 activity were seen in peripheral blood mononuclear cells isolated from lupus patients relative to healthy patients. To determine whether SHP2 alters autoimmunity and related immunopathology, we treated MRL/lpr mice with an SHP2 inhibitor and found increased life span, suppressed crescentic glomerulonephritis, reduced spleen size, and diminished skin lesions. SHP2 inhibition also reduced numbers of double-negative T cells, normalized ERK/MAPK signaling, and decreased production of IFN-γ and IL-17A/F, 2 cytokines involved in SLE-associated organ damage. Moreover, in cultured human lupus T cells, SHP2 inhibition reduced proliferation and decreased production of IFN-γ and IL-17A/F, further implicating SHP2 in lupus-associated immunopathology. Taken together, these data identify SHP2 as a critical regulator of SLE pathogenesis and suggest targeting of its activity as a potent treatment for lupus patients. PMID:27183387

  1. REST/NRSF-Interacting LIM Domain Protein, a Putative Nuclear Translocation Receptor

    PubMed Central

    Shimojo, Masahito; Hersh, Louis B.

    2003-01-01

    The transcriptional repressor REST/NRSF (RE-1 silencing transcription factor/neuron-restrictive silencer factor) and the transcriptional regulator REST4 share an N-terminal zinc finger domain structure involved in nuclear targeting. Using this domain as bait in a yeast two-hybrid screen, a novel protein that contains three LIM domains, putative nuclear localization sequences, protein kinase A phosphorylation sites, and a CAAX prenylation motif was isolated. This protein, which is localized around the nucleus, is involved in determining the nuclear localization of REST4 and REST/NRSF. We propose the name RILP, for REST/NRSF-interacting LIM domain protein, to label this novel protein. RILP appears to serve as a nuclear receptor for REST/NRSF, REST4, and possibly other transcription factors. PMID:14645515

  2. Nuclear estrogen receptor molecular heterogeneity in the mouse uterus.

    PubMed Central

    Golding, T S; Korach, K S

    1988-01-01

    Holomeric estrogen receptor (ER) prepared from ovariectomized mouse uteri displays heterogeneous electrophoretic mobility when analyzed by NaDodSO4/PAGE. ER derived from nuclei (ERn) appears as a closely spaced doublet having apparent molecular masses of 66.4 and 65 kDa, while ER from the cytosolic compartment (ERc) has a single band of 65 kDa. Both partially purified ERc and the 8S form of unactivated ERc show only the 65-kDa band. The appearance of the ERn doublet is hormonally inducible, and the relative proportions of the two doublet bands are influenced by the type of hormone treatment, with weakly estrogenic compounds yielding the lower band as predominant while potent estrogens increase the proportion of the upper band. Steroid binding of the ERn doublet was determined by [3H]tamoxifen aziridine affinity labeling of both the 66.4- and the 65-kDa peptides; binding to the 65-kDa peptide was predominant. The ERn doublet displays a time dependency after estrogen administration with maximal amounts occurring in a bimodal fashion at 1 and 8 hr. Images PMID:3422428

  3. Nuclear estrogen receptor molecular heterogeneity in the mouse uterus

    SciTech Connect

    Golding, T.S.; Korach, K.S.

    1988-01-01

    Holomeric estrogen receptor (ER) prepared from ovariectomized mouse uteri displays heterogeneous electrophoretic mobility when analyzed by NaDodSO/sub 4//PAGE. ER derived from nuclei (ER/sub n/) appears as a closely spaced doublet having apparent molecular masses of 66.4 and 65 kDa, while ER from the cytosolic compartment (ER/sub c/) has a single band of 65 kDa. Both partially purified ER/sub c/ and the 8S form of unactivated ER/sub c/ show only the 65-kDa band. The appearance of the ER/sub n/ doublet is hormonally inducible, and the relative proportions of the two doublet bands are influenced by the type of hormone treatment, with weakly estrogenic compounds yielding the lower band as predominant while potent estrogens increase the proportion of the upper band. Steroid binding of the ER/sub n/ doublet was determined by (/sup 3/H)tamoxifen aziridine affinity labeling of both the 66.4- and the 65-kDa peptides; binding to the 65-kDa peptide was predominant. The ER/sub n/ doublet displays a time dependency after estrogen administration with maximal amounts occurring in a bimodal fashion at 1 and 8 hr.

  4. Farnesoid X Receptor Critically Determines the Fibrotic Response in Mice but Is Expressed to a Low Extent in Human Hepatic Stellate Cells and Periductal Myofibroblasts

    PubMed Central

    Fickert, Peter; Fuchsbichler, Andrea; Moustafa, Tarek; Wagner, Martin; Zollner, Gernot; Halilbasic, Emina; Stöger, Ulrike; Arrese, Marco; Pizarro, Margarita; Solís, Nancy; Carrasco, Gonzalo; Caligiuri, Alessandra; Sombetzki, Martina; Reisinger, Emil; Tsybrovskyy, Oleksiy; Zatloukal, Kurt; Denk, Helmut; Jaeschke, Hartmut; Pinzani, Massimo; Trauner, Michael

    2009-01-01

    The nuclear bile acid receptor, farnesoid X receptor (FXR), may play a pivotal role in liver fibrosis. We tested the impact of genetic FXR ablation in four different mouse models. Hepatic fibrosis was induced in wild-type and FXR knock-out mice (FXR−/−) by CCl4 intoxication, 3,5-diethoxycarbonyl-1,4-dihydrocollidine feeding, common bile duct ligation, or Schistosoma mansoni (S.m.)-infection. In addition, we determined nuclear receptor expression levels (FXR, pregnane X receptor (PXR), vitamin D receptor, constitutive androstane receptor (CAR), small heterodimer partner (SHP)) in mouse hepatic stellate cells (HSCs), portal myofibroblasts (MFBs), and human HSCs. Cell type-specific FXR protein expression was determined by immunohistochemistry in five mouse models and prototypic human fibrotic liver diseases. Expression of nuclear receptors was much lower in mouse and human HSCs/MFBs compared with total liver expression with the exception of vitamin D receptor. FXR protein was undetectable in mouse and human HSCs and MFBs. FXR loss had no effect in CCl4-intoxicated and S.m.-infected mice, but significantly decreased liver fibrosis of the biliary type (common bile duct ligation, 3,5-diethoxycarbonyl-1,4-dihydrocollidine). These data suggest that FXR loss significantly reduces fibrosis of the biliary type, but has no impact on non-cholestatic liver fibrosis. Since there is no FXR expression in HSCs and MFBs in liver fibrosis, our data indicate that these cells may not represent direct therapeutic targets for FXR ligands. PMID:19910507

  5. Structural and functional analysis of Hikeshi, a new nuclear transport receptor of Hsp70s.

    PubMed

    Song, Jinsue; Kose, Shingo; Watanabe, Ai; Son, Se Young; Choi, Saehae; Hong, Hyerim; Yamashita, Eiki; Park, Il Yeong; Imamoto, Naoko; Lee, Soo Jae

    2015-03-01

    Hikeshi is a nuclear transport receptor required for cell survival after stress. It mediates heat-shock-induced nuclear import of 70 kDa heat-shock proteins (Hsp70s) through interactions with FG-nucleoporins (FG-Nups), which are proteins in nuclear pore complexes (NPCs). Here, the crystal structure of human Hikeshi is presented at 1.8 Å resolution. Hikeshi forms an asymmetric homodimer that is responsible for the interaction with Hsp70s. The asymmetry of Hikeshi arises from the distinct conformation of the C-terminal domain (CTD) and the flexibility of the linker regions of each monomer. Structure-guided mutational analyses showed that both the flexible linker region and the CTD are important for nuclear import of Hsp70. Pull-down assays revealed that only full-length Hsp70s can interact with Hikeshi. The N-terminal domain (NTD) consists of a jelly-roll/β-sandwich fold structure which contains hydrophobic pockets involved in FG-Nup recognition. A unique extended loop (E-loop) in the NTD is likely to regulate the interactions of Hikeshi with FG-Nups. The crystal structure of Hikeshi explains how Hikeshi participates in the regulation of nuclear import through the recognition of FG-Nups and which part of Hikeshi affects its binding to Hsp70. This study is the first to yield structural insight into this highly unique import receptor.

  6. Bile acid transporters and regulatory nuclear receptors in the liver and beyond

    PubMed Central

    Halilbasic, Emina; Claudel, Thierry; Trauner, Michael

    2013-01-01

    Summary Bile acid (BA) transporters are critical for maintenance of the enterohepatic BA circulation where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization and excretion of cholesterol, as well as antimicrobial and metabolic effects. Tight regulation of BA transporters via nuclear receptors is necessary to maintain proper BA homeostasis. Hereditary and acquired defects of BA transporters are involved in the pathogenesis of several hepatobiliary disorders including cholestasis, gallstones, fatty liver disease and liver cancer, but also play a role in intestinal and metabolic disorders beyond the liver. Thus, pharmacological modification of BA transporters and their regulatory nuclear receptors opens novel treatment strategies for a wide range of disorders. PMID:22885388

  7. Emerging roles for nuclear receptors in the pathogenesis of age-related macular degeneration

    PubMed Central

    Malek, Goldis; Lad, Eleonora M.

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly in the Western world. Over the last 30 years, our understanding of the pathogenesis of the disease has grown exponentially thanks to the results of countless epidemiology, genetic, histo-logical, and biochemical studies. This information, in turn, has led to the identification of multiple biologic pathways potentially involved in development and progression of AMD, including but not limited to inflammation, lipid and extracellular matrix dysregulation, and angiogenesis. Nuclear receptors are a superfamily of transcription factors that have been shown to regulate many of the pathogenic pathways linked with AMD and as such they are emerging as promising targets for therapeutic intervention. In this review, we will present the fundamental phenotypic features of AMD and discuss our current understanding of the pathobiological disease mechanisms. We will introduce the nuclear receptor superfamily and discuss the current literature on their effects on AMD-related pathophysiology. PMID:25156067

  8. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    PubMed

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  9. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1)

    PubMed Central

    Terranova, Christopher; Narla, Sridhar T.; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K.; Tzanakakis, Emmanuel S.; Buck, Michael J.; Birkaya, Barbara; Stachowiak, Michal K.

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916

  10. Shp2 suppresses the adipogenic differentiation of preadipocyte 3T3-L1 cells at an early stage

    PubMed Central

    Tao, J; Zheng, L; Meng, M; Li, Y; Lu, Z

    2016-01-01

    Tyrosine phosphatase protein Shp2 is a potential therapeutic target for obesity. However, the mechanism of Shp2 during adipogenesis is not fully understood. The present study investigated the role of Shp2 in the terminal differentiation of preadipocytes. The results showed that Shp2 suppressed adipocyte differentiation in 3T3-L1 cells; overexpression of Shp2 reduced lipid droplet production in 3T3-L1 cells, whereas Shp2 knockdown increased lipid droplet production in 3T3-L1 cells. Furthermore, inhibition of Shp2 activity also enhanced adipocyte differentiation. Interestingly, Shp2 expression was specifically decreased early during differentiation in response to stimulation with the dexamethasone–methylisobutylxanthine–insulin (DMI) hormone cocktail. During the first 2 days of differentiation, Shp2 overexpression impaired the DMI-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in 3T3-L1 cells and blocked the peak expression of CCAAT/enhancer-binding proteins β and δ during preadipocyte differentiation. In conclusion, Shp2 downregulated the early stages of hormone-induced differentiation of 3T3-L1 cells and inhibited the expression of the first wave of transcription factors by suppressing the DMI-induced STAT3 signaling pathway. These discoveries point to a novel role of Shp2 during adipogenesis and support the hypothesis that Shp2 could be a therapeutic target for the control of obesity. PMID:27551539

  11. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function.

    PubMed

    Broxmeyer, Hal E; Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun; Chan, Rebecca J

    2013-03-15

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity.

  12. Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11)

    PubMed Central

    2014-01-01

    Background The ubiquitous non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) plays a key role in RAS/ERK signaling downstream of most, if not all growth factors, cytokines and integrins, although its major substrates remain controversial. Mutations in PTPN11 lead to several distinct human diseases. Germ-line PTPN11 mutations cause about 50% of Noonan Syndrome (NS), which is among the most common autosomal dominant disorders. LEOPARD Syndrome (LS) is an acronym for its major syndromic manifestations: multiple Lentigines, Electrocardiographic abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormalities of genitalia, Retardation of growth, and sensorineural Deafness. Frequently, LS patients have hypertrophic cardiomyopathy, and they might also have an increased risk of neuroblastoma (NS) and acute myeloid leukemia (AML). Consistent with the distinct pathogenesis of NS and LS, different types of PTPN11 mutations cause these disorders. Results Although multiple studies have reported the biochemical and biological consequences of NS- and LS-associated PTPN11 mutations, their structural consequences have not been analyzed fully. Here we report the crystal structures of WT SHP2 and five NS/LS-associated SHP2 mutants. These findings enable direct structural comparisons of the local conformational changes caused by each mutation. Conclusions Our structural analysis agrees with, and provides additional mechanistic insight into, the previously reported catalytic properties of these mutants. The results of our research provide new information regarding the structure-function relationship of this medically important target, and should serve as a solid foundation for structure-based drug discovery programs. PMID:24628801

  13. Inflammatory mediators and insulin resistance in obesity: role of nuclear receptor signaling in macrophages.

    PubMed

    Fuentes, Lucía; Roszer, Tamás; Ricote, Mercedes

    2010-01-01

    Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR). The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs) have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs), which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.

  14. Annotation of the Daphnia magna nuclear receptors: comparison to Daphnia pulex.

    PubMed

    Litoff, Elizabeth J; Garriott, Travis E; Ginjupalli, Gautam K; Butler, LaToya; Gay, Claudy; Scott, Kiandra; Baldwin, William S

    2014-11-15

    Most nuclear receptors (NRs) are ligand-dependent transcription factors crucial in homeostatic physiological responses or environmental responses. We annotated the Daphnia magna NRs and compared them to Daphnia pulex and other species, primarily through phylogenetic analysis. Daphnia species contain 26 NRs spanning all seven gene subfamilies. Thirteen of the 26 receptors found in Daphnia species phylogenetically segregate into the NR1 subfamily, primarily involved in energy metabolism and resource allocation. Some of the Daphnia NRs, such as RXR, HR96, and E75 show strong conservation between D. magna and D. pulex. Other receptors, such as EcRb, THRL-11 and RARL-10 have diverged considerably and therefore may show different functions in the two species. Curiously, there is an inverse association between the number of NR splice variants and conservation of the LBD. Overall, D. pulex and D. magna possess the same NRs; however not all of the NRs demonstrate high conservation indicating the potential for a divergence of function.

  15. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    SciTech Connect

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  16. Functional interactions between the Moses corepressor and DHR78 nuclear receptor regulate growth in Drosophila.

    PubMed

    Baker, Keith D; Beckstead, Robert B; Mangelsdorf, David J; Thummel, Carl S

    2007-02-15

    Expression of the Drosophila orphan nuclear receptor DHR78 is regulated by the steroid hormone ecdysone and is required for growth and viability during larval stages. In contrast to our understanding of its biological functions, however, relatively little is known about how DHR78 acts as a transcription factor. Here we show that DHR78 is an obligate partner for Moses (Middleman of seventy-eight signaling), a SAM (sterile alpha motif) domain-containing cofactor that requires DHR78 for its stability. Unlike other nuclear receptor cofactors, Moses has no obvious interaction domains and displays a unique binding specificity for DHR78. Moses acts as a corepressor, inhibiting DHR78 transcriptional activity independently of histone deacetylation. Consistent with their close association, DHR78 and Moses proteins are coexpressed during development and colocalize to specific genomic targets in chromatin. Moses mutants progress normally through early larval stages, like DHR78 mutants, but display an opposite overgrowth phenotype, with hypertrophy of adult tissues. Genetic interactions between DHR78 and moses result in a similar phenotype, suggesting that the relative dose of Moses and DHR78 regulates growth and prevents cancer. The tight functional association between DHR78 and Moses provides a new paradigm for understanding the molecular mechanisms by which cofactors modulate nuclear receptor signaling pathways. PMID:17322404

  17. Discovery-driven research and bioinformatics in nuclear receptor and coregulator signaling

    PubMed Central

    McKenna, Neil J

    2010-01-01

    Nuclear receptors (NRs) are a superfamily of ligand-regulated transcription factors that interact with coregulators and other transcription factors to direct tissue-specific programs of gene expression. Recent years have witnessed a rapid acceleration of the output of high content data platforms in this field, generating discovery-driven datasets that have collectively described: the organization of the NR superfamily (phylogenomics); the expression patterns of NRs, coregulators and their target genes (transcriptomics); ligand- and tissue-specific functional NR and coregulator sites in DNA (cistromics); the organization of nuclear receptors and coregulators into higher order complexes (proteomics); and their downstream effects on homeostasis and metabolism (metabolomics). Significant bioinformatics challenges lie ahead both in the integration of this information into meaningful models of NR and coregulator biology, as well as in the archiving and communication of datasets to the global nuclear receptor signaling community. While holding great promise for the field, the ascendancy of discovery-driven research in this field brings with it a collective responsibility for researchers, publishers and funding agencies alike to ensure the effective archiving and management of these data. This review will discuss factors lying behind the increasing impact of discovery-driven research, examples of high content datasets and their bioinformatic analysis, as well as a summary of currently curated web resources in this field. PMID:21029773

  18. A lophotrochozoan-specific nuclear hormone receptor is required for reproductive system development in the planarian.

    PubMed

    Tharp, Marla E; Collins, James J; Newmark, Phillip A

    2014-12-01

    Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans.

  19. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1.

    PubMed

    Blind, Raymond D; Sablin, Elena P; Kuchenbecker, Kristopher M; Chiu, Hsiu-Ju; Deacon, Ashley M; Das, Debanu; Fletterick, Robert J; Ingraham, Holly A

    2014-10-21

    The signaling phosphatidylinositol lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP2 and PIP3 show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP3 stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As. PMID:25288771

  20. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1

    PubMed Central

    Blind, Raymond D.; Sablin, Elena P.; Kuchenbecker, Kristopher M.; Chiu, Hsiu-Ju; Deacon, Ashley M.; Das, Debanu; Fletterick, Robert J.; Ingraham, Holly A.

    2014-01-01

    The signaling phosphatidylinositol lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP2 and PIP3 show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP3 stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As. PMID:25288771

  1. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  2. Liver X receptors interfere with the deleterious effect of diethylstilbestrol on testicular physiology

    SciTech Connect

    Oumeddour, Abdelkader; Viennois, Emilie; Caira, Françoise; Decourbey, Clélia; Maqdasy, Salwan; and others

    2014-04-11

    Highlights: • Part of the neonatal effect of DES on testis needs the presence of Lxrα/β. • Some DES-induced pathways are blocked in Lxr-deficient mice. • Lxr-deficient mice analysis defines DES-target genes protected by Lxr. - Abstract: Liver X receptors LXRα (NR1H3) and LXRβ (NR1H2) are transcription factors belonging to the nuclear receptor superfamily, activated by specific oxysterols, oxidized derivatives of cholesterol. These receptors are involved in the regulation of testis physiology. Lxr-deficient mice pointed to the physiological roles of these nuclear receptors in steroid synthesis, lipid homeostasis and germ cell apoptosis and proliferation. Diethylstilbestrol (DES) is a synthetic estrogen considered as an endocrine disruptor that affects the functions of the testis. Various lines of evidences have made a clear link between estrogens, their nuclear receptors ERα (NR3A1) and ERβ (NR3A2), and Lxrα/β. As LXR activity could also be regulated by the nuclear receptor small heterodimer partner (SHP, NR0A2) and DES could act through SHP, we wondered whether LXR could be targeted by estrogen-like endocrine disruptors such as DES. For that purpose, wild-type and Lxr-deficient mice were daily treated with 0.75 μg DES from days 1 to 5 after birth. The effects of DES were investigated at 10 or 45 days of age. We demonstrated that DES induced a decrease of the body mass at 10 days only in the Lxr-deficient mice suggesting a protective effect of Lxr. We defined three categories of DES-target genes in testis: those whose accumulation is independent of Lxr; those whose accumulation is enhanced by the lack of both Lxrα/β; those whose accumulation is repressed by the absence of Lxrα/β. Lipid accumulation is also modified by neonatal DES injection. Lxr-deficient mice present different lipid profiles, demonstrating that DES could have its effects in part due to Lxrα/β. Altogether, our study shows that both nuclear receptors Lxrα and Lxrβ are not only

  3. Insights into monocyte-driven osteoclastogenesis and its link with hematopoiesis: regulatory roles of PECAM-1 (CD31) and SHP-1.

    PubMed

    Wu, Yue; Madri, Joseph

    2010-01-01

    Osteoclasts are derived from hematopoietic cells of monocyte-macrophage lineage. Osteoclastogenesis is orchestrated by the migration of monocytic osteoclast progenitor cells in close proximity to bone surfaces destined for resorption. Although the overall roles of monocyte migratory behavior in osteoclastogenesis remain enigmatic, impaired monocyte migration can lead to either decreased or increased osteoclastogenesis, which appears contingent upon the roles of migration in either fusion events required for osteoclast formation or terminal differentiation of osteoclasts. The cell adhesion molecule PECAM-1 (platelet endothelial cell adhesion molecule 1), in concert with the tyrosine phosphatase SHP-1 (Src homology 2-containing protein tyrosine phosphatase 1) and tyrosine kinase Syk-1 (spleen tyrosine kinase 1), functions as a negative regulator of osteoclastogenesis. Both PECAM-1 (CD31) and SHP-1 knockout mice exhibit not only increased osteoclastogenesis but also abnormal hematopoiesis, which is suggestive of the intricate interplay between hematopoiesis and osteoclastogenesis. Interestingly, the most pronounced effect of PECAM-1 deficiency on hematopoiesis is reflected by excessive megakaryocytopoiesis. Emerging data have suggested the role of megakaryocytes in bone remodeling. Megakaryocytopoiesis-osteoclastogenesis interactions are discussed herein, reconciling the discrepancies shown by different studies in this area. PECAM-1 and non-receptor tyrosine phosphatase polymorphisms have been revealed in a spectrum of diseases. The complex regulatory roles of PECAM-1 and SHP-1 in vivo suggest the potential utilization of polymorphisms of these genes for diagnostic purposes. PMID:21083524

  4. Model Inspired by Nuclear Pore Complex Suggests Possible Roles for Nuclear Transport Receptors in Determining Its Structure

    PubMed Central

    Osmanović, Dino; Ford, Ian J.; Hoogenboom, Bart W.

