Sample records for nuclear reprocessing facilities

  1. 75 FR 45167 - Notice of Public Workshop on a Potential Rulemaking for Spent Nuclear Fuel Reprocessing Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... more sophisticated reprocessing technology. During the Bush Administration, the Global Nuclear Energy... Associated with the Global Nuclear Energy Partnership,'' dated June 27, 2007 (ADAMS ML071800084), directed... on some Global Nuclear Energy Partnership (GNEP) initiatives had waned and it appeared appropriate to...

  2. 76 FR 34007 - Draft Regulatory Basis for a Potential Rulemaking on Spent Nuclear Fuel Reprocessing Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... processes are more akin to fuel cycle processes. This framework was established in the 1970's to license the... nuclear power globally and close the nuclear fuel cycle through reprocessing spent fuel and deploying fast... Accounting;'' and a Nuclear Energy Institute white [[Page 34009

  3. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  4. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  5. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  6. Assessing the effectiveness of safeguards at a medium-sized spent-fuel reprocessing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higinbotham, W.; Fishbone, L.G.; Suda, S.

    1983-01-01

    In order to evaluate carefully and systematically the effectiveness of safeguards at nuclear-fuel-cycle facilities, the International Atomic Energy Agency has adopted a safeguards effectiveness assessment methodology. The methodology has been applied to a well-characterized, medium-sized, spent-fuel reprocessing plant to understand how explicit safeguards inspection procedures would serve to expose conceivable nuclear materials diversion schemes, should such diversion occur.

  7. U.S. Nuclear Cooperation with India: Issues for Congress

    DTIC Science & Technology

    2008-10-17

    safeguards-irrelevant.” The following facilities and activities were not on the separation list: ! 8 indigenous Indian power reactors ! Fast Breeder ...test Reactor (FTBR) and Prototype Fast Breeder Reactors (PFBR) under construction ! Enrichment facilities ! Spent fuel reprocessing facilities (except...potential use in a bomb. In addition, safeguards on enrichment, reprocessing plants, and breeder reactors would support the 2002 U.S. National Strategy to

  8. Japan’s Nuclear Future: Policy Debate, Prospects, and U.S. Interests

    DTIC Science & Technology

    2008-05-09

    raised in particular over the construction of an industrial- scale reprocessing facility in Japan,. Additionally, fast breeder reactors also produce more...Nuclear Fuel Cycle Engineering Laboratories. 10 A fast breeder reactor is a fast neutron reactor that produces more plutonium than it consumes, which can...Japan Nuclear Fuel Limited (JNFL) has built and is currently running active testing on a large - scale commercial reprocessing plant at Rokkasho-mura

  9. The Multi-Isotope Process (MIP) Monitor Project: FY13 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, David E.; Coble, Jamie B.; Jordan, David V.

    The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of “… (minimization of) the risks of nuclear proliferation and terrorism.” The MIP Monitor measures the distribution of the radioactive isotopes in product and waste streams of a nuclear reprocessing facility. These isotopes are monitored online by gamma spectrometry and compared, in near-real-time, to spectral patterns representing “normal” process conditions using multivariate analysis and pattern recognition algorithms. The combination of multivariate analysis and gamma spectroscopy allows us to detect small changes in the gamma spectrum, which may indicatemore » changes in process conditions. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting for systems representing aqueous reprocessing facilities. However, pyroprocessing is emerging as an alternative to aqueous reprocessing techniques.« less

  10. Records of wells, test borings, and some measured geologic sections near the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Bergeron, M.P.

    1985-01-01

    The Western New York Nuclear Service Center (WNYNSC) is a 3 ,336-acre tract of land in northern Cattaraugus County, NY, about 30 mi south of Buffalo. In 1963, 247 acres within the WNYNSC was developed for a nuclear-fuel reprocessing plant and ancillary facilities, including (1) a receiving and storage facility to store fuel prior to reprocessing, (2) underground storage tanks for liquid high-level radioactive wastes from fuel reprocessing, (3) a low-level wastewater treatment plant, and (4) two burial grounds for shallow burial of solid radioactive waste. A series of geologic and hydrologic investigations was done as part of the initial development and construction of the facilities by numerous agencies during 1960-62; these produced a large quantity of well data, some of which are difficult to locate or obtain. This report is a compilation of well and boring data collected during this period. The data include records of 236 wells, geologic logs of 145 wells and 167 test borings, and descriptions of 20 measured geologic sections. Two oversized maps show locations of the reported data. (USGS)

  11. 129I in the oceans: origins and applications.

    PubMed

    Raisbeck, G M; Yiou, F

    1999-09-30

    The quantity of the long lived (half-life 15.7 million years) radioactive isotope 129I in the pre-nuclear age ocean was approximately 100 kg. Various nuclear related activities, including weapons testing, nuclear fuel reprocessing, Chernobyl and other authorized or non-authorized dumping of radioactive waste have increased the ocean inventory of 129I by more than one order of magnitude. The most important of these sources are the direct marine discharges from the commercial reprocessing facilities at La Hague (France) and Sellafield (UK) which have discharged approximately 1640 kg in the English Channel, and approximately 720 kg in the Irish Sea, respectively. We discuss how this 129I can be used as both a 'pathway' and 'transit time' tracer in the North Atlantic and Arctic oceans, as well as a parameter for distinguishing between reprocessed and non-reprocessed nuclear waste in the ocean, and as a proxy for the transport and dilution of other soluble pollutants input to the North Sea.

  12. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  13. Radioactivity near the sunken submarine "Kursk" in the Southern Barents Sea.

    PubMed

    Matishov, Genady G; Matishov, Dimitry G; Namiatov, Alexey E; Smith, John Norton; Carroll, Jolynn; Dahle, Salve

    2002-05-01

    Radioactivity measurements were conducted on seawater, sediment, and biota samples collected in the vicinity of the Russian submarine "Kursk" in September, 2000, within 1 month of the vessel's sinking in the Barents Sea to determine whether leakage of radioactivity from the vessel's two nuclear reactors had occurred and to assess the impact on one of the most productive fishing areas in the world. Levels of radioactivity in surface sediments and biota are within the range of values previously measured in the Barents Sea and can be ascribed to inputs from global fallout, European nuclear fuel reprocessing facilities, and the Chernobyl accident. However, levels of 1291 in seawater in the Southern Barents Sea increased by 500% between 1992 and 2000, and the 129I/137Cs ratio increased by more than an order of magnitude during this time, owing to long-range transport of releases from reprocessing facilities at Sellafield (U.K.) and La Hague (France). Although these results indicate that, at the time of sampling, leakage from the Kursk had a negligible impact on the environment, they also show that regional background levels of artificial radioactivity are varying rapidly on annual timescales and that Europe's nuclear reprocessing facilities are the leading contributor of anthropogenic radioactivity to the region.

  14. Nuclear Energy Policy

    DTIC Science & Technology

    2007-07-12

    Nuclear Waste Storage Act of 2007. Requires commercial nuclear power plants to transfer spent fuel from pools to dry storage ...enrichment, spent fuel recycling (also called reprocessing), and other fuel cycle facilities that could be used to produce nuclear weapons materials...that had used the leased fuel , along with supplies of fresh nuclear fuel , according to the GNEP concept; see [http://www.gnep.energy.gov].

  15. Progress on Cleaning Up the Only Commercial Nuclear Fuel Reprocessing Facility to Operate in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, T. J.; MacVean, S. A.; Szlis, K. A.

    2002-02-26

    This paper describes the progress on cleanup of the West Valley Demonstration Project (WVDP), an environmental management project located south of Buffalo, NY. The WVDP was the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States (1966 to 1972). Former fuel reprocessing operations generated approximately 600,000 gallons of liquid high-level radioactive waste stored in underground tanks. The U.S. Congress passed the WVDP Act in 1980 (WVDP Act) to authorize cleanup of the 220-acre facility. The facility is unique in that it sits on the 3,345-acre Western New York Nuclear Service Center (WNYNSC), whichmore » is owned by New York State through the New York State Energy Research and Development Authority (NYSERDA). The U.S. Department of Energy (DOE) has overall responsibility for the cleanup that is authorized by the WVDP Act, paying 90 percent of the WVDP costs; NYSERDA pays 10 percent. West Valley Nuclear Services Company (WVNSCO) is the management contractor at the WVDP. This paper will provide a description of the many accomplishments at the WVDP, including the pretreatment and near completion of vitrification of all the site's liquid high-level radioactive waste, a demonstration of technologies to characterize the remaining material in the high-level waste tanks, the commencement of decontamination and decommissioning (D&D) activities to place the site in a safe configuration for long-term site management options, and achievement of several technological firsts. It will also include a discussion of the complexities involved in completing the WVDP due to the various agency interests that require integration for future cleanup decisions.« less

  16. 78 FR 33995 - Nuclear Proliferation Assessment in Licensing Process for Enrichment or Reprocessing Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... designed to minimize proliferation risks world-wide, including the Nuclear Non- Proliferation Treaty, the U... and licensees ensure that they comply with requirements designed to minimize proliferation risks... NRC's regulations on physical security, information security, material control and accounting, cyber...

  17. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    NASA Astrophysics Data System (ADS)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  18. 10 CFR Appendix D to Subpart D of... - Classes of Actions That Normally Require EISs

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... average megawatts or more over a 12 month period. This applies to power marketing operations and to siting... Systems D2. Siting/construction/operation/decommissioning of nuclear fuel reprocessing facilities D3. Siting/construction/operation/decommissioning of uranium enrichment facilities D4. Siting/construction...

  19. Nuclear Energy Policy

    DTIC Science & Technology

    2008-01-28

    2007. Requires commercial nuclear power plants to transfer spent fuel from pools to dry storage casks and then convey title to the Secretary of Energy...far more economical options for reducing fossil fuel use .15 (For more on federal incentives and the economics of nuclear power, see CRS Report RL33442...uranium enrichment, spent fuel recycling (also called reprocessing), and other fuel cycle facilities that could be used to produce nuclear weapons

  20. Dismantling of the 904 Cell at the HAO/Sud Facility - 13466

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaudey, C.E.; Crosnier, S.; Renouf, M.

    2013-07-01

    La Hague facility, in France, is the spent fuel recycling plant wherein a part of the fuel coming from some of the French, German, Belgian, Swiss, Dutch and Japanese nuclear reactors is reprocessed before being recycled in order to separate certain radioactive elements. The facility has been successively handled by the CEA (1962-1978), Cogema (1978-2006), and AREVA NC (since 2006). La Hague facility is composed of 3 production units: The UP2-400 production unit started to be operated in 1966 for the reprocessing of UNGG metal fuel. In 1976, following the dropout of the graphite-gas technology by EDF, an HAO workshopmore » to reprocess the fuel from the light water reactors is affiliated and then stopped in 2003. - UP2-400 is partially stopped in 2002 and then definitely the 1 January 2004 and is being dismantled - UP2-800, with the same capacity than UP3, started to be operated in 1994 and is still in operation. And UP3 - UP3 was implemented in 1990 with an annual reprocessing capacity of 800 tons of fuel and is still in operation The combined licensed capacity of UP2-800 and UP3 is 1,700 tons of used fuel. (authors)« less

  1. Studies in support of an SNM cutoff agreement: The PUREX exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanbro, W.D.; Libby, R.; Segal, J.

    1995-07-01

    On September 23, 1993, President Clinton, in a speech before the United Nations General Assembly, called for an international agreement banning the production of plutonium and highly enriched uranium for nuclear explosive purposes. A major element of any verification regime for such an agreement would probably involve inspections of reprocessing plants in Nuclear Nonproliferation Treaty weapons states. Many of these are large facilities built in the 1950s with no thought that they would be subject to international inspection. To learn about some of the problems that might be involved in the inspection of such large, old facilities, the Department ofmore » Energy, Office of Arms Control and Nonproliferation, sponsored a mock inspection exercise at the PUREX plant on the Hanford Site. This exercise examined a series of alternatives for inspections of the PUREX as a model for this type of facility at other locations. A series of conclusions were developed that can be used to guide the development of verification regimes for a cutoff agreement at reprocessing facilities.« less

  2. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, B W; Collins, B A; Ebbinghaus, B B

    2010-04-26

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date needmore » to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.« less

  3. Nuclear Material Attractiveness: An Assessment of Material from PHWR's in a Closed Thorium Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, Brad W.; Ebbinghaus, B. B.; Bradley, Keith S.

    2010-06-11

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies [ , ] that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that 233U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined tomore » date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented.« less

  4. Industrial research for transmutation scenarios

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  5. Detection and Monitoring of Airborne Nuclear Waste Materials. Annual Report to Department of Energy.

    DTIC Science & Technology

    1979-12-04

    an active core , its detection by counting techniques is often slow and impractical. For these reasons NRL under contract with DoE undertook develop ...Protection and Measurements, Tritium Measurement Techniques NCRP Report No. 47 (1976). 2. " Development of a Continuous Tritium Monitor for Fuel Reprocessing...Trans. Am. Nucl. Soc. 21, 91 (1975). 146. "Process Behavior of and Environmental Assessments of C Releases from an HTGR Fuel Reprocessing Facility" J. W

  6. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. 2. Reentrainment and discharge of radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W Jr

    1981-07-01

    This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperlymore » sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.« less

  7. Simulation of ground-water flow near the nuclear-fuel reprocessing facility at the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Yager, R.M.

    1987-01-01

    A two-dimensional finite-difference model was developed to simulate groundwater flow in a surficial sand and gravel deposit underlying the nuclear fuel reprocessing facility at Western New York Nuclear Service Center near West Valley, N.Y. The sand and gravel deposit overlies a till plateau that abuts an upland area of siltstone and shale on its west side, and is bounded on the other three sides by deeply incised stream channels that drain to Buttermilk Creek, a tributary to Cattaraugus Creek. Radioactive materials are stored within the reprocessing plant and are also buried within a till deposit at the facility. Tritiated water is stored in a lagoon system near the plant and released under permit to Franks Creek, a tributary to Buttermilk Creek. Groundwater levels predicted by steady-state simulations closely matched those measured in 23 observation wells, with an average error of 0.5 meter. Simulated groundwater discharges to two stream channels and a subsurface drain were within 5% of recorded values. Steady-state simulations used an average annual recharge rate of 46 cm/yr; predicted evapotranspiration loss from the ground was 20 cm/yr. The lateral range in hydraulic conductivity obtained through model calibration was 0.6 to 10 m/day. Model simulations indicated that 33% of the groundwater discharged from the sand and gravel unit (2.6 L/sec) is lost by evapotranspiration, 3% (3.0 L/sec) flows to seepage faces at the periphery of the plateau, 20% (1.6 L/sec) discharges to stream channels that drain a large wetland area near the center of the plateau, and the remaining 8% (0.6 L/sec) discharges to a subsurface french drain and to a wastewater treatment system. Groundwater levels computed by a transient-state simulation of an annual climatic cycle, including seasonal variation in recharge and evapotranspiration, closely matched water levels measured in eight observation wells. The model predicted that the subsurface drain and the stream channel that drains the wetland would intercept most of the recharge originating near the reprocessing plant. (Lantz-PTT)

  8. Geohydrologic conditions at the nuclear-fuels reprocessing plant and waste-management facilities at the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Bergeron, M.P.; Kappel, W.M.; Yager, R.M.

    1987-01-01

    A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, N.Y. The facilities are underlain by glacial and postglacial deposits that fill an ancestrial bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses , ranges from 0.000018 to 0.000086 m/day. (USGS)

  9. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. B Appendix B to Part 50—Quality Assurance... report a description of the quality assurance program to be applied to the design, fabrication...

  10. No increased cancer risks from nuclear facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-11-08

    This article reports the results of a US Department of Health and Human Services (HHS) and National Cancer Institute (NCI) two-year survey that shows no increased risk of death from cancer for people living in counties containing or close to nuclear plants. 62 plants and their surrounding counties were included in the survey including commercial, US DOE and fuel reprocessing plants.

  11. Uranium and Thorium

    ERIC Educational Resources Information Center

    Finch, Warren I.

    1978-01-01

    The results of President Carter's policy on non-proliferation of nuclear weapons are expected to slow the growth rate in energy consumption, put the development of the breeder reactor in question, halt plans to reprocess and recycle uranium and plutonium, and expand facilities to supply enriched uranium. (Author/MA)

  12. The use of nuclear data in the field of nuclear fuel recycling

    NASA Astrophysics Data System (ADS)

    Martin, Julie-Fiona; Launay, Agnès; Grassi, Gabriele; Binet, Christophe; Lelandais, Jacques; Lecampion, Erick

    2017-09-01

    AREVA NC La Hague facility is the first step of the nuclear fuel recycling process implemented in France. The processing of the used fuel is governed by high standards of criticality-safety, and strong expectations on the quality of end-products. From the received used fuel assemblies, the plutonium and the uranium are extracted for further energy production purposes within the years following the reprocessing. Furthermore, the ultimate waste - fission products and minor actinides on the one hand, and hulls and end-pieces on the other hand - is adequately packaged for long term disposal. The used fuel is therefore separated into very different materials, and time scales which come into account may be longer than in some other nuclear fields of activity. Given the variety of the handled nuclear materials, as well as the time scales at stake, the importance given to some radionuclides, and hence to the associated nuclear data, can also be specific to the AREVA NC La Hague plant. A study has thus been led to identify a list of the most important radionuclides for the AREVA NC La Hague plant applications, relying on the running constraints of the facility, and the end-products expectations. The activities at the AREVA NC La Hague plant are presented, and the methodology to extract the most important radionuclides for the reprocessing process is detailed.

  13. Evaluation of Ruthenium Capture Methods for Tritium Pretreatment Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Jubin, Robert Thomas; Bruffey, Stephanie H.

    2017-07-01

    In the reprocessing of used nuclear fuel, radioactive elements are released into various plant off-gas streams. While much research and development has focused on the abatement of the volatile nuclides 3H, 14C, 85Kr, and 129I, the potential release of semivolatile isotopes that could also report to the off-gas streams in a reprocessing facility has been examined. Ruthenium (as 106Ru) has been identified as one of the semivolatile nuclides requiring the greatest degree of abatement prior to discharging the plant off-gas to the environment.

  14. Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foare, Genevieve; Meze, Florian; Bader, Sven

    2013-07-01

    Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were dividedmore » into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)« less

  15. Spent Fuel Working Group Report. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety.more » To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.« less

  16. JPRS Report, Proliferation Issues

    DTIC Science & Technology

    1993-06-07

    Ruta Skatikaite; RESPUBLIKA, 19 May 93] ................................................................................ 20 Radioactive Beryllium...nuclear fuel will be transported around 2000 to a reprocessing facility in [Yi] IAEA surveillance cameras are said to take four photos Tokai, Ibaraki...Comparing these two methods, the method of extracting May 93 pp 342-346. plutonium is similar to carrying a backpack to transport goods, while

  17. Coprocessed nuclear fuels containing (U, Pu) values as oxides, carbides or carbonitrides

    DOEpatents

    Lloyd, M.H.

    1981-01-09

    Method for direct coprocessing of nuclear fuels derived from a product stream of fuels reprocessing facility containing uranium, plutonium, and fission product values comprising nitrate stabilization of said stream vacuum concentration to remove water and nitrates, neutralization to form an acid deficient feed solution for the internal gelation mode of sol-gel technology, green spherule formation, recovery and treatment for loading into a fuel element by vibra packed or pellet formation technologies.

  18. Coprocessed nuclear fuels containing (U, Pu) values as oxides, carbides or carbonitrides

    DOEpatents

    Lloyd, Milton H.

    1983-01-01

    Method for direct coprocessing of nuclear fuels derived from a product stream of a fuels reprocessing facility containing uranium, plutonium, and fission product values comprising nitrate stabilization of said stream vacuum concentration to remove water and nitrates, neutralization to form an acid deficient feed solution for the internal gelation mode of sol-gel technology, green spherule formation, recovery and treatment for loading into a fuel element by vibra packed or pellet formation technologies.

  19. Development of irradiation capabilities to address the challenges of the nuclear industry

    NASA Astrophysics Data System (ADS)

    Leay, L.; Bower, W.; Horne, G.; Wady, P.; Baidak, A.; Pottinger, M.; Nancekievill, M.; Smith, A. D.; Watson, S.; Green, P. R.; Lennox, B.; LaVerne, J. A.; Pimblott, S. M.

    2015-01-01

    With the announcement of the U.K. new nuclear build and the requirement to decommission old facilities, researchers require bespoke facilities to undertake experiments to inform decision making. This paper describes development of The University of Manchester's Dalton Cumbrian Facility, a custom built research environment which incorporates a 5 MV tandem ion accelerator as well as a self-shielded 60Co irradiator. The ion accelerator allows the investigation into the radiolytic consequences of various charged particles, including protons, alpha particles and a variety of heavier (metal and nonmetal) ions, while the 60Co irradiator allows the effects of gamma radiation to be studied. Some examples of work carried out at the facility are presented to demonstrate how this equipment can improve our mechanistic understanding of various aspects of the deleterious effects of radiation in the nuclear industry. These examples include applications in waste storage and reprocessing as well as geological storage and novel surveying techniques. The outlook for future research is also discussed.

  20. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decamps, F.

    1993-12-31

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heatmore » producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type.« less

  1. Limiting nuclear proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, L.; Cecelski, L.

    1978-01-01

    As a result of the 1977 experience, it is shown that the U.S. no longer dominates the world nuclear market and must change its approach from coercion to persuasion. President Carter, implementing his campaign promises on nuclear nonproliferation, has used direct pressure, negotiated with nuclear suppliers, and asked for legislation to impose rigid criteria for the export of nuclear materials. Unilateral actions included the deferment of facilities for fuel reprocessing and breeder reactors, but were followed by efforts for international cooperation as the year progressed. While global non-proliferation policies reinforced with international technical cooperation are seen as admirable goals, themore » response to U.S. initiatives is not seen to be encouraging.« less

  2. Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.

    The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are themore » MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.« less

  3. Resolving Past Liabilities for Future Reduction in Greenhouse Gases; Nuclear Energy and the Outstanding Federal Liability of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Donohue, Jay

    This thesis will: (1) examine the current state of nuclear power in the U.S.; (2) provide a comparison of nuclear power to both existing alternative/renewable sources of energy as well as fossil fuels; (3) dissect Standard Contracts created pursuant to the National Waste Policy Act (NWPA), Congress' attempt to find a solution for Spent Nuclear Fuel (SNF), and the designation of Yucca Mountain as a repository; (4) the anticipated failure of Yucca Mountain; (5) explore WIPP as well as attempts to build a facility on Native American land in Utah; (6) examine reprocessing as a solution for SNF used by France and Japan; and, finally, (7) propose a solution to reduce GHG's by developing new nuclear energy plants with financial support from the U.S. government and a solution to build a storage facility for SNF through the sitting of a repository based on a "bottom-up" cooperative federalism approach.

  4. Commercial Nuclear Reprocessing in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherrill, Charles Leland; Balatsky, Galya Ivanovna

    2015-09-09

    The short presentation outline: Reprocessing Overview; Events leading up to Carter’s Policy; Results of the decision; Policy since Nuclear Nonproliferation Act. Conclusions reached: Reprocessing ban has become an easy and visible fix to the public concern about proliferation, but has not completely stopped proliferation; and, Reprocessing needs to become detached from political considerations, so technical research can continue, regardless of the policy decisions we decide to take.

  5. The VATO project: An original methodology to study the transfer of tritium as HT and HTO in grassland ecosystem.

    PubMed

    Maro, D; Vermorel, F; Rozet, M; Aulagnier, C; Hébert, D; Le Dizès, S; Voiseux, C; Solier, L; Cossonnet, C; Godinot, C; Fiévet, B; Laguionie, P; Connan, O; Cazimajou, O; Morillon, M; Lamotte, M

    2017-02-01

    Tritium ( 3 H) is mainly released into the environment by nuclear power plants, military nuclear facilities and nuclear reprocessing plants. The construction of new nuclear facilities in the world as well as the evolution of nuclear fuel management might lead to an increase of 3 H discharges from the nuclear industry. The VATO project was set up by IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and EDF (Electricité de France) to reduce the uncertainties in the knowledge about transfers of 3 H from an atmospheric source (currently releasing HT and HTO) to a grassland ecosystem. A fully instrumented technical platform with specifically designed materials was set up downwind of the AREVA NC La Hague reprocessing plant (Northwest of the France). This study, started in 2013, was conducted in four main steps to provide an hourly data set of 3 H concentrations in the environment, adequate to develop and/or validate transfer models. It consisted first in characterizing the physico-chemical forms of 3 H present in the air around the plant. Then, 3 H transfer kinetics to grass were quantified regarding contributions from various compartments of the environment. For this purpose, an original experimental procedure was provided to take account for biases due to rehydration of freeze-dried samples for the determination of OBT activity concentrations in biological samples. In a third step, the 3 H concentrations measured in the air and in rainwater were reconstructed at hourly intervals. Finally, a data processing technique was used to determine the biological half-lives of OBT in grass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Spent Nuclear Fuel Disposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C.

    One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less

  7. Spent Nuclear Fuel Disposition

    DOE PAGES

    Wagner, John C.

    2016-05-22

    One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less

  8. U.S. Nuclear Cooperation with India: Issues for Congress

    DTIC Science & Technology

    2008-11-03

    separation list: ! 8 indigenous Indian power reactors ! Fast Breeder test Reactor (FTBR) and Prototype Fast Breeder Reactors (PFBR) under construction...facilities like reprocessing and enrichment plants and breeder reactors could be viewed as providing a significant nonproliferation benefit because the... breeder reactors would support the 2002 U.S. National Strategy to Combat Weapons of Mass Destruction, in which the United States pledged to “continue to

  9. International Atomic Energy Agency Safeguards: Challenge and response

    NASA Astrophysics Data System (ADS)

    Spector, Leonard S.

    2017-11-01

    This article provides a critical review of the nuclear accounting and inspection system of the International Atomic Energy Agency (IAEA), known as "IAEA safeguards." The article focuses on the multiple challenges the Agency confronts in verifying that all nuclear activities in the countries under its safeguards system are being pursued for exclusively peaceful purposes. The principal challenges noted are those posed by: undeclared facilities, the development of enrichment and reprocessing capabilities, illicit procurement activities, denial of inspector access, difficulties in verifying absence of weaponization activities, and difficulties in establishing that all nuclear-relevant activities in a state are peaceful. The article is in the form of annotated PowerPoint briefing slides.

  10. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL ASSOCIATED WITH A CLOSED FUEL CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Ebbinghaus, B.; Sleaford, Brad W.

    2010-06-11

    This paper examines the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the various processing steps required for a closed fuel cycle. This paper combines the results from earlier studies that examined the attractiveness of SNM associated with the processing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR with new results for the final, repeated burning of SNM in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). The results of this paper suggest that all reprocessing products evaluated so farmore » need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, or undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.« less

  11. FURTHER ASSESSMENTS OF THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FROM A SAFEGUARDS PERSPECTIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Jarvinen, G. D.; Wallace, R. K.

    2008-10-01

    This paper summarizes the results of an extension to an earlier study [ ] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the PUREX, UREX+, and COEX reprocessing schemes. This study focuses on the materials associated with the UREX, COEX, THOREX, and PYROX reprocessing schemes. This study also examines what is required to render plutonium as “unattractive.” Furthermore, combining the results of this study with those from the earlier study permits a comparison of the uranium and thorium based fuel cycles on the basis of the attractiveness of the SNM associated with each fuelmore » cycle. Both studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of “attractiveness levels” that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.« less

  12. Characterization and simulation of soft gamma-ray mirrors for their use with spent fuel rods at reprocessing facilities

    DOE PAGES

    Ruz, J.; Descalle, M. A.; Alameda, J. B.; ...

    2016-05-24

    The use of a grazing incidence optic to selectively reflect K-shell fluorescence emission and isotope-specific lines from special nuclear materials is a highly desirable nondestructive analysis method for use in reprocessing fuel environments. Preliminary measurements have been performed, and a simulation suite has been developed to give insight into the design of the x ray optics system as a function of the source emission, multilayer coating characteristics, and general experimental configurations. As a result, the experimental results are compared to the predictions from our simulation toolkit to illustrate the ray-tracing capability and explore the effect of modified optics in futuremore » measurement campaigns.« less

  13. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    PubMed

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. Copyright © 2010 Health Physics Society

  14. Simulation Enabled Safeguards Assessment Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-09-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements inmore » functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.« less

  15. Radioactivity levels in major French rivers: summary of monitoring chronicles acquired over the past thirty years and current status.

    PubMed

    Eyrolle, Frédérique; Claval, David; Gontier, Gilles; Antonelli, Christelle

    2008-07-01

    Since the beginning of the 1990 s, liquid releases of gamma-emitting radionuclides from French nuclear facilities have generally fallen by almost 85%. Almost 65% of gamma-emitting liquid effluents released into freshwater rivers concerned the River Rhône (Southeast France), with around 85% of this originating from the Marcoule spent fuel reprocessing plant. Upstream of French nuclear plants, artificial radionuclides still detected by gamma spectrometry in 2006, include (137)Cs, (131)I as well as (60)Co, (58)Co and (54)Mn in the case of the Rhine (Switzerland nuclear industries). In the wake of the fallout from the Chernobyl accident, (103)Ru, (106)Rh-Ru, (110 m)Ag, (141)Ce and (129)Te were detected in rivers in the east of France. Some of these radionuclides were found in aquatic plants until 1989. In eastern France, (137)Cs activity in river sediments and mosses is still today two to three times greater than that observed in similar environments in western France. No (134)Cs has been detected upstream of nuclear plants in French rivers since 2001. Downstream of nuclear plants, the gamma emitters still detected regularly in rivers in 2006 are (137)Cs, (134)Cs, (60)Co, (58)Co, (110 m)Ag, (54)Mn, (131)I, together with (241)Am downstream of the Marcoule spent fuel reprocessing plant. Alpha and beta emitters such as plutonium isotopes and (90)Sr first entered freshwaters at the early 1950s due to the leaching of soils contaminated by atmospheric fallout from nuclear testing. These elements were also introduced, in the case of the Rhône River, via effluent from the Marcoule reprocessing plant. Until the mid 1990 s, plutonium isotope levels observed in the lower reaches of the Rhône were 10 to 1000 times higher than those observed in other French freshwaters. Data gathered over a period of almost thirty years of radioecological studies reveal that the only radionuclides detected in fish muscles are (137)Cs, (90)Sr, plutonium isotopes and (241)Am. At the scale of the French territory, there is no significant difference since the mid 1990 s between (137)Cs activity observed downstream of nuclear facilities and that observed upstream, whether in sediments, mosses and fish. Finally, this study highlights that the natural radioactivity of surface freshwaters are around 25 times greater than artificial radioactivity from gamma emitters. However, non gamma emitters released by nuclear industries, such as (3)H, may lead to artificial activity levels 2 to 20 times higher than natural levels.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, Jean-Marc; Eschbach, Romain; Launay, Agnes

    CEA and AREVA-NC have developed and used a depletion code named CESAR for 30 years. This user-friendly industrial tool provides fast characterizations for all types of nuclear fuel (PWR / UOX or MOX or reprocess Uranium, BWR / UOX or MOX, MTR and SFR) and the wastes associated. CESAR can evaluate 100 heavy nuclides, 200 fission products and 150 activation products (with Helium and Tritium formation). It can also characterize the structural material of the fuel (Zircalloy, stainless steel, M5 alloy). CESAR provides depletion calculations for any reactor irradiation history and from 3 months to 1 million years of coolingmore » time. CESAR5.3 is based on the latest calculation schemes recommended by the CEA and on an international nuclear data base (JEFF-3.1.1). It is constantly checked against the CEA referenced and qualified depletion code DARWIN. CESAR incorporates the CEA qualification based on the dissolution analyses of fuel rod samples and the 'La Hague' reprocessing plant feedback experience. AREVA-NC uses CESAR intensively at 'La Hague' plant, not only for prospective studies but also for characterizations at different industrial facilities all along the reprocessing process and waste conditioning (near 150 000 calculations per year). CESAR is the reference code for AREVA-NC. CESAR is used directly or indirectly with other software, data bank or special equipment in many parts of the La Hague plants. The great flexibility of CESAR has rapidly interested other projects. CESAR became a 'tool' directly integrated in some other softwares. Finally, coupled with a Graphical User Interface, it can be easily used independently, responding to many needs for prospective studies as a support for nuclear facilities or transport. An English version is available. For the principal isotopes of U and Pu, CESAR5 benefits from the CEA experimental validation for the PWR UOX fuels, up to a burnup of 60 GWd/t and for PWR MOX fuels, up to 45 GWd/t. CESAR version 5.3 uses the CEA reference calculation codes for neutron physics with the JEFF-3.1.1 nuclear data set. (authors)« less

  17. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Thomas, I.

    2013-07-01

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility,more » the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.« less

  18. Legal, institutional, and political issues in transportation of nuclear materials at the back end of the LWR nuclear fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippek, H.E.; Schuller, C.R.

    1979-03-01

    A study was conducted to identify major legal and institutional problems and issues in the transportation of spent fuel and associated processing wastes at the back end of the LWR nuclear fuel cycle. (Most of the discussion centers on the transportation of spent fuel, since this activity will involve virtually all of the legal and institutional problems likely to be encountered in moving waste materials, as well.) Actions or approaches that might be pursued to resolve the problems identified in the analysis are suggested. Two scenarios for the industrial-scale transportation of spent fuel and radioactive wastes, taken together, high-light mostmore » of the major problems and issues of a legal and institutional nature that are likely to arise: (1) utilizing the Allied General Nuclear Services (AGNS) facility at Barnwell, SC, as a temporary storage facility for spent fuel; and (2) utilizing AGNS for full-scale commercial reprocessing of spent LWR fuel.« less

  19. Laser-enhanced chemical reactions and the liquid state. II. Possible applications to nuclear fuel reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1976-01-01

    Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions. (auth)

  20. Carter's breeder policy has failed, claims Westinghouse manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    Nuclear nations developing liquid metal fast breeder reactor (LMFBR) technology have not been dissuaded by President Carter's efforts to stop the breeder program as a way to control the proliferation of nuclear weapons. There is no evidence that Carter's policy of moral persuasion has had any impact on their efforts. A review of the eight leading countries cites their extensive progress in the areas of breeder technology and fuel reprocessing, while the US has made only slight gains. The Fast Flux Test Facility at Hanford is near completion, but the Clinch River project has been slowed to a minimum.

