Science.gov

Sample records for nuclear safety center

  1. Nuclear Safety Information Center, Its Products and Services

    ERIC Educational Resources Information Center

    Buchanan, J. R.

    1970-01-01

    The Nuclear Safety Information Center (NSIC) serves as a focal point for the collection, analysis and dissemination of information related to safety problems encountered in the design, analysis, and operation of nuclear facilities. (Author/AB)

  2. Information Services at the Nuclear Safety Analysis Center.

    ERIC Educational Resources Information Center

    Simard, Ronald

    This paper describes the operations of the Nuclear Safety Analysis Center. Established soon after an accident at the Three Mile Island nuclear power plant near Harrisburg, Pennsylvania, its efforts were initially directed towards a detailed analysis of the accident. Continuing functions include: (1) the analysis of generic nuclear safety issues,…

  3. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    SciTech Connect

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-05-05

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  4. Information Scanning and Processing at the Nuclear Safety Information Center.

    ERIC Educational Resources Information Center

    Parks, Celia; Julian, Carol

    This report is a detailed manual of the information specialist's duties at the Nuclear Safety Information Center. Information specialists scan the literature for documents to be reviewed, procure the documents (books, journal articles, reports, etc.), keep the document location records, and return the documents to the plant library or other…

  5. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  6. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  7. Guidelines for Reviewers and the Editor at the Nuclear Safety Information Center.

    ERIC Educational Resources Information Center

    Whetsel, H. B.

    The main purpose of this report is to help novice reviewers accelerate their apprenticeship at the Nuclear Safety Information Center, a computerized information service sponsored by the U.S. Atomic Energy Commission. Guidelines for reviewers are presented in Part 1; Part 2 contains guidelines for the novice editor. The goal of the reviewers and…

  8. Revitalizing Nuclear Safety Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    This report covers the general issues involved in nuclear safety research and points out the areas needing detailed consideration. Topics included are: (1) "Principles of Nuclear Safety Research" (examining who should fund, who should conduct, and who should set the agenda for nuclear safety research); (2) "Elements of a Future Agenda for Nuclear…

  9. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    SciTech Connect

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  10. Nuclear regulation and safety

    SciTech Connect

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed. (DLC)

  11. Nuclear explosive safety study process

    SciTech Connect

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  12. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  13. Nuclear reactor safety device

    DOEpatents

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  14. Prospects for nuclear safety research

    SciTech Connect

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  15. Nuclear reactor safety device

    DOEpatents

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  16. Nuclear Powerplant Safety: Operations.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Powerplant systems and procedures that ensure the day-to-day health and safety of people in and around the plant is referred to as operational safety. This safety is the result of careful planning, good engineering and design, strict licensing and regulation, and environmental monitoring. Procedures that assure operational safety at nuclear…

  17. NRC - regulator of nuclear safety

    SciTech Connect

    1997-05-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

  18. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear safety. 923.7001... Efficiency, Renewable Energy Technologies, and Occupational Safety Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under its own statutory authority derived from...

  19. Nuclear Safety for Space Systems

    NASA Astrophysics Data System (ADS)

    Offiong, Etim

    2010-09-01

    It is trite, albeit a truism, to say that nuclear power can provide propulsion thrust needed to launch space vehicles and also, to provide electricity for powering on-board systems, especially for missions to the Moon, Mars and other deep space missions. Nuclear Power Sources(NPSs) are known to provide more capabilities than solar power, fuel cells and conventional chemical means. The worry has always been that of safety. The earliest superpowers(US and former Soviet Union) have designed and launched several nuclear-powered systems, with some failures. Nuclear failures and accidents, however little the number, could be far-reaching geographically, and are catastrophic to humans and the environment. Building on the numerous research works on nuclear power on Earth and in space, this paper seeks to bring to bear, issues relating to safety of space systems - spacecrafts, astronauts, Earth environment and extra terrestrial habitats - in the use and application of nuclear power sources. It also introduces a new formal training course in Space Systems Safety.

  20. Autoclave nuclear criticality safety analysis

    SciTech Connect

    D`Aquila, D.M.; Tayloe, R.W. Jr.

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  1. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under...

  2. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under...

  3. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under...

  4. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under...

  5. Nuclear Reactor Safety: a current awareness bulletin

    SciTech Connect

    Cunningham, D.C.

    1985-01-15

    Nuclear Reactor Safety announces on a semimonthly basis the current worldwide information available on all safety-related aspects of fission reactors, including: accident analysis, safety systems, radiation protection, decommissioning and dismantling, and security measures.

  6. Nuclear criticality safety: 2-day training course

    SciTech Connect

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  7. 46 CFR 50.10-23 - Marine Safety Center.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Marine Safety Center. 50.10-23 Section 50.10-23 Shipping... Definition of Terms Used in This Subchapter § 50.10-23 Marine Safety Center. The term Marine Safety Center refers to the Commanding Officer, Marine Safety Center, U.S. Coast Guard, 4200 Wilson Boulevard,...

  8. Nuclear criticality safety: 5-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course`s primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples of computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.

  9. Nuclear criticality safety: 5-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples of computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.

  10. Pantex: safety in nuclear weapons processing.

    PubMed

    Johannesen, R E; Farrell, L M

    2000-11-01

    The Pantex Plant, located in the Texas panhandle near Amarillo, is a major Department of Energy (DOE) participant in maintaining the safety of the nation's nuclear weapons resources and protecting the employees, public, and environment. With more than 168,000 person-years of operations involving nuclear materials, explosives, and hazardous chemicals, Pantex has maintained a notable safety record. This article overviews the nuclear weapon activities at Pantex and describes their safety culture.

  11. Control centers design for ergonomics and safety.

    PubMed

    Quintana, Leonardo; Lizarazo, Cesar; Bernal, Oscar; Cordoba, Jorge; Arias, Claudia; Monroy, Magda; Cotrino, Carlos; Montoya, Olga

    2012-01-01

    This paper shows the general design conditions about ergonomics and safety for control centers in the petrochemical process industry. Some of the topics include guidelines for the optimized workstation design, control room layout, building layout, and lighting, acoustical and environmental design. Also takes into account the safety parameters in the control rooms and centers design. The conditions and parameters shown in this paper come from the standards and global advances on this topic on the most recent publications. And also the work was supplemented by field visits of our team to the control center operations in a petrochemical company, and technical literature search efforts. This guideline will be useful to increase the productivity and improve the working conditions at the control rooms. PMID:22317199

  12. Safety culture in the nuclear versus non-nuclear organization

    SciTech Connect

    Haber, S.B.; Shurberg, D.A.

    1996-10-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period.

  13. The history of nuclear weapon safety devices

    SciTech Connect

    Plummer, D.W.; Greenwood, W.H.

    1998-06-01

    The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

  14. Nuclear Powerplant Safety: Design and Planning.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    The most important concern in the design, construction and operation of nuclear powerplants is safety. Nuclear power is one of the major contributors to the nation's supply of electricity; therefore, it is important to assure its safe use. Each different type of powerplant has special design features and systems to protect health and safety. One…

  15. Nuclear criticality safety: 3-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) be able to identify examples of safety consciousness required in nuclear criticality safety.

  16. Nuclear criticality safety: 3-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course`s primary instructor. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) be able to identify examples of safety consciousness required in nuclear criticality safety.

  17. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  18. 46 CFR 50.10-23 - Marine Safety Center.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refers to the Commanding Officer, U.S. Coast Guard Marine Safety Center, 1900 Half Street, SW., Suite... Guard Marine Safety Center, 2100 2nd St. SW., Stop 7102, Washington, DC 20593-7102, in a written...

  19. 46 CFR 50.10-23 - Marine Safety Center.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... refers to the Commanding Officer, U.S. Coast Guard Marine Safety Center, 1900 Half Street, SW., Suite... Guard Marine Safety Center, 2100 2nd St. SW., Stop 7102, Washington, DC 20593-7102, in a written...

  20. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  1. Nuclear data needs for application in nuclear criticality safety programs

    SciTech Connect

    Leal, L.C.; Westfall, R.M.; Jordan, W.C.; Wright, R.Q.

    1995-09-01

    In nuclear criticality safety applications, a number of important uncertainties have to be addressed to establish the required criticality safety margin of a nuclear system. One source of these uncertainties is the basic nuclear data used to calculate the effective multiplication factor of the system. Before criticality safety calculations are performed, the bias and uncertainties of the codes and cross sections that are used must be determined. Cross-section data are measured, evaluated, and tested prior to their inclusion in nuclear data libraries. Traditionally, nuclear data evaluations are performed to support the analysis and design of thermal and fast reactors. The neutron spectra characteristic of the thermal and fast systems used for data testing are predominantly in the low- and high-energy ranges, with a relatively minor influence from the intermediate-energy range. In the area of nuclear criticality safety, nuclear systems involving spent fuel elements from reactors can lead to situations very different from those most commonly found in reactor analysis and design. These systems are not limited to thermal or fast neutron spectra and may have their most significant influence from the intermediate energy range. This requires extending the range of applicability of the nuclear data evaluation beyond thermal and fast systems. The aim here is to focus on the evaluated nuclear data pertaining to applications in nuclear criticality safety.

  2. Comparison of radiation safety and nuclear explosive safety disciplines

    SciTech Connect

    Winstanley, J. L.

    1998-10-10

    In August 1945, U.S. Navy Captain William Parsons served as the weaponeer aboard the Enola Gay for the mission to Hiroshima (Shelton 1988). In view of the fact that four B-29s had crashed and burned on takeoff from Tinian the night before, Captain Parsons made the decision to arm the gun-type weapon after takeoff for safety reasons (15 kilotons of TNT equivalent). Although he had no control over the success of the takeoff, he could prevent the possibility of a nuclear detonation on Tinian by controlling what we now call the nuclear explosive. As head of the Ordnance Division at Los Alamos and a former gunnery officer, Captain Parsons clearly understood the role of safety in his work. The advent of the pre-assembled implosion weapon where the high explosive and nuclear materials are always in an intimate configuration meant that nuclear explosive safety became a reality at a certain point in development and production not just at the time of delivery by the military. This is the only industry where nuclear materials are intentionally put in contact with high explosives. The agency of the U.S. Government responsible for development and production of U.S. nuclear weapons is the Department of Energy (DOE) (and its predecessor agencies). This paper will be limited to nuclear explosive safety as it is currently practiced within the DOE nuclear weapons

  3. IDNS: The Illinois Nuclear Safety Agency

    SciTech Connect

    Gallina, C.O.

    1993-09-01

    The Illinois Department of Nuclear Safety (IDNS) is one of only two cabinet-level state agencies in the United States devoted exclusively to nuclear and radiation safety. It was established in 1980 by then Gov. James Thompson in response to the 1979 accident at Three Mile Island-2, so the state would be prepared in case of a similar accident at an Illinois nuclear power facility. There are 13 commercial nuclear reactors at seven sites in Illinois, more than in any other state. If Illinois were a country, it would be seventh in the world in the amount of nuclear-generated electricity, and second in the percentage of electricity produced by nuclear power. The state also has several major nonreactor nuclear facilities. 9 refs.

  4. Nuclear criticality safety department training implementation

    SciTech Connect

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-09-06

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document.

  5. Nuclear Wallet Cards from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    Tuli, Jagdish K.

    Nuclear Wallet Cards present properties for ground and isomeric states of all known nuclides. Properties given are: spin and parity assignments, nuclear mass excesses, half-life, isotopic abundances, and decay modes. Appendices contain properties of elements, fundamental constants and other useful information. Nuclear Wallet Cards booklet is published by the National Nuclear Data Center and its electronic (current) version is periodically updated. The Nuclear Wallet Cards by Dr. Jagdish K. Tuli, presently in its 8th edition, is distributed in print as well as in PDA-adaptable Palm Pilot format; the data table as an ASCII file is available upon request. [Taken from http://www.nndc.bnl.gov/wallet/

  6. Some views on nuclear reactor safety

    SciTech Connect

    Tanguy, P.Y.

    1995-04-01

    This document is the text of a speech given by Pierre Y. Tanguy (Electricite de France) at the 22nd Water Reactor Safety Meeting held in Bethesda, MD in 1994. He describes the EDF nuclear program in broad terms and proceeds to discuss operational safety results with EDF plants. The speaker also outlines actions to enhance safety planned for the future, and he briefly mentions French cooperation with the Chinese on the Daya Bay project.

  7. Nuclear data for criticality safety - current issues

    SciTech Connect

    Leal, L.C.; Jordan, W.C.; Wright, R.Q.

    1995-06-01

    Traditionally, nuclear data evaluations have been performed in support of the analysis and design of thermal and fast reactors. In general, the neutron spectra characteristic of the thermal and fast systems used for data testing are predominantly in the low- and high-energy range with a relatively small influence from the intermediate-energy range. In the area of nuclear criticality safety, nuclear systems arising from applications involving fissionable materials outside reactors can lead to situations very different from those most commonly found in reactor analysis and design. These systems are not limited to thermal or fast and may have significant influence from the intermediate energy range. The extension of the range of applicability of the nuclear data evaluation beyond thermal and fast systems is therefore needed to cover problems found in nuclear criticality safety. Before criticality safety calculations are performed, the bias and uncertainties of the codes and cross sections that are used must be determined. The most common sources of uncertainties, in general, are the calculational methodologies and the uncertainties related to the nuclear data, such as the microscopic cross sections, entering into the calculational procedure. The aim here is to focus on the evaluated nuclear data pertaining to applications in nuclear criticality safety.

  8. Nuclear Powerplant Safety: Source Terms. Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    There has been increased public interest in the potential effects of nuclear powerplant accidents since the Soviet reactor accident at Chernobyl. People have begun to look for more information about the amount of radioactivity that might be released into the environment as a result of such an accident. When this issue is discussed by people…

  9. Nuclear safety for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Dix, Terry E.

    1991-01-01

    The results of a study to identify potential hazards arising from nuclear reactor power systems for use on the lunar and Martian surfaces, related safety issues, and resolutions of such issues by system design changes, operating procedures, and other means are presented. All safety aspects of nuclear reactor power systems from prelaunch ground handling to eventual disposal were examined consistent with the level of detail for SP-100 reactor design at the 1988 System Design Review and for launch vehicle and space transport vehicle designs and mission descriptions as defined in the 90-day Space Exploration Initiative (SEI) study. Information from previous aerospace nuclear safety studies was used where appropriate. Safety requirements for the SP-100 space nuclear reactor system were compiled. Mission profiles were defined with emphasis on activities after low earth orbit insertion. Accident scenarios were then qualitatively defined for each mission phase. Safety issues were identified for all mission phases with the aid of simplified event trees. Safety issue resolution approaches of the SP-100 program were compiled. Resolution approaches for those safety issues not covered by the SP-100 program were identified. Additionally, the resolution approaches of the SP-100 program were examined in light of the moon and Mars missions.

  10. 46 CFR 50.10-23 - Marine Safety Center.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Marine Safety Center. 50.10-23 Section 50.10-23 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-23 Marine Safety Center. The term Marine Safety...

  11. Nuclear power-plant safety functions

    SciTech Connect

    Corcoran, W.R.; Finnicum, D.J.; Hubbard, F.R. III; Musick, C.R.; Walzer, P.F.

    1981-03-01

    The concept of safety functions is discussed. Ten critical safety functions and the multiple success paths available for accomplishing them are described. Use of the safety function concept in the development of emergency procedures, operator training, and control-room displays provides a systematic approach and a hierarchy of protection that an operator can use to mitigate the consequences of an event. The safety function concept can also be applied to the design and analysis of nuclear plant systems and to the evaluation of past expierience.

  12. Internet and the national nuclear data center

    SciTech Connect

    Burrows, T.W.

    1997-12-31

    The National Nuclear Data Center (NNDC) has been providing electronic access to the nuclear data bases it maintains since 1986. Originally the access was via modem and DecNet; primary access now is through the Internet. After the Internet became widely available to the scientific community, retrievals from the NNDC`s data bases have risen almost exponentially with an estimated 124,000 retrievals for 1996. Primary access is still through TELNET but there is substantial activity through the World Wide Web (W3). A current goal of the Center is to provide W3 access to all of its major data bases by the end of 1997. W3 access to the NNDC data bases will be demonstrated along with demonstrations of {open_quotes}work in progress.{close_quotes} The Center has also taken the initiative to develop and maintain new data bases covering the {open_quotes}frontiers{close_quotes} of nuclear science.

  13. National Center for Nuclear Security - NCNS

    ScienceCinema

    None

    2016-07-12

    As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

  14. National Center for Nuclear Security - NCNS

    SciTech Connect

    2014-11-12

    As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

  15. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  16. TOPAZ-2 Nuclear Power System safety assurance

    SciTech Connect

    Nikitin, V.P.; Ogloblin, B.G.; Lutov, Y.I.; Luppov, A.N.; Shalaev, A.I. ); Ponomarev-Stepnoi, N.N.; Usov, V.A.; Nechaev, Y.A. )

    1993-01-15

    TOPAZ-2 Nuclear Power System (NPS) safety philosophy is based on the requirement that the reactor shall not be critical during all kinds of operations prior to its start-up on the safe orbit (except for physical start-up). Potentially dangerous operation were analyzed and both computational and experimental studies were carried out.

  17. Nuclear Safety Design Base for License Application

    SciTech Connect

    R.J. Garrett

    2005-09-29

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111(b) [DIRS 173273] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113(b) and (c) [DIRS 173273] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  18. NUCLEAR SAFETY DESIGN BASES FOR LICENSE APPLICATION

    SciTech Connect

    R.J. Garrett

    2005-03-08

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111 [DIRS 156605] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113 [DIRS 156605] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  19. Management of National Nuclear Power Programs for assured safety

    SciTech Connect

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  20. The Interagency Nuclear Safety Review Panel's Galileo safety evaluation report

    SciTech Connect

    Nelson, R.C.; Gray, L.B.; Huff, D.A.

    1989-01-01

    The safety evaluation report (SER) for Galileo was prepared by the Interagency Nuclear Safety Review Panel (INSRP) coordinators in accordance with Presidential directive/National Security Council memorandum 25. The INSRP consists of three coordinators appointed by their respective agencies, the Department of Defense, the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA). These individuals are independent of the program being evaluated and depend on independent experts drawn from the national technical community to serve on the five INSRP subpanels. The Galileo SER is based on input provided by the NASA Galileo Program Office, review and assessment of the final safety analysis report prepared by the Office of Special Applications of the DOE under a memorandum of understanding between NASA and the DOE, as well as other related data and analyses. The SER was prepared for use by the agencies and the Office of Science and Technology Policy, Executive Office of the Present for use in their launch decision-making process. Although more than 20 nuclear-powered space missions have been previously reviewed via the INSRP process, the Galileo review constituted the first review of a nuclear power source associated with launch aboard the Space Transportation System.

  1. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect

    Batandjieva, B.; Warnecke, E.; Coates, R.

    2008-01-15

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  2. Space nuclear safety from a user's viewpoint

    NASA Technical Reports Server (NTRS)

    Campbell, R. W.

    1985-01-01

    The National Aeronautics and Space Administration (NASA) launched the Jet Propulsion Laboratory's (JPL) two Voyager spacecraft to Jupiter in 1977, each using three radioisotope thermoelectric generators (RTGs) supplied by the Department of Energy (DOE) for onboard electric power. In 1986 NASA will launch JPL's Galileo spacecraft to Jupiter equipped with two DOE supplied RTGs of an improved design. NASA and JPL are also responsible for obtaining a single RTG of this type from DOE and supplying it to the European Space Agency as part of its participation in the International Solar Polar Mission. As a result of these missions, JPL has been deeply involved in space nuclear safety as a user. This paper will give a brief review of the user contributions by JPL - and NASA in general - to the nuclear safety processes and relate them to the overall nuclear safety program necessary for the launch of an RTG. The two major safety areas requiring user support are the ground operations involving RTGs at the launch site and the failure modes and probabilities associated with launch accidents.

  3. Double-clad nuclear fuel safety rod

    DOEpatents

    McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan

    1984-01-01

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  4. Study Gives Good Odds on Nuclear Reactor Safety

    ERIC Educational Resources Information Center

    Russell, Cristine

    1974-01-01

    Summarized is data from a recent study on nuclear reactor safety completed by Norman C. Rasmussen and others. Non-nuclear events are about 10,000 times more likely to produce large accidents than nuclear plants. (RH)

  5. Organizational factors and nuclear power plant safety

    SciTech Connect

    Haber, S.B.

    1995-12-31

    There are many organizations in our society that depend on human performance to avoid incidents involving significant adverse consequences. As our culture and technology have become more sophisticated, the management of risk on a broad basis has become more and more critical. The safe operation of military facilities, chemical plants, airlines, and mass transit, to name a few, are substantially dependent on the performance of the organizations that operate those facilities. The nuclear power industry has, within the past 15 years, increased the attention given to the influence of human performance in the safe operation of nuclear power plants (NPP). While NPPs have been designed through engineering disciplines to intercept and mitigate events that could cause adverse consequences, it has been clear from various safety-related incidents that human performance also plays a dominant role in preventing accidents. Initial efforts following the 1979 Three Mile Island incident focused primarily on ergonomic factors (e.g., the best design of control rooms for maximum performance). Greater attention was subsequently directed towards cognitive processes involved in the use of NPP decision support systems and decision making in general, personnel functions such as selection systems, and the influence of work scheduling and planning on employees` performance. Although each of these approaches has contributed to increasing the safety of NPPS, during the last few years, there has been a growing awareness that particular attention must be paid to how organizational processes affect NPP personnel performance, and thus, plant safety. The direct importance of organizational factors on safety performance in the NPP has been well-documented in the reports on the Three Mile Island and Chernobyl accidents as well as numerous other events, especially as evaluated by the U.S. Nuclear Regulatory Commission (NRC).

  6. National Traffic Safety Documentation Center Project Definition Study. Final Report.

    ERIC Educational Resources Information Center

    System Development Corp., Falls Church, VA.

    A project definition study was conducted for the development, implementation and operation of a National Traffic Safety Documentation Center. Included in this final comprehensive report are: (1) the results of nationwide surveys of users and sources of traffic safety information; (2) a review of relevant information technology in terms of the…

  7. Index to Nuclear Safety: a technical progress review by chrology, permuted title, and author, Volume 11(1) through Volume 20(6)

    SciTech Connect

    Cottrell, W.B.; Passiakos, M.

    1980-06-01

    This index to Nuclear Safety, a bimonthly technical progress review, covers articles published in Nuclear Safety, Volume II, No. 1 (January-February 1970), through Volume 20, No. 6 (November-December 1979). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 600 technical articles published in Nuclear Safety in the last ten years are listed in this index.

  8. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    SciTech Connect

    Cottrell, W.B.; Passiakos, M.

    1982-06-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

  9. 76 FR 16758 - DOE Response to Recommendation 2010-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... our nuclear safety requirements to assure they were clear, concise, complete, and current. In March... progress in revising key nuclear safety Directives and the DOE Nuclear Safety Policy. We have not changed... have made significant nuclear safety improvements by upgrading facility safety bases and designs and...

  10. Applicability of trends in nuclear safety analysis to space nuclear power systems

    SciTech Connect

    Bari, R.A.

    1992-10-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication.

  11. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  12. Tutorial on nuclear thermal propulsion safety for Mars

    SciTech Connect

    Buden, D.

    1992-01-01

    Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

  13. Tutorial on nuclear thermal propulsion safety for Mars

    SciTech Connect

    Buden, D.

    1992-08-01

    Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

  14. Aging of nuclear power plant safety cables

    SciTech Connect

    Gillen, K.T.; Salazar, E.A.