    2013-01-01

    Nuclear transport receptors (NTRs) mediate nucleocytoplasmic transport via their affinity for unstructured proteins (polymers) in the nuclear pore complex (NPC). Here, we have modeled the effect of NTRs on polymeric structure in the nanopore confinement of the NPC central conduit. The model explicitly takes into account inter- and intramolecular interactions, as well as the finite size of the NTRs (∼20% of the NPC channel diameter). It reproduces various proposed scenarios for the channel structure, ranging from a central polymer condensate (selective phase) to brushlike polymer arrangements localized at the channel wall (virtual gate, reduction of dimensionality), with the transport receptors lining the polymer surface. In addition, it predicts a new structure in which NTRs become an integral part of the transport barrier by forming a cross-linked network with the unstructured proteins stretching across the pore. The model provides specific and distinctive predictions for the equilibrium spatial distributions of NTRs for these different scenarios that can be experimentally verified by, e.g., superresolution fluorescence microscopy. Moreover, it suggests mechanisms by which globular macromolecules (colloidal particles) can cause polymer-coated nanopores to switch between open and closed configurations, a possible explanation of the biological function of the NPC, and suggests potential technological applications for filtration and single-molecule sensing. PMID:24359750

  5. DAX-1 functions as an LXXLL-containing corepressor for activated estrogen receptors.

    PubMed

    Zhang, H; Thomsen, J S; Johansson, L; Gustafsson, J A; Treuter, E

    2000-12-22

    We have discovered that the orphan receptor DAX-1 (NROB1) interacts with the estrogen receptors ERalpha and ERbeta. Interaction occurs with ligand-activated ERs in solution and on DNA and is mediated by the unique DAX-1 N-terminal repeat domain. Each of the three repeats contains a leucine-rich receptor-binding motif, known as the LXXLL motif, which is usually found in nuclear receptor coactivators. We have demonstrated that DAX-1 functions as an inhibitor of ER activation in mammalian cells and suggest a mechanism involving two sequential events, occupation of the ligand-induced coactivator-binding surface and subsequent recruitment of corepressors. Accordingly, we propose that DAX-1 itself acts as a corepressor for ERs. Because DAX-1 is coexpressed with ERs in reproductive tissues, these interactions could play significant roles by influencing estrogen signaling pathways. Our results point at functional similarities between DAX-1 and the orphan receptor SHP (NROB2) in that they have acquired features of transcriptional coregulators that are unique for members of the nuclear receptor family. PMID:11053406

  6. Coregulator control of androgen receptor action by a novel nuclear receptor-binding motif.

    PubMed

    Jehle, Katja; Cato, Laura; Neeb, Antje; Muhle-Goll, Claudia; Jung, Nicole; Smith, Emmanuel W; Buzon, Victor; Carbó, Laia R; Estébanez-Perpiñá, Eva; Schmitz, Katja; Fruk, Ljiljana; Luy, Burkhard; Chen, Yu; Cox, Marc B; Bräse, Stefan; Brown, Myles; Cato, Andrew C B

    2014-03-28

    The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.

  7. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    NASA Astrophysics Data System (ADS)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  8. Nuclear localization of platelet-activating factor receptor controls retinal neovascularization

    PubMed Central

    K Bhosle, Vikrant; Rivera, José Carlos; Zhou, Tianwei (Ellen); Omri, Samy; Sanchez, Melanie; Hamel, David; Zhu, Tang; Rouget, Raphael; Rabea, Areej Al; Hou, Xin; Lahaie, Isabelle; Ribeiro-da-Silva, Alfredo; Chemtob, Sylvain

    2016-01-01

    Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs. PMID:27462464

  9. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation.

    PubMed

    Faria, Jerusa A Q A; de Andrade, Carolina; Goes, Alfredo M; Rodrigues, Michele A; Gomes, Dawidson A

    2016-09-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. PMID:27462018

  10. Morin inhibits STAT3 tyrosine 705 phosphorylation in tumor cells through activation of protein tyrosine phosphatase SHP1.

    PubMed

    Gupta, Subash C; Phromnoi, Kanokkarn; Aggarwal, Bharat B

    2013-04-01

    The major goal of cancer drug discovery is to find an agent that is safe and affordable, yet effective against cancer. Here we show that morin (3,5,7,2',4'-pentahydroxyflavone) has potential against cancer cells through suppression of the signal transducer and activator of transcription 3 (STAT3) pathway, which is closely linked to the transformation, survival, proliferation, and metastasis of cancer. We found that morin completely suppressed inducible and constitutively activated STAT3 and blocked the nuclear translocation of STAT3 and its DNA binding in multiple myeloma and head and neck squamous carcinoma cells. Morin inhibited activated Src, JAK-1, and JAK-2, all of which are linked to STAT3 activation, while up-regulating a protein inhibitor of activated STAT3, PIAS3. Pervanadate reversed the effects of morin on STAT3 phosphorylation, indicating the role of a protein tyrosine phosphatase. Furthermore, morin induced SHP1 expression at both the mRNA and protein levels, and silencing of SHP1 abrogated the effect of morin on STAT3 phosphorylation, indicating that morin mediates its effects on STAT3 through SHP1. Suppression of STAT3 correlated with the down-regulation of various gene products linked to tumor survival, proliferation, and angiogenesis and led to sensitization of tumor cells to thalidomide and bortezomib. Comparing the activities of morin with those of four structurally related flavonols demonstrated the importance of hydroxyl groups in the B ring in inhibiting STAT3 activation. These findings suggest that morin suppresses the STAT3 pathway, leading to the down-regulation of STAT3-dependent gene expression and chemosensitization of tumor cells.

  11. Immunocytochemical localization of thyroid hormone nuclear receptors in cultured acetylcholinesterase-positive neurons: a correlation between the presence of thyroid hormone nuclear receptors and L-tri-iodothyronine morphological effects.

    PubMed

    Garza, R; Puymirat, J; Dussault, J H

    1990-01-01

    A monoclonal antibody against the rat liver L-tri-iodothyronine nuclear receptor and acetylcholinesterase cytochemistry were used for the localization of thyroid hormone nuclear receptors in acetylcholinesterase-positive cell nuclei in fetal rat cerebral hemisphere neuronal cultures. After 3 days in vitro, the ratio of acetylcholinesterase-positive cells that were immunoreactive for the thyroid hormone nuclear receptor to those not stained for this receptor (74-26%, respectively) remains unchanged despite an increase in the number of acetylcholinesterase-positive cells with time (from day 3 to day 21) in culture. Furthermore, the addition of 3 X 10(-8) L-tri-iodothyronine in culture did not modify this ratio or have an effect on the number of acetylcholinesterase-positive cells, but significantly increased the neurite density in those acetylcholinesterase-positive cells that were immunoreactive for the thyroid hormone receptor. Conversely, no difference in the neurite densities of those acetylcholinesterase-positive cells not stained for this receptor was observed when cultured in the presence or absence of thyroid hormone. In other experiments with the same fetal brain cultures, treatment of cultures for 8 days with L-tri-iodothyronine, beginning on culture day 20, demonstrated the presence of a critical period which occurs in vitro around day 20, since the stimulatory effect of L-tri-iodothyronine on immunoreactive acetylcholinesterase-positive cell neurite density is lost after 20 days in vitro. These results demonstrate, for the first time, the presence of L-tri-iodothyronine nuclear receptors in fetal rat acetylcholinesterase-positive neurons and the existence of a cellular heterogeneity in the distribution of the thyroid hormone receptor. The presence of these receptors in fetal brain acetylcholinesterase-positive neurons suggests that some effects of L-tri-iodothyronine on the maturation of a subpopulation of acetylcholinesterase-positive neurons may result

  12. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  13. Identification of a Synthetic Agonist for the Orphan Nuclear Receptors RORα and RORγ, SR1078

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Nuhant, Philippe; Cameron, Michael D.; Istrate, Monica A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related receptors (RORs) are members of the nuclear receptor (NR) superfamily of transcription factors. Several NRs are still characterized as orphan receptors since ligands have not yet been identified for these proteins. Here, we describe the identification of a synthetic RORα/RORγ ligand, SR1078. SR1078 modulates the conformation of RORγ in a biochemical assay and activates RORα and RORγ driven transcription. Furthermore, SR1078 stimulates expression of endogenous ROR target genes in HepG2 cells that express both RORα and RORγ. Pharmacokinetic studies indicate that SR1078 displays reasonable exposure following injection into mice and consistent with SR1078 functioning as a RORα/RORγ agonist, expression of two ROR target genes, glucose-6-phosphatase and fibroblast growth factor 21, were stimulated in the liver. Thus, we have identified the first synthetic RORα/γ agonist and this compound can be utilized as a chemical tool to probe the function of these receptors both in vitro and in vivo. PMID:20735016

  14. Therapeutic role of bile acids and nuclear receptor agonists in fibrosing cholangiopathies.

    PubMed

    Trauner, Michael; Halilbasic, Emina; Kazemi-Shirazi, Lili; Kienbacher, Christian; Staufer, Katharina; Traussnigg, Stefan; Hofer, Harald

    2014-01-01

    Chronic inflammatory bile duct diseases such as primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) result in progressive fibrosis of the biliary tract and ultimately cirrhosis of the liver. Since the etiology and pathogenesis of these fibrosing cholangiopathies are still poorly understood, therapeutic options are rather limited at present. Ursodeoxycholic acid (UDCA) is the paradigm therapeutic bile acid and established standard treatment for PBC, but its role for medical therapy of PSC is still under debate. Promising novel bile acid-based therapeutic options include 24-norursodeoxycholic acid, a side chain-shortened C23 homologue of UDCA, and bile acid receptor/farnesoid X receptor agonists (e.g., obeticholic acid) which currently undergo clinical development for fibrosing cholangiopathies such as PBC and PSC. Other nuclear receptors such as vitamin D receptor and fatty acid-activated peroxisome proliferator-activated receptors are also of considerable interest. This review article is a summary of an overview talk given at Falk Symposium 191 on Advances in Pathogenesis and Treatment of Liver Diseases held in London, October 3-4, 2013, and summarizes the recent progress with novel therapeutic bile acids and bile acid derivatives as novel therapies for fibrosing cholangiopathies such as PBC and PSC.

  15. The nuclear architectural protein HMGA1a triggers receptor-mediated endocytosis.

    PubMed

    Wu, Wuwei; Wan, Wei; Li, Alexander D Q

    2009-11-01

    High mobility group proteins A (HMGA), nuclear architectural factors, locate in the cell nuclei and mostly execute gene-regulation function. However, our results reveal that a HMGA member (HMGA1a) has a unique plasma membrane receptor; this receptor specifically binds to HMGA-decorated species, effectively mediates endocytosis, and internalizes extracellular HMGA-functionalized cargoes. Indeed, dyes or nanoparticles labeled with HMGA1a protein readily enter Hela cells. Using a stratagem chemical cross-linker, we covalently bonded the HMGA receptor to the HMGA1a-GFP fusion protein, thus capturing the plasma membrane receptor. Subsequent Western blots and SDS-PAGE gel revealed that the HMGA receptor is a 26-kDa protein. Confocal live-cell microscopic imaging was used to monitor the whole endocytic process, in which the internalized HMGA1a-decorated species are transported by motor proteins on microtubules and eventually arrive at the late endosomes/lysosomes. Cell viability assays also suggested that extracellular HMGA1a protein directly influences the survival ability of Hela cells in a dose-dependent manner, implying versatility of HMGA1a protein and its potent role to suppress cancer cell survivability and to regulate growth. PMID:19739099

  16. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway.

    PubMed

    Zhu, Ping; Baek, Sung Hee; Bourk, Eliot M; Ohgi, Kenneth A; Garcia-Bassets, Ivan; Sanjo, Hideki; Akira, Shizuo; Kotol, Paul F; Glass, Christopher K; Rosenfeld, Michael G; Rose, David W

    2006-02-10

    Defining the precise molecular strategies that coordinate patterns of transcriptional responses to specific signals is central for understanding normal development and homeostasis as well as the pathogenesis of hormone-dependent cancers. Here we report specific prostate cancer cell/macrophage interactions that mediate a switch in function of selective androgen receptor antagonists/modulators (SARMs) from repression to activation in vivo. This is based on an evolutionarily conserved receptor N-terminal L/HX7LL motif, selectively present in sex steroid receptors, that causes recruitment of TAB2 as a component of an N-CoR corepressor complex. TAB2 acts as a sensor for inflammatory signals by serving as a molecular beacon for recruitment of MEKK1, which in turn mediates dismissal of the N-CoR/HDAC complex and permits derepression of androgen and estrogen receptor target genes. Surprisingly, this conserved sensor strategy may have arisen to mediate reversal of sex steroid-dependent repression of a limited cohort of target genes in response to inflammatory signals, linking inflammatory and nuclear receptor ligand responses to essential reproductive functions.

  17. Nuclear receptor 4A (NR4A) family - orphans no more.

    PubMed

    Safe, Stephen; Jin, Un-Ho; Morpurgo, Benjamin; Abudayyeh, Ala; Singh, Mandip; Tjalkens, Ronald B

    2016-03-01

    The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer.

  18. Physical and functional interactions of human papillomavirus E2 protein with nuclear receptor coactivators

    SciTech Connect

    Wu, M.-H.; Huang, C.-J.; Liu, S.-T.; Liu, P.-Y.; Ho, C.-L. . E-mail: shihming@ndmctsgh.edu.tw

    2007-05-11

    In addition to the human papillomavirus (HPV)-induced immortalization of epithelial cells, which usually requires integration of the viral DNA into the host cell genome, steroid hormone-activated nuclear receptors (NRs) are thought to bind to specific DNA sequences within transcriptional regulatory regions on the long control region to either increase or suppress transcription of dependent genes. In this study, our data suggest that the NR coactivator function of HPV E2 proteins might be mediated through physical and functional interactions with not only NRs but also the NR coactivators GRIP1 (glucocorticoid receptor-interacting protein 1) and Zac1 (zinc-finger protein which regulates apoptosis and cell cycle arrest 1), reciprocally regulating their transactivation activities. GRIP1 and Zac1 both were able to act synergistically with HPV E2 proteins on the E2-, androgen receptor-, and estrogen receptor-dependent transcriptional activation systems. GRIP1 and Zac1 might selectively function with HPV E2 proteins on thyroid receptor- and p53-dependent transcriptional activation, respectively. Hence, the transcriptional function of E2 might be mediated through NRs and NR coactivators to regulate E2-, NR-, and p53-dependent transcriptional activations.

  19. Nuclear location-dependent role of peripheral benzodiazepine receptor (PBR) in hepatic tumoral cell lines proliferation.

    PubMed

    Corsi, L; Geminiani, E; Avallone, R; Baraldi, M

    2005-04-15

    PBR is involved in numerous biological functions, including steroid biosynthesis, mitochondrial oxidative phosphorylation and cell proliferation. The presence of PBR at the perinuclear/nuclear subcellular level has been demonstrated in aggressive breast cancer cell lines and human glioma cells where it seems to be involved in cell proliferation. In our study we investigated the presence of perinuclear/nuclear PBR in different hepatic tumor cell lines with regard to binding to [3H] PK 11195 and protein analysis. The results obtained by saturation binding experiments and scatchard analysis of perinuclear/nuclear PBR density in parallel with the results on the growth curves of the cell lines tested, indicate that the perinuclear/nuclear PBR density correlates inversely with cell doubling time. Moreover, the cell line with high perinuclear/nuclear PBR proliferated in response to PBR ligand, whereas that with low perinuclear/nuclear PBR did not. Our results reinforce the idea that the subcellular localisation of PBR defines its function and that this receptor could be a possible target for new strategies against cancer.

  20. Granulocytic nuclear differentiation of lamin B receptor-deficient mouse EPRO cells

    PubMed Central

    Zwerger, Monika; Herrmann, Harald; Gaines, Peter; Olins, Ada L.; Olins, Donald E.

    2008-01-01

    Objective Lamin B receptor (LBR) is an integral protein of the inner nuclear membrane. Recent studies have demonstrated that genetic deficiency of LBR during granulopoiesis results in hypolobulation of the mature neutrophil nucleus, as observed in human Pelger-Huët anomaly (PHA) and mouse ichthyosis (ic). In this study we have utilized differentiated promyelocytes (EPRO cells) that were derived from the bone marrow of homozygous and heterozygous ichthyosis mice to examine changes to the expression of nuclear envelope proteins and heterochromatin structure that result from deficient LBR expression. Materials and Methods Wildtype (+/+), heterozygous (+/ic) and homozygous (ic/ic) granulocytic forms of EPRO cells were analyzed for the expression of multiple lamins and inner nuclear envelope proteins by immunostaining and immunoblotting techniques. The heterochromatin architecture was also examined by immunostaining for histone lysine methylation. Results Wildtype (+/+) and heterozygous (+/ic) granulocytic forms revealed ring-shaped nuclei and contained LBR within the nuclear envelope; ic/ic granulocytes exhibited smaller ovoid nuclei devoid of LBR. The pericentric heterochromatin of undifferentiated and granulocytic ic/ic cells was condensed into larger spots and shifted away from the nuclear envelope, compared to +/+ and +/ic cell forms. Lamin A/C, which is normally not present in mature granulocytes, was significantly elevated in LBR-deficient EPRO cells. Conclusions Our observations suggest roles for LBR during granulopoiesis which may involve augmenting nuclear membrane growth, facilitating compartmentalization of heterochromatin and promoting down-regulation of lamin A/C expression. PMID:18495328

  1. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy.

    PubMed

    Johnson, Amber B; O'Malley, Bert W

    2012-01-30

    Coactivators are a diverse group of non-DNA binding proteins that induce structural changes in agonist-bound nuclear receptors (NRs) that are essential for NR-mediated transcriptional activation. Once bound, coactivators function to bridge enhancer binding proteins to the general transcription machinery, as well as to recruit secondary coactivators that modify promoter and enhancer chromatin in a manner permissive for transcriptional activation. In the following review article, we focus on one of the most in-depth studied families of coactivators, the steroid receptor coactivators (SRC) 1, 2, and 3. SRCs are widely implicated in NR-mediated diseases, especially in cancers, with the majority of studies focused on their roles in breast cancer. We highlight the relevant literature supporting the oncogenic activity of SRCs and their future as diagnostic and prognostic indicators. With much interest in the development of selective receptor modulators (SRMs), we focus on how these coactivators regulate the interactions between SRMs and their respective NRs; and, importantly, the influence that coactivators have on the functional output of SRMs. Furthermore, we speculate that coactivator-specific inhibitors could provide powerful, all-encompassing treatments that target multiple modes of oncogenic regulation in cancers resistant to typical anti-endocrine treatments.

  2. Steroid Receptor Coactivators 1, 2, and 3: Critical Regulators of Nuclear Receptor Activity and Steroid Receptor Modulator (SRM)-based Cancer Therapy

    PubMed Central

    Johnson, Amber B.; O’Malley, Bert W.

    2011-01-01

    Coactivators are a diverse group of non-DNA binding proteins that induce structural changes in agonist-bound nuclear receptors (NRs) that are essential for NR-mediated transcriptional activation. Once bound, coactivators function to bridge enhancer binding proteins to the general transcription machinery, as well as to recruit secondary coactivators that modify promoter and enhancer chromatin in a manner permissive for transcriptional activation. In the following review article, we focus on one of the most in-depth studied families of coactivators, the steroid receptor coactivators (SRC) 1, 2, and 3. SRCs are widely implicated in NR-mediated diseases, especially in cancers, with the majority of studies focused on their roles in breast cancer. We highlight the relevant literature supporting the oncogenic activity of SRCs and their future as diagnostic and prognostic indicators. With much interest in the development of selective receptor modulators (SRMs), we focus on how these coactivators regulate the interactions between SRMs and their respective NRs; and, importantly, the influence that coactivators have on the functional output of SRMs. Furthermore, we speculate that coactivator-specific inhibitors could provide powerful, all-encompassing treatments that target multiple modes of oncogenic regulation in cancers resistant to typical anti-endocrine treatments. PMID:21664237

  3. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  4. A THEMIS:SHP1 complex promotes T-cell survival.

    PubMed

    Paster, Wolfgang; Bruger, Annika M; Katsch, Kristin; Grégoire, Claude; Roncagalli, Romain; Fu, Guo; Gascoigne, Nicholas R J; Nika, Konstantina; Cohnen, Andre; Feller, Stephan M; Simister, Philip C; Molder, Kelly C; Cordoba, Shaun-Paul; Dushek, Omer; Malissen, Bernard; Acuto, Oreste

    2015-02-01

    THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation. PMID:25535246

  5. A THEMIS:SHP1 complex promotes T-cell survival

    PubMed Central

    Paster, Wolfgang; Bruger, Annika M; Katsch, Kristin; Grégoire, Claude; Roncagalli, Romain; Fu, Guo; Gascoigne, Nicholas RJ; Nika, Konstantina; Cohnen, Andre; Feller, Stephan M; Simister, Philip C; Molder, Kelly C; Cordoba, Shaun-Paul; Dushek, Omer; Malissen, Bernard; Acuto, Oreste

    2015-01-01

    THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation. PMID:25535246

  6. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    PubMed

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents.