  1. Availability analysis of an HTGR fuel recycle facility. Summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharmahd, J.N.

    1979-11-01

    An availability analysis of reprocessing systems in a high-temperature gas-cooled reactor (HTGR) fuel recycle facility was completed. This report summarizes work done to date to define and determine reprocessing system availability for a previously planned HTGR recycle reference facility (HRRF). Schedules and procedures for further work during reprocessing development and for HRRF design and construction are proposed in this report. Probable failure rates, transfer times, and repair times are estimated for major system components. Unscheduled down times are summarized.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR)more » spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)« less

  3. Significance of and prospects for fuel recycle in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otsuka, K.; Ikeda, K.

    Japan's nuclear power plant capacity ranks fourth in the world at around 20 GW. But nuclear fuel cycle industries (enrichment, reprocessing and radioactive waste management) are still in their infancy compared with the size and stage of the power plants. Thus it is a matter of urgency to establish a nuclear fuel cycle in Japan which can promote nuclear energy as a quasi-indigenous energy source. Some moves toward establishing a nuclear fuel cycle have been observed recently. As a case in point, in July 1984, the Federation of Electric Power Companies has formally requested Aomori Prefecture to locate nuclear fuelmore » cycle facilities in the Shimokita Peninsula region. Plutonium recovered from spent fuel will be utilized in LWR, ATR, and FBR. Research and development activities on these technologies are in progress.« less

  4. The Military Significance of Small Uranium Enrichment Facilities Fed with Low-Enrichment Uranium (Redacted)

    DTIC Science & Technology

    1969-12-01

    a five-year supply of enriched uranium for reactor fuel . Nevertheless, it seems clear that some foreign enrichment developments are approaching a...produc- tion of fissile material could powerfully influence the assessment of risks and benefits of a nuclear weapons development program . Since... program is likely to include the production of its own relatively pure fissile plutonium. This would involve more rapid cycling and reprocessing of fuel

  5. Optimizing Endoscope Reprocessing Resources Via Process Flow Queuing Analysis.

    PubMed

    Seelen, Mark T; Friend, Tynan H; Levine, Wilton C

    2018-05-04

    The Massachusetts General Hospital (MGH) is merging its older endoscope processing facilities into a single new facility that will enable high-level disinfection of endoscopes for both the ORs and Endoscopy Suite, leveraging economies of scale for improved patient care and optimal use of resources. Finalized resource planning was necessary for the merging of facilities to optimize staffing and make final equipment selections to support the nearly 33,000 annual endoscopy cases. To accomplish this, we employed operations management methodologies, analyzing the physical process flow of scopes throughout the existing Endoscopy Suite and ORs and mapping the future state capacity of the new reprocessing facility. Further, our analysis required the incorporation of historical case and reprocessing volumes in a multi-server queuing model to identify any potential wait times as a result of the new reprocessing cycle. We also performed sensitivity analysis to understand the impact of future case volume growth. We found that our future-state reprocessing facility, given planned capital expenditures for automated endoscope reprocessors (AERs) and pre-processing sinks, could easily accommodate current scope volume well within the necessary pre-cleaning-to-sink reprocessing time limit recommended by manufacturers. Further, in its current planned state, our model suggested that the future endoscope reprocessing suite at MGH could support an increase in volume of at least 90% over the next several years. Our work suggests that with simple mathematical analysis of historic case data, significant changes to a complex perioperative environment can be made with ease while keeping patient safety as the top priority.

  6. Fundamental Aspects of Zeolite Waste Form Production by Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The direct conversion of iodine-bearing sorbents into a stable waste form is a research topic of interest to the US Department of Energy. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary in order to comply with the regulatory requirements that apply to facilities sited within the United States (Jubin et al., 2012a), and any iodine-containing media or solid sorbents generated by this process would contain 129I and would be destined for eventual geological disposal. While recovery of iodine from some sorbents is possible, a method to directly convert iodineloaded sorbentsmore » to a durable waste form with little or no additional waste materials being formed and a potentially reduced volume would be beneficial. To this end, recent studies have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by hot isostatic pressing (HIPing) (Bruffey and Jubin, 2015). Silver mordenite (AgZ), of the zeolite class of minerals, is under consideration for use in adsorbing iodine from nuclear reprocessing off-gas streams. Direct conversion of I-AgZ by HIPing may provide the following benefits: (1) a waste form of high density that is tolerant to high temperatures, (2) a waste form that is not significantly chemically hazardous, and (3) a robust conversion process that requires no pretreatment.« less

  7. Nuclear Fuel Reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore.more » Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor fuels have been irradiated for different purposes, but the vast majority of commercial fuel is uranium oxide clad in zirconium alloy tubing. As a result, commercial reprocessing plants have relatively narrow technical requirements for used nuclear that is accepted for processing.« less

  8. Surface-water hydrology of the Western New York Nuclear Service Center Cattaraugus County, New York

    USGS Publications Warehouse

    Kappel, W.M.; Harding, W.E.

    1987-01-01

    Precipitation data were collected from October 1980 through September 1983 from three recording gages at the Western New York Nuclear Service Center, and surface water data were collected at three continuous-record gaging stations and one partial-record gage on streams that drain a 0.7 sq km part of the site. Seepage from springs was measured periodically during the study. The data were used to identify runoff characteristics at the waste burial ground and the reprocessing plant area, 400 meters to the north. Preliminary water budgets for April 1982 through March 1983 were calculated to aid in the development of groundwater flow models to the two areas. Nearly 80% of the measured runoff from the burial ground area was storm runoff; the remaining 20% was base flow. In contrast, only 30% of the runoff leaving the reprocessing plant area was storm runoff, and 70% was base flow. This difference is attributed to soil composition. The burial ground soil consists of clayey silty till that limits infiltration and causes most precipitation to flow to local channels as direct runoff. In contrast, the reprocessing plant area is overlain by alluvial sand and gravel that allows rapid infiltration of precipitation and subsequent steady discharge from the water table to nearby stream channels and seepage faces. Measured total annual runoff and estimated evapotranspiration from the reprocessing plant area exceeded the precipitation by 35%, which suggests that the groundwater basin is larger than the surface water basin. The additional outflow probably includes underflow from bedrock upgradient from the plant, water leakage from plant facilities, and groundwater flow from adjacent basins. (Author 's abstract)

  9. Technetium-99 and strontium-90: Abundance determination at ultratrace sensitivity by AMS as signatures of undeclared nuclear reprocessing activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAninch, J.E.; Proctor, I.D.

    1995-03-01

    The purpose of this White Paper is to examine the use of the ultratrace technique Accelerator Mass Spectrometry (AMS) to lower detection limits for {sup 99}Tc and {sup 90}Sr, and to examine the utility of these isotopes as signatures of a convert reprocessing facility. The International Atomic Energy Agency (IAEA) has committed to improving the effectiveness of the IAEA Safeguards System. This is in some degree a result of the discovery in 1991 of an undeclared Iraqi EMIS program. Recommendations from the March 1993 Consultants Group Meeting have resulted in several studies and follow on field trials to identify environmentalmore » signatures from covert nuclear fuel reprocessing activity. In particular, the April, 1993 reports of the Standing Advisory Group on Safeguards Implementation (SAGSI) identified the long-lived radioisotopes Technetium-99 and strontium-90 as two reliable signatures of fuel reprocessing activity. This report also suggested pathways in the chemical processing of irradiated fuel where these elements would be volatilized and potentially released in amounts detectable with ultratrace sensitivity techniques. Based on measured {sup 99}Tc background levels compiled from a variety of sources, it is estimated that AMS can provide 10% measurements of environmental levels of {sup 99}Tc in a few minutes using modestly sized samples: a few grams for soils, plants, or animal tissues; one to several liters for rain or seawater samples; and tens to hundreds of cubic meters for air sampling. Small sample sizes and high sample throughput result in significant increases in feasibility, cost effectiveness, and quality of data for a regional monitoring program. Similar results are expected for {sup 90}Sr.« less

  10. Comment on "radioactive fallout in the United States due to the Fukushima nuclear plant accident" by P. Thakur, S. Ballard and R. Nelson, J. Environ. Monit., 2012, 14, 1317-1324.

    PubMed

    Rose, Paula S

    2014-07-01

    The May 2012 paper "Radioactive fallout in the United States due to the Fukushima nuclear plant accident" (P. Thakur, S. Ballard and R. Nelson, J. Environ. Monit., 2012, 14, 1317-1324), does not address medical patient excreta as a source of (131)I (t1/2 = 8.04 d) to the environment. While (131)I is generated during fission reactions and may be released to the environment from nuclear power plants, nuclear weapons tests, nuclear fuel reprocessing and weapons production facilities, it is also produced for medical use. Iodine-131 administered to patients, excreted and discharged to sewer systems is readily measureable in sewage and the environment; the patient-to-sewage pathway is the only source of (131)I in many locations.

  11. Summary of the Forty-Fifth NCRP annual meeting on "the future of nuclear power worldwide: safety, health and the environment".

    PubMed

    Corradini, Michael

    2011-01-01

    The role of nuclear power as a major resource in meeting the projected growth of electric power requirements in the United States and worldwide during the 21st century is a subject of great contemporary interest. The goal of the 2009 NCRP Annual Meeting was to provide a forum for an in-depth discussion of issues related to the safety, health and environmental protection aspects of new nuclear power reactor systems and related fuel-cycle facilities such as fuel production and reprocessing strategies. The meeting was an international conference with participation of almost 400 representatives from many nations, scientific organizations, nuclear industries, and governmental agencies engaged in the development and regulatory control of advanced nuclear reactor systems and fuel-cycle operations. Highlights of the meeting are summarized in this report. Copyright © 2010 Health Physics Society

  12. A 60-year record of 129I in Taal Lake sediments (Philippines): Influence of human nuclear activities at low latitude regions.

    PubMed

    Zhang, Luyuan; Hou, Xiaolin; Li, Hong-Chun; Xu, Xiaomei

    2018-02-01

    The influence of human nuclear activities on environmental radioactivity is not well known at low latitude regions that are distant from nuclear test sites and nuclear facilities. A sediment core collected from Taal Lake in the central Philippines was analyzed for 129 I and 127 I to investigate this influence in a low-latitude terrestrial system. A baseline of 129 I/ 127 I atomic ratios was established at (2.04-5.14) × 10 -12 in the pre-nuclear era in this region. Controlled by the northeasterly equatorial trade winds, increased 129 I/ 127 I ratios of (20.1-69.3) × 10 -12 suggest that atmospheric nuclear weapons tests at the Pacific Proving Grounds in the central Pacific Ocean was the major source of 129 I in the sediment during 1956-1962. The 129 I/ 127 I ratios, up to 157.5 × 10 -12 after 1964, indicate a strong influence by European nuclear fuel reprocessing plants. The East Asian Winter Monsoon is found to be the dominant driving force in the atmospheric dispersion of radioactive iodine ( 129 I) from the European nuclear fuel reprocessing plants to Southeast Asia, which is also important for dispersion of other airborne pollutants from the middle-high to low latitude regions. A significant 129 I/ 127 I peak at 42.8 cm in the Taal Lake core appears to be the signal of the Chernobyl accident in 1986. In addition, volcanic activities are reflected in the iodine isotope profiles in the sediment core, suggesting the potential of using iodine isotopes as an indicator of volcanic eruptions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sources of the transuranic elements plutonium and neptunium in arctic marine sediments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, L. W.; Kelley, J. M.; Bond, L. A.

    2000-01-01

    We report here thermal ionization mass spectrometry measurements of {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, and {sup 237}Np isolated from oceanic, estuarine, and riverine sediments from the Arctic Ocean Basin. {sup 238}Pu/{sup 239+240}Pu activity ratios are also reported for alpha spectrometric analyses undertaken on a subset of these samples. Our results indicate that the Pu in sediments on the Alaskan shelf and slope, as well as that in the deep basins (Amerasian and Eurasian) of the Arctic Ocean, has its origin in stratospheric and tropospheric fallout. Sediments from the Ob and Yenisei Rivers show isotopic Pu signatures thatmore » are distinctly different from those of northern-hemisphere stratospheric fallout and indicate the presence of weapons-grade Pu originating from nuclear fuel reprocessing wastes generated at Russian facilities within these river catchments. Consequently, sediments of the Eurasian Arctic Ocean, particularly those in the Barents and Kara Seas, probably contain a mixture of Pu from stratospheric fallout, tropospheric fallout, and fuel-reprocessing wastes of riverine origin. In particular, the {sup 241}Pu/{sup 239}Pu ratios observed in these sediments are inconsistent with significant contributions of Pu to the arctic sediments studied from western European reprocessing facilities, principally Sellafield in the UK. Several other potential sources of Pu to arctic sediments can also be excluded as significant based upon the transuranic isotope ratios presented.« less

  14. Accumulation of COGEMA-La Hague-derived reprocessing wastes in French salt marsh sediments.

    PubMed

    Cundy, Andrew B; Croudace, Ian W; Warwick, Phillip E; Oh, Jung-Suk; Haslett, Simon K

    2002-12-01

    Over the past five decades, authorized low-level discharges from coastal nuclear facilities have released significant quantities of artificial radionuclides into the marine environment. In northwest Europe, the majority of the total discharge has derived from nuclear reprocessing activities at Sellafield in the United Kingdom and COGEMA-La Hague in France. At the Sellafield site, a significant amount of the discharges has been trapped in offshore fine sediment deposits, and notably in local coastal and estuarine sediments, and much research has been focused on understanding the distribution, accumulation, and reworking of long-lived radionuclides in these deposits. In contrast, there are few high-resolution published data on the vertical distribution of radionuclides in fine-grained estuarine sediments near, and downstream of, COGEMA-La Hague. This paper therefore examines the vertical distribution of a range of anthropogenic radionuclides in dated salt marsh cores from two estuaries, one adjacent to, and the other downstream of, the COGEMA-La Hague discharge point (the Havre de Carteret at Barneville-Carteret and the Baie de Somme, respectively). The radionuclides examined show a vertical distribution which predominantly reflects variations in input from COGEMA-La Hague (albeit much more clearly at Barneville-Carteret than at the Baie de Somme site), and Pu isotopic ratios are consistent with a La Hague, rather than weapons' fallout, source. Because of sediment mixing, the marshes apparently retain an integrated record of the La Hague discharges, rather than an exact reproduction of the discharge history. Sorption of radionuclides increases in the order 90Sr < 137Cs < 60Co < 239,240Pu, which is consistent with Kd values reported in the literature. In general, the radionuclide activities observed at the sites studied are low (particularly in comparison with salt marsh sediments near the Sellafield facility), but are similar to those found in areas of fine sedimentation in the central Channel. These marshes are not major sinks for discharged reprocessing wastes.

  15. Characteristics of potential repository wastes. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continuemore » and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, Andrew Scott; Bennett, D. A.; Croce, Mark Philip

    In 2005 the LANL/NIST team used a single high-resolution microcalorimeter detector to measure the gamma-ray spectrum of a plutonium sample. After more than a decade of research and development on this topic, both the technology and our general understanding of its capabilities have advanced greatly, such that a progress review is now timely. We examine the scenario of a large-scale reprocessing plant and conclude that current non-destructive analysis (NDA) methods are inadequate to safeguard such a facility to the desired levels, leading to undesirable dependence on massspectrometry (MS) destructive analysis (DA). The development of microcalorimeter detectors is intended to closemore » the performance gap between NDA and DA methods to address the needs of nuclear facilities.« less

  17. Fukushima Daiichi Information Repository FY13 Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis; Phelan, Cherie; Schwieder, Dave

    The accident at the Fukushima Daiichi nuclear power station in Japan is one of the most serious in commercial nuclear power plant operating history. Much will be learned that may be applicable to the U.S. reactor fleet, nuclear fuel cycle facilities, and supporting systems, and the international reactor fleet. For example, lessons from Fukushima Daiichi may be applied to emergency response planning, reactor operator training, accident scenario modeling, human factors engineering, radiation protection, and accident mitigation; as well as influence U.S. policies towards the nuclear fuel cycle including power generation, and spent fuel storage, reprocessing, and disposal. This document describesmore » the database used to establish a centralized information repository to store and manage the Fukushima data that has been gathered. The data is stored in a secured (password protected and encrypted) repository that is searchable and available to researchers at diverse locations.« less

  18. Sources and transport of anthropogenic radionuclides in the Ob River system, Siberia

    NASA Astrophysics Data System (ADS)

    Cochran, J. Kirk; Moran, S. Bradley; Fisher, Nicholas S.; Beasley, Thomas M.; Kelley, James M.

    2000-06-01

    The potential sources of anthropogenic radionuclides to the Ob River system of western Siberia include global stratospheric fallout, tropospheric fallout from atomic weapons tests and releases from production and reprocessing facilities. Samples of water, suspended and bottom sediments collected in 1994 and 1995 have been used to characterize the sources and transport of 137Cs, Pu isotopes, 237Np and 129I through the system. For the radionuclides that associate with particles, isotope ratios provide clues to their sources, providing any geochemical fractionation can be taken into account. Activity ratios of 239,240Pu/ 137Cs in suspended sediments are lower than the global fallout ratio in the Irtysh River before its confluence with the Ob, comparable to fallout in the central reach of the Ob, and greater than the fallout values in the lower Ob and in the Taz River. This pattern mirrors the downriver decrease in dissolved organic carbon (DOC) concentrations. Laboratory adsorption experiments with Ob River sediment and water show that Kd values for Am (and presumably other actinides) are depressed by two orders of magnitude in the presence of Ob DOC concentrations, relative to values measured in DOC-free Ob water. Iodine and cesium Kd values show little or no (less than a factor of 2) dependence on DOC. Mixing plots using plutonium isotope ratios (atom ratios) show that Pu in suspended sediments of the Ob is a mixture of stratospheric global fallout at northern latitudes, tropospheric fallout from the former Soviet Union test site at Semipalatinsk and reprocessing of spent fuel at Tomsk-7. Plutonium from Semipalatinsk is evident in the Irtysh River above its confluence with the Tobal. Suspended sediment samples taken in the Ob above its confluence with the Irtysh indicate the presence of Pu derived from the Tomsk-7 reprocessing facilities. A mixing plot constructed using 237Np/ 239Pu vs. 240Pu/ 239Pu shows similar mixtures of stratospheric and tropospheric fallout, with the likely addition of inputs from reprocessing facilities and reactor operations. As with Pu/Cs ratios, Np/Pu ratios could be modified by differential geochemical behaviors of Np and Pu. Dissolved 129I only weakly interacts with particles in the Ob; size-fractionated sampling shows that the colloidal 129I fraction (defined as 1 kDa-0.2 μm) contains generally <5% relative to that passing a 0.2 μm filter. Iodine-129 concentrations decrease from 8.3×10 9 to 0.65×10 9 atoms l -1 through the Ob system toward the Kara Sea, with highest values in the Tobal River and lowest in the Taz River. The likely source of the elevated 129I in the Tobal is release from the production-reprocessing facilities at Mayak, and decreases downriver are predominantly due to dilution as the various tributaries with low 129I join the system. Fluxes of 129I to the lower Ob at Salekhard are <1% of the releases of this radionuclide from the nuclear fuel reprocessing facilities at Sellafield, UK and La Hague, France.

  19. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. Volume I. Tornado effects on head-end cell airflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holloway, L.J.; Andrae, R.W.

    1981-09-01

    This report describes results of a parametric study of the impacts of a tornado-generated depressurization on airflow in the contaminated process cells within the presently inoperative Nuclear Fuel Services fuel reprocessing facility near West Valley, NY. The study involved the following tasks: (1) mathematical modeling of installed ventilation and abnormal exhaust pathways from the cells and prediction of tornado-induced airflows in these pathways; (2) mathematical modeling of individual cell flow characteristics and prediction of in-cell velocities induced by flows from step 1; and (3) evaluation of the results of steps 1 and 2 to determine whether any of the pathwaysmore » investigated have the potential for releasing quantities of radioactively contaminated air from the main process cells. The study has concluded that in the event of a tornado strike, certain pathways from the cells have the potential to release radioactive materials of the atmosphere. Determination of the quantities of radioactive material released from the cells through pathways identified in step 3 is presented in Part II of this report.« less

  20. How an integrated change programme has accelerated the reduction in high hazard nuclear facilities at Sellafield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackintosh, Angela

    For over five decades the Sellafield Site has been central to the UK's nuclear programme. Now operated by Sellafield Ltd, under the management of Parent Body Organisation Nuclear Management Partners (NMP), a consortium of URS Washington Division, AMEC and AREVA is focussed on the decommissioning of historical facilities. When Decommissioning commenced in the late 1980's the site focus at that time was on commercial reprocessing and waste management. Now through the implementation of a company change programme, emphasis has shifted towards accelerated risk and hazard reduction of degraded legacy plants with nuclear inventory whilst ensuring value for money for themore » customer, the Nuclear Decommissioning Authority. This paper will describe the management success by the Site owners in delivering a successful change programme. The paper will explain how the site has transitioned to the INPO Standard Nuclear Performance Model (SNPM) and how through the use of a change maturity matrix has contributed to the accelerated reduction in high risk high hazard nuclear facilities. The paper will explain in detail how the Decommissioning Programme Office has facilitated and coordinated the Governance and assured delivery of the change plan and how successful application of visual management has aided the communication of its progress. Finally, the paper will discuss how the Delivery Schedules have proved critical for presenting the change plan to Key Stakeholders, Government Owners and Powerful Regulators. Overall, this paper provides an insight into how a massive change programme is being managed within one of the world's highest regulated industries. (authors)« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C.W.; Giraud, K.M.

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantagesmore » include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)« less

  2. A proliferation of nuclear waste for the Southeast.

    PubMed

    Alvarez, Robert; Smith, Stephen

    2007-12-01

    The U.S. Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP) is being promoted as a program to bring about the expansion of worldwide nuclear energy. Here in the U.S. much of this proposed nuclear power expansion is slated to happen in the Southeast, including here in South Carolina. Under the GNEP plan, the United States and its nuclear partners would sell nuclear power plants to developing nations that agree not to pursue technologies that would aid nuclear weapons production, notably reprocessing and uranium enrichment. As part of the deal, the United States would take highly radioactive spent ("used") fuel rods to a reprocessing center in this country. Upon analysis of the proposal, it is clear that DOE lacks a credible plan for the safe management and disposal of radioactive wastes stemming from the GNEP program and that the high costs and possible public health and environmental impacts from the program pose significant risks, especially to this region. Given past failures to address waste problems before they were created, DOE's rush to invest major public funds for deployment of reprocessing should be suspended.

  3. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.

  4. Nuclear power-related facilities and neighboring land price: a case study on the Mutsu-Ogawara region, Japan.

    PubMed

    Yamane, Fumihiro; Ohgaki, Hideaki; Asano, Kota

    2011-12-01

    From the perspective of risk, nuclear-power-related facilities (NPRFs) are often regarded as locally undesirable land use. However, construction of NPRFs contributes to social infrastructural improvement and job creation in the host communities. This raises a question: How large are these positive and negative effects? To approach this question from an economic viewpoint, we estimated the hedonic land price function for the Mutsu-Ogawara region of Japan from 1976 to 2004 and analyzed year-by-year fluctuations in land prices around the NPRFs located there. Land prices increased gradually in the neighborhood of the nuclear fuel cycle facilities (NFCFs) in Rokkasho Village, except for some falling (i) from 1982 to 1983 (the first official announcement of the project of construction came in 1983), (ii) from 1987 to 1988 (in 1988, the construction began and opposition movements against the project reached their peak), and (iii) from 1998 to 1999 (the pilot carry-in of spent fuels into the reprocessing plant began in 1998). Land prices around the Higashidori Nuclear Power Plant decreased during the period 1981-1982, when the Tohoku Electric Power Corp. and Tokyo Electric Power Corp. announced their joint construction plan. On the other hand, we obtained some results, even though not significant, indicating that land prices around Ohminato and Sekinehama harbors changed with the arrival and departure of the nuclear ship Mutsu, which suffered a radiation leak in 1974. © 2011 Society for Risk Analysis.

  5. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    DOE PAGES

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    2017-01-17

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less

  6. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less

  7. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, J.H.; Choung, W.M.; You, G.S.

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluationmore » plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.« less

  8. DESIGN CRITERIA FOR FUEL DISSOLUTION SYSTEMS AND ASSOCIATED SERVICE FACILITIES. PLANT MODIFICATIONS FOR REPROCESSING NON-PRODUCTION REACTOR FUELS. PROJECT CGC-830

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierman, S.R.; Graf, W.A.; Kass, M.

    1960-07-29

    Design panameters are presented for phases of the facility to reprocess low-enrichment fuels from nonproduction reactors. Included are plant flowsheets and equipment layouts for fuel element dissolution, centrifugation, solution adjustment, and waste handling. Also included are the basic design criteria for the supporting facilities which service these phases and all other facilites located in the vicinity of the selected building (Bldg. 221-U). (J.R.D.)

  9. Case outsourcing medical device reprocessing.

    PubMed

    Haley, Deborah

    2004-04-01

    IN THE INTEREST OF SAVING MONEY, many hospitals are considering extending the life of some single-use medical devices by using medical device reprocessing programs. FACILITIES OFTEN LACK the resources required to meet the US Food and Drug Administration's tough quality assurance standards. BY OUTSOURCING, hospitals can reap the benefits of medical device reprocessing without assuming additional staffing and compliance burdens. OUTSOURCING enables hospitals to implement a medical device reprocessing program quickly, with no capital investment and minimal effort.

  10. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.

    2007-07-01

    Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and ice-breaker nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuelmore » from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped to 'Mayak' for reprocessing. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. DOD Office of Cooperative Threat Reduction (CTR), and the DOE's ORNL, along with the Norwegian Defense Research Establishment, worked closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved integrated management system for interim storage of military SNF in Russia. The initial Project activities included: (1) development of a prototype dual-purpose, metal-concrete 40-ton cask for both the transport and interim storage of RF SNF, and (2) development of the first transshipment/interim storage facility for these casks in Murmansk. The U.S. has continued support to the project by assisting the RF with the development of the first mobile system that provides internal conditioning for the TUK-108/1 casks to allow them to be stored for longer than the current licensing period of two years. Development of the prototype TUK-108/1 cask was completed in December 2000 under the Arctic Military Environmental Cooperation (AMEC) Program. This was the first metal-concrete cask developed, licensed, and produced in the RF for both the transportation and storage of SNF from decommissioned submarines. These casks are currently being serially produced in NW Russia and 108 casks have been produced to date. Russia is using these casks for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East in conformance with the Strategic Arms Reduction Treaty (START II). The design, construction, and commissioning of the first transshipment/interim storage facility in the RF was completed and ready for full operation in September 2003. Because of the RF government reorganization and changing regulations for spent fuel storage facilities, the storage facility at Murmansk was not fully licensed for operation until December 2005. The RF has reported that the facility is now fully operational. The TUK-108/1 SNF transport and storage casks were designed to have a 50-year storage life. Current RF practice is not to condition the submarine SNF or cask during the cask loading. Current RF regulations allow up to 4 mm of residual water (up to 3.2 liters) to remain in the casks. It has been determined that allowing this amount of residual water to remain untreated for a period longer than two years can produce hydrogen gas through hydrolysis which will increase the risk of explosion and could cause some corrosion of internal components. A solution to this problem was to develop and utilize a cask conditioning system to remove the residual water and create an inert storage environment in the cask by back-filling the internal cask cavity with an inert gas, such as helium or argon. This system is compatible with the existing TUK-108/1 design and is mobile for use at multiple submarine dismantlement sites. The RF has required that this cask conditioning system be tested and commissioned at the 'Zvezda' Shipyard in the Far East near Vladivostok, one of the major RF submarine fuel off loading and storage facilities. Currently, the fuel cannot be transferred to 'Mayak' for reprocessing until the completion of the 20 km railroad connector between 'Zvezda' and the main rail line to 'Mayak'. The cask conditioning system will allow extension of the currently-stored casks for an additional three years, at which time the rail connector line should be completed. The current license to store these casks at 'Zvezda' was scheduled to expire on 31 Dec 2006. Without the cask-conditioning system, the license could not be extended, no more fuel could be off-loaded from the decommissioned submarines, and the START objectives could not be met at 'Zvezda'. Completion of this cask conditioning system has removed a significant bottleneck for the completion of the Russian submarine decommissioning program under the START II Agreement. (authors)« less

  11. Energy Return on Investment - Fuel Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halsey, W; Simon, A J; Fratoni, M

    2012-06-06

    This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community,more » and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.« less

  12. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Bunn; Steve Fetter; John P. Holdren

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recyclingmore » to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.« less

  13. Modeling the potential radionuclide transport by the Ob and Yenisey Rivers to the Kara Sea.

    PubMed

    Paluszkiewicz, T; Hibler, L F; Richmond, M C; Bradley, D J; Thomas, S A

    2001-01-01

    A major portion of the former Soviet Union (FSU) nuclear program is located in the West Siberian Basin. Among the many nuclear facilities are three production reactors and the spent nuclear fuel reprocessing sites, Mayak, Tomsk-7, and Krasnoyarsk-26, which together are probably responsible for the majority of the radioactive contamination found in the Ob and Yenisey River systems that feed into the Arctic Ocean through the Kara Sea. This manuscript describes ongoing research to estimate radionuclide fluxes to the Kara Sea from these river systems. Our approach is to apply a hierarchy of simple models that use existing and forthcoming data to quantify the transport and fate of radionuclide contaminants via various environmental pathways. We present an initial quantification of the contaminant inventory, hydrology, meteorology, and sedimentology of the Ob River system and preliminary conclusions from portions of the Ob River model.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    Abstract—The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of reprocessing streams in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor), initial enrichment, burn up, and cooling time. Simulated gamma spectra were used to develop and test threemore » fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type. Locally weighted PLS models were fitted on-the-fly to estimate continuous fuel characteristics. Burn up was predicted within 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment within approximately 2% RMSPE. This automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters and material diversions.« less

  15. Nuclear Resonance Fluorescence Measurements on ^237Np for Security and Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Angell, C. T.; Joshi, T.; Yee, Ryan; Norman, E. B.; Kulp, W. D.; Warren, G. A.; Korbly, S.; Klimenko, A.; Wilson, C.; Copping, R.; Shuh, D. K.

    2009-10-01

    The smuggling of nuclear material and the diversion of fissile material for covert weapon programs both present grave risks to world security. Methods are needed to detect nuclear material smuggled in cargo, and for proper material accountability in civilian fuel re-processing facilities. Nuclear resonance fluorescence (NRF) is a technique that can address both needs. It is a non-destructive active interrogation method that provides isotope-specific information. It works by using a γ-ray beam to resonantly excite levels in a nucleus and observing the γ-rays emitted whose energy and intensity are characteristic of that isotope. ^237Np presents significant safeguard challenges; it is fissile yet currently has fewer safeguard restrictions. NRF measurements on ^237Np will expand the nuclear database and will permit designing interrogation and assay systems. Measurements were made using the bremsstrahlung beam at the HVRL at MIT on a 7 g target of ^237Np with two incident electron energies of 2.8 and 3.1 MeV. Results will be presented with discussion of the relevant nuclear structure necessary to predict levels in other actinides.

  16. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haori; Hayward, Jason; Chichester, David

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-sitemore » wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.« less

  17. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  18. HLW Return from France to Germany - 15 Years of Experience in Public Acceptance and Technical Aspects - 12149

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Wilhelm

    Since in 1984 the national reprocessing concept was abandoned the reprocessing abroad was the only existing disposal route until 1994. With the amendment of the Atomic Energy Act in 2001 spent fuel management changed completely since from 1 June 2005 any delivery of spent fuel to reprocessing plants was prohibited and the direct disposal of spent fuel became mandatory. Until 2005 the total amount of spent fuel to be reprocessed abroad added up to 6080 t HM, 5309 t HM thereof in France. The waste generated from reprocessing - alternatively an equivalent amount of radioactive material - has to bemore » returned to the country of origin according to the commercial contracts signed between the German utilities and COGEMA, now AREVA NC, in France and BNFL, now INS in UK. In addition the German and the French government exchanged notes with the obligation of both sides to enable and support the return of reprocessing residues or equivalents to Germany. The return of high active vitrified waste from La Hague to the interim storage facility at Gorleben was demanding from the technical view i. e. the cask design and the transport. Unfortunately the Gorleben area served as a target for nuclear opponents from the first transport in 1996 to the latest one in 2011. The protection against sabotage of the railway lines and mass protests needed highly improved security measures. In France and Germany special working forces and projects have been set up to cope with this extraordinary situation. A complex transport organization was established to involve all parties in line with the German and French requirements during transport. The last transport of vitrified residues from France has been completed successfully so far thus confirming the efficiency of the applied measures. Over 15 years there was and still is worldwide no comparable situation it is still unique. Summing up, the exceptional project handling challenge that resulted from the continuous anti-nuclear civil disobedience in Germany over the whole 15-year long project running time could be faced efficiently. It has to be concluded that despite of all problems the anti-nuclear activities have caused so far, all transports of vitrified HLW have always been completed successfully by adapting the commonly established safety, security and public acceptance measures to the special conditions and needs in Germany and coordinating the activities of all parties involved but at the expense of high costs for industry and government and a challenging operational complexity. Apart from an anticipatory project planning a good communication between all involved industrial parties and the French and the German government was the key to the effective management of such shipments and to minimize the radiological, economic, environmental, public and political impact. The future will show how efficiently the gained experience can be used for further return projects which are to be realized since no reprocessed waste has yet been returned from UK and neither the medium-level nor the low-level radioactive waste has been transferred from France to Germany. (author)« less

  19. Taipower`s radioactive waste management program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.C.C.

    1996-09-01

    Nuclear safety and radioactive waste management are the two major concerns of nuclear power in Taiwan. Recognizing that it is an issue imbued with political and social-economic concerns, Taipower has established an integrated nuclear backend management system and its associated financial and mechanism. For LLW, the Orchid Island storage facility will play an important role in bridging the gap between on-site storage and final disposal of LLW. Also, on-site interim storage of spent fuel for 40 years or longer will provide Taipower with ample time and flexibility to adopt the suitable alternative of direct disposal or reprocessing. In other words,more » by so exercising interim storage option, Taipower will be in a comfortable position to safely and permanently dispose of radwaste without unduly forgoing the opportunities of adopting better technologies or alternatives. Furthermore, Taipower will spare no efforts to communicate with the general public and make her nuclear backend management activities accountable to them.« less

  20. Routine inspection effort required for verification of a nuclear material production cutoff convention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, D.; Fainberg, A.; Sanborn, J.