    1986-01-01

    Results from an extensive aging program on polymeric materials stripped from unused nuclear reactor safety cables are described. Mechanical damage was monitored after room temperature aging in a Co-60 gamma radiation source at various humidities and radiation dose rates ranging from 1.2 Mrad/h to 2 krad/h. For chloroprene, chlorosulfonated polyethylene, and silicone materials, the mechanical degradation was found to depend only on the total integrated radiation dose, implying that radiation dose rate effects are small. On the other hand, strong evidence for radiation dose rate effects were found for an ethylene propylene rubber material and a cross-linked polyolefin material. Humidity effects were determined to be insignificant for all the materials studied.

  15. Southwest Border Food Safety and Defense Center: Creative Ideas for Promoting Food Safety and Food Protection

    ERIC Educational Resources Information Center

    Koukel, Sonja

    2015-01-01

    Foodborne illness has a significant impact on public health and consumer confidence in the U.S. The Southwest Border Food Safety and Defense Center was established to provide educational programs, trainings, and workshops to address the health and well-being of consumers as it relates to food safety and food protection. A partnership between New…

  16. Patient safety goals for the proposed Federal Health Information Technology Safety Center.

    PubMed

    Sittig, Dean F; Classen, David C; Singh, Hardeep

    2015-03-01

    The Office of the National Coordinator for Health Information Technology is expected to oversee creation of a Health Information Technology (HIT) Safety Center. While its functions are still being defined, the center is envisioned as a public-private entity focusing on promotion of HIT related patient safety. We propose that the HIT Safety Center leverages its unique position to work with key administrative and policy stakeholders, healthcare organizations (HCOs), and HIT vendors to achieve four goals: (1) facilitate creation of a nationwide 'post-marketing' surveillance system to monitor HIT related safety events; (2) develop methods and governance structures to support investigation of major HIT related safety events; (3) create the infrastructure and methods needed to carry out random assessments of HIT related safety in complex HCOs; and (4) advocate for HIT safety with government and private entities. The convening ability of a federally supported HIT Safety Center could be critically important to our transformation to a safe and effective HIT enabled healthcare system. PMID:25332353

  17. Texas School Safety Center: Charting the Course for School Safety in Turbulent Times.

    ERIC Educational Resources Information Center

    Renick, Judy

    2002-01-01

    Describes the Texas School Safety Center, established by the Texas legislature to provide interdisciplinary resources to promote school safety statewide through activities such as regional training institutes, youth leadership training, and technical assistance. Provides an example from the "Proactive Guide for Threat of Terrorism in Schools,"…

  18. Patient safety goals for the proposed Federal Health Information Technology Safety Center.

    PubMed

    Sittig, Dean F; Classen, David C; Singh, Hardeep

    2015-03-01

    The Office of the National Coordinator for Health Information Technology is expected to oversee creation of a Health Information Technology (HIT) Safety Center. While its functions are still being defined, the center is envisioned as a public-private entity focusing on promotion of HIT related patient safety. We propose that the HIT Safety Center leverages its unique position to work with key administrative and policy stakeholders, healthcare organizations (HCOs), and HIT vendors to achieve four goals: (1) facilitate creation of a nationwide 'post-marketing' surveillance system to monitor HIT related safety events; (2) develop methods and governance structures to support investigation of major HIT related safety events; (3) create the infrastructure and methods needed to carry out random assessments of HIT related safety in complex HCOs; and (4) advocate for HIT safety with government and private entities. The convening ability of a federally supported HIT Safety Center could be critically important to our transformation to a safe and effective HIT enabled healthcare system.

  19. The Department of Energy Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Felty, James R.

    2005-05-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  20. Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches

    SciTech Connect

    Steven R. Sherman

    2007-06-01

    The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

  1. Nuclear criticality safety basics for personnel working with nuclear fissionable materials. Phase I

    SciTech Connect

    Vausher, A.L.

    1984-10-01

    DOE order 5480.1A, Chapter V, ''Safety of Nuclear Facilities,'' establishes safety procedures and requirements for DOE nuclear facilities. The ''Nuclear Criticality Safety Basic Program - Phase I'' is documented in this report. The revised program has been developed to clearly illustrate the concept of nuclear safety and to help the individual employee incorporate safe behavior in his daily work performance. Because of this, the subject of safety has been approached through its three fundamentals: scientific basis, engineering criteria, and administrative controls. Only basics of these three elements were presented. 5 refs.

  2. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    SciTech Connect

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  3. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  4. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  5. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  6. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  7. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  8. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  9. Developing operational safety requirements for non-nuclear facilities

    SciTech Connect

    Mahn, J.A.

    1997-11-01

    Little guidance has been provided by the DOE for developing appropriate Operational Safety Requirements (OSR) for non-nuclear facility safety documents. For a period of time, Chapter 2 of DOE/AL Supplemental Order 5481.lB provided format guidance for non-reactor nuclear facility OSRs when this supplemental order applied to both nuclear and non-nuclear facilities. Thus, DOE Albuquerque Operations Office personnel still want to see non-nuclear facility OSRs in accordance with the supplemental order (i.e., in terms of Safety Limits, Limiting Conditions for Operation, and Administrative Controls). Furthermore, they want to see a clear correlation between the OSRs and the results of a facility safety analysis. This paper demonstrates how OSRs can be rather simply derived from the results of a risk assessment performed using the ``binning`` methodology of SAND95-0320.

  10. Nuclear Technology Series. Course 8: Reactor Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect

    Not Available

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  12. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect

    Not Available

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  13. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. 76 FR 39811 - International Center for Technology Assessment and the Center for Food Safety; Noxious Weed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Assessment and the Center for Food Safety; Noxious Weed Status of Kentucky Bluegrass Genetically Engineered... engineered for tolerance to the herbicide glyphosate should not be listed as a Federal noxious weed and... noxious weeds. Our decision is based on our analysis of available scientific data, our weed...

  15. Engineers call for US nuclear safety fix

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2016-04-01

    Seven Nuclear Regulatory Commission (NRC) engineers have called on the commission to force the owners of US nuclear reactors to repair a design flaw that could affect the safe operation of emergency core cooling systems.

  16. Shaping NASA's Kennedy Space Center Safety for the Future

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul; McDaniel, Laura; Smith, Maynette

    2011-01-01

    With the completion of the Space Shuttle Program, the Kennedy Space Center (KSC) safety function will be required to evolve beyond the single launch vehicle launch site focus that has held prominence for almost fifty years. This paper will discuss how that evolution is taking place. Specifically, we will discuss the future of safety as it relates to a site that will have multiple, very disparate, functions. These functions will include new business; KSC facilities not under the control of NASA; traditional payload and launch vehicle processing; and, operations conducted by NASA personnel, NASA contractors or a combination of both. A key element in this process is the adaptation of the current KSC set of safety requirements into a multi-faceted set that can address each of the functions above, while maintaining our world class safety environment. One of the biggest challenges that will be addressed is how to protect our personnel and property without dictating how other Non-NASA organizations protect their own employees and property. The past history of KSC Safety will be described and how the lessons learned from previous programs will be applied to the future. The lessons learned from this process will also be discussed as information for other locations that may undergo such a transformation.

  17. Human Factors Research and Nuclear Safety.

    ERIC Educational Resources Information Center

    Moray, Neville P., Ed.; Huey, Beverly M., Ed.

    The Panel on Human Factors Research Needs in Nuclear Regulatory Research was formed by the National Research Council in response to a request from the Nuclear Regulatory Commission (NRC). The NRC asked the research council to conduct an 18-month study of human factors research needs for the safe operation of nuclear power plants. This report…

  18. 76 FR 42686 - DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety Culture at the..., concerning Safety Culture at the Waste Treatment and Immobilization Plant, to the Department of Energy. In...) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board) Recommendation 2011-1, Safety...

  19. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    SciTech Connect

    Klingensmith, A. L.

    2012-03-21

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  20. Chart of Nuclides from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Chart of Nuclides is a software product that allows users to search and plot nuclear structure and nuclear decay data interactively. The Chart of Nuclides was developed by the National Nuclear Data Center (NNDC). It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Using the Chart of Nuclides, it is possible to search for nuclear level properties (energy, half-life, spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences),radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by the Chart of Nuclides can be seen in tables, level schemes and an interactive chart of nuclides. (From the Chart of Nuclides Description at http://www.nndc.bnl.gov/chart/help/index.jsp?product=chart)

  1. NUCLEAR REACTION AND STRUCTURE DATABASES OF THE NATIONAL NUCLEAR DATA CENTER.

    SciTech Connect

    PRITYCHENKO, B.; HERMAN, M.W.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; SONZOGNI, A.A.

    2006-06-23

    We discuss nuclear data resources of the National Nuclear Data Center (NNDC) of relevance to nuclear astrophysics applications. These resources include databases, tools and powerful web service at www.nndc.bnl.gov. Our objective is to provide an overview of nuclear databases, related products and demonstrate nuclear astrophysics potential of the ENDF/B-VII beta2 library. A detailed discussion on the Maxwellian neutron capture cross sections obtained from the ENDF/B-VII beta2 library is presented.

  2. Nuclear Reaction and Structure Databases of the National Nuclear Data Center

    SciTech Connect

    Pritychenko, B.; Arcilla, R.; Herman, M. W.; Oblozinsky, P.; Rochman, D.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2006-03-13

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. In 2004, the NNDC migrated all databases into modern relational database software, installed new generation of Linux servers and developed new Java-based Web service. This nuclear database development means much faster, more flexible and more convenient service to all users in the United States. These nuclear reaction and structure database developments as well as related Web services are briefly described.

  3. THE IMPACT OF THE GLOBAL NUCLEAR SAFETY REGIME IN BRAZIL

    SciTech Connect

    Almeida, C.

    2004-10-06

    A turning point of the world nuclear industry with respect to safety occurred due to the accident at Chernobyl, in 1986. A side from the tragic personal losses and the enormous financial damage, the Chernobyl accident has literally demonstrated that ''a nuclear accident anywhere is an accident everywhere''. The impact was felt immediately by the nuclear industry, with plant cancellations (e.g. Austria), elimination of national programs (e.g. Italy) and general construction delays. However, the reaction of the nuclear industry was equally immediate, which led to the proposal and establishment of a Global Nuclear Safety Regime. This regime is composed of biding international safety conventions, globally accepted safety standard, and a voluntary peer review system. In a previous work, the author has presented in detail the components of this Regime, and briefly discussed its impact in the Brazilian nuclear power organizations, including the Regulatory Body. This work, on the opposite, briefly reviews the Global Nuclear Safety Regime, and concentrates in detail in the discussion of its impact in Brazil, showing how it has produced some changes, and where the peer pressure regime has failed to produce real results.

  4. The unique signal concept for detonation safety in nuclear weapons

    SciTech Connect

    Spray, S.D.; Cooper, J.A.

    1993-06-01

    The purpose of a unique signal (UQS) in a nuclear weapon system is to provide an unambiguous communication of intent to detonate from the UQS information input source device to a stronglink safety device in the weapon in a manner that is highly unlikely to be duplicated or simulated in normal environments and in a broad range of ill-defined abnormal environments. This report presents safety considerations for the design and implementation of UQSs in the context of the overall safety system.

  5. A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)

    SciTech Connect

    Morris, Tommy J.

    2012-07-05

    Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

  6. Independent peer review of nuclear safety computer codes

    SciTech Connect

    Boyack, B.E.; Jenks, R.P.

    1993-02-01

    A structured process of independent computer code peer review has been developed to assist the US Nuclear Regulatory Commission (NRC) and the US Department of Energy in their nuclear safety missions. This paper focuses on the process that evolved during recent reviews of NRC codes.

  7. Government: Nuclear Safety in Doubt a Year after Accident.

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1980-01-01

    A year after the accident at Three Mile Island (TMI), the signals transmitted to the public are still confused. Industry says that nuclear power is safe and that the aftermath of TMI ushers in a new era of safety. Antinuclear activists say TMI sounded nuclear power's death knell. (Author/RE)

  8. A Web-Based Nuclear Criticality Safety Bibliographic Database

    SciTech Connect

    Koponen, B L; Huang, S

    2007-02-22

    A bibliographic criticality safety database of over 13,000 records is available on the Internet as part of the U.S. Department of Energy's (DOE) Nuclear Criticality Safety Program (NCSP) website. This database is easy to access via the Internet and gets substantial daily usage. This database and other criticality safety resources are available at ncsp.llnl.gov. The web database has evolved from more than thirty years of effort at Lawrence Livermore National Laboratory (LLNL), beginning with compilations of critical experiment reports and American Nuclear Society Transactions.

  9. Aerospace nuclear safety: An introduction and historical overview

    SciTech Connect

    Lee, J.H.; Buden, D.

    1994-04-01

    This paper provides an introduction and overview on the topical area of aerospace nuclear safety. Emphasis is on the history of the use of nuclear power sources in space, operational experience with these nuclear sources, a review of previous accidents associated with both U.S. and Russian launches, and the safety issues associated with the entire life cycle of space reactors. There are several potential missions to include near earth orbit, orbit-raising, lunar bases, and propulsion to such solar system locations as Mars, which are suitable for the use of space reactors. The process by which approval is obtained to launch these nuclear materials to space is also presented as well as the role of nuclear safety policy and requirements in a space program using nuclear power sources. Important differences in safety concerns for the Radioisotope Thermoelectric Generators (RTGs) now used, and space reactors are presented. The role and purpose of independent safety evaluation and assessment in ensuring safe launch and operation is also discussed. In summary, this paper provides the requisite framework in this topical area for the remaining papers of this session.

  10. Westar's Lawrence Energy Center wins for not blinking on safety

    SciTech Connect

    Peltier, R.

    2007-07-15

    It took Westar Energy eight years to upgrade the Lawrence Energy Center to burn Powder River Basin coal. Its zero lost-time accident record during the eight-year, million-man-hour project is a testament to Westar's commitment to workplace safety. The plant won the Powder River Basin Coal Users' Group plant of the year award for 2006. The article describes all the changes implemented at the plant, including replacing and upgrading controls for the belt conveyor, replacing the coal crushers, minimising dust and modifying coal bunkers, to cope with the increased volatility of Powder River Basin coal. Modifications were made to minimise slagging and fouling of boilers. 10 photos.

  11. Nuclear industry embraces reliability-centered maintenance

    SciTech Connect

    Worledge, D.H. )

    1993-07-01

    This article discusses a common sense approach to maintenance that increases the reliability of power plants at a reasonable cost. The topic of the article include the debut of reliability centered maintenance (RCM) in the airline industry, early utility experience is reviewed, the rational behind RCM, implementing RCM, cost and benefits of the program, outage rate falls, the EPRI RCM user's group, and cost trends of one-time RCM costs.

  12. Safety Evaluation Report for the Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)

    SciTech Connect

    Not Available

    1994-01-01

    This report documents the US Nuclear Regulatory Commission (NRC) staff review and safety evaluation of the Louisiana Energy Services, L.P. (LES, the applicant) application for a license to possess and use byproduct, source, and special nuclear material and to enrich natural uranium to a maximum of 5 percent U-235 by the gas centrifuge process. The plant, to be known as the Claiborne Enrichment Center (CEC), would be constructed near the town of Homer in Claiborne Parish, Louisiana. At full production in a given year, the plant will receive approximately 4,700 tonnes of feed UF{sub 6} and produce 870 tonnes of low-enriched UF{sub 6}, and 3,830 tonnes of depleted UF{sub 6} tails. Facility construction, operation, and decommissioning are expected to last 5, 30, and 7 years, respectively. The objective of the review is to evaluate the potential adverse impacts of operation of the facility on worker and public health and safety under both normal operating and accident conditions. The review also considers the management organization, administrative programs, and financial qualifications provided to assure safe design and operation of the facility. The NRC staff concludes that the applicant`s descriptions, specifications, and analyses provide an adequate basis for safety review of facility operations and that construction and operation of the facility does not pose an undue risk to public health and safety.

  13. Proceedings of the Nuclear Criticality Technology Safety Workshop

    SciTech Connect

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  14. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    SciTech Connect

    Myers, Astasia

    2011-06-28

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  15. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    NASA Astrophysics Data System (ADS)

    Myers, Astasia

    2011-06-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  16. Safety assessment: Pinellas Plant Child Development Center/Partnership School

    SciTech Connect

    Not Available

    1990-06-21

    This document describes the Child Development Center/Partnership School and its unique relationship to the Pinellas Plant. The school and its operation are described in detail, along with the administrative and engineering controls in place to ensure the safety of the facility. Special emphasis is placed on the analyses of potential risks to school operations and personnel which may be posed by their close proximity to the plant. A recent Safety Systems Management Assay (SSMA) was used as a guide in describing both routine operations and potential credible accident scenarios at the Pinellas Plant site. The Safety Assessment concluded that, although potential accidents at the Pinellas Plant could result in injury to personnel on the school site, the low probability of these incidents would make operation of the school an acceptable risk. The risks associated with routine operations at the plant are similar to those encountered at a large-scale electronics manufacturing plant. Numerous safeguards are in place to limit the effects of any credible accident on the Pinellas Plant and school site. 32 refs., 18 figs., 33 tabs.

  17. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  18. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems. PMID:18049233

  19. Nuclear Safeguards Infrastructure Development and Integration with Safety and Security

    SciTech Connect

    Kovacic, Donald N; Raffo-Caiado, Ana Claudia; McClelland-Kerr, John; Van sickle, Matthew; Bissani, Mo

    2009-01-01

    Faced with increasing global energy demands, many developing countries are considering building their first nuclear power plant. As a country embarks upon or expands its nuclear power program, it should consider how it will address the 19 issues laid out in the International Atomic Energy Agency (IAEA) document Milestones in Development of a National Infrastructure for Nuclear Power. One of those issues specifically addresses the international nonproliferation treaties and commitments and the implementation of safeguards to prevent diversion of nuclear material from peaceful purposes to nuclear weapons. Given the many legislative, economic, financial, environmental, operational, and other considerations preoccupying their planners, it is often difficult for countries to focus on developing the core strengths needed for effective safeguards implementation. Typically, these countries either have no nuclear experience or it is limited to the operation of research reactors used for radioisotope development and scientific research. As a result, their capacity to apply safeguards and manage fuel operations for a nuclear power program is limited. This paper argues that to address the safeguards issue effectively, a holistic approach must be taken to integrate safeguards with the other IAEA issues including safety and security - sometimes referred to as the '3S' concept. Taking a holistic approach means that a country must consider safeguards within the context of its entire nuclear power program, including operations best practices, safety, and security as well as integration with its larger nonproliferation commitments. The Department of Energy/National Nuclear Security Administration's International Nuclear Safeguards and Engagement Program (INSEP) has been involved in bilateral technical cooperation programs for over 20 years to promote nonproliferation and the peaceful uses of nuclear energy. INSEP is currently spearheading efforts to promote the development of

  20. Aging of safety class 1E transformers in safety systems of nuclear power plants

    SciTech Connect

    Roberts, E.W.; Edson, J.L.; Udy, A.C.

    1996-02-01

    This report discusses aging effects on safety-related power transformers in nuclear power plants. It also evaluates maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission`s (NRC`s) Nuclear Plant-Aging Research approach. It investigates the materials used in transformer construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes transformer failure events reported in various databases, and evaluates maintenance practices. Databases maintained by the nuclear industry were analyzed to evaluate the effects of aging on the operation of nuclear power plants.

  1. Web-based nuclear criticality safety bibliographic database

    SciTech Connect

    Koponen, B L; Huang, S T

    2000-06-21

    The Lawrence Livermore National Laboratory has prepared a Nuclear Criticality Safety Bibliographic Database that is now available via the Internet. This database is a component of the U.S. DOE Nuclear Criticality Safety Program (NCSP) Web site. This WWW resource was developed as part of the DOE response to the DNFSB Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. To the extent possible, the hyperlinks on the Web pages direct the user to original source of the reference material in order to ensure accuracy and access to the latest versions. A master index is in place for simple navigation through the site. A search capability is available to assist in locating the on-line reference materials. Among the features included are: A user-friendly site map for ease of use; A personnel registry; Links to all major laboratories and organizations involved in the many aspects of criticality safety; General help for new criticality safety practitioners, including basic technical references and training modules; A discussion of computational methods; An interactive question and answer forum for the criticality safety community; and Collections of bibliographic references mdvahdation experiments. This paper will focus on the bibliographic database. This database evolved from earlier work done by the DOE's Nuclear Criticality Information System (NCIS) maintained at LLNL during the 1980s. The bibliographic database at the time of the termination of NCIS were composed principally of three parts: (1) A critical experiment bibliography of 1067 citations (reported in UCRL-52769); (2) A compilation of criticality safety papers from Volumes 1 through 41 of the Transactions of the American Nuclear Society (reported in UCRL-53369); and (3) A general criticality bibliography of several thousand citations (unpublished). When the NCIS project was terminated the database was nearly lost but, fortunately, several years later

  2. Nuclear criticality safety program for environmental restoration projects

    SciTech Connect

    Marble, R.C.; Brown, T.D.

    1994-05-01

    The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center (FMPC), is located on a 1050 acre site approximately twenty miles northwest of Cincinnati, Ohio. The production area of the site covers approximately 136 acres in the central portion of the site. Surrounding the core production area is a buffer consisting of leased grazing land, reforested land, and unused areas. The uranium processing facility was designed and constructed in the early 1950s. During the period from 1952 to 1989 the site produced uranium feed material and uranium products used in the United States weapons complex. Production at the site ended in 1989, when the site was shut down for what was expected to be a short period of time. However, the FUTC was permanently shut down in 1991, and the site`s mission was changed from production to environmental restoration. The objective of this paper is to give an update on activities at the Fernald Site and to describe the Nuclear Criticality Safety issues that are currently being addressed.

  3. Guidance for identifying, reporting and tracking nuclear safety noncompliances

    SciTech Connect

    1995-12-01

    This document provides Department of Energy (DOE) contractors, subcontractors and suppliers with guidance in the effective use of DOE`s Price-Anderson nuclear safety Noncompliance Tracking System (NTS). Prompt contractor identification, reporting to DOE, and correction of nuclear safety noncompliances provides DOE with a basis to exercise enforcement discretion to mitigate civil penalties, and suspend the issuance of Notices of Violation for certain violations. Use of this reporting methodology is elective by contractors; however, this methodology is intended to reflect DOE`s philosophy on effective identification and reporting of nuclear safety noncompliances. To the extent that these expectations are met for particular noncompliances, DOE intends to appropriately exercise its enforcement discretion in considering whether, and to what extent, to undertake enforcement action.

  4. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    SciTech Connect

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; Rychkov, Valentin

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs and activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).

  5. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    DOE PAGES

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; Rychkov, Valentin

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less

  6. Space Nuclear Safety Program, September 1983

    NASA Astrophysics Data System (ADS)

    Bronisz, S. E.

    1984-01-01

    This technical monthly report covers studies related to the use of (238) PuO2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  7. Space Nuclear Safety Program. Progress report

    SciTech Connect

    Bronisz, S.E.

    1984-01-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  8. Safety management of nuclear waste in Spain

    SciTech Connect

    Echavarri, L.E. )

    1991-01-01

    For the past two decades, Spain has been consolidating a nuclear program that in the last 3 years has provided between 35 and 40% of the electricity consumed in that country. This program includes nine operating reactor units, eight of them based on US technology and one from Germany, a total of 7,356 MW(electric). There is also a 480-MW(electric) French gas-cooled reactor whose operation recently ceased and which will be decommissioned in the coming years. Spanish industry has participated significantly in this program, and material produced locally has reached 85% of the total. Once the construction program has been completed and operation is proceeding normally, the capacity factor will be {approximately} 80%. It will be very important to complete the nuclear program with the establishment of conditions for safe management and disposal of the nuclear waste generated during the years in which these reactors are in operation and for subsequent decommissioning. To establish the guidelines for the disposal of nuclear waste, the Spanish government approved in october 1987, with a revision in January 1989, the General Plan of Radioactive Wastes proposed by the Ministry of Industry and Energy and prepared by the national company for radioactive waste management, ENRESA.