  7. Estrogen receptor beta inhibits transcriptional activity of hypoxia inducible factor-1 through the downregulation of arylhydrocarbon receptor nuclear translocator

    PubMed Central

    2011-01-01

    Introduction Estrogen receptor (ER) β is predicted to play an important role in prevention of breast cancer development and metastasis. We have shown previously that ERβ inhibits hypoxia inducible factor (HIF)-1α mediated transcription, but the mechanism by which ERβ works to exert this effect is not understood. Methods Vascular endothelial growth factor (VEGF) was measured in conditioned medium by enzyme-linked immunosorbent assays. Reverse transcription polymerase chain reaction (RT-PCR), Western blotting, immunoprecipitation, luciferase assays and chromatin immunoprecipitation (ChIP) assays were used to ascertain the implication of ERβ on HIF-1 function. Results In this study, we found that the inhibition of HIF-1 activity by ERβ expression was correlated with ERβ's ability to degrade aryl hydrocarbon receptor nuclear translocator (ARNT) via ubiquitination processes leading to the reduction of active HIF-1α/ARNT complexes. HIF-1 repression by ERβ was rescued by overexpression of ARNT as examined by hypoxia-responsive element (HRE)-driven luciferase assays. We show further that ERβ attenuated the hypoxic induction of VEGF mRNA by directly decreasing HIF-1α binding to the VEGF gene promoter. Conclusions These results show that ERβ suppresses HIF-1α-mediated transcription via ARNT down-regulation, which may account for the tumour suppressive function of ERβ. PMID:21435239

  8. Cytoplasmic and nuclear estradiol receptors in the hypothalamus and cerebral cortex of female rats during the neonatal period

    SciTech Connect

    Shishkina, I.V.; Babichev, V.N.; Ozol', L.Y.

    1986-07-01

    The content of estradifol receptors (E/sub 2/) in the cytoplasmic and nuclear fractions of the hypothalamus and cerebral cortex of female rats was investigated in the course of neonatal development. In the cytosol of the hypothalamus and cortex, the E/sub 2/-binding proteins, which possess high capacity, include both the true estradiol receptors and proteins identical with ..cap alpha..-fetoprotein. True receptors E/sub 2/ were detected in the nuclear fraction; in the hypothalamus their concentration was virtually unchanged, while in the cortex it decreased from the first to fifth days of postnatal development.

  9. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis.

    PubMed

    Ingraham, H A; Lala, D S; Ikeda, Y; Luo, X; Shen, W H; Nachtigal, M W; Abbud, R; Nilson, J H; Parker, K L

    1994-10-01

    Steroidogenic factor 1 (SF-1), an orphan nuclear receptor, regulates the enzymes that produce sex steroids, and disruption of the Ftz-F1 gene encoding SF-1 precludes adrenal and gonadal development. We now study the role of SF-1 at other levels of the hypothalamic/pituitary/gonadal axis. In Ftz-F1-disrupted mice, immunohistochemical analyses with antibodies against pituitary trophic hormones showed a selective loss of gonadotrope-specific markers, supporting the role of SF-1 in gonadotrope function. In situ hybridization analyses confirmed these results; pituitaries from Ftz-F1-disrupted mice lacked transcripts for three gonadotrope-specific markers (LH beta, FSH beta, and the receptor for gonadotropin-releasing hormone), whereas they exhibited decreased but detectable expression of the alpha-subunit of glycoprotein hormones. SF-1 transcripts in the developing mouse pituitary, which first became detectable at embryonic day 13.5-14.5, preceded the appearance of FSH beta and LH beta transcripts. In adult rat pituitary cells, SF-1 transcripts colocalized with immunoreactivity for the gonadotrope-specific LH. Finally, SF-1 interacted with a previously defined promoter element in the glycoprotein hormone alpha-subunit gene, providing a possible mechanism for the impaired gonadotropin expression in Ftz-F1-disrupted mice. These studies establish novel roles of this orphan nuclear receptor in reproductive function.

  10. The NHR-8 nuclear receptor regulates cholesterol and bile acid homeostasis in C. elegans.

    PubMed

    Magner, Daniel B; Wollam, Joshua; Shen, Yidong; Hoppe, Caroline; Li, Dongling; Latza, Christian; Rottiers, Veerle; Hutter, Harald; Antebi, Adam

    2013-08-01

    Hormone-gated nuclear receptors (NRs) are conserved transcriptional regulators of metabolism, reproduction, and homeostasis. Here we show that C. elegans NHR-8 NR, a homolog of vertebrate liver X and vitamin D receptors, regulates nematode cholesterol balance, fatty acid desaturation, apolipoprotein production, and bile acid metabolism. Loss of nhr-8 results in a deficiency in bile acid-like steroids, called the dafachronic acids, which regulate the related DAF-12/NR, thus controlling entry into the long-lived dauer stage through cholesterol availability. Cholesterol supplementation rescues various nhr-8 phenotypes, including developmental arrest, unsaturated fatty acid deficiency, reduced fertility, and shortened life span. Notably, nhr-8 also interacts with daf-16/FOXO to regulate steady-state cholesterol levels and is synthetically lethal in combination with insulin signaling mutants that promote unregulated growth. Our studies provide important insights into nuclear receptor control of cholesterol balance and metabolism and their impact on development, reproduction, and aging in the context of larger endocrine networks.

  11. Structural basis for corepressor assembly by the orphan nuclear receptor TLX.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.

  12. Inverse Agonist of Nuclear Receptor ERRγ Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Kim, Don-Kyu; Gang, Gil-Tae; Ryu, Dongryeol; Koh, Minseob; Kim, Yo-Na; Kim, Su Sung; Park, Jinyoung; Kim, Yong-Hoon; Sim, Taebo; Lee, In-Kyu; Choi, Cheol Soo; Park, Seung Bum; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM. PMID:23775767

  13. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum.

    PubMed

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-08-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD. PMID:23232694

  14. Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family.

    PubMed

    Pecenova, L; Farkas, Robert

    2016-07-01

    Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways. PMID:27560800

  15. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    PubMed Central

    Zhou, X. Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten

    2015-01-01

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. PMID:25691470

  16. Immunocytochemical localization of nuclear 3,5,3'-triiodothyronine (L-T3) receptors in astrocyte cultures.

    PubMed

    Luo, M; Puymirat, J; Dussault, J H

    1989-03-01

    By means of a monoclonal antibody (mab) against the rat liver nuclear L-T3 receptor (NT3R) and a polyclonal anti-GFAp serum, it has been possible to demonstrate nuclear thyroid hormone receptors in astrocyte cultures. On day 3, 47% of GFAp+ cell nuclei were labeled by 2B3 mab. Between day 3 and day 15, the number of GFA+ cell nuclei stained by 2B3 mab increased from 47 to 75%. Thyroid hormone nuclear receptors were present in fibrous and protoplasmic astrocytes. However, they developed asynchronously in both types of astrocytes. Indeed, 60% of fibrous astrocytes were stained by 2B3 mab on day 3 and this percentage reached 77% after 8 days in vitro. In contrast, only 30% of protoplasmic astrocytes were immunoreactive for 2B3 mab on day 3 and this percentage increased slowly reaching 47% on day 8 and around 75-80% on day 15. By immunoblotting, the monoclonal antibody recognized two bands of proteins with a molecular weight of 57 and 45 kDa respectively. These proteins have the same electrophoretic mobility as [125I]bromoacetyl-LT3 rat liver nuclear L-T3 receptor. This paper presents the first immunocytochemical localization of nuclear L-T3 receptors in astrocyte cultures. Furthermore, we show that thyroid hormone receptors develop more rapidly in fibrous than in protoplasmic astrocytes.

  17. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA

    PubMed Central

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-01-01

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-RanGTP nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression. DOI: http://dx.doi.org/10.7554/eLife.04121.001 PMID:25486595

  18. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA.

    PubMed

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-12-08

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.

  19. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors.

    PubMed

    Grimaldi, Marina; Boulahtouf, Abdelhay; Delfosse, Vanessa; Thouennon, Erwan; Bourguet, William; Balaguer, Patrick

    2015-01-01

    Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics. PMID:26029163

  20. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors

    PubMed Central

    Grimaldi, Marina; Boulahtouf, Abdelhay; Delfosse, Vanessa; Thouennon, Erwan; Bourguet, William; Balaguer, Patrick

    2015-01-01

    Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics. PMID:26029163

  1. Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer12

    PubMed Central

    Fan, Li-Ching; Teng, Hao-Wei; Shiau, Chung-Wai; Tai, Wei-Tien; Hung, Man-Hsin; Yang, Shung-Haur; Jiang, Jeng-Kai; Chen, Kuen-Feng

    2015-01-01

    STAT3 activation is associated with poor prognosis in human colorectal cancer (CRC). Our previous data demonstrated that regorafenib (Stivarga) is a pharmacological agonist of SH2 domain-containing phosphatase 1 (SHP-1) that enhances SHP-1 activity and induces apoptosis by targeting STAT3 signals in CRC. This study aimed to find a therapeutic drug that is more effective than regorafenib for CRC treatment. Here, we showed that SC-43 was more effective than regorafenib at inducing apoptosis in vitro and suppressing tumorigenesis in vivo. SC-43 significantly increased SHP-1 activity, downregulated p-STAT3Tyr705 level, and induced apoptosis in CRC cells. An SHP-1 inhibitor or knockdown of SHP-1 by siRNA both significantly rescued the SC-43–induced apoptosis and decreased p-STAT3Tyr705 level. Conversely, SHP-1 overexpression increased the effects of SC-43 on apoptosis and p-STAT3Tyr705 level. These data suggest that SC-43–induced apoptosis mediated through the loss of p-STAT3Tyr705 was dependent on SHP-1 function. Importantly, SC-43–enhanced SHP-1 activity was because of the docking potential of SC-43, which relieved the autoinhibited N-SH2 domain of SHP-1 and inhibited p-STAT3Tyr705 signals. Importantly, we observed that a significant negative correlation existed between SHP-1 and p-STAT3Tyr705expression in CRC patients (P = .038). Patients with strong SHP-1 and weak p-STAT3Tyr705 expression had significantly higher overall survival compared with patients with weak SHP-1 and strong p-STAT3Tyr705 expression (P = .029). In conclusion, SHP-1 is suitable to be a useful prognostic marker and a pharmacological target for CRC treatment. Targeting SHP-1-STAT3 signaling by SC-43 may serve as a promising pharmacotherapy for CRC. PMID:26476076

  2. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor

    NASA Astrophysics Data System (ADS)

    Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T.; Shelton, John M.; Richardson, James A.; Repa, Joyce J.; Mangelsdorf, David J.; Kliewer, Steven A.

    2006-03-01

    Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. bacteria | biliary obstruction | epithelial barrier | ileum

  3. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility.

    PubMed

    Süllner, Julia; Lattrich, Claus; Häring, Julia; Görse, Regina; Ortmann, Olaf; Treeck, Oliver

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  4. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility

    PubMed Central

    SÜLLNER, JULIA; LATTRICH, CLAUS; HÄRING, JULIA; GÖRSE, REGINA; ORTMANN, OLAF; TREECK, OLIVER

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  5. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    PubMed Central

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  6. Deciphering the Regulatory Logic of an Ancient, Ultraconserved Nuclear Receptor Enhancer Module

    PubMed Central

    Bagamasbad, Pia D.; Bonett, Ronald M.; Sachs, Laurent; Buisine, Nicolas; Raj, Samhitha; Knoedler, Joseph R.; Kyono, Yasuhiro; Ruan, Yijun; Ruan, Xiaoan

    2015-01-01

    Cooperative, synergistic gene regulation by nuclear hormone receptors can increase sensitivity and amplify cellular responses to hormones. We investigated thyroid hormone (TH) and glucocorticoid (GC) synergy on the Krüppel-like factor 9 (Klf9) gene, which codes for a zinc finger transcription factor involved in development and homeostasis of diverse tissues. We identified regions of the Xenopus and mouse Klf9 genes 5–6 kb upstream of the transcription start sites that supported synergistic transactivation by TH plus GC. Within these regions, we found an orthologous sequence of approximately 180 bp that is highly conserved among tetrapods, but absent in other chordates, and possesses chromatin marks characteristic of an enhancer element. The Xenopus and mouse approximately 180-bp DNA element conferred synergistic transactivation by hormones in transient transfection assays, so we designate this the Klf9 synergy module (KSM). We identified binding sites within the mouse KSM for TH receptor, GC receptor, and nuclear factor κB. TH strongly increased recruitment of liganded GC receptor and serine 5 phosphorylated (initiating) RNA polymerase II to chromatin at the KSM, suggesting a mechanism for transcriptional synergy. The KSM is transcribed to generate long noncoding RNAs, which are also synergistically induced by combined hormone treatment, and the KSM interacts with the Klf9 promoter and a far upstream region through chromosomal looping. Our findings support that the KSM plays a central role in hormone regulation of vertebrate Klf9 genes, it evolved in the tetrapod lineage, and has been maintained by strong stabilizing selection. PMID:25866873

  7. Comparative analysis of nuclear estrogen receptor alpha and beta interactomes in breast cancer cells.

    PubMed

    Nassa, Giovanni; Tarallo, Roberta; Guzzi, Pietro H; Ferraro, Lorenzo; Cirillo, Francesca; Ravo, Maria; Nola, Ernesto; Baumann, Marc; Nyman, Tuula A; Cannataro, Mario; Ambrosino, Concetta; Weisz, Alessandro

    2011-03-01

    Estrogen Receptor alpha and beta (ER-α and -β) are members of the nuclear receptor family of transcriptional regulators with distinct roles in mediating estrogen dependent breast cancer cell growth and differentiation. Following activation by the hormone, these proteins undergo conformation changes and accumulate in the nucleus, where they bind to chromatin at regulatory sites as homo- and/or heterodimers and assemble in large multiprotein complexes. Although the two ERs share a conserved structure, they exert specific and distinct functional roles in normal and transformed mammary epithelial cells and other cell types. To investigate the molecular bases of such differences, we performed a comparative computational analysis of the nuclear interactomes of the two ER subtypes, exploiting two datasets of receptor interacting proteins identified in breast cancer cell nuclei by Tandem Affinity Purification for their ability to associate in vivo with ligand-activated ER-α and/or ER-β. These datasets comprise 498 proteins, of which only 70 are common to both ERs, suggesting that differences in the nature of the two ER interactomes are likely to sustain the distinct roles of the two receptor subtypes. Functional characterization of the two interactomes and their topological analysis, considering node degree and closeness of the networks, confirmed this possibility. Indeed, clustering and network dissection highlighted the presence of distinct and ER subtype-specific subnetworks endowed with defined functions. Altogether, these data provide new insights on the protein-protein interaction networks controlled by ER-α and -β that mediate their ability to transduce estrogen signaling in breast cancer cells. PMID:21173974

  8. Deciphering the regulatory logic of an ancient, ultraconserved nuclear receptor enhancer module.

    PubMed

    Bagamasbad, Pia D; Bonett, Ronald M; Sachs, Laurent; Buisine, Nicolas; Raj, Samhitha; Knoedler, Joseph R; Kyono, Yasuhiro; Ruan, Yijun; Ruan, Xiaoan; Denver, Robert J

    2015-06-01

    Cooperative, synergistic gene regulation by nuclear hormone receptors can increase sensitivity and amplify cellular responses to hormones. We investigated thyroid hormone (TH) and glucocorticoid (GC) synergy on the Krüppel-like factor 9 (Klf9) gene, which codes for a zinc finger transcription factor involved in development and homeostasis of diverse tissues. We identified regions of the Xenopus and mouse Klf9 genes 5-6 kb upstream of the transcription start sites that supported synergistic transactivation by TH plus GC. Within these regions, we found an orthologous sequence of approximately 180 bp that is highly conserved among tetrapods, but absent in other chordates, and possesses chromatin marks characteristic of an enhancer element. The Xenopus and mouse approximately 180-bp DNA element conferred synergistic transactivation by hormones in transient transfection assays, so we designate this the Klf9 synergy module (KSM). We identified binding sites within the mouse KSM for TH receptor, GC receptor, and nuclear factor κB. TH strongly increased recruitment of liganded GC receptor and serine 5 phosphorylated (initiating) RNA polymerase II to chromatin at the KSM, suggesting a mechanism for transcriptional synergy. The KSM is transcribed to generate long noncoding RNAs, which are also synergistically induced by combined hormone treatment, and the KSM interacts with the Klf9 promoter and a far upstream region through chromosomal looping. Our findings support that the KSM plays a central role in hormone regulation of vertebrate Klf9 genes, it evolved in the tetrapod lineage, and has been maintained by strong stabilizing selection. PMID:25866873

  9. Transcriptional activation of NAD{sup +}-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    SciTech Connect

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD{sup +}-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  10. NR4A orphan nuclear receptors in glucose homeostasis: a minireview.

    PubMed

    Close, A F; Rouillard, C; Buteau, J

    2013-12-01

    Type 2 diabetes mellitus is a disorder characterized by insulin resistance and a relative deficit in insulin secretion, both of which result in elevated blood glucose. Understanding the molecular mechanisms underlying the pathophysiology of diabetes could lead to the development of new therapeutic approaches. An ever-growing body of evidence suggests that members of the NR4A family of nuclear receptors could play a pivotal role in glucose homeostasis. This review aims to present and discuss advances so far in the evaluation of the potential role of NR4A in the regulation of glucose homeostasis and the development of type 2 diabetes. PMID:24075454

  11. Insights into Orphan Nuclear Receptors as Prognostic Markers and Novel Therapeutic Targets for Breast Cancer

    PubMed Central

    Aesoy, Reidun; Clyne, Colin D.; Chand, Ashwini L.

    2015-01-01

    There is emerging evidence asserting the importance of orphan nuclear receptors (ONRs) in cancer initiation and progression. In breast cancer, there is a lot unknown about ONRs in terms of their expression profile and their transcriptional targets in the various stages of tumor progression. With the classification of breast tumors into distinct molecular subtypes, we assess ONR expression in the different breast cancer subtypes and with patient outcomes. Complementing this, we review evidence implicating ONR-dependent molecular pathways in breast cancer progression to identify candidate ONRs as potential prognostic markers and/or as therapeutic targets. PMID:26300846

  12. Direct modification and regulation of a nuclear receptor-PIP2 complex by the nuclear inositol-lipid kinase IPMK

    PubMed Central

    Blind, Raymond D.; Suzawa, Miyuki; Ingraham, Holly A.

    2012-01-01

    Phosphatidylinositol (4,5)-bisphosphate (PIP2) is best known as a plasma membrane-bound regulatory lipid. While PIP2 and phosphoinositide-modifying enzymes coexist in the nucleus, their roles in the nucleus remain unclear. Here we show that the nuclear inositol polyphosphate multikinase (IPMK), which functions both as an inositol- and a PI3-kinase, interacts with the nuclear receptor SF-1 (NR5A1) and phosphorylates its bound ligand, PIP2. IPMK failed to recognize SF-1/PIP2 after blocking or displacing PIP2 from SF-1’s large hydrophobic pocket. In contrast to IPMK, p110 catalytic subunits of type 1 PI3-kinases were inactive on SF-1/PIP2. These and other in vitro analyses demonstrated specificity of IPMK for the SF-1/PIP2 protein/lipid complex. Once generated, SF-1/PIP3 is readily dephosphorylated by the lipid phosphatase PTEN. Importantly, decreasing IPMK or increasing PTEN expression greatly reduced SF-1 transcriptional activity. This ability of lipid kinases and phosphatases to alter the activity and directly remodel a non-membrane protein/lipid complex such SF-1/PIP2, establishes a new pathway for promoting lipid-mediated signaling in the nucleus. PMID:22715467

  13. Tumour nuclear oestrogen receptor beta 1 correlates inversely with parathyroid tumour weight

    PubMed Central

    Haglund, Felix; Rosin, Gustaf; Nilsson, Inga-Lena; Juhlin, C Christofer; Pernow, Ylva; Norenstedt, Sophie; Dinets, Andrii; Larsson, Catharina; Hartman, Johan; Höög, Anders

    2015-01-01

    Primary hyperparathyroidism (PHPT) is a common endocrinopathy, frequently caused by a parathyroid adenoma, rarely by a parathyroid carcinoma that lacks effective oncological treatment. As the majority of cases are present in postmenopausal women, oestrogen signalling has been implicated in the tumourigenesis. Oestrogen receptor beta 1 (ERB1) and ERB2 have been recently identified in parathyroid adenomas, the former inducing genes coupled to tumour apoptosis. We applied immunohistochemistry and slide digitalisation to quantify nuclear ERB1 and ERB2 in 172 parathyroid adenomas, atypical adenomas and carcinomas, and ten normal parathyroid glands. All the normal parathyroid glands expressed ERB1 and ERB2. The majority of tumours expressed ERB1 (70.6%) at varying intensities, and ERB2 (96.5%) at strong intensities. Parathyroid carcinomas expressed ERB1 in three out of six cases and ERB2 in five out of six cases. The intensity of tumour nuclear ERB1 staining significantly correlated inversely with tumour weight (P=0.011), and patients whose tumours were classified as ERB1-negative had significantly greater tumour weight as well as higher serum calcium (P=0.002) and parathyroid hormone levels (P=0.003). Additionally, tumour nuclear ERB1 was not expressed differentially with respect to sex or age of the patient. Levels of tumour nuclear ERB2 did not correlate with clinical characteristics. In conclusion, decreased ERB1 immunoreactivity is associated with increased tumour weight in parathyroid adenomas. Given the previously reported correlation with tumour-suppressive signalling, selective oestrogen receptor modulation (SERMs) may play a role in the treatment of parathyroid carcinomas. Future studies of SERMs and oestrogen treatment in PHPT should consider tumour weight as a potential factor in pharmacological responsiveness. PMID:25648860

  14. Tumour nuclear oestrogen receptor beta 1 correlates inversely with parathyroid tumour weight.

    PubMed

    Haglund, Felix; Rosin, Gustaf; Nilsson, Inga-Lena; Juhlin, C Christofer; Pernow, Ylva; Norenstedt, Sophie; Dinets, Andrii; Larsson, Catharina; Hartman, Johan; Höög, Anders

    2015-03-01

    Primary hyperparathyroidism (PHPT) is a common endocrinopathy, frequently caused by a parathyroid adenoma, rarely by a parathyroid carcinoma that lacks effective oncological treatment. As the majority of cases are present in postmenopausal women, oestrogen signalling has been implicated in the tumourigenesis. Oestrogen receptor beta 1 (ERB1) and ERB2 have been recently identified in parathyroid adenomas, the former inducing genes coupled to tumour apoptosis. We applied immunohistochemistry and slide digitalisation to quantify nuclear ERB1 and ERB2 in 172 parathyroid adenomas, atypical adenomas and carcinomas, and ten normal parathyroid glands. All the normal parathyroid glands expressed ERB1 and ERB2. The majority of tumours expressed ERB1 (70.6%) at varying intensities, and ERB2 (96.5%) at strong intensities. Parathyroid carcinomas expressed ERB1 in three out of six cases and ERB2 in five out of six cases. The intensity of tumour nuclear ERB1 staining significantly correlated inversely with tumour weight (P=0.011), and patients whose tumours were classified as ERB1-negative had significantly greater tumour weight as well as higher serum calcium (P=0.002) and parathyroid hormone levels (P=0.003). Additionally, tumour nuclear ERB1 was not expressed differentially with respect to sex or age of the patient. Levels of tumour nuclear ERB2 did not correlate with clinical characteristics. In conclusion, decreased ERB1 immunoreactivity is associated with increased tumour weight in parathyroid adenomas. Given the previously reported correlation with tumour-suppressive signalling, selective oestrogen receptor modulation (SERMs) may play a role in the treatment of parathyroid carcinomas. Future studies of SERMs and oestrogen treatment in PHPT should consider tumour weight as a potential factor in pharmacological responsiveness. PMID:25648860

  15. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    PubMed

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  16. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane.