    On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced aftermore » entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.« less

  1. An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R

    2010-01-01

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled untilmore » consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.« less

  2. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    DOEpatents

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  3. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barefield Ii, James E; Clegg, Samuel M; Veirs, Douglas K

    2009-01-01

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges,more » NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.« less

  4. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment,more » Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.« less

  5. The ``Nuclear Renaissance'' and the Spread of Nuclear Weapons

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin S.

    2007-05-01

    As interest grows around the world in nuclear power as an energy source that could help control greenhouse gas emissions, some have proclaimed the arrival of a ``nuclear renaissance.'' But can the increased risks of more nuclear power be managed? The political crisis surrounding Iran's pursuit of uranium enrichment has exposed weaknesses in the nuclear nonproliferation regime. Also, al Qaeda's declared interest in weapons of mass destruction raises the concern that terrorists could acquire nuclear weapons by stealing materials from poorly secured facilities. Growth of nuclear energy would require the construction of many additional uranium enrichment plants. And the generation of more spent nuclear fuel without a credible waste disposal strategy would increase political support for reprocessing, which separates large quantities of weapon-usable plutonium from spent fuel. There is little evidence that the various institutional arrangements and technical schemes proposed to mitigate the security risks of a major nuclear expansion would be effective. This talk will focus on the measures necessary to allow large-scale global growth of nuclear power without resulting in an unacceptably high risk of nuclear proliferation and nuclear terrorism, and will discuss the feasibility of such measures. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.E1.2

  6. Nuclear exports: the perilous enterprise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, G.

    1977-03-01

    A representative of the Sierra Club proposes that the United States can at least provide an opportunity for a break in the trend toward nuclear proliferation and may be able to offer the moral and economic persuasion for a worldwide moratorium. The combination of plutonium toxicity and its use in making nuclear explosives, together with the number of countries who have recently entered the nuclear community, indicate an increasing problem in limiting nuclear power to peaceful purposes. The ease with which plutonium can be diverted from power-generating plants into the hands of terrorists and unstable rulers limits the security options.more » The non-proliferation agreements are felt to have created additional problems by making it possible for non-signers of the treaty to have less-stringent safeguards than the signers. The International Atomic Energy Agency is considered to be effective only in a bookkeeping and monitoring capacity, while competition between nuclear suppliers may lead them to relax standards. The author feels that efforts to negotiate voluntary restraints on exporters could offer guarantees of fuel services and other nuclear assistance to those countries agreeing to forego nuclear explosives and reprocessing facilities and accepting safeguards restraints and export restrictions. (DCK)« less

  7. Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Chris; Willis, William; Carter, Robert

    2013-07-01

    Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for usemore » as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)« less

  8. Automatic flexible endoscope reprocessors.

    PubMed

    Muscarella, L F

    2000-04-01

    Reprocessing medical instruments is a complex and controversial discipline. If all instruments were constructed of materials not damaged by heat, pressure, and moisture, instrument reprocessing would be greatly simplified. As the number of novel and complex instruments entering the market continues to increase, periodic review of the health care facility's instrument reprocessing protocols to ensure their safety and effectiveness is important. This article reviews the advantages and the limitations of automatic flexible endoscope reprocessors.

  9. Radioxenon spiked air

    DOE PAGES

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; ...

    2015-08-27

    Four of the radioactive xenon isotopes ( 131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. Themore » International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  10. Radioxenon spiked air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.

    Four of the radioactive xenon isotopes ( 131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. Themore » International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  11. An integrated approach for determining plutonium mass in spent fuel assemblies with nondestructive assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinhoe, Martyn T; Tobin, Stephen J; Fensin, Mike L

    2009-01-01

    There are a variety of reasons for quantifying plutonium (Pu) in spent fuel. Below, five motivations are listed: (1) To verify the Pu content of spent fuel without depending on unverified information from the facility, as requested by the IAEA ('independent verification'). New spent fuel measurement techniques have the potential to allow the IAEA to recover continuity of knowledge and to better detect diversion. (2) To assure regulators that all of the nuclear material of interest leaving a nuclear facility actually arrives at another nuclear facility ('shipper/receiver'). Given the large stockpile of nuclear fuel at reactor sites around the world,more » it is clear that in the coming decades, spent fuel will need to be moved to either reprocessing facilities or storage sites. Safeguarding this transportation is of significant interest. (3) To quantify the Pu in spent fuel that is not considered 'self-protecting.' Fuel is considered self-protecting by some regulatory bodies when the dose that the fuel emits is above a given level. If the fuel is not self-protecting, then the Pu content of the fuel needs to be determined and the Pu mass recorded in the facility's accounting system. This subject area is of particular interest to facilities that have research-reactor spent fuel or old light-water reactor (LWR) fuel. It is also of interest to regulators considering changing the level at which fuel is considered self-protecting. (4) To determine the input accountability value at an electrochemical processing facility. It is not expected that an electrochemical reprocessing facility will have an input accountability tank, as is typical in an aqueous reprocessing facility. As such, one possible means of determining the input accountability value is to measure the Pu content in the spent fuel that arrives at the facility. (5) To fully understand the composition of the fuel in order to efficiently and safely pack spent fuel into a long-term repository. The NDA of spent fuel can be part of a system that cost-effectively meets the burnup credit needs of a repository. Behind each of these reasons is a regulatory structure with MC&A requirements. In the case of the IAEA, the accountable quantity is elemental plutonium. The material in spent fuel (fissile isotopes, fission products, etc.) emits signatures that provide information about the content and history of the fuel. A variety of nondestructive assay (NDA) techniques are available to quantify these signatures. The effort presented in this paper is investigation of the capabilities of 12 NDA techniques. For these 12, none is conceptually capable of independently determining the Pu content in a spent fuel assembly while at the same time being able to detect the diversion of a significant quantity of rods. For this reason the authors are investigating the capability of 12 NDA techniques with the end goal of integrating a few techniques together into a system that is capable of measuring Pu mass in an assembly. The work described here is the beginning of what is anticipated to be a five year effort: (1) two years of modeling to select the best technologies, (2) one year fabricating instruments and (3) two years measuring spent fuel. This paper describes the first two years of this work. In order to cost effectively and robustly model the performance of the 12 NDA techniques, an 'assembly library' was created. The library contains the following: (a) A diverse range of PWR spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future. (b) Diversion scenarios that capture a range of possible rod removal options. (c) The spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. It is our intention to make this library available to other researchers in the field for inter-comparison purposes. The performance of each instrument will be quantified for the full assembly library for measurements in three different media: air, water and borated water. The 12 NDA techniques being researched are the following: Delayed Gamma, Delayed Neutrons, Differential Die-Away, Lead Slowing Down Spectrometer, Neutron Multiplicity, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Passive Neutron Albedo Reactivity, Self-integration Neutron Resonance Densitometry, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection.« less

  12. Next Generation Safeguards Initiative research to determine the Pu mass in spent fuel assemblies: Purpose, approach, constraints, implementation, and calibration

    NASA Astrophysics Data System (ADS)

    Tobin, S. J.; Menlove, H. O.; Swinhoe, M. T.; Schear, M. A.

    2011-10-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy has funded a multi-lab/multi-university collaboration to quantify the plutonium mass in spent nuclear fuel assemblies and to detect the diversion of pins from them. The goal of this research effort is to quantify the capability of various non-destructive assay (NDA) technologies as well as to train a future generation of safeguards practitioners. This research is "technology driven" in the sense that we will quantify the capabilities of a wide range of safeguards technologies of interest to regulators and policy makers; a key benefit to this approach is that the techniques are being tested in a unified manner. When the results of the Monte Carlo modeling are evaluated and integrated, practical constraints are part of defining the potential context in which a given technology might be applied. This paper organizes the commercial spent fuel safeguard needs into four facility types in order to identify any constraints on the NDA system design. These four facility types are the following: future reprocessing plants, current reprocessing plants, once-through spent fuel repositories, and any other sites that store individual spent fuel assemblies (reactor sites are the most common facility type in this category). Dry storage is not of interest since individual assemblies are not accessible. This paper will overview the purpose and approach of the NGSI spent fuel effort and describe the constraints inherent in commercial fuel facilities. It will conclude by discussing implementation and calibration of measurement systems. This report will also provide some motivation for considering a couple of other safeguards concepts (base measurement and fingerprinting) that might meet the safeguards need but not require the determination of plutonium mass.

  13. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. Thismore » report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.« less

  14. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in the reaction region of a separation vessel which includes a reflux region positioned above the molten tin solvent. The reflux region minimizes loss of evaporated solvent during the separation of the actinide fuels from the volatile fission products. Additionally, inclusion of the reflux region permits the separation of the more volatile fission products (noncondensable) from the less volatile ones (condensable).

  15. Monitoring Iodine-129 in Air and Milk Samples Collected Near the Hanford Site: An Investigation of Historical Iodine Monitoring Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Brad G.; Patton, Gregory W.

    2006-01-01

    While other research has reported on the concentrations of 129I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operational between 1983 and 1990, during which time 129I concentrations in air and milk were measured. After the cessation of operations in 1990, plant emissions decreased 2.5 orders of magnitude over an 8 year period, and monitoring of environmental levels continued. An evaluation of air and milk 129I concentration data spanning the PUREX operation andmore » post closure period was conducted to compare the changes in environmental levels of 129I measured. Measured concentrations over the monitoring period were below levels that could result in a potential human dose greater than 10 uSv. There was a significant and measurable difference in the measured air concentrations of 129I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of 129I and concentrations in air and milk indicate that atmospheric emissions were responsible for the 129I concentrations measured in environmental samples. The measured concentrations during PUREX operation were similar to observations made around a fuel reprocessing plant in Germany.« less

  16. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less

  17. Developing a Signature Based Safeguards Approach for the Electrorefiner and Salt Cleanup Unit Operations in Pyroprocessing Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Chantell Lynne-Marie

    Traditional nuclear materials accounting does not work well for safeguards when applied to pyroprocessing. Alternate methods such as Signature Based Safeguards (SBS) are being investigated. The goal of SBS is real-time/near-real-time detection of anomalous events in the pyroprocessing facility as they could indicate loss of special nuclear material. In high-throughput reprocessing facilities, metric tons of separated material are processed that must be accounted for. Even with very low uncertainties of accountancy measurements (<0.1%) the uncertainty of the material balances is still greater than the desired level. Novel contributions of this work are as follows: (1) significant enhancement of SBS developmentmore » for the salt cleanup process by creating a new gas sparging process model, selecting sensors to monitor normal operation, identifying safeguards-significant off-normal scenarios, and simulating those off-normal events and generating sensor output; (2) further enhancement of SBS development for the electrorefiner by simulating off-normal events caused by changes in salt concentration and identifying which conditions lead to Pu and Cm not tracking throughout the rest of the system; and (3) new contribution in applying statistical techniques to analyze the signatures gained from these two models to help draw real-time conclusions on anomalous events.« less

  18. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    DOEpatents

    Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

    2013-11-05

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  19. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    DOEpatents

    Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

    2014-06-10

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  20. Metal–organic framework with optimally selective xenon adsorption and separation

    DOE PAGES

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; ...

    2016-06-13

    Nuclear energy is considered among the most viable alternatives to our current fossil fuel based energy economy.1 The mass-deployment of nuclear energy as an emissions-free source requires the reprocessing of used nuclear fuel to mitigate the waste.2 One of the major concerns with reprocessing used nuclear fuel is the release of volatile radionuclides such as Xe and Kr. The most mature process for removing these radionuclides is energy- and capital-intensive cryogenic distillation. Alternatively, porous materials such as metal-organic frameworks (MOFs) have demonstrated the ability to selectively adsorb Xe and Kr at ambient conditions.3-8 High-throughput computational screening of large databases ofmore » porous materials has identified a calcium-based nanoporous MOF, SBMOF-1, as the most selective for Xe over Kr.9,10 Here, we affirm this prediction and report that SBMOF-1 exhibits by far the highest Xe adsorption capacity and a remarkable Xe/Kr selectivity under relevant nuclear reprocessing conditions. The exceptional selectivity of SBMOF-1 is attributed to its pore size tailored to Xe and its dense wall of atoms that constructs a binding site with a high affinity for Xe, as evident by single crystal X-ray diffraction and molecular simulation.« less

  1. Diethylene-triamine-penta-acetate administration protocol for radiological emergency medicine in nuclear fuel reprocessing plants.

    PubMed

    Jin, Yutaka

    2008-01-01

    Inhalation therapy of diethylene-triamine-penta-acetate (DTPA) should be initiated immediately to workers who have significant incorporation of plutonium, americium or curium in the nuclear fuel reprocessing plant. A newly designed electric mesh nebulizer is a small battery-operated passive vibrating mesh device, in which vibrations in an ultrasonic horn are used to force drug solution through a mesh of micron-sized holes. This nebulizer enables DTPA administration at an early stage in the event of a radiation emergency from contamination from the above radioactive metals.

  2. Nuclear Archeology in a Bottle: Evidence of Pre-Trinity U.S. Weapons Activities from a Waste Burial Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.; Douglas, Matthew; Bonde, Steven E.

    2009-02-15

    During World War II, the Hanford Site in Washington was chosen for plutonium production. In 2004, a bottle containing a sample of plutonium was recovered from a Hanford waste trench. Isotopic age dating indicated the sample was separated from the fuel pellet 64 ±2.8 years earlier. Detectable products of secondary nuclear reactions, such as 22Na, proved useful as 1) a detectable analog for alpha emitting actinides, 2) an indicator of sample splitting, and 3) a measure of the time since sample splitting. The sample origin was identified as the X-10 reactor, Oak Ridge, TN. Corroborated by historical documents, we concludedmore » this sample was part of the first batch of Pu separated at T-Plant, Hanford, the world’s first industrial-scale reprocessing facility, on December 9, 1944.« less

  3. The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Wallace, R. K.; Ireland, J. R.

    2010-09-01

    This paper is an extension to earlier studies1,2 that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities.3 The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less

  4. The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, Charles G; Wallace, Richard K; Ireland, John R

    2009-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less

  5. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors, Enrichment, Reprocessing, Fuel Fabrication, and Heavy Water...-6050. 10 CFR 205.300 through 205.379 and part 590. Nuclear Materials and Equipment * Nuclear Regulatory...

  6. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, R.A.; Segal, J.E.; Stanbro, W.D.

    1995-08-01

    This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.

  8. Americium As A Potential Power Source For Space Missions

    NASA Astrophysics Data System (ADS)

    Cordingley, Leon; Rice, Tom; Sarsfield, Mark J.; Stephenson, Keith; Tinsley, Tim

    2011-10-01

    Electrical power sources used in outer planet missions are a key enabling technology for data acquisition and communications. Power sources generate electricity from the thermal energy from alpha decay of the radioisotope 238Pu via thermoelectric conversion. Production of 238Pu requires specialist facilities including a nuclear reactor and reprocessing plants that are expensive to build and operate, so naturally, a more economical alternative is attractive to the industry. Within Europe 241Am is a feasible alternative to 238Pu that can provide a heat source for radioisotope thermoelectric generators (RTGs) and radioisotope heating units (RHUs). Whilst there are implications associated with the differences between 238Pu and 241Am, these technological challenges are surmountable.

  9. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  10. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  11. The Creation of a French Basic Nuclear Installation - Description of the Regulatory Process - 13293

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahe, Carole; Leroy, Christine

    CEA is a French government-funded technological research organization. It has to build a medium-level waste interim storage facility because the geological repository will not be available until 2025. This interim storage facility, called DIADEM, has to be available in 2017. These wastes are coming from the research facilities for spent fuel reprocessing and the dismantling of the most radioactive parts of nuclear facilities. The CEA handles the waste management by inventorying the needs and updating them regularly. The conception of the facility is mainly based on this inventory. It provides quantity and characteristics of wastes and it gives the productionmore » schedule until 2035. Beyond mass and volume, main characteristics of these radioactive wastes are chemical nature, radioisotopes, radioactivity, radiation dose, the heat emitted, corrosive or explosive gas production, etc. These characteristics provide information to study the repository safety. DIADEM mainly consists of a concrete cell, isolated from the outside, wherein stainless steel welded containers are stored, stacked in a vertical position in the racks. DIADEM is scheduled to store three types of 8 mm-thick, stainless steel cylindrical containers with an outside diameter 498 mm and height from 620 to 2120 mm. DIADEM will be a basic nuclear installation (INB in French) because of overall activity of radioactive substances stored. The creation of a French basic nuclear installation is subject to authorization according to the French law No. 2006-686 of 13 June 2006 on Transparency and Security in the Nuclear Field. The authorization takes into account the technical and financial capacities of the licensee which must allow him to conduct his project in compliance with these interests, especially to cover the costs of decommissioning the installation and conduct remediation work, and to monitor and maintain its location site or, for radioactive waste disposal installations, to cover the definitive shut-down, maintenance and surveillance expenditure. The authorization is issued by a decree adopted upon advice of the French Nuclear Safety Authority and after a public enquiry. In accordance with Decree No. 2007-1557 of November 2, 2007, the application is filed with the ministries responsible for nuclear safety and the Nuclear Safety Authority. It consists of twelve files and four records information. The favorable opinion of the Nuclear Safety Authority on the folder is required to start the public inquiry. Once the public inquiry is completed, the building permit is issued by the prefect. (authors)« less

  12. Integrating repositories with fuel cycles: The airport authority model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuelmore » fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members appointed by the state governor, county governments, and city governments. This structure (1) enables state and local governments to work together to maximize job and tax benefits to local communities and the state, (2) provides a mechanism to address local concerns such as airport noise, and (3) creates an institutional structure with large incentives to maximize the value of the common asset, the runway. A repository site authority would have a similar structure and be the local interface to any national waste management authority. (authors)« less

  13. 10 CFR 2.1105 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Hearing Procedures for Expansion of Spent Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian... reactor following irradiation, the constituent elements of which have not been separated by reprocessing. ...

  14. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    NASA Astrophysics Data System (ADS)

    Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.

    2013-10-01

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  15. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references.

  16. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, D.O.; Buxton, S.R.

    1980-06-16

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  17. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1981-01-01

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M, (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound, (c) heating the solution at reflux temperature until precipitation is complete, and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  18. Molten tin reprocessing of spent nuclear fuel elements

    DOEpatents

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  19. Monitoring iodine-129 in air and milk samples collected near the Hanford Site: an investigation of historical iodine monitoring data.

    PubMed

    Fritz, Brad G; Patton, Gregory W

    2006-01-01

    While other research has reported on the concentrations of (129)I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operating between 1983 and 1990, during which time (129)I concentrations in air and milk were measured. After the cessation of chemical processing, plant emissions decreased 2.5 orders of magnitude over an 8-year period. An evaluation of (129)I and (127)I concentration data in air and milk spanning the PUREX operation and post-closure period was conducted to compare the changes in environmental levels. Measured concentrations over the monitoring period were below the levels that could result in a potential annual human dose greater than 1 mSv. There was a measurable difference in the measured air concentrations of (129)I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of (129)I and concentrations in air and milk indicate that atmospheric emissions were the major source of (129)I measured in environmental samples. The measured concentrations during PUREX operations were similar to observations made around a fuel reprocessing plant in Germany. After the PUREX Plant stopped operating, (129)I concentration measurements made upwind of Hanford were similar to the results from Seville, Spain.

  20. Design and Test Plan for an Integrated Iodine Scrubber and Polishing Bed System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas

    The capture and subsequent immobilization of four regulated volatile radionuclides ( 3H, 14C, 85Kr, and 129I) and relevant semivolatile species from the off-gas streams of a used nuclear fuel (UNF) reprocessing facility has been a topic of significant research interest on the part of the US Department of Energy and other international organizations. Significant research and development has been conducted over the past decade. In 2016 an initial engineering evaluation and design of the off-gas abatement systems required for a hypothetical 1000 t/yr UNF reprocessing facility treating 5 yr–cooled, 60 GWd/tIHM UNF was completed. One of the key findings ofmore » that report was that the consumption rate of silver-based iodine sorbents in the dissolver off-gas primary iodine capture bed is very high and may warrant the evaluation of alternative methods to capture the bulk of the iodine that could significantly reduce the associated frequent remote handing of the iodine filter beds. This report is intended to describe the design of an experimental system that can be used to examine the use of aqueous scrubbing to remove the bulk of the iodine from the dissolver off-gas stream prior to a silver-based solid sorbent that would be used to provide the final iodine capture or polishing step. This report also provides a description of the initial series of tests that are proposed for this system.« less

  1. Daddy, What's a Nuclear Reactor?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenweaver, Dennis W.

    2008-01-15

    No matter what we think of the nuclear industry, it is part of mankind's heritage. The decommissioning process is slowly making facilities associated with this industry disappear and not enough is being done to preserve the information for future generations. This paper provides some food for thought and provides a possible way forward. Industrial archaeology is an ever expanding branch of archaeology that is dedicated to preserving, interpreting and documenting our industrial past and heritage. Normally it begins with analyzing an old building or ruins and trying to determine what was done, how it was done and what changes mightmore » have occurred during its operation. We have a unique opportunity to document all of these issues and provide them before the nuclear facility disappears. Entombment is an acceptable decommissioning strategy; however we would have to change our concept of entombment. It is proposed that a number of nuclear facilities be entombed or preserved for future generations to appreciate. This would include a number of different types of facilities such as different types of nuclear power and research reactors, a reprocessing plant, part of an enrichment plant and a fuel manufacturing plant. One of the main issues that would require resolution would be that of maintaining information of the location of the buried facility and the information about its operation and structure, and passing this information on to future generations. This can be done, but a system would have to be established prior to burial of the facility so that no information would be lost. In general, our current set of requirements and laws may need to be re-examined and modified to take into account these new situations. As an alternative, and to compliment the above proposal, it is recommended that a study and documentation of the nuclear industry be considered as part of twentieth century industrial archaeology. This study should not only include the power and fuel cycle facilities, but also the nuclear weapons complex and the industrial and research sectors. This would be a large chore due to the considerable number of different types of facilities that have been used in these industries, but it would be a worthwhile endeavor. This study would gather information that would normally be lost due to the decommissioning process and allow future generations to appreciate these industries. Because of the volume and varying types of facilities, it might be more beneficial to produce a set of studies relating to different aspects of the industry. A logical division would be the separation of the commercial nuclear industry and the nuclear weapons complex. The separation of the fuel cycle facilities may also be considered. If done properly, this could result in a set of documents of interest to a wide audience. The current nuclear industry is slowly disappearing through the decommissioning process. This industry is unique and is part of mankind's heritage. It must not be forgotten and the information should be made available for future generations. The U.S. Department of Energy and the National Park Service are doing some limited preservation of information, but I do not believe its enough. It is not being done in a manner that will preserve the true activities that were performed. It is recommended that the American Nuclear Society, along with other organizations, evaluate this proposal and possibly provide funds for a set of studies to be prepared and ensure that this valuable part of our heritage is not lost.« less

  2. CESAR: A Code for Nuclear Fuel and Waste Characterisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, J.M.; Grouiller, J.P.; Launay, A.

    2006-07-01

    CESAR (Simplified Evolution Code Applied to Reprocessing) is a depletion code developed through a joint program between CEA and COGEMA. In the late 1980's, the first use of this code dealt with nuclear measurement at the Laboratories of the La Hague reprocessing plant. The use of CESAR was then extended to characterizations of all entrance materials and for characterisation, via tracer, of all produced waste. The code can distinguish more than 100 heavy nuclides, 200 fission products and 100 activation products, and it can characterise both the fuel and the structural material of the fuel. CESAR can also make depletionmore » calculations from 3 months to 1 million years of cooling time. Between 2003-2005, the 5. version of the code was developed. The modifications were related to the harmonisation of the code's nuclear data with the JEF2.2 nuclear data file. This paper describes the code and explains the extensive use of this code at the La Hague reprocessing plant and also for prospective studies. The second part focuses on the modifications of the latest version, and describes the application field and the qualification of the code. Many companies and the IAEA use CESAR today. CESAR offers a Graphical User Interface, which is very user-friendly. (authors)« less

  3. Impacts of C-uptake by plants on the spatial distribution of 14C accumulated in vegetation around a nuclear facility-Application of a sophisticated land surface 14C model to the Rokkasho reprocessing plant, Japan.

    PubMed

    Ota, Masakazu; Katata, Genki; Nagai, Haruyasu; Terada, Hiroaki

    2016-10-01

    The impacts of carbon uptake by plants on the spatial distribution of radiocarbon ( 14 C) accumulated in vegetation around a nuclear facility were investigated by numerical simulations using a sophisticated land surface 14 C model (SOLVEG-II). In the simulation, SOLVEG-II was combined with a mesoscale meteorological model and an atmospheric dispersion model. The model combination was applied to simulate the transfer of 14 CO 2 and to assess the radiological impact of 14 C accumulation in rice grains during test operations of the Rokkasho reprocessing plant (RRP), Japan, in 2007. The calculated 14 C-specific activities in rice grains agreed with the observed activities in paddy fields around the RRP within a factor of four. The annual effective dose delivered from 14 C in the rice grain was estimated to be less than 0.7 μSv, only 0.07% of the annual effective dose limit of 1 mSv for the public. Numerical experiments of hypothetical continuous atmospheric 14 CO 2 release from the RRP showed that the 14 C-specific activities of rice plants at harvest differed from the annual mean activities in the air. The difference was attributed to seasonal variations in the atmospheric 14 CO 2 concentration and the growth of the rice plant. Accumulation of 14 C in the rice plant significantly increased when 14 CO 2 releases were limited during daytime hours, compared with the results observed during the nighttime. These results indicated that plant growth stages and diurnal photosynthesis should be considered in predictions of the ingestion dose of 14 C for long-term chronic releases and short-term diurnal releases of 14 CO 2 , respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. In search of plutonium: A nonproliferation journey

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried

    2010-02-01

    In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

  5. MicroRaman measurements for nuclear fuel reprocessing applications

    DOE PAGES

    Casella, Amanda; Lines, Amanda; Nelson, Gilbert; ...

    2016-12-01

    Treatment and reuse of used nuclear fuel is a key component in closing the nuclear fuel cycle. Solvent extraction reprocessing methods that have been developed contain various steps tailored to the separation of specific radionuclides, which are highly dependent upon solution properties. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. Our group has been investigating the use of optical spectroscopy for the on-line monitoring of actinides, lanthanides, and acid strength within fuel reprocessing streams. This paper willmore » focus on the development and application of a new MicroRaman probe for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid in solutions relevant to used nuclear fuel reprocessing. Previous research has successfully demonstrated the applicability on the macroscopic scale, using sample probes requiring larger solution volumes. In an effort to minimize waste and reduce dose to personnel, we have modified this technique to allow measurement at the microfluidic scale using a Raman microprobe. Under the current sampling environment, Raman samples typically require upwards of 10 mL and larger. Using the new sampling system, we can sample volumes at 10 μL or less, which is a scale reduction of over 1,000 fold in sample size. Finally, this paper will summarize our current work in this area including: comparisons between the macroscopic and microscopic probes for detection limits, optimized channel focusing, and application in a flow cell with varying levels of HNO 3, and UO 2(NO 3) 2.« less

  6. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to themore » hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)« less

  7. Rare Earth Electrochemical Property Measurements and Phase Diagram Development in a Complex Molten Salt Mixture for Molten Salt Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinsuo; Guo, Shaoqiang

    Pyroprocessing is a promising alternative for the reprocessing of used nuclear fuel (UNF) that uses electrochemical methods. Compared to the hydrometallurgical reprocessing method, pyroprocessing has many advantages such as reduced volume of radioactive waste, simple waste processing, ability to treat refractory material, and compatibility with fast reactor fuel recycle. The key steps of the process are the electro-refining of the spent metallic fuel in the LiCl-KCl eutectic salt, which can be integrated with an electrolytic reduction step for the reprocessing of spent oxide fuels.

  8. The ORNL Chemical Technology Division, 1950-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment thatmore » had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.« less

  9. High-pressure swing system for measurements of radioactive fission gases in air samples

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Battle, J.; Yoon, S. R.; Tobin, M. J.

    1999-01-01

    Radionuclides emitted from nuclear reactors, fuel reprocessing facilities and nuclear weapons tests are distributed widely in the atmosphere but have very low concentrations. As part of the Comprehensive Test Ban Treaty (CTBT), identification and verification of the emission of radionuclides from such sources are fundamental in maintaining nuclear security. To detect underground and underwater nuclear weapons tests, only the gaseous components need to be analyzed. Equipment has now been developed that can be used to collect large volumes of air, separate and concentrate the radioactive gas constituents, such as xenon and krypton, and measure them quantitatively. By measuring xenon isotopes with different half-lives, the time since the fission event can be determined. Developments in high-pressure (3500 kPa) swing chromatography using molecular sieve adsorbents have provided the means to collect and purify trace quantities of the gases from large volumes of air automatically. New scintillation detectors, together with timing and pulse shaping electronics, have provided the low-background levels essential in identifying the gamma ray, X-ray, and electron energy spectra of specific radionuclides. System miniaturization and portability with remote control could be designed for a field-deployable production model.

  10. Gloves Reprocessing: Does It Really Save Money?

    PubMed

    Arora, Pankaj; Kumari, Santosh; Sodhi, Jitender; Talati, Shweta; Gupta, Anil Kumar

    2015-12-01

    Gloves are reprocessed and reused in health-care facilities in resource-limited settings to reduce the cost of availability of gloves. The study was done with the aim to compute the cost of reprocessing of gloves so that an economically rationale decision can be taken. A retrospective record-based cross-sectional study was undertaken in a central sterile supply department where different steps during reprocessing of gloves were identified and the cost involved in reprocessing per pair of gloves was calculated. The cost of material and manpower was calculated to arrive at the cost of reprocessing per pair of gloves. The cost of a reprocessed pair of surgical gloves was calculated to be Indian Rupee (INR) 14.33 which was greater than the cost of a new pair of disposable surgical gloves (INR 9.90) as the cost of sterilization of one pair of gloves itself came out to  be INR 10.97. The current study showed that the purchase of sterile disposable single-use gloves is cheaper than the process of recycling. Reprocessing of gloves is not economical on tangible terms even in resource-limited settings, and from the perspective of better infection control as well as health-care worker safety, it further justifies the use of disposable gloves.

  11. The Case for the Application of Worldwide Marine Radioactivity Studies In the Search for Undeclared Facilities and Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Schanfein

    2013-06-01

    Undeclared nuclear facilities unequivocally remain the most difficult safeguards challenge facing the International Atomic Energy Agency (IAEA). Recent cases of undeclared facilities revealed in Iran and Syria, which are NPT signatory States, show both the difficulty and the seriousness of this threat to nonproliferation. In the case of undeclared nuclear facilities, the most effective deterrent against proliferation is the application of Wide-Area Environmental Sampling (WAES); however, WAES is currently cost-prohibitive. As with any threat, the most effective countering strategy is a multifaceted approach. Some of the approaches applied by the IAEA include: open source analysis, satellite imagery, on-site environmental sampling,more » complementary access under the Additional Protocol (where in force), traditional safeguards inspections, and information provided by member States. These approaches, naturally, are focused on specific States. Are there other opportunities not currently within the IAEA purview to assess States that may provide another opportunity to detect clandestine facilities? In this paper, the author will make the case that the IAEA Department of Safeguards should explore the area of worldwide marine radioactivity studies as one possible opportunity. One such study was released by the IAEA Marine Environment Laboratory in January 2005. This technical document focused on 90Sr, 137Cs, and 239/240Pu. It is clearly a challenging area because of the many sources of anthropogenic radionuclides in the world’s oceans and seas including: nuclear weapons testing, reprocessing, accidents, waste dumping, and industrial and medical radioisotopes, whose distributions change based on oceanographic, geochemical, and biological processes, and their sources. It is additionally challenging where multiple States share oceans, seas, and rivers. But with the application of modern science, historical sampling to establish baselines, and a focus on the most relevant radionuclides, the potential is there to support this challenging IAEA safeguards mission.« less

  12. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOEpatents

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  13. Recovery of transplutonium elements from nuclear reactor waste

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1977-05-24

    A method of separating actinide values from nitric acid waste solutions resulting from reprocessing of irradiated nuclear fuels comprises oxalate precipitation of the major portion of actinide and lanthanide values to provide a trivalent fraction suitable for subsequent actinide/lanthanide partition, exchange of actinide and lanthanide values in the supernate onto a suitable cation exchange resin to provide an intermediate-lived raffinate waste stream substantially free of actinides, and elution of the actinide values from the exchange resin. The eluate is then used to dissolve the trivalent oxalate fraction prior to actinide/lanthanide partition or may be combined with the reprocessing waste stream and recycled.

  14. Method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  15. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOEpatents

    Forsberg, Charles W.

    1992-01-01

    A single canister process container for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining their integrity at temperature necessary to oxide the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container.

  16. Fuel supply of nuclear power industry with the introduction of fast reactors

    NASA Astrophysics Data System (ADS)

    Muraviev, E. V.

    2014-12-01

    The results of studies conducted for the validation of the updated development strategy for nuclear power industry in Russia in the 21st century are presented. Scenarios with different options for the reprocessing of spent fuel of thermal reactors and large-scale growth of nuclear power industry based on fast reactors of inherent safety with a breeding ratio of ˜1 in a closed nuclear fuel cycle are considered. The possibility of enhanced fuel breeding in fast reactors is also taken into account in the analysis. The potential to establish a large-scale nuclear power industry that covers 100% of the increase in electric power requirements in Russia is demonstrated. This power industry may be built by the end of the century through the introduction of fast reactors (replacing thermal ones) with a gross uranium consumption of up to ˜1 million t and the termination of uranium mining even if the reprocessing of spent fuel of thermal reactors is stopped or suffers a long-term delay.