  9. Improved nuclear safety through international standards

    NASA Astrophysics Data System (ADS)

    Doctor, S. R.; Moffitt, R. L.; Taylor, T. T.; Trosman, G.

    2000-05-01

    In this shrinking world, what happens in an industry in one country can significantly affect the same industry elsewhere around the globe. In April 1986, a nuclear accident destroyed Unit 4 of Ukraine's Chernobyl nuclear power plant, focusing worldwide attention on the dozens of Soviet-designed reactors still in operation. The Chemobyl accident led to public concerns about all operating nuclear power plants and, in some countries (e.g., Italy and Sweden), to proposals for nationwide plant closures or moratoriums on new construction. However, for most former Soviet Union countries, plant shutdown was and still is not a viable option—the plants produce a significant percentage of each nation's total electricity, and those countries do not have sufficient economic resources to develop alternative power sources. In cooperation with similar programs initiated in Canada, Japan, and western European countries, the U.S. Department of Energy (DOE) is conducting a comprehensive effort to reduce risks at Soviet-designed nuclear power plants until they can be shut down or brought into compliance with international standards. This paper describes DOE-supported initiatives with participating host countries to: • improve reliability and accuracy of nondestructive evaluation equipment used for in-service inspection • transfer technologies and infrastructure to improve in-service inspections • enhance management systems for training and certifying host-country in-service inspection personnel The goal of these initiatives to enhance the use of international standards (ASME, ASNT, European Standards EN, and ISO) in operating and regulatory practices at Soviet-designed nuclear power plants.

  10. Nuclear Criticality Safety Organization training implementation. Revision 4

    SciTech Connect

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-05-19

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program.

  11. Review of Overall Safety Manual for space nuclear systems. An evaluation of a nuclear safety analysis methodology for plutonium-fueled space nuclear systems

    SciTech Connect

    Coleman, J.; Inhaber, H.

    1984-02-01

    As part of its duties in connection with space missions involving nuclear power sources, the Office of Nuclear Safety (ONS) of the Office of Assistant Secretary for Environmental Protection, Safety, and Emergency Preparedness has been assigned the task of reviewing the Overall Safety Manual (OSM) (memo from B.J. Rock to J.R. Maher, December 1, 1982). The OSM, dated July 1981 and in four volumes, was prepared by NUS Corporation, Rockville, Maryland, for the US Department of Energy. The OSM provides many of the technical models and much of the data which are used by (1) space launch contractors in safety analysis reports and (2) the broader Interagency Nuclear Safety Review Panel (INSRP) safety evaluation reports. If fhs interaction between the OSM, contractors, and INSRP is to work effectively, the OSM must be accurate, comprehensive, understandable, and usable.

  12. Nuclear space power safety and facility guidelines study

    SciTech Connect

    Mehlman, W.F.

    1995-09-11

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  13. NASA Engineering and Safety Center NDE Super Problem Resolution Team

    NASA Astrophysics Data System (ADS)

    Prosser, W. H.

    2007-03-01

    The NASA Engineering and Safety Center (NESC) is an independent organization, which was charted in the wake of the Space Shuttle Columbia accident to serve as an Agency-wide technical resource focused on engineering excellence. The objective of the NESC is to improve safety by performing in-depth independent engineering assessments, testing, and analysis to uncover technical vulnerabilities and to determine appropriate preventative and corrective actions for problems, trends or issues within NASA's programs, projects and institutions. Critical to the NESC are teams of experts in a number of core disciplines including nondestructive evaluation (NDE). These teams, designated Super Problem Resolution Teams (SPRTs), draw upon the best engineering expertise from across the Agency and include partnerships with other government agencies, national laboratories, universities and industry. The NESC NDE SPRT provides a ready resource of NDE technical expertise to support NESC Independent Technical Assessments and Investigations. The purpose of this session will be to provide an overview of the NESC and the NDE SPRT along with a few examples of NDE related problems that the team has addressed for NASA Programs. It is hoped that this session will be of interest to the general NDE community and will foster contacts with additional NDE experts that might provide future support to the NASA NESC NDE SPRT.

  14. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... COMMISSION Review of Safety Analysis Reports for Nuclear Power Plants, Introduction AGENCY: Nuclear... subsection to NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power..., Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants:...

  15. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  16. Training of nuclear criticality safety engineers

    SciTech Connect

    Taylor, R.G.

    1997-06-01

    The site specific analysis of nuclear criticality training needs is very briefly described. Analysis indicated that the four major components required were analysis, surveillance, business practices or administration, and emergency preparedness. The analysis component was further divided into process analysis, accident analysis, and transportation analysis. Ten subject matter areas for the process analysis component were identified as candidates for class development. Training classes developed from the job content analysis have demonstrated that the specialized information can be successfully delivered to new entrants. 1 fig.

  17. 49 CFR 390.27 - Locations of motor carrier safety service centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Locations of motor carrier safety service centers... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS FEDERAL MOTOR CARRIER SAFETY REGULATIONS; GENERAL General Requirements and Information §...

  18. Management concepts and safety applications for nuclear fuel facilities

    SciTech Connect

    Eisner, H.; Scotti, R.S.; Delicate, W.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  19. Space Nuclear Safety Program. Progress report, April 1984

    SciTech Connect

    George, T.G.

    1985-10-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Covered are: general-purpose heat source testing and recovery, and safety technology program (biaxial testing, iridium chemistry).

  20. MOX LTA Fuel Cycle Analyses: Nuclear and Radiation Safety

    SciTech Connect

    Pavlovitchev, A.M.

    2001-09-28

    Tasks of nuclear safety assurance for storage and transport of fresh mixed uranium-plutonium fuel of the VVER-1000 reactor are considered in the view of 3 MOX LTAs introduction into the core. The precise code MCU that realizes the Monte Carlo method is used for calculations.

  1. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    SciTech Connect

    Sanchez, R.G.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  2. Safety aspects of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  3. Automating Nuclear-Safety-Related SQA Procedures with Custom Applications

    SciTech Connect

    Freels, James D.

    2016-01-01

    Nuclear safety-related procedures are rigorous for good reason. Small design mistakes can quickly turn into unwanted failures. Researchers at Oak Ridge National Laboratory worked with COMSOL to define a simulation app that automates the software quality assurance (SQA) verification process and provides results in less than 24 hours.

  4. NUCLEAR FORENSICS ANALYSIS CENTER FORENSIC ANALYSIS TO DATA INTERPRETATION

    SciTech Connect

    Nichols, T.

    2011-02-07

    The Nuclear Forensics Analysis Center (NFAC) is part of Savannah River National Laboratory (SRNL) and is one of only two USG National Laboratories accredited to perform nuclear forensic analyses to the requirements of ISO 17025. SRNL NFAC is capable of analyzing nuclear and radiological samples from bulk material to ultra-trace samples. NFAC provides analytical support to the FBI's Radiological Evidence Examination Facility (REEF), which is located within SRNL. REEF gives the FBI the capability to perform traditional forensics on material that is radiological and/or is contaminated. SRNL is engaged in research and development efforts to improve the USG technical nuclear forensics capabilities. Research includes improving predictive signatures and developing a database containing comparative samples.

  5. Perspectives of The Interagency Nuclear Safety Review Panel (INSRP) on future nuclear powered space missions

    SciTech Connect

    Gray, L.B. ); Pyatt, D.W. ); Sholtis, J.A. ); Winchester, R.O. , c/o Directorate of Nuclear Surety, Kirtland AFB, New Mexico 87117 )

    1993-01-10

    The Interagency Nuclear Safety Review Panel (INSRP) has provided reviews of all nuclear powered spacecraft launched by the United States. The two most recent launches were Ulysses in 1990 and Galileo in 1989. One reactor was launched in 1965 (SNAP-10A). All other U.S. space missions have utilized radioisotopic thermoelectric generators (RTGs). There are several missions in the next few years that are to be nuclear powered, including one that would utilize the Topaz II reactor purchased from Russia. INSRP must realign itself to perform parallel safety assessments of a reactor powered space mission, which has not been done in about thirty years, and RTG powered missions.

  6. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    SciTech Connect

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  7. An Empirical Analysis of Human Performance and Nuclear Safety Culture

    SciTech Connect

    Jeffrey Joe; Larry G. Blackwood

    2006-06-01

    The purpose of this analysis, which was conducted for the US Nuclear Regulatory Commission (NRC), was to test whether an empirical connection exists between human performance and nuclear power plant safety culture. This was accomplished through analyzing the relationship between a measure of human performance and a plant’s Safety Conscious Work Environment (SCWE). SCWE is an important component of safety culture the NRC has developed, but it is not synonymous with it. SCWE is an environment in which employees are encouraged to raise safety concerns both to their own management and to the NRC without fear of harassment, intimidation, retaliation, or discrimination. Because the relationship between human performance and allegations is intuitively reciprocal and both relationship directions need exploration, two series of analyses were performed. First, human performance data could be indicative of safety culture, so regression analyses were performed using human performance data to predict SCWE. It also is likely that safety culture contributes to human performance issues at a plant, so a second set of regressions were performed using allegations to predict HFIS results.

  8. 76 FR 40733 - National Institute for Occupational Safety and Health, (NIOSH), World Trade Center Health Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, (NIOSH), World Trade Center Health Program Science/Technical Advisory Committee...

  9. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  10. Nudat: Nuclear Structure and Decay Data from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    NuDat allows users to search and plot nuclear structure and decay data interactively. NuDat was developed by the National Nuclear Data Center (NNDC)but utilizes contributions from physicists around the world. It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Users can search for nuclear level properties (energy, half-life, spinparity), gamma-ray information (energy, intensity, multipolarity, coincidences), radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by NuDat 2 can be viewed in tables, level schemes and an interactive chart of nuclides.

  11. Assuring nuclear plant safety before and after license renewal

    SciTech Connect

    Berto, D.S. )

    1992-01-01

    It is important in establishing a plant license renewal program that the specific goals of the program be identified at the very start. A detailed program can then be developed to focus on the stated goals, and efforts not related to accomplishing these specific goals can be excluded from the program. The goal of establishing and performing a license renewal evaluation is, of course, to obtain a renewed operating license from the US Nuclear Regulatory Commission (NRC). This goal is tied directly to the closely related goal of assuring plant safety during the license renewal term. The goal of assuring plant safety (without unnecessary costs) is the focus of the discussion in this paper. Assuring plant safety during the license renewal term is directly coupled with assuring plant safety during the current license term.

  12. HFE safety reviews of advanced nuclear power plant control rooms

    NASA Technical Reports Server (NTRS)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  13. Proceedings of the nuclear criticality technology safety project

    SciTech Connect

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  14. Software reliability and safety in nuclear reactor protection systems

    SciTech Connect

    Lawrence, J.D.

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  15. Natural Disasters and Safety Risks at Nuclear Power Stations

    NASA Astrophysics Data System (ADS)

    Tutnova, T.

    2012-04-01

    In the aftermath of Fukushima natural-technological disaster the global opinion on nuclear energy divided even deeper. While Germany, Italy and the USA are currently reevaluating their previous plans on nuclear growth, many states are committed to expand nuclear energy output. In China and France, where the industry is widely supported by policymakers, there is little talk about abandoning further development of nuclear energy. Moreover, China displays the most remarkable pace of nuclear development in the world: it is responsible for 40% of worldwide reactors under construction, and aims at least to quadruple its nuclear capacity by 2020. In these states the consequences of Fukushima natural-technological accident will probably result in safety checks and advancement of new reactor technologies. Thus, China is buying newer reactor design from the USA which relies on "passive safety systems". It means that emergency power generators, crucial for reactor cooling in case of an accident, won't depend on electricity, so that tsunami won't disable them like it happened in the case of Fukushima. Nuclear energy managed to draw lessons from previous nuclear accidents where technological and human factors played crucial role. But the Fukushima lesson shows that the natural hazards, nevertheless, were undervalued. Though the ongoing technological advancements make it possible to increase the safety of nuclear power plants with consideration of natural risks, it is not just a question of technology improvement. A necessary action that must be taken is the reevaluation of the character and sources of the potential hazards which natural disasters can bring to nuclear industry. One of the examples is a devastating impact of more than one natural disaster happening at the same time. This subject, in fact, was not taken into account before, while it must be a significant point in planning sites for new nuclear power plants. Another important lesson unveiled is that world nuclear

  16. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    NASA Astrophysics Data System (ADS)

    Gavrish, Yu. N.; Koloskov, S. A.; Smirnov, V. P.; Strokach, A. P.

    2015-12-01

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  17. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    SciTech Connect

    Gavrish, Yu. N.; Koloskov, S. A.; Smirnov, V. P.; Strokach, A. P.

    2015-12-15

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  18. Reevaluating nuclear safety and security in a post 9/11 era.

    SciTech Connect

    Booker, Paul M.; Brown, Lisa M.

    2005-07-01

    This report has the following topics: (1) Changing perspectives on nuclear safety and security; (2) Evolving needs in a post-9/11 era; (3) Nuclear Weapons--An attractive terrorist target; (4) The case for increased safety; (5) Evolution of current nuclear weapons safety and security; (6) Integrated surety; (7) The role of safety and security in enabling responsiveness; (8) Advances in surety technologies; and (9) Reevaluating safety.

  19. Safety assessment of a robotic system handling nuclear material

    SciTech Connect

    Atcitty, C.B.; Robinson, D.G.

    1996-02-01

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable.

  20. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    SciTech Connect

    Robert C. O'Brien

    2001-09-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  1. 78 FR 12042 - Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... From the Federal Register Online via the Government Publishing Office DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory Analysis/FY 2012 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board...

  2. History of US nuclear weapon safety assessment: The early years

    SciTech Connect

    Spray, S.D.

    1996-06-01

    From the beginnings of the U.S. nuclear weapons program, military and civilian dual- agency judgment has been fundamental to achieving nuclear weapon and weapon system safety. This interaction was initiated by the Atomic Energy Act of 1946, which created the Atomic Energy Commission (AEC). The principle of using dual-agency judgment has been perpetuated in the design and assessment of the weapon and weapon system acceptance process since that time. This fundamental approach is still used today in all phases of the weapon life. In this paper, an overview of the history and philosophy of the approach is described.

  3. A comparison of commercial/industry and nuclear weapons safety concepts

    SciTech Connect

    Bennett, R.R.; Summers, D.A.

    1996-07-01

    In this paper the authors identify factors which influence the safety philosophy used in the US commercial/industrial sector and compare them against those factors which influence nuclear weapons safety. Commercial/industrial safety is guided by private and public safety standards. Generally, private safety standards tend to emphasize product reliability issues while public (i.e., government) safety standards tend to emphasize human factors issues. Safety in the nuclear weapons arena is driven by federal requirements and memoranda of understanding (MOUs) between the Departments of Defense and Energy. Safety is achieved through passive design features integrated into the nuclear weapon. Though the common strand between commercial/industrial and nuclear weapons safety is the minimization of risk posed to the general population (i.e., public safety), the authors found that each sector tends to employ a different safety approach to view and resolve high-consequence safety issues.

  4. Educators benefit from energy information centers at nuclear plant sites

    SciTech Connect

    Krcma-Olson, L.

    1994-12-31

    While issues like dry storage, low-level waste storage, radiation, and license extension are projects with a technical perspective that need to be planned and executed at nuclear power plants, more difficult is the political perspective-gaining public acceptance to allow these projects to proceed. And public perception is predicated on the way plant neighbors and community members understand, accept, and trust the plants. Community educators are a key audience. Annually, U.S. information centers host about one million visitors; roughly half of them are school children who will soon join the ranks of voters, taxpayers, utility customers, and employees. Programs for educators and their classes vary from tours of centers that include computer games and video programs on energy-related topics to audio-visual presentations by center personnel. Some facilities have environmental activities such as hatcheries or nature trails, while others offer plant tours to specific age groups.

  5. 78 FR 37228 - Cooperative Agreement To Support the Western Center for Food Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... HUMAN SERVICES Food and Drug Administration Cooperative Agreement To Support the Western Center for Food Safety AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug... Western Center for Food Safety (WCFS). FDA regards the continued support of WCFS as crucial to...

  6. Nuclear Safety: Technical progress review, January-March 1987

    SciTech Connect

    Silver, E.G.

    1987-01-01

    For the Western nuclear community the Chernobyl tragedy is indeed a special issue which presents a whole series of somewhat contradictory aspects, many of them distressing but some of them offering opportunities and new departures. The fact that Chernobyl happened in the USSR lessens its direct impact on our nuclear programs because the reactor design, safety philosophy, and operating practices are so divergent from ours, but this fact broadens immensely the range of reactor parameters and types about which we now have severe accident information. There appears to be very positive international political effects involving greater openness and willingness to share information by the Soviet Union and new international safety initiatives by the International Atomic Energy Agency (IAEA). The adverse health and economic impacts will affect the Russian population for a long time, but the opportunities for studies on effects of low-level radiation are also tremendous.

  7. Double-clad nuclear-fuel safety rod

    DOEpatents

    McCarthy, W.H.; Atcheson, D.B.

    1981-12-30

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  8. Space Nuclear Safety Program. Progress report, November 1983

    SciTech Connect

    Bronisz, S.E.

    1984-06-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Topics discussed include: safety-verification impact tests; explosion test; fragment test; leaking fueled clads; effects of fresh water and seawater or PuO/sub 2/ pellets; and impact tests of 5 watt radioisotope thermoelectric generator.

  9. Navy Safety Center data on the effects of fire protection systems on electrical equipment

    NASA Astrophysics Data System (ADS)

    Levine, Robert S.

    1991-04-01

    Records of the Navy Safety Center, Norfolk, VA were reviewed to find data relevant to inadvertant operation of installed fire extinguishing systems in civilian nuclear power plants. Navy data show the incidence of collateral fire or other damage by fresh water on operating electrical equipment in submarines and in shore facilities is about the same as the civilian experience, about 30 percent. Aboard surface ships, however, the collateral damage incidence in much lower, about 15 percent. With sea water, the collateral damage incidence is at least 75 percent. It is concluded that the fire extinguisher water has to be contaminated, as by rust in sprinkler systems or deposited salt spray, for most collateral damage to occur. Reasons for inadvertant operation (or advertant operation) of firex systems at shore facilities, submarines, and surface ships resemble those for nuclear power plants. Mechanical or electrical failures lead the list, followed by mishaps during maintenance. Detector and alarm system failures are significant problems at Navy shore facilities, and significant at nuclear power plants. Fixed halon and CO2 systems in shore facilities cause no collateral damage. Lists of individual Navy incidents with water and with halon and carbon dioxide are included as appendices.

  10. Center Director Bridges opens Super Safety and Health Day at KSC.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Center Director Roy Bridges opens the second Super Safety and Health Day at Kennedy Space Center, an entire day when most normal work activities are suspended to allow personnel to attend safety- and health-related activities. The theme, 'Safety and Health Go Hand in Hand,' emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space- related resources first and foremost. Events included a keynote address, a panel session about related issues, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television.

  11. Just in Time DSA the Hanford Nuclear Safety Basis Strategy

    SciTech Connect

    JACKSON, M.W.

    2002-06-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford, Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safely Basis Requirements (the Rule) in January 2001 requires that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSAs that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long-term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: Compliance with the Rule; A ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and Consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

  12. US support for nuclear energy safety and cooperation in the Pacific Basin

    SciTech Connect

    Selin, I.

    1994-12-31

    Nuclear power plays an important role in the energy and economic development of Pacific Rim countries. Concurrent with the construction of commercial nuclear power plants, there is a vital need to develop strong nuclear safety infrastructures in all countries choosing to use nuclear energy for electricity production. One of the most important elements in developing a viable nuclear program is a nuclear safety culture, rigorously applied to nuclear plant siting, design, construction, operation and management. International cooperation provides an important mechanism for raising the level of nuclear safety worldwide. The NRC has recently increased its international efforts in the nuclear safety area, with particular emphasis on Central and Eastern Europe and the New Independent States of the former Soviet Union. The NRC will continue, and is prepared to expand, its cooperation with counterpart organizations in Pacific Rim countries to help establish and nurture a safety culture that will respond to the dynamic process of nuclear energy development over the next few years.

  13. Nuclear centering in Spirogyra: force integration by microfilaments along microtubules.

    PubMed

    Grolig, F

    1998-01-01

    The contribution of microtubules and microfilaments to the cytomechanics of transverse nuclear centering were investigated in the charophycean green alga Spirogyra crassa (Zygnematales). Cytoplasmic strands of enhanced rigidity and fasciate appearance radiate from the rim of the lenticular nucleus through the vacuole, frequently split once or twice and are attached to the helical chloroplast bands in the peripheral cytoplasm. The nucleus is encased in tubulin and a web of F-actin. Bundles of microtubules, emerging from the nuclear rim, are organized into dividing fascicles within the strands and reach to the inner surface of the chloroplast envelope. Organelles are translocated in both directions along similarly arranged fascicles of microfilament bundles which extend from the nucleus to the peripheral actin cytoskeleton. Application of microtubule- and/or microfilament-depolymerizing drugs affected the position of the nucleus only slowly, but in distinct ways. The differential effects suggest that nuclear centering depends on the tensional integrity of the perinuclear scaffold, with microfilaments conveying tension along stabilized microtubules and the actin cytoskeleton integrating the translocation forces generated within the scaffold.

  14. An interagency space nuclear propulsion safety policy for SEI - Issues and discussion

    NASA Technical Reports Server (NTRS)

    Marshall, A. C.; Sawyer, J. C., Jr.

    1991-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top level safety requirements and guidelines to address these issues. Safety topics include reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations. In this paper the emphasis is placed on the safety policy and the issues and considerations that are addressed by the NSPWG recommendations.

  15. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    SciTech Connect

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions.

  16. PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT

    SciTech Connect

    Low, M; Matthew02 Miller, M; Thomas Reilly, T

    2007-04-30

    Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

  17. Worker Safety and Health and Nuclear Safety Quarterly Performance Analysis (January - March 2008)

    SciTech Connect

    Kerr, C E

    2009-10-07

    The DOE Office of Enforcement expects LLNL to 'implement comprehensive management and independent assessments that are effective in identifying deficiencies and broader problems in safety and security programs, as well as opportunities for continuous improvement within the organization' and to 'regularly perform assessments to evaluate implementation of the contractor's processes for screening and internal reporting.' LLNL has a self-assessment program, described in ES&H Manual Document 4.1, that includes line, management and independent assessments. LLNL also has in place a process to identify and report deficiencies of nuclear, worker safety and health and security requirements. In addition, the DOE Office of Enforcement expects LLNL to evaluate 'issues management databases to identify adverse trends, dominant problem areas, and potential repetitive events or conditions' (page 14, DOE Enforcement Process Overview, December 2007). LLNL requires that all worker safety and health and nuclear safety noncompliances be tracked as 'deficiencies' in the LLNL Issues Tracking System (ITS). Data from the ITS are analyzed for worker safety and health (WSH) and nuclear safety noncompliances that may meet the threshold for reporting to the DOE Noncompliance Tracking System (NTS). This report meets the expectations defined by the DOE Office of Enforcement to review the assessments conducted by LLNL, analyze the issues and noncompliances found in these assessments, and evaluate the data in the ITS database to identify adverse trends, dominant problem areas, and potential repetitive events or conditions. The report attempts to answer three questions: (1) Is LLNL evaluating its programs and state of compliance? (2) What is LLNL finding? (3) Is LLNL appropriately managing what it finds? The analysis in this report focuses on data from the first quarter of 2008 (January through March). This quarter is analyzed within the context of information identified in previous quarters to

  18. 76 FR 9351 - Patient Safety Organizations: Voluntary Delisting From West Virginia Center for Patient Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... information regarding the quality and safety of health care delivery. The Patient Safety and Quality... is to conduct activities to improve patient safety and the quality of health care delivery. HHS... HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations:...