    PubMed

    Re, Michelle; Pampillo, Macarena; Savard, Martin; Dubuc, Céléna; McArdle, Craig A; Millar, Robert P; Conn, P Michael; Gobeil, Fernand; Bhattacharya, Moshmi; Babwah, Andy V

    2010-07-08

    The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.

  17. Deletion of the tyrosine phosphatase Shp2 in Sertoli cells causes infertility in mice

    PubMed Central

    Hu, Xiaopeng; Tang, Zhenzhou; Li, Yang; Liu, Wensheng; Zhang, Shuang; Wang, Bingyan; Tian, Yingpu; Zhao, Yinan; Ran, Hao; Liu, Wenjie; Feng, Gen-Sheng; Shuai, Jianwei; Wang, Haibin; Lu, Zhongxian

    2015-01-01

    The male’s ability to reproduce is completely dependent on Sertoli cells. However, the mechanisms governing the functional integrity of Sertoli cells have remained largely unexplored. Here, we demonstrate that deletion of Shp2 in Sertoli cells results in infertility in mice. In Shp2 knockout mice (SCSKO), a normal population of Sertoli cells was observed, but the blood-testis barrier (BTB) was not formed. Shp2 ablation initiated the untimely and excessive differentiation of spermatogonial stem cells (SSCs) by disturbing the expression of paracrine factors. As a consequence, the process of spermatogenesis was disrupted, and the germ cells were depleted. Furthermore, Shp2 deletion impaired the cell junctions of the primary Sertoli cells and failed to support the clonal formation of SSCs co-cultured with SCSKO Sertoli cells. As expected, Shp2 restoration largely restores the cell junctions of the primary Sertoli cells and the clonal formation of SSCs. To identify the underlying mechanism, we further demonstrated that the absence of Shp2 suppressed Erk phosphorylation, and thus, the expression of follicle-stimulating hormone (FSH)- and testosterone-induced target genes. These results collectively suggest that Shp2 is a critical signaling protein that is required to maintain Sertoli cell function and could serve as a novel target for male infertility therapies. PMID:26265072

  18. Shp2 in forebrain neurons regulates synaptic plasticity, locomotion, and memory formation in mice.

    PubMed

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori; Matozaki, Takashi; Ohnishi, Hiroshi

    2015-05-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K(+)-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation.

  19. SHP-1 deficiency and increased inflammatory gene expression in PBMCs of multiple sclerosis patients

    PubMed Central

    Christophi, George P; Hudson, Chad A; Gruber, Ross C; Christophi, Christoforos P; Mihai, Cornelia; Mejico, Luis J; Jubelt, Burk; Massa, Paul T

    2010-01-01

    Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of cytokine signaling, inflammatory gene expression, and demyelination in central nervous system. The present study investigates a possible similar role for SHP-1 in the human disease multiple sclerosis (MS). The levels of SHP-1 protein and mRNA in PBMCs of MS patients were significantly lower compared to normal subjects. Moreover, promoter II transcripts, expressed from one of two known promoters, were selectively deficient in MS patients. To examine functional consequences of the lower SHP-1 in PBMCs of MS patients, we measured the intracellular levels of phosphorylated STAT6 (pSTAT6). As expected, MS patients had significantly higher levels of pSTAT6. Accordingly, siRNA to SHP-1 effectively increased the levels of pSTAT6 in PBMCs of controls to levels equal to MS patients. Additionally, transduction of PBMCs with a lentiviral vector expressing SHP-1 lowered pSTAT6 levels. Finally, multiple STAT6-responsive inflammatory genes were increased in PBMCs of MS patients relative to PBMCs of normal subjects. Thus, PBMCs of MS patients display a stable deficiency of SHP-1 expression, heightened STAT6 phosphorylation, and an enhanced state of activation relevant to the mechanisms of inflammatory demyelination. PMID:18209728

  20. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    PubMed Central

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  1. SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton.

    PubMed

    Langdon, Yvette; Tandon, Panna; Paden, Erika; Duddy, Jennifer; Taylor, Joan M; Conlon, Frank L

    2012-03-01

    Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2(N308D) and ROCK activation in the developing heart.

  2. SHP-2 Mediates Cryptosporidium parvum Infectivity in Human Intestinal Epithelial Cells

    PubMed Central

    Varughese, Eunice A.; Kasper, Susan; Anneken, Emily M.; Yadav, Jagjit S.

    2015-01-01

    The parasite, Cryptosporidium parvum, induces human gastroenteritis through infection of host epithelial cells in the small intestine. During the initial stage of infection, C. parvum is reported to engage host mechanisms at the host cell-parasite interface to form a parasitophorous vacuole. We determined that upon infection, the larger molecular weight proteins in human small intestinal epithelial host cells (FHs 74 Int) appeared to globally undergo tyrosine dephosphorylation. In parallel, expression of the cytoplasmic protein tyrosine phosphatase Src homology-2 domain-containing phosphatase 2 (SHP-2) increased in a time-dependent manner. SHP-2 co-localized with the C. parvum sporozoite and this interaction increased the rate of C. parvum infectivity through SH2-mediated SHP-2 activity. Furthermore, we show that one potential target that SHP-2 acts upon is the focal adhesion protein, paxillin, which undergoes moderate dephosphorylation following infection, with inhibition of SHP-2 rescuing paxillin phosphorylation. Importantly, treatment with an inhibitor to SHP-2 and with an inhibitor to paxillin and Src family kinases, effectively decreased the multiplicity of C. parvum infection in a dose-dependent manner. Thus, our study reveals an important role for SHP-2 in the pathogenesis of C. parvum. Furthermore, while host proteins can be recruited to participate in the development of the electron dense band at the host cell-parasite interface, our study implies for the first time that SHP-2 appears to be recruited by the C. parvum sporozoite to regulate infectivity. Taken together, these findings suggest that SHP-2 and its down-stream target paxillin could serve as targets for intervention. PMID:26556238

  3. SHP-2 Mediates Cryptosporidium parvum Infectivity in Human Intestinal Epithelial Cells.

    PubMed

    Varughese, Eunice A; Kasper, Susan; Anneken, Emily M; Yadav, Jagjit S

    2015-01-01

    The parasite, Cryptosporidium parvum, induces human gastroenteritis through infection of host epithelial cells in the small intestine. During the initial stage of infection, C. parvum is reported to engage host mechanisms at the host cell-parasite interface to form a parasitophorous vacuole. We determined that upon infection, the larger molecular weight proteins in human small intestinal epithelial host cells (FHs 74 Int) appeared to globally undergo tyrosine dephosphorylation. In parallel, expression of the cytoplasmic protein tyrosine phosphatase Src homology-2 domain-containing phosphatase 2 (SHP-2) increased in a time-dependent manner. SHP-2 co-localized with the C. parvum sporozoite and this interaction increased the rate of C. parvum infectivity through SH2-mediated SHP-2 activity. Furthermore, we show that one potential target that SHP-2 acts upon is the focal adhesion protein, paxillin, which undergoes moderate dephosphorylation following infection, with inhibition of SHP-2 rescuing paxillin phosphorylation. Importantly, treatment with an inhibitor to SHP-2 and with an inhibitor to paxillin and Src family kinases, effectively decreased the multiplicity of C. parvum infection in a dose-dependent manner. Thus, our study reveals an important role for SHP-2 in the pathogenesis of C. parvum. Furthermore, while host proteins can be recruited to participate in the development of the electron dense band at the host cell-parasite interface, our study implies for the first time that SHP-2 appears to be recruited by the C. parvum sporozoite to regulate infectivity. Taken together, these findings suggest that SHP-2 and its down-stream target paxillin could serve as targets for intervention. PMID:26556238

  4. Minireview: Nuclear Receptor Coregulators of the p160 Family: Insights into Inflammation and Metabolism

    PubMed Central

    Rollins, David A.; Coppo, Maddalena

    2015-01-01

    Nuclear receptor coactivators (NCOAs) are multifunctional transcriptional coregulators for a growing number of signal-activated transcription factors. The members of the p160 family (NCOA1/2/3) are increasingly recognized as essential and nonredundant players in a number of physiological processes. In particular, accumulating evidence points to the pivotal roles that these coregulators play in inflammatory and metabolic pathways, both under homeostasis and in disease. Given that chronic inflammation of metabolic tissues (“metainflammation”) is a driving force for the widespread epidemic of obesity, insulin resistance, cardiovascular disease, and associated comorbidities, deciphering the role of NCOAs in “normal” vs “pathological” inflammation and in metabolic processes is indeed a subject of extreme biomedical importance. Here, we review the evolving and, at times, contradictory, literature on the pleiotropic functions of NCOA1/2/3 in inflammation and metabolism as related to nuclear receptor actions and beyond. We then briefly discuss the potential utility of NCOAs as predictive markers for disease and/or possible therapeutic targets once a better understanding of their molecular and physiological actions is achieved. PMID:25647480

  5. The Nuclear Orphan Receptor NR2F6 Is a Central Checkpoint for Cancer Immune Surveillance

    PubMed Central

    Hermann-Kleiter, Natascha; Klepsch, Victoria; Wallner, Stephanie; Siegmund, Kerstin; Klepsch, Sebastian; Tuzlak, Selma; Villunger, Andreas; Kaminski, Sandra; Pfeifhofer-Obermair, Christa; Gruber, Thomas; Wolf, Dominik; Baier, Gottfried

    2015-01-01

    Summary Nuclear receptor subfamily 2, group F, member 6 (NR2F6) is an orphan member of the nuclear receptor superfamily. Here, we show that genetic ablation of Nr2f6 significantly improves survival in the murine transgenic TRAMP prostate cancer model. Furthermore, Nr2f6−/− mice spontaneously reject implanted tumors and develop host-protective immunological memory against tumor rechallenge. This is paralleled by increased frequencies of both CD4+ and CD8+ T cells and higher expression levels of interleukin 2 and interferon γ at the tumor site. Mechanistically, CD4+ and CD8+ T cell-intrinsic NR2F6 acts as a direct repressor of the NFAT/AP-1 complex on both the interleukin 2 and the interferon γ cytokine promoters, attenuating their transcriptional thresholds. Adoptive transfer of Nr2f6-deficient T cells into tumor-bearing immunocompetent mice is sufficient to delay tumor outgrowth. Altogether, this defines NR2F6 as an intracellular immune checkpoint in effector T cells, governing the amplitude of anti-cancer immunity. PMID:26387951

  6. Discriminating agonist and antagonist ligands of the nuclear receptors using 3D-pharmacophores.

    PubMed

    Lagarde, Nathalie; Delahaye, Solenne; Zagury, Jean-François; Montes, Matthieu

    2016-01-01

    Nuclear receptors (NRs) constitute an important class of therapeutic targets. We evaluated the performance of 3D structure-based and ligand-based pharmacophore models in predicting the pharmacological profile of NRs ligands using the NRLiSt BDB database. We could generate selective pharmacophores for agonist and antagonist ligands and we found that the best performances were obtained by combining the structure-based and the ligand-based approaches. The combination of pharmacophores that were generated allowed to cover most of the chemical space of the NRLiSt BDB datasets. By screening the whole NRLiSt BDB on our 3D pharmacophores, we demonstrated their selectivity towards their dedicated NRs ligands. The 3D pharmacophores herein presented can thus be used as a predictor of the pharmacological activity of NRs ligands.Graphical AbstractUsing a combination of structure-based and ligand-based pharmacophores, agonist and antagonist ligands of the Nuclear Receptors included in the NRLiSt BDB database could be separated.

  7. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    PubMed

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm. PMID:18641393

  8. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    SciTech Connect

    Song, Kwang-Hoon

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  9. Nuclear receptors in nematode development: Natural experiments made by a phylum.

    PubMed

    Kostrouchova, Marta; Kostrouch, Zdenek

    2015-02-01

    The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  10. Discriminating agonist and antagonist ligands of the nuclear receptors using 3D-pharmacophores.

    PubMed

    Lagarde, Nathalie; Delahaye, Solenne; Zagury, Jean-François; Montes, Matthieu

    2016-01-01

    Nuclear receptors (NRs) constitute an important class of therapeutic targets. We evaluated the performance of 3D structure-based and ligand-based pharmacophore models in predicting the pharmacological profile of NRs ligands using the NRLiSt BDB database. We could generate selective pharmacophores for agonist and antagonist ligands and we found that the best performances were obtained by combining the structure-based and the ligand-based approaches. The combination of pharmacophores that were generated allowed to cover most of the chemical space of the NRLiSt BDB datasets. By screening the whole NRLiSt BDB on our 3D pharmacophores, we demonstrated their selectivity towards their dedicated NRs ligands. The 3D pharmacophores herein presented can thus be used as a predictor of the pharmacological activity of NRs ligands.Graphical AbstractUsing a combination of structure-based and ligand-based pharmacophores, agonist and antagonist ligands of the Nuclear Receptors included in the NRLiSt BDB database could be separated. PMID:27602059

  11. Thyroid Hormone Receptor α1 Follows a Cooperative CRM1/Calreticulin-mediated Nuclear Export Pathway*

    PubMed Central

    Grespin, Matthew E.; Bonamy, Ghislain M. C.; Roggero, Vincent R.; Cameron, Nicole G.; Adam, Lindsay E.; Atchison, Andrew P.; Fratto, Victoria M.; Allison, Lizabeth A.

    2008-01-01

    The thyroid hormone receptor α1 (TRα) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T3). Previously, we have shown that TRα, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRα is its ability to exit the nucleus through the nuclear pore complex. TRα export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRα. We show that, in addition to shuttling in heterokaryons, TRα shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRα directly interacts with calreticulin, and point to the intriguing possibility that TRα follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRα from the nucleus to cytoplasm. PMID:18641393

  12. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  13. Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation

    PubMed Central

    Carthy, Jon M.; Stöter, Martin; Bellomo, Claudia; Vanlandewijck, Michael; Heldin, Angelos; Morén, Anita; Kardassis, Dimitris; Gahman, Timothy C.; Shiau, Andrew K.; Bickle, Marc; Zerial, Marino; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer. PMID:27430378

  14. Cloning, pharmacological characterization and expression analysis of Atlantic cod (Gadus morhua, L.) nuclear progesterone receptor.

    PubMed

    Chen, Shi X; Almeida, Fernanda F L; Andersson, Eva; Taranger, Geir Lasse; Schmidt, Ruben; Schulz, Rüdiger W; Bogerd, Jan

    2012-10-01

    To better understand the role(s) of progesterone in fish spermatogenesis, we cloned the nuclear progesterone receptor (Pgr) of Atlantic cod. The open-reading frame of the cod pgr consists of 2076 bp, coding for a 691-amino acids-long protein that shows the highest similarity with other piscine Pgr proteins. Functional characterization of the receptor expressed in mammalian cells revealed that the cod Pgr exhibited progesterone-specific, dose-dependent induction of reporter gene expression, with 17α,20β-dihydroxy-4-pregnen-3-one (DHP), a typical piscine progesterone, showing the highest potency in activating the receptor. During ontogenesis, the pgr mRNA was undetectable in embryo's 24 h after fertilization, but became detectable 4 days after fertilization. During the larval stage, the expression levels increased steadily with the development of the larvae. In adult fish, pgr was predominantly expressed in gonads of both sexes. During the onset of puberty, testicular pgr transcript levels started to increase during rapid spermatogonial proliferation, and peaked when spermiation started. In situ hybridization studies using testis tissue during the rapid growth phase containing all germ cell stages indicated that in cod, pgr mRNA is predominantly located in Sertoli cells that are in contact with proliferating spermatogonia. Taken together, our data suggests that the Pgr is involved in mediating progestagen stimulation of the mitotic expansion of spermatogonia, and in processes associated with the spermiation/spawning period in Atlantic cod. PMID:22885560

  15. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites

    PubMed Central

    Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke

    2010-01-01

    The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101

  16. Flame Retardant BDE-47 Effectively Activates Nuclear Receptor CAR in Human Primary Hepatocytes

    PubMed Central

    Sueyoshi, Tatsuya

    2014-01-01

    Polybrominated diphenyl ether BDE-47 (2,2′,4,4′-tetrabromodiphenyl ether) is a thyroid hormone disruptor in mice; hepatic induction of various metabolic enzymes and transporters has been suggested as the mechanism for this disruption. Utilizing Car −/− and Pxr −/− mice as well as human primary hepatocytes, here we have demonstrated that BDE-47 activated both mouse and human nuclear receptor constitutive activated/androstane receptor (CAR). In mouse livers, CAR, not PXR, was responsible for Cyp2b10 mRNA induction by BDE-47. In human primary hepatocytes, BDE-47 was able to induce translocation of YFP-tagged human CAR from the cytoplasm to the nucleus andCYP2B6 and CYP3A4 mRNAs expressions. BDE-47 activated human CAR in a manner akin to the human CAR ligand CITCO (6-(4-Chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) in luciferase-reporter assays using Huh-7 cells. In contrast, mouse CAR was not potently activated by BDE-47 in the same reporter assays. Furthermore, human pregnane X receptor (PXR) was effectively activated by BDE-47 while mouse PXR was weakly activated in luciferase-reporter assays. Our results indicate that BDE-47 induces CYP genes through activation of human CAR in addition to the previously identified pathway through human PXR. PMID:24218150

  17. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    SciTech Connect

    Kewley, Robyn J. . E-mail: rkewley@csu.edu.au; Whitelaw, Murray L.

    2005-12-09

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer.

  18. Agonist ligands mediate the transcriptional response of nuclear receptor heterodimers through distinct stoichiometric assemblies with coactivators.

    PubMed

    Pavlin, Mark Remec; Brunzelle, Joseph S; Fernandez, Elias J

    2014-09-01

    The constitutive androstane (CAR) and retinoid X receptors (RXR) are ligand-mediated transcription factors of the nuclear receptor protein superfamily. Functional CAR:RXR heterodimers recruit coactivator proteins, such as the steroid receptor coactivator-1 (SRC1). Here, we show that agonist ligands can potentiate transactivation through both coactivator binding sites on CAR:RXR, which distinctly bind two SRC1 molecules. We also observe that SRC1 transitions from a structurally plastic to a compact form upon binding CAR:RXR. Using small angle x-ray scattering (SAXS) we show that the CAR(tcp):RXR(9c)·SRC1 complex can encompass two SRC1 molecules compared with the CAR(tcp):RXR·SRC1, which binds only a single SRC1. Moreover, sedimentation coefficients and molecular weights determined by analytical ultracentrifugation confirm the SAXS model. Cell-based transcription assays show that disrupting the SRC1 binding site on RXR alters the transactivation by CAR:RXR. These data suggest a broader role for RXR within heterodimers, whereas offering multiple strategies for the assembly of the transcription complex.