  17. Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units

    PubMed Central

    2011-01-01

    Background The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favouring a move toward reprocessing in central facilities. The aim of this study was to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods. Methods The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate. Results Residual protein was detected on 72% (n = 136) of instruments reprocessed centrally and 90% (n = 170) of instruments reprocessed locally. Significantly less protein (p < 0.001) was recovered from instruments reprocessed centrally (median 20.62 μg, range 0 - 5705 μg) than local reprocessing (median 111.9 μg, range 0 - 6344 μg). Conclusions Overall, the results show the superiority of central reprocessing for complex podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency. PMID:21219613

  18. Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units.

    PubMed

    Smith, Gordon Wg; Goldie, Frank; Long, Steven; Lappin, David F; Ramage, Gordon; Smith, Andrew J

    2011-01-10

    The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favouring a move toward reprocessing in central facilities. The aim of this study was to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods. The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate. Residual protein was detected on 72% (n = 136) of instruments reprocessed centrally and 90% (n = 170) of instruments reprocessed locally. Significantly less protein (p < 0.001) was recovered from instruments reprocessed centrally (median 20.62 μg, range 0 - 5705 μg) than local reprocessing (median 111.9 μg, range 0 - 6344 μg). Overall, the results show the superiority of central reprocessing for complex podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency.

  19. Chlorine-36 in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory; origin and implications

    USGS Publications Warehouse

    Beasley, T.M.; Cecil, L.D.; Sharma, P.; Kubik, P.W.; Fehn, U.; Mann, L.J.; Gove, H.E.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. Our measurements of 36C1 in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3H and 36Cl concentrations in aquifer water and the advantages of 36C1 as a tracer of subsurface-water dynamics at the site are discussed.

  20. Progress Towards International Repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCombie, C.; Chapman, N.

    2002-02-27

    The nuclear fuel cycle is designed to be very international, with some specialist activities (e.g. fuel fabrication, reprocessing, etc.) being confined to a few countries. Nevertheless, political and public opposition has in the past been faced by proposals to internationalise the back-end of the cycle, in particular waste disposal. Attitudes, however, have been changing recently and there is now more acceptance of the general concept of shared repositories and of specific proposals such as that of Pangea. However, as for national facilities, progress towards implementation of shared repositories will be gradual. Moreover, the best vehicle for promoting the concept maymore » not be a commercial type of organization. Consequently the Pangea project team are currently establishing a widely based Association for this purpose.« less

  1. 78 FR 7816 - Quality Assurance Program Requirements (Operations)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0021] Quality Assurance Program Requirements (Operations...), DG-1300, ``Quality Assurance Program Requirements (Operations).'' DATES: Submit comments by April 1... CFR Part 50, Appendix B, ``Quality Assurance Criteria for Nuclear power Plants and Fuel Reprocessing...

  2. [Destruction of microsurgical devices by sterilisation].

    PubMed

    Berto, Raphaela; Strutz, Jürgen

    2017-11-01

    Hospital facilities issue numerous risk announcements on corrosion, deformation or premature wearout of medical devices every year. As there is yet little data on the impact of reprocessing on the quality and durability of microsurgical instruments, this paper aims at evaluating the effects of the reprocessing on microsurgical instruments. Material and Methods 22 brand new microsurgical instruments for stapes surgery were being reprocessed 30 times without being used for surgery or other purposes in the interim time. After each reprocessing the instruments were examined macroscopicly and microscopicly. The results were portrayed in a photo documentation and analysed on that basis. Results Almost all devices showed mechanical damage caused by the reprocessing procedure. The increasing deterioration was often associated with missing protective caps. Furthermore contaminations and stains were apparent in several cases. Conclusions The findings illustrate that careful handling of delicate surgical devices during reprocessing is vital. They also highlight problems of protective caps. As an alternative going forward it should be considered to store microsurgical instruments statically in special racks. Georg Thieme Verlag KG Stuttgart · New York.

  3. The Development of a Quality Management Framework for Evaluating Medical Device Reprocessing Practice in Healthcare Facilities.

    PubMed

    Lorv, Bailey; Horodyski, Robin; Welton, Cynthia; Vail, John; Simonetto, Luca; Jokanovic, Danilo; Sharma, Richa; Mahoney, Angela Rea; Savoy-Bird, Shay; Bains, Shalu

    2017-01-01

    There is increasing awareness of the importance of medical device reprocessing (MDR) for the provision of safe patient care. Although industry service standards are available to guide MDR practices, there remains a lack of published key performance indicators (KPIs) and targets that are necessary to evaluate MDR quality for feedback and improvement. This article outlines the development of an initial framework that builds on established guidelines and includes service standards, KPIs and targets for evaluating MDR operations. This framework can support healthcare facilities in strengthening existing practices and enables a platform for collaboration towards better MDR performance management.

  4. Identification of potential recovery facilities for designing a reverse supply chain network using physical programming

    NASA Astrophysics Data System (ADS)

    Pochampally, Kishore K.; Gupta, Surendra M.; Kamarthi, Sagar V.

    2004-02-01

    Although there are many quantitative models in the literature to design a reverse supply chain, every model assumes that all the recovery facilities that are engaged in the supply chain have enough potential to efficiently re-process the incoming used products. Motivated by the risk of re-processing used products in facilities of insufficient potentiality, this paper proposes a method to identify potential facilities in a set of candidate recovery facilities operating in a region where a reverse supply chain is to be established. In this paper, the problem is solved using a newly developed method called physical programming. The most significant advantage of using physical programming is that it allows a decision maker to express his preferences for values of criteria (for comparing the alternatives), not in the traditional form of weights but in terms of ranges of different degrees of desirability, such as ideal range, desirable range, highly desirable range, undesirable range, and unacceptable range. A numerical example is considered to illustrate the proposed method.

  5. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12124. Unknown Photographer, 9/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. DETAILS OF REMOTE ANALYTICAL FACILITY (CPP627). INL DRAWING NUMBER 200062700098105071. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAILS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105071. ALTERNATE ID NUMBER 4272-14-108. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  8. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  9. Iran: The Next Nuclear Threshold State?

    DTIC Science & Technology

    2014-09-01

    than 1,000 nuclear explosives.96 Furthermore, after the Fukushima disaster , Japan shut down its reactors, but continues work on the Rakkasho...Basement,’ and China Isn’t Happy,” NBC News, March 11, 2014, http://www.nbcnews.com/storyline/ fukushima -anniversary/japan-has- nuclear - bomb-basement...line civilian nuclear program that includes enrichment and reprocessing capabilities. Japan possesses few energy resources. Before the Fukushima

  10. Radiation chemistry for modern nuclear energy development

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Szołucha, Monika M.

    2016-07-01

    Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.

  11. Nuclear Fuel Reprocessing: U.S. Policy Development

    DTIC Science & Technology

    2006-11-29

    to the chemical separation of fissionable uranium and plutonium from irradiated nuclear fuel. The World War II-era Manhattan Project developed...created the Atomic Energy Commission (AEC) and transferred production and control of fissionable materials from the Manhattan Project . As the exclusive

  12. Accelerator-driven Transmutation of Waste

    NASA Astrophysics Data System (ADS)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the facility, using an accelerator-driven subcritical burner cooled by liquid lead/bismuth and limited pyrochemical treatment of the spent fuel and residual waste. This approach contrasts with the present-day practices of aqueous reprocessing (Europe and Japan), in which high purity plutonium is produced and used in the fabrication of fresh mixed oxide fuel (MOX) that is shipped off-site for use in light water reactors.

  13. Advanced servomanipulator remote maintenance demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.C.; Ladd, L.D.

    1988-01-01

    The Fuel Recycle Division (FRD) of the Oak Ridge National Laboratory (ORNL) is developing remote maintenance systems for the Consolidated Fuel Reprocessing Program for applications in future nuclear fuel cycle facilities. The most recent development is the advanced servomanipulator (ASM), a digitally controlled, force-reflecting, dual-arm, master/slave servomanipulator. A unique feature of ASM is that the slave arms are remotely maintainable. The ASM slave arms are composed of modules, each of which is capable of being removed and replaced by another manipulator system. The intent of this test was to demonstrate that the ASM slave arms could be completely disassembled andmore » reassembled remotely. This remote maintenance demonstration was performed using the Remote Operations and Maintenance Demonstration (ROMD) facility model M-2 servomanipulator maintenance system. Maintenance of ASM was successfully demonstrated using the M-2 servomanipulator and special fixtures. Recommendations, generally applicable to other remotely maintained equipment, have been made for maintainability improvements. 3 refs., 5 figs.« less

  14. Leaky coaxial cable signal transmission for remote facilities

    NASA Astrophysics Data System (ADS)

    Smith, S. F.; Crutcher, R. I.

    To develop reliable communications methods to meet the rigorous requirements for nuclear hot cells and similar environments, including control of cranes, transporters, and advanced servomanipulators, the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has conducted extensive tests of numerous technologies to determine their applicability to remote operations. To alleviate the need for large bundles of cables that must accommodate crane/transporter motion relative to the boundaries of the cell, several transmission techniques are available, including slotted-line radio-frequency couplers, infrared beams, fiber-optic cables, free-space microwave, and inductively coupled leaky coaxial cable. This paper discusses the general characteristics, mode of operation, and proposed implementation of leaky coaxial cable technology in a waste-handling facility scheduled to be built in the near future at ORNL. In addition, specific system hardware based around the use of leaky coaxial cable is described in detail. Finally, data from a series of radiation exposure tests conducted by the CFRP on several samples of the basic leaky coaxial cable and associated connectors are presented.

  15. MISCELLANEOUS ARCHITECTURAL DETAILS OF REMOTE ANALYTICAL FACILITY (CPP627). INL DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS ARCHITECTURAL DETAILS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105631. ALTERNATE ID NUMBER 4272-814-134. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12573. R.G. Larsen, Photographer, 10/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING INITIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING INITIAL EXCAVATION. INL PHOTO NUMBER NRTS-54-10703. Unknown Photographer, 5/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOEpatents

    Forsberg, C.W.

    1992-03-24

    A single canister process container is described for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining its integrity at a temperature necessary to oxidize the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container. 10 figs.

  19. MISCELLANEOUS ARCHITECTURAL DETAILS AND SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP627). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS ARCHITECTURAL DETAILS AND SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105632. ALTERNATE ID NUMBER 4272-814-135. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. NORTH AND SOUTH SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP627). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH AND SOUTH SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105068. ALTERNATE ID NUMBER 4272-14-105. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. EAST AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP627). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105067. ALTERNATE ID NUMBER 4272-14-104. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE BOXES IN OPERATING CORRIDOR (CPP-627). INL PHOTO NUMBER NRTS-55-1524. Unknown Photographer, 1955 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING PLACEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING PLACEMENT OF PIERS. INL PHOTO NUMBER NRTS-54-11716. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. IMPACTS ON HUMAN HEALTH FROM THE COAL AND NUCLEAR FUEL CYCLES AND OTHER TECHNOLOGIES ASSOCIATED WITH ELECTRIC POWER GENERATION AND TRANSMISSION

    EPA Science Inventory

    The report evaluates major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use. Only existing technology is evaluated. For the nuclear cycle, effects of future use of fuel reprocessing and long-term radioact...

  5. 10 CFR 50.54 - Conditions of licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality assurance... irradiated fuel. (ff) For licensees of nuclear power plants that have implemented the earthquake engineering... of rated thermal power only if the Commission finds that the state of onsite emergency preparedness...

  6. 10 CFR 50.54 - Conditions of licenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality assurance... irradiated fuel. (ff) For licensees of nuclear power plants that have implemented the earthquake engineering... of rated thermal power only if the Commission finds that the state of onsite emergency preparedness...

  7. Breakthrough in Xenon Capture and Purification Using Adsorbent-Supported Silver Nanoparticles.

    PubMed

    Deliere, Ludovic; Coasne, Benoit; Topin, Sylvain; Gréau, Claire; Moulin, Christophe; Farrusseng, David

    2016-07-04

    Rare gas capture and purification is a major challenge for energy, environment, and health applications. Of utmost importance for the nuclear industry, novel separation processes for Xe are urgently needed for spent nuclear fuel reprocessing and nuclear activity monitoring. The recovered, non-radioactive Xe is also of high economic value for lighting, surgical anesthetic, etc. Here, using adsorption and breakthrough experiments and statistical mechanics molecular simulation, we show the outstanding performance of zeolite-supported silver nanoparticles to capture/separate Xe at low concentrations (0.087-100 ppm). We also establish the efficiency of temperature swing adsorption based on such adsorbents for Xe separation from Kr/Xe mixtures and air streams corresponding to off-gases generated by nuclear reprocessing. This study paves the way for the development of novel, cost-efficient technologies relying on the large selectivity/capacity of adsorbent-supported silver nanoparticles which surpass all materials ever tested. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP627) SHOWING EMPLACEMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING EMPLACEMENT OF ROOF SLABS. INL PHOTO NUMBER NRTS-54-13463. R.G. Larsen, Photographer, 12/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. Anthropogenic Radionuglides in Marine Polar Regions

    NASA Astrophysics Data System (ADS)

    Holm, Elis

    The polar regions are important for the understanding of long range water and atmospheric transport of anthropogenic substances. Investigations show that atmospheric transport of anthropogenic radionuclides is the most important route of transport to the Antarctic while water transport plays a greater role for the Arctic. Fallout from nuclear detonation tests is the major source in the Antarctic while in the Arctic other sources, especially European reprocessing facilities, dominate for conservatively behaving rdionuclides such as 137Cs . The flux of 137Cs and 239+240Pu in the Antarctic is about 1/10 of that for the Arctic and the resulting concentrations in surface sea-water show the same ratio for the two areas. In the Antarctic concentration factors for 137Cs are higher than in the Arctic for similar species

  10. Composition for detecting uranyl

    DOEpatents

    Baylor, L.C.; Stephens, S.M.

    1994-01-01

    The present invention relates to an indicator composition for use in spectrophotometric detection of a substance in a solution, and a method for making the composition. Useful indicators are sensitive to the particular substance being measured, but are unaffected by the fluid and other chemical species that may be present in the fluid. Optical indicators are used to measure the uranium concentration of process solutions in facilities for extracting uranium from ores, production of nuclear fuels, and reprocessing of irradiated fuels. The composition comprises an organohalide covalently bonded to an indicator for the substance, in such a manner that the product is itself an indicator that provides increased spectral resolution for detecting the substance. The indicator is preferably arsenazo III and the organohalide is preferably cyanuric chloride. These form a composition that is ideally suited for detecting uranyl.

  11. Quantitative NDA measurements of advanced reprocessing product materials containing uranium, neptunium, plutonium, and americium

    NASA Astrophysics Data System (ADS)

    Goddard, Braden

    The ability of inspection agencies and facility operators to measure powders containing several actinides is increasingly necessary as new reprocessing techniques and fuel forms are being developed. These powders are difficult to measure with nondestructive assay (NDA) techniques because neutrons emitted from induced and spontaneous fission of different nuclides are very similar. A neutron multiplicity technique based on first principle methods was developed to measure these powders by exploiting isotope-specific nuclear properties, such as the energy-dependent fission cross sections and the neutron induced fission neutron multiplicity. This technique was tested through extensive simulations using the Monte Carlo N-Particle eXtended (MCNPX) code and by one measurement campaign using the Active Well Coincidence Counter (AWCC) and two measurement campaigns using the Epithermal Neutron Multiplicity Counter (ENMC) with various (alpha,n) sources and actinide materials. Four potential applications of this first principle technique have been identified: (1) quantitative measurement of uranium, neptunium, plutonium, and americium materials; (2) quantitative measurement of mixed oxide (MOX) materials; (3) quantitative measurement of uranium materials; and (4) weapons verification in arms control agreements. This technique still has several challenges which need to be overcome, the largest of these being the challenge of having high-precision active and passive measurements to produce results with acceptably small uncertainties.

  12. Basic repository environmental assessment design basis, Lavender Canyon site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling andmore » packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Bruffey, Stephanie H.; Jordan, Jacob A.

    US regulations will require the removal of iodine and tritium, along with other volatile and semi-volatile radionuclides, from the off-gas streams of nuclear fuel reprocessing plants. Advanced tritium pretreatment (TPT) is an additional head-end operation that could be incorporated within nuclear fuel reprocessing plants. It utilizes nitrogen dioxide (NOR2R) as an oxidant to convert UOR2R to UR3ROR8R prior to traditional aqueous dissolution. Advanced TPT can result in the quantitative volatilization of both tritium and iodine. Up-front removal of iodine is of significant advantage because otherwise it distributes to several unit operations and the associated off-gas streams. The off-gas streams willmore » then require treatment to comply with US regulations. Advanced TPT is currently under development at Oak Ridge National Laboratory, and a kilogram-scale hot cell demonstration with used nuclear fuel (UNF) is planned for fiscal year (FY) 2018.« less

  14. Estimating alarm thresholds and the number of components in mixture distributions

    NASA Astrophysics Data System (ADS)

    Burr, Tom; Hamada, Michael S.

    2012-09-01

    Mixtures of probability distributions arise in many nuclear assay and forensic applications, including nuclear weapon detection, neutron multiplicity counting, and in solution monitoring (SM) for nuclear safeguards. SM data is increasingly used to enhance nuclear safeguards in aqueous reprocessing facilities having plutonium in solution form in many tanks. This paper provides background for mixture probability distributions and then focuses on mixtures arising in SM data. SM data can be analyzed by evaluating transfer-mode residuals defined as tank-to-tank transfer differences, and wait-mode residuals defined as changes during non-transfer modes. A previous paper investigated impacts on transfer-mode and wait-mode residuals of event marking errors which arise when the estimated start and/or stop times of tank events such as transfers are somewhat different from the true start and/or stop times. Event marking errors contribute to non-Gaussian behavior and larger variation than predicted on the basis of individual tank calibration studies. This paper illustrates evidence for mixture probability distributions arising from such event marking errors and from effects such as condensation or evaporation during non-transfer modes, and pump carryover during transfer modes. A quantitative assessment of the sample size required to adequately characterize a mixture probability distribution arising in any context is included.

  15. 10 CFR 50.54 - Conditions of licenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... chapter. (a)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality... irradiated fuel. (ff) For licensees of nuclear power plants that have implemented the earthquake engineering... of rated thermal power only if the Commission finds that the state of onsite emergency preparedness...

  16. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE PAGES

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  17. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    DOE PAGES

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  18. RadBall Technology Testing and MCNP Modeling of the Tungsten Collimator.

    PubMed

    Farfán, Eduardo B; Foley, Trevor Q; Coleman, J Rusty; Jannik, G Timothy; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J

    2010-01-01

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.

  19. RadBall™ Technology Testing and MCNP Modeling of the Tungsten Collimator

    PubMed Central

    Farfán, Eduardo B.; Foley, Trevor Q.; Coleman, J. Rusty; Jannik, G. Timothy; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.

    2010-01-01

    The United Kingdom’s National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall™, which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall™ consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall™ has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall™ technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall™ testing and modeling accomplished at SRNL. PMID:21617740

  20. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  1. WEST ELEVATION OF REMOTE ANALYTICAL FACILITY (CPP627) AND HOT PILOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF REMOTE ANALYTICAL FACILITY (CPP-627) AND HOT PILOT PLANT (CPP-640) LOOKING NORTHEAST. INL PHOTO NUMBER HD-22-2-1. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecker, Siegfried S.

    Actions of the Government of the Democratic People's Republic of Korea have precipitated two nuclear crises in the past 10 years. The 1994 crisis was resolved through the 'Agreed Framework.' North Korea agreed to 'freeze' and eventually dismantle its nuclear program (with U.S. help to store spent fuel safely and under IAEA inspection). In return, the United States agreed (with the KEDO international consortium) to build two light-water reactors and supply North Korea with heavy-fuel oil until the reactors come on line. In addition, both sides agreed to move towards full normalization of relations, work for peace and security onmore » a nuclear-free Korean Peninsula, and work on strengthening the international nonproliferation regime. The second nuclear crisis erupted when North Korean Government officials allegedly admitted to having a clandestine uranium enrichment program when confronted with this accusation by U.S. officials in October 2002. The United States (through KEDO) suspended heavy-fuel oil shipments and North Korea responded by expelling the IAEA inspectors, withdrawing from the Nuclear Nonproliferation Treaty, and restarting its nuclear program in January 2003. The North Korean Government has invited Professor John Lewis of Stanford University, a China and North Korea scholar, for Track I1 discussions of nuclear and other key issues since 1987. In August 2003, Professor Lewis visited North Korea just before the first six-party talks, which were designed by the United States to solve the current nuclear crisis. Professor Lewis was invited back for the January 2004 visit. He asked Jack Pritchard, former U.S. special envoy for DRPK negotiations, and me to accompany him. Two Asian affairs staff specialists from the U.S. Senate Foreign Relations Committee also joined us. I will report on the visit to the Yongbyon Nuclear Scientific Research Center on January 8,2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. We were not shown any facilities or had the opportunity to talk to technical or military experts who were able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. On the matter of uranium enrichment programs, Vice Minister Kim Gye Gwan categorically denied that North Korea has a uranium enrichment program - he said, 'we have no program, no equipment, and no technical expertise for uranium enrichment.' Upon return to the United States, I shared my observations and analysis with U.S. Government officials in Washington, DC, including congressional testimony to the Senate Foreign Relations Committee and briefings to two House of Representative Committees.« less

  5. CESAR5.3: Isotopic depletion for Research and Testing Reactor decommissioning

    NASA Astrophysics Data System (ADS)

    Ritter, Guillaume; Eschbach, Romain; Girieud, Richard; Soulard, Maxime

    2018-05-01

    CESAR stands in French for "simplified depletion applied to reprocessing". The current version is now number 5.3 as it started 30 years ago from a long lasting cooperation with ORANO, co-owner of the code with CEA. This computer code can characterize several types of nuclear fuel assemblies, from the most regular PWR power plants to the most unexpected gas cooled and graphite moderated old timer research facility. Each type of fuel can also include numerous ranges of compositions like UOX, MOX, LEU or HEU. Such versatility comes from a broad catalog of cross section libraries, each corresponding to a specific reactor and fuel matrix design. CESAR goes beyond fuel characterization and can also provide an evaluation of structural materials activation. The cross-sections libraries are generated using the most refined assembly or core level transport code calculation schemes (CEA APOLLO2 or ERANOS), based on the European JEFF3.1.1 nuclear data base. Each new CESAR self shielded cross section library benefits all most recent CEA recommendations as for deterministic physics options. Resulting cross sections are organized as a function of burn up and initial fuel enrichment which allows to condensate this costly process into a series of Legendre polynomials. The final outcome is a fast, accurate and compact CESAR cross section library. Each library is fully validated, against a stochastic transport code (CEA TRIPOLI 4) if needed and against a reference depletion code (CEA DARWIN). Using CESAR does not require any of the neutron physics expertise implemented into cross section libraries generation. It is based on top quality nuclear data (JEFF3.1.1 for ˜400 isotopes) and includes up to date Bateman equation solving algorithms. However, defining a CESAR computation case can be very straightforward. Most results are only 3 steps away from any beginner's ambition: Initial composition, in core depletion and pool decay scenario. On top of a simple utilization architecture, CESAR includes a portable Graphical User Interface which can be broadly deployed in R&D or industrial facilities. Aging facilities currently face decommissioning and dismantling issues. This way to the end of the nuclear fuel cycle requires a careful assessment of source terms in the fuel, core structures and all parts of a facility that must be disposed of with "industrial nuclear" constraints. In that perspective, several CESAR cross section libraries were constructed for early CEA Research and Testing Reactors (RTR's). The aim of this paper is to describe how CESAR operates and how it can be used to help these facilities care for waste disposal, nuclear materials transport or basic safety cases. The test case will be based on the PHEBUS Facility located at CEA - Cadarache.

  6. Accelerator mass spectrometry of iodine-129 and its applications in natural water systems

    NASA Astrophysics Data System (ADS)

    Buraglio, Nadia

    During recent decades, huge amount of radioactive waste has been dumped into the earth's surface environments. 129I (T1/2 = 15.6 My) is one of the radioactive products that has been produced through a variety of processes, including atomic weapon testing, reprocessing of nuclear fact and nuclear accidents. This thesis describes development of the Accelerator Mass Spectrometry (AMS) ultra-sensitive atom counting technique at Uppsala Tandem Laboratory to measure 129I and discusses investigations of its distribution in the hydrosphere (marine and fresh water) and precipitation. The AMS technique provides a method for measuring long-lived radioactive isotopes in small samples, relative to other conventional techniques, and thus opens a now line of research. The optimization of the AMS system at Uppsala included testing a time of flight detector, evaluation of the most appropriate charge-state, reduction of molecular interference and improvement of the detection limit. Furthermore, development of a chemical procedure for separation of iodine from natural water samples has been accomplished. The second part of the thesis reports investigations of 129I in natural waters and indicates that high concentrations of 129I (3-4 orders of magnitude higher than in the prenuclear era) are found in most of the considered natural waters. Inventory calculations and results of measurements suggest that the major sources of radioactive iodine are the two main European nuclear reprocessing facilities at Sellafield (U.K.) and La Hague (France). This information provides estimates of the transit time and vertical mixing of water masses in the central Arctic Ocean. Results from precipitation, lakes and runoff are used to elucidate mechanisms of transport of 129I from the point sources and its pathways in the hydrological environment. This study also shows the need for continuous monitoring of the 129I level in the hydrosphere and of its future variability.

  7. 10 CFR 110.40 - Commission review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Canada. (5) An export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing...

  8. FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING REMOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL LABORATORY, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-008-105065. ALTERNATE ID NUMBER 4272-14-102. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP627) LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627) LOOKING SOUTHEAST. HEADEND PLANT (CPP-640) APPEARS IN THE BACKGROUND. INL PHOTO NUMBER HD-22-1-4. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. Aging of Iodine-Loaded Silver Mordenite in NO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Jubin, Robert Thomas; Patton, Kaara K.

    2014-04-01

    Used nuclear fuel facilities need to control and minimize radioactive emissions. Off-gas systems are designed to remove radioactive contaminants, such as 85Kr, 14C, 3H, and 129I. In an off-gas system, any capture material will be exposed to a gas stream for months at a time. This gas stream may be at elevated temperature and could contain water, NOx gas, or a variety of other constituents comprising the dissolver off-gas stream in a nuclear fuel reprocessing plant. For this reason, it is important to evaluate the effects of long-term exposure, or aging, on proposed capture materials. One material under consideration ismore » reduced silver mordenite (Ag0Z), which is recognized for its efficient iodine capture properties. Iodine is immobilized on Ag0Z as AgI, a solid with low volatility (m.p. ≥ 500°C). The aim of this study was to determine whether extended aging at elevated temperature in a nominally 2% NO2 environment would result in a loss of immobilized iodine from this material due to either physical or chemical changes that might occur during aging. Charges of iodine-loaded reduced silver mordenite (I2-Ag0Z) were exposed to a 2% NO2 environment for 1, 2, 3, and 4 months at 150°C, then analyzed for iodine losses The aging study was completed successfully. The material did not visibly change color or form. The results demonstrate that no significant iodine loss was observed over the course of 4 months of 2% NO2 aging of I2-Ag0Z at elevated temperature within the margin of error and the variability (~10%) in the loading along the beds. This provides assurance that iodine will remain immobilized on Ag0Z during extended online use in an off-gas capture treatment system. Future tests should expose I2-Ag0Z to progressively more complex feed gases in an effort to accurately replicate the conditions expected in a reprocessing facility.« less

  11. Off-Site Monitoring of Nuclear Fuel Reprocessing Plants for Nuclear Weapons Proliferation

    DTIC Science & Technology

    1980-01-01

    of commercial nuclear power reactors by the collection of cesium and neodynium radionuclides and the use-of isotopic correlation techniques.Both...Both Goodwin (ref 1) and Clark (ref 2) investigated off-site monitoring of commercial nuclear power reactoze by the collection of cesium and neodynium...manner than that which is used for power production.Economical generation of electrical power requires a long sus- tained fission cycle whereas Pu-239

  12. Preparation for the Recovery of Spent Nuclear Fuel (SNF) at Andreeva Bay, North West Russia - 13309

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, D.; McAtamney, N.

    Andreeva Bay is located near Murmansk in the Russian Federation close to the Norwegian border. The ex-naval site was used to de-fuel nuclear-powered submarines and icebreakers during the Cold War. Approximately 22,000 fuel assemblies remain in three Dry Storage Units (DSUs) which means that Andreeva Bay has one of the largest stockpiles of highly enriched spent nuclear fuel (SNF) in the world. The high contamination and deteriorating condition of the SNF canisters has made improvements to the management of the SNF a high priority for the international community for safety, security and environmental reasons. International Donors have, since 2002, providedmore » support to projects at Andreeva concerned with improving the management of the SNF. This long-term programme of work has been coordinated between the International Donors and responsible bodies within the Russian Federation. Options for the safe and secure management of SNF at Andreeva Bay were considered in 2004 and developed by a number of Russian Institutes with international participation. This consisted of site investigations, surveys and studies to understand the technical challenges. A principal agreement was reached that the SNF would be removed from the site altogether and transported to Russia's reprocessing facility at Mayak in the Urals. The analytical studies provided the information necessary to develop the construction plan for the site. Following design and regulatory processes, stakeholders endorsed the technical solution in April 2007. This detailed the processes, facilities and equipment required to safely remove the SNF and identified other site services and support facilities required on the site. Implementation of this strategy is now well underway with the facilities in various states of construction. Physical works have been performed to address the most urgent tasks including weather protection over one of the DSUs, installation of shielding over the cells, provision of radiation protection infrastructure and general preparation of the site for construction of the facilities for the removal of the SNF. This paper describes the development and implementation of the strategy and work to improve the safe and secure management of SNF, preparing it for retrieval and removal from Andreeva Bay. (authors)« less

  13. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in themore » final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.« less

  14. Hot Isostatic Pressing of Engineered Forms of I-AgZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Watkins, Thomas R.; Bruffey, Stephanie H.

    Hot isostatic pressing (HIP) is being considered for direct conversion of 129I-bearing materials to a radiological waste form. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary to comply with regulatory requirements regarding reprocessing facilities sited within the United States, and any iodine-containing media or solid sorbents generated by offgas abatement will require disposal. Zeolite minerals such as silver-exchanged mordenite (AgZ) have been studied as potential iodine sorbents and will contain 129I as chemisorbed AgI. Oak Ridge National Laboratory (ORNL) has conducted several recent studies on the HIP of both iodine-loadedmore » AgZ (I-AgZ) and other iodine-bearing zeolite minerals. The goal of these research efforts is to achieve a stable, highly leach resistant material that is reduced in volume as compared to bulk iodine-loaded I-AgZ. Through the use of HIP, it may be possible to achieve this with the addition of little or no additional materials (waste formers). Other goals for the process include that the waste form will be tolerant to high temperatures and pressures, not chemically hazardous, and that the process will result in minimal secondary waste generation. This document describes the preparation of 27 samples that are distinct from previous efforts in that they are prepared exclusively with an engineered form of AgZ that is manufactured using a binder. Iodine was incorporated solely by chemisorption. This base material is expected to be more representative of an operational system than were samples prepared previously with pure minerals.« less

  15. 76 FR 40943 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ..., Revision 3, ``Criteria for Use of Computers in Safety Systems of Nuclear Power Plants.'' FOR FURTHER..., ``Criteria for Use of Computers in Safety Systems of Nuclear Power Plants,'' was issued with a temporary... Fuel Reprocessing Plants,'' to 10 CFR part 50 with regard to the use of computers in safety systems of...

  16. A novel approach for high precision rapid potentiometric titrations: application to hydrazine assay.

    PubMed

    Sahoo, P; Malathi, N; Ananthanarayanan, R; Praveen, K; Murali, N

    2011-11-01

    We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ~2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO(3) in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors. © 2011 American Institute of Physics

  17. A novel approach for high precision rapid potentiometric titrations: Application to hydrazine assay

    NASA Astrophysics Data System (ADS)

    Sahoo, P.; Malathi, N.; Ananthanarayanan, R.; Praveen, K.; Murali, N.

    2011-11-01

    We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ˜2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO3 in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors.

  18. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.; Coops, M.S.

    1982-01-19

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A nonoxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel.

  19. AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. National Policy Implications of Storing Nuclear Waste in the Pacific Region,

    DTIC Science & Technology

    1981-01-01

    US Congress, Senate, Committee on Energy and Natural Resources, Pacific Spent Nuclear Fuel Storage , Hearing...selected. 17 One type of shipping cask which has been used to transport spent fuel assemblies to the Nevada Test Site is a leakproof steel cask that can...discussion the following conclusions on the nuclear waste storage issue appear valid. The Reagan decision to reprocess spent fuel has not changed US

  2. Modeling to Evaluate Coordination and Flexibility in Aluminum Recycling Operations

    NASA Astrophysics Data System (ADS)

    Brommer, Tracey; Olivetti, Elsa; Fjeldbo, Snorre; Kirchain, Randolph

    Reprocessing of aluminum production byproducts or dross for use in secondary production presents a particular challenge to the aluminum industry. While use of these non-traditional secondary materials is of interest due to their reduced energy and economic burden over virgin counterparts, these materials necessitate the use of particular furnaces, specialized handling and processing conditions. Therefore, to make use of them firms may pursue use of an intermediate recycling facility that can reprocess the secondary materials into a liquid product. After reprocessing downstream aluminum remelters could incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges result because of the energy cost to maintain the liquid. Further coordination challenges result from the need to establish long term recycling production plans in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses?