  19. 77 FR 1748 - Atomic Safety and Licensing Board; Calvert Cliffs 3 Nuclear Project, LLC, and UniStar Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... Meetings/Hearings, 66 FR 31,719 (June 12, 2001) [hereinafter Meeting Security Guidelines]. All individuals... COMMISSION Atomic Safety and Licensing Board; Calvert Cliffs 3 Nuclear Project, LLC, and UniStar Nuclear... Calvert Cliffs 3 Nuclear Project, L.L.C., and UniStar Nuclear Operating Services, L.L.C. (Applicants)...

  20. NESST: A nuclear energy safety and security treaty-Separating nuclear energy from nuclear weapons

    NASA Astrophysics Data System (ADS)

    McNamara, Brendan

    2012-06-01

    Fission and Fusion energy is matched by the need to completely separate civilian energy programmes from the production of nuclear weapons. The Nuclear Proliferation Treaty (NPT, 1968) muddles these issues together. The case is presented here for making a new Nuclear Energy Security Treaty (NESST) which is rigorous, enforceable without violence, and separate from the political quagmire of nuclear weapons.

  1. SAID Partial Wave Analyses from CNS DAC (Center for Nuclear Studies Data Analysis Center)

    DOE Data Explorer

    George Washington University (GW) has one of the largest university-based nuclear-physics groups in the nation. Many of the current and future projects are geared to Thomas Jefferson National Accelerator Facility (JLab) at Newport News, VA. JLab is the world's premier electron accelerator for nuclear physics, and GW is one of the charter members of the governing body of JLab, the Southeastern Universities Research Association (SURA). The George Washington Data Analysis Center (DAC) was created in 1998 by an agreement among the Department of Energy, Jefferson Lab, and the GW Center for Nuclear Studies.The activities of the DAC fall into four distinct categories: 1) Performing partial-wave analyses of fundamental two- and three-body reactions; 2) Maintenance of databases associated with these reactions; 3) Development of software to disseminate DAC results (as well as the results of competing model-independent analyses and potential approaches); and 4) Phenomenological and theoretical investigations which bridge the gap between theory and experiment; in particular, the extraction of N* and D * hadronic and electromagnetic couplings. Partial Wave Analyses (and the associated databases) available at GW are: Pion-Nucleon, Kaon-Nucleon, Nucleon-Nucleon, Pion Photoproduction, Pion Electroproduction, Kaon Photoproduction, Eta Photoproduction, Eta-Prime Photoproduction, Pion-Deuteron (elastic), and Pion-Deuteron to Proton+Proton. [Taken from http://www.gwu.edu/~ndl/dac.htm">http://www.gwu.edu/~ndl/dac.htm

  2. Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report

    SciTech Connect

    1998-01-01

    This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV`s) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG and G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin).

  3. NNDC Stand: Activities and Services of the National Nuclear Data Center

    SciTech Connect

    Pritychenko, B.; Arcilla, R.; Burrows, T.W.; Dunford, C.L.; Herman, M.W.; McLane, V.; Oblozinsky, P.; Sonzogni, A.A.; Tuli, J.K.; Winchell, D.F.

    2005-05-24

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic nuclear research, applied nuclear technologies including energy, shielding, medical and homeland security. In 2004, to answer the needs of nuclear data users community, NNDC completed a project to modernize data storage and management of its databases and began offering new nuclear data Web services. The principles of database and Web application development as well as related nuclear reaction and structure database services are briefly described.

  4. Surveys of organizational culture and safety culture in nuclear power

    SciTech Connect

    Brown, Walter S.

    2000-07-30

    The results of a survey of organizational culture at a nuclear power plant are summarized and compared with those of a similar survey which has been described in the literature on ''high-reliability organizations''. A general-purpose cultural inventory showed a profile of organizational style similar to that reported in the literature; the factor structure for the styles was also similar to that of the plant previously described. A specialized scale designed to measure ''safety culture'' did not distinguished among groups within the organization that would be expected to differ.

  5. Nuclear reactor safety research since three mile island.

    PubMed

    Mynatt, F R

    1982-04-01

    The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially. PMID:17736229

  6. Center for Nuclear Medicine Research in Alzheimer`s Disease Health Sciences Center, West Virginia University. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Environmental Assessment (EA) of the Center for Nuclear Medicine Research in Alzheimer`s Disease (CNMR) at the Health Sciences Center, at West Virginia University in Morgantown, West Virginia for the construction and operation was prepared by DOE. The EA documents analysis of the environmental and socioeconomic impacts that might occur as a result of these actions, and characterizes potential impacts on the environment. In the EA, DOE presents its evaluation of potential impacts of construction and operation of the CNMR on health and safety of both workers and the public, as well as on the external environment. Construction impacts include the effects of erosion, waste disposal, air emissions, noise, and construction traffic and parking. Operational impacts include the effects of waste generation (domestic, sanitary, hazardous, medical/biological, radioactive and mixed wastes), radiation exposures, air emissions (radioactive, criteria, and air toxics), noise, and new workers. No sensitive resources (wetlands, special sources of groundwater, protected species) exist in the area of project effect.

  7. Recent Developments in Nuclear Data Measurement capabilities at the Gaerttner LINAC Center at RPI

    NASA Astrophysics Data System (ADS)

    Danon, Y.; Daskalakis, A.; McDermott, B.; Thompson, N.; Youmans, A.; Block, R.; Barry, D.; Epping, B.; Leinweber, G.; Rapp, M.; Donovan, T.

    2016-03-01

    The Gaerttner LINAC Center at RPI uses a 60 MeV electron linear accelerator to produce short pulses of neutrons with duration of 5-5000 ns. The main research thrust at the Center is nuclear data for nuclear reactors and criticality safety applications. The Center includes several setups for time-of-flight measurements including neutron transmission, capture and scattering detectors, and a lead slowing-down spectrometer. Experiments were designed to produce neutron interaction cross sections that cover the energy range of 0.01 eV to 20 MeV. Recently added experiments include: setups for keV and fast neutron transmission, a C6D6 detector array for keV neutron capture measurements, and a fast neutron scattering system. Results discussed here include fast neutron scattering and angular distributions for natFe, iron capture measurements for incident neutrons from 1 keV to 2 MeV, fast neutron transmission through W and H2O samples, and keV transmission through Mo isotopes.

  8. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  9. Gaseous core nuclear-driven engines featuring a self-shutoff mechanism to provide nuclear safety

    SciTech Connect

    Heidrich, J.; Pettibone, J.; Chow, Tze-Show; Condit, R.; Zimmerman, G.

    1991-11-01

    Nuclear driven engines are described that could be run in either pulsed or steady state modes. In the pulsed mode nuclear energy is released by fissioning of uranium or plutonium in a supercritical assembly of fuel and working gas. In a steady state mode a fuel-gas mixture is injected into a magnetic nozzle where it is compressed into a critical state and produces energy. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff or control of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled up from about 100 MW{sub e}.

  10. Perceptions of Culture of Safety in Hemodialysis Centers.

    PubMed

    Davis, Kristina K; Harris, Kathleen G; Mahishi, Vrinda; Bartholomew, Edward G; Kenward, Kevin

    2016-01-01

    Staff members, physicians, nurse practitioners, and physician assistants from a sample of hemodialysis facilities in Network 6 (North Carolina, South Carolina, and Georgia) and Network 11 (Michigan, Minnesota, North Dakota, South Dakota, and Wisconsin) completed a 10-item assessment with modified questions from the Hospital Survey on Patient Safety Culture, with an emphasis on safety culture related to vascular access infections. A composite score was constructed, which was the average of the percent-positive scores of the items. Overall, scores were high, indicating a positive patient safety culture. Composite scores varied by role type, with nurses, patient care technicians, and other technicians reporting the lowest composite scores. Network 6 participants reported higher scores on two of the survey items. Fewer staff within a facility were associated with higher composite scores. PMID:27254967

  11. Renovated Korean nuclear safety and security system: A review and suggestions to successful settlement

    SciTech Connect

    Chung, W. S.; Yun, S. W.; Lee, D. S.; Go, D. Y.

    2012-07-01

    Questions of whether past nuclear regulatory body of Korea is not a proper system to monitor and check the country's nuclear energy policy and utilization have been raised. Moreover, a feeling of insecurity regarding nuclear safety after the nuclear accident in Japan has spread across the public. This has stimulated a renovation of the nuclear safety regime in Korea. The Nuclear Safety and Security Commission (NSSC) was launched on October 26, 2011 as a regulatory body directly under the President in charge of strengthening independence and nuclear safety. This was a meaningful event as the NSSC it is a much more independent regulatory system for Korea. However, the NSSC itself does not guarantee an enhanced public acceptance of the nuclear policy and stable use nuclear energy. This study introduces the new NSSC system and its details in terms of organization structure, appropriateness of specialty, budget stability, and management system. (authors)

  12. Engineering thinking in emergency situations: A new nuclear safety concept.

    PubMed

    Guarnieri, Franck; Travadel, Sébastien

    2014-11-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.

  13. Development of Safety Assessment Code for Decommissioning of Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori

    A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.

  14. Engineering thinking in emergency situations: A new nuclear safety concept

    PubMed Central

    Guarnieri, Franck; Travadel, Sébastien

    2014-01-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for “engineering thinking in emergency situations.” This is a new concept that emphasizes adaptability and resilience within organizations—such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident. PMID:25419015

  15. Engineering thinking in emergency situations: A new nuclear safety concept.

    PubMed

    Guarnieri, Franck; Travadel, Sébastien

    2014-11-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident. PMID:25419015

  16. Progress of Covariance Evaluation at the China Nuclear Data Center

    SciTech Connect

    Xu, R.; Zhang, Q.; Zhang, Y.; Liu, T.; Ge, Z.; Lu, H.; Sun, Z.; Yu, B.; Tang, G.

    2015-01-15

    Covariance evaluations at the China Nuclear Data Center focus on the cross sections of structural materials and actinides in the fast neutron energy range. In addition to the well-known Least-squares approach, a method based on the analysis of the sources of experimental uncertainties is especially introduced to generate a covariance matrix for a particular reaction for which multiple measurements are available. The scheme of the covariance evaluation flow is presented, and an example of n+{sup 90}Zr is given to illuminate the whole procedure. It is proven that the accuracy of measurements can be properly incorporated into the covariance and the long-standing small uncertainty problem can be avoided.

  17. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    SciTech Connect

    Not Available

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  18. The nuclear medicine therapy care coordination service: a model for radiologist-driven patient-centered care.

    PubMed

    Moncayo, Valeria M; Applegate, Kimberly E; Duszak, Richard; Barron, Bruce J; Fitz, Jim; Halkar, Raghuveer K; Lee, Daniel J; Schuster, David M

    2015-06-01

    We developed a longitudinal care coordination service to proactively deliver high-quality and family-centered care in patients receiving radioiodine therapy for thyroid cancer. In an iterative, multidisciplinary team manner, a pretherapy consultation service, which included scripted interactions, documentation, and checklists for quality control, evolved over time into a robust patient-centered longitudinal care coordination nuclear medicine service. Radiation safety precautions, the rationale for therapy, and management of patient expectations were addressed through the initial consultation, and discharge and posttreatment care were managed during subsequent follow-up. The patient-physician relationship created during longitudinal nuclear medicine therapy care is one tool to help counteract the growing commoditization of radiology. This article describes the process that the nuclear medicine specialists in our department established to enhance radiologist value by providing both exceptional thyroid cancer treatment and continuity of care.

  19. Safety and Nuclear Power Sources for Space Systems

    NASA Astrophysics Data System (ADS)

    Segalas, Corinne C.; Schmidt, George R.

    2010-09-01

    Nuclear power sources have been used in space applications for decades. They have been used extensively for electrical power production, and their future potential for propulsion has been recognized since the dawn of the spaceflight era. Nuclear power sources offer many advantages in terms of long duration operation and high power densities independent of distance and orientation with respect to the Sun. However, it is also broadly known that use of radioactive materials do carry more risk that must be addressed to ensure safe operation during all phases of the mission, particularly before and during launch into orbit. Almost all of the nuclear-powered missions to date have been flown by the United States and former Soviet Union, but other space-faring nations have recognized its importance for their future missions. Consequently, many in the space community have advocated the development of a broad set of principles that could be applied on an international basis. This paper examines the current guidelines by the major space-faring nations, and suggests a framework primarily based on the U.S. methodology for ensuring reduction of risk, mitigating environmental impact and promoting launch safety.

  20. General aviation crash safety program at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.

    1976-01-01

    The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.

  1. Improved nuclear power plant operations and safety through performance-based safety regulation.

    PubMed

    Golay, M W

    2000-01-01

    This paper illustrates some of the promise and needed future work for risk-informed, performance-based regulation (RIPBR). RIPBR is an evolving alternative to the current prescriptive method of nuclear safety regulation. Prescriptive regulation effectively constitutes a long, fragmented checklist of requirements that safety-related systems in a plant must satisfy. RIPBR, instead, concentrates upon satisfying negotiated performance goals and incentives for judging and rewarding licensee behavior to improve safety and reduce costs. In a project reported here, a case study was conducted concerning a pressurized water reactor (PWR) emergency diesel generator (EDG). Overall, this work has shown that the methods of RIPBR are feasible to use, and capable of justifying simultaneous safety and economic nuclear power improvements. However, it also reveals several areas where the framework of RIPBR should be strengthened. First, researchers need better data and understanding regarding individual component-failure modes that may cause components to fail. Not only are more data needed on failure rates, but more data and understanding are needed to enable analysts to evaluate whether these failures become more likely as the interval between tests is increased. This is because the current state of failure data is not sufficiently finely detailed to define the failure rates of individual component failure modes; such knowledge is needed when changing component-specific regulatory requirements. Second, the role of component testing, given that a component has failed, needs to be strengthened within the context of RIPBR. This includes formulating requirements for updating the prior probability distribution of a component failure rate and conducting additional or more frequent testing. Finally, as a means of compensating for unavoidable uncertainty as an obstacle to regulatory decision-making, limits to knowledge must be treated explicitly and formally. This treatment includes the

  2. Nuclear instrumentation, process instrumentation and control, and engineered safety features. Volume nine

    SciTech Connect

    Not Available

    1986-01-01

    Volume nine covers nuclear instrumentation (detection of nuclear radiation, gas-filled detectors, measuring neutron population, BWR/PWR nuclear instrumentation), process instrumentation and control (what is process instrumentation, pressure detectors and transducers, temperature detectors and transducers, level detectors and transducers, flow detectors and transducers, mechanical position detectors and transducers, what are the major processes controlled, BWR and PWR process instrumentation and control), engineered safety features (why are engineered safety features provided, the design basis accident, engineered safety feature operation, PWR engineered safety feature systems, BWR engineered safety feature systems).

  3. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  4. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  5. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  6. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  7. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  8. Improving Performance of the System Safety Function at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kiessling, Ed; Tippett, Donald D.; Shivers, Herb

    2004-01-01

    The Columbia Accident Investigation Board (CAIB) determined that organizational and management issues were significant contributors to the loss of Space Shuttle Columbia. In addition, the CAIB observed similarities between the organizational and management climate that preceded the Challenger accident and the climate that preceded the Columbia accident. To prevent recurrence of adverse organizational and management climates, effective implementation of the system safety function is suggested. Attributes of an effective system safety program are presented. The Marshall Space Flight Center (MSFC) system safety program is analyzed using the attributes. Conclusions and recommendations for improving the MSFC system safety program are offered in this case study.

  9. Federal Radiological Monitoring and Assessment Center Health and Safety Manual

    SciTech Connect

    FRMAC Health and Safety Working Group

    2012-03-20

    This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

  10. Fuzzy-logic-based safety verification framework for nuclear power plants.

    PubMed

    Rastogi, Achint; Gabbar, Hossam A

    2013-06-01

    This article presents a practical implementation of a safety verification framework for nuclear power plants (NPPs) based on fuzzy logic where hazard scenarios are identified in view of safety and control limits in different plant process values. Risk is estimated quantitatively and compared with safety limits in real time so that safety verification can be achieved. Fuzzy logic is used to define safety rules that map hazard condition with required safety protection in view of risk estimate. Case studies are analyzed from NPP to realize the proposed real-time safety verification framework. An automated system is developed to demonstrate the safety limit for different hazard scenarios.

  11. Training and qualification program for nuclear criticality safety technical staff

    SciTech Connect

    Taylor, R.G.; Worley, C.A.

    1996-10-22

    A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. The program is compliant with requirements and provides evidence that a systematic approach has been taken to indoctrinate new technical staff. Development involved task analysis to determine activities where training was necessary and the standard which must be attained to qualify. Structured mentoring is used where experienced personnel interact with candidates using checksheets to guide candidates through various steps and to provide evidence that steps have been accomplished. Credit can be taken for the previous experience of personnel by means of evaluation boards which can credit or modify checksheet steps. Considering just the wealth of business practice and site specific information a new person at a facility needs to assimilate, the program has been effective in indoctrinating new technical staff personnel and integrating them into a productive role. The program includes continuing training.

  12. A probabilistic safety analysis of incidents in nuclear research reactors.

    PubMed

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  13. Reviewing real-time performance of nuclear reactor safety systems

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  14. Nuclear Safety Analysis for the Mars Exploration Rover 2003 Project

    NASA Astrophysics Data System (ADS)

    Firstenberg, Henry; Rutger, Lyle L.; Mukunda, Meera; Bartram, Bart W.

    2004-02-01

    The National Aeronautics and Space Administration's Mars Exploration Rover (MER) 2003 project is designed to place two mobile laboratories (Rovers) on Mars to remotely characterize a diversity of rocks and soils. Milestones accomplished so far include two successful launches of identical spacecraft (the MER-A and MER-B missions) from Cape Canaveral Air Force Station, Florida on June 10 and July 7, 2003. Each Rover uses eight Light Weight Radioisotope Heater Units (LWRHUs) fueled with plutonium-238 dioxide to provide local heating of Rover components. The LWRHUs are provided by the U.S. Department of Energy. In addition, small quantities of radioactive materials in sealed sources are used in scientific instrumentation on the Rover. Due to the radioactive nature of these materials and the potential for accidents, a formal Launch Approval Process requires the preparation of a Final Safety Analysis Report (FSAR) for submittal to and independent review by an Interagency Nuclear Safety Review Panel. This paper presents a summary of the FSAR in terms of potential accident scenarios, probabilities, source terms, radiological consequences, mission risks, and uncertainties in the reported results.

  15. Enforcement handbook: Enforcement of DOE nuclear safety requirements

    SciTech Connect

    1995-06-01

    This Handbook provides detailed guidance and procedures to implement the General Statement of DOE Enforcement Policy (Enforcement Policy or Policy). A copy of this Enforcement Policy is included for ready reference in Appendix D. The guidance provided in this Handbook is qualified, however, by the admonishment to exercise discretion in determining the proper disposition of each potential enforcement action. As discussed in subsequent chapters, the Enforcement and Investigation Staff will apply a number of factors in assessing each potential enforcement situation. Enforcement sanctions are imposed in accordance with the Enforcement Policy for the purpose of promoting public and worker health and safety in the performance of activities at DOE facilities by DOE contractors (and their subcontractors and suppliers) who are indemnified under the Price-Anderson Amendments Act. These indemnified contractors, and their suppliers and subcontractors, will be referred to in this Handbook collectively as DOE contractors. It should be remembered that the purpose of the Department`s enforcement policy is to improve nuclear safety for the workers and the public, and this goal should be the prime consideration in exercising enforcement discretion.

  16. Nuclear Industry Support Services by the Buffalo Materials Research Center

    SciTech Connect

    Henry, L.G. )

    1993-01-01

    The Buffalo Materials Research Center (BMRC) is located on the campus of the State University of New York at Buffalo, Principal facilities within BMRC include a 2-MW PULSTAR, low-enrichment reactor, an electron accelerator, and irradiated materials remote testing facilities. The reactor and the materials testing facilities have been utilized extensively in support of the power reactor community since 1961. This paper briefly highlights the nature and scope of this service. The BMRC is operated for the university by Buffalo Materials Research, Inc., a private for-profit company, which is a subsidiary of Materials Engineering Associates, Inc. (MEA), a Maryland-based materials testing company. A primary mission of MEA has been research on the effects of neutron irradiation on reactor structural materials, including those used for pressure vessel and piping systems. The combined resources of MEA and BMRC have played a pivotal role in the assessment of reactor pressure vessel safety both in the United States and abroad and in the development of new radiation-resistant steels.

  17. Evaluated Nuclear Structure Data File (ENSDF) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    ENSDF contains evaluated nuclear structure and decay data in a standard format. An international network of evaluators contributes to the database, which is maintained by the National Nuclear Data Center at Brookhaven National Laboratory. Information in the database is regularly updated to reflect revised evaluation results. Most of the recently completed evaluations are published in Nuclear Data Sheets, a monthly journal published by Academic Press, a division of Elsevier Science. For each nuclide, all known experimental data used to deduce nuclear structure information are included. Each type of experiment is presented as a separate dataset. In addition, there is a dataset of "adopted" level and gamma-ray transition properties, which represent the evaluator's determination of the best values for these properties, based on all available experimental data. As of February 2008, the ENSDF database contains 16236 datasets for 3030 nuclides. (Taken from the NNDC's information page on ENSDF at http://www.nndc.bnl.gov/ensdf/ensdf_info.jsp) ENSDF may be browsed or the data may be retrieved based on nuclide, charge, or mass, or by indexed reaction and decay quantities. (Specialized interface)

  18. REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.

    SciTech Connect

    HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have

  19. Postpartum safety: a patient-centered approach to fall prevention.

    PubMed

    Lockwood, Suzy; Anderson, Kandace

    2013-01-01

    Falls in the perinatal setting have received minimal attention and have not been well documented. Women are at risk for falling following vaginal or cesarean birth, especially during initial attempts at ambulation. Recently, a women's hospital that averages over 500 births per month recorded a postpartum fall rate that exceeded the national mean for adult surgical patient falls. A fall prevention team (FPT) of five nurses was formed with a goal to decrease the incidence of postpartum patient falls to zero within the following 7 months. A patient-centered fall prevention strategy was developed. The results of this project have laid the foundation for additional research of a program that will consider not only prevention of falls in a healthy population but also the development of a risk assessment tool specific to women in the immediate postpartum period.

  20. The development of regulatory expectations for computer-based safety systems for the UK nuclear programme

    SciTech Connect

    Hughes, P. J.; Westwood, R.N; Mark, R. T.; Tapping, K.

    2006-07-01

    The Nuclear Installations Inspectorate (NII) of the UK's Health and Safety Executive (HSE) has completed a review of their Safety Assessment Principles (SAPs) for Nuclear Installations recently. During the period of the SAPs review in 2004-2005 the designers of future UK naval reactor plant were optioneering the control and protection systems that might be implemented. Because there was insufficient regulatory guidance available in the naval sector to support this activity the Defence Nuclear Safety Regulator (DNSR) invited the NII to collaborate with the production of a guidance document that provides clarity of regulatory expectations for the production of safety cases for computer based safety systems. A key part of producing regulatory expectations was identifying the relevant extant standards and sector guidance that reflect good practice. The three principal sources of such good practice were: IAEA Safety Guide NS-G-1.1 (Software for Computer Based Systems Important to Safety in Nuclear Power Plants), European Commission consensus document (Common Position of European Nuclear Regulators for the Licensing of Safety Critical Software for Nuclear Reactors) and IEC nuclear sector standards such as IEC60880. A common understanding has been achieved between the NII and DNSR and regulatory guidance developed which will be used by both NII and DNSR in the assessment of computer-based safety systems and in the further development of more detailed joint technical assessment guidance for both regulatory organisations. (authors)

  1. 77 FR 50727 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... COMMISSION Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear... draft regulatory guide (DG), DG-1206, ``Configuration Management Plan for Digital Computer Software Used... Digital Computer Software Used in Safety Systems of Nuclear Power Plants'' is temporarily identified...