  19. Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent inflammation

    PubMed Central

    Sun, Ye; Liu, Chi-Hsiu; SanGiovanni, John Paul; Evans, Lucy P.; Tian, Katherine T.; Zhang, Bing; Stahl, Andreas; Pu, William T.; Kamenecka, Theodore M.; Solt, Laura A.; Chen, Jing

    2015-01-01

    Pathologic ocular angiogenesis is a leading cause of blindness, influenced by both dysregulated lipid metabolism and inflammation. Retinoic-acid-receptor–related orphan receptor alpha (RORα) is a lipid-sensing nuclear receptor with diverse biologic function including regulation of lipid metabolism and inflammation; however, its role in pathologic retinal angiogenesis remains poorly understood. Using a mouse model of oxygen-induced proliferative retinopathy, we showed that RORα expression was significantly increased and genetic deficiency of RORα substantially suppressed pathologic retinal neovascularization. Loss of RORα led to decreased levels of proinflammatory cytokines and increased levels of antiinflammatory cytokines in retinopathy. RORα directly suppressed the gene transcription of suppressors of cytokine signaling 3 (SOCS3), a critical negative regulator of inflammation. Inhibition of SOCS3 abolished the antiinflammatory and vasoprotective effects of RORα deficiency in vitro and in vivo. Moreover, treatment with a RORα inverse agonist SR1001 effectively protected against pathologic neovascularization in both oxygen-induced retinopathy and another angiogenic model of very-low–density lipoprotein receptor (Vldlr)-deficient (Vldlr−/−) mice with spontaneous subretinal neovascularization, whereas a RORα agonist worsened oxygen-induced retinopathy. Our data demonstrate that RORα is a novel regulator of pathologic retinal neovascularization, and RORα inhibition may represent a new way to treat ocular neovascularization. PMID:26243880

  20. The Nuclear Receptor PPARγ as a Therapeutic Target for Cerebrovascular and Brain Dysfunction in Alzheimer's Disease

    PubMed Central

    Nicolakakis, Nektaria; Hamel, Edith

    2010-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that regulate peripheral lipid and glucose metabolism. Three subtypes make up the PPAR family (α, γ, β/δ), and synthetic ligands for PPARα (fibrates) and PPARγ (Thiazolidinediones, TZDs) are currently prescribed for the respective management of dyslipidemia and type 2 diabetes. In contrast to the well characterized action of PPARs in the periphery, little was known about the presence or function of these receptors in the brain and cerebral vasculature until fairly recently. Indeed, research in the last decade has uncovered these receptors in most brain cell types, and has shown that their activation, particularly that of PPARγ, is implicated in normal brain and cerebrovascular physiology, and confers protection under pathological conditions. Notably, accumulating evidence has highlighted the therapeutic potential of PPARγ ligands in the treatment of brain disorders such as Alzheimer's disease (AD), leading to the testing of the TZDs pioglitazone and rosiglitazone in AD clinical trials. This review will focus on the benefits of PPARγ agonists for vascular, neuronal and glial networks, and assess the value of these compounds as future AD therapeutics in light of evidence from transgenic mouse models and recent clinical trials. PMID:20725514

  1. Inhibition of cytokine production by the herbicide atrazine. Search for nuclear receptor targets.

    PubMed

    Devos, Sabrina; De Bosscher, Karolien; Staels, Bart; Bauer, Ellinor; Roels, Frank; Vanden Berghe, Wim; Haegeman, Guy; Hooghe, Robert; Hooghe-Peters, Elisabeth L

    2003-01-15

    The hematological toxicity of the commonly used triazine herbicides is a cause for concern. In a search for molecular targets of these compounds, as their effects paralleled those seen with dexamethasone (DEX), we first looked for interaction with the glucocorticoid receptor. In contrast to the effects on proliferation and cytokine production of DEX, those induced by atrazine were not prevented by the glucocorticoid antagonist RU486. Also, whereas DEX was able to inhibit the promoter activity of genes regulated by NF-kappaB, atrazine failed to do so. We next looked for interaction with members of the peroxisome proliferator-activated receptor (PPAR) family. No peroxisome proliferation was observed in the liver or kidneys of mice treated with atrazine. Moreover, no PPAR-mediated induction of promoter activity was seen on targets of PPARalpha, PPARgamma, or PPARdelta. Similarly, neither atrazine nor simazine were able to stimulate RORalpha-mediated promoter activity. Finally, no binding of atrazine to the AR was observed. In conclusion, the effects of atrazine-type herbicides most probably do not result from interaction with the above-mentioned nuclear receptors.

  2. Annotation of the Daphnia magna nuclear receptors: Comparison to Daphnia pulex

    PubMed Central

    Litoff, Elizabeth J; Garriott, Travis E.; Ginjupalli, Gautam K.; Butler, LaToya; Gay, Claudy; Scott, Kiandra; Baldwin, William S.

    2014-01-01

    Most Nuclear Receptors (NRs) are ligand-dependent transcription factors crucial in homeostatic physiological responses or environmental responses. We annotated the D. magna NRs and compared them to D. pulex and other species, primarily through phylogenetic analysis. Daphnia species contain 26 NRs spanning all seven gene subfamilies. Thirteen of the 26 receptors found in Daphnia species phylogenetically segregate into the NR1 subfamily, primarily involved in energy metabolism and resource allocation. Some of the Daphnia NRs, such as RXR, HR96, and E75 show strong conservation between D. magna and D. pulex. Other receptors, such as EcRb, THRL-11 and RARL-10 have diverged considerably and therefore may show different functions in the two species. Curiously, there is an inverse association between the number of NR splice variants and conservation of the LBD. Overall, D. pulex and D. magna possess the same NRs; however not all of the NRs demonstrate high conservation indicating the potential for a divergence of function. PMID:25239664

  3. Classical Nuclear Hormone Receptor Activity as a Mediator of Complex Concentration Response Relationships for Endocrine Active Compounds

    PubMed Central

    Cookman, Clifford J.; Belcher, Scott M.

    2014-01-01

    Nonmonotonic concentration response relationships are frequently observed for endocrine active ligands that act via nuclear receptors. The curve of best fit for nonmonotonic concentration response relationships are often inverted U-shaped with effects at intermediate concentrations that are different from effects at higher or lower concentrations. Cytotoxicity is a major mode of action responsible for inverted U-shaped concentration response relationships. However, evidence suggests that ligand selectivity, activation of multiple molecular targets, concerted regulation of multiple opposing endpoints, and multiple ligand binding sites within nuclear receptors also contribute to nonmonotonic concentration response relationships of endocrine active ligands. This review reports the current understanding of mechanisms involved in classical nuclear receptor mediated nonmonotonic concentration response relationships with a focus on studies published between 2012 and 2014. PMID:25299165

  4. Characterization and Expression of the Nuclear Progestin Receptor in Zebrafish Gonads and Brain1

    PubMed Central

    Hanna, Richard N.; Daly, Sean C.J.; Pang, Yefei; Anglade, Isabelle; Kah, Olivier; Thomas, Peter; Zhu, Yong

    2009-01-01

    The zebrafish nuclear progestin receptor (nPR; official symbol PGR) was identified and characterized to better understand its role in regulating reproduction in this well-established teleost model. A full-length cDNA was identified that encoded a 617-amino acid residue protein with high homology to PGRs in other vertebrates, and contained five domains characteristic of nuclear steroid receptors. In contrast to the multiplicity of steroid receptors often found in euteleosts and attributed to probable genome duplication, only a single locus encoding the full-length zebrafish pgr was identified. Cytosolic proteins from pgr-transfected cells showed a high affinity (Kd = 2 nM), saturable, single-binding site specific for a native progestin in euteleosts, 4-pregnen-17,20beta-diol-3-one (17,20beta-DHP). Both 17,20beta-DHP and progesterone were potent inducers of transcriptional activity in cells transiently transfected with pgr in a dual luciferase reporter assay, whereas androgens and estrogens had little potency. The pgr transcript and protein were abundant in the ovaries, testis, and brain and were scarce or undetectable in the intestine, muscle, and gills. Further analyses indicate that Pgr was expressed robustly in the preoptic region of the hypothalamus in the brain; proliferating spermatogonia and early spermatocytes in the testis; and in follicular cells and early-stage oocytes (stages I and II), with very low levels within maturationally competent late-stage oocytes (IV) in the ovary. The localization of Pgr suggests that it mediates progestin regulation of reproductive signaling in the brain, early germ cell proliferation in testis, and ovarian follicular functions, but not final oocyte or sperm maturation. PMID:19741205

  5. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor.

    PubMed

    Iida, M; Brand, T M; Campbell, D A; Li, C; Wheeler, D L

    2013-02-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR

  6. A structural perspective on nuclear receptors as targets of environmental compounds

    PubMed Central

    Delfosse, Vanessa; Maire, Albane le; Balaguer, Patrick; Bourguet, William

    2015-01-01

    Nuclear receptors (NRs) are members of a large superfamily of evolutionarily related transcription factors that control a plethora of biological processes. NRs orchestrate complex events such as development, organ homeostasis, metabolism, immune function, and reproduction. Approximately one-half of the 48 human NRs have been shown to act as ligand-regulated transcription factors and respond directly to a large variety of endogenous hormones and metabolites that are generally hydrophobic and small in size (eg, retinoic acid or estradiol). The second half of the NR family comprises the so-called orphan receptors, for which regulatory ligands are still unknown or may not exist despite the presence of a C-terminal ligand-binding domain, which is the hallmark of all NRs. Several chemicals released into the environment (eg, bisphenols, phthalates, parabens, etc) share some physicochemical properties with natural ligands, allowing them to bind to NRs and activate or inhibit their action. Collectively referred to as endocrine disruptors or endocrine-disrupting chemicals (EDCs), these environmental pollutants are highly suspected to cause a wide range of developmental, reproductive, neurological, or metabolic defects in humans and wildlife. Crystallographic studies are revealing unanticipated mechanisms by which chemically diverse EDCs interact with the ligand-binding domain of NRs. These studies thereby provide a rational basis for designing novel chemicals with lower impacts on human and animal health. In this review, we provide a structural and mechanistic view of endocrine disrupting action using estrogen receptors α and β, (ERα/β), peroxisome proliferator activated receptor γ (PPARγ), and their respective environmental ligands as representative examples. PMID:25500867

  7. Uterine Development and Fertility Are Dependent on Gene Dosage of the Nuclear Receptor Coregulator REA

    PubMed Central

    Park, Sunghee; Yoon, Sangyeon; Zhao, Yuechao; Park, Seong-Eun; Liao, Lan; Xu, Jianming; Lydon, John P.; DeMayo, Francesco J.; O'Malley, Bert W.; Bagchi, Milan K.

    2012-01-01

    Although the effectiveness of nuclear hormone-receptor complexes is known to depend on coregulator partner proteins, relatively little is known about the roles of coregulators in uterine development and early stages of pregnancy and implantation. Because conventional genetic deletion of the coregulator, repressor of estrogen receptor activity (REA), was embryonic lethal, we here study REA conditional knockout mice generated by cre-loxP recombination, in which REA function was abrogated only in progesterone receptor-expressing tissues, to define the roles of REA in postembryonic stages and in a tissue-specific manner. We find that REA has gene dose-dependent activity impacting uterine development and fertility. Conditional homozygous mutant (REAd/d) mice developed to adulthood and showed normal ovarian function, but females were infertile with severely compromised uterine development and function characterized by cell cycle arrest, apoptosis, and altered adenogenesis (endometrial gland morphogenesis), resulting in failure of implantation and decidualization. By contrast, mice heterozygous for REA (REAf/d) had a very different phenotype, with estradiol treatment resulting in hyperstimulated, large uteri showing increased proliferation of luminal epithelial cells, and enhanced fluid imbibition associated with altered regulation of aquaporins. These REAf/d female mice showed a subfertility phenotype with reduced numbers and sizes of litters. These findings highlight that uterine development and regulation of estrogen receptor activities show a bimodal dependence on the gene dosage of REA. Optimal uterine development and functional activities require the normal gene dosage of REA, with partial or complete deletion resulting in hyperresponsiveness or underresponsiveness to hormone and subfertility or infertility, respectively. PMID:22585830

  8. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.

    PubMed

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A

    2015-10-22

    The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.

  9. Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors

    PubMed Central

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L.; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A.

    2015-01-01

    Summary The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. PMID:26456112

  10. Androgen receptor non-nuclear regulation of prostate cancer cell invasion mediated by Src and matriptase.

    PubMed

    Zarif, Jelani C; Lamb, Laura E; Schulz, Veronique V; Nollet, Eric A; Miranti, Cindy K

    2015-03-30

    Castration-resistant prostate cancers still depend on nuclear androgen receptor (AR) function despite their lack of dependence on exogenous androgen. Second generation anti-androgen therapies are more efficient at blocking nuclear AR; however resistant tumors still develop. Recent studies indicate Src is highly active in these resistant tumors. By manipulating AR activity in several different prostate cancer cell lines through RNAi, drug treatment, and the use of a nuclear-deficient AR mutant, we demonstrate that androgen acting on cytoplasmic AR rapidly stimulates Src tyrosine kinase via a non-genomic mechanism. Cytoplasmic AR, acting through Src enhances laminin integrin-dependent invasion. Active Matriptase, which cleaves laminin, is elevated within minutes after androgen stimulation, and is subsequently shed into the medium. Matriptase activation and shedding induced by cytoplasmic AR is dependent on Src. Concomitantly, CDCP1/gp140, a Matriptase and Src substrate that controls integrin-based migration, is activated. However, only inhibition of Matriptase, but not CDCP1, suppresses the AR/Src-dependent increase in invasion. Matriptase, present in conditioned medium from AR-stimulated cells, is sufficient to enhance invasion in the absence of androgen. Thus, invasion is stimulated by a rapid but sustained increase in Src activity, mediated non-genomically by cytoplasmic AR, leading to rapid activation and shedding of the laminin protease Matriptase.

  11. Cholesterol inhibits the nuclear entry of estrogen receptor activation factor (E-RAF) and its dimerization with the nonactivated estrogen receptor (naER) in goat uterus.

    PubMed

    Thampan, R V; Zafar, A; Imam, N S; Sreeja, S; Suma, K; Vairamani, M

    2000-04-01

    An alternative form of estrogen receptor isolated from goat uterus, the nonactivated estrogen receptor (naER), has no DNA-binding function, although it is closely similar to the classical estrogen receptor (ER) in its hormone binding affinity and specificity. The naER dimerizes with a DNA binding protein, estrogen receptor activation factor (E-RAF). The heterodimer binds to the DNA. Assays carried out during the purification of E-RAF showed that an endogenous inhibitor that is heat stable and dialyzable bound to the E-RAF and prevented the formation of the heterodimer. The inhibitor has been isolated and purified. GC-MS analysis identifies this molecule to be cholesterol. Circular dichroism measurement has shown that the high-affinity binding of cholesterol to E-RAF results in subtle changes in the secondary and the tertiary structure of the protein. The E-RAF with altered conformation fails to dimerize with the naER. Instead of facilitating E-RAF entry into the nucleus, dimerization with the naER prevents it. Similarly, cholesterol binding blocks the nuclear entry of the protein, showing that E-RAF with altered conformation is incapable of interaction with the nuclear pore complex/membrane proteins. The naER-E-RAF heterodimer remains at the nuclear periphery, incapable of further transport. These results indicate the possibility that the dimerization between naER and the E-RAF takes place only within the nuclear compartment. The observation that cholesterol binding prevents nuclear entry of the E-RAF reflects the similarity of E-RAF with the sterol regulatory element (SRE) binding protein that enters the nucleus and binds to SRE only when the intracellular level of cholesterol remains low. PMID:10760947

  12. Cholesterol inhibits the nuclear entry of estrogen receptor activation factor (E-RAF) and its dimerization with the nonactivated estrogen receptor (naER) in goat uterus.

    PubMed

    Thampan, R V; Zafar, A; Imam, N S; Sreeja, S; Suma, K; Vairamani, M

    2000-04-01

    An alternative form of estrogen receptor isolated from goat uterus, the nonactivated estrogen receptor (naER), has no DNA-binding function, although it is closely similar to the classical estrogen receptor (ER) in its hormone binding affinity and specificity. The naER dimerizes with a DNA binding protein, estrogen receptor activation factor (E-RAF). The heterodimer binds to the DNA. Assays carried out during the purification of E-RAF showed that an endogenous inhibitor that is heat stable and dialyzable bound to the E-RAF and prevented the formation of the heterodimer. The inhibitor has been isolated and purified. GC-MS analysis identifies this molecule to be cholesterol. Circular dichroism measurement has shown that the high-affinity binding of cholesterol to E-RAF results in subtle changes in the secondary and the tertiary structure of the protein. The E-RAF with altered conformation fails to dimerize with the naER. Instead of facilitating E-RAF entry into the nucleus, dimerization with the naER prevents it. Similarly, cholesterol binding blocks the nuclear entry of the protein, showing that E-RAF with altered conformation is incapable of interaction with the nuclear pore complex/membrane proteins. The naER-E-RAF heterodimer remains at the nuclear periphery, incapable of further transport. These results indicate the possibility that the dimerization between naER and the E-RAF takes place only within the nuclear compartment. The observation that cholesterol binding prevents nuclear entry of the E-RAF reflects the similarity of E-RAF with the sterol regulatory element (SRE) binding protein that enters the nucleus and binds to SRE only when the intracellular level of cholesterol remains low.

  13. Cross-talk between the NR3B and NR4A families of orphan nuclear receptors

    SciTech Connect

    Lammi, Johanna; Rajalin, Ann-Marie; Huppunen, Johanna; Aarnisalo, Piia . E-mail: piia.aarnisalo@helsinki.fi

    2007-07-27

    Estrogen-related receptors (NR3B family) and Nurr1, NGFI-B, and Nor1 (NR4A family) are orphan nuclear receptors lacking identified natural ligands. The mechanisms regulating their transcriptional activities have remained elusive. We have previously observed that the members of NR3B and NR4A families are coexpressed in certain cell types such as osteoblasts and that the ability of Nurr1 to transactivate the osteopontin promoter is repressed by ERRs. We have now studied the cross-talk between NR3B and NR4A receptors. We show that NR3B and NR4A receptors mutually repress each others' transcriptional activity. The repression involves intact DNA-binding domains and dimerization interfaces but does not result from competition for DNA binding or from heterodimerization. The activation functions of NR3B and NR4A receptors are dispensable for the cross-talk. In conclusion, we report that cross-talk between NR3B and NR4A receptors is a mechanism modulating the transcriptional activities of these orphan nuclear receptors.

  14. Exploring the Existing Drug Space for Novel pTyr Mimetic and SHP2 Inhibitors

    PubMed Central

    2015-01-01

    Protein tyrosine phosphatases (PTPs) are potential therapeutic targets for many diseases. Unfortunately, despite considerable drug discovery efforts devoted to PTPs, obtaining selective and cell permeable PTP inhibitors remains highly challenging. We describe a strategy to explore the existing drug space for previously unknown PTP inhibitory activities. This led to the discovery of cefsulodin as an inhibitor of SHP2, an oncogenic phosphatase in the PTP family. Crystal structure analysis of SHP2 interaction with cefsulodin identified sulfophenyl acetic amide (SPAA) as a novel phosphotyrosine (pTyr) mimetic. A structure-guided and SPAA fragment-based focused library approach produced several potent and selective SHP2 inhibitors. Notably, these inhibitors blocked SHP2-mediated signaling events and proliferation in several cancer cell lines. Thus, SPAA may serve as a new platform for developing chemical probes for other PTPs. PMID:26191366

  15. SHP2 positively regulates TGFβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein Hook1.

    PubMed

    Li, Shuomin; Wang, Linrun; Zhao, Qingwei; Liu, Yu; He, Lingjuan; Xu, Qinqin; Sun, Xu; Teng, Li; Cheng, Hongqiang; Ke, Yuehai

    2014-12-01

    The epithelial-mesenchymal transition (EMT) is an essential process for embryogenesis. It also plays a critical role in the initiation of tumor metastasis. Src homology 2 (SH2)-domain containing protein-tyrosine phosphatase-2 (SHP2) is a ubiquitously expressed protein-tyrosine phosphatase and is mutated in many tumors. However, its functional role in tumor metastasis remains largely unknown. We found that TGFβ1-induced EMT in lung epithelial A549 cells was partially blocked when SHP2 was decreased by transfected siRNA. The constitutively active form (E76V) promoted EMT while the phosphatase-dead mutation (C459S) and the SHP2 inhibitor PHPS1 blocked EMT, which further demonstrated that the phosphatase activity of SHP2 was required for promoting TGFβ1-induced EMT. Using the protein-tyrosine phosphatase domain of SHP2 as bait, we identified a novel SHP2-interacting protein Hook1. Hook1 was down-regulated during EMT in A549 cells. Overexpression of Hook1 inhibited EMT while knockdown of Hook1 promoted EMT. Moreover, both the protein-tyrosine phosphatase domain and N-terminal SH2 domain of SHP2 directly interacted with Hook1. Down-regulation of Hook1 increased SHP2 activity. These results suggested that Hook1 was an endogenous negative regulator of SHP2 phosphatase activity. Our data showed that the protein-tyrosine phosphatase SHP2 was involved in the process of EMT and Hook1 repressed EMT by regulating the activation of SHP2. SHP2-Hook1 complex may play important roles in tumor metastases by regulating EMT in cancer cells.

  16. The tyrosine phosphatase, SHP-1, is involved in bronchial mucin production during oxidative stress.

    PubMed

    Jang, Min Kyoung; Kim, Sae-Hoon; Lee, Ki-Young; Kim, Tae-Bum; Moon, Keun Ae; Park, Chan Sun; Bae, Yun Jeong; Zhu, Zhou; Moon, Hee-Bom; Cho, You Sook

    2010-02-26

    Mucus hypersecretion is a clinically important manifestation of chronic inflammatory airway diseases, such as asthma and Chronic obstructive pulmonary disease (COPD). Mucin production in airway epithelia is increased under conditions of oxidative stress. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 suppression is related to the development of airway inflammation and increased ROS levels. In this study, we investigated the role of SHP-1 in mucin secretion triggered by oxidative stress. Human lung mucoepidermoid H292 carcinoma cells were transfected with specific siRNA to eliminate SHP-1 gene expression. Cultured cells were treated with hydrogen peroxide (H(2)O(2)), and Mucin 5AC(MUC5AC) gene expression and mucin production were determined. Activation of p38 mitogen activated protein kinase (MAPK) in association with MUC5AC production was evaluated. N-acetylcysteine (NAC) was employed to determine whether antioxidants could block MUC5AC production. To establish the precise role of p38, mucin expression was observed after pre-treatment of SHP-1-depleted H292 cells with the p38 chemical blocker. We investigated the in vivo effects of oxidative stress on airway mucus production in SHP-1-deficient heterozygous (mev/+) mice. MUC5AC expression was enhanced in SHP-1 knockdown H292 cells exposed to H(2)O(2), compared to that in control cells. The ratio between phosphorylated and total p38 was significantly increased in SHP-1-deficient cells under oxidative stress. Pre-treatment with NAC suppressed both MUC5AC production and p38 activation. Blockage of p38 MAPK led to suppression of MUC5AC mRNA expression. Notably, mucin production was enhanced in the airway epithelia of mev/+ mice exposed to oxidative stress. Our results clearly indicate that SHP-1 plays an important role in airway mucin production through regulating oxidative stress. PMID:20117097

  17. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines

    PubMed Central

    Lauriol, Jessica; Cabrera, Janel R.; Roy, Ashbeel; Keith, Kimberly; Hough, Sara M.; Damilano, Federico; Wang, Bonnie; Segarra, Gabriel C.; Flessa, Meaghan E.; Miller, Lauren E.; Das, Saumya; Bronson, Roderick; Lee, Kyu-Ho; Kontaridis, Maria I.