  3. The Steris Reliance EPS endoscope processing system: a new automated endoscope reprocessing technology.

    PubMed

    2007-01-01

    In this Evaluation, we examine whether the Steris Reliance EPS--a flexible endoscope reprocessing system that was recently introduced to the U.S. market--offers meaningful advantages over "traditional" automated endoscope reprocessors (AERs). Most AERs on the market function similarly to one another. The Reliance EPS, however, includes some unique features that distinguish it from other AERs. For example, it incorporates a "boot" technology for loading the endoscopes into the unit without requiring a lot of endoscope-specific connectors, and it dispenses the germicide used to disinfect the endoscopes from a single-use container. This Evaluation looks at whether the unique features of this model make it a better choice than traditional AERs for reprocessing flexible endoscopes. Our study focuses on whether the Reliance EPS is any more likely to be used correctly-thereby reducing the likelihood that an endoscope will be reprocessed inadequately-and whether the unit possesses any design flaws that could lead to reprocessing failures. We detail the unit's advantages and disadvantages compared with other AERs, and we describe what current users have to say. Our conclusions will help facilities determine whether to select the Reliance EPS.

  4. THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.

    2012-08-29

    We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides amore » set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.« less

  5. The North Korean nuclear dilemma.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecker, Siegfried S.

    2004-01-01

    The current nuclear crisis, the second one in ten years, erupted when North Korea expelled international nuclear inspectors in December 2002, then withdrew from the Nuclear Nonproliferation Treaty (NPT), and claimed to be building more nuclear weapons with the plutonium extracted from the spent fuel rods heretofore stored under international inspection. These actions were triggered by a disagreement over U.S. assertions that North Korea had violated the Agreed Framework (which froze the plutonium path to nuclear weapons to end the first crisis in 1994) by clandestinely developing uranium enrichment capabilities providing an alternative path to nuclear weapons. With Stanford Universitymore » Professor John Lewis and three other Americans, I was allowed to visit the Yongbyon Nuclear Center on Jan. 8, 2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. On the basis of our visit, we were not able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. However, based on the capabilities we saw, we must assume that North Korea has the capability to produce a crude nuclear device. On the matter of uranium enrichment programs, our host categorically denied that North Korea has a uranium enrichment program - he said, 'we have no program, no equipment, and no technical expertise for uranium enrichment.' The denials were not convincing at the time and since then have proven to be quite hollow by the revelations of A.Q. Khan's nuclear black market activities. There is no easy solution to the nuclear crisis in North Korea. A military strike to eliminate the nuclear facilities was never very attractive and now has been overcome by events. The principal threat is posed by a stockpile of nuclear weapons and weapons-grade plutonium. We have no way of finding where either may be hidden. A diplomatic solution remains the only path forward, but it has proven elusive. All sides have proclaimed a nuclear weapons-free Korean Peninsula as the end goal. The U.S. Government has chosen to negotiate with North Korea by means of the six-party talks. It has very clearly outlined its position of insisting on complete, verifiable, irreversible dismantlement of all North Korean nuclear programs. North Korea has offered several versions of 're-freezing' its plutonium program while still denying a uranium enrichment program. It has insisted on simultaneous and reciprocal steps to a final solution. Regardless of which diplomatic path is chosen, the scientific challenges of eliminating the North Korean nuclear weapons programs (and its associated infrastructure) in a safe, secure, and verifiable manner are immense. The North Korean program is considerably more complex and developed than the fledgling Iraqi program of 1991 and Libyan program of 2004. It is more along the lines, but more complex than that of South Africa in the early 1990s. Actions taken or not taken by the North Koreans at their nuclear facilities during the course of the ongoing diplomatic discussions are key to whether or not the nuclear program can be eliminated safely and securely, and they will greatly influence the price tag for such operations. Moreover, they will determine whether or not one can verify complete elimination. Hence, cooperation of the North Koreans now and during the dismantlement and elimination stages is crucial. Technical discussions among specialists, perhaps within the framework of the working groups of the six-party talks, could be very productive in setting the stage for an effective, verifiable elimination of North Korea's nuclear weapons program.« less

  6. Expensive Enrichment

    ERIC Educational Resources Information Center

    Resnikoff, Marvin

    1975-01-01

    This article presents an economic analysis of the nuclear fuel reprocessing industry. It indicates that while environmental safety devices have improved the working conditions, they have also added ever-increasing costs to this necessary process. (MA)

  7. Spent nuclear fuel assembly inspection using neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Pope, Chad Lee

    The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.

  8. An Assessment of the Attractiveness of Material Associated with a MOX Fuel Cycle from a Safeguards Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, Charles G; Wallace, Richard K; Ireland, John R

    2009-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs to bemore » rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less

  9. AN ASSESSMENT OF THE ATTRACTIVENESS OF MATERIAL ASSOCIATED WITH A MOX FUEL CYCLE FROM A SAFEGUARDS PERSPECTIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Ebbinghaus, B. B.; Sleaford, Brad W.

    2009-07-09

    This paper is an extension to earlier studies [1,2] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs tomore » be rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities [3]. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less

  10. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  11. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at themore » labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.« less

  12. Survey of simulation methods for modeling pulsed sieve-plate extraction columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, L.

    1979-03-01

    The report first considers briefly the use of liquid-liquid extraction in nuclear fuel reprocessing and then describes the operation of the pulse column. Currently available simulation models of the column are reviewed, and followed by an analysis of the information presently available from which the necessary parameters can be obtained for use in a model of the column. Finally, overall conclusions are given regarding the information needed to develop an accurate model of the column for materials accountability in fuel reprocessing plants. 156 references.

  13. Studies and research concerning BNFP: computerized nuclear materials control and accounting system development evaluation report, FY 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, J M; Ehinger, M H; Joseph, C

    1978-10-01

    Development work on a computerized system for nuclear materials control and accounting in a nuclear fuel reprocessing plant is described and evaluated. Hardware and software were installed and tested to demonstrate key measurement, measurement control, and accounting requirements at accountability input/output points using natural uranium. The demonstration included a remote data acquisition system which interfaces process and special instrumentation to a cenral processing unit.

  14. Department of Energy's first waste determinations under section 3116: how did the process work?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picha Jr, K.G.; Kaltreider, R.; Suttora, L.

    2007-07-01

    Congress passed the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005 on October 9, 2004, and the President signed it into law on October 28, 2004. Section 3116(a) of the NDAA allows the Department of Energy (DOE) to, in consultation with the Nuclear Regulatory Commission (NRC), determine whether certain radioactive waste resulting from reprocessing of spent nuclear fuel at two DOE sites is not high-level radioactive waste, and dispose of that waste in compliance with the performance objectives set out in subpart C of 10 CFR part 61 for low-level waste. On January 17, 2006, themore » Department issued its first waste determination under the NDAA for salt waste disposal at the Savannah River Site. On November 19, 2006, the Department issued its second waste determination for closure of tanks at the Idaho Nuclear Technology and Engineering Center Tank Farm Facility. These two determinations and a third draft determination illustrate the range of issues that may be encountered in preparing a waste determination in accordance with NDAA Section 3116. This paper discusses the experiences associated with these first two completed waste determinations and an in-progress third waste determination, and discusses lessons learned from the projects that can be applied to future waste determinations. (authors)« less

  15. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.

  16. Alloy 33: A new material for the handling of HNO{sub 3}/HF media in reprocessing of nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.

    Alloy 33, an austenitic 33Cr-32Fe-31Ni-1.6Mo-0.6Cu-0.4N material shows excellent resistance to corrosion when exposed to highly oxidizing media as e.g. HNO{sub 3} and HNO{sub 3}/HF mixtures which are encountered in reprocessing of nuclear fuel. According to the test results available so far, resistance to corrosion in boiling azeotropic (67%) HNO{sub 3} is about 6 and 2 times superior to AISI 304 L and 310 L. In higher concentrated nitric acid it can be considered corrosion resistant up to 95% HNO{sub 3} at 25 C, up to 90% HNO{sub 3} at 50 C and up to somewhat less than 85% HNO{sub 3}more » at 75 C. In 20% HNO{sub 3}/7% HF at 50 C its resistance to corrosion is superior to AISI 316 Ti and Alloy 28 by factors of about 200 and 2.4. Other media tested with different results include 12% HNO{sub 3} with up to 3.5% HF and 0.4% HF with 32 to 67.5% HNO{sub 3} at 90 C. Alloy 33 is easily fabricated into all product forms required for chemical plants (e.g. plate, sheet, strip, wire, tube and flanges). Components such as dished ends and tube to tube sheet weldments have been successfully fabricated facilitating the use of Alloy 33 for reprocessing of nuclear fuel.« less

  17. Development of evaluation models of manpower needs for dismantling the dry conversion process-related equipment in uranium refining and conversion plant (URCP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sari Izumo; Hideo Usui; Mitsuo Tachibana

    Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less

  18. Development of an integrated transuranic waste management system for a large research facility: NUCEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao

    1997-03-01

    The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less

  19. Investigating Pu and U isotopic compositions in sediments: a case study in Lake Obuchi, Rokkasho Village, Japan using sector-field ICP-MS and ICP-QMS.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2005-08-01

    The objectives of the present work were to study isotope ratios and the inventory of plutonium and uranium isotope compositions in sediments from Lake Obuchi, which is in the vicinity of several nuclear fuel facilities in Rokkasho, Japan. Pu and its isotopes were determined using sector-field ICP-MS and U and its isotopes were determined with ICP-QMS after separation and purification with a combination of ion-exchange and extraction chromatography. The observed (240)Pu/(239)Pu atom ratio (0.186 +/- 0.016) was similar to that of global fallout, indicating that the possible early tropospheric fallout Pu did not deliver Pu from the Pacific Proving Ground to areas above 40 degrees N. The previously reported higher Pu inventory in the deep water area of Lake Obuchi could be attributed to the lateral transportation of Pu deposited in the shallow area which resulted from the migration of deposited global fallout Pu from the land into the lake by river runoff and from the Pacific Ocean by tide movement and sea water scavenging, as well as from direct soil input by winds. The (235)U/(238)U atom ratios ranged from 0.00723 to 0.00732, indicating the natural origin of U in the sediments. The average (234)U/(238)U activity ratio of 1.11 in a sediment core indicated a significant sea water U contribution. No evidence was found for the release of U containing wastes from the nearby nuclear facilities. These results will serve as a reference baseline on the levels of Pu and U in the studied site so that any further contamination from the spent nuclear fuel reprocessing plants, the radioactive waste disposal and storage facilities, and the uranium enrichment plant can be identified, and the impact of future release can be rapidly assessed.

  20. Decommissioning, Dismantling and Disarming: a Unique Information Showroom Inside the G2 Reactor at Marcoule Centre (France) - 12068

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volant, Emmanuelle; Garnier, Cedric

    2012-07-01

    The paper aims at presenting the new information showroom called 'Escom G2' (for 'Espace Communication') inaugurated by the French Atomic Energy and Alternative Energies Commission (CEA) in spring 2011. This showroom is settled directly inside the main building of the G2 nuclear reactor: a facility formerly dedicated to weapon-grade plutonium production since the late 1950's at the Marcoule nuclear centre, in south of France. After its shutdown, and reprocessing of the last spent fuels, a first dismantling step was successfully completed from 1986 to 1996. Unique in France and in Europe, Escom G2 is focused on France dismantling expertise andmore » its action for disarmament. This showroom comprises of a 300-square meters permanent exhibition, organized around four themes: France strategy for disarmament, decommissioning and dismantling technical aspects, uranium and plutonium production cycles. Each of these topics is illustrated with posters, photos, models and technical pieces from the dismantled plants. It is now used to present France's action in disarmament to highly ranked audiences such as: state representatives, diplomats, journalists... The paper explains the background story of this original project. As a matter of fact, in 1996 France was the first nuclear state to decide to shut down and dismantle its fissile material production facilities for nuclear weapons. First, the paper presents the history of the G2 reactor in the early ages of Marcoule site, its operating highlights as well as its main dismantling operations, are presented. In Marcoule, where the three industrial-scale reactors G1, G2 and G3 used to be operated for plutonium production (to be then reprocessed in the nearby UP1 plant), the initial dismantling phase has now been completed (in 1980's for G1 and in 1996 for G2 and G3). The second phase, aimed at completely dismantling these three reactors, will restart in 2020, and is directly linked to the opening of a future national storage facility for irradiated graphite waste. Then, the paper recalls communication events and official visits hosted in Pierrelatte and Marcoule, following a formal invitation from the French President Mr. Nicolas Sarkozy. These visits, which were organized in order to illustrate the irreversibility of these dismantling operations, allowed visitors to discovers places that used to be former highly classified areas. Three official visits were organized in 2008 and 2009 for representatives of the Conference on Disarmament Member States, non-governmental experts and journalists. All participants visited the dismantled uranium enrichment plant in Pierrelatte, the G2 reactor and the UP1 plant in Marcoule. The visits were successful and visitors were especially impressed by the G2 reactor and its massive industrial architecture, symbolic of the early ages of nuclear history. In late 2010, this feedback convinced CEA Military Application Directorate (CEA DAM) that a permanent showroom could be installed inside the reactor, making it possible to preserve the cultural value of this historical landmark, and to continue its ongoing effort of communication and outreach. The paper explains the design of this concept: the museography project with a professional designer, the communication material conception and the features of such an original place. (authors)« less

  1. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    NASA Astrophysics Data System (ADS)

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and strong opposition to growth of nuclear power in a number of quarters - it is vital that the market provides incentives for exploration and development of environmentally sustainable mining operations. Thorium: World Reasonably Assured plus Inferred Resources of thorium are estimated at over 2.2 million tonnes, in hard rock and heavy mineral sand deposits. At least double this amount is considered to occur in as yet undiscovered thorium deposits. Currently, demand for thorium is insignificant, but even a major shift to thorium-fueled reactors would not make significant inroads into the huge resource base over the next half century.

  2. World first in high level waste vitrification - A review of French vitrification industrial achievements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brueziere, J.; Chauvin, E.; Piroux, J.C.

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less

  3. Progress on 241Am Production for Use in Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Baker, S. R.; Bell, K. J.; Brown, J.; Carrigan, C.; Carrott, M. J.; Gregson, C.; Clough, M.; Maher, C. J.; Mason, C.; Rhodes, C. J.; Rice, T. G.; Sarsfield, M. J.; Stephenson, K.; Taylor, R. J.; Tinsley, T. P.; Woodhead, D. A.; Wiss, T.

    2014-08-01

    Electrical power sources used in outer planet missions are a key enabling technology for data acquisition and communications. Power sources generate electricity from the thermal energy from alpha decay of the radioisotope 238Pu via thermo-electric conversion. Production of 238Pu requires specialist facilities including a nuclear reactor and reprocessing plants that are expensive to build and operate, so naturally, a more economical alternative is attractive to the industry. Within Europe 241Am is a feasible alternative to 238Pu that can provide a heat source for radioisotope thermoelectric generators (RTGs) and radioisotope heating units (RHUs). As a daughter product of 241Pu decay, 241Am is present at 1000s kg levels within the UK civil plutonium stockpile.A chemical separation process is required to extract the 241Am in a pure form and this paper describes such a process, successfully developed to the proof of concept stage.

  4. Design documentation: Krypton encapsulation preconceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs,more » technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.« less

  5. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOEpatents

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  6. Radionuclide speciation in effluent from La Hague reprocessing plant in France.

    PubMed

    Salbu, B; Skipperud, L; Germain, P; Guéguéniat, P; Strand, P; Lind, O C; Christensen, G

    2003-09-01

    Effluent from the La Hague nuclear fuel reprocessing plant was mixed with seawater in order to investigate the fate of the various radionuclides. Thus, a major objective of the present work is to characterize the effluent from La Hague reprocessing plant and to study how the radionuclide speciation changes with time when discharged into the marine environment. Discharges from the La Hague nuclear reprocessing plant represent an important source of artificially produced radionuclides to the North Sea. The transport, distribution, and biological uptake of radionuclides in the marine environment depends, however, on the physicochemical forms of radionuclides in the discharged effluents and on transformation processes that occur after entering the coastal waters. Information of these processes is needed to understand the transport and long-term distribution of the radionuclides. In the present work, a weekly discharged effluent from the nuclear fuel reprocessing plant at Cap La Hague in France was mixed with coastal water and fractionated with respect to particle size and charged species using ultra centrifugation and hollow fiber ultrafiltration with on line ion exchange. The size distribution pattern of gamma-emitting radionuclides was followed during a 62-h period after mixing the effluent with seawater. 54Mn was present as particulate material in the effluent, while other investigated radionuclides were discharged in a more mobile form or were mobilized after mixing with sea water (e.g., 60Co) and can be transported long distances in the sea. Sediments can act as a sink for less mobile discharged radionuclides (Skipperud et al. 2000). A kinetic model experiment was performed to provide information of the time-dependent distribution coefficients, Kd (t). The retention of the effluent radionuclides in sediments was surprisingly low (Kd 20-50), and the sediments acted as a poor sink for the released radionuclides. Due to the presence of non-reacting radionuclide species in the effluent, a major fraction of the radionuclides, such as Cs-isotopes, 106Ru and 125Sb, in the effluent will be subjected to marine transport to the Northern Seas (i.e., the North Sea, Norwegian Sea and the Barents Sea). The La Hague effluent may, therefore, contribute to enriched levels of radionuclides found in the English Channel, including 90Sr, 60Co and Pu-isotopes, and also 106Ru and 125Sb.

  7. Fundamental and applied aspects of the chemistry of radioactive iodine in gas and aqueous media

    NASA Astrophysics Data System (ADS)

    Kulyukhin, Sergei A.

    2012-10-01

    The results of investigations carried out in the past 15-20 years in the chemistry of radioactive iodine in the gas phase and in aqueous media of various compositions are described systematically and analyzed. The prospects for practical application of the obtained data in various fields of nuclear power industry including accidents at nuclear power plants and enterprises engaged in spent nuclear fuel reprocessing are estimated. The bibliography includes 206 references.

  8. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.« less

  9. The radiological impact of electricity generation by U.K. coal and nuclear systems.

    PubMed

    Robson, A

    1984-05-01

    Radiological impact is discussed for U.K. coal and nuclear power cycles under normal operation. The type having the greater impact depends on the radiological basis of the comparison, the particular nuclear reactor system considered and whether or not the whole fuel cycle, especially irradiated nuclear fule reprocessing , is included in the analysis. More importantly, the various impacts are shown to be generally acceptable in an absolute sense i.e. exposures are less than and usually low in comparison with radiological safety guidelines and everyday natural radiation exposures.

  10. OSI SAF Sea Surface Temperature reprocessing of MSG/SEVIRI archive.

    NASA Astrophysics Data System (ADS)

    Saux Picart, Stéphane; Legendre, Gerard; Marsouin, Anne; Péré, Sonia; Roquet, Hervé

    2017-04-01

    The Ocean and Sea-Ice Satellite Application Facility (OSI-SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is planning to deliver a reprocessing of Sea Surface Temperature (SST) from Spinning Enhanced Visible and Infrared Imager/Meteosat Second Generation (SEVIRI/MSG) archive (2004-2012) by the end of 2016. This reprocessing is drawing from experiences of the OSI SAF team in near real time processing of MSG/SEVIRI data. The retrieval method consist in a non-linear split-window algorithm including the algorithm correction scheme developed by Le Borgne et al. (2011). The bias correction relies on simulations of infrared brightness temperatures performed using Numerical Weather Prediction model atmospheric profiles of water vapour and temperature, and RTTOV radiative transfer model. The cloud mask used is the Climate SAF reprocessing of the MSG/SEVIRI archive. It is consistent over the period in consideration. Atmospheric Saharan dusts have a strong impact on the retrieved SST, they are taken into consideration through the computation of the Saharan Dust Index (Merchant et al., 2006) which is then used to determine an empirical correction applied to SST. The MSG/SEVIRI SST reprocessing dataset consist in hourly level 3 composite of sub-skin temperature projected onto a regular 0.05° grid over the region delimited by 60N,60S and 60W,60E. This presentation gives an overview of the data and methods used for the reprocessing, the products and validation results against drifting buoys measurements extracted from the ERA Clim dataset.

  11. Britain's nuclear secrets: inside Sellafield

    NASA Astrophysics Data System (ADS)

    Marino, Antigone

    2017-11-01

    Lying on the remote north west coast of England, Sellafield is one of the most secret places in UK, and even one of the most controversial nuclear fuel reprocessing and nuclear decommissioning sites in Britain. The film director Tim Usborne let us enter into the world's first nuclear power station, revealing Britain's attempts to harness the almost limitless power of the atom. It is precisely the simplicity and the scientific rigor used in the film to speak of nuclear, which led this documentary to win the Physics Prize supported by the European Physical Society at the European Science TV and New Media Festival and Awards 2016.

  12. The myth of the ``proliferation-resistant'' closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin S.

    2000-07-01

    National nuclear energy programs that engage in reprocessing of spent nuclear fuel (SNF) and the development of "closed" nuclear fuel cycles based on the utilization of plutonium process and store large quantities of weapons-usable nuclear materials in forms vulnerable to diversion or theft by national or subnational groups. Proliferation resistance, an idea dating back at least as far as the International Fuel Cycle Evaluation (INFCE) of the late 1970s, is a loosely defined term referring to processes for chemical separation of SNF that do not extract weapons-usable materials in a purified form.

  13. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. P.; Pastor, R. S.

    2002-02-28

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, whichmore » Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.« less

  14. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... undue risk to the health and safety of the public. This appendix establishes quality assurance...: reactor physics, stress, thermal, hydraulic, and accident analyses; compatibility of materials...

  15. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    DOE PAGES

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; ...

    2017-08-30

    Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li 2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl 2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersivemore » X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less

  16. Nuclear fuels - Present and future

    NASA Astrophysics Data System (ADS)

    Olander, D.

    2009-06-01

    The important developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of LWR fuels are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H 2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel rod designs, the hydride fuel with liquid-metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the very high temperature reactor and the sodium fast reactor, and the accompanying reprocessing technologies, aqueous-based UREX+1a and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the fuel's behavior under irradiation and in the reprocessing schemes are emphasized.

  17. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  18. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K.; Crouse, David J.; Mailen, James C.

    1982-01-01

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  19. Next-generation purex flowsheets with acetohydroxamic acid as complexant for FBR and thermal-fuel reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shekhar; Koganti, S.B.

    2008-07-01

    Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing basedmore » FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)« less

  20. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less

  1. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    DOE PAGES

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; ...

    2017-10-09

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less

  2. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    NASA Astrophysics Data System (ADS)

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; Hunt, Alan W.; Ludewigt, Bernhard

    2018-01-01

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ∼6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the art and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2" (length) × 2" (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ∼3 Mcps. An experimental methodology was developed that uses the average current from the PMT's anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ∼3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  4. Processes for Removal and Immobilization of 14C, 129I, and 85Kr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strachan, Denis M.; Bryan, Samuel A.; Henager, Charles H.

    2009-10-05

    This is a white paper covering the results of a literature search and preliminary experiments on materials and methods to remove and immobilize gaseous radionuclided that come from the reprocessing of spent nuclear fuel.

  5. Evaluation and development plan of NRTA measurement methods for the Rokkasho Reprocessing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.K.; Hakkila, E.A.; Flosterbuer, S.F.

    Near-real-time accounting (NRTA) has been proposed as a safeguards method at the Rokkasho Reprocessing Plant (RRP), a large-scale commercial boiling water and pressurized water reactors spent-fuel reprocessing facility. NRTA for RRP requires material balance closures every month. To develop a more effective and practical NRTA system for RRP, we have evaluated NRTA measurement techniques and systems that might be implemented in both the main process and the co-denitration process areas at RRP to analyze the concentrations of plutonium in solutions and mixed oxide powder. Based on the comparative evaluation, including performance, reliability, design criteria, operation methods, maintenance requirements, and estimatedmore » costs for each possible measurement method, recommendations for development were formulated. This paper discusses the evaluations and reports on the recommendation of the NRTA development plan for potential implementation at RRP.« less

  6. Isotopic ratios of 36Cl/Cl in Japanese surface soil

    NASA Astrophysics Data System (ADS)

    Seki, R.; Matsuhiro, T.; Nagashima, Y.; Takahashi, T.; Sasa, K.; Sueki, K.; Tosaki, Y.; Bessho, K.; Matsumura, H.; Miura, T.

    2007-06-01

    We have measured the 36Cl/Cl ratio of uncultivated surface soil samples collected from 11 areas distributed throughout Japan to determine the undisturbed value of the ratio. The ratio was found to be on the order of 10-13 except for the Tokai-mura area, where four research reactors, two commercial nuclear power plants and a nuclear fuel reprocessing plant have been operated. The observed ratio in the Tokai-mura area was higher than 10-12. Notably, soil samples collected from a site of commercial BWR nuclear power plants in Fukushima prefecture showed no significant increase in 36Cl/Cl ratio. The 36Cl/Cl ratio depth profiles of soil samples collected at both of Makabe-town and Tokai-mura were also measured. Since Makabe-town is located about 50 km apart from Tokai-mura, we do not expect it to be affected by the nuclear facilities. No large variations were observed in the Makabe depth profile; the measured ratios ranged from ∼3 to ∼5 × 10-13. The result obtained for Tokai-mura is significantly different in that from the surface to about 80 cm depth, the measured ratios, ∼10-12, are much higher than any at Makabe. At depth below 80 cm, the Tokai-mura ratios are lower and become indistinguishable from those at Makabe. The 36Cl/Cl ratio in unaffected areas of Japan is estimated to be 3-4 × 10-13.

  7. High-level endoscope disinfection processes in emerging economies: financial impact of manual process versus automated endoscope reprocessing.

    PubMed

    Funk, S E; Reaven, N L

    2014-04-01

    The use of flexible endoscopes is growing rapidly around the world. Dominant approaches to high-level disinfection among resource-constrained countries include fully manual cleaning and disinfection and the use of automated endoscope reprocessors (AERs). Suboptimal reprocessing at any step can potentially lead to contamination, with consequences to patients and healthcare systems. To compare the potential results of guideline-recommended AERs to manual disinfection along three dimensions - productivity, need for endoscope repair, and infection transmission risk in India, China, and Russia. Financial modelling using data from peer-reviewed published literature and country-specific market research. In countries where revenue can be gained through productivity improvements, conversion to automated reprocessing has a positive direct impact on financial performance, paying back the capital investment within 14 months in China and seven months in Russia. In India, AER-generated savings and revenue offset nearly all of the additional operating costs needed to support automated reprocessing. Among endoscopy facilities in India and China, current survey-reported practices in endoscope reprocessing using manual soaking may place patients at risk of exposure to pathogens leading to infections. Conversion from manual soak to use of AERs, as recommended by the World Gastroenterology Organization, may generate cost and revenue offsets that could produce direct financial gains for some endoscopy units in Russia and China. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. New developments and prospects on COSI, the simulation software for fuel cycle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.

    2013-07-01

    COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aimmore » in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.« less

  9. 10 CFR 110.41 - Executive Branch review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (6) An export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing plutonium... equipment to a foreign reactor. (8) An export involving radioactive waste. (9) An export to any country...

  10. Planning, Preparation, and Transport of the High-Enriched Uranium Spent Nuclear Fuel from the Czech Republic to the Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Tyacke; I. Bolshinsky; Frantisek Svitak

    The United States, Russian Federation, and the International Atomic Energy Agency have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program, which is part of the Global Threat Reduction Initiative. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. In February 2003, the RRRFR Program began discussions with the Nuclear Research Institute (NRI) in Rež, Czech Republic, about returning their HEU spent nuclear fuel to the Russian Federation for reprocessing. In March 2005, the U.S. Department ofmore » Energy signed a contract with NRI to perform all activities needed for transporting their HEU spent nuclear fuel to Russia. After 2 years of intense planning, preparations, and coordination at NRI and with three other countries, numerous organizations and agencies, and a Russian facility, this shipment is scheduled for completion before the end of 2007. This paper will provide a summary of activities completed for making this international shipment. This paper contains an introduction and background of the RRRFR Program and the NRI shipment project. It summarizes activities completed in preparation for the shipment, including facility preparations at NRI in Rež and FSUE “Mayak” in Ozyorsk, Russia; a new transportation cask system; regulatory approvals; transportation planning and preparation in the Czech Republic, Slovakia, Ukraine, and the Russian Federation though completion of the Unified Project and Special Ecological Programs. The paper also describes fuel loading and cask preparations at NRI and final preparations/approvals for transporting the shipment across the Czech Republic, Slovakia, Ukraine, and the Russian Federation to FSUE Mayak where the HEU spent nuclear fuel will be processed, the uranium will be downblended and made into low-enriched uranium fuel for commercial reactor use, and the high-level waste from the processing will be stabilized and stored for less than 20 years before being sent back to the Czech Republic for final disposition. Finally, the paper contains a section for the summary and conclusions.« less

  11. Hazardous Waste Cleanup: Veolia ES Technical Solutions, L.L.C. in Middlesex, New Jersey

    EPA Pesticide Factsheets

    Veolia ES Technical Solutions is located at 125 Factory Lane in Middlesex, New Jersey. Veolia owns and operates a solvent-reprocessing facility that is located on a four-acre site in an industrial area of Middlesex Borough.

  12. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usabilitymore » and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.« less

  13. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years untilmore » reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on storage of SF from commercial operation, the principles described are equally applicable to SF from research and production reactors as well as high-level radioactive waste.« less

  14. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Gruber, N.

    2011-12-01

    The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C), potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than -0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985-2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.

  15. Method for photochemical reduction of uranyl nitrate by tri-N-butyl phosphate and application of this method to nuclear fuel reprocessing

    DOEpatents

    De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.

    1978-01-01

    Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, S. H.; Spencer, B. B.; Strachan, D. M.

    Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially high biological impact. Accordingly, control of the release of 129I is most critical with respect to the regulations for the release of radioactive material in stack emissions. It is estimated that current EPA regulations (EPA 2010) would require any reprocessing plant in the United States to limit 129I release to lessmore » than 0.05 Ci/MTIHM for a typical fuel burnup of 55 gigawatt days per metric tonne (GWd/t) (Jubin 2011). The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2 and the focus of organic iodide studies has been CH3I. In this document, we provide the results of an examination of publically available literature that is relevant to the presence and sources of both inorganic and organic iodine-bearing species in reprocessing plants. We especially focus on those that have the potential to be poorly sequestered with traditional capture methodologies. Based on the results of the literature survey and some limited thermodynamic modeling, the inorganic iodine species hypoiodous acid (HOI) and iodine monochloride (ICl) were identified as potentially low-sorbing iodine species that could present in off-gas systems. Organic species of interest included both short chain alkyl iodides such as methyl iodide (CH3I) and longer alkyl iodides up to iodododecane (C10H21I). It was found that fuel dissolution may provide conditions conducive to HOI formation and has been shown to result in volatile long-chain alkyl iodides, though these may not volatilize until later in the reprocessing sequence. Solvent extraction processes were found to be significant sources of various organic iodine-bearing species; formation of these was facilitated by the presence of radiolytic decomposition products resulting from radiolysis of tri-n-butyl phosphate and dodecane. Primarily inorganic iodine compounds were expected from waste management processes, including chlorinated species such as ICl. Critical knowledge gaps that must still be addressed include confirmation of the existence and quantification of low-sorbing species in the off-gas of reprocessing facilities. The contributions from penetrating forms of iodine to the plant DF are largely unknown and highly dependent on the magnitude of their presence. These species are likely to be more difficult to remove and it is likely that their sequestration could be improved through the use of different sorbents, through design modifications of the off-gas capture system, or through chemical conversion prior to iodine abatement that would produce more easily captured forms.« less

  17. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.

    PubMed

    Abe, K; Iyogi, T; Kawabata, H; Chiang, J H; Suwa, H; Hisamatsu, S

    2015-11-01

    The spent nuclear fuel reprocessing plant of Japan Nuclear Fuel Limited (JNFL) located in Rokkasho, Japan, discharged small amounts of (85)Kr into the atmosphere during final tests of the plant with actual spent fuel from 31 March 2006 to October 2008. During this period, the gamma-ray dose rates due to discharged (85)Kr were higher than the background rates measured at the Institute for Environmental Sciences and at seven monitoring stations of the Aomori prefectural government and JNFL. The dispersion of (85)Kr was simulated by means of the fifth-generation Penn State/NCAR Mesoscale Model and the CG-MATHEW/ADPIC models (ver. 5.0) with a vertical terrain-following height coordinate. Although the simulated gamma-ray dose rates due to discharged (85)Kr agreed fairly well with measured rates, the agreement between the estimated monthly mean (85)Kr concentrations and the observed concentrations was poor. Improvement of the vertical flow of air may lead to better estimation of (85)Kr dispersion. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Iodine Adsorption in Metal Organic Frameworks in the Presence of Humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Chen, Xianyin; Lobanov, Sergey S.

    Used nuclear fuel (UNF) reprocessing represents a unique challenge when dealing with radionuclides such as isotopes of 85Kr and 129I 2, due to their volatility and long half-life. However, efficient capture of 129I 2 (t 1/2 = 15.7 x 10 6 years) from the nuclear waste stream can help to reduce the risk of releasing I 2 radionuclide into the environment and mitigate concerns about human health problems. Metal organic frameworks (MOFs) have been reported to be potential I 2 adsorbents: but the effect of water vapor, generally present in the reprocessing off-gas stream is rarely taken into account. Moisturemore » stable porous MOFs, which can selectively adsorb I 2 in presence of water vapor is thus of great interest. Herein, the I 2 adsorption performance of two microporous MOFs is reported in presence of different humidity. I…π phenyl ring interactions are mainly responsible for the adsorption as revealed by single crystal XRD« less

  19. Kr/Xe Separation over a Chabazite Zeolite Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xuhui; Zong, Zhaowang; Elsaidi, Sameh K.

    2016-08-10

    Cryogenic distillation, the current conventional technology to separate Krypton and Xenon from air, and from nuclear reprocessing technologies, is an energy-intensive and expensive process. Membrane technology could potentially make this challenging industrial separation less energy intensive and economically viable. We demonstrate that chabazite zeolite SAPO-34 membranes effectively separated Kr/Xe gas mixtures at industrially relevant compositions. Control over membrane thickness and average crystal size led to industrial range permeances and high separation selectivities. Specifically, SAPO-34 membranes can separate Kr/Xe mixtures with Kr permeances as high as 361.4 GPU and separation selectivities of 34.8 for molar compositions close to typical concentrations ofmore » these two gases in air. In addition, SAPO-34 membranes separated Kr/Xe mixtures with Kr permeances as high as 525.7 GPU and separation selectivities up to 45.1 for molar compositions as might be encountered in nuclear reprocessing technologies. Molecular sieving and differences in diffusivities were identified as the dominant separation mechanisms.« less

  20. EAST WEST NORTH ELEVATIONS OF MULTICURIE CELL ARCHITECTURAL DETAILS REMOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST WEST NORTH ELEVATIONS OF MULTICURIE CELL ARCHITECTURAL DETAILS REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-00627-00-706-050245. ALTERNATE ID NUMBER AED-D-245. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. Potential of metal-organic frameworks for separation of xenon and krypton.