  2. 78 FR 47012 - Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... COMMISSION Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants AGENCY... Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants..., ``IEEE Standard for Developing a Software Project Life Cycle Process,'' issued 2006, with...

  3. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant,...

  4. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant,...

  5. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant,...

  6. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant,...

  7. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant,...

  8. Safety in the academic medical center: transforming challenges into ingredients for improvement.

    PubMed

    Blumenthal, David; Ferris, Timothy G

    2006-09-01

    Patient safety has emerged as an important challenge to the leadership of academic medical centers (i.e., teaching hospitals with significant research activity). This article describes the evidence regarding patient safety at academic medical centers (AMCs) and the special circumstances of AMCs that create challenges and opportunities for making improvements. While the research on the relative safety of patients in AMCs compared to other types of hospitals is sparse, it seems clear that AMCs in general do not stand out as models of patient safety. AMCs are unique as health care providers because of the multiple consequences of their three missions: patient care, research, and teaching. Aspects of these missions can serve to both enhance an AMC's ability to address safety issues and at the same time create unique and challenging barriers. For example, the research enterprise may distract managers' focus on safety issues but at the same time provide a wealth of highly trained talent for investigating and reducing safety problems. By addressing these challenges, AMCs have the opportunity, even the obligation, to be both the source of new knowledge on health care safety as well as the transmitter of new skills in safe patient care for the health care providers of the future.

  9. Compilation of fission product yields Vallecitos Nuclear Center

    SciTech Connect

    Rider, B.F.

    1980-01-01

    This document is the ninth in a series of compilations of fission yield data made at Vallecitos Nuclear Center in which fission yield measurements reported in the open literature and calculated charge distributions have been utilized to produce a recommended set of yields for the known fission products. The original data with reference sources, as well as the recommended yields are presented in tabular form for the fissionable nuclides U-235, Pu-239, Pu-241, and U-233 at thermal neutron energies; for U-235, U-238, Pu-239, and Th-232 at fission spectrum energies; and U-235 and U-238 at 14 MeV. In addition, U-233, U-236, Pu-240, Pu-241, Pu-242, Np-237 at fission spectrum energies; U-233, Pu-239, Th-232 at 14 MeV and Cf-252 spontaneous fission are similarly treated. For 1979 U234F, U237F, Pu249H, U234He, U236He, Pu238F, Am241F, Am243F, Np238F, and Cm242F yields were evaluated. In 1980, Th227T, Th229T, Pa231F, Am241T, Am241H, Am242Mt, Cm245T, Cf249T, Cf251T, and Es254T are also evaluated.

  10. Implementing a medication safety and poison prevention program at a senior center.

    PubMed

    Gershman, Jennifer A

    2013-10-01

    The Institute for Safe Medication Practices encourages pharmacists to assist in preventing medication misuse. The purpose of this article is to discuss a medication-safety education session conducted by a pharmacy professor, the faculty advisor to the American Society of Consultant Pharmacists university student chapter and students in a pharmacovigilance rotation, which was conducted at a local senior center. The author attended a train-the-trainer Webinar and then educated the pharmacy students. Participants at the senior center were taught about poison prevention, drug interactions, and appropriate drug disposal through an interactive format. We plan to continue the medication safety program at the senior center as a longitudinal project to promote patient safety. Pharmacists should be encouraged to play an active role in community outreach programs.

  11. Nuclear Safety. Technical Progress Journal, October--December 1991: Volume 32, No. 4

    SciTech Connect

    Not Available

    1991-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  12. Probabilistic reliability analysis, quantitative safety goals, and nuclear licensing in the United Kingdom.

    PubMed

    Cannell, W

    1987-09-01

    Although unpublicized, the use of quantitative safety goals and probabilistic reliability analysis for licensing nuclear reactors has become a reality in the United Kingdom. This conclusion results from an examination of the process leading to the licensing of the Sizewell B PWR in England. The licensing process for this reactor has substantial implications for nuclear safety standards in Britain, and is examined in the context of the growing trend towards quantitative safety goals in the United States. PMID:3685540

  13. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    SciTech Connect

    1983-02-01

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  14. Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Maruyama, S.; Fossen, A.; Villers, F.; Kiss, G.; Zhang, Bo; Li, Bo; Jiang, Tao; Huang, Xiangmei

    2016-08-01

    The ITER Gas Injection System (GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control (I&C) functions. In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.

  15. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    Not Available

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  16. Embrittlement Database from the Radiation Safety Information Computational Center

    DOE Data Explorer

    The Embrittlement Data Base (EDB) is a comprehensive collection of data from surveillance capsules of U.S. commercial nuclear power reactors and from experiments in material test reactors. The collected data are contained in either the Power Reactor Embrittlement Data Base (PR-EDB) or the Test Reactor Embrittlement Data Base (TR-EDB). The EDB work includes verification of the quality of the EDB, provision for user-friendly software to access and process the data, exploration and/or confirmation of embrittlement prediction models, provision for rapid investigation of regulatory issues, and provision for the technical bases for voluntary consensus standards or regulatory guides. The EDB is designed for use with a personal computer. The data are collected into "raw data files." Traceability of all data is maintained by including complete references along with the page numbers. External data verification of the PR-EDB is the responsibility of the vendors, who were responsible for the insertion and testing of the materials in the surveillance capsules. Internal verification is accomplished by checking against references and checking for inconsistencies. Examples of information contained in the EDBs are: Charpy data, tensile data, reactor type, irradiation environments, fracture toughness data, instrumented Charpy data, pressure-temperature (P-T) data, chemistry data, and material history. The TR-EDB additionally has annealing Charpy data. The current version of the PR-EDB contains the test results from 269 Charpy capsules irradiated in 101 reactors. These results include 320 plate data points, 123 forging data points, 113 standard reference materials (SRMS) or correlation monitor (CM) points, 244 weld material data points, and 220 heat-affected-zone (HAZ) material data points. Similarly, the TR-EDB contains information for 290 SRM or CM points, 342 plate data points, 165 forging data points, 378 welds, and 55 HAZ materials. [copied from http://rsicc.ornl.gov/RelatedLinks.aspx?t=edb

  17. Assessment of the safety of US nuclear weapons and related nuclear test requirements: A post-Bush Initiative update

    SciTech Connect

    Kidder, R.E.

    1991-12-10

    The Nuclear Weapons Reduction Initiative announced by President Bush on September 27, 1991, is described herein as set forth in Defense Secretary Cheney`s Nuclear Arsenal Reduction Order issued September 28, 1991. The implications of the Bush Initiative for improved nuclear weapons safety are assessed in response to a request by US Senators Harkin, Kennedy, and Wirth to the Lawrence Livermore National Laboratory that the author prepare such an assessment. The author provides an estimate of the number of nuclear tests needed to accomplish a variety of specified warhead safety upgrades, then uses the results of this estimate to answer three questions posed by the Senators. These questions concern pit reuse and the number of nuclear tests needed for specified safety upgrades of those ballistic missiles not scheduled for retirement, namely the Minuteman III, C4, and D5 missiles.

  18. Organizational Culture for Safety, Security, and Safeguards in New Nuclear Power Countries

    SciTech Connect

    Kovacic, Donald N

    2015-01-01

    This chapter will contain the following sections: Existing international norms and standards for developing the infrastructure to support new nuclear power programs The role of organizational culture and how it supports the safe, secure, and peaceful application of nuclear power Identifying effective and efficient strategies for implementing safety, security and safeguards in nuclear operations Challenges identified in the implementation of safety, security and safeguards Potential areas for future collaboration between countries in order to support nonproliferation culture

  19. Importance of Bladder Radioactivity for Radiation Safety in Nuclear Medicine

    PubMed Central

    Gültekin, Salih Sinan; Şahmaran, Turan

    2013-01-01

    Objective: Most of the radiopharmaceuticals used in nuclear medicine are excreted via the urinary system. This study evaluated the importance of a reduction in bladder radioactivity for radiation safety. Methods: The study group of 135 patients underwent several organ scintigraphies [40/135; thyroid scintigraphy (TS), 30/135; whole body bone scintigraphy (WBS), 35/135; myocardial perfusion scintigraphy (MPS) and 30/135; renal scintigraphy (RS)] by a technologist within 1 month. In full and empty conditions, static bladder images and external dose rate measurements at 0.25, 0.50, 1, 1.5 and 2 m distances were obtained and decline ratios were calculated from these two data sets. Results: External radiation dose rates were highest in patients undergoing MPS. External dose rates at 0.25 m distance for TS, TKS, MPS and BS were measured to be 56, 106, 191 and 72 μSv h-1 for full bladder and 29, 55, 103 and 37 μSv h-1 for empty bladder, respectively. For TS, WBS, MPS and RS, respectively, average decline ratios were calculated to be 52%, 55%, 53% and 54% in the scintigraphic assessment and 49%, 51%, 49%, 50% and 50% in the assessment with Geiger counter. Conclusion: Decline in bladder radioactivity is important in terms of radiation safety. Patients should be encouraged for micturition after each scintigraphic test. Spending time together with radioactive patients at distances less than 1 m should be kept to a minimum where possible. Conflict of interest:None declared. PMID:24416625

  20. Real-time graphic display utility for nuclear safety applications

    SciTech Connect

    Yang, S.; Huang, X.; Taylor, J.; Stevens, J.; Gerardis, T.; Hsu, A.; McCreary, T.

    2006-07-01

    With the increasing interests in the nuclear energy, new nuclear power plants will be constructed and licensed, and older generation ones will be upgraded for assuring continuing operation. The tendency of adopting the latest proven technology and the fact of older parts becoming obsolete have made the upgrades imperative. One of the areas for upgrades is the older CRT display being replaced by the latest graphics displays running under modern real time operating system (RTOS) with safety graded modern computer. HFC has developed a graphic display utility (GDU) under the QNX RTOS. A standard off-the-shelf software with a long history of performance in industrial applications, QNX RTOS used for safety applications has been examined via a commercial dedication process that is consistent with the regulatory guidelines. Through a commercial survey, a design life cycle and an operating history evaluation, and necessary tests dictated by the dedication plan, it is reasonably confirmed that the QNX RTOS was essentially equivalent to what would be expected in the nuclear industry. The developed GDU operates and communicates with the existing equipment through a dedicated serial channel of a flat panel controller (FPC) module. The FPC module drives a flat panel display (FPD) monitor. A touch screen mounted on the FPD serves as the normal operator interface with the FPC/FPD monitor system. The GDU can be used not only for replacing older CRTs but also in new applications. The replacement of the older CRT does not disturb the function of the existing equipment. It not only provides modern proven technology upgrade but also improves human ergonomics. The FPC, which can be used as a standalone controller running with the GDU, is an integrated hardware and software module. It operates as a single board computer within a control system, and applies primarily to the graphics display, targeting, keyboard and mouse. During normal system operation, the GDU has two sources of data

  1. Extreme Storm Event Assessments for Nuclear Facilities and Dam Safety

    NASA Astrophysics Data System (ADS)

    England, J. F.; Nicholson, T. J.; Prasad, R.

    2008-12-01

    Extreme storm events over the last 35 years are being assessed to evaluate flood estimates for safety assessments of dams, nuclear power plants, and other high-hazard structures in the U.S. The current storm rainfall design standard for evaluating the flood potential at dams and non-coastal nuclear power plants is the Probable Maximum Precipitation (PMP). PMP methods and estimates are published in the National Weather Service generalized hydrometeorological reports (HMRs). A new Federal Interagency cooperative effort is reviewing hydrometeorologic data from large storms which have occurred in the last 20 to 40 years and were not included in the database used in the development of many of the HMRs. Extreme storm data, such as the January 1996 storm in Pennsylvania, June 2008 Iowa storms, and Hurricanes Andrew (1992), Floyd (1999), Isabel (2003), Katrina (2005), need to be systematically assembled and analyzed for use in these regional extreme storm studies. Storm maximization, transposition, envelopment, and depth-area duration procedures will incorporate recent advances in hydrometeorology, including radar precipitation data and stochastic storm techniques. We describe new cooperative efforts to develop a database of extreme storms and to examine the potential impacts of recent extreme storms on PMP estimates. These efforts will be coordinated with Federal agencies, universities, and the private sector through an Extreme Storm Events Work Group under the Federal Subcommittee on Hydrology. This work group is chartered to coordinate studies and develop databases for reviewing and improving methodologies and data collection techniques used to estimate design precipitation up to and including the PMP. The initial effort focuses on collecting and reviewing extreme storm event data in the Southeastern U.S. that have occurred since Tropical Storm Agnes (1972). Uncertainties and exceedance probability estimates of PMP are being explored. Potential effects of climate

  2. The Gulf Nuclear Energy Infrastructure Institute : an integrated approach to safety, security & safeguards.

    SciTech Connect

    Williams, Adam David

    2010-04-01

    Sandia National Laboratories (SNL) and the Nuclear Security Science and Policy Institute (NSSPI) at Texas A&M University are working with Middle East regional partners to set up a nuclear energy safety, safeguards, and security educational institute in the Gulf region. SNL and NSSPI, partnered with the Khalifa University of Science, Technology, and Research (KUSTAR), with suppot from its key nuclear stakeholders, the Emirates Nuclear Energy Corporation (ENEC), and the Federal Authority for Nuclear Regulation (FANR), plan to jointly establish the institute in Abu Dhabi. The Gulf Nuclear Energy Infrastructure Institute (GNEII) will be a KUSTAR-associated, credit-granting regional education program providing both classroom instruction and hands-on experience. The ultimate objective is for GNEII to be autonomous - regionally funded and staffed with personnel capable of teaching all GNEII courses five years after its inauguration. This is a strategic effort to indigenize a responsible nuclear energy culture - a culture shaped by an integrated understanding of nuclear safety, safeguards and security - in regional nuclear energy programs. GNEII also promotes international interests in developing a nuclear energy security and safety culture, increases collaboration between the nuclear energy security and safety communities, and helps to enhance global standards for nuclear energy technology in the Middle East.

  3. The Gulf Nuclear Energy Infrastructure Institute : an integrated approach to safety, security and safeguards.

    SciTech Connect

    Beeley, Phillip A.; Boyle, David R.; Williams, Adam David; Mohagheghi, Amir Hossein

    2010-04-01

    Sandia National Laboratories (SNL) and the Nuclear Security Science and Policy Institute (NSSPI) at Texas A&M University are working with Middle East regional partners to set up a nuclear energy safety, safeguards, and security educational institute in the Gulf region. SNL and NSSPI, partnered with the Khalifa University of Science, Technology, and Research (KUSTAR), with suppot from its key nuclear stakeholders, the Emirates Nuclear Energy Corporation (ENEC), and the Federal Authority for Nuclear Regulation (FANR), plan to jointly establish the institute in Abu Dhabi. The Gulf Nuclear Energy Infrastructure Institute (GNEII) will be a KUSTAR-associated, credit-granting regional education program providing both classroom instruction and hands-on experience. The ultimate objective is for GNEII to be autonomous - regionally funded and staffed with personnel capable of teaching all GNEII courses five years after its inauguration. This is a strategic effort to indigenize a responsible nuclear energy culture - a culture shaped by an integrated understanding of nuclear safety, safeguards and security - in regional nuclear energy programs. GNEII also promotes international interests in developing a nuclear energy security and safety culture, increases collaboration between the nuclear energy security and safety communities, and helps to enhance global standards for nuclear energy technology in the Middle East.

  4. Collaborative development of a US/Russia safety information center database

    SciTech Connect

    Dvorack, M.A.; Smith, R.E.; Ananiychuk, V.N.; Volkova, N.A.

    1998-01-01

    One of the major outgrowths resulting from the collapse of the former Soviet Union (FSU) has been an increase in technical information exchange and dialogue between the Russian and American nuclear weapons laboratories. One area of such discussions is concerned with the safety of low probability, high consequence systems and operations. In order to further the understanding between the respective institutes in this important area, a collaborative effort has been established between Sandia National Laboratories and the two premier Russian nuclear weapons laboratories, Arzamas-16 and Chelyabinsk-70, in which a common database has been developed which contains safety information provided by all three laboratories. More than 1,200 documents have been placed by the three institutes into this database. This paper describes the details of this data base, including the types of safety information being stored.

  5. 78 FR 4404 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms... the Defense Nuclear Facilities Safety Board submitted Recommendation 2012-2, concerning Hanford Tank... Nuclear Facilities Safety Board (Board) Recommendation 2012-2, Hanford Tank Farms Flammable Gas...

  6. Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities

    SciTech Connect

    Gregory Weatherby

    2012-05-01

    The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980’s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage

  7. Implementation of an Enhanced Measurement Control Program for handling nuclear safety samples at WSRC

    SciTech Connect

    Boler-Melton, C.; Holland, M.K.

    1991-12-31

    In the separation and purification of nuclear material, nuclear criticality safety (NCS) is of primary concern. The primary nuclear criticality safety controls utilized by the Savannah River Site (SRS) Separations Facilities involve administrative and process equipment controls. Additional assurance of NCS is obtained by identifying key process hold points where sampling is used to independently verify the effectiveness of production control. Nuclear safety measurements of samples from these key process locations provide a high degree of assurance that processing conditions are within administrative and procedural nuclear safety controls. An enhanced procedure management system aimed at making improvements in the quality, safety, and conduct of operation was implemented for Nuclear Safety Sample (NSS) receipt, analysis, and reporting. All procedures with nuclear safety implications were reviewed for accuracy and adequate detail to perform the analytical measurements safely, efficiently, and with the utmost quality. Laboratory personnel worked in a ``Deliberate Operating`` mode (a systematic process requiring continuous expert oversight during all phases of training, testing, and implementation) to initiate the upgrades. Thus, the effort to revise and review nuclear safety sample procedures involved a team comprised of a supervisor, chemist, and two technicians for each procedure. Each NSS procedure was upgraded to a ``Use Every Time`` (UET) procedure with sign-off steps to ensure compliance with each step for every nuclear safety sample analyzed. The upgrade program met and exceeded both the long and short term customer needs by improving measurement reliability, providing objective evidence of rigid adherence to program principles and requirements, and enhancing the system for independent verification of representative sampling from designated NCS points.

  8. Implementation of an Enhanced Measurement Control Program for handling nuclear safety samples at WSRC

    SciTech Connect

    Boler-Melton, C.; Holland, M.K.

    1991-01-01

    In the separation and purification of nuclear material, nuclear criticality safety (NCS) is of primary concern. The primary nuclear criticality safety controls utilized by the Savannah River Site (SRS) Separations Facilities involve administrative and process equipment controls. Additional assurance of NCS is obtained by identifying key process hold points where sampling is used to independently verify the effectiveness of production control. Nuclear safety measurements of samples from these key process locations provide a high degree of assurance that processing conditions are within administrative and procedural nuclear safety controls. An enhanced procedure management system aimed at making improvements in the quality, safety, and conduct of operation was implemented for Nuclear Safety Sample (NSS) receipt, analysis, and reporting. All procedures with nuclear safety implications were reviewed for accuracy and adequate detail to perform the analytical measurements safely, efficiently, and with the utmost quality. Laboratory personnel worked in a Deliberate Operating'' mode (a systematic process requiring continuous expert oversight during all phases of training, testing, and implementation) to initiate the upgrades. Thus, the effort to revise and review nuclear safety sample procedures involved a team comprised of a supervisor, chemist, and two technicians for each procedure. Each NSS procedure was upgraded to a Use Every Time'' (UET) procedure with sign-off steps to ensure compliance with each step for every nuclear safety sample analyzed. The upgrade program met and exceeded both the long and short term customer needs by improving measurement reliability, providing objective evidence of rigid adherence to program principles and requirements, and enhancing the system for independent verification of representative sampling from designated NCS points.

  9. 77 FR 43583 - DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah River Site... Nuclear Facilities Safety Board submitted Recommendation 2012-1, concerning Savannah River Site Building... Safety Board (Board) Recommendation 2012-1, Savannah River ] Site Building 235-F Safety, issued on May...

  10. Training and qualification program for nuclear criticality safety technical staff. Revision 1

    SciTech Connect

    Taylor, R.G.; Worley, C.A.

    1997-03-05

    A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. All personnel who are to perform nuclear criticality safety technical work are required to participate in the program. The program includes both general nuclear criticality safety and plant specific knowledge components. Advantage can be taken of previous experience for that knowledge which is portable such as performance of computer calculations. Candidates step through a structured process which exposes them to basic background information, general plant information, and plant specific information which they need to safely and competently perform their jobs. Extensive documentation is generated to demonstrate that candidates have met the standards established for qualification.

  11. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    SciTech Connect

    Hopper, Calvin Mitchell

    2011-01-01

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National

  12. Safety and environmental analyses for space nuclear programs

    NASA Technical Reports Server (NTRS)

    Mcconnell, D. J.

    1990-01-01

    The tools and procedures for analyzing environmental quality and safety are reviewed. The process of preparing an environmental impact statement is outlined and the data sources for a safety analysis are discussed. The environmental safety analysis process is demonstrated, using examples from the Galileo, Ulysses, and Venus-earth-earth-gravity-assist programs.

  13. Nuclear criticality safety calculational analysis for small-diameter containers

    SciTech Connect

    LeTellier, M.S.; Smallwood, D.J.; Henkel, J.A.

    1995-11-01

    This report documents calculations performed to establish a technical basis for the nuclear criticality safety of favorable geometry containers, sometimes referred to as 5-inch containers, in use at the Portsmouth Gaseous Diffusion Plant. A list of containers currently used in the plant is shown in Table 1.0-1. These containers are currently used throughout the plant with no mass limits. The use of containers with geometries or material types other than those addressed in this evaluation must be bounded by this analysis or have an additional analysis performed. The following five basic container geometries were modeled and bound all container geometries in Table 1.0-1: (1) 4.32-inch-diameter by 50-inch-high polyethylene bottle; (2) 5.0-inch-diameter by 24-inch-high polyethylene bottle; (3) 5.25-inch-diameter by 24-inch-high steel can ({open_quotes}F-can{close_quotes}); (4) 5.25-inch-diameter by 15-inch-high steel can ({open_quotes}Z-can{close_quotes}); and (5) 5.0-inch-diameter by 9-inch-high polybottle ({open_quotes}CO-4{close_quotes}). Each container type is evaluated using five basic reflection and interaction models that include single containers and multiple containers in normal and in credible abnormal conditions. The uranium materials evaluated are UO{sub 2}F{sub 2}+H{sub 2}O and UF{sub 4}+oil materials at 100% and 10% enrichments and U{sub 3}O{sub 8}, and H{sub 2}O at 100% enrichment. The design basis safe criticality limit for the Portsmouth facility is k{sub eff} + 2{sigma} < 0.95. The KENO study results may be used as the basis for evaluating general use of these containers in the plant.

  14. Preparation, review, and approval of implementation plans for nuclear safety requirements

    SciTech Connect

    Not Available

    1994-10-01

    This standard describes an acceptable method to prepare, review, and approve implementation plans for DOE Nuclear Safety requirements. DOE requirements are identified in DOE Rules, Orders, Notices, Immediate Action Directives, and Manuals.

  15. Manual of functions, assignments, and responsibilities for nuclear safety: Revision 2

    SciTech Connect

    Not Available

    1994-10-15

    The FAR Manual is a convenient easy-to-use collection of the functions, assignments, and responsibilities (FARs) of DOE nuclear safety personnel. Current DOE directives, including Orders, Secretary of Energy Notices, and other assorted policy memoranda, are the source of this information and form the basis of the FAR Manual. Today, the majority of FARs for DOE personnel are contained in DOE`s nuclear safety Orders. As these Orders are converted to rules in the Code of Federal Regulations, the FAR Manual will become the sole source for information relating to the functions, assignments, responsibilities of DOE nuclear safety personnel. The FAR Manual identifies DOE directives that relate to nuclear safety and the specific DOE personnel who are responsible for implementing them. The manual includes only FARs that have been extracted from active directives that have been approved in accordance with the procedures contained in DOE Order 1321.1B.