    2016-01-01

    Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy. PMID:27348588

  18. The tyrosine phosphatase, SHP-1, is involved in bronchial mucin production during oxidative stress.

    PubMed

    Jang, Min Kyoung; Kim, Sae-Hoon; Lee, Ki-Young; Kim, Tae-Bum; Moon, Keun Ae; Park, Chan Sun; Bae, Yun Jeong; Zhu, Zhou; Moon, Hee-Bom; Cho, You Sook

    2010-02-26

    Mucus hypersecretion is a clinically important manifestation of chronic inflammatory airway diseases, such as asthma and Chronic obstructive pulmonary disease (COPD). Mucin production in airway epithelia is increased under conditions of oxidative stress. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 suppression is related to the development of airway inflammation and increased ROS levels. In this study, we investigated the role of SHP-1 in mucin secretion triggered by oxidative stress. Human lung mucoepidermoid H292 carcinoma cells were transfected with specific siRNA to eliminate SHP-1 gene expression. Cultured cells were treated with hydrogen peroxide (H(2)O(2)), and Mucin 5AC(MUC5AC) gene expression and mucin production were determined. Activation of p38 mitogen activated protein kinase (MAPK) in association with MUC5AC production was evaluated. N-acetylcysteine (NAC) was employed to determine whether antioxidants could block MUC5AC production. To establish the precise role of p38, mucin expression was observed after pre-treatment of SHP-1-depleted H292 cells with the p38 chemical blocker. We investigated the in vivo effects of oxidative stress on airway mucus production in SHP-1-deficient heterozygous (mev/+) mice. MUC5AC expression was enhanced in SHP-1 knockdown H292 cells exposed to H(2)O(2), compared to that in control cells. The ratio between phosphorylated and total p38 was significantly increased in SHP-1-deficient cells under oxidative stress. Pre-treatment with NAC suppressed both MUC5AC production and p38 activation. Blockage of p38 MAPK led to suppression of MUC5AC mRNA expression. Notably, mucin production was enhanced in the airway epithelia of mev/+ mice exposed to oxidative stress. Our results clearly indicate that SHP-1 plays an important role in airway mucin production through regulating oxidative stress.

  19. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines.

    PubMed

    Lauriol, Jessica; Cabrera, Janel R; Roy, Ashbeel; Keith, Kimberly; Hough, Sara M; Damilano, Federico; Wang, Bonnie; Segarra, Gabriel C; Flessa, Meaghan E; Miller, Lauren E; Das, Saumya; Bronson, Roderick; Lee, Kyu-Ho; Kontaridis, Maria I

    2016-08-01

    Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy. PMID:27348588

  20. The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes

    PubMed Central

    Wang, Zhu; Stoltzfus, Jonathan; You, Young-jai; Ranjit, Najju; Tang, Hao; Xie, Yang; Lok, James B.; Mangelsdorf, David J.; Kliewer, Steven A.

    2015-01-01

    Appropriate nutrient response is essential for growth and reproduction. Under favorable nutrient conditions, the C. elegans nuclear receptor DAF-12 is activated by dafachronic acids, hormones that commit larvae to reproductive growth. Here, we report that in addition to its well-studied role in controlling developmental gene expression, the DAF-12 endocrine system governs expression of a gene network that stimulates the aerobic catabolism of fatty acids. Thus, activation of the DAF-12 transcriptome coordinately mobilizes energy stores to permit reproductive growth. DAF-12 regulation of this metabolic gene network is conserved in the human parasite, Strongyloides stercoralis, and inhibition of specific steps in this network blocks reproductive growth in both of the nematodes. Our study provides a molecular understanding for metabolic adaptation of nematodes to their environment, and suggests a new therapeutic strategy for treating parasitic diseases. PMID:25774872

  1. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1

    DOE PAGES

    Blind, Raymond D.; Sablin, Elena P.; Kuchenbecker, Kristopher M.; Chiu, Hsiu-Ju; Deacon, Ashley M.; Das, Debanu; Fletterick, Robert J.; Ingraham, Holly A.

    2014-10-06

    We previously reported that lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP2 and PIP3 bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIPn headgroups. We find that stabilization by the PIP3 ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP3 increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutations cripple SF-1 activity. Finally, we propose that thismore » new surface acts as a PIP3-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.« less

  2. In Silico Adoption of an Orphan Nuclear Receptor NR4A1

    PubMed Central

    Lanig, Harald; Reisen, Felix; Whitley, David; Schneider, Gisbert; Banting, Lee; Clark, Timothy

    2015-01-01

    A 4.1μs molecular dynamics simulation of the NR4A1 (hNur77) apo-protein has been undertaken and a previously undetected druggable pocket has become apparent that is located remotely from the ‘traditional’ nuclear receptor ligand-binding site. A NR4A1/bis-indole ligand complex at this novel site has been found to be stable over 1 μs of simulation and to result in an interesting conformational transmission to a remote loop that has the capacity to communicate with a NBRE within a RXR-α/NR4A1 heterodimer. Several features of the simulations undertaken indicate how NR4A1 can be affected by alternate-site modulators. PMID:26270486

  3. The roles of the nuclear receptor steroidogenic factor 1 in endocrine differentiation and development.

    PubMed

    Parker, K L; Schimmer, B P

    1996-08-01

    The orphan nuclear receptor steroidogenic factor 1 (SF-1) has emerged as a critical determinant of adrenal and gonadal differentiation, development, and function. SF-1 was initially isolated as a positive regulator of the cytochrome P450 steroid hydroxylases in the adrenal glands and gonads; developmental analyses subsequently showed that SF-1 was also expressed in the diencephalon and anterior pituitary, suggesting additional roles in endocrine function. Analyses of knockout mice deficient in SF-1 revealed multiple abnormalities, including adrenal and gonadal agenesis, male to female sex reversal of the internal genitalia, impaired gonadotrope function, and absence of the ventromedial hypothalamic nucleus. Taken together, these results implicate SF-1 as a global regulator within the hypothalamic-pituitary-gonadal axis and the adrenal cortex.

  4. Nuclear receptor full-length architectures: confronting myth and illusion with high resolution.

    PubMed

    Rastinejad, Fraydoon; Ollendorff, Vincent; Polikarpov, Igor

    2015-01-01

    The crystal structures of three nuclear receptor (NR) complexes have emerged to reveal their multidomain architectures on DNA. These pictures provide unprecedented views of interfacial couplings between the DNA-binding domains (DBDs) and ligand-binding domains (LBDs). The detailed pictures contrast with previous interpretations of low-resolution electron microscopy (EM) and small angle X-ray scattering (SAXS) data, which had suggested a common architecture with noninteracting DBDs and LBDs. Revisiting both historical and recent interpretations of NR architecture, we invoke new principles underlying higher-order quaternary organization and the allosteric transmission of signals between domains. We also discuss how NR architectures are being probed in living cells to understand dimerization and DNA-binding events in real time.

  5. Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development.

    PubMed

    Samarut, Eric; Rochette-Egly, Cécile

    2012-01-30

    The vitamin A derivative, retinoic acid (RA), is essential for embryonic development through the activation of cognate nuclear receptors, RARs, which work as ligand dependent regulators of transcription. In vitro studies revealed how RARs control gene expression at the molecular level and now it appears that it is fine-tuned by a phosphorylation code. In addition, several genetic approaches provided valuable insights on the functions of RARs during development and on the influence of other actors such as the enzymes involved in RA synthesis and degradation and other signaling pathways. It appears that RARs are the conductors of the RA signaling symphony through controlling the dynamics and the coordination of the different players and development steps.

  6. Regulation of microRNA expression and function by nuclear receptor signaling

    PubMed Central

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNA transcripts that affect various cellular pathways by serving as regulators of gene expression at the translational and transcriptional level. Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene transcription by binding to the promoter region or by interacting with other transcription factors. NRs can regulate miRNA expression either at the transcriptional level, or through posttranscriptional maturation by interacting with miRNA processing factors. This review will summarize recent advances in knowledge of the modulation of miRNA expression by NRs. Increased understanding of the molecular basis of miRNA expression may enable new therapeutic interventions that modulate miRNA activities through NR-mediated signaling. PMID:21936947

  7. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity

    PubMed Central

    Nguyen, Duy P.; Miyaoka, Yuichiro; Gilbert, Luke A.; Mayerl, Steven J.; Lee, Brian H.; Weissman, Jonathan S.; Conklin, Bruce R.; Wells, James A.

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  8. Nuclear Receptors as Therapeutic Targets in Liver Disease: Are We There Yet?

    PubMed Central

    Wang, Li

    2016-01-01

    Nuclear receptors (NR) are ligand-modulated transcription factors that play diverse roles in cell differentiation, development, proliferation, and metabolism and are associated with numerous liver pathologies such as cancer, steatosis, inflammation, fibrosis, cholestasis, and xenobiotic/drug-induced liver injury. The network of target proteins associated with NRs is extremely complex, comprising coregulators, small noncoding microRNAs, and long noncoding RNAs. The importance of NRs as targets of liver disease is exemplified by the number of NR ligands that are currently used in the clinics or in clinical trials with promising results. Understanding the regulation by NR during pathophysiological conditions, and identifying ligands for orphan NR, points to a potential therapeutic approach for patients with liver diseases. An overview of complex NR metabolic networks and their pharmacological implications in liver disease is presented here. PMID:26738480

  9. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs)

    PubMed Central

    Rochette-Egly, Cécile; Germain, Pierre

    2009-01-01

    Nuclear retinoic acid receptors (RARs) are transcriptional regulators controlling the expression of specific subsets of genes in a ligand-dependent manner. The basic mechanism for switching on transcription of cognate target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes, the assembly of which is directed by the C-terminal ligand-binding domain of RARs. In addition to this scenario, new roles for the N-terminal domain and the ubiquitin-proteasome system recently emerged. Moreover, the functions of RARs are not limited to the regulation of cognate target genes, as they can transrepress other gene pathways. Finally, RARs are also involved in nongenomic biological activities such as the activation of translation and of kinase cascades. Here we will review these mechanisms, focusing on how kinase signaling and the proteasome pathway cooperate to influence the dynamics of RAR transcriptional activity. PMID:19471584

  10. Nuclear receptors as regulators of stem cell and cancer stem cell metabolism.

    PubMed

    Simandi, Zoltan; Cuaranta-Monroy, Ixchelt; Nagy, Laszlo

    2013-12-01

    Cellular metabolism is underpinning physiological processes in all cells. These include housekeeping functions as well as specific activities unique to a particular cell type. A growing number of studies in various experimental models indicate that metabolism is tightly connected to embryonic development as well. It is also emerging that metabolic processes have regulatory roles and by changing metabolism, cellular processes and even fates can be influenced. Nuclear receptors (NRs) are transcription factors, responding to changes in metabolites and are implicated in diverse biological processes such as embryonic development, differentiation, metabolism and cancer. Therefore, NRs are key links between metabolism and cell fate decisions. In this review, we introduce ESRRβ, DAX-1 and LRH-1 as putative regulators of metabolism in pluripotent embryonic stem cells. We also discuss the role of TR4, NGF1β, LXRβ and RARs in stemness. In addition, we summarize our current understanding of the potential roles of NRs in cancer stem cells. PMID:24184382

  11. The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors

    SciTech Connect

    Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna; Onder, Zeynep; Hannah, Erin C.; Mamoor, Shahan; Crosby, Lauren; Moroianu, Junona

    2010-11-10

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7{sub 39-98} localized mostly to the nucleus. The GST-11E7 and GST-11cE7{sub 39-98} were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.

  12. Synthesis and biological evaluation of open-chain analogs of cyclic peptides as inhibitors of cellular Shp2 activity.

    PubMed

    Zhen, Xiao-Li; Yin, Wen-Hui; Tian, Xia; Ma, Zhen-Jie; Fan, Shi-Ming; Han, Jian-Rong; Liu, Shouxin

    2015-05-15

    A series of open-chain analogs of cyclic peptides was designed and synthesized using sansalvamide A as a model compound. All compounds exhibited low antitumor activity. Furthermore, the evaluation of their inhibitory potency toward IMPDH, SHP2, ACHE, proteasome, MAGL, and cathepsin B showed that all of the compounds were potent against protein tyrosine phosphatase Shp2. Specifically, compounds 1a, 1d, 2b, and 2f were found to inhibit SHP2 with IC50 values in the low micromolar range and good selectivity. Based on the molecular docking results, the binding modes of the chain cyclic peptides in the active center of SHP2 were discussed. PMID:25865131

  13. New Approaches to Prevent LEOPARD Syndrome-associated Cardiac Hypertrophy by Specifically Targeting Shp2-dependent Signaling*

    PubMed Central

    Schramm, Christine; Edwards, Michelle A.; Krenz, Maike

    2013-01-01

    In LEOPARD syndrome (LS) patients, mutations in the protein tyrosine phosphatase Shp2 cause hypertrophic cardiomyopathy. The prohypertrophic effects of mutant Shp2 are mediated downstream by hyperactivation of mammalian target of rapamycin. Our goal was to further define the signaling cascade that is essential for the underlying pathomechanism, thus expanding the list of potential future therapeutic targets. Using cultured neonatal rat cardiomyocytes with adenoviral gene delivery and pharmacological inhibitors, we found that hypertrophy induced by a particularly aggressive LS mutation in Shp2 depends on hyperactivation of Akt and focal adhesion kinase as well as mammalian target of rapamycin. Dissecting domain-specific functions of Shp2 using double and truncation mutants, we determined that the hypertrophic effects of mutant Shp2 depend on the two SH2 domains and on an intact catalytic center. The latter finding prompted us to test the efficacy of a Shp2 inhibitor targeted directly at the catalytic pocket. This compound, PHPS1, effectively prevented mutant Shp2-induced hypertrophy. In summary, we identified three novel targets for pharmacological therapy of LS-associated cardiac hypertrophy. Of particular importance is the finding that intervention directly at the mutant Shp2 protein is effective because this would facilitate custom-tailored therapeutic approaches for patients carrying LS mutations in Shp2. PMID:23673659

  14. Interferon-β treatment in multiple sclerosis attenuates inflammatory gene expression through inducible activity of the phosphatase SHP-1

    PubMed Central

    Christophi, George P.; Panos, Michael; Hudson, Chad A.; Tsikkou, Chriso; Mihai, Cornelia; Mejico, Luis J.; Jubelt, Burk; Massa, Paul T.

    2009-01-01

    Interferon-β is a current treatment for multiple sclerosis (MS). Interferon-β is thought to exert its therapeutic effects on MS by down-modulating the immune response by multiple potential pathways. Here, we document that treatment of MS patients with interferon β-1a (Rebif) results in a significant increase in the levels and function of the protein tyrosine phosphatase SHP-1 in PBMCs. SHP-1 is a crucial negative regulator of cytokine signaling, inflammatory gene expression, and CNS demyelination as evidenced in mice deficient in SHP-1. In order to examine the functional significance of SHP-1 induction in MS PBMCs, we analyzed the activity of proinflammatory signaling molecules STAT1, STAT6, and NF-κB, which are known SHP-1 targets. Interferon-β treatment in vivo resulted in decreased NF-κB and STAT6 activation and increased STAT1 activation. Further analysis in vitro showed that cultured PBMCs of MS patients and normal subjects had a significant SHP-1 induction following interferon-β treatment that correlated with decreased NF-κB and STAT6 activation. Most importantly, experimental depletion of SHP-1 in cultured PBMCs abolished the anti-inflammatory effects of interferon-β treatment, indicating that SHP-1 is a predominant mediator of interferon-β activity. In conclusion, interferon-β treatment upregulates SHP-1 expression resulting in decreased transcription factor activation and inflammatory gene expression important in MS pathogenesis. PMID:19559654

  15. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in gingival crevicular fluid

    PubMed Central

    Sarlati, Fatemeh; Sattari, Mandana; Razzaghi, Shilan; Nasiri, Malihe

    2012-01-01

    Background: Osteoclastogenesis is coordinated by the interaction of three members of the tumor necrosis factor (TNF) superfamily: Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK). The aim of this study was to investigate RANKL and OPG levels, and their relative ratio in gingival crevicular fluid (GCF) of patients with chronic and aggressive periodontitis, as well as healthy controls. Materials and Methods: In this analytical study, GCF was obtained from healthy (n = 10), mild chronic periodontitis (n = 18), moderate chronic periodontitis (n = 18), severe chronic periodontitis (n = 20), and generalized aggressive periodontitis (n = 20) subjects. RANKL and OPG concentrations were measured by enzyme-linked immunosorbent assay. Statistical tests used were Kruskal–Wallis test, Mann–Whitney U rank sum test, and Spearman's rank correlation analysis. The level of statistical significance was set at P < 0.05. Results: Mean RANKL concentration showed no statistically significant differences between groups (P = 0.58). There were also no significant differences between mean OPG concentration in the five groups (P = 0.0.56). Moreover, relative RANKL/OPG ratio did not reveal a significant difference between the three study group subjects: healthy, chronic periodontitis (mild, moderate, severe), and aggressive periodontitis (P = 0.41). There was statistically significant correlation between the concentration of sRANKL and Clinical Attachment Level (CAL) in moderate chronic periodontitis patients (R = 0.48, P = 0.04). There was also negative correlation between OPG concentration and CAL in moderate chronic periodontitis patients, although not significant (R = −0.13). Conclusion: RANKL was prominent in periodontitis sites, especially in moderate periodontitis patients, whereas OPG was not detectable in some diseased sites with bleeding on probing, supporting the role of these two molecules in

  16. ONRLDB--manually curated database of experimentally validated ligands for orphan nuclear receptors: insights into new drug discovery.

    PubMed

    Nanduri, Ravikanth; Bhutani, Isha; Somavarapu, Arun Kumar; Mahajan, Sahil; Parkesh, Raman; Gupta, Pawan

    2015-01-01

    Orphan nuclear receptors are potential therapeutic targets. The Orphan Nuclear Receptor Ligand Binding Database (ONRLDB) is an interactive, comprehensive and manually curated database of small molecule ligands targeting orphan nuclear receptors. Currently, ONRLDB consists of ∼11,000 ligands, of which ∼6500 are unique. All entries include information for the ligand, such as EC50 and IC50, number of aromatic rings and rotatable bonds, XlogP, hydrogen donor and acceptor count, molecular weight (MW) and structure. ONRLDB is a cross-platform database, where either the cognate small molecule modulators of a receptor or the cognate receptors to a ligand can be searched. The database can be searched using three methods: text search, advanced search or similarity search. Substructure search, cataloguing tools, and clustering tools can be used to perform advanced analysis of the ligand based on chemical similarity fingerprints, hierarchical clustering, binning partition and multidimensional scaling. These tools, together with the Tree function provided, deliver an interactive platform and a comprehensive resource for identification of common and unique scaffolds. As demonstrated, ONRLDB is designed to allow selection of ligands based on various properties and for designing novel ligands or to improve the existing ones. Database URL: http://www.onrldb.org/.