    PubMed

    Banerjee, Debasis; Cairns, Amy J; Liu, Jian; Motkuri, Radha K; Nune, Satish K; Fernandez, Carlos A; Krishna, Rajamani; Strachan, Denis M; Thallapally, Praveen K

    2015-02-17

    CONSPECTUS: The total world energy demand is predicted to rise significantly over the next few decades, primarily driven by the continuous growth of the developing world. With rapid depletion of nonrenewable traditional fossil fuels, which currently account for almost 86% of the worldwide energy output, the search for viable alternative energy resources is becoming more important from a national security and economic development standpoint. Nuclear energy, an emission-free, high-energy-density source produced by means of controlled nuclear fission, is often considered as a clean, affordable alternative to fossil fuel. However, the successful installation of an efficient and economically viable industrial-scale process to properly sequester and mitigate the nuclear-fission-related, highly radioactive waste (e.g., used nuclear fuel (UNF)) is a prerequisite for any further development of nuclear energy in the near future. Reprocessing of UNF is often considered to be a logical way to minimize the volume of high-level radioactive waste, though the generation of volatile radionuclides during reprocessing raises a significant engineering challenge for its successful implementation. The volatile radionuclides include but are not limited to noble gases (predominately isotopes of Xe and Kr) and must be captured during the process to avoid being released into the environment. Currently, energy-intensive cryogenic distillation is the primary means to capture and separate radioactive noble gas isotopes during UNF reprocessing. A similar cryogenic process is implemented during commercial production of noble gases though removal from air. In light of their high commercial values, particularly in lighting and medical industries, and associated high production costs, alternate approaches for Xe/Kr capture and storage are of contemporary research interest. The proposed pathways for Xe/Kr removal and capture can essentially be divided in two categories: selective absorption by dissolution in solvents and physisorption on porous materials. Physisorption-based separation and adsorption on highly functional porous materials are promising alternatives to the energy-intensive cryogenic distillation process, where the adsorbents are characterized by high surface areas and thus high removal capacities and often can be chemically fine-tuned to enhance the adsorbate-adsorbent interactions for optimum selectivity. Several traditional porous adsorbents such as zeolites and activated carbon have been tested for noble gas capture but have shown low capacity, selectivity, and lack of modularity. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are an emerging class of solid-state adsorbents that can be tailor-made for applications ranging from gas adsorption and separation to catalysis and sensing. Herein we give a concise summary of the background and development of Xe/Kr separation technologies with a focus on UNF reprocessing and the prospects of MOF-based adsorbents for that particular application.

  2. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less

  3. Trace elements retained in washed nuclear fuel reprocessing solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L.W.; MacMurdo, K.W.

    1979-09-01

    Analysis of purified TBP extractant from solvent extraction processes at Savannah River Plant showed several stable elements and several long-lived radioisotopes. Stable elements Al, Na, Br, Ce, Hg, and Sm are found in trace quantities in the solvent. The only stable metallic element consistently found in the solvent was Al, with a concentration which varies from about 30 ppM to about 10 ppM. The halogens Br and Cl appear to be found in the solvent systems as organo halides. Radionuclides found were principally /sup 106/Ru, /sup 129/I, /sup 3/H, /sup 235/U, and /sup 239/Pu. The /sup 129/I concentration was aboutmore » 1 ppM in the first solvent extraction cycle of each facility. In the other cycles, /sup 129/I concentration varied from about 0.1 to 0.5 ppM. Both /sup 129/I and /sup 3/H appear to be in the organic solvent as a result of exchange with hydrogen.« less

  4. Alternative Radioisotopes for Heat and Power Sources

    NASA Astrophysics Data System (ADS)

    Tinsley, T.; Sarsfield, M.; Rice, T.

    Production of 238Pu requires considerable facilities including a nuclear reactor and reprocessing plants that are very expensive to build and operate. Thus, a more economical alternative is very attractive to the industry. There are many alternative radioisotopes that exist but few that satisfy the criteria of performance, availability and cost to produce. Any alternative to 238Pu must exist in a chemical form that is compatible with the materials required to safely encapsulate the heat source at the high temperatures of operation and potential launch failure scenarios. The chemical form must also have suitable thermal properties to ensure maximum energy conversion efficiencies when integrated into radioisotope thermoelectric generators over the required mission durations. In addition, the radiation dose must be low enough for operators during production and not so prohibitive that excessive shielding mass is required on the space craft. This paper will focus on the preferred European alternative of 241Am, and the issues that will need to be addressed.

  5. 10 CFR 110.41 - Executive Branch review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing plutonium, except for exports of... foreign reactor. (8) An export involving radioactive waste. (9) An export to any country listed in § 110...

  6. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less

  7. NORTH ELEVATION OF HOT PILOT PLANT (CPP640) LOOKING SOUTH AFTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF HOT PILOT PLANT (CPP-640) LOOKING SOUTH AFTER REMOTE ANALYTICAL FACILITY (CPP-627) WAS REMOVED. PHOTO NUMBER HD-54-33-2. Mike Crane, Photographer, 7/2006 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. Financial Planning as a Tool for Efficient and Timely Decommissioning of Nuclear Research Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cato, Anna; Lindskog, Staffan; Sjoeblom, Rolf

    2008-01-15

    It is generally recognized in the technical and economical literature that reliable cost evaluations with adequate estimates also of the errors and uncertainties involved are necessary in order for rational and appropriate management decisions to be made on any major plant investment. Such estimates are required for the selection of technologies to be applied and for selection to be made between alternative technologies and designs as well as for the overall financing issues including the one of whether to go ahead with the project. Inadequacies in the cost calculations typically lead to suboptimal decisions and ultimately substantial overruns and/or needsmore » for retrofits. Actually, a very strict discipline has to be applied with adaptation of the approach used with regard to the stage of the planning. Deviations from the expected tend to raise the estimated cost much more frequently than they lower it. The same rationale applies to planning and cost calculations for decommissioning of nuclear research facilities. There are, however, many reasons why such estimations may be very treacherous to carry out. This will be dealt with in the following. The knowledge base underlying the present paper has been developed and accumulated as a result of the research that the Swedish Nuclear Power Inspectorate (SKI) has carried out in support of its regulatory oversight over the Swedish system of finance. The findings are, however, equally applicable and appropriate for implementers in their planning, decision, monitoring and evaluation activities. In the nineteen fifties and sixties, Sweden had a comprehensive program for utilization of nuclear power including uranium mining, fuel fabrication, reprocessing and domestically developed heavy water reactors. Examples of facilities are presented in Figures 1-5. Eventually, the development work lead to the present nuclear program with ten modern light water reactors in operation at present. According to Swedish law, those who benefit from the use of these plants must pay a fee which is accumulated in a fund so that all future costs for decommissioning and waste management can be covered. Each year, estimates on all future costs are submitted to the SKI for review. The Government then decides on the size of the fee, based on the results of the review. In conclusion: it has been concluded in the SKI work - in spite of the difficulties pointed out above - that cost calculations with the precision needed for a system of finance can be achieved even at early stages provided that the various features of the task are adequately dealt with.« less

  9. FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), FIRST FLOOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), FIRST FLOOR SHOWING SAMPLE CORRIDORS AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL FACILITIES LAB, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051979. ALTERNATE ID NUMBER CPP-E-1979. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. Aspects of remote maintenance in an FRG reprocessing plant from the manufacturer's viewpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitzchel, G.; Tennie, M.; Saal, G.

    In April 1986 a consortium led by Kraftwerk Union AG was commissioned by the German society for nuclear fuel reprocessing (DWK) to build the first West German commercial reprocessing plant for spent fuel assemblies. The main result of the planning efforts regarding remote maintenance operations inside the main process building was the introduction of FEMO technology (FEMO is an acronym based on German for remote handling modular technique). According to this technology the two cells in which the actual reprocessing (which is based on the PUREX technique) takes place are provided with frames to accommodate the process components (tanks, pumps,more » agitators, etc.), each frame together with the components which it supports forming one module. The two cells are inaccessible and windowless. For handling operations each cell is equipped with an overhead crane and a crane-like manipulator carrier system (MTS) with power manipulator. Viewing of the operations from outside the cells is made possible by television (TV) cameras installed at the crane, the MTS, and the manipulator. This paper addresses some examples of problems that still need to be solved in connection with FEMO handling. In particular, the need for close cooperation between the equipment operator, the component designer, the process engineer, the planning engineer, and the licensing authorities will be demonstrated.« less

  11. New measurement of the 242Pu(n,γ) cross section at n_TOF

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Guerrero, C.; Cortés-Giraldo, M. A.; Quesada, J. M.; Mendoza, E.; Cano-Ott, D.; Eberhardt, K.; Junghans, A.

    2016-03-01

    The use of MOX fuel (mixed-oxide fuel made of UO2 and PuO2) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. With the use of such new fuel composition rich in Pu, a better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United States (ENDF) nuclear data agencies. For the case of 242Pu, the two only neutron capture time-of-flight measurements available, from 1973 and 1976, are not consistent with each other, which calls for a new time-of flight capture cross section measurement. In order to contribute to a new evaluation, we have perfomed a neutron capture cross section measurement at the n_TOF-EAR1 facility at CERN using four C6D6 detectors, using a high purity target of 95 mg. The preliminary results assessing the quality and limitations (background, statistics and γ-flash effects) of this new experimental data are presented and discussed, taking into account that the aimed accuracy of the measurement ranges between 7% and 12% depending on the neutron energy region.

  12. Characterization of Actinides Complexed to Nuclear Fuel Constituents Using ESI-MS.

    PubMed

    McDonald, Luther W; Campbell, James A; Vercouter, Thomas; Clark, Sue B

    2016-03-01

    Electrospray ionization-mass spectrometry (ESI-MS) was tested for its use in monitoring spent nuclear fuel (SNF) constituents including U, Pu, dibutyl phosphate (DBP), and tributyl phosphate (TBP). Both positive and negative ion modes were used to evaluate the speciation of U and Pu with TBP and DBP. Furthermore, apparent stability constants were determined for U complexed to TBP and DBP. In positive ion mode, TBP produced a strong signal with and without complexation to U or Pu, but, in negative ion mode, no TBP, U-TBP, or Pu-TBP complexes were observed. Apparent stability constants were determined for [UO2(NO3)2(TBP)2], [UO2(NO3)2(H2O)(TBP)2], and [UO2(NO3)2(TBP)3]. In contrast DBP, U-DBP, and Pu-DBP complexes were observed in both positive and negative ion modes. Apparent stability constants were determined for the species [UO2(DBP)], [UO2(DBP)3], and [UO2(DBP)4]. Analyzing mixtures of U or Pu with TBP and DBP yielded the formation of ternary complexes whose stoichiometry was directly related to the ratio of TBP to DBP. The ESI-MS protocols used in this study will further demonstrate the utility of ESI-MS and its applicability to process control monitoring in SNF reprocessing facilities.

  13. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.« less

  14. ORNL experience and perspectives related to processing of thorium and 233U for nuclear fuel

    DOE PAGES

    Croff, Allen G.; Collins, Emory D.; Del Cul, G. D.; ...

    2016-05-01

    Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable 233U for recycle in thermal reactors, fast reactors, or externally driven systems. Here, lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing 233U.

  15. Spent fuel data base: commercial light water reactors. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  16. Experimental studies at the Idaho Chemical Processing Plant on actinide partitioning from acidic nuclear wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIssaac, L. D.; Baker, J. D.; Meikrantz, D. H.

    1980-01-01

    Wastes generated at ICPP and in the reprocessing of LWR fuel is discussed separately. DHDECMP is used as extractant. Studies on DHDECMP purification and toxicity, diluent effects, reaction kinetics, radioloysis, mixer-settler performance, etc. are reported. 10 tables, 3 figures. (DLC)

  17. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... executing. III. Design Control Measures shall be established to assure that applicable regulatory... control of design interfaces and for coordination among participating design organizations. These measures..., approval, release, distribution, and revision of documents involving design interfaces. The design control...

  18. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... executing. III. Design Control Measures shall be established to assure that applicable regulatory... control of design interfaces and for coordination among participating design organizations. These measures..., approval, release, distribution, and revision of documents involving design interfaces. The design control...

  19. A Specific Long-Term Plan for Management of U.S. Nuclear Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Salomon

    2006-07-01

    A specific plan consisting of six different steps is proposed to accelerate and improve the long-term management of U.S. Light Water Reactor (LWR) spent nuclear fuel. The first step is to construct additional, centralized, engineered (dry cask) spent fuel facilities to have a backup solution to Yucca Mountain (YM) delays or lack of capacity. The second step is to restart the development of the Integral Fast Reactor (IFR), in a burner mode, because of its inherent safety characteristics and its extensive past development in contrast to Acceleration Driven Systems (ADS). The IFR and an improved non-proliferation version of its pyro-processingmore » technology can burn the plutonium (Pu) and minor actinides (MA) obtained by reprocessing LWR spent fuel. The remaining IFR and LWR fission products will be treated for storage at YM. The radiotoxicity of that high level waste (HLW) will fall below that of natural uranium in less than one thousand years. Due to anticipated increased capital, maintenance, and research costs for IFR, the third step is to reduce the required number of IFRs and their potential delays by implementing multiple recycles of Pu and Neptunium (Np) MA in LWR. That strategy is to use an advanced separation process, UREX+, and the MIX Pu option where the role and degradation of Pu is limited by uranium enrichment. UREX+ will decrease proliferation risks by avoiding Pu separation while the MIX fuel will lead to an equilibrium fuel recycle mode in LWR which will reduce U. S. Pu inventory and deliver much smaller volumes of less radioactive HLW to YM. In both steps two and three, Research and Development (R and D) is to emphasize the demonstration of multiple fuel reprocessing and fabrication, while improving HLW treatment, increasing proliferation resistance, and reducing losses of fissile material. The fourth step is to license and construct YM because it is needed for the disposal of defense wastes and the HLW to be generated under the proposed plan. The fifth step consists of developing a risk informed methodology to assess the various options available for disposition of LWR spent fuel and to select among them. The sixth step is to modify the current U. S. infrastructure and to create a climate to increase the utilization of uranium and the sustainability of nuclear generated electricity. (author)« less

  20. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Frank L.

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storagemore » sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)« less

  1. PLOT PLAN OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLOT PLAN OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS AND PROPOSED LOCATION OF FUEL ELEMENT CUTTING FACILITY. INL DRAWING NUMBER 200-0603-00-706-051287. ALTERNATE ID NUMBER CPP-C-1287. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. Valve For Extracting Samples From A Process Stream

    NASA Technical Reports Server (NTRS)

    Callahan, Dave

    1995-01-01

    Valve for extracting samples from process stream includes cylindrical body bolted to pipe that contains stream. Opening in valve body matched and sealed against opening in pipe. Used to sample process streams in variety of facilities, including cement plants, plants that manufacture and reprocess plastics, oil refineries, and pipelines.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Tadahiro; Inaba, Makoto; Takahashi, Naoki

    During the second and third steps of Active Test at Rokkasho Reprocessing Plant (RRP), the performances of the Separation Facility have been checked; (A) diluent washing efficiency, (B) plutonium stripping efficiency, (C) decontamination factor of fission products and (D) plutonium and uranium leakage into raffinate and spent solvent. Test results were equivalent to or better than expected. (authors)

  4. Iodine isotopes (129I and 127I) in the hydrosphere of Qinghai-Tibet region and South China Sea.

    PubMed

    Yi, Peng; Chen, Xuegao; Wang, Zixia; Aldahan, Ala; Hou, Xiaolin; Yu, Zhongbo

    2018-06-14

    The radioactive isotope 129 I, with a half-life of 1.57 × 10 7 years, is widely used as a tracer to assess nuclear safety, to track environmental and geological events and to figure out the details of the stable iodine geochemical cycle. This work investigated the 129 I and 127 I distribution in water samples collected from the terrestrial (rivers, lakes and springs) and marine water systems (estuary and sea) in China. The measured 129 I concentrations of (1-51) × 10 6 atoms/L and 129 I/ 127 I ratios of (0.03-21) × 10 -10 shows the variability of 129 I level in the water systems. The local permafrost and seasonal frozen environment play a key role in groundwater recharge in the Qinghai-Tibet region, which is reflected in the 129 I distribution in surface water. The depth distribution of 129 I in the water column of the South China Sea reflects the effluence of different currents. The results also indicate that the hydrosphere of China contains one to three orders of magnitude less 129 I compared to those reported in Europe. Despite the large distance, the European nuclear fuel reprocessing facilities represent the major source of 129 I in the hydrosphere of China through atmospheric transport. The contribution of the Fukushima nuclear accident to 129 I levels in the hydrosphere of China was negligible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Safety and core design of large liquid-metal cooled fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volpe, Tristan A.

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits?more » My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the United States. By clarifying when countries are able to leverage steps towards the bomb for international political gain, my work advances our understanding of proliferation and coercive diplomacy.« less

  7. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-03-21

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  8. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1988-07-12

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  9. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.

    1989-01-01

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  10. France: Thrust and parry over nuclear risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balter, M.

    1997-01-31

    Claims about the health risks posed by nuclear-power installations are always controversial, but nowhere more so than in France, where some 75% of the nation`s electricity is generated from nuclear energy. So, it was no surprise that publication of a study by two French epidemiologists earlier this month claiming to show a link between cases of childhood leukemia and the nuclear-waste reprocessing plant at La Hague on the Normandy coast sparked fireworks in the French press. Several French epidemiologists sharply criticized the study`s methodology and conclusions. Their attacks have now drawn an unusual response from the British Medical Journal (BMJ),more » in which the paper appeared.« less

  11. Back-end of the fuel cycle - Indian scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattal, P.K.

    Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generatedmore » during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)« less

  12. Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivan R. Thomas

    INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentationmore » within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge based upon the separations process, plant layout, and operating history. The use of engineering estimates, in lieu of approved measurement methods, was justified by the estimated small quantity of holdup remaining, the infeasibility of measuring the holdup in a highly radioactive background, and the perceived hazards to personnel. The alternate approach to quantifying and terminating safeguards on process holdup was approved by deviation.« less

  13. EOS MLS Science Data Processing System: A Description of Architecture and Capabilities

    NASA Technical Reports Server (NTRS)

    Cuddy, David T.; Echeverri, Mark D.; Wagner, Paul A.; Hanzel, Audrey T.; Fuller, Ryan A.

    2006-01-01

    This paper describes the architecture and capabilities of the Science Data Processing System (SDPS) for the EOS MLS. The SDPS consists of two major components--the Science Computing Facility and the Science Investigator-led Processing System. The Science Computing Facility provides the facilities for the EOS MLS Science Team to perform the functions of scientific algorithm development, processing software development, quality control of data products, and scientific analyses. The Science Investigator-led Processing System processes and reprocesses the science data for the entire mission and delivers the data products to the Science Computing Facility and to the Goddard Space Flight Center Earth Science Distributed Active Archive Center, which archives and distributes the standard science products.

  14. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    NASA Astrophysics Data System (ADS)

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; Zimmer, Mindy M.; Pollington, Anthony D.; Rector, Kirk D.

    2017-01-01

    Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test ("trinitite") and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.

  15. Evaluation of nuclear fuel reprocessing strategies. 2. LWR fuel storage, recycle economics and plutonium logistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prince, B.E.; Hadley, S.W.

    1983-10-27

    This is the second of a two-part report intended as a critical review of certain issues involved with closing the Light Water Reactor (LWR) fuel cycle and establishing the basis for future transition to commercial breeder applications. The report is divided into four main sections consisting of (1) a review of the status of the LWR spent fuel management and storage problem; (2) an analysis of the economic incentives for instituting reprocessing and recycle in LWRs; (3) an analysis of the time-dependent aspects of plutonium economic value particularly as related to the LWR-breeder transition; and (4) an analysis of themore » time-dependent aspects of plutonium requirements and supply relative to this transition.« less

  16. In-Situ Characterization of Underwater Radioactive Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A.P.; Clapham, M.J.; Swinson, B.

    2008-07-01

    A fundamental requirement underpinning safe clean-up technologies for legacy spent nuclear fuel (SNF) ponds, pools and wet silos is the ability to characterize the radioactive waste form prior to retrieval. The corrosion products resulting from the long term underwater storage of spent nuclear fuel, reactor components and reprocessing debris present a major hazard to facility decontamination and decommissioning in terms of their radioactive content and physical / chemical reactivity. The ability to perform in-situ underwater non-destructive characterization of sludge and debris in a safe and cost-effective manner offers significant benefits over traditional destructive sampling methods. Several techniques are available formore » underwater measurements including (i) Gross gamma counting, (ii) Low-, Medium- and High- Resolution Gamma Spectroscopy, (iii) Passive neutron counting and (iv) Active Neutron Interrogation. The optimum technique depends on (i) the radioactive inventory (ii) mechanical access restrictions for deployment of the detection equipment, interrogation sources etc. (iii) the integrity of plant records and (iv) the extent to which Acceptable Knowledge which may be used for 'fingerprinting' the radioactive contents to a marker nuclide. Prior deployments of underwater SNF characterization equipment around the world have been reviewed with respect to recent developments in gamma and neutron detection technologies, digital electronics advancements, data transfer techniques, remote operation capabilities and improved field ruggedization. Modeling and experimental work has been performed to determine the capabilities, performance envelope and operational limitations of the future generation of non-destructive underwater sludge characterization techniques. Recommendations are given on the optimal design of systems and procedures to provide an acceptable level of confidence in the characterization of residual sludge content of legacy wet storage facilities such that retrieval and repackaging of SNF sludges may proceed safely and efficiently with support of the regulators and the public. (author)« less

  17. Radioactive Waste Management, its Global Implication on Societies, and Political Impact

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuaki

    2009-05-01

    Reprocessing plant in Rokkasho, Japan is under commissioning at the end of 2008, and it starts soon to reprocess about 800 Mt of spent fuel per annum, which have been stored at each nuclear power plant sites in Japan. Fission products together with minor actinides separated from uranium and plutonium in the spent fuel contain almost all radioactivity of it and will be vitrified with glass matrix, which then will fill the canisters. The canisters with the high level radioactive waste (HLW) are so hot in both thermal and radiological meanings that they have to be cooled off for decades before bringing out to any destination. Where is the final destination for HLW in Japan, which is located at the rim of the Pacific Ocean with volcanoes? Although geological formation in Japan is not so static and rather active as the other parts of the planet, experts concluded with some intensive studies and researches that there will be a lot of variety of geological formations even in Japan which can host the HLW for so long times of more than million years. Then an organization to implement HLW disposal program was set up and started to campaign for volunteers to accept the survey on geological suitability for HLW disposal. Some local governments wanted to apply, but were crashed down by local and neighbor governments and residents. The above development is not peculiar only to Japan, but generally speaking more or less common for those with radioactive waste programs. This is why the radioactive waste management is not any more science and technology issue but socio-political one. It does not mean further R&D on geological disposal is not any more necessary, but rather we, each of us, should face much more sincerely the societal and political issues caused by the development of the science and technology. Second topic might be how effective partitioning and transformation technology may be to reduce the burden of waste disposal and denature the waste toxicity? The third one might be the proposal of international nuclear fuel centers which supply nuclear fuel to the nuclear power plants in the region and take back spent fuel which will be reprocessed to recover useful energy resources of uranium and plutonium. This may help non proliferation issue due to world nuclear development beyond renaissance.

  18. 31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  19. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... related to the design, fabrication, construction, and testing of the structures, systems, and components... components. The pertinent requirements of this appendix apply to all activities affecting the safety-related..., which comprises those quality assurance actions related to the physical characteristics of a material...

  20. Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.

    PubMed

    Boulton, Frank

    2015-07-24

    The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.

  1. OBLIQUE PHOTO OF NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627) LOOKING SOUTHEAST. LABORATORY AND OFFICE BUILDING (CPP-602) APPEAR ON LEFT IN PHOTO. INL PHOTO NUMBER HD-22-2-2. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. 10 CFR Appendix I to Part 110 - Illustrative List of Reprocessing Plant Components Under NRC Export Licensing Authority

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... transuranic elements. Different technical processes can accomplish this separation. However, over the years Purex has become the most commonly used and accepted process. Purex involves the dissolution of... facilities have process functions similar to each other, including: irradiated fuel element chopping, fuel...

  3. 42 CFR 494.50 - Condition: Reuse of hemodialyzers and bloodlines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...— (1) May be reused for certain patients with the exception of Hepatitis B positive patients; (2) Must... CFR 876.5860. (b) Standard: Reprocessing requirements for the reuse of hemodialyzers and bloodlines. A... paragraphs (a) and (b) of this section, the dialysis facility must adhere to the following: (1) Monitor...

  4. Brief overview of the long-lived radionuclide separation processes developed in france in connection with the spin program

    NASA Astrophysics Data System (ADS)

    Madic, Charles; Bourges, Jacques; Dozol, Jean-François

    1995-09-01

    To reduce the long-term potential hazards associated with the management of nuclear wastes generated by nuclear fuel reprocessing, one alternative is the transmutation of long-lived radionuclides into short-lived radionuclides by nuclear means (P & T strategy). In this context, according to the law passed by the French Parliament on 30 December 1991, the CEA launched the SPIN program for the design of long-lived radionuclide separation and nuclear incineration processes. The research in progress to define separation processes focused mainly on the minor actinides (neptunium, americium and curium) and some fission products, like cesium and technetium. To separate these long-lived radionuclides, two strategies were developed. The first involves research on new operating conditions for improving the PUREX fuel reprocessing technology. This approach concerns the elements neptunium and technetium (iodine and zirconium can also be considered). The second strategy involves the design of new processes; DIAMEX for the co-extraction of minor actinides from the high-level liquid waste leaving the PUREX process, An(III)/Ln(III) separation using tripyridyltriazine derivatives or picolinamide extracting agents; SESAME for the selective separation of americium after its oxidation to Am(IV) or Am(VI) in the presence of a heteropolytungstate ligand, and Cs extraction using a new class of extracting agents, calixarenes, which exhibit exceptional Cs separation properties, especially in the presence of sodium ion. This lecture focuses on the latest achievements in these research areas.

  5. Accretion Disks in Supersoft X-ray Sources

    NASA Technical Reports Server (NTRS)

    Popham, Robert; DiStefano, Rosanne

    1996-01-01

    We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.

  6. Nuclear forensic analysis of a non-traditional actinide sample

    DOE PAGES

    Doyle, Jamie L.; Kuhn, Kevin John; Byerly, Benjamin; ...

    2016-06-15

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for thismore » Np oxide.« less

  7. Nuclear forensic analysis of a non-traditional actinide sample.

    PubMed

    Doyle, Jamie L; Kuhn, Kevin; Byerly, Benjamin; Colletti, Lisa; Fulwyler, James; Garduno, Katherine; Keller, Russell; Lujan, Elmer; Martinez, Alexander; Myers, Steve; Porterfield, Donivan; Spencer, Khalil; Stanley, Floyd; Townsend, Lisa; Thomas, Mariam; Walker, Laurie; Xu, Ning; Tandon, Lav

    2016-10-01

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for this Np oxide. Published by Elsevier B.V.

  8. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas

    2015-07-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no.more » 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)« less

  9. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.

  10. The radiological exposure of man from radioactivity in the Baltic Sea.

    PubMed

    Nielsen, S P; Bengtson, P; Bojanowsky, R; Hagel, P; Herrmann, J; Ilus, E; Jakobson, E; Motiejunas, S; Panteleev, Y; Skujina, A; Suplinska, M

    1999-09-30

    A radiological assessment has been carried out considering discharges of radioactivity to the Baltic Sea marine environment since 1950. The sources of radioactivity that have been evaluated are atmospheric nuclear-weapons fallout, fallout from the Chernobyl accident in 1986, discharges of radionuclides from Sellafield and La Hague transported into the Baltic Sea, and discharges of radionuclides from nuclear installations located in the Baltic Sea area. Dose rates from man-made radioactivity to individual members of the public (critical groups) have been calculated based on annual intake of seafood and beach occupancy time. The dose rates to individuals from the regions of the Bothnian Sea and Gulf of Finland are predicted to be larger than from any other area in the Baltic Sea due to the pattern of Chernobyl fallout. The dose rates are predicted to have peaked in 1986 at a value of 0.2 mSv year-1. Collective committed doses to members of the public have been calculated based on fishery statistics and predicted concentrations of radionuclides in biota and coastal sediments. The total collective dose from man-made radioactivity in the Baltic Sea is estimated at 2600 manSv, of which approximately two-thirds originate from Chernobyl fallout, approximately one-quarter from atmospheric nuclear-weapons fallout, approximately 8% from European reprocessing facilities, and approximately 0.04% from nuclear installations bordering the Baltic Sea area. An assessment of small-scale dumping of low-level radioactive waste in the Baltic Sea in the 1960s by Sweden and the Soviet Union has showed that doses to man from these activities are negligible. Dose rates and doses from natural radioactivity dominate except for the year 1986 where dose rates to individuals from Chernobyl fallout in some regions of the Baltic Sea approached those from natural radioactivity.

  11. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  12. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  13. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  14. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  15. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  16. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  17. 10 CFR Appendix I to Part 110 - Illustrative List of Reprocessing Plant Components Under NRC Export Licensing Authority

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assurance and quality control techniques) out of low carbon stainless steels, titanium, zirconium or other... materials such as low carbon stainless steels, titanium or zirconium, or other high quality materials... features for control of nuclear criticality: (i) Walls or internal structures with a boron equivalent of at...

  18. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  19. Development of Crystallizer for Advanced Aqueous Reprocessing Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadahiro Washiya; Atsuhiro Shibata; Toshiaki Kikuchi

    2006-07-01

    Crystallization is one of the remarkable technologies for future fuel reprocessing process that has safety and economical advantages. Japan Atomic Energy Agency (JAEA) (former Japan Nuclear Cycle Development Institute), Mitsubishi Material Corporation and Saitama University have been developing the crystallization process. In previous study, we carried out experimental studies with uranium, MOX and spent fuel conditions, and flowsheet analysis was considered. In association with these studies, an innovative continuous crystallizer and its system was developed to ensure high process performance. From the design study, an annular type continuous crystallizer was selected as the most promising design, and performance was confirmedmore » by small-scale test and engineering scale demonstration at uranium crystallization conditions. In this paper, the design study and the demonstration test results are described. (authors)« less

  20. Anthropogenic iodine-129 in seawater along a transect from the Norwegian coastal current to the North Pole.

    PubMed

    Alfimov, V; Aldahan, A; Possnert, G; Winsor, P

    2004-12-01

    Variation in the concentrations of iodine-129 (129I, T1/2=15.7 Myr), a low-level radioactive component of nuclear fuel waste, is documented in surface waters and depth profiles collected during 2001 along a transect from the Norwegian Coastal Current to the North Pole. The surface waters near the Norwegian coast are found to have 20 times higher 129I concentration than the surface waters of the Arctic Ocean. The depth profiles of 129I taken in the Arctic Ocean reveal a sharp decline in the concentration to a depth of about 300-500 m followed by a weaker gradient extending down to the bottom. A twofold increase in the 129I concentration is observed in the upper 1000 m since 1996. Based on known estimates of marine transient time from the release sources (the nuclear reprocessing facilities at La Hague, France, and Sellafield, UK), a doubling in the 129I inventory of the top 1000 m of the Arctic Ocean is expected to occur between the years 2001 and 2006. As 129I of polar mixed layer and Atlantic layer of the Arctic Ocean is ventilated by the East Greenland Current into the Nordic Seas and North Atlantic Ocean, further dispersal and increase of the isotope concentration in these regions will be encountered in the near future.

  1. Feasibility study of extremity dosemeter based on polyallyldiglycolcarbonate (CR-39) for neutron exposure.

    PubMed

    Chau, Q; Bruguier, P

    2007-01-01

    In nuclear facilities, some activities such as reprocessing, recycling and production of bare fuel rods expose the workers to mixed neutron-photon fields. For several workplaces, particularly in glove boxes, some workers expose their hands to mixed fields. The mastery of the photon extremity dosimetry is relatively good, whereas the neutron dosimetry still raises difficulties. In this context, the Institute for Radiological Protection and Nuclear Safety (IRSN) has proposed a study on a passive neutron extremity dosemeter based on chemically etched CR-39 (PADC: polyallyldiglycolcarbonate), named PN-3, already used in routine practice for whole body dosimetry. This dosemeter is a chip of plastic sensitive to recoil protons. The chemical etching process amplifies the size of the impact. The reading system for tracks counting is composed of a microscope, a video camera and an image analyser. This system is combined with the dose evaluation algorithm. The performance of the dosemeter PN-3 has been largely studied and proved by several laboratories in terms of passive individual neutron dosemeter which is used in routine production by different companies. This study focuses on the sensitivity of the extremity dosemeter, as well as its performance in the function of the level of the neutron energy. The dosemeter was exposed to monoenergetic neutron fields in laboratory conditions and to mixed fields in glove boxes at workplaces.

  2. Characterization of Actinides Complexed to Nuclear Fuel Constituents Using ESI-MS

    DOE PAGES

    McDonald, Luther W.; Campbell, James A.; Vercouter, Thomas; ...