  16. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    SciTech Connect

    Kisner, Roger A; Mullens, James Allen; Wilson, Thomas L; Wood, Richard Thomas; Korsah, Kofi; Qualls, A L; Muhlheim, Michael David; Holcomb, David Eugene; Loebl, Andy

    2007-08-01

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  17. Nuclear energy with inherent safety: Change of outdated paradigm, criteria

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Orlov, V. V.; Rachkov, V. I.; Slessarev, I. S.; Khomyakov, Yu. S.

    2015-12-01

    Modern nuclear power technology still has significant sources of risk, and, weak links, such as, a threat of severe accidents with catastrophic unpredictable consequences and damage to the population, proliferation of nuclear weapon-usable materials, risks of long-term storage of toxic radioactive waste, risks of loss of major investments in nuclear facilities and their construction, lack of fuel resources for the ambitious role of nuclear power in the competitive balance of energy. Each of these risks is important and almost independent, though the elimination of some of them does not significantly alter the overall assessment of nuclear power.

  18. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    SciTech Connect

    Durant, W.S.; Perkins, W.C.; Lee, R.; Stoddard, D.H.

    1982-05-20

    The Safety Technology Group is developing methodology that can be used to assess the risk of operating a plant to reprocess spent nuclear fuel. As an early step in the methodology, a preliminary hazards analysis identifies safety-related incidents. In the absence of appropriate safety features, these incidents could lead to significant consequences and risk to onsite personnel or to the public. This report is a compilation of potential safety-related incidents that have been identified in studies at SRL and in safety analyses of various commercially designed reprocessing plants. It is an expanded revision of the version originally published as DP-1558, Published December 1980.

  19. Nuclear nonproliferation and safety: Challenges facing the International Atomic Energy Agency

    SciTech Connect

    Not Available

    1993-09-01

    The Chairman of the Senate Committee on Govermental Affairs asked the United States General Accounting Office (GAO) to review the safeguards and nuclear power plant safety programs of the International Atomic Energy Agency (IAEA). This report examines (1) the effectiveness of IAEA`s safeguards program and the adequacy of program funding, (2) the management of U.S. technical assistance to the IAEA`s safeguards program, and (3) the effectiveness of IAEA`s program for advising United Nations (UN) member states about nuclear power plant safety and the adequacy of program funding. Under its statute and the Treaty on the Non-Proliferation of Nuclear Weapons, IAEA is mandated to administer safeguards to detect diversions of significant quantities of nuclear material from peaceful uses. Because of limits on budget growth and unpaid contributions, IAEA has had difficulty funding the safeguards program. IAEA also conducts inspections of facilities or locations containing declared nuclear material, and manages a program for reviewing the operational safety of designated nuclear power plants. The U.S. technical assistance program for IAEA safeguards, overseen by an interagency coordinating committee, has enhanced the agency`s inspection capabilities, however, some weaknesses still exist. Despite financial limitations, IAEA is meeting its basic safety advisory responsibilities for advising UN member states on nuclear safety and providing requested safety services. However, IAEA`s program for reviewing the operational safety of nuclear power plants has not been fully effective because the program is voluntary and UN member states have not requested IAEA`s review of all nuclear reactors with serious problems. GAO believes that IAEA should have more discretion in selecting reactors for review.

  20. NASA safety program activities in support of the Space Exploration Initiatives Nuclear Propulsion program

    NASA Technical Reports Server (NTRS)

    Sawyer, J. C., Jr.

    1993-01-01

    The activities of the joint NASA/DOE/DOD Nuclear Propulsion Program Technical Panels have been used as the basis for the current development of safety policies and requirements for the Space Exploration Initiatives (SEI) Nuclear Propulsion Technology development program. The Safety Division of the NASA Office of Safety and Mission Quality has initiated efforts to develop policies for the safe use of nuclear propulsion in space through involvement in the joint agency Nuclear Safety Policy Working Group (NSPWG), encouraged expansion of the initial policy development into proposed programmatic requirements, and suggested further expansion into the overall risk assessment and risk management process for the NASA Exploration Program. Similar efforts are underway within the Department of Energy to ensure the safe development and testing of nuclear propulsion systems on Earth. This paper describes the NASA safety policy related to requirements for the design of systems that may operate where Earth re-entry is a possibility. The expected plan of action is to support and oversee activities related to the technology development of nuclear propulsion in space, and support the overall safety and risk management program being developed for the NASA Exploration Program.

  1. Quantum Control of Nuclear Spins Coupled to Nitrogen-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Sangtawesin, Sorawis

    This dissertation presents experiments on nitrogen-vacancy (NV) defect centers in diamond. The NV center is an optically active color center formed by one substitutional nitrogen atom and an adjacent vacancy in the diamond lattice. Its ground state spin triplet transitions are accessible in the microwave regime and their corresponding excited state transitions exhibit spin-dependent fluorescence that allows for optical spin state readout. We present methods for the deterministic placement and the fine tuning of the NV center population in bulk diamond via ion implantation. We demonstrate quantum control of the nuclear spin in diamond through manipulation of the NV center electronic spin. By utilizing the hyperfine coupling between the electronic and nuclear spins, fast phase gates on the intrinsic nitrogen nuclear spin can be achieved within half a microsecond, a speed that far exceeds that of the gates performed with conventional nuclear magnetic resonance pulses. The hyperfine coupling also results in an enhancement of the effective nuclear gyromagnetic ratio. We demonstrate the tunability of this enhancement by changing the magnetic field. Finally, we discuss preliminary experiments aimed towards coupling a single NV center to higher nuclear spin systems.

  2. Passive and inherent safety technologies for light-water nuclear reactors

    SciTech Connect

    Forsberg, C.W.

    1990-07-01

    Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs.

  3. 78 FR 47014 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... 22, 2012 (77 FR 50727) for a 60-day public comment period. The public comment period closed on... COMMISSION Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear... 1 of RG 1.169, ``Configuration Management Plans for Digital Computer Software Used in Safety...

  4. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    M. D. Staiger M. C. Swenson

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  5. Nuclear power plants in China's coastal zone: risk and safety

    NASA Astrophysics Data System (ADS)

    Lu, Qingshui; Gao, Zhiqiang; Ning, Jicai; Bi, Xiaoli; Gao, Wei

    2014-10-01

    Nuclear power plants are used as an option to meet the demands for electricity due to the low emission of CO2 and other contaminants. The accident at the Fukushima nuclear power plant in 2011 has forced the Chinese government to adjust its original plans for nuclear power. The construction of inland nuclear power plants was stopped, and construction is currently only permitted in coastal zones. However, one obstacle of those plants is that the elevation of those plants is notably low, ranging from 2 to 9 meters and a number of the nuclear power plants are located in or near geological fault zones. In addition, the population density is very high in the coastal zones of China. To reduce those risks of nuclear power plants, central government should close the nuclear power plants within the fault zones, evaluate the combined effects of storm surges, inland floods and tidal waves on nuclear power plants and build closed dams around nuclear power plants to prevent damage from storm surges and tidal waves. The areas without fault zones and with low elevation should be considered to be possible sites for future nuclear power plants if the elevation can be increased using soil or civil materials.

  6. Improving the regulation of safety at DOE nuclear facilities. Final report

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  7. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  8. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  9. NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.

  10. Safety analysis of the nuclear chemistry Building 151

    SciTech Connect

    Kvam, D.

    1984-06-29

    This report summarizes the results of a safety analysis that was done on Building 151. The report outlines the methodology, the analysis, and the findings that led to the low hazard classification. No further safety evaluation is indicated at this time. 5 tables.

  11. Nuclear Reactor Safety--The APS Submits its Report

    ERIC Educational Resources Information Center

    Physics Today, 1975

    1975-01-01

    Presents the summary section of the American Physical Society (APS) report on the safety features of the light-water reactor, reviews the design, construction, and operation of a reactor and outlines the primary engineered safety features. Summarizes the major recommendations of the study group. (GS)

  12. An Information Building on Radioactivity and Nuclear Energy for the French CEA Cadarache Research Center - 13492

    SciTech Connect

    Brunel, Guy; Denis, Dominique; Boulet, Alain

    2013-07-01

    The CEA Cadarache research center is one of the 10 research centers of the French Alternative Energies and Atomic Energy Commission (CEA). Distributed throughout various research platforms, it focuses on nuclear fission, nuclear fusion, new energy technologies (hydrogen, solar, biomass) and fundamental research in the field of vegetal biology. It is the most important technological research and development centers for energy in Europe. Considering the sensitive nature of nuclear activities, the questions surrounding the issue of radioactive waste, the nuclear energy and the social, economic and environmental concerns for present and future generations, the French Government asked nuclear actors to open communication and to give all the information asked by the Local Information Commission (CLI) and the public [1]. In this context, the CEA Cadarache has decided to better show and explain its expertise and experience in the area of nuclear energy and nuclear power plant design, and to make it available to stakeholders and to the public. CEA Cadarache receives each year more than 9000 visitors. To complete technical visits of the research facilities and laboratories, a scientific cultural center has been built in 2011 to inform the public on CEA Cadarache research activities and to facilitate the acceptance of nuclear energy in a way suited to the level of knowledge of the visitors. A modern interactive exhibition of 150 m{sup 2} allows visitors to find out more about energy, CEA Cadarache research programs, radioactive waste management and radiological impact on the research center activities. It also offers an auditorium for group discussions and for school groups to discover science through enjoyment. This communication center has received several thousand visitors since its opening on October 2011; the initial results of this experience are now available. It's possible to explain the design of this exhibition, to give some statistics on the number of the visitors

  13. ASME Nuclear Crane Standards for Enhanced Crane Safety and Increased Profit

    NASA Astrophysics Data System (ADS)

    Parkhurst, Stephen N.

    2000-01-01

    The ASME NOG-1 standard, 'Rules for Construction of Overhead and Gantry Cranes', covers top running cranes for nuclear facilities; with the ASME NUM-1 standard, 'Rules for Construction of Cranes, Monorails, and Hoists', covering the single girder, underhung, wall and jib cranes, as well as the monorails and hoists. These two ASME nuclear crane standards provide criteria for designing, inspecting and testing overhead handling equipment with enhanced safety to meet the 'defense-in-depth' approach of the United States Nuclear Regulatory Commission (USNRC) documents NUREG 0554 and NUREG 0612. In addition to providing designs for enhanced safety, the ASME nuclear crane standards provide a basis for purchasing overhead handling equipment with standard safety features, based upon accepted engineering principles, and including performance and environmental parameters specific to nuclear facilities. The ASME NOG-1 and ASME NUM-1 standards not only provide enhanced safety for handling a critical load, but also increase profit by minimizing the possibility of load drops, by reducing cumbersome operating restrictions, and by providing the foundation for a sound licensing position. The ASME nuclear crane standards can also increase profit by providing the designs and information to help ensure that the right standard equipment is purchased. Additionally, the ASME nuclear crane standards can increase profit by providing designs and information to help address current issues, such as the qualification of nuclear plant cranes for making 'planned engineered lifts' for steam generator replacement and decommissioning.

  14. 78 FR 67206 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Plants'' on May 1, 2013, (78 FR 25488) for a 60 day public comment period. The public comment period... COMMISSION Qualification Tests for Safety-Related Actuators in Nuclear Power Plants AGENCY: Nuclear... Commission (NRC) is issuing revision 1 to regulatory guide (RG) 1.73, ``Qualification Tests for...

  15. Development of Risk Assessment Matrix for NASA Engineering and Safety Center

    NASA Technical Reports Server (NTRS)

    Malone, Roy W., Jr.; Moses, Kelly

    2004-01-01

    This paper describes a study, which had as its principal goal the development of a sufficiently detailed 5 x 5 Risk Matrix Scorecard. The purpose of this scorecard is to outline the criteria by which technical issues can be qualitatively and initially prioritized. The tool using this score card has been proposed to be one of the information resources the NASA Engineering and Safety Center (NESC) takes into consideration when making decisions with respect to incoming information on safety concerns across the entire NASA agency. The contents of this paper discuss in detail each element of the risk matrix scorecard, definitions for those elements and the rationale behind the development of those definitions. This scorecard development was performed in parallel with the tailoring of the existing Futron Corporation Integrated Risk Management Application (IRMA) software tool. IRMA was tailored to fit NESC needs for evaluating incoming safety concerns and was renamed NESC Assessment Risk Management Application (NAFMA) which is still in developmental phase.

  16. Nuclear coherences in photosynthetic reaction centers following light excitation

    SciTech Connect

    Weber, S.; Norris, J.R.; Berthold, T.; Ohmes, E.; Kothe, G.; Thurnauer, M.C.

    1997-07-01

    Transient electron paramagnetic resonance is used to study the secondary radical pair in plant photosystem I. Nuclear coherences are observed in the transverse magnetization at lower temperatures following light excitation. Comparative studies of deuterated and deuterated {sup 15}N-substituted cyanobacteria S. lividus indicate assignment of these coherences to nitrogen nuclei in the primary donor and deuterons in the secondary acceptor. The modulation amplitude of a deuteron matrix line, as a function of the microwave power, reveals a distinct resonance behavior. The maximum amplitude is obtained when the Rabi frequency equals the nuclear Zeeman frequency.

  17. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented.

  18. WASTE PROCESSING ANNUAL NUCLEAR SAFETY RELATED R AND D REPORT FOR CY2008

    SciTech Connect

    Fellinger, A.

    2009-10-15

    The Engineering and Technology Office of Waste Processing identifies and reduces engineering and technical risks associated with key waste processing project decisions. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment (TDD). The Office of Waste Processing TDD program prioritizes and approves research and development scopes of work that address nuclear safety related to processing of highly radioactive nuclear wastes. Thirteen of the thirty-five R&D approved work scopes in FY2009 relate directly to nuclear safety, and are presented in this report.

  19. Spent Nuclear Fuel (SNF) Project Safety Basis Implementation Strategy

    SciTech Connect

    TRAWINSKI, B.J.

    2000-02-08

    The objective of the Safety Basis Implementation is to ensure that implementation of activities is accomplished in order to support readiness to move spent fuel from K West Basin. Activities may be performed directly by the Safety Basis Implementation Team or they may be performed by other organizations and tracked by the Team. This strategy will focus on five key elements, (1) Administration of Safety Basis Implementation (general items), (2) Implementing documents, (3) Implementing equipment (including verification of operability), (4) Training, (5) SNF Project Technical Requirements (STRS) database system.

  20. Characterization and improvement of the nuclear safety culture through self-assessment

    SciTech Connect

    Levin, H.A.; McGehee, R.B.; Cottle, W.T.

    1996-12-31

    Organizational culture has a powerful influence on overall corporate performance. The ability to sustain superior results in ensuring the public`s health and safety is predicated on an organization`s deeply embedded values and behavioral norms and how these affect the ability to change and seek continuous improvement. The nuclear industry is developing increased recognition of the relationship of culture to nuclear safety performance as a critical element of corporate strategy. This paper describes a self-assessment methodology designed to characterize and improve the nuclear safety culture, including processes for addressing employee concerns. This methodology has been successfully applied on more than 30 occasions in the last several years, resulting in measurable improvements in safety performance and quality and employee motivation, productivity, and morale. Benefits and lessons learned are also presented.

  1. Institutional Profile: Jayne Haines Center for Pharmacogenomics and Drug Safety: educating future generations of healthcare professionals.

    PubMed

    Krynetskiy, Evgeny

    2013-04-01

    The Jayne Haines Center for Pharmacogenomics and Drug Safety operates in the Temple University School of Pharmacy and serves as an educational and research facility for professional pharmacy students, graduate students, residents, postdoctoral fellows and faculties. The Center is involved in educational and investigational projects in a setting that includes an inner city research/teaching hospital and the Temple University Schools of Pharmacy, Medicine, Dentistry and Health Professions. The mission of the Haines Center is to facilitate the basic science approach to the problems of pharmacotherapy, and to provide education for future healthcare professionals in the genetics of drug response. With the expanding role of genetic analysis in preventing adverse effects of pharmacotherapy, we are working towards truly personalized pharmacotherapy that fully exploits the advances of modern biomedical science. PMID:23556444

  2. Survey of systems safety analysis methods and their application to nuclear waste management systems

    SciTech Connect

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study.

  3. JINR-DUBNA an International center of Nuclear Research

    NASA Astrophysics Data System (ADS)

    Gudima, K.; Baznat, M.

    2015-04-01

    A short History of the Joint Institute of the Nuclear Research in Dubna (Russian Federation) has been given. The Facilities : The Synchrophasotron, the Nuclotron-M, the IBR-2 Reactor,The Heavy Ions Isochronous cyclotrons U-400 and U-400M, Phasotron, The impuls resonance neutronic device IREN has been described. A short history of collaboration between JINR and scientists from Moldova has been given. The main new tendencies in Science management has been outlined.

  4. Plant Modernization with Digital Reactor Protection System Safety System Upgrades at US Nuclear Power Stations

    SciTech Connect

    Heckle, Wm. Lloyd; Bolian, Tricia W.

    2006-07-01

    As the current fleet of nuclear power plants in the US reaches 25+ years of operation, obsolescence is driving many utilities to implement upgrades to both their safety and non-safety-related Instrumentation and Control (I and C) Systems. Digital technology is the predominant replacement technology for these upgrades. Within the last 15 years, digital control systems have been deployed in non-safety- related control applications at many utilities. In addition, a few utilities have replaced small safety-related systems utilizing digital technology. These systems have shown digital technology to be robust, reliable and simpler to maintain. Based upon this success, acceptance of digital technology has gained momentum with both utilities and regulatory agencies. Today, in an effort to extend the operating lives of their nuclear stations and resolve obsolescence of critical components, utilities are now pursuing digital technology for replacement of their primary safety systems. AREVA is leading this effort in the United States with the first significant digital upgrade of a major safety system. AREVA has previously completed upgrades to safety-related control systems emergency diesel engine controls and governor control systems for a hydro station which serves as the emergency power source for a nuclear station. Currently, AREVA is implementing the replacement of both the Reactor Protection System (RPS) and the Engineered Safety Features Actuation System (ESFAS) on all three units at a US PWR site. (authors)

  5. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel

  6. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    SciTech Connect

    Darby, John L.; Horak, Karl Emanuel; LaChance, Jeffrey L.; Tolk, Keith Michael; Whitehead, Donnie Wayne

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  7. Radiation safety audit of a high volume Nuclear Medicine Department

    PubMed Central

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-01-01

    Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361

  8. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  9. The roles and functions of a lunar base Nuclear Technology Center

    SciTech Connect

    Buden, D. ); Angelo, J.A. Jr. )

    1991-01-01

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth. 12 refs., 4 figs., 1 tab.

  10. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    SciTech Connect

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.

  11. Preliminary nuclear safety assessment of the NEPST (Topaz II) space reactor program

    SciTech Connect

    Marshall, A.C.

    1993-01-01

    The United States (US) Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary nuclear safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary nuclear safety assessment included a number of deterministic analyses, such as; neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, an analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment to date, it appears that it will be possible to safely launch the Topaz II system in the US with a modification to preclude water flooded criticality. A full scale safety program is now underway.

  12. Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)

    SciTech Connect

    VINCENT, Andrew

    2005-07-14

    In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the

  13. Lessons in Nuclear Safety, Panel on Integration of People and Programs

    SciTech Connect

    Pinkston, David

    2015-02-24

    Four slides present a historical perspective on the evolution of nuclear safety, a description of systemic misalignment (available resources do not match expectations, demographic cliff developing, promulgation of increased expectations and new requirements proceeds unabated), and needs facing nuclear safety (financial stability, operational stability, and succession planning). The following conclusions are stated under the heading "Nuclear Safety - 'The System'": the current universe of requirements is too large for the resource pool available; the current universe of requirements has too many different sources of interpretation; there are so many indicators that it’s hard to know what is leading (or important); and the net result can come to defy integrated comprehension at the worker level.

  14. Strengthening safety compliance in nuclear power operations: a role-based approach.

    PubMed

    Martínez-Córcoles, Mario; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2014-07-01

    Safety compliance is of paramount importance in guaranteeing the safe running of nuclear power plants. However, it depends mostly on procedures that do not always involve the safest outcomes. This article introduces an empirical model based on the organizational role theory to analyze the influence of legitimate sources of expectations (procedures formalization and leadership) on workers' compliance behaviors. The sample was composed of 495 employees from two Spanish nuclear power plants. Structural equation analysis showed that, in spite of some problematic effects of proceduralization (such as role conflict and role ambiguity), procedure formalization along with an empowering leadership style lead to safety compliance by clarifying a worker's role in safety. Implications of these findings for safety research are outlined, as well as their practical implications.

  15. Space nuclear safety program. Progress report, September 1984

    SciTech Connect

    George, T.G.

    1986-02-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems conducted for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses. 15 figs.

  16. Space nuclear safety program. Progress report, August 1983

    SciTech Connect

    Bronisz, S.E.

    1984-01-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  17. Space nuclear safety program. Progress report, October-December 1984

    SciTech Connect

    George, T.G.

    1986-05-01

    This quarterly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  18. Space Nuclear Safety Program: Progress report, January-March 1987

    SciTech Connect

    Lewin, R.; George, T.G.

    1988-07-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, which were carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  19. Space nuclear safety program. Progress report, January 1984

    SciTech Connect

    Bronisz, S.E.

    1984-07-01

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  20. Space nuclear safety program: Progress report, July--September 1987

    SciTech Connect

    George, T.G.

    1989-02-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. The studies discussed are ongoing; the results and conclusions described may change as the work progresses. 20 figs., 4 tabs.

  1. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    NASA Astrophysics Data System (ADS)

    Yunus, N. A.; Abdullah, M. H. R. O.; Said, M. A.; Ch'ng, P. E.

    2014-11-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia.

  2. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  3. Safety-related issues associated with implementing wireless systems in nuclear facilities

    SciTech Connect

    Kaldenbach, B. J.; Ewing, P. D.; Moore, M. R.; Korsah, K.; Antonescu, C. E.; Govan, T. V.

    2006-07-01

    Currently, wireless technology is not used as an integral element of safety-related systems in nuclear facilities. The most prevalent introductory uses of wireless technology are for in-facility communications among personnel and for supplemental information transmission. However, further system upgrades and implementations at new facilities might introduce wireless communications into safety-significant applications. This paper documents the deployment issues and implementation considerations that can contribute to the technical basis for guidance on wireless systems. (authors)

  4. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION... nuclear power plants. (a) Each holder of or an applicant for an operating license issued under this part... nuclear power plant for which the certifications required under § 50.82(a)(1) or § 52.110(a)(1) of...

  5. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION... nuclear power plants. (a) Each holder of or an applicant for an operating license issued under this part... nuclear power plant for which the certifications required under § 50.82(a)(1) or § 52.110(a)(1) of...

  6. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION... nuclear power plants. (a) Each holder of or an applicant for an operating license issued under this part... nuclear power plant for which the certifications required under § 50.82(a)(1) or § 52.110(a)(1) of...

  7. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION... nuclear power plants. (a) Each holder of or an applicant for an operating license issued under this part... nuclear power plant for which the certifications required under § 50.82(a)(1) or § 52.110(a)(1) of...

  8. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION... nuclear power plants. (a) Each holder of or an applicant for an operating license issued under this part... nuclear power plant for which the certifications required under § 50.82(a)(1) or § 52.110(a)(1) of...

  9. How the Space Data Center Is Improving Safety of Space Operations

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.