  17. ONRLDB—manually curated database of experimentally validated ligands for orphan nuclear receptors: insights into new drug discovery

    PubMed Central

    Nanduri, Ravikanth; Bhutani, Isha; Somavarapu, Arun Kumar; Mahajan, Sahil; Parkesh, Raman; Gupta, Pawan

    2015-01-01

    Orphan nuclear receptors are potential therapeutic targets. The Orphan Nuclear Receptor Ligand Binding Database (ONRLDB) is an interactive, comprehensive and manually curated database of small molecule ligands targeting orphan nuclear receptors. Currently, ONRLDB consists of ∼11 000 ligands, of which ∼6500 are unique. All entries include information for the ligand, such as EC50 and IC50, number of aromatic rings and rotatable bonds, XlogP, hydrogen donor and acceptor count, molecular weight (MW) and structure. ONRLDB is a cross-platform database, where either the cognate small molecule modulators of a receptor or the cognate receptors to a ligand can be searched. The database can be searched using three methods: text search, advanced search or similarity search. Substructure search, cataloguing tools, and clustering tools can be used to perform advanced analysis of the ligand based on chemical similarity fingerprints, hierarchical clustering, binning partition and multidimensional scaling. These tools, together with the Tree function provided, deliver an interactive platform and a comprehensive resource for identification of common and unique scaffolds. As demonstrated, ONRLDB is designed to allow selection of ligands based on various properties and for designing novel ligands or to improve the existing ones. Database URL: http://www.onrldb.org/ PMID:26637529

  18. Membrane and Integrative Nuclear Fibroblastic Growth Factor Receptor (FGFR) Regulation of FGF-23*

    PubMed Central

    Han, Xiaobin; Xiao, Zhousheng; Quarles, L. Darryl

    2015-01-01

    Fibroblastic growth factor receptor 1 (FGFR1) signaling pathways are implicated in the regulation of FGF-23 gene transcription, but the molecular pathways remain poorly defined. We used low molecular weight (LMW, 18 kDa) FGF-2 and high molecular weight (HMW) FGF-2 isoforms, which, respectively, activate cell surface FGF receptors and intranuclear FGFR1, to determine the roles of membrane FGFRs and integrative nuclear FGFR1 signaling (INFS) in the regulation of FGF-23 gene transcription in osteoblasts. We found that LMW-FGF-2 induced NFAT and Ets1 binding to conserved cis-elements in the proximal FGF-23 promoter and stimulated FGF-23 promoter activity through PLCγ/calcineurin/NFAT and MAPK pathways in SaOS-2 and MC3T3-E1 osteoblasts. In contrast, HMW-FGF-2 stimulated FGF-23 promoter activity in osteoblasts through a cAMP-dependent binding of FGFR1 and cAMP-response element-binding protein (CREB) to a conserved cAMP response element (CRE) contiguous with the NFAT binding site in the FGF-23 promoter. Mutagenesis of the NFAT and CRE binding sites, respectively, inhibited the effects of LMW-FGF-2 and HMW-FGF-23 to stimulate FGF-23 promoter activity. FGF-2 activation of both membrane FGFRs and INFS-dependent FGFR1 pathways may provide a means to integrate systemic and local regulation of FGF-23 transcription under diverse physiological and pathological conditions. PMID:25752607

  19. A photocleavable masked nuclear-receptor ligand enables temporal control of C. elegans development.

    PubMed

    Judkins, Joshua C; Mahanti, Parag; Hoffman, Jacob B; Yim, Isaiah; Antebi, Adam; Schroeder, Frank C

    2014-02-17

    The development and lifespan of C. elegans are controlled by the nuclear hormone receptor DAF-12, an important model for the vertebrate vitamin D and liver X receptors. As with its mammalian homologues, DAF-12 function is regulated by bile acid-like steroidal ligands; however, tools for investigating their biosynthesis and function in vivo are lacking. A flexible synthesis for DAF-12 ligands and masked ligand derivatives that enable precise temporal control of DAF-12 function was developed. For ligand masking, photocleavable amides of 5-methoxy-N-methyl-2-nitroaniline (MMNA) were introduced. MMNA-masked ligands are bioavailable and after incorporation into the worm, brief UV irradiation can be used to trigger the expression of DAF-12 target genes and initiate development from dauer larvae into adults. The in vivo release of DAF-12 ligands and other small-molecule signals by using photocleavable MMNA-masked ligands will enable functional studies with precise spatial and temporal resolution.

  20. A Nuclear Receptor Ligand-based Probe Enables Temporal Control of C. elegans Development

    PubMed Central

    Judkins, Joshua C.; Mahanti, Parag; Hoffman, Jacob; Yim, Isaiah; Antebi, Adam; Schroeder, Frank C.

    2014-01-01

    C. elegans development and lifespan are controlled by the nuclear hormone receptor DAF-12, an important model for vertebrate vitamin D and liver-X receptors. Similar to its mammalian homologs, DAF-12 function is regulated by bile acid-like steroidal ligands, the dafachronic acids; however, tools for investigating their biosynthesis and function in vivo are lacking. We report a flexible synthesis for DAF-12 ligands and masked ligand derivatives that enable precise temporal control of DAF-12 function. For ligand masking, we introduce photocleavable amides of 5-methoxy-N-methyl-2-nitroaniline (MMNA). MMNA-masked ligands are bioavailable and after incorporation into the worm can be used to trigger expression of DAF-12 target genes and initiate development from dauer larvae to adults by brief, innocuous UV-irradiation. In-vivo release of DAF-12 ligands and other small-molecule signals using MMNA-based probes will enable functional studies with precise spatial and temporal resolution. PMID:24453122

  1. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPAR{gamma}

    SciTech Connect

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar; Park, Yun-Yong; Kim, Kyung Tae; Park, Sang Chul; Lee, Young Chul; Kim, Jae Bum Choi, Hueng-Sik

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) {gamma} is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPAR{gamma}. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPAR{gamma} in a dose-dependent manner. DAX-1 directly competed with the PPAR{gamma} coactivator (PGC)-1{alpha} for binding to PPAR{gamma}. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPAR{gamma} target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPAR{gamma} and performs a potential function in the regulation of PPAR{gamma}-mediated cellular differentiation.

  2. The AP-1 family member FOS blocks transcriptional activity of the nuclear receptor steroidogenic factor 1

    PubMed Central

    Sirianni, Rosa; Nogueira, Edson; Bassett, Mary H.; Carr, Bruce R.; Suzuki, Takashi; Pezzi, Vincenzo; Andò, Sebastiano; Rainey, William E.

    2010-01-01

    Steroid production in the adrenal zona glomerulosa is under the control of angiotensin II (Ang II), which, upon binding to its receptor, activates protein kinase C (PKC) within these cells. PKC is a potent inhibitor of the steroidogenic enzyme CYP17. We have demonstrated that, in the ovary, PKC activates expression of FOS, a member of the AP-1 family, and increased expression of this gene is linked to CYP17 downregulation. However, the pathway and the molecular mechanism responsible for the inhibitory effect of PKC on CYP17 expression are not defined. Herein, we demonstrated that Ang II inhibited CYP17 through PKC and ERK1/2-activated FOS and that blocking FOS expression decreased PKC-mediated inhibition. Although CYP17 transcription was activated by the nuclear receptor SF-1, expression of FOS resulted in a decrease in SF-1-mediated gene transcription. FOS physically interacted with the hinge region of SF-1 and modulated its transactivity, thus preventing binding of cofactors such as SRC1 and CBP, which were necessary to fully activate CYP17 transcription. Collectively, these results indicate a new regulatory mechanism for SF-1 transcriptional activity that might influence adrenal zone-specific expression of CYP17, a mechanism that can potentially be applied to other steroidogenic tissues. PMID:20980388

  3. Cloning, genomic organization, and expression analysis of zebrafish nuclear receptor coactivator, TIF2.

    PubMed

    Tan, Jee-Hian; Quek, Sue-Ing; Chan, Woon-Khiong

    2005-01-01

    Thyroid hormone receptors (TRs) are involved in numerous diverse biological processes such as growth and differentiation, thermogenesis, neurulation, homeostasis, and metamorphosis. In zebrafish, TRbeta1 has been implicated to be involved in the obligatory embryonic-to-larval transitory phase. In order to understand if nuclear receptor coactivators could modulate the transcriptional activities of TRs during this transitory phase, the transcriptionary intermediary factor 2 (TIF2), a member of the p160 coactivator, was isolated from zebrafish. The zebrafish tif2 cDNA encodes a polypeptide of 1,505 amino acids. The tif2 gene is made up of 23 exons with the AUG and stop codon located in Exon IV and XXIII, respectively. The overall genomic organization of human and zebrafish tif2 genes are very similar. Four tif2 isoforms were identified by RT-PCR. The N-terminus mRNA variants are generated as a result of multiple initiation start sites located upstream of the noncoding Exon I and Exon II. The C-terminus isoforms, E20a and E20b, resulted from the alternative splicing of Exon XX. Although E20a and E20b isoforms were ubiquitously expressed, they were very highly expressed in reproductive tissues. The availability of TIF2 cDNA will allow the analysis of its functional roles in mediating the actions of TRs in various aspects of zebrafish developmental biology.

  4. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPARgamma.

    PubMed

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar; Park, Yun-Yong; Kim, Kyung Tae; Park, Sang Chul; Lee, Young Chul; Kim, Jae Bum; Choi, Hueng-Sik

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) gamma is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPARgamma. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPARgamma in a dose-dependent manner. DAX-1 directly competed with the PPARgamma coactivator (PGC)-1alpha for binding to PPARgamma. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPARgamma target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPARgamma and performs a potential function in the regulation of PPARgamma-mediated cellular differentiation. PMID:18381063

  5. Expression Profiling of Nuclear Receptors Identifies Key Roles of NR4A Subfamily in Uterine Fibroids

    PubMed Central

    Yin, Hanwei; Lo, Jay H.; Kim, Ji-Young; Marsh, Erica E.; Kim, J. Julie; Ghosh, Asish K.; Bulun, Serdar

    2013-01-01

    Uterine fibroids (UFs), also known as uterine leiomyomas, are benign, fibrotic smooth muscle tumors. Although the GnRH analog leuprolide acetate that suppresses gonadal steroid hormones is used as a treatment, it has significant side effects, thereby limiting its use. Availability of more effective therapy is limited because of a lack of understanding of molecular underpinnings of the disease. Although ovarian steroid hormones estrogen and progesterone and their receptors are clearly involved, the role of other nuclear receptors (NRs) in UFs is not well defined. We used quantitative real-time PCR to systematically profile the expression of 48 NRs and identified several NRs that were aberrantly expressed in UFs. Among others, expression of NR4A subfamily members including NGFIB (NR4A1), NURR1 (NR4A2), and NOR1 (NR4A3) were dramatically suppressed in leiomyoma compared with the matched myometrium. Restoration of expression of each of these NR4A members in the primary leiomyoma smooth muscle cells decreased cell proliferation. Importantly, NR4As regulate expressions of the profibrotic factors including TGFβ3 and SMAD3, and several collagens that are key components of the extracellular matrix. Finally, we identify NR4A members as targets of leuprolide acetate treatment. Together, our results implicate several NRs including the NR4A subfamily in leiomyoma etiology and identify NR4As as potential therapeutic targets for treating fibrotic diseases. PMID:23550059

  6. Function of the nuclear receptor FTZ-F1 during the pupal stage in Drosophila melanogaster.

    PubMed

    Sultan, Abdel-Rahman S; Oish, Yasuhiro; Ueda, Hitoshi

    2014-04-01

    The nuclear receptor βFTZ-F1 is expressed in most cells in a temporally specific manner, and its expression is induced immediately after decline in ecdysteroid levels. This factor plays important roles during embryogenesis, larval ecdysis, and early metamorphic stages. However, little is known about the expression pattern, regulation and function of this receptor during the pupal stage. We analyzed the expression pattern and regulation of ftz-f1 during the pupal period, as well as the phenotypes of RNAi knockdown or mutant animals, to elucidate its function during this stage. Western blotting revealed that βFTZ-F1 is expressed at a high level during the late pupal stage, and this expression is dependent on decreasing ecdysteroid levels. By immunohistological analysis of the late pupal stage, FTZ-F1 was detected in the nuclei of most cells, but cytoplasmic localization was observed only in the oogonia and follicle cells of the ovary. Both the ftz-f1 genetic mutant and temporally specific ftz-f1 knockdown using RNAi during the pupal stage showed defects in eclosion and in the eye, the antennal segment, the wing and the leg, including bristle color and sclerosis. These results suggest that βFTZ-F1 is expressed in most cells at the late pupal stage, under the control of ecdysteroids and plays important roles during pupal development. PMID:24611773

  7. Expression and retinoic acid regulation of the zebrafish nr2f orphan nuclear receptor genes

    PubMed Central

    Love, Crystal E.; Prince, Victoria E.

    2012-01-01

    Background The vertebrate nuclear receptor subfamily 2, group f (nr2f) genes encode orphan receptors that have the capacity to act as negative regulators of retinoic acid (RA) signaling. Results We describe embryonic and larval expression of four of the six zebrafish nr2f genes, nr2f1a, nr2f1b, nr2f2 and nr2f5. These genes show highly regulated patterns of expression within the CNS, including in the developing hindbrain, as well as in the mesoderm and endoderm. We also investigated the role of RA and Fgf signaling in regulating early nr2f gene expression. RA is not required for nr2f expression in the hindbrain; however, exogenous RA can repress this expression. Conversely, we find that RA positively regulates nr2f1a expression in trunk endoderm and mesoderm. Fgf signaling is not required for nr2f expression onset in the hindbrain; however, it may play a role in maintaining rhombomere-specific expression. Conclusions We report detailed expression analysis of four nr2f genes in all three germ layers. The onset of nr2f expression in the hindbrain does not require RA or Fgf signals. Our finding that RA positively regulates nr2f1a expression in the trunk supports the possibility that Nr2fs function in a negative feedback loop to modulate RA signaling in this region. PMID:22836912

  8. A tyrosine phosphatase SHP2 gain-of-function mutation enhances malignancy of breast carcinoma

    PubMed Central

    Fang, Haoshu; Liu, Yakun; Chen, Danlei; Zhang, Qian; Liu, Xia; Wei, Daoyan; Qu, Chengkui; Wang, Siying

    2016-01-01

    Background: Evidence suggests that Src homologous protein phosphotyrosyl phosphatase 2 (SHP2) mutations promote cancer development in several solid tumours. In this study, we focused on the in vivo and in vitro effects of an SHP2 mutation on the breast cancer phenotype to determine whether this mutation is correlated with a malignant phenotype. Methods: Mutant PTPN11 cDNA (D61G) was transduced into MDA-MB231 and MCF-7 cells. The effects of the D61G mutation on tumourigenesis and malignant behaviours, such as cell adhesion, proliferation, migration and invasion, were examined. Potential underlying molecular mechanisms, i.e., activation of the Gab1-Ras-Erk axis, were also examined. Results: In vitro experiments revealed that tumour adhesion, proliferation, migration and invasion were significantly increased in the SHP2 D61G mutant groups. Consistently, in vivo experiments also showed that the tumour sizes and weights were increased significantly in the SHP2 D61G-MB231 group (p < 0.001) in association with tumour metastasis. Mechanistically, the PTPN11 mutation resulted in activation of the Ras-ErK pathway. The binding between Gab1 and mutant SHP2 was significantly increased. Conclusion: Mutant SHP2 significantly promotes tumour migration and invasion at least partially through activation of the Gab1-Ras-Erk axis. This finding could have direct implications for breast cancer therapy. PMID:26673822

  9. The NR4A2 Nuclear Receptor Is Recruited to Novel Nuclear Foci in Response to UV Irradiation and Participates in Nucleotide Excision Repair

    PubMed Central

    Harrison, Matthew; Lim, Wen; Muscat, George E. O.; Sturm, Richard A.; Smith, Aaron G.

    2013-01-01

    Ultraviolet radiation (UVR) is one of the most common mutagens encountered by humans and induces the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproduct (6-4PP) lesions in the genomic DNA. To prevent the accumulation of deleterious mutations these lesions must be efficiently repaired, primarily by nucleotide excision repair. We have previously demonstrated that the NR4A family of nuclear receptors are crucial mediators of the DNA repair function of the MC1R signalling pathway in melanocytes. Here we explore the role of the NR4A2 protein in the DNA repair process further. Using EYFP tagged-NR4A2 we have demonstrated a UVR induced recruitment to distinct nuclear foci where they co-localise with known DNA repair proteins. We reveal that the N-terminal domain of the receptor is required for this translocation and identify a role for p38 and PARP signalling in this process. Moreover disruption of the functional integrity of the Ligand Binding Domain of the receptor by deleting the terminal helix 12 effectively blocks co-localisation of the receptor with DNA repair factors. Restored co-localisation of the mutant receptor with DNA repair proteins in the presence of a Histone Deacetylase Inhibitor suggests that impaired chromatin accessibility underpins the mis-localisation observed. Finally NR4A2 over-expression facilitated a more efficient clearance of UVR induced CPD and 6-4PP lesions. Taken together these data uncover a novel role for the NR4A nuclear receptors as direct facilitators of nucleotide excision repair. PMID:24223135

  10. Three nuclear and two membrane estrogen receptors in basal teleosts, Anguilla sp.: Identification, evolutionary history and differential expression regulation.

    PubMed

    Lafont, Anne-Gaëlle; Rousseau, Karine; Tomkiewicz, Jonna; Dufour, Sylvie

    2016-09-01

    Estrogens interact with classical intracellular nuclear receptors (ESR), and with G-coupled membrane receptors (GPER). In the eel, we identified three nuclear (ESR1, ESR2a, ESR2b) and two membrane (GPERa, GPERb) estrogen receptors. Duplicated ESR2 and GPER were also retrieved in most extant teleosts. Phylogeny and synteny analyses suggest that they result from teleost whole genome duplication (3R). In contrast to conserved 3R-duplicated ESR2 and GPER, one of 3R-duplicated ESR1 has been lost shortly after teleost emergence. Quantitative PCRs revealed that the five receptors are all widely expressed in the eel, but with differential patterns of tissue expression and regulation. ESR1 only is consistently up-regulated in vivo in female eel BPG-liver axis during induced sexual maturation, and also up-regulated in vitro by estradiol in eel hepatocyte primary cultures. This first comparative study of the five teleost estradiol receptors provides bases for future investigations on differential roles that may have contributed to the conservation of multiple estrogen receptors.

  11. Modulation of transcriptional activation and coactivator interaction by a splicing variation in the F domain of nuclear receptor hepatocyte nuclear factor 4alpha1.

    PubMed

    Sladek, F M; Ruse, M D; Nepomuceno, L; Huang, S M; Stallcup, M R

    1999-10-01

    Transcription factors, such as nuclear receptors, often exist in various forms that are generated by highly conserved splicing events. Whereas the functional significance of these splicing variants is often not known, it is known that nuclear receptors activate transcription through interaction with coactivators. The parameters, other than ligands, that might modulate those interactions, however, are not well characterized, nor is the role of splicing variants. In this study, transient transfection, yeast two-hybrid, and GST pulldown assays are used to show not only that nuclear receptor hepatocyte nuclear factor 4 alpha1 (HNF4alpha1, NR2A1) interacts with GRIP1, and other coactivators, in the absence of ligand but also that the uncommonly large F domain in the C terminus of the receptor inhibits that interaction. In vitro, the F domain was found to obscure an AF-2-independent binding site for GRIP1 that did not map to nuclear receptor boxes II or III. The results also show that a natural splicing variant containing a 10-amino-acid insert in the middle of the F domain (HNF4alpha2) abrogates that inhibition in vivo and in vitro. A series of protease digestion assays indicates that there may be structural differences between HNF4alpha1 and HNF4alpha2 in the F domain as well as in the ligand binding domain (LBD). The data also suggest that there is a direct physical contact between the F domain and the LBD of HNF4alpha1 and -alpha2 and that that contact is different in the HNF4alpha1 and HNF4alpha2 isoforms. Finally, we propose a model in which the F domain of HNF4alpha1 acts as a negative regulatory region for transactivation and in which the alpha2 insert ameliorates the negative effect of the F domain. A conserved repressor sequence in the F domains of HNF4alpha1 and -alpha2 suggests that this model may be relevant to other nuclear receptors as well. PMID:10490591

  12. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition.

    PubMed

    Lee, Jiyoung; Padhye, Amruta; Sharma, Abhilasha; Song, Guisheng; Miao, Ji; Mo, Yin-Yuan; Wang, Li; Kemper, Jongsook Kim

    2010-04-23

    Sirtuin 1 (SIRT1) is a NAD-dependent deacetylase that is critically involved in diverse cellular processes including metabolic disease, cancer, and possibly aging. Despite extensive studies on SIRT1 function, how SIRT1 levels are regulated remains relatively unknown. Here, we report that the nuclear bile acid receptor farnesoid X receptor (FXR) inhibits microRNA-34a (miR-34a) in the liver, which results in a positive regulation of SIRT1 levels. Activation of FXR by the synthetic agonist GW4064 decreases hepatic miR-34a levels in normal mice, and consistently, hepatic miR-34a levels are elevated in FXR-null mice. FXR induces expression of small heterodimer partner (SHP), an orphan nuclear receptor and transcriptional corepressor, which in turn results in repression of p53, a key activator of the miR-34a gene, by inhibiting p53 occupancy at the promoter. MiR-34a decreased SIRT1 levels by binding to the 3'-untranslated region of SIRT1 mRNA, and adenovirus-mediated overexpression of miR-34a substantially decreased SIRT1 protein levels in mouse liver. Remarkably, miR-34a levels were elevated, and SIRT1 protein levels were reduced in diet-induced obese mice, and FXR activation in these mice reversed the miR-34a and SIRT1 levels, indicating an intriguing link among FXR activation, decreased miR-34a, and subsequently, increased SIRT1 levels. Our study demonstrates an unexpected role of the FXR/SHP pathway in controlling SIRT1 levels via miR-34a inhibition and that elevated miR-34a levels in obese mice contribute to decreased SIRT1 levels. Manipulation of this regulatory network may be useful for treating diseases of aging, such as metabolic disease and cancer.

  13. Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore

    PubMed Central

    Echeverría, Pablo C; Erlejman, Alejandra G; Piwien-Pilipuk, Graciela

    2010-01-01

    In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and MR (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling. All members of the steroid receptor family are known to form large oligomeric structures with the heat-shock proteins of 90-kDa (hsp90) and 70-kDa (hsp70), the small acidic protein p23, and a tetratricopeptide repeat (TPR)-domain protein such as FK506-binding proteins (FKBPs), cyclophilins (CyPs) or the serine/threonine protein phosphatase 5 (PP5). It has always been stated that the dissociation of the chaperone heterocomplex (a process normally referred to as receptor “transformation”) is the first step that permits the nuclear import of steroid receptors. However the experimental evidence is consistent with a model where the chaperone machinery is required for the retrotransport of the receptor through the cytoplasm and also facilitates the passage through the nuclear pore. Recent evidence indicates that the hsp90-based chaperone system also interacts with structures of the nuclear pore such as importin β and the integral nuclear pore glycoprotein Nup62 facilitating the passage of the untransformed receptor through the nuclear pore. PMID:21113270

  14. The Molecular Mechanism of Bisphenol A (BPA) as an Endocrine Disruptor by Interacting with Nuclear Receptors: Insights from Molecular Dynamics (MD) Simulations

    PubMed Central

    Li, Lanlan; Wang, Qianqian; Zhang, Yan; Niu, Yuzhen; Yao, Xiaojun; Liu, Huanxiang

    2015-01-01

    Bisphenol A (BPA) can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA. PMID:25799048

  15. The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD) simulations.

    PubMed

    Li, Lanlan; Wang, Qianqian; Zhang, Yan; Niu, Yuzhen; Yao, Xiaojun; Liu, Huanxiang

    2015-01-01

    Bisphenol A (BPA) can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA.