    2016-03-01

    Electrospray ionization-mass spectrometry (ESI-MS) was tested for its use in monitoring spent nuclear fuel (SNF) constituents including U, Pu, dibutyl phosphate (DBP), and tributyl phosphate (TBP). Both positive and negative ion modes were used to evaluate the speciation of U and Pu with TBP and DBP. Furthermore, apparent stability constants were determined for U complexed to TBP and DBP. In positive ion mode, TBP produced a strong signal with and without complexation to U or Pu, but, in negative ion mode, no TBP, U-TBP, or Pu-TBP complexes were observed. Apparent stability constants were determined for [UO 2(NO 3) 2(TBP) 2],more » [UO 2(NO 3) 2(H 2O)(TBP) 2], and [UO 2(NO 3) 2(TBP) 3]. In contrast DBP, U-DBP, and Pu-DBP complexes were observed in both positive and negative ion modes. Apparent stability constants were determined for the species [UO 2(DBP)], [UO 2(DBP) 3], and [UO 2(DBP) 4]. Analyzing mixtures of U or Pu with TBP and DBP yielded the formation of ternary complexes whose stoichiometry was directly related to the ratio of TBP to DBP. The ESI-MS protocols used in this study will further demonstrate the utility of ESI-MS and its applicability to process control monitoring in SNF reprocessing facilities.« less

  3. Effects of Air Pollutants on Lichens of the Idaho National Engineering Laboratory National Environmental Research Park

    NASA Astrophysics Data System (ADS)

    Marty, R. C.; Forman, A.; Crawford, R.; Tyler, T.

    2001-12-01

    The Idaho National Engineering and Environmental Laboratory is a (2300 square km) National Environmental Research Park that has been used for research and operational support of nuclear power. The Park includes scattered industrial operations and provides an ideal setting to study effects of industry on semi-arid environments. One of the facilities on the Research Park is the Idaho Nuclear Technology Center (INTEC). This facility reprocessed spent nuclear fuel from the US Navy, and its operations included heating acidic solutions to convert wastes to a solid form. The conversion released nitrogen oxides, low levels of other gases (including HF), and small amounts of solid particles through a facility stack. A fossil-fuel power plant also contributed airborne contaminants including sulfur dioxide. A 1985 study identified the effects of INTEC operations on the health of lichens Xanthoria polycarpa (quantified using electrolyte leakage), on levels of trace metals in the lichens X. polycarpa and Rhizoplaca melanophthalma, and on the levels of trace metals in higher plants and soils. The study concluded that operations impacted the physiological health of X. polycarpa southwest of the plant, and that lead was significantly higher downwind of the plant relative to other locations. Effects of the plant were re-examined in 1999 as part of an Environmental Impact Statement to evaluate the environmental effects of measures available to deal with radioactive waste at INTEC. Sulfur dioxide emissions from the facility decreased from approximately 375 tonsyear to approximately 10 tonsyear between the two studies. The re-examination of lichens showed that the measure of physiological health used in the previous study (conductivity of rinsates collected from lichen thalli) correlated well to the levels of potassium measured in rinsates collected from thalli. There, however, was no correlation between the levels of potassium/conductivity of such rinsates and the levels of total potassium in lichens or between levels of potassium/conductivity and macroscopic vigor of the lichens or between levels of potassium/conductivity in rinsates and chlorophyll ratios (another common indicator of the physiological health of lichens). This suggests that potassium levels in rinsates may not be a good indicator of physiological stress. X. polycarpa abundance varied with direction from the facility. The species was lacking from background locations at Craters of the Moon National monument. Cover on dead Artemisia tridentata twigs varied between 2 and 5% downwind and crosswind for the predominant wind direction, but approached 75% to the north and northeast (downwind) of the facility. This differential cover is striking but was not noted in the previous study and probably reflects increased abundance of the nitrogen loving X. polycarpa downwind from the facility between the two studies. Calcium levels in R. melanophthalma around INTEC were significantly higher than calcium levels in lichens from the background location at Craters of the Moon. This may reflect migration of the species to more buffered calcium carbonate substrates in response to acidified precipitation. Levels of calcium in R. melanophthalma fell between the two studies, possibly reflecting less substrate acidification during the later period. Lead was not significantly elevated during the second study, but mercury may be elevated downwind of the facility.

  4. GEM*STAR: Time for an Alternative Way Forward

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2011-10-01

    The presumption that nuclear reactors will retain their role in global energy production is constantly being challenged - even more so following recent events at Fukushima. Nuclear energy, despite being ``green,'' has inexorably been coupled in the public mind with three paramount concerns: safety, weapons proliferation, and waste (and then ultimately cost). Over the past four decades, the safety of deployed fleets has greatly improved, yet the capital and political costs of a ``nuclear energy option'' appear insurmountable in several countries. The US approach to civilian nuclear energy has become deeply entrenched, first through choices made by the military, and then by the deployed nuclear reactor fleet. This extends to the research agencies as well, to the point where basic sciences and nuclear energy operate in separate spheres. But technologies and priorities have changed, and the time has arrived where a transformative re-think of nuclear energy is not only possible, but urgent. And nuclear physicists are uniquely positioned to accomplish this. This talk will show that by asking, and answering,``what would an accelerator-driven civilian nuclear energy program look like,'' ADNA Corporation's GEM*STAR design directly addresses all three fundamental concerns: safety, proliferation, and waste - and also the final hurdle: cost. GEM*STAR is not an ``add-on'' (to either Project-X, or GEN III+), but rather a base-line energy production capacity, for either electricity or transport fuel production. It integrates and advances the molten-salt reactor technology developed at ORNL, the MW beam accelerator technologies developed by basic sciences, and a reactor/target design optimized for accelerator driven-systems. The results include: the ability to use LWR spent fuel without reprocessing or additional waste; the ability to use natural uranium; no critical mass ever present; orders-of-magnitude less volatile radioactivity in the core; more efficient use of, and deeper burn of actinides, without additional waste; proliferation resistance (no enrichment or reprocessing); high-tolerance to ``beam-trips'' and ultimately, and perhaps most importantly, lower cost electricity or diesel fuel than any currently envisioned new energy source.

  5. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    DOE PAGES

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; ...

    2016-12-15

    Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less

  6. Report of foreign travel to Paris, France, June 1, 1990--June 12, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Jones, L.S.

    1990-07-01

    The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Central Waste Management Division, participated in a technology exchange program on French --- US low-level radioactive waste (LLW) management facility design, construction, and operation. Visits were made to the new French LLW disposal facility currently under construction, the Centre de Stockage de l'Aube (CSA), to the La Hague reprocessing facility to visit LLW conditioning and storage facilities, and to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM). A meeting was also held with representatives of the Agence National pour lamore » Gestion des Dechets Radioactifs (ANDRA) to discuss overall French and Oak Ridge LLW disposal facility development programs and to review the status of the efforts being conducted under the current subcontract with NUMATEC/Societe General pour les Techniques Nouvelles (SGN)/ANDRA.« less

  7. Generic repository design concepts and thermal analysis (FY11).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Robert; Dupont, Mark; Blink, James A.

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.« less

  8. Nuclear physics research operation. Monthly report, November 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, J.E.

    1958-12-10

    This report is a summary of projects worked on in support of the production reactors at Hanford. The projects include criticality studies, from tasks associated with fuel element reprocessing to shipments of slightly enriched uranium. They include studies of neutron cross sections for different reactions and neutron flux measurements in different reactor locations, as well as design studies for future reactor projects.

  9. Aqueous and pyrochemical reprocessing of actinide fuels

    NASA Astrophysics Data System (ADS)

    Toth, L. Mac; Bond, Walter D.; Avens, Larry R.

    1993-02-01

    Processing of the nuclear fuel actinides has developed in two independent directions—aqueous processing and pyroprocessing. Similarities in the two processes, their goals, and restraints are indicated in brief parallel descriptions along with distinguishing advantages and areas of future development. It is suggested that from a technical viewpoint, the ultimate process might be a hybrid which incorporates the best steps of each process.

  10. Concentration of 129I in aquatic biota collected from a lake adjacent to the spent nuclear fuel reprocessing plant in Rokkasho, Japan.

    PubMed

    Ueda, Shinji; Kakiuchi, Hideki; Hasegawa, Hidenao; Kawamura, Hidehisa; Hisamatsu, Shun'ichi

    2015-11-01

    The spent nuclear fuel reprocessing plant in Rokkasho, Japan, has been undergoing final testing since March 2006. During April 2006-October 2008, that spent fuel was cut and chemically processed, the plant discharged (129)I into the atmosphere and coastal waters. To study (129)I behaviour in brackish Lake Obuchi, which is adjacent to the plant, (129)I concentrations in aquatic biota were measured by accelerator mass spectrometry. Owing to (129)I discharge from the plant, the (129)I concentration in the biota started to rise from the background concentration in 2006 and was high during 2007-08. The (129)I concentration has been rapidly decreasing after the fuel cutting and chemically processing were finished. The (129)I concentration factors in the biota were higher than those reported by IAEA for marine organisms and similar to those reported for freshwater biota. The estimated annual committed effective dose due to ingestion of foods with the maximum (129)I concentration in the biota samples was 2.8 nSv y(-1). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs inmore » waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.« less

  12. Corrosion study of a highly durable electrolyzer based on cold crucible technique for pyrochemical reprocessing of spent nuclear oxide fuel

    NASA Astrophysics Data System (ADS)

    Takeuchi, M.; Arai, Y.; Kase, T.; Nakajima, Y.

    2013-01-01

    The application of the cold crucible technique to a pyrochemical electrolyzer used in the oxide-electrowinning method, which is a method for the pyrochemical reprocessing of spent nuclear oxide fuel, is proposed as a means for improving corrosion resistance. The electrolyzer suffers from a severe corrosion environment consisting of molten salt and corrosive gas. In this study, corrosion tests for several metals in molten 2CsCl-NaCl at 923 K with purging chlorine gas were conducted under controlled material temperature conditions. The results revealed that the corrosion rates of several materials were significantly decreased by the material cooling effect. In particular, Hastelloy C-22 showed excellent corrosion resistance with a corrosion rate of just under 0.01 mm/y in both molten salt and vapor phases by controlling the material surface at 473 K. Finally, an engineering-scale crucible composed of Hastelloy C-22 was manufactured to demonstrate the basic function of the cold crucible. The cold crucible induction melting system with the new concept Hastelloy crucible showed good compatibility with respect to its heating and cooling performances.

  13. Direct disposal of spent fuel: developing solutions tailored to Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Hideki; McKinley, Ian G

    2013-07-01

    With the past Government policy of 100% reprocessing in Japan now open to discussion, options for direct disposal of spent fuel (SF) are now being considered in Japan. The need to move rapidly ahead in developing spent fuel management concepts is closely related to the ongoing debate on the future of nuclear power in Japan and the desire to understand the true costs of the entire life cycle of different options. Different scenarios for future nuclear power - and associated decisions on extent of reprocessing - will give rise to quite different inventories of SF with different disposal challenges. Althoughmore » much work has been carried out spent fuel disposal within other national programmes, the potential for mining the international knowledge base is limited by the boundary conditions for disposal in Japan. Indeed, with a volunteer approach to siting, no major salt deposits and few undisturbed sediments, high tectonic activity, relatively corrosive groundwater and no deserts, it is evident that a tailored solution is needed. Nevertheless, valuable lessons can be learned from projects carried out worldwide, if focus is placed on basic principles rather than implementation details. (authors)« less

  14. Arctic Ocean sea ice drift origin derived from artificial radionuclides.

    PubMed

    Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C

    2010-07-15

    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Variants of Regenerated Fissile Materials Usage in Thermal Reactors as the First Stage of Fuel Cycle Closing

    NASA Astrophysics Data System (ADS)

    Andrianova, E. A.; Tsibul'skiy, V. F.

    2017-12-01

    At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.

  16. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...

  17. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...

  18. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds.

    PubMed

    Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric

    2015-05-13

    Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.

  19. The {sup 129}Iodine bomb pulse recorded in Mississippi River Delta sediments: Results from isotopes of I, Pu, Cs, Pb, and C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktay, S.D.; Santschi, P.H.; Moran, J.E.

    2000-03-01

    Anthropogenic sources from nuclear reprocessing discharges and bomb test fallout have completely overwhelmed the natural signal on the surface of the earth in the last 50 years. However, the transfer functions in and out of environmental compartments are not well known due to temporal variations in the sources of {sup 129}I and to a lack of knowledge regarding the forms of iodine. From a vertical profile of {sup 129}I/{sup 127}I ratios in sediments located in the Mississippi Delta region in approximately 60 meters water depth, the {sup 129}I input function to this region was reconstructed. Dates in the core weremore » assigned based on the plutonium peak at 20 cm depth (assumed to have been deposited in 1963) and the excess {sup 210}Pb profile in the same depth interval, and below that, based on the steadily decreasing {sup 240}Pu/{sup 239}Pu ratios from a ratio of 0.18 at 22 cm to 0.05 at 57 cm depth, the 1953 horizon. Atom ratios of {sup 129}I/{sup 137}I Cs, decay corrected to 1962, the year of maximum radionuclide production, are about 0.3, very close to the production ratios of about 0.2 during atomic bomb tests. This evidence, combined with other observations, strongly suggests that {sup 129}I in Mississippi River Delta sediments originates from atomic bomb fallout eroded from soils of the Mississippi River drainage basin, with little alteration of the isotopic ratios during transport from watershed to coastal deposits. Based on these observations and on laboratory evidence, the authors propose a conceptual model which explains this correspondence and the low {sup 129}I/{sup 127}I ratios. Differences in mobilities of the different chemical forms of {sup 129}I and {sup 127}I, as well as the variances in chemical forms of {sup 129}I from nuclear bomb fallout versus nuclear fuel reprocessing, are proposed to have created such a correspondence between I-isotope ratios and bomb fallout nuclides, without revealing recent inputs from nuclear fuel reprocessing releases to the northern hemisphere observed in watersheds of the USA and Europe.« less

  20. Environment, Safety, and Health: Status of DOE’s Reorganization of it’s Safety Oversight Function

    DTIC Science & Technology

    1990-01-01

    facilities. After deliberation, the Congress in late 1988 directed that the Defense Nuclear Facilities Safety Board be established to provide...nuclear safety matters will be conducted by either the Advisory Committee on Nuclear Facility Safety or the recently mandated Defense Nuclear Facilities Safety...the facilities under the statutory purview of the Defense Nuclear Facilities Safety Board once the board determines it is ready to assume independent

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Jamie L.; Kuhn, Kevin John; Byerly, Benjamin

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for thismore » Np oxide.« less

  2. Satellite nuclear power station: An engineering analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Kirby, K. D.; Yang, Y. Y.

    1973-01-01

    A nuclear-MHD power plant system which uses a compact non-breeder reactor to produce power in the multimegawatt range is analyzed. It is shown that, operated in synchronous orbit, the plant would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space, and no radioactive material would be returned to earth. Even the effect of a disastrous accident would have negligible effect on earth. A hydrogen moderated gas core reactor, or a colloid-core, or NERVA type reactor could also be used. The system is shown to approach closely the ideal of economical power without pollution.

  3. 76 FR 26716 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting AGENCY: Defense Nuclear Facilities... Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing. FEDERAL REGISTER CITATIONS... Defense Nuclear Facilities Safety Board, Public Hearing Room, 625 Indiana Avenue, NW., Suite 300...

  4. Nuclear thermal propulsion test facility requirements and development strategy

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  5. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  6. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spentmore » nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.« less

  7. 78 FR 4393 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... Session II, the Board will receive testimony concerning safety at Pantex defense nuclear facilities. The...

  8. Flowsheets and source terms for radioactive waste projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

  9. 77 FR 479 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... of the Defense Nuclear Facilities Safety Board's (Board) public hearing and meeting described below... Nuclear Facilities Safety Board, 625 Indiana Avenue NW., Suite 700, Washington, DC 20004-2901, (800) 788...

  10. 77 FR 48970 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... (NNSA) efforts to mitigate risks to public and worker safety posed by aging defense nuclear facilities...

  11. The measurement of U(VI) and Np(IV) mass transfer in a single stage centrifugal contactor

    NASA Astrophysics Data System (ADS)

    May, I.; Birkett, E. J.; Denniss, I. S.; Gaubert, E. T.; Jobson, M.

    2000-07-01

    BNFL currently operates two reprocessing plants for the conversion of spent nuclear fuel into uranium and plutonium products for fabrication into uranium oxide and mixed uranium and plutonium oxide (MOX) fuels. To safeguard the future commercial viability of this process, BNFL is developing novel single cycle flowsheets that can be operated in conjunction with intensified centrifugal contactors.

  12. U.S. Nuclear Cooperation with India: Issues for Congress

    DTIC Science & Technology

    2008-10-02

    8 indigenous Indian power reactors ! Fast Breeder test Reactor (FTBR) and Prototype Fast Breeder Reactors (PFBR) under construction ! Enrichment... breeder reactors could be viewed as providing a significant nonproliferation benefit because the materials produced by these plants are a few steps closer...to potential use in a bomb. In addition, safeguards on enrichment, reprocessing plants, and breeder reactors would support the 2002 U.S. National

  13. Solid wastes from nuclear power production.

    PubMed Central

    Soule, H F

    1978-01-01

    Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.

    Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less

  15. Uranium extraction from TRISO-coated fuel particles using supercritical CO2 containing tri-n-butyl phosphate.

    PubMed

    Zhu, Liyang; Duan, Wuhua; Xu, Jingming; Zhu, Yongjun

    2012-11-30

    High-temperature gas-cooled reactors (HTGRs) are advanced nuclear systems that will receive heavy use in the future. It is important to develop spent nuclear fuel reprocessing technologies for HTGR. A new method for recovering uranium from tristructural-isotropic (TRISO-) coated fuel particles with supercritical CO(2) containing tri-n-butyl phosphate (TBP) as a complexing agent was investigated. TRISO-coated fuel particles from HTGR fuel elements were first crushed to expose UO(2) pellet fuel kernels. The crushed TRISO-coated fuel particles were then treated under O(2) stream at 750°C, resulting in a mixture of U(3)O(8) powder and SiC shells. The conversion of U(3)O(8) into solid uranyl nitrate by its reaction with liquid N(2)O(4) in the presence of a small amount of water was carried out. Complete conversion was achieved after 60 min of reaction at 80°C, whereas the SiC shells were not converted by N(2)O(4). Uranyl nitrate in the converted mixture was extracted with supercritical CO(2) containing TBP. The cumulative extraction efficiency was above 98% after 20 min of online extraction at 50°C and 25 MPa, whereas the SiC shells were not extracted by TBP. The results suggest an attractive strategy for reprocessing spent nuclear fuel from HTGR to minimize the generation of secondary radioactive waste. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. NORTH SECTION OF WEST ELEVATION OF MAIN PROCESSING BUILDING (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SECTION OF WEST ELEVATION OF MAIN PROCESSING BUILDING (CPP-601) LOOKING EAST. HOT PILOT PLANT BUILDING (CPP-640) APPEARS IN RIGHT OF PHOTO. THE REMOTE ANALYTICAL FACILITY (CPP-627) WAS LOCATED ON CONCRETE PAD IN FOREGROUND. INL PHOTO NUMBER HD-54-33-3. Mike Crane, Photographer, 7/2006 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. Dialyzer best practice: single use or reuse?

    PubMed

    Lacson, Eduardo; Lazarus, J Michael

    2006-01-01

    Outcome studies have shown either no additional risk or a small additional risk for hospitalization and mortality associated with reprocessing dialyzers. Although the risks from reprocessing dialyzers have yet to be fully elucidated, reuse can be done safely if it is performed in full compliance with the standards of Association for the Advancement of Medical Instrumentation (AAMI). Like most industrial processes, however, complete control of the reuse process in a clinical environment and full compliance with regulations at all times is difficult. Potential errors and breakdowns in the reuse process are continuing concerns. The quality controls for reprocessing of dialyzers are not equal to the rigor of the manufacturing process under the purview of the U.S. Food and Drug Administration (FDA). Therefore, if one were to determine "best practice," single use is preferable to reuse of dialyzers based on medical criteria and risk assessment. The long-term and cumulative effects of exposure to reuse reagents are unknown and there is no compelling medical indication for reprocessing of dialyzers. The major impediment when deciding to convert from reuse to single use of dialyzers is economic. The experience in Fresenius Medical Care-North America (FMCNA) facilities demonstrates that converting from a practice of reuse to single use is achievable. However, the overall economic impact of conversion to single use is provider specific. The dominance of reuse has been negated of late by a major shift in practice toward single use. Physicians and patients should be well informed in making decisions regarding the practice of single use versus reuse of dialyzers.

  18. (US low-level radioactive waste management facility design, construction, and operation): Foreign trip report, July 22--30, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Bolinsky, J.

    1989-08-02

    The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Oak Ridge National Laboratory (ORNL), participated in a technology exchange program on French and US low-level radioactive waste (LLW) management facility design, construction, and operation. Meetings were held at the Agence National pour la Gestion des Dechets Radioactif (ANDRA) offices in Paris to review the designs for the new French LLW disposal facility, the Cente de Stockage de l'Aube (CSA), and the new ORNL LLW disposal project, the Interim Waste Management Facility (IWMF), and the results of the French LLW disposal facility cover experiment atmore » St. Sauveur. Visits were made to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM), the LLW conditioning facilities at the La Hague Reprocessing Facility, and the St. Saueveur Disposal Cap Experiment to discuss design, construction, and operating experience. A visit was also made to the CSA site to view the progress made in construction of the new facility.« less

  19. Sustainable data policy for a data production facility: a work in (continual) progress

    NASA Astrophysics Data System (ADS)

    Ketcham, R. A.

    2017-12-01

    The University of Texas High-Resolution X-Ray Computed Tomography Facility (UTCT) has been producing volumetric data and data products of geological and other scientific specimens and engineering materials for over 20 years. Data volumes, both in terms of the size of individual data sets and overall facility production, have progressively grown and fluctuated near the upper boundary of what can be managed by contemporary workstations and lab-scale servers and network infrastructure, making data policy a preoccupation for our entire history. Although all projects have been archived since our first day of operation, policies on which data to keep (raw, reconstructed after corrections, processed) have varied, and been periodically revisited in consideration of the cost of curation and the likelihood of revisiting and reprocessing data when better techniques become available, such as improved artifact corrections or iterative tomographic reconstruction. Advances in instrumentation regularly make old data obsolete and more advantageous to reacquire, but the simple act of getting a sample to a scanning facility is a practical barrier that cannot be overlooked. In our experience, the main times that raw data have been revisited using improved processing to improve image quality were predictable, high-impact charismatic projects (e.g., Archaeopteryx, A. Afarensis "Lucy"). These cases actually provided the impetus for development of the new techniques (ring and beam hardening artifact reduction), which were subsequently incorporated into our data processing pipeline going forward but were rarely if ever retroactively applied to earlier data sets. The only other times raw data have been reprocessed were when reconstruction parameters were inappropriate, due to unnoticed sample features or human error, which are usually recognized fairly quickly. The optimal data retention policy thus remains an open question, although erring on the side of caution remains the default position.

  20. 78 FR 12042 - Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory Analysis/FY 2012 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB). ACTION: Notice of Public Availability of FY 2011 Service Contract...

  1. 76 FR 5354 - Public Availability of Defense Nuclear Facilities Safety Board FY 2010 Service Contract Inventory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2010 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (Board). ACTION: Notice of public availability of FY 2010 Service Contract Inventories. SUMMARY: In accordance with...

  2. 77 FR 7139 - Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract Inventory Analysis/FY 2011 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB). ACTION: Notice of Public Availability of FY 2010 Service Contract...

  3. Historical record of nuclear activities from 129I in corals from the northern hemisphere (Philippines).

    PubMed

    Bautista, Angel T; Matsuzaki, Hiroyuki; Siringan, Fernando P

    2016-11-01

    Iodine-129 is a long-lived fission product that is majorly released in human nuclear activities (HNA) such as nuclear bomb testing, nuclear fuel reprocessing, and nuclear accidents. It is a good environmental tracer and former measurements of 129 I in corals from the southern hemisphere show the increasing trend of 129 I concentrations in the marine environment caused by HNA. Here we show time series of 129 I/ 127(stable) I isotopic ratios in two coral cores from the northern hemisphere (Philippines) and how these record 129 I released from HNA in even greater, unprecedented detail. Corals were taken from the Pacific Ocean (Baler) and South China Sea (Parola) sides of the Philippines. We observed nearly identical peaks ( 129 I/ 127 I ∼ 31.5 × 10 -12 ) in both the Baler and Parola records, each attributed to the year 1962 - the year with the highest recorded amount of 129 I release from nuclear bomb testing. This 1962 129 I bomb signal offers a new time marker that can be used to establish or confirm age models of corals, comparable to or possibly better than the well-known coral 14 C bomb peak. We also observed nuclear fuel reprocessing and Chernobyl accident 129 I signals in years 1977, 1980, and 1986, concurrently in Parola and with 9 to 11-year lags in Baler. This discrepancy in timing suggests that 129 I was transported to the South China Sea and Pacific Ocean sides of the Philippines directly from the atmosphere and through prevailing ocean currents, respectively. Lastly, we observed surprisingly high 129 I/ 127 I isotopic ratios (i.e., 22.8 to 38.9 × 10 -12 ) in the Parola record after the year 1996, which is in contrast to the decreasing trend observed in the Baler record and in published 129 I releases of different HNA. These results possibly indicate the presence of unknown sources of 129 I in the South China Sea region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Application of low-frequency eddy current testing to the inspection of a double-walled tank in a reprocessing plant

    NASA Astrophysics Data System (ADS)

    Tajima, Naoki; Yusa, Noritaka; Hashizume, Hidetoshi

    2018-04-01

    This paper discusses the applicability of simple low-frequency eddy current testing to the detection of deeply embedded flaws. The study specifically considered a double tank in a reprocessing plant for extracting plutonium-uranium from spent nuclear fuels. The tank was modelled by two type 304 austenitic stainless steel plates situated with an air gap of 80 mm, and the change in the thickness of one of the plates was detected through the other plate and the air gap. Axisymmetric two-dimensional finite element simulations were conducted and found that a simple circular coil with a large diameter enabled to detect the thickness based on the magnetic flux density at the centre of the coil although the plates were as thick as 30 mm. The results of the numerical simulations were validated by experiments.

  5. A Brief User's Guide to the Excel ® -Based DF Calculator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert T.

    2016-06-01

    To understand the importance of capturing penetrating forms of iodine as well as the other volatile radionuclides, a calculation tool was developed in the form of an Excel ® spreadsheet to estimate the overall plant decontamination factor (DF). The tool requires the user to estimate splits of the volatile radionuclides within the major portions of the reprocessing plant, speciation of iodine and individual DFs for each off-gas stream within the Used Nuclear Fuel reprocessing plant. The Impact to the overall plant DF for each volatile radionuclide is then calculated by the tool based on the specific user choices. The Excelmore » ® spreadsheet tracks both elemental and penetrating forms of iodine separately and allows changes in the speciation of iodine at each processing step. It also tracks 3H, 14C and 85Kr. This document provides a basic user's guide to the manipulation of this tool.« less

  6. Development of spent fuel reprocessing process based on selective sulfurization: Study on the Pu, Np and Am sulfurization

    NASA Astrophysics Data System (ADS)

    Kirishima, Akira; Amano, Yuuki; Nihei, Toshifumi; Mitsugashira, Toshiaki; Sato, Nobuaki

    2010-03-01

    For the recovery of fissile materials from spent nuclear fuel, we have proposed a novel reprocessing process based on selective sulfurization of fission products (FPs). The key concept of this process is utilization of unique chemical property of carbon disulfide (CS2), i.e., it works as a reductant for U3O8 but works as a sulfurizing agent for minor actinides and lanthanides. Sulfurized FPs and minor actinides (MA) are highly soluble to dilute nitric acid while UO2 and PuO2 are hardly soluble, therefore, FPs and MA can be removed from Uranium and Plutonium matrix by selective dissolution. As a feasibility study of this new concept, the sulfurization behaviours of U, Pu, Np, Am and Eu are investigated in this paper by the thermodynamical calculation, phase analysis of chemical analogue elements and tracer experiments.

  7. Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; David H. Meikrantz; Nick R. Mann

    2008-09-01

    Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a widemore » range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.« less

  8. Prospects for public participation on nuclear risks and policy options: innovations in governance practices for sustainable development in the European Union.

    PubMed

    O'Connor, M; van den Hove, S

    2001-09-14

    We outline the potential participative governance and risk management in application to technological choices in the nuclear sector within the European Union (EU). Well-conducted public participation, stakeholder consultation and deliberation procedures can enhance the policy process and improve the robustness of strategies dealing with high-stakes investment and risk management challenges. Key nuclear issues now confronting EU member states are: public concern with large-scale environmental and health issues; the Chernobyl accident (and others less catastrophic) whose effect has been to erode public confidence and trust in the nuclear sector; the maturity of the nuclear plant, hence the emerging prominence of waste transportation, reprocessing and disposal issues as part of historical liability within the EU; the nuclear energy heritage of central and eastern European candidate countries to EU accession. The obligatory management of inherited technological risks and uncertainties on large temporal and geographical scales, is a novel feature of technology assessment and governance. Progress in the nuclear sector will aid the development of methodologies for technological foresight and risk governance in fields other than the nuclear alone.

  9. 78 FR 49262 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... associated with continued operation of aging defense nuclear [[Page 49263

  10. 76 FR 42686 - DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities... Nuclear Facilities Safety Board, Office of Health, Safety and Security, U.S. Department of Energy, 1000... Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board...

  11. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  12. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  13. Conversion of radioactive ferrocyanide compounds to immobile glasses

    DOEpatents

    Schulz, Wallace W.; Dressen, A. Louise

    1977-04-26

    Complex radioactive ferrocyanide compounds result from the scavenging of cesium from waste products produced in the chemical reprocessing of nuclear fuel. These ferrocyanides, in accordance with this process, are converted to an immobile glass, resistant to leaching by water, by fusion together with sodium carbonate and a mixture of (a) basalt and boron trioxide (B.sub.2 O.sub.3) or (b) silica (SiO.sub.2) and lime (CaO).

  14. U.S. and South Korean Cooperation in the World Nuclear Energy Market: Major Policy Considerations

    DTIC Science & Technology

    2010-01-21

    a laboratory-scale research program on reprocessing spent fuel with an advanced pyroprocessing technique. However, the level of consensus over the... pyroprocessing option among government agencies, Korean electric utilities, and the public remains uncertain. The current U.S.-Korea 123 agreement...permission. KAERI’s pyroprocessing technology would partially separate plutonium and uranium from spent fuel, but the United States has not allowed the

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less

  16. X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.

    Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less

  17. X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite

    DOE PAGES

    Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.

    2017-03-29

    Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less

  18. 129I in the environment of the La Hague nuclear fuel reprocessing plant--from sea to land.

    PubMed

    Fréchou, C; Calmet, D

    2003-01-01

    In recent years, particular attention was paid to the long-lived radionuclides discharged with authorized low-level radioactive liquid and gaseous effluents by the nuclear spent fuel reprocessing plants of La Hague and Sellafield. The knowledge of (129)I (half-life=15.7 x 10(6) a) distribution in the environment is required to assess the radiological impact to the environment and population living in the area under the direct influence of La Hague NRP discharges. Measurement difficulties of (129)I in environmental matrices, where it is usually present at trace level, limited data published on (129)I activity levels in the European and more particularly in the French territory. Studies conducted to qualify a new alternative measurement method, direct gamma-X spectrometry with experimental self-absorption correction, led to test samples collected in the La Hague marine and terrestrial environment : seaweeds, lichens, grass, bovine thyroids, etc. All these results, often already published separately for analytical purposes and treated for intercomparison exercises, are presented here together in a radioecological manner. The levels of (129)I activity and (129)I/(127)I ratios in these samples show the spatial and temporal influence of the La Hague NRP in its local near-field environment as well as at the regional scale along the French Channel coast.

  19. Downgrading Nuclear Facilities to Radiological Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  20. Literature Review: Crud Formation at the Liquid/Liquid Interface of TBP-Based Solvent-Extraction Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Casella, Amanda J.

    2016-09-30

    This report summarizes the literature reviewed on crud formation at the liquid:liquid interface of solvent extraction processes. The review is focused both on classic PUREX extraction for industrial reprocessing, especially as practiced at the Hanford Site, and for those steps specific to plutonium purification that were used at the Plutonium Reclamation Facility (PRF) within the Plutonium Finishing Plant (PFP) at the Hanford Site.

  1. TRANSURANIC STUDIES STATUS AND PROBLEM STATEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuze, R E

    1959-04-29

    The purpose of the Transuranics Program is to develop separation processes for the transuranic elements, primarily those produced by long-term neutron irradiation of Pu/sup 239/. The program includes laboratory process development, pilot-plant process testing, processing of 10 kg of Pu/sup 239/ irradiated to greater than 99% burn-up for plutonium and americium-curium recovery, and processing the reirradiated plutonium and americium-curium fractions. The proposed method for processing highly irradiated plutonium is: (1) plutonium-aluminum alloy dissolution in HNO/sub 3/; (2) plutonium recovery by TBP extraction; (3) americium, curium, and rare-earth extraction by TBP from neutral nitrate solution; (4) partial rare-earth removal (primarily lanthanum)more » by americium-curium extraction into 100% TBP from 15M HNO/sub 3/; (5) additional rare-earth removal by extraction in 0.48M mono-2-ethylhexylphosphoric acid from 12M HCl; and (6) americium-curium purification by chloride anion exchange. Processing through the 100% TBP, 15M HNO/sub 3/ cycle can be carried out in the Power Reactor Fuel Reprocessing Pilot Plant. New facilities are proposed 15M HNO/ sub 3/ cycle can be carried out in the Power Reactor Fuel Reprocessing Pilot Plant. New facilities are proposed for laboratory process development studies and the final processing of the transplutonic elements. (auth)« less

  2. An economic analysis of the benefits of sterilizing medical instruments in low-temperature systems instead of steam.

    PubMed

    McCreanor, Victoria; Graves, Nicholas

    2017-07-01

    Hydrogen peroxide-based, low-temperature sterilization has been shown to do less damage to medical instruments than steam autoclaves. However, low-temperature systems are more expensive to run. Higher costs need to be balanced against savings from reduced repair costs to determine value for money when choosing how to sterilize certain instruments, which are able to be reprocessed in either system. This analysis examines the economic effects of using low-temperature sterilization systems to reprocess rigid and semi-rigid endoscopes, which are sensitive to heat and moisture, but still able to be sterilized using steam. It examines the changes to costs and frequency of repairs expected over 10 years, resulting from a choice to sterilize these instruments in a low-temperature system instead of steam. Overall, the results showed that increased sterilization costs are outweighed by the savings associated with less frequent repairs. Over a 10-year period, in large health care facilities, the probability of achieving an internal rate of return of at least 6% is 0.81. Our model shows it is likely to be a good decision for large health care facilities to invest in low-temperature sterilization systems. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Processing single-use medical devices for use in surgery - importance, status quo and potential.