    2010-09-01

    In an effort to mitigate the risks associated with satellite close approaches in the geostationary belt, satellite operators began to come together in early 2008 to establish a prototype GEO data center. That prototype provided a framework for operators to share orbital data for their fleets to be used to perform conjunction analysis and provide automated notifications of close approaches via the SOCRATES-GEO service. That service was extended to LEO operations in mid-2009 and, as of early 2010, the prototype was supporting 20 operators from over a dozen countries by automatically screening 300 satellites for close approaches twice each day. In April 2010, the prototype data center operated by the Center for Space Standards & Innovation (CSSI) was a key reason AGI was selected by the Space Data Association (SDA) to develop the SDA’s new Space Data Center (SDC). This paper will address how the SDC will use a service-oriented architecture (SOA) to support orbital operations by increasing the efficiency of analysis to mitigate the risk of conjunctions and radio frequency interference, thereby enhancing overall safety of flight.

  10. Nuclear criticality safety evaluation of SRS 9971 shipping package

    SciTech Connect

    Vescovi, P.J.

    1993-02-01

    This evaluation is requested to revise the criticality evaluation used to generate Chapter 6 (Criticality Evaluation) of the Safety Analysis Report for Packaging (SARP) for shipment Of UO{sub 3} product from the Uranium Solidification Facility (USF) in the SRS 9971 shipping package. The pertinent document requesting this evaluation is included as Attachment I. The results of the evaluation are given in Attachment II which is written as Chapter 6 of a NRC format SARP.

  11. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    SciTech Connect

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  12. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    SciTech Connect

    Perkins, W.C.; Durant, W.S.; Dexter, A.H.

    1980-12-01

    The occurrence of certain potential events in nuclear fuel reprocessing plants could lead to significant consequences involving risk to operating personnel or to the general public. This document is a compilation of such potential initiating events in nuclear fuel reprocessing plants. Possible general incidents and incidents specific to key operations in fuel reprocessing are considered, including possible causes, consequences, and safety features designed to prevent, detect, or mitigate such incidents.

  13. 77 FR 75016 - Safety Zone: Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... around the Gilmerton Bridge center span barge (77 FR 73541). Inadvertently, this rule included an error... center span barge. Inadvertently, this rule included an error in the inclement weather date of the safety... January 11, 2013, with inclement weather dates of January 12, 2013 through January 16, 2013....

  14. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  15. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    SciTech Connect

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  16. Purpose, Principles, and Challenges of the NASA Engineering and Safety Center

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2016-01-01

    NASA formed the NASA Engineering and Safety Center in 2003 following the Space Shuttle Columbia accident. It is an Agency level, program-independent engineering resource supporting NASA's missions, programs, and projects. It functions to identify, resolve, and communicate engineering issues, risks, and, particularly, alternative technical opinions, to NASA senior management. The goal is to help ensure fully informed, risk-based programmatic and operational decision-making processes. To date, the NASA Engineering and Safety Center (NESC) has conducted or is actively working over 600 technical studies and projects, spread across all NASA Mission Directorates, and for various other U.S. Government and non-governmental agencies and organizations. Since inception, NESC human spaceflight related activities, in particular, have transitioned from Shuttle Return-to-Flight and completion of the International Space Station (ISS) to ISS operations and Orion Multi-purpose Crew Vehicle (MPCV), Space Launch System (SLS), and Commercial Crew Program (CCP) vehicle design, integration, test, and certification. This transition has changed the character of NESC studies. For these development programs, the NESC must operate in a broader, system-level design and certification context as compared to the reactive, time-critical, hardware specific nature of flight operations support.

  17. Validity of Agency for Healthcare Research and Quality Patient Safety Indicators at an academic medical center.

    PubMed

    Ramanathan, Rajesh; Leavell, Patricia; Stockslager, Gregory; Mays, Catherine; Harvey, Dale; Duane, Therese M

    2013-06-01

    The Agency for Healthcare Research and Quality developed Patient Safety Indicators (PSI) to screen for in-hospital complications and patient safety events through International Classification of Diseases, 9th Revision, Clinical Modification coding. The purpose of this study was to validate 10 common surgically related PSIs at our academic medical center and investigate the causes for inaccuracies. We reviewed patient records between October 2011 and September 2012 at our urban academic medical center for 10 common surgically related PSIs. The records were reviewed for incorrectly identified PSIs and a subset was further reviewed for the contributing factors. There were 93,169 charts analyzed for PSIs and 358 PSIs were identified (3.84 per 1000 cases). The overall positive predictive value (PPV) was 83 per cent (95% confidence interval 79 to -86%). The lowest PPVs were associated with catheter-related bloodstream infections (67%), postoperative respiratory failure (71%), and pressure ulcers (79%). The most common contributing factors for incorrect PSIs were coding errors (30%), documentation errors (19%), and insufficient criteria for PSI in the chart (16%). We conclude that the validity of PSIs is low and could be improved by increased education for clinicians and coders. In their current form, PSIs remain suboptimal for widespread use in public reporting and pay-for-performance evaluation. PMID:23711266

  18. Nuclear reactor safety. Progress report, October 1-December 31, 1980

    SciTech Connect

    Stevenson, M.G.; Vigil, J.C.

    1981-09-01

    Development of the fast-running Transient Reactor Analysis Code (TRAC) version (PF1) continued during the quarter with numerical improvements and addition of a stratified-flow model. Independent assessment of the detailed version (PD2) continued with several Loss-Of-Fluid Test (LOFT) small-break tests, a PKL reflood test, and five Marviken critical-flow tests. Analysis efforts in the 2D/3D project concentrated on detailed investigations of Cylindrical-Core Test Facility (CCTF) Core I tests and calculated flow oscillations in the primary loops of the German pressurized water reactor (PWR). Investigations were completed of PWR transients involving emergency feed-water unavailability. Other Light-Water Reactor (LWR) safety progress included the use of the three-dimensional version of the SALE code to study hot-leg injection into the upper plenum and the effect of guide tube cross section on momentum flux. Efforts in Liquid-Metal-Cooled Fast-Breeder Reactor safety included studying transition-phase phenomena in an SNR-300-type reactor geometry using SIMMER and performing Upper Structure Dynamics experiments to examine rupture disk performance. In High-Temperature Gas-Cooled Reactor (HTGR safety, improvements were made to the Composite High-Temperature Gas-Cooled reactor Analysis Program (CHAP) code, and system transients in the Fort St. Vrain reactor were calculated. Other work in this area included thermal stress analyses of core support block response during fire-water cooldown following a loss-of-forced-circulation accident. Tests were run on steel cylinders to determine the effects of the Area Replacement Method on buckling strength as part of the Structural Margins-to-Failure program. In addition, a literature review was completed of models and experiments to determine damping and stiffness of reinforced concrete structures.

  19. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  20. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    SciTech Connect

    De Jesus, M.; Trujillo-Zamudio, F. E.

    2010-12-07

    A building project of Radiotherapy and Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  1. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    NASA Astrophysics Data System (ADS)

    De Jesús, M.; Trujillo-Zamudio, F. E.

    2010-12-01

    A building project of Radiotherapy & Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  2. 77 FR 36015 - Atomic Safety and Licensing Board; Entergy Nuclear Operations, Inc. (Indian Point Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... FR 55,834 (Oct. 1, 2007). \\2\\ Establishment of Atomic Safety and Licensing Board, 72 FR 60,394 (Oct... and 3); Notice of Atomic Safety and Licensing Board Reconstitution, 77 FR 22,361 (Apr. 13, 2012). On... Renewal of Facility Operating License Nos. DPR-26 and DPR-64 for an Additional 20-Year Period, 72 FR...

  3. Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Casanova, J.; Wang, Z.-Y.; Plenio, M. B.

    2016-09-01

    Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.

  4. 78 FR 33449 - FirstEnergy Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Opportunity for a Hearing,'' see 78 FR 16,876, 16,883 (Mar. 19, 2013), a hearing request was filed on May 20... in August 2007. See 72 FR 49,139. Issued at Rockville, Maryland this 28th day of May 2013. E. Roy... COMMISSION FirstEnergy Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board...

  5. 77 FR 30029 - Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... COMMISSION Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the Commission dated December 29, 1972, published in the Federal Register, 37 FR 28,710 (1972... accordance with the NRC E-filing rule, which the NRC promulgated in August 2007 (72 FR 49,139). Issued...

  6. 77 FR 20853 - Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... COMMISSION Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the Commission dated December 29, 1972, published in the Federal Register, 37 FR 28,710 (1972...-filing rule, which the NRC promulgated in August 2007 (72 FR 49,139). The Commission has requested...

  7. 76 FR 5354 - Public Availability of Defense Nuclear Facilities Safety Board FY 2010 Service Contract Inventory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... Inventory AGENCY: Defense Nuclear Facilities Safety Board (Board). ACTION: Notice of public availability of FY 2010 Service Contract Inventories. SUMMARY: In accordance with Section 743 of Division C of the... public of the availability of the FY 2010 Service Contract inventory. This inventory provides...

  8. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    SciTech Connect

    Pete Jordan

    2010-09-01

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  9. Safety Aspects of Nuclear Desalination with Innovative Systems; the EURODESAL Project

    SciTech Connect

    Alessandroni, C.; Cinotti, L.; Mini, G.; Nisan, S.

    2002-07-01

    The proposed paper reports the results of a preliminary investigation on safety impact deriving from the coupling of a desalination plant with a 600 MWe Passive Design PWR like the AP600 Nuclear Power Plant. This evaluation was performed in the frame of the EURODESAL Project of the 5. EURATOM Framework Programme. (authors)

  10. 78 FR 47011 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... identification as Draft Regulatory Guide, DG-1208 on August 22, 2012 (77 FR 50722) for a 60-day public comment... COMMISSION Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants..., ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.''...

  11. 76 FR 37798 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On May 20, 2011, the Defense Nuclear Facilities Safety Board reaffirmed their Recommendation...

  12. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    SciTech Connect

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  13. Climate considerations in long-term safety assessments for nuclear waste repositories.

    PubMed

    Näslund, Jens-Ove; Brandefelt, Jenny; Liljedahl, Lillemor Claesson

    2013-05-01

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  14. Interagency Nuclear Safety Review Panel Power System Subpanel review for the Ulysses mission

    SciTech Connect

    McCulloch, W.H. )

    1991-01-01

    As part of the Interagency Nuclear Safety Review Panel's assessment of the nuclear safety of NASA's Ulysses Mission to investigate properties of the sun, the Power System Subpanel has reviewed the safety analyses and risk evaluations done for the General Purpose Heat Source-Radioisotope Thermoelectric Generator which provides on-board electrical power for the spacecraft. This paper summarizes the activities and results of that review. In general, the approach taken in the primary analysis, executed by the General Electric Company under contract to the Department of Energy, and the resulting conclusions were confirmed by the review. However, the Subpanel took some exceptions and modified the calculations accordingly, producing an independent evaluation of potential releases of radioactive fuel in launch and reentry accidents. Some of the more important of these exceptions are described briefly.

  15. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1. [PWR; BWR

    SciTech Connect

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety.

  16. Current global and Korean issues in radiation safety of nuclear medicine procedures.

    PubMed

    Song, H C

    2016-06-01

    In recent years, the management of patient doses in medical imaging has evolved as concern about radiation exposure has increased. Efforts and techniques to reduce radiation doses are focussed not only on the basis of patient safety, but also on the fundamentals of justification and optimisation in cooperation with international organisations such as the International Commission on Radiological Protection, the International Atomic Energy Agency, and the World Health Organization. The Image Gently campaign in children and Image Wisely campaign in adults to lower radiation doses have been initiated in the USA. The European Association of Nuclear Medicine paediatric dosage card, North American consensus guidelines, and Nuclear Medicine Global Initiative have recommended the activities of radiopharmaceuticals that should be administered in children. Diagnostic reference levels (DRLs), developed predominantly in Europe, may be an important tool to manage patient doses. In Korea, overexposure to radiation, even from the use of medical imaging, has become a public issue, particularly since the accident at the Fukushima nuclear power plant. As a result, the Korean Nuclear Safety and Security Commission revised the technical standards for radiation safety management in medical fields. In parallel, DRLs for nuclear medicine procedures have been collected on a nationwide scale. Notice of total effective dose from positron emission tomography-computed tomography for cancer screening has been mandatory since mid-November 2014. PMID:26960820

  17. Current global and Korean issues in radiation safety of nuclear medicine procedures.

    PubMed

    Song, H C

    2016-06-01

    In recent years, the management of patient doses in medical imaging has evolved as concern about radiation exposure has increased. Efforts and techniques to reduce radiation doses are focussed not only on the basis of patient safety, but also on the fundamentals of justification and optimisation in cooperation with international organisations such as the International Commission on Radiological Protection, the International Atomic Energy Agency, and the World Health Organization. The Image Gently campaign in children and Image Wisely campaign in adults to lower radiation doses have been initiated in the USA. The European Association of Nuclear Medicine paediatric dosage card, North American consensus guidelines, and Nuclear Medicine Global Initiative have recommended the activities of radiopharmaceuticals that should be administered in children. Diagnostic reference levels (DRLs), developed predominantly in Europe, may be an important tool to manage patient doses. In Korea, overexposure to radiation, even from the use of medical imaging, has become a public issue, particularly since the accident at the Fukushima nuclear power plant. As a result, the Korean Nuclear Safety and Security Commission revised the technical standards for radiation safety management in medical fields. In parallel, DRLs for nuclear medicine procedures have been collected on a nationwide scale. Notice of total effective dose from positron emission tomography-computed tomography for cancer screening has been mandatory since mid-November 2014.

  18. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    SciTech Connect

    Rathbun, R.

    1994-04-26

    Review of NMP-NCS-94-0087, ``Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,`` was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion.

  19. Nuclear Science References (NSR) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Nuclear Science References (NSR) database is an indexed bibiliography of primary and secondary references in nuclear physics research. About 80 journals are regularly scanned for articles. Recent references are added on a weekly basis. Approximately 4300 entries are added to the database annually. In general, articles are included in NSR if they include measured, calculated, or deduced quantitative nuclear structure or reaction data. Papers that apply previously known data are generally not included. Examples of this include neutron activation analysis using known cross sections or radiological dating using known half-lives. The database can be searched like a normal bibliographic database but can also be searched by the data that distinguishes it, data such as the nuclide, target/parent/daughter, reaction, incident particles, and outgoing particles. (Specialized Interface) [Taken from the NSR Help pages at http://www.nndc.bnl.gov/nsr/nsr_help.jsp

  20. Investigation of criticality safety control infraction data at a nuclear facility

    DOE PAGES

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  1. Investigation of criticality safety control infraction data at a nuclear facility

    SciTech Connect

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing and Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.

  2. Radiation Safety System of the B-Factory at the Stanford Linear Accelerator Center

    SciTech Connect

    Liu, James C.

    1998-10-12

    The radiation safety system (RSS) of the B-Factory accelerator facility at the Stanford Linear Accelerator Center (SLAC) is described. The RSS, which is designed to protect people from prompt radiation exposure due to beam operation, consists of the access control system (ACS) and the radiation containment system (RCS). The ACS prevents people from being exposed to the very high radiation levels inside a beamline shielding housing. The ACS consists of barriers, a standard entry module at every entrance, and beam stoppers. The RCS prevents people from being exposed to the radiation outside a shielding housing, due to either normal or abnormal operation. The RCS consists of power limiting devices, shielding, dump/collimator, and an active radiation monitor system. The inter-related system elements for the ACS and RCS, as well as the associated interlock network, are described. The policies and practices in setting up the RSS are also compared with the regulatory requirements.

  3. Patient-centered transfer process for patients admitted through the ED boosts satisfaction, improves safety.

    PubMed

    2013-02-01

    To improve safety and patient flow, administrators at Hallmark Health System, based in Melrose, MA, implemented a new patient-centered transfer process for patients admitted through the ED at the health system's two hospitals. Under the new approach, inpatient nurses come down to the ED to take reports on new patients in a process that includes the ED care team as well as family members. The inpatient nurses then accompany the patients up to their designated floors. Since the new patient-transfer process was implemented in June 2012, patient satisfaction has increased by at least one point on patient satisfaction surveys. Administrators anticipate that medical errors or omissions related to the handoff process will show a drop of at least 50%, when data is tabulated.

  4. Environment, safety and health compliance assessment, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect

    Not Available

    1989-09-01

    The Secretary of Energy established independent Tiger Teams to conduct environment, safety, and health (ES H) compliance assessments at US Department of Energy (DOE) facilities. This report presents the assessment of the Feed Materials Production Center (FMPC) at Fernald, Ohio. The purpose of the assessment at FMPC is to provide the Secretary with information regarding current ES H compliance status, specific ES H noncompliance items, evaluation of the adequacy of the ES H organizations and resources (DOE and contractor), and root causes for noncompliance items. Areas reviewed included performance under Federal, state, and local agreements and permits; compliance with Federal, state and DOE orders and requirements; adequacy of operations and other site activities, such as training, procedures, document control, quality assurance, and emergency preparedness; and management and staff, including resources, planning, and interactions with outside agencies.

  5. Environment, Safety and Health Progress Assessment of the Morgantown Energy Technology Center (METC)

    SciTech Connect

    Not Available

    1993-08-01

    This report documents the result of the US Department of Energy`s (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. METC is currently a research and development facility, managed by DOE`s Office of Fossil Energy. Its goal is to focus energy research and development to develop engineered fossil fuel systems, that are economically viable and environmentally sound, for commercial application. There is clear evidence that, since the 1991 Tiger Team Assessment, substantial progress has been made by both FE and METC in most aspects of their ES&H program. The array of new and restructured organizations, systems, and programs at FE and METC; increased assignments of staff to support these initiatives; extensive training activities; and the maturing planning processes, all reflect a discernable, continuous improvement in the quality of the ES&H performance.

  6. Energy Frontier Research Center Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd Allen

    2014-04-01

    Scientific Successes • The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based anharmonic smoothing technique has enabled quantitative benchmarking of ab initio PDOS simulations. • Direct comparison between anharmonicity-smoothed ab initio PDOS simulations for UO2 and experimental measurements has demonstrated the need for improved understanding of UO2 at the level of phonon dispersion, and, further, that advanced lattice dynamics simulations including finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. • PDOS measurements performed on polycrystalline samples have identified the phonon branches and energy ranges most highly impacted by fission-product and hyper-stoichiometry lattice defects in UO2. These measurements have revealed the broad-spectrum impact of oxygen hyper-stoichiometry on thermal transport. The reduction in thermal conductivity caused by hyper-stoichiometry is many times stronger than that caused by substitutional fission-product impurities. • Laser-based thermo-reflectance measurements on UO2 samples irradiated with light (i.e. He) ions to introduce point defects have been coupled with MD simulations and lattice parameter measurements to determine the role of uranium and oxygen point defects in reducing thermal conductivity. • A rigorous perturbation theory treatment of phonon lifetimes in UO2 based on a 3D discretization of the Brillouin zone coupled with experimentally measured phonon dispersion has been implemented that produces improved predictions of the temperature dependent thermal conductivity. • Atom probe investigations of the influence of grain boundary structure on the segregation behavior of Kr in UO2 have shown that smaller amounts of Kr are present at low angle grain boundaries than at large angle grain

  7. Pilot program to identify valve failures which impact the safety and operation of light water nuclear power plants

    SciTech Connect

    Tsacoyeanes, J. C.; Raju, P. P.

    1980-04-01

    The pilot program described has been initiated under the Department of Energy Light Water Reactor Safety Research and Development Program and has the following specific objectives: to identify the principal types and causes of failures in valves, valve operators and their controls and associated hardware, which lead to, or could lead to plant trip; and to suggest possible remedies for the prevention of these failures and recommend future research and development programs which could lead to minimizing these valve failures or mitigating their effect on plant operation. The data surveyed cover incidents reported over the six-year period, beginning 1973 through the end of 1978. Three sources of information on valve failures have been consulted: failure data centers, participating organizations in the nuclear power industry, and technical documents.

  8. Information Strategy of Nuclear Training Center Ljubljana in the Area of Radioactive Waste Management

    SciTech Connect

    Jeneie, I.

    2008-07-01

    Slovenia has plans to build a repository for low- and medium-radioactive waste by 2013, the location in the very neighborhood of nuclear power plant is almost chosen, but the final approval hasn't been granted yet. The main obstacle is public opinion. Public information activities are therefore vitally important. One of the most important players in this area in Slovenia is Nuclear Training Center in Ljubljana. Though its main task is training of nuclear professionals, it has a significant role in dissemination of knowledge about radioactivity and nuclear technology also among general public. Public information is focused on youngsters. Almost one half of every generation of schoolchildren in Slovenia visits the Information center yearly and in May 2007, we have celebrated the 100,000. visitor since its opening. Live lectures, exhibition, publications and laboratory demonstrations are offered. To measure the opinion of youngsters about nuclear power and get a feed-back for our activities about 1000 youngsters are polled every year since 1993 using the same basic set of questions. The paper describes the information strategy, types of lectures and information materials, permanent exhibition with the most important exhibits. Furthermore, the results of yearly polls of our visitors and comparison with relevant Euro-barometer polls are presented. (authors)

  9. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    SciTech Connect

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  10. Commercial grade item (CGI) dedication of MDR relays for nuclear safety related applications

    NASA Astrophysics Data System (ADS)

    Das, Ranjit K.; Julka, Anil; Modi, Govind

    1994-08-01

    MDR relays manufactured by Potter & Brumfield (P&B) have been used in various safety related applications in commercial nuclear power plants. These include emergency safety features (ESF) actuation systems, emergency core cooling systems (ECCS) actuation, and reactor protection systems. The MDR relays manufactured prior to May 1990 showed signs of generic failure due to corrosion and outgassing of coil varnish. P&B has made design changes to correct these problems in relays manufactured after May 1990. However, P&B does not manufacture the relays under any 10CFR50 Appendix B quality assurance (QA) program. They manufacture the relays under their commercial QA program and supply these as commercial grade items. This necessitates CGI Dedication of these relays for use in nuclear-safety-related applications. This paper presents a CGI dedication program that has been used to dedicate the MDR relays manufactured after been used to dedicate the MDR relays manufactured after May 1990. The program is in compliance with current Nuclear Regulatory Commission (NRC) and Electric Power Research Institute (EPRI) guidelines and applicable industry standards; it specifies the critical characteristics of the relays, provides the tests and analysis required to verify the critical characteristics, the acceptance criteria for the test results, performs source verification to quality P&B for its control of the critical characteristics, and provides documentation. The program provides reasonable assurance that the new MDR relays will perform their intended safety functions.

  11. Independent Safety Assessment of the TOPAZ-II space nuclear reactor power system (Revised)

    SciTech Connect

    1993-09-01

    The Independent Safety Assessment described in this study report was performed to assess the safety of the design and launch plans anticipated by the U.S. Department of Defense (DOD) in 1993 for a Russian-built, U.S.-modified, TOPAZ-II space nuclear reactor power system. Its conclusions, and the bases for them, were intended to provide guidance for the U.S. Department of Energy (DOE) management in the event that the DOD requested authorization under section 91b. of the Atomic Energy Act of 1954, as amended, for possession and use (including ground testing and launch) of a nuclear-fueled, modified TOPAZ-II. The scientists and engineers who were engaged to perform this assessment are nationally-known nuclear safety experts in various disciplines. They met with participants in the TOPAZ-II program during the spring and summer of 1993 and produced a report based on their analysis of the proposed TOPAZ-II mission. Their conclusions were confined to the potential impact on public safety and did not include budgetary, reliability, or risk-benefit analyses.

  12. Monitoring human factor risk characteristics at nuclear legacy sites in northwest Russia in support of radiation safety regulation.