  16. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    SciTech Connect

    Laurila, Eeva; Vuorinen, Elisa; Savinainen, Kimmo; Rauhala, Hanna; Kallioniemi, Anne

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.

  17. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies

    PubMed Central

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-01-01

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior – a key element for the transport selectivity of the NPC – was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface. DOI: http://dx.doi.org/10.7554/eLife.14119.001 PMID:27058170

  18. Evolutionary trace-based peptides identify a novel asymmetric interaction that mediates oligomerization in nuclear receptors.

    PubMed

    Gu, Peili; Morgan, Daniel H; Sattar, Minawar; Xu, Xueping; Wagner, Ryan; Raviscioni, Michele; Lichtarge, Olivier; Cooney, Austin J

    2005-09-01

    Germ cell nuclear factor (GCNF) is an orphan nuclear receptor that plays important roles in development and reproduction, by repressing the expression of essential genes such as Oct4, GDF9, and BMP15, through binding to DR0 elements. Surprisingly, whereas recombinant GCNF binds to DR0 sequences as a homodimer, endogenous GCNF does not exist as a homodimer but rather as part of a large complex termed the transiently retinoid-induced factor (TRIF). Here, we use evolutionary trace (ET) analysis to design mutations and peptides that probe the molecular basis for the formation of this unusual complex. We find that GCNF homodimerization and TRIF complex formation are DNA-dependent, and ET suggests that dimerization involves key functional sites on both helix 3 and helix 11, which are located on opposing surfaces of the ligand binding domain. Targeted mutations in either helix of GCNF disrupt the formation of both the homodimer and the endogenous TRIF complex. Moreover, peptide mimetics of both of these ET-determined sites inhibit dimerization and TRIF complex formation. This suggests that a novel helix 3-helix 11 heterotypic interaction mediates GCNF interaction and would facilitate oligomerization. Indeed, it was determined that the endogenous TRIF complex is composed of a GCNF oligomer. These findings shed light on an evolutionarily selected mechanism that reveals the unusual DNA-binding, dimerization, and oligomerization properties of GCNF.

  19. Structural Basis of Natural Promoter Recognition by a Unique Nuclear Receptor, HNF4[alpha

    SciTech Connect

    Lu, Peng; Rha, Geun Bae; Melikishvili, Manana; Wu, Guangteng; Adkins, Brandon C.; Fried, Michael G.; Chi, Young-In

    2010-11-09

    HNF4{alpha} (hepatocyte nuclear factor 4{alpha}) plays an essential role in the development and function of vertebrate organs, including hepatocytes and pancreatic {beta}-cells by regulating expression of multiple genes involved in organ development, nutrient transport, and diverse metabolic pathways. As such, HNF4{alpha} is a culprit gene product for a monogenic and dominantly inherited form of diabetes, known as maturity onset diabetes of the young (MODY). As a unique member of the nuclear receptor superfamily, HNF4{alpha} recognizes target genes containing two hexanucleotide direct repeat DNA-response elements separated by one base pair (DR1) by exclusively forming a cooperative homodimer. We describe here the 2.0 {angstrom} crystal structure of human HNF4{alpha} DNA binding domain in complex with a high affinity promoter element of another MODY gene, HNF1{alpha}, which reveals the molecular basis of unique target gene selection/recognition, DNA binding cooperativity, and dysfunction caused by diabetes-causing mutations. The predicted effects of MODY mutations have been tested by a set of biochemical and functional studies, which show that, in contrast to other MODY gene products, the subtle disruption of HNF4{alpha} molecular function can cause significant effects in afflicted MODY patients.

  20. A monoclonal antibody to the rat nuclear triiodothyronine receptor: production and characterization.

    PubMed

    Luo, M; Faure, R; Ruel, J; Dussault, J H

    1988-07-01

    The nuclear T3 receptor (NTR) was affinity-labeled with bromoacetyl-[125I]T3, purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and used to immunize BALB/c mice. Spleen cells from one strongly immunoreactive mouse were fused with Sp2 mouse myeloma cells, and 328 hybridomas were screened by a dot-blot immunoassay using as antigen, a preparation of NTR partially purified by diethylaminoethyl-Sephadex chromatography. Four positive cultures were thus found; three of which were confirmed by comparing Western blotting patterns with the electrophoretic mobility of the affinity-labeled NTR. One of these 3 hybridomas was further subcloned by limiting dilution and gave rise to the 2B3 clone, which produces an immunoglobulin of the immunoglobulin G1 subclass. Several lines of evidence indicated that the 2B3 monoclonal antibody was indeed directed against the NTR. The antibody recognized a protein with the same electrophoretic mobility as the affinity-labeled receptor. Thus, Western blotting revealed a predominant protein with a mol wt of 57,000 and a less abundant 45,000 component on sodium dodecyl sulfate gels, and multiple isoelectric variants of the 57,000 protein, with a predominant form at pI 6.2, were detected on two-dimensional gels. Incubation of the 2B3 antibody with the NTR labeled with [125I]T3 resulted in the formation of an antibody-receptor complex, as indicated by a shift of the radioactivity peak upon gel filtration on Sephacryl S-300. In contrast, control ascitic fluid did not change the elution profile of the labeled NTR. The 2B3 antibody is able to remove the T3-binding activity from rat liver nuclear extracts. Finally, in accordance with previous T3-binding experiments, expected amounts of NTR were found in pituitary, liver, brain, kidney, spleen, and testis with the use of the Western blotting technique and immunohistochemistry on frozen tissue sections. This antibody should prove useful in the characterization and

  1. Import and export of nuclear proteins: focus on the nucleocytoplasmic movements of two different species of mammalian estrogen receptor.

    PubMed

    Sebastian, Thomas; Sreeja, S; Thampan, Raghava Varman

    2004-05-01

    There is a wealth of information regarding the import and export of nuclear proteins in general. Nevertheless, the available data that deals with the nucleocytoplasmic movement of steroid hormone receptors remains highly limited. Some research findings reported during the past five years have succeeded in identifying proteins related to the movement of estrogen receptor alpha from the cytoplasm to the nucleus. What is striking in these findings is the facilitatory role of estradiol in the transport process. A similar conclusion has been drawn from the studies on the plasma membrane-to nucleus movement of the alternative form of estrogen receptor, the non-activated estrogen receptor (naER). The internalization of naER from the plasma membrane takes place only in the presence of estradiol. While the gene regulatory functions of ER alpha appear to get terminated following its ubiquitinization within the nucleus, the naER, through its deglycosylated form, the nuclear estrogen receptor II (nER II) continues to remain functional even beyond its existence within the nucleus. Recent studies have indicated the possibility that the estrogen receptor that regulates the nucleo cytoplasmic transport of m RNP is the nERII. This appears to be the result of the interaction between nERII and three proteins belonging to a group of small nuclear ribonucleo proteins (snRNP). The interaction of nERII with two of this protein appears to activate the inherent Mg2+ ATPase activity of the complex, which leads to the exit of the RNP through the nuclear pore complex. PMID:15228090

  2. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.

    PubMed

    Kandel, Benjamin A; Thomas, Maria; Winter, Stefan; Damm, Georg; Seehofer, Daniel; Burk, Oliver; Schwab, Matthias; Zanger, Ulrich M

    2016-09-01

    The ligand-activated nuclear receptor pregnane X receptor (PXR, NR1I2) and the constitutive androstane receptor (CAR, NR1I3) are two master transcriptional regulators of many important drug metabolizing enzymes and transporter genes (DMET) in response to xenobiotics including many drugs. The peroxisome proliferator-activated receptor alpha (PPARα, NR1C1), the target of lipid lowering fibrate drugs, primarily regulates fatty acid catabolism and energy-homeostasis. Recent research has shown that there are substantial overlaps in the regulated genes of these receptors. For example, both CAR and PXR also modulate the transcription of key enzymes involved in lipid and glucose metabolism and PPARα also functions as a direct transcriptional regulator of important DMET genes including cytochrome P450s CYP3A4 and CYP2C8. Despite their important and widespread influence on liver metabolism, comparative data are scarce, particularly at a global level and in humans. The major objective of this study was to directly compare the genome-wide transcriptional changes elucidated by the activation of these three nuclear receptors in primary human hepatocytes. Cultures from six individual donors were treated with the prototypical ligands for CAR (CITCO), PXR (rifampicin) and PPARα (WY14,643) or DMSO as vehicle control. Genomewide mRNA profiles determined with Affymetrix microarrays were analyzed for differentially expressed genes and metabolic functions. The results confirmed known prototype target genes and revealed strongly overlapping sets of coregulated but also distinctly regulated and novel responsive genes and pathways. The results further specify the role of PPARα as a regulator of drug metabolism and the role of the xenosensors PXR and CAR in lipid metabolism and energy homeostasis. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  3. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    PubMed Central

    Zhang, Xin-Min; Chang, Qing; Zeng, Lin; Gu, Judy; Brown, Stuart; Basch, Ross S

    2006-01-01

    Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level) to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of the co-repressors by TBLR1

  4. A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program

    PubMed Central

    Sack, Michael N.; Disch, Dennis L.; Rockman, Howard A.; Kelly, Daniel P.

    1997-01-01

    During cardiac hypertrophy, the chief myocardial energy source switches from fatty acid β-oxidation (FAO) to glycolysis—a reversion to fetal metabolism. The expression of genes encoding myocardial FAO enzymes was delineated in a murine ventricular pressure overload preparation to characterize the molecular regulatory events involved in the alteration of energy substrate utilization during cardiac hypertrophy. Expression of genes involved in the thioesterification, mitochondrial import, and β-oxidation of fatty acids was coordinately down-regulated after 7 days of right ventricular (RV) pressure overload. Results of RV pressure overload studies in mice transgenic for the promoter region of the gene encoding human medium-chain acyl-CoA dehydrogenase (MCAD, which catalyzes a rate-limiting step in the FAO cycle) fused to a chloramphenicol acetyltransferase reporter confirmed that repression of MCAD gene expression in the hypertrophied ventricle occurred at the transcriptional level. Electrophoretic mobility-shift assays performed with MCAD promoter fragments and nuclear protein extracts prepared from hypertrophied and control RV identified pressure overload-induced protein/DNA interactions at a regulatory unit shown previously to confer control of MCAD gene transcription during cardiac development. Antibody “supershift” studies demonstrated that members of the Sp (Sp1, Sp3) and nuclear hormone receptor [chicken ovalbumin upstream promoter transcription factor (COUP-TF)/erbA-related protein 3] families interact with the pressure overload-responsive unit. Cardiomyocyte transfection studies confirmed that COUP-TF repressed the transcriptional activity of the MCAD promoter. The DNA binding activities and nuclear expression of Sp1/3 and COUP-TF in normal fetal mouse heart were similar to those in the hypertrophied adult heart. These results identify a transcriptional regulatory mechanism involved in the reinduction of a fetal metabolic program during pressure

  5. Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors PParalpha and CAR, the constitutive androstane receptor, in mouse liver.

    PubMed

    Sarkar, Joy; Qi, Chao; Guo, Dongsheng; Ahmed, Mohamed R; Jia, Yuzhi; Usuda, Nobuteru; Viswakarma, Navin; Rao, M Sambasiva; Reddy, Janardan K

    2007-01-01

    Disruption of the genes encoding for the transcription coactivators, peroxisome proliferator-activated receptor (PPAR)-interacting protein (PRIP/ASC-2/RAP250/TRBP/NRC) and PPAR-binding protein (PBP/TRAP220/DRIP205/MED1), results in embryonic lethality by affecting placental and multiorgan development. Targeted deletion of coactivator PBP gene in liver parenchymal cells (PBP(LIV-/-)) results in the near abrogation of the induction of PPARalpha and CAR (constitutive androstane receptor)-regulated genes in liver. Here, we show that targeted deletion of coactivator PRIP gene in liver (PRIP(LIV-/-)) does not affect the induction of PPARalpha-regulated pleiotropic responses, including hepatomegaly, hepatic peroxisome proliferation, and induction of mRNAs of genes involved in fatty acid oxidation system, indicating that PRIP is not essential for PPARalpha-mediated transcriptional activity. We also provide additional data to show that liver-specific deletion of PRIP gene does not interfere with the induction of genes regulated by nuclear receptor CAR. Furthermore, disruption of PRIP gene in liver did not alter zoxazolamine-induced paralysis, and acetaminophen-induced hepatotoxicity. Studies with adenovirally driven EGFP-CAR expression in liver demonstrated that, unlike PBP, the absence of PRIP does not prevent phenobarbital-mediated nuclear translocation/retention of the receptor CAR in liver in vivo and cultured hepatocytes in vitro. These results show that PRIP deficiency in liver does not interfere with the function of nuclear receptors PPARalpha and CAR. The dependence of PPARalpha- and CAR-regulated gene transcription on coactivator PBP but not on PRIP attests to the existence of coactivator selectivity in nuclear receptor function.

  6. A Second Class of Nuclear Receptors for Oxysterols: Regulation of RORα and RORγ activity by 24S-Hydroxycholesterol (Cerebrosterol)

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Crumbley, Christine; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related orphan receptor α and γ (RORα [NR1F1] and RORγ [NR1F3]) are members of the nuclear hormone receptor superfamily. These 2 receptors regulate many physiological processes including development, metabolism and immunity. We recently found that certain oxysterols, namely the 7-substituted oxysterols, bound to the ligand binding domains (LBDs) of RORα and RORγ with high affinity, altered the LBD conformation and reduced coactivator binding resulting in suppression of the constitutive transcriptional activity of these two receptors. Here, we show that another oxysterol, 24S-hydroxycholesterol (24S-OHC), is also a high affinity ligand for RORα and RORγ (Ki ∼ 25 nM). 24S-OHC is also known as cerebrosterol due to its high level in the brain where it plays an essential role as an intermediate in cholesterol elimination from the CNS. 24S-OHC functions as a RORα/γ inverse agonist suppressing the constitutive transcriptional activity of these receptors in cotransfection assays. Additionally, 24S-OHC suppressed the expression of several RORα target genes including BMAL1 and REV-ERBα in a ROR-dependent manner. We also demonstrate that 24S-OHC decreases the ability of RORα to recruit the coactivator SRC-2 when bound to the BMAL1 promoter. We also noted that 24(S), 25-epoxycholesterol selectively suppressed the activity of RORγ. These data indicate that RORα and RORγ may serve as sensors of oxsterols. Thus, RORα and RORγ display an overlapping ligand preference with another class of oxysterol nuclear receptors, the liver X receptors (LXRα [NR1H3] and LXRβ [NR1H2]). PMID:20211758

  7. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    PubMed

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  8. An inhibitory receptor of VLRB in the agnathan lamprey

    PubMed Central

    Wu, Fenfang; Chen, Liyong; Ren, Yong; Yang, Xiaojing; Yu, Tongzhou; Feng, Bo; Chen, Shangwu; Xu, Anlong

    2016-01-01

    Lamprey, the primitive jawless vertebrate, uses variable lymphocyte receptor (VLR) as alternative adaptive immune system instead of immunoglobulin (Ig)-based receptors used in jawed vertebrates. In the present study, we characterized a potential inhibitory receptor of VLRB from leucocytes in lamprey. It is a novel ITIM-containing IgSF protein and was therefore named as NICIP. NICIP has two Ig-like domains in extracellular region, a transmembrane domain and two classical ITIM motifs in cytoplasmic domain. It is mainly expressed on the surface of granulocytes and monocytes and can interact with VLRB. In transiently transfected HEK293T cells, it was confirmed again that it could interact with VLRB and the two phosphorylated ITIM motifs could recruit SHP-1 and SHP-2. These results imply that NICIP may play a role as a potential inhibitory receptor of VLRB and involve in negative regulation of immune response mediated by VLRB. PMID:27762335

  9. Nuclear respiratory factor 2 regulates the transcription of AMPA receptor subunit GluA2 (Gria2).

    PubMed

    Priya, Anusha; Johar, Kaid; Nair, Bindu; Wong-Riley, Margaret T T

    2014-12-01

    Neuronal activity is highly dependent on energy metabolism. Nuclear respiratory factor 2 (NRF-2) tightly couples neuronal activity and energy metabolism by transcriptionally co-regulating all 13 subunits of an important energy-generating enzyme, cytochrome c oxidase (COX), as well as critical subunits of excitatory NMDA receptors. AMPA receptors are another major class of excitatory glutamatergic receptors that mediate most of the fast excitatory synaptic transmission in the brain. They are heterotetrameric proteins composed of various combinations of GluA1-4 subunits, with GluA2 being the most common one. We have previously shown that GluA2 (Gria2) is transcriptionally regulated by nuclear respiratory factor 1 (NRF-1) and specificity protein 4 (Sp4), which also regulate all subunits of COX. However, it was not known if NRF-2 also couples neuronal activity and energy metabolism by regulating subunits of the AMPA receptors. By means of multiple approaches, including electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate the expression of Gria2, but not of Gria1, Gria3, or Gria4 genes in neurons. By regulating the GluA2 subunit of the AMPA receptor, NRF-2 couples energy metabolism and neuronal activity at the transcriptional level through a concurrent and parallel mechanism with NRF-1 and Sp4. PMID:25245478

  10. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  11. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    PubMed

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  12. Expression Profiles of the Nuclear Receptors and Their Transcriptional Coregulators During Differentiation of Neural Stem Cells

    PubMed Central

    Androutsellis-Theotokis, A.; Chrousos, G. P.; McKay, R. D.; DeCherney, A. H.; Kino, T.

    2013-01-01

    Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0–5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUPTFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands. PMID:22990992

  13. A Subset of Nuclear Receptors are Uniquely Expressed in Uveal Melanoma Cells

    PubMed Central

    Huffman, Kenneth Edward; Carstens, Ryan; Martinez, Elisabeth D.

    2015-01-01

    Uveal melanoma (UM) is recognized as the most common intraocular malignancy and the second most common form of melanoma. Nearly 50% of UM patients develop untreatable and fatal metastases. The 48-member nuclear receptor (NR) superfamily represents a therapeutically targetable group of transcription factors known for their regulation of key cancer pathways in numerous tumor types. Here, we profiled the expression of the 48 human NRs by qRT-PCR across a melanoma cell line panel including 5 UM lines, 9 cutaneous melanoma (CM) lines, and normal primary melanocytes. NR expression patterns identified a few key features. First, in agreement with our past studies identifying RXRg as a CM-specific marker, we found that UM cells also exhibit high levels of RXRg expression, making it a universal biomarker for melanoma tumors. Second, we found that LXRb is highly expressed in both UM and CM lines, suggesting that it may be a therapeutic target in a UM metastatic setting as it has been in CM models. Third, we found that RARg, PPARd, EAR2, RXRa, and TRa expressions could subdivide UM from CM. Previous studies of UM cancers identified key mutations in three genes: GNAQ, GNA11, and BRAF. We found unique NR expression profiles associated with each of these UM mutations. We then performed NR-to-NR and NR-to-genome expression correlation analyses to find potential NR-driven transcriptional programs activated in UM and CM. Specifically, RXRg controlled gene networks were identified that may drive melanoma-specific signaling and metabolism. ERRa was identified as a UM-defining NR and genes correlated with its expression confirm the role of ERRa in metabolic control. Given the plethora of available NR agonists, antagonists, and selective receptor modulators, pharmacologic manipulation of these NRs and their transcriptional outputs may lead to a more comprehensive understanding of key UM pathways and how we can leverage them for better therapeutic alternatives. PMID:26217306

  14. Orphan nuclear receptor DAX-1 in human endometrium and its disorders.

    PubMed

    Saito, Sumika; Ito, Kiyoshi; Suzuki, Takashi; Utsunomiya, Hiroki; Akahira, Jun-ichi; Sugihashi, Youko; Niikura, Hitoshi; Okamura, Kunihiro; Yaegashi, Nobuo; Sasano, Hironobu

    2005-10-01

    DAX-1 (dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome gene 1) is a recently characterized member of the orphan nuclear receptor family. DAX-1 functions as a global negative regulator of steroid hormone production. It inhibits adrenal 4 binding protein (Ad4BP)/steroidogenic factor-1 (SF-1) pathway-dependent P450arom expression in cultured human endometriotic stromal cells and acts as a corepressor for estrogen receptors (ER). In this study we first examined the localization of DAX-1 in 46 normal cycling endometria, 36 cases of endometrial hyperplasia and 103 cases of endometrial carcinoma by using immunohistochemistry to elucidate the possible involvement of DAX-1 and its correlation to the status of Ad4BP/SF-1, a universal transcription factor of steroidogenesis. We then evaluated DAX-1 mRNA expression, using quantitative reverse transcription-polymerase chain reaction for DAX-1 in 33 cases of endometrial carcinoma for further characterization. We subsequently correlated these findings with various clinicopathological parameters of the cases. Ad4BP/SF-1 immunoreactivity was not detected in any human endometria examined. A significant inverse correlation was detected between the status of DAX-1 immunoreactivity and histological grade (P = 0.0003) in endometrial carcinoma. The labeling index (LI) values of DAX-1 in normal endometrium during the secretory phase (P < 0.0001) and hyperplasia (P < 0.0001) were significantly higher than that of carcinoma. No significant correlations were detected between DAX-1 immunoreactivity and amounts of aromatase mRNA. There was a statistically significant positive correlation between DAX-1 and ERalpha (P = 0.006) and ERbeta LI (P < 0.001). These findings suggest that DAX-1 may inhibit the proliferation and progression of endometrial carcinoma through inhibition of estrogenic actions, possibly by interacting with ER present in carcinoma cells, rather than regulating in situ

  15. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    SciTech Connect

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phospha