    PubMed

    Krüger, Colin M

    2008-09-03

    In summary, it is possible with the technology and scientific knowledge currently available to allow products intended for single use to be reprocessed using validated and certified processing procedures, while maintaining the full function and without any loss in quality. How many times a product can be re-processed must be determined separately for each individual medical technology device; it is not possible to make any kind of blanket statement as to the permissible number of cycles. This is due to the differing construction, the various combinations of materials and the diverse demands made of each device during clinical use. The exigency of the reprocessing issue is evident both to the user and the primary manufacturer. For the user, where there is a correspondingly high-quality primary product with suitably costed, technically-sound and certified reprocessing procedures, repeat usage can mean real savings while maintaining full functionality in each use. For the primary manufacturers of highly specialised instruments, only part of which can be represented by the medical facility in terms of a corresponding DRG (Diagnosis-Related Group), it is reprocessing that opens the door to widespread routine clinical use. The patient, in turn, benefits greatly from this, since his demand for medical treatment using the most up-to-date technology is taken into account. If processing complies in full with medical technology and hygiene directives, from the medical point of view (without being able to definitively evaluate each individual case using this criterion) the specific advantages of the reprocessing procedure are obvious. In order to establish broad acceptance for the purposes of good marketing, corresponding controlling and quality instruments have to be developed to allow the decision-making process regarding the permissibility of the reprocessing of a certain device and the number of times it can be reprocessed using this procedure to be made transparent.Taking this a step further, possibilities arise for the establishment of corresponding quality-assurance instruments on the part of the clinical establishments involved, within which reprocessed products, in the interest of quality assurance, can be referred back to the processor in the event of defective function and can also be removed from clinical use prior to completing the intended number of processing cycles. Furthermore, it can be assumed that the widespread use of reprocessing procedures in today's high-cost single-use medical device sector will have a long-term cost/price-regulating effect for the primary products, to the benefit of the users. Thus, the heated debate regarding the safety of processing procedures that have already been certified and validated in accordance with current industry standards should be evaluated in particular from the point of view of the justified fears of the leading manufacturers with regard to their currently established market share. From a purely surgical point of view, the reprocessing of disposable products should be welcomed as a revolution. The main criteria for surgeons and medics should always be the benefit for the patient. If the quality is ensured through corresponding processing and validation procedures based on recognised certificates, then economic arguments take precedence. Cases in which a DRG (and thus a payment calculation) does not fully cover the use of medical devices are conceivable. Withholding medically necessary services on grounds of the costs, or making these services available to a limited extent only, is not acceptable from the medical point of view and furthermore goes beyond what is ethically acceptable. Each procedure, even the systematic use of reprocessing of suitable medical technology disposable items, should, where the quality is guaranteed, be supported unequivocally. Taken a step further, this branch of the economy will have a long-lasting price-regulating effect on the primary producers market.

  4. 78 FR 24438 - Evaluations of Explosions Postulated To Occur at Nearby Facilities and on Transportation Routes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants AGENCY: Nuclear Regulatory... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants.'' This regulatory guide describes for applicants seeking nuclear power reactor licenses and licensees of nuclear power reactors...

  5. Challenges associated with the behaviour of radioactive particles in the environment.

    PubMed

    Salbu, Brit; Kashparov, Valery; Lind, Ole Christian; Garcia-Tenorio, Rafael; Johansen, Mathew P; Child, David P; Roos, Per; Sancho, Carlos

    2018-06-01

    A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction of released refractory radionuclides such as uranium (U) and plutonium (Pu) were present as entities ranging from sub microns to fragments. Furthermore, radioactive particles and colloids have been released from reprocessing facilities and civil reactors, from radioactive waste dumped at sea, and from NORM sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics such as particle size distribution, structure, and oxidation state influencing ecosystem transfer depend also on the release scenarios. When radioactive particles are deposited in the environment, weathering processes occur and associated radionuclides are subsequently mobilized, changing the apparent K d . Thus, particles retained in soils or sediments are unevenly distributed, and dissolution of radionuclides from particles may be partial. For areas affected by particle contamination, the inventories can therefore be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. To integrate radioactive particles into environmental impact assessments, key challenges include the linking of particle characteristics to specific sources, to ecosystem transfer, and to uptake and retention in biological systems. To elucidate these issues, the EC-funded COMET and RATE projects and the IAEA Coordinated Research Program on particles have revisited selected contaminated sites and archive samples. This COMET position paper summarizes new knowledge on key sources that have contributed to particle releases, including particle characteristics based on advanced techniques, with emphasis on particle weathering processes as well as on heterogeneities in biological samples to evaluate potential uptake and retention of radioactive particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6 May interested persons and entities request that real property at defense nuclear facilities be...

  7. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6 May interested persons and entities request that real property at defense nuclear facilities be...

  8. 75 FR 56080 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... Facilities Safety Board's public hearing and meeting. FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT: 75... INFORMATION: Brian Grosner, General Manager, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  9. Confinement of Radioactive Materials at Defense Nuclear Facilities

    DTIC Science & Technology

    2004-10-01

    The design of defense nuclear facilities includes systems whose reliable operation is vital to the protection of the public, workers, and the...final safety-class barrier to the release of hazardous materials with potentially serious public consequences. The Defense Nuclear Facilities Safety...the public at certain defense nuclear facilities . This change has resulted in downgrading of the functional safety classification of confinement

  10. 76 FR 11764 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... Defense Nuclear Facilities Safety Board's public hearing and meeting described below. Interested persons... the matters to be considered. TIME AND DATE OF MEETING: 9 a.m., March 31, 2011. PLACE: Defense Nuclear...

  11. Peculiarities of organizing the construction of nuclear medicine facilities and the transportation of radionuclide

    NASA Astrophysics Data System (ADS)

    Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor

    2017-10-01

    The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.

  12. Nuclear Warheads: The Reliable Replacement Warhead program and the Life Extension Program

    DTIC Science & Technology

    2007-12-03

    eliminate the need for ESD controls.”67 CRS-22 68 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight...public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov...about/index.html]. 69 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, September 14, 2006. 70

  13. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2006-12-13

    Defense Nuclear Facilities Safety Board was created by Congress 1988 "as an independent oversight organization within the Executive Branch charged... nuclear facilities ." U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. involving CHE and plutonium...approach, if successful, would “reduce or eliminate the need for ESD controls.”42 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities

  14. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2007-04-04

    Information provided by Pantex Plant, Sept. 19, 2006. 50 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent...protection of public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http...www.dnfsb.gov/about/index.html]. 51 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, Sept. 14, 2006

  15. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2007-07-16

    The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight organization within the Executive Branch charged... nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. beginning, addressed safety...approach, if successful, would “reduce or eliminate the need for ESD controls.”55 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities Safety

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Darrell; Poinssot, Christophe; Begg, Bruce

    Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less

  17. Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond

    NASA Astrophysics Data System (ADS)

    Wiss, Thierry; Hiernaut, Jean-Pol; Roudil, Danièle; Colle, Jean-Yves; Maugeri, Emilio; Talip, Zeynep; Janssen, Arne; Rondinella, Vincenzo; Konings, Rudy J. M.; Matzke, Hans-Joachim; Weber, William J.

    2014-08-01

    Significant amounts of spent uranium dioxide nuclear fuel are accumulating worldwide from decades of commercial nuclear power production. While such spent fuel is intended to be reprocessed or disposed in geologic repositories, out-of-reactor radiation damage from alpha decay can be detrimental to its structural stability. Here we report on an experimental study in which radiation damage in plutonium dioxide, uranium dioxide samples doped with short-lived alpha-emitters and urano-thorianite minerals have been characterized by XRD, transmission electron microscopy, thermal desorption spectrometry and hardness measurements to assess the long-term stability of spent nuclear fuel to substantial alpha-decay doses. Defect accumulation is predicted to result in swelling of the atomic structure and decrease in fracture toughness; whereas, the accumulation of helium will produce bubbles that result in much larger gaseous-induced swelling that substantially increases the stresses in the constrained spent fuel. Based on these results, the radiation-ageing of highly-aged spent nuclear fuel over more than 10,000 years is predicted.

  18. Human capital needs - teaching, training and coordination for nuclear fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retegan, T.; Ekberg, C.; John, J.

    Human capital is the accumulation of competencies, knowledge, social and creativity skills and personality attributes, which are necessary to perform work so as to produce economic value. In the frame of the nuclear fuel cycle, this is of paramount importance that the right human capital exists and in Europe this is fostered by a series of integrated or directed projects. The teaching, training and coordination will be discussed in the frame of University curricula with examples from several programs, like e.g. the Master of Nuclear Engineering at Chalmers University, Sweden and two FP7 EURATOM Projects: CINCH - a project formore » cooperation in nuclear chemistry - and ASGARD - a research project on advanced or novel nuclear fuels and their reprocessing issues for generation IV reactors. The integration of the university curricula in the market needs but also the anchoring in the research and future fuel cycles will be also discussed, with examples from the ASGARD project. (authors)« less

  19. Security culture for nuclear facilities

    NASA Astrophysics Data System (ADS)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  20. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BERGMAN TB

    2011-01-14

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of themore » River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.« less

  1. Plutonium: Advancing our Understanding to Support Sustainable Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Casella, Amanda

    With Global energy needs increasing, real energy solutions to meet demands now, are needed. Fossil fuels are not an ideal candidate to meet these needs because of their negative impact on the environment. Renewables such as wind and solar have huge potential, but still need major technological advancements (particularly in the area of battery storage) before they can effectively meet growing world needs. The best option for meeting large energy needs without a large carbon footprint is nuclear energy. Of course, nuclear energy can face a fair amount of opposition and concern. However, through modern engineering and science many ofmore » these concerns can now be addressed. Many safety concerns can be met by engineering advancements, but perhaps the biggest area of concern is what to do with the used nuclear fuel after it is removed from the reactor. Currently the United States (and several other countries) utilize an open fuel cycle, meaning fuel is only used once and then discarded. It should be noted that fuel coming out of a reactor has utilized approximately 1% of the total energy that could be produced by the uranium in the fuel rod. The answer here is to close the fuel cycle and recycle the nuclear materials. By reprocessing used nuclear fuel, all the U can be repurposed without requiring disposal. The various fission products can be removed and either discarded (hugely reduced waste volume) or more reasonably, utilized in specialty reactors to make more energy or needed research/medical isotopes. While reprocessing technology is currently advanced enough to meet energy needs, completing research to improve and better understand these techniques is still needed. Better understanding behavior of fission products is one area of important research. Despite it being discovered over 75 years ago, plutonium is still an exciting element to study because of the complex solution chemistry it exhibits. In aqueous solutions Pu can exist simultaneously in multiple oxidation states, including 3+, 4+, and 6+. It also readily forms a variety of metal-ligand complexes depending on solution pH and available ligands. Understanding of the behavior of Pu in solution remains an important area of research today, with relevance to developing sustainable nuclear fuel cycles, minimizing its impact on the environment, and detecting and preventing the spread of nuclear weapons technology.« less

  2. Nuclear Safeguards and the International Atomic Energy Agency

    DTIC Science & Technology

    1995-04-01

    1993; Export Controls and Nonprolife ration Policy, OTA-ISS-596, May 1994; and Proliferation and the Former Soviet Union, OTA-ISC-605, September 1994...states would likely be much less reprocessing plant such as that being built by sanguine about the effectiveness of safeguards if a Japan at Rokkasho... formulate more intelligent and constructive pro- criminal record or are otherwise not eligible to en- posals for its improvement, which could ultimate- ter

  3. The Best Defense: Making Maximum Sense of Minimum Deterrence

    DTIC Science & Technology

    2011-06-01

    uranium fuel cycles and has unmatched experience in the thorium fuel cycle.25 Published sources claim India produces between 20 and 40kg of plutonium...nuclear energy was moderate at best. Pakistan‘s first reactor , which it received from the United States, did not become operational until 1965.4...In 1974 Pakistan signed an agreement with France to supply a reprocessing plant for extracting plutonium from spent fuel from power reactors

  4. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  5. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  6. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  7. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  8. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  9. Improvement of INVS Measurement Uncertainty for Pu and U-Pu Nitrate Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinhoe, Martyn Thomas; Menlove, Howard Olsen; Marlow, Johnna Boulds

    2017-04-27

    In the Tokai Reprocessing Plant (TRP) and the Plutonium Conversion Development Facility (PCDF), a large amount of plutonium nitrate solution which is recovered from light water reactor (LWR) and advanced thermal reactor (ATR), FUGEN are being stored. Since the solution is designated as a direct use material, the periodical inventory verification and flow verification are being conducted by Japan Safeguard Government Office (JSGO) and International Atomic Agency (IAEA).

  10. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  11. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  12. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  13. 76 FR 24018 - Notice of Availability of the Draft Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy... Draft Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and... alternatives for constructing and operating the nuclear facility (NF) portion of the Chemistry and Metallurgy...

  14. Mapping the Risks. Assessing the Homeland Security Implications of Publicly Available Geospatial Information

    DTIC Science & Technology

    2004-01-01

    Defense Nuclear Facilities Safety Board 1 0.2 Export-Import Bank 1 0.2 National Archives and Records Administration 1 0.2 Supreme Court of the United...Agency Commodity Futures Trading Commission Consumer Product Safety Commission Defense Nuclear Facilities Safety Board Environmental Protection Agency...Intelligence www.cia.gov Defense Nuclear Facilities Safety Board Defense Nuclear Facilities Safety Board www.dnfsb.gov Department of

  15. World Energy Data System (WENDS). Volume X. Nuclear facility profiles, PO--ZA. [Brief tabulated information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then bymore » facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.« less

  16. The Future of U.S. Nuclear Forces: Boom or Bust

    DTIC Science & Technology

    2007-03-30

    materials, and nuclear waste.45 The Defense Nuclear Facilities Safety Board (DNFSB) was established by Congress in 1988 as an independent federal...adequate protection of public health and safety" at DOE’s defense nuclear facilities .46 This 100- person agency looks at four areas of the nuclear weapons...47 A.J. Eggenberger, Sixteenth Annual Report to Congress (Washington DC: Defense Nuclear Facilities Safety Board, February 2006), 13; available

  17. JAEA's actions and contributions to the strengthening of nuclear non-proliferation

    NASA Astrophysics Data System (ADS)

    Suda, Kazunori; Suzuki, Mitsutoshi; Michiji, Toshiro

    2012-06-01

    Japan, a non-nuclear weapons state, has established a commercial nuclear fuel cycle including LWRs, and now is developing a fast neutron reactor fuel cycle as part of the next generation nuclear energy system, with commercial operation targeted for 2050. Japan Atomic Energy Agency (JAEA) is the independent administrative agency for conducting comprehensive nuclear R&D in Japan after the merger of Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC). JAEA and its predecessors have extensive experience in R&D, facility operations, and safeguards development and implementation for new types of nuclear facilities for the peaceful use of nuclear energy. As the operator of various nuclear fuel cycle facilities and numerous nuclear materials, JAEA makes international contributions to strengthen nuclear non-proliferation. This paper provides an overview of JAEA's development of nuclear non-proliferation and safeguards technologies, including remote monitoring of nuclear facilities, environmental sample analysis methods and new efforts since the 2010 Nuclear Security Summit in Washington D.C.

  18. Site remediation techniques in India: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anomitra Banerjee; Miller Jothi

    India is one of the developing countries operating site remediation techniques for the entire nuclear fuel cycle waste for the last three decades. In this paper we intend to provide an overview of remediation methods currently utilized at various hazardous waste sites in India, their advantages and disadvantages. Over the years the site remediation techniques have been well characterized and different processes for treatment, conditioning and disposal are being practiced. Remediation Methods categorized as biological, chemical or physical are summarized for contaminated soils and environmental waters. This paper covers the site remediation techniques implemented for treatment and conditioning of wastelandsmore » arising from the operation of nuclear power plant, research reactors and fuel reprocessing units. (authors)« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Jubin, Robert Thomas; Jordan, J. A.

    U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorptionmore » of I 2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I 2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I 2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH 3I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.« less

  20. 10 CFR 770.1 - What is the purpose of this part?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... or lease real property at defense nuclear facilities for economic development. (b) This part also... DOE activities at the defense nuclear facility. ...

  1. Corrosion property of 9Cr-ODS steel in nitric acid solution for spent nuclear fuel reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, M.; Koizumi, T.; Inoue, M.

    2013-07-01

    Corrosion tests of oxide dispersion strengthened with 9% Cr (9Cr-ODS) steel, which is one of the desirable materials for cladding tube of sodium-cooled fast reactors, in pure nitric acid solution, spent FBR fuel solution, and its simulated solution were performed to understand the corrosion behavior in a spent nuclear fuel reprocessing. In this study, the 9Cr-ODS steel with lower effective chromium content was evaluated to understand the corrosion behavior conservatively. As results, the tube-type specimens of the 9Cr-ODS steels suffered severe weight loss owing to active dissolution at the beginning of the immersion test in pure nitric acid solution inmore » the range from 1 to 3.5 M. In contrast, the weight loss was decreased and they showed a stable corrosion in the higher nitric acid concentration, the dissolved FBR fuel solution, and its simulated solution by passivation. The corrosion rates of the 9Cr-ODS steel in the dissolved FBR fuel solution and its simulated solution were 1-2 mm/y and showed good agreement with each other. The passivation was caused by the shift of corrosion potential to noble side owing to increase in nitric acid concentration or oxidative ions in the dissolved FBR fuel solution and the simulated spent fuel solution. (authors)« less

  2. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    NASA Astrophysics Data System (ADS)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  3. Understanding Contamination; Twenty Years of Simulating Radiological Contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emily Snyder; John Drake; Ryan James

    A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer becamemore » the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.« less

  4. FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), SECOND FLOOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), SECOND FLOOR SHOWING PROCESS MAKEUP AREA AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING COLD LAB, DECONTAMINATION ROOM, MULTICURIE CELL ROOM, AND OFFICES. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051980. ALTERNATE ID NUMBER CPP-E-1980. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. Vertical distributions of (99)Tc and the (99)Tc/(137)Cs activity ratio in the coastal water off Aomori, Japan.

    PubMed

    Nakanishi, Takahiro; Zheng, Jian; Aono, Tatsuo; Yamada, Masatoshi; Kusakabe, Masashi

    2011-08-01

    Using a sector-field ICP-MS the vertical distributions of the (99)Tc concentration and (99)Tc/(137)Cs activity ratio were measured in the coastal waters off Aomori Prefecture, Japan, where a spent-nuclear-fuel reprocessing plant has begun test operation. The (99)Tc concentrations in surface water ranged from 1.8 to 2.4 mBq/m(3), no greater than the estimated background level. Relatively high (99)Tc/(137)Cs activity ratios (10-12 × 10(-4)) would be caused by the inflow of the high-(99)Tc/(137)Cs water mass from the Japan Sea. There is no observable contamination from the reprocessing plant in the investigated area. The (99)Tc concentration and the (99)Tc/(137)Cs activity ratio in water column showed gradual decreases with depth. Our results implied that (99)Tc behaves in a more conservative manner than (137)Cs in marine environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  7. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.; Miller, W.F.

    2013-07-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that statesmore » will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.« less

  8. 77 FR 51943 - Procedures for Safety Investigations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1708 Procedures for Safety Investigations AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Proposed rule; extension of comment period. SUMMARY: The Defense Nuclear Facilities Safety Board is extending the time for comments on its proposed...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.

    The North American industry has employed major solvent-extraction processes to support a wide range of separations including but not limited to chemical, metallurgical, nuclear, biochemical, pharmaceutical, and petroleum applications. The knowledge enabling these separations has been obtained through fundamental studies in academe, government and industry. The International Solvent Extraction Conferences have been and continue to be a major gathering of scientists, engineers, operators, and vendors from around the world, who present new findings since the last meeting, exchange ideas, make business contacts, and conduct collegial discussions. The ISEC 2008 program emphasizes fundamentals to industrial applications of solvent extraction, particularly howmore » this broad spectrum of activities is interconnected and has led to the implementation of novel processes. The oral and poster sessions have been organized into seven topics: Fundamentals; Novel Reagents, Materials and Techniques; Nuclear Fuel Reprocessing; Hydrometallurgy and Metals Extraction; Analytical and Preparative Applications; Biotechnology, Pharmaceuticals, Life-Science Products, and Organic Products; and Process Chemistry and Engineering. Over 350 abstracts were received, resulting in more than 260 manuscripts published in these proceedings. Five outstanding plenary presentations have been identified, with five parallel sessions for oral presentations and posters. In recognition of the major role solvent extraction (SX) plays in the hydrometallurgical and nuclear industries, these proceedings begin with sections focusing on hydrometallurgy, process chemistry, and engineering. More fundamental topics follow, including sections on novel reagents, materials, and techniques, featuring novel applications in analytical and biotechnology areas. Despite the diversity of topics and ideas represented, however, the primary focus of the ISEC community continues to be metals extraction. Four papers from these proceedings have been entered already in INIS in the form of individual reports. Among the remaining papers, 60 have been selected from the following sessions: Plenary Lectures, Hydrometallurgy and Metals Extraction, Nuclear Fuel Reprocessing, Analytical and Preparative Applications, Fundamentals, and Novel Reagents, Materials, and Techniques.« less

  10. 75 FR 29785 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... or acceptance of a nuclear power plant simulation facility for use in operator and senior operator...

  11. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  12. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  13. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  14. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  15. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  16. 76 FR 17627 - Sunshine Act Meeting Postponed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Postponed AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of public meeting postponement. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register of March 3, 2011 (76 FR 11764...

  17. 77 FR 14007 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Notice Federal Register CITATION OF... THE MEETING: The Defense Nuclear Facilities Safety Board (Board) is expanding the matters to be.../ resolution of safety and technical issues across the defense nuclear facilities complex. Since this panel...

  18. Realistic Development and Testing of Fission System at a Non-Nuclear Testing Facility

    NASA Technical Reports Server (NTRS)

    Godfroy, Tom; VanDyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems.

  19. Realistic development and testing of fission systems at a non-nuclear testing facility

    NASA Astrophysics Data System (ADS)

    Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .

  20. Regional and global contributions of anthropogenic iodine-129 in monthly deposition samples collected in North East Japan between 2006 and 2015.

    PubMed

    Hasegawa, Hidenao; Kakiuchi, Hideki; Akata, Naofumi; Ohtsuka, Yoshihito; Hisamatsu, Shun'ichi

    2017-05-01

    We measured the monthly atmospheric deposition flux of 129 I at Rokkasho, Aomori, Japan-the location of a commercial spent nuclear fuel reprocessing plant-from 2006 to 2015 to assess the impact of the plant on environmental 129 I levels. The plant is now under final safety assessment by a national authority after test operation using actual spent nuclear fuel. During cutting and chemical processing in test operations from April 2006 to October 2008, 129 I was discharged to the atmosphere and detected in our deposition samples. 129 I deposition fluxes largely followed the discharge pattern of 129 I from the plant to the atmosphere, and most of the deposited 129 I originated from the plant. In and after 2009, 129 I deposition fluxes decreased dramatically to reach the background level; the 129 I deposition fluxes at Rokkasho were almost the same as those at Hirosaki, where an additional sampling point was set up as a background site 85 km from the plant in 2011. The background 129 I deposition fluxes showed seasonal variation-high in winter and low in the other seasons-at both Rokkasho and Hirosaki. The results of a backward trajectory analysis of the air mass at Rokkasho suggested that reprocessing plants in Europe were the origins of the high 129 I flux in winter. The contribution of 129 I released from the Fukushima Dai-ichi Nuclear Power Plant accident to the 129 I deposition flux at Rokkasho in 2011 was small on the basis of the 129 I/ 131 I activity ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nuclear Power Plant Security and Vulnerabilities

    DTIC Science & Technology

    2009-03-18

    Commercial Spent Nuclear Fuel Storage , Public Report...systems that prevent hot nuclear fuel from melting even after the chain reaction has stopped, and storage facilities for highly radioactive spent nuclear ... nuclear fuel cycle facilities must defend against to prevent radiological sabotage and theft of strategic special nuclear material. NRC licensees use

  2. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  3. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  4. The Organization and Management of the Nuclear Weapons Program.

    DTIC Science & Technology

    1997-03-01

    over operations include the Defense Nuclear Facilities Safety Board, the Environmental Protection Agency, the Occupational Safety and Health...Safety, and Health. Still more guidance is received from the Defense Nuclear Facilities Safety Board and other external bodies such as the...state regulatory agencies, and the Defense Nuclear Facilities Safety Board. This chapter briefly reviews the most recent decade of this history, describes

  5. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  6. Ethical and hygiene aspects of the reprocessing of medical devices in Germany

    PubMed Central

    Kramer, Axel; Assadian, Ojan

    2008-01-01

    Based on safety and quality principles, for each medical device (MD), regardless of its declared status as single- or multi-use device, careful considerations must be made. This includes assessment whether reprocessing is economical and ecological meaningful, and technical feasible. So far, however, in Germany reprocessing of declared single use MD is legally allowed, provided that the above aspects are well covered. The purpose of this paper is to elucidate, when circumstances allow reprocessing of declared single-use MD. For reprocessing of single use MD the following preconditions must be fulfilled: The security level of the reprocessed MD must be equivalent to the status of the newly delivered item; this means that a patient is not exposed to a higher risk through a reprocessed disposable MD than through the new, i.e. un-processed product. The reprocessing must be based on a detailed risk assessment and risk analysis, and must be described in detail regarding selection of the reprocessing method. Additionally, all necessary safety- and quality assurance measures must be stated. The reprocessing measure needs to be accompanied with a quality management system which determines and documents the responsibility of all stages of reprocessing; where the corresponding reprocessing procedures are well defined; and the efficacy of the procedure is proven by product-specific or product-group-specific tests and reports. The process must be validated according to recognised methods of science and technology, taking into account potential negative influences of the reprocessing on the properties of the material and the technical and functional safety. For reprocessing of MDs of the category Critical C the quality assurance must be certified by an accredited certifying body. PMID:20204097

  7. 75 FR 27228 - Proposed FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 Proposed FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of proposed rulemaking. SUMMARY: Pursuant to 10 CFR 1703.107(b)(6) of the Board's regulations, the Defense Nuclear Facilities Safety Board is...

  8. 77 FR 41258 - FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Establishment of FOIA Fee Schedule. SUMMARY: The Defense Nuclear Facilities Safety Board is publishing its Freedom of Information Act (FOIA) Fee Schedule Update pursuant to...

  9. 76 FR 28194 - Proposed FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 Proposed FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of proposed rulemaking. SUMMARY: Pursuant to 10 CFR 1703.107(b)(6) of the Board's regulations, the Defense Nuclear Facilities Safety Board is...

  10. 76 FR 43819 - FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Establishment of FOIA Fee Schedule. SUMMARY: The Defense Nuclear Facilities Safety Board is publishing its Freedom of Information Act (FOIA) Fee Schedule Update pursuant to...

  11. 78 FR 20625 - Extension of Hearing Record Closure Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on January 22, 2013...

  12. 77 FR 65871 - Extension of Hearing Record Closure Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on August 15, 2012...

  13. 78 FR 1206 - Second Extension of Hearing Record Closure Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Second Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Second extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on...

  14. 75 FR 21605 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... depth federal safety management and oversight policies being developed by DOE and NNSA for defense... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... in the Sunshine Act'' (5 U.S.C. 552b), notice is hereby given of the Defense Nuclear Facilities...

  15. Mass and abundance 236U sensitivities at CIRCE

    NASA Astrophysics Data System (ADS)

    De Cesare, M.; De Cesare, N.; D'Onofrio, A.; Fifield, L. K.; Gialanella, L.; Terrasi, F.

    2015-10-01

    The actinides (e.g. 236U and xPu isotopes) are present in environmental samples at the ultra trace level since atmospheric tests of NWs (Nuclear Weapons) performed in the past, deliberate dumping of nuclear waste, nuclear fuel reprocessing, on a large scale and operation of NPPs (Nuclear Power Plants) on a small scale have led to the release of a wide range of radioactive nuclides in the environment. Their detection requires the most sensitive AMS (Accelerator Mass Spectrometry) techniques and at the Center for Isotopic Research on Cultural and Environmental heritage (CIRCE) in Caserta, Italy, an upgraded actinide AMS system, based on a 3-MV pelletron tandem accelerator, has been operated. In this paper the progress made in order to push the 236U mass sensitivity and 236U/238U isotopic ratio down to the natural levels is reported. A uranium contamination mass of about 0.05 μg and a 236U/238U isotopic ratio sensitivities at the level of 3.2 × 10-13 are presently achievable.

  16. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gapsmore » exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.« less

  17. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.

  18. Implementing Stakeholders' Access to Expertise: Experimenting on Nuclear Installations' Safety Cases - 12160

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilli, Ludivine; Charron, Sylvie

    2012-07-01

    In 2009 and 2010, the Institute for Nuclear Safety and Radiation Protection (IRSN) led two pilot actions dealing with nuclear installations' safety cases. One concerned the periodical review of the French 900 MWe nuclear reactors, the other concerned the decommissioning of a workshop located on the site of Areva's La Hague fuel-reprocessing plant site in Northwestern France. The purpose of both these programs was to test ways for IRSN and a small number of stakeholders (Non-Governmental Organizations (NGOs) members, local elected officials, etc.) to engage in technical discussions. The discussions were intended to enable the stakeholders to review future applicationsmore » and provide valuable input. The test cases confirmed there is a definite challenge in successfully opening a meaningful dialogue to discuss technical issues, in particular the fact that most expertise reports were not public and the conflict that exists between the contrary demands of transparency and confidentiality of information. The test case also confirmed there are ways to further improvement of stakeholders' involvement. (authors)« less

  19. Chemical processing in geothermal nuclear chimney

    DOEpatents

    Krikorian, O.H.

    1973-10-01

    A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

  20. 78 FR 65978 - Draft Revised Strategic Plan for FY 2014-2018

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Draft Revised Strategic Plan for FY 2014-2018 AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice. SUMMARY: In accordance with Office of Management and Budget Circular No. A-11, the Defense Nuclear Facilities Safety Board (DNFSB) is soliciting...

  1. 75 FR 4794 - Draft Revised Strategic Plan for FY 2010-2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Draft Revised Strategic Plan for FY 2010-2015 AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice. SUMMARY: In accordance with OMB Circular No. A-11, the Defense Nuclear Facilities Safety Board is soliciting comments from all interested and potentially...

  2. Modern tornado design of nuclear and other potentially hazardous facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, J.D.; Zhao, Y.

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

  3. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollar, Lenka; Mathews, Caroline E.

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In ordermore » to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.« less

  4. Method for dissolving plutonium oxide with HI and separating plutonium

    DOEpatents

    Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.

    1979-01-01

    PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.

  5. Transuranic inventory reduction in repository by partitioning and transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, C.H.; Kazimi, M.S.

    1992-01-01

    The promise of a new reprocessing technology and the issuance of Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission regulations concerning a geologic repository rekindle the interest in partitioning and transmutation of transuranic (TRU) elements from discharged reactor fuel as a high level waste management option. This paper investigates the TRU repository inventory reduction capability of the proposed advanced liquid metal reactors (ALMRs) and integral fast reactors (IFRs) as well as the plutonium recycled light water reactors (LWRs).

  6. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  7. Atomic vapor laser isotope separation in France

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Lafon, Alain; Perves, Jean-Pierre; Rosengard, Alex; Sauzay, Guy

    1993-05-01

    France has developed a very complete nuclear industry, from mining to reprocessing and radwastes management, and now has a major electro-nuclear park, with 55 power reactors, supplying 75% of the nation's electricity and representing 32% of its energy requirements. The modern multinational EURODIF enrichment plant in Pierrelatte in the south of the country supplies these reactors with enriched uranium as well as foreign utilities (30% exports). It works smoothly and has continuously been improved to reduce operating costs and to gain flexibility and longevity. Investment costs will be recovered at the turn of the century. The plant will be competitive well ahead of an aging production park, with large overcapacity, in other countries. Meanwhile, world needs will increase only slightly during the next 15 years, apart from the Asian Pacific area, but many world governments are becoming well aware of the necessity to progressively resume nuclear energy development worldwide from the year 2000 on.

  8. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  9. NIMBY, CLAMP, and the location of new nuclear-related facilities: U.S. national and 11 site-specific surveys.

    PubMed

    Greenberg, Michael R

    2009-09-01

    Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.

  10. Technical Application of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  11. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  12. Space exploration initiative candidate nuclear propulsion test facilities

    NASA Technical Reports Server (NTRS)

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  13. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  14. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at closed or downsized defense nuclear facilities, for the purpose of permitting economic development. (b) DOE may transfer, by lease only, improvements at defense nuclear facilities on land withdrawn...

  15. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at defense nuclear facilities, for the purpose of permitting economic development. (b) DOE may transfer, by lease only, improvements at defense nuclear facilities on land withdrawn from the...

  16. 10 CFR 770.1 - What is the purpose of this part?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... or lease real property at closed or downsized defense nuclear facilities for economic development. (b... contaminant as a result of DOE activities at the defense nuclear facility. [65 FR 10689, Feb. 29, 2000, as...

  17. 75 FR 67711 - Extension of Scoping Period for the Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement... Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement... facility portion of the Chemistry and Metallurgy Research Building Replacement Project (CMRR-NF) at Los...

  18. 75 FR 74022 - Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD [Recommendation 2010-1] Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers AGENCY: Defense Nuclear Facilities Safety Board... Nuclear Facilities Safety Board has made a recommendation to the Secretary of Energy requesting an...

  19. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... INFORMATION CONTACT: Glenn Tuttle, Office of Nuclear Material Safety and Safeguards, Division of Fuel Cycle...

  20. 78 FR 4404 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On September 28, 2012 the Defense Nuclear Facilities Safety Board submitted...

Top