    PubMed

    Scheblanov, V Y; Sneve, M K; Bobrov, A F

    2012-12-01

    This paper describes research aimed at improving regulatory supervision of radiation safety during work associated with the management of spent nuclear fuel and radioactive waste at legacy sites in northwest Russia through timely identification of employees presenting unfavourable human factor risk characteristics. The legacy sites of interest include sites of temporary storage now operated by SevRAO on behalf of Rosatom. The sites were previously operational bases for servicing nuclear powered submarines and are now subject to major remediation activities. These activities include hazardous operations for recovery of spent nuclear fuel and radioactive waste from sub-optimal storage conditions. The paper describes the results of analysis of methods, procedures, techniques and informational issues leading to the development of an expert-diagnostic information system for monitoring of workers involved in carrying out the most hazardous operations. The system serves as a tool for human factor and professional reliability risk monitoring and has been tested in practical working environments and implemented as part of regulatory supervision. The work has been carried out by the Burnasyan Federal Medical Biophysical Center, within the framework of the regulatory cooperation programme between the Federal Medical-Biological Agency of Russia and the Norwegian Radiation Protection Authority. PMID:23186692

  13. Monitoring human factor risk characteristics at nuclear legacy sites in northwest Russia in support of radiation safety regulation.

    PubMed

    Scheblanov, V Y; Sneve, M K; Bobrov, A F

    2012-12-01

    This paper describes research aimed at improving regulatory supervision of radiation safety during work associated with the management of spent nuclear fuel and radioactive waste at legacy sites in northwest Russia through timely identification of employees presenting unfavourable human factor risk characteristics. The legacy sites of interest include sites of temporary storage now operated by SevRAO on behalf of Rosatom. The sites were previously operational bases for servicing nuclear powered submarines and are now subject to major remediation activities. These activities include hazardous operations for recovery of spent nuclear fuel and radioactive waste from sub-optimal storage conditions. The paper describes the results of analysis of methods, procedures, techniques and informational issues leading to the development of an expert-diagnostic information system for monitoring of workers involved in carrying out the most hazardous operations. The system serves as a tool for human factor and professional reliability risk monitoring and has been tested in practical working environments and implemented as part of regulatory supervision. The work has been carried out by the Burnasyan Federal Medical Biophysical Center, within the framework of the regulatory cooperation programme between the Federal Medical-Biological Agency of Russia and the Norwegian Radiation Protection Authority.

  14. Improving the Safety of Oral Chemotherapy at an Academic Medical Center

    PubMed Central

    Casella, Erica; Capozzi, Donna; McGettigan, Suzanne; Gangadhar, Tara C.; Schuchter, Lynn; Myers, Jennifer S.

    2016-01-01

    Purpose: Over the last decade, the use of oral chemotherapy (OC) for the treatment of cancer has dramatically increased. Despite their route of administration, OCs pose many of the same risks as intravenous agents. In this quality improvement project, we sought to examine our current process for the prescription of OC at the Abramson Cancer Center of the University of Pennsylvania and to improve on its safety. Methods: A multidisciplinary team that included oncologists, advanced-practice providers, and pharmacists was formed to analyze the current state of our OC practice. Using Lean Six Sigma quality improvement tools, we identified a lack of pharmacist review of the OC prescription as an area for improvement. To address these deficiencies, we used our electronic medical system to route OC orders placed by treating providers to an oncology-specific outpatient pharmacist at the Abramson Cancer Center for review. Results: Over 7 months, 63 orders for OC were placed for 45 individual patients. Of the 63 orders, all were reviewed by pharmacists, and, as a result, 22 interventions were made (35%). Types of interventions included dosage adjustment (one of 22), identification of an interacting drug (nine of 22), and recommendations for additional drug monitoring (12 of 22). Conclusion: OC poses many of the same risks as intravenous chemotherapy and should be prescribed and reviewed with the same oversight. At our institution, involvement of an oncology-trained pharmacist in the review of OC led to meaningful interventions in one third of the orders. PMID:26733627

  15. Experimental Unevaluated Nuclear Data List (XUNDL) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    XUNDL was established in 1998. While it contains compiled nuclear structure data in the "ENSDF" format, the difference is that the ENSDF collection holds evaluated data, while XUNDL holds experimental data that have not yet been evaluated. The manual for one of the evaluated collections defines evaluation as "the process of analyzing experimentally measured cross-section data, combining them with the predictions of nuclear model calculations, and attempting to extract the true value of a cross section." (Document ENDF-102) The XUNDL data are the experimental data before these calculations and comparisons are done. In general, the information in a given XUNDL dataset comes from a single journal article or from a set of closely related articles by one group of authors. The bulk of the compilations are carried out by the Nuclear Data Group at McMaster University. As of February 2008, the XUNDL database contained more than 2500 datasets for 1484 nuclides. The data can be searched through specialized interfaces or browsed. There is also a special list of hypernucleus datasets available. (Specialized Interface)

  16. The Fukushima Dai-ichi Accident and its implications for the safety of nuclear power

    NASA Astrophysics Data System (ADS)

    Barletta, William

    2016-05-01

    Five years ago the dramatic events in Fukushima that followed the massive earthquake and subsequent tsunami that struck Japan on March 11, 2011 sharpened the focus of scientists, engineers and general public on the broad range of technical, environmental and societal issues involved in assuring the safety of the world's nuclear power complex. They also called into question the potential of nuclear power to provide a growing, sustainable resource of CO2-free energy. The issues raised by Fukushima Dai-ichi have provoked urgent concern, not only because of the potential harm that could result from severe accidents or from intentional damage to nuclear reactors or to facilities involved in the nuclear fuel cycle, but also because of the extensive economic impact of those accidents and of the measures taken to avoid them.

  17. ORNL Nuclear Safety Research and Development Program Bimonthly Report for July-August 1968

    SciTech Connect

    Cottrell, W.B.

    2001-08-17

    The accomplishments during the months of July and August in the research and development program under way at ORNL as part of the U.S. Atomic Energy Commission's Nuclear Safety Program are summarized, Included in this report are work on various chemical reactions, as well as the release, characterization, and transport of fission products in containment systems under various accident conditions and on problems associated with the removal of these fission products from gas streams. Although most of this work is in general support of water-cooled power reactor technology, including LOFT and CSE programs, the work reflects the current safety problems, such as measurements of the prompt fuel element failure phenomena and the efficacy of containment spray and pool-suppression systems for fission-product removal. Several projects are also conducted in support of the high-temperature gas-cooled reactor (HTGR). Other major projects include fuel-transport safety investigations, a series of discussion papers on various aspects of water-reactor technology, antiseismic design of nuclear facilities, and studies of primary piping and steel, pressure-vessel technology. Experimental work relative to pressure-vessel technology includes investigations of the attachment of nozzles to shells and the implementation of joint AEX-PVFX programs on heavy-section steel technology and nuclear piping, pumps, and valves. Several of the projects are directly related to another major undertaking; namely, the AEC's standards program, which entails development of engineering safeguards and the establishment of codes and standards for government-owned or -sponsored reactor facilities. Another task, CHORD-S, is concerned with the establishment of computer programs for the evaluation of reactor design data, The recent activities of the NSIC and the Nuclear Safety journal in behalf of the nuclear community are also discussed.

  18. Analytic method for three-center nuclear attraction integrals: a generalization of the Gegenbauer addition theorem

    SciTech Connect

    Weatherford, C.A.

    1988-01-01

    A completely analytic method for evaluating three-center nuclear-attraction integrals for STOS is presented. The method exploits a separation of the STO into an evenly loaded solid harmonic and a OS STO. The harmonics are translated to the molecular center of mass in closed finite terms. The OS STO is translated using the Gegenbauer addition theorem; ls STOS are translated using a single parametric differentiation of the OS formula. Explicit formulas for the integrals are presented for arbitrarily located atoms. A numerical example is given to illustrate the method.

  19. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  20. Vulnerability, safety and response of nuclear power plants to the hydroclimatic hazards

    NASA Astrophysics Data System (ADS)

    János Katona, Tamás; Vilimi, András

    2016-04-01

    The Great Tohoku Earthquake and Tsunami, and the severe accident at Fukushima Dai-ichi nuclear power plant 2011 alerted the nuclear industry to danger of extreme rare natural hazards. The subsequent "stress tests" performed by the nuclear industry in Europe and all over the world identifies the nuclear power plant (NPP) vulnerabilities and define the measures for increasing the plant safety. According to the international practice of nuclear safety regulations, the cumulative core damage frequency for NPPs has to be 10-5/a, and the cumulative frequency of early large release has to be 10-6/a. In case of operating plants these annual probabilities can be little higher, but the licensees are obliged to implement all reasonable practicable measures for increasing the plant safety. For achieving the required level of safety, design basis of NPPs for natural hazards has to be defined at the 10-4/a ⎯10-5/a levels of annual exceedance probability. Tornado hazard is some kind of exception, e.g., the design basis annual probability for tornado in the US is equal to 10-7/a. Design of the NPPs shall provide for an adequate margin to protect items ultimately necessary to prevent large or early radioactive releases in the event of levels of natural hazards exceeding those to be considered for design. The plant safety has to be reviewed for accounting the changes of the environmental conditions and natural hazards in case of necessity, but as minimum every ten years in the frame of periodic safety reviews. Long-term forecast of environmental conditions and hazards has to be accounted for in the design basis of the new plants. Changes in hydroclimatic variables, e.g., storms, tornadoes, river floods, flash floods, extreme temperatures, droughts affect the operability and efficiency as well as the safety the NPPs. Low flow rates and high water temperature in the rivers may force to operate at reduced power level or shutdown the plant (Cernavoda NPP, Romania, August 2009). The

  1. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-site facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.

  2. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  3. Just in Time DSA-The Hanford Nuclear Safety Basis Strategy

    SciTech Connect

    Olinger, S. J.; Buhl, A. R.

    2002-02-26

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

  4. General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980

    SciTech Connect

    Maraman, W.J.

    1980-05-01

    This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

  5. Graphical user interfaces for McCellan Nuclear Radiation Center (MNRC).

    SciTech Connect

    Brown-VanHoozer, S. A.

    1998-08-27

    McClellan's Nuclear Radiation Center (MNRC) control console is in the process of being replaced due to spurious scrams, outdated software, and obsolete parts. The intent of the new control console is to eliminate the existing problems by installing a UNIX-based computer system with industry-standard interface software and incorporating human factors during all stages of the graphical user interface (GUI) development and control console design.

  6. University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor

    SciTech Connect

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01

    The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

  7. Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center

    PubMed Central

    Wang, Ping; Liu, Bao; Yang, Wen

    2015-01-01

    Enhancing the polarization of nuclear spins surrounding the nitrogen-vacancy (NV) center in diamond has recently attracted widespread attention due to its various applications. Here we present an analytical formula that not only provides a clear physical picture for the recently observed polarization reversal of strongly coupled13C nuclei over a narrow range of magnetic field [H. J. Wang et al., Nat. Commun. 4, 1940 (2013)], but also demonstrates the possibility to strongly polarize weakly coupled13C nuclei. This allows sensitive magnetic field control of the 13C nuclear spin polarization for NMR applications and significant suppression of the 13C nuclear spin noise to prolong the NV spin coherence time. PMID:26521962

  8. Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima Nuclear Accident.

    PubMed

    Bolsunovsky, A; Dementyev, D

    2011-11-01

    It was recently reported that radioactive fallout due to the Fukushima Nuclear Accident was detected in environmental samples collected in the USA and Greece, which are very far away from Japan. In April-May 2011, fallout radionuclides ((134)Cs, (137)Cs, (131)I) released in the Fukushima Nuclear Accident were detected in environmental samples at the city of Krasnoyarsk (Russia), situated in the center of Asia. Similar maximum levels of (131)I and (137)Cs/(134)Cs and (131)I/(137)Cs ratios in water samples collected in Russia and Greece suggest the high-velocity movement of the radioactive contamination from the Fukushima Nuclear Accident and the global effects of this accident, similar to those caused by the Chernobyl accident.

  9. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    SciTech Connect

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well.

  10. A Logical Approach to Designing Safety Test Plans for Space Nuclear Systems

    SciTech Connect

    Coleman, James R

    2004-02-04

    This paper presents a logical approach to designing a safety test plan for a space nuclear system. It is pointed out that two important facts need to underlie the development of a test plan: first, that sequential insults and the accumulation of damage are the rule; and second that the response of the nuclear system is stochastic (i.e., for any given set of conditions a probabilistic range of outcomes will occur regardless of the state of our knowledge). Because of these facts a deterministic approach can only be a starting point. The substance of the approach consists of undertaking and documenting three basic efforts: (1) a description of the analysts view of the problem and how it fits into the safety analysis, (2) a formal documentation of the purpose and requirements of the test plan (or test), and (3) an assessment of the use or usefulness of existing test data.

  11. Migration of nuclear criticality safety software from a mainfram to a workstation environment

    SciTech Connect

    Bowie, L.J.; Robinson, R.C.; Cain, V.R. )

    1993-01-01

    The nuclear criticality safety department (NCSD), Oak Ridge Y-12 Plant, has undergone the transition of executing the Martin Marietta Energy Systems Nuclear Criticality Safety Software (NCSS) on IBM mainframes to a Hewlett Packard (HP) 9000/730 workstation (NCSSHP). NCSSHP contains the following configuration-controlled modules and cross-section libraries: BONAMI, CSAS, GEOMCHK, ICE, KENO IV, KENO V.a, MODIFY, NITAWL, SCALE, SUBLIB, XSDRN, UNIXLIB, albedos library, weights library, 16-group HANSEN-ROACH master library, 27-group ENDF/B-IV master library, and standard composition library. This paper discusses the method used to choose the workstation, the hardware setup of the chosen workstation, an overview of Y-12 software quality assurance and configuration control methodology, code validation, difficulties encountered in migrating the codes, and advantages to migrating to a workstation environment.

  12. Migration of nuclear criticality safety software from a mainframe to a workstation environment

    SciTech Connect

    Bowie, L.J.; Robinson, R.C.; Cain, V.R.

    1993-01-01

    The Nuclear Criticality Safety Department (NCSD), Oak Ridge Y-12 Plant has undergone the transition of executing the Martin Marietta Energy Systems Nuclear Criticality Safety Software (NCSS) on IBM mainframes to a Hewlett-Packard (HP) 9000/730 workstation (NCSSHP). NCSSHP contains the following configuration controlled modules and cross-section libraries: BONAMI, CSAS, GEOMCHY, ICE, KENO IV, KENO Va, MODIIFY, NITAWL SCALE, SLTBLIB, XSDRN, UNIXLIB, albedos library, weights library, 16-Group HANSEN-ROACH master library, 27-Group ENDF/B-IV master library, and standard composition library. This paper will discuss the method used to choose the workstation, the hardware setup of the chosen workstation, an overview of Y-12 software quality assurance and configuration control methodology, code validation, difficulties encountered in migrating the codes, and advantages to migrating to a workstation environment.

  13. Evaluation of the culture of safety: survey of clinicians and managers in an academic medical center

    PubMed Central

    Pronovost, P; Weast, B; Holzmueller, C; Rosenstein, B; Kidwell, R; Haller, K; Feroli, E; Sexton, J; Rubin, H

    2003-01-01

    Background: Despite the emphasis on patient safety in health care, few organizations have evaluated the extent to which safety is a strategic priority or their culture supports patient safety. In response to the Institute of Medicine's report and to an organizational commitment to patient safety, we conducted a systematic assessment of safety at the Johns Hopkins Hospital (JHH) and, from this, developed a strategic plan to improve safety. The specific aims of this study were to evaluate the extent to which the culture supports patient safety at JHH and the extent to which safety is a strategic priority. Methods: During July and August 2001 we implemented two surveys in disparate populations to assess patient safety. The Safety Climate Scale (SCS) was administered to a sample of physicians, nurses, pharmacists, and other ICU staff. SCS assesses perceptions of a strong and proactive organizational commitment to patient safety. The second survey instrument, called Strategies for Leadership (SLS), evaluated the extent to which safety was a strategic priority for the organization. This survey was administered to clinical and administrative leaders. Results: We received 395 completed SCS surveys from 82% of the departments and 86% of the nursing units. Staff perceived that supervisors had a greater commitment to safety than senior leaders. Nurses had higher scores than physicians for perceptions of safety. Twenty three completed SLS surveys were received from 77% of the JHH Patient Safety Committee members and 50% of the JHH Management Committee members. Management Committee responses were more positive than Patient Safety Committee, indicating that management perceived safety efforts to be further developed. Strategic planning received the lowest scores from both committees. Conclusions: We believe this is one of the first large scale efforts to measure institutional culture of safety and then design improvements in health care. The survey results suggest that strategic

  14. Estimation of Inherent Safety Margins in Loaded Commercial Spent Nuclear Fuel Casks

    DOE PAGES

    Banerjee, Kaushik; Robb, Kevin R.; Radulescu, Georgeta; Scaglione, John M.

    2016-06-15

    We completed a novel assessment to determine the unquantified and uncredited safety margins (i.e., the difference between the licensing basis and as-loaded calculations) available in as-loaded spent nuclear fuel (SNF) casks. This assessment was performed as part of a broader effort to assess issues and uncertainties related to the continued safety of casks during extended storage and transportability following extended storage periods. Detailed analyses crediting the actual as-loaded cask inventory were performed for each of the casks at three decommissioned pressurized water reactor (PWR) sites to determine their characteristics relative to regulatory safety criteria for criticality, thermal, and shielding performance.more » These detailed analyses were performed in an automated fashion by employing a comprehensive and integrated data and analysis tool—Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). Calculated uncredited criticality margins from 0.07 to almost 0.30 Δkeff were observed; calculated decay heat margins ranged from 4 to almost 22 kW (as of 2014); and significant uncredited transportation dose rate margins were also observed. The results demonstrate that, at least for the casks analyzed here, significant uncredited safety margins are available that could potentially be used to compensate for SNF assembly and canister structural performance related uncertainties associated with long-term storage and subsequent transportation. The results also suggest that these inherent margins associated with how casks are loaded could support future changes in cask licensing to directly or indirectly credit the margins. Work continues to quantify the uncredited safety margins in the SNF casks loaded at other nuclear reactor sites.« less

  15. Safety and efficacy of dimethyl fumarate in multiple sclerosis: a multi-center observational study.

    PubMed

    Miclea, A; Leussink, V I; Hartung, H P; Gold, R; Hoepner, R

    2016-08-01

    Dimethyl fumarate (DMF) was recently approved for treating patients with relapsing-remitting multiple sclerosis (RRMS) based on two phase III clinical trials demonstrating its efficacy. This prompts the need for demonstrating the clinical efficacy and safety of DMF in the real world. By retrospective analysis of medical records at two German MS centers, 644 MS patients treated with DMF were identified. All were included in a safety analysis, and a subgroup of patients with available efficacy data during previous MS therapies (n = 352) was further analyzed for annualized relapse rate and disability progression assessed by the EDSS. In the overall DMF population studied, the annualized relapse rate decreased from 0.52 at baseline to 0.35, and the annualized disability progression from 0.15 to 0.10. Patients who were switched from interferons or glatiramer acetate to DMF revealed a greater benefit, whereas patients pretreated with more potent immunotherapies did not respond that well. Interestingly, patients with a lymphocyte count ≥2000/µl after 0.52 years (mean, SD 0.2) of DMF treatment did not benefit compared to those with lower lymphocyte counts. In total, 22.2 % of the patients withdrew from DMF due to side effects, with gastrointestinal discomfort (12.7 %) and lymphopenia (5.3 %) as most frequently reported reasons. Our study corroborates that DMF is an overall safe and effective drug that reduces relapse rate as well as disability progression in MS patients. Further prospective studies are warranted to establish the additional parameters predicting DMF response, especially in patients switching from other first-line immunotherapies. PMID:27260297

  16. Robotic and nuclear safety for an automated/teleoperated glove box system

    SciTech Connect

    Domning, E.E. ); McMahon, T.T.; Sievers, R.H. )

    1991-09-01

    Lawrence Livermore National Laboratory (LLNL) is developing a fully automated system to handle the processing of special nuclear materials (SNM). This work is performed in response to the new goals at the Department of Energy (DOE) for hazardous waste minimization and radiation dose reduction. This fully automated system, called the automated test bed (ATB), consists of an IBM gantry robot and automated processing equipment sealed within a glove box. While the ATB is a cold system, we are designing it as a prototype of the future hot system. We recognized that identification and application of safety requirements early in the design phase will lead to timely installation and approval of the hot system. This paper identifies these safety issues as well as the general safety requirements necessary for the safe operation of the ATB. 4 refs., 2 figs.

  17. Implementation of external hazards in Probabilistic Safety Assessment for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kumar, Manorma; Klug, Joakim; Raimond, Emmanuel

    2015-04-01

    The paper will focus on the discussion on implementation of external hazards in the probabilistic safety assessment (PSA) methods for the extreme external hazards mainly focused on Seismic, Flooding, Meteorological Hazards (e.g. Storm, Extreme temperature, snow pack), Biological infestation, Lightening hazards, Accidental Aircraft crash and man- made hazards including natural external fire and external explosion. This will include discussion on identification of some good practices on the implementation of external hazards in Level 1 PSA, with a perspective of development of extended PSA and introduction of relevant modelling for external hazards in an existing Level 1 PSA. This paper is associated to the European project ASAMPSAE (www.asampsa.eu) which gathers more than 30 organizations (industry, research, safety control) from Europe, US and Japan and which aims at identifying some meaningful practices to extend the scope and the quality of the existing probabilistic safety analysis developed for nuclear power plants.

  18. 77 FR 44544 - Safety Zone; Gilmerton Bridge Center Span Float-In, Elizabeth River; Norfolk, Portsmouth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... River; Norfolk, Portsmouth, and Chesapeake, Virginia'' in the Federal Register (77 FR 43557). The... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Gilmerton Bridge Center Span Float-In...; withdrawal. SUMMARY: The Coast Guard is withdrawing its proposed rule concerning the Gilmerton Bridge...

  19. 77 FR 35900 - Safety Zone; Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed... regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). 4. Public... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Gilmerton Bridge Center Span...

  20. 77 FR 43557 - Safety Zone; Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice... Act notice regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Gilmerton Bridge Center Span...

  1. Commercialization of Kennedy Space Center Instrumentation Developed to Improve Safety, Reliability, Cost Effectiveness of Space Shuttle Processing, Launch, and Landing

    NASA Technical Reports Server (NTRS)

    Helms, William R.; Starr, Stanley O.

    1997-01-01

    Priorities and achievements of the Kennedy Space Center (KSF) Instrumentation Laboratories in improving operational safety and decreasing processing costs associated with the Shuttle vehicle are addressed. Technologies that have been or are in the process of technology transfer are reviewed, and routes by which commercial concerns can obtain licenses to other KSF Instrumentation Laboratory technologies are discussed.

  2. Barriers and solutions in implementing occupational health and safety services at a large nuclear weapons facility.

    PubMed

    Takaro, T K; Ertell, K; Salazar, M K; Beaudet, N; Stover, B; Hagopian, A; Omenn, G; Barnhart, S

    2000-01-01

    The Hanford Nuclear Reservation is one of the U.S. Department of Energy's largest nuclear weapons sites. The enormous changes experienced by Hanford over the last several years, as its mission has shifted from weapons production to cleanup, has profoundly affected its occupational health and safety services. Innovative programs and new initiatives hold promise for a safer workplace for the thousands of workers at Hanford and other DOE sites. However, occupational health and safety professionals continue to face multiple organizational, economic, and cultural challenges. A major problem identified during this review was the lack of coordination of onsite services. Because each health and safety program operates independently (albeit with the guidance of the Richland field operations office), many services are duplicative and the health and safety system is fragmented. The fragmentation is compounded by the lack of centralized data repositories for demographic and exposure data. Innovative measures such as a questionnaire-driven Employee Job Task Analysis linked to medical examinations has allowed the site to move from the inefficient and potentially dangerous administrative medical monitoring assignment to defensible risk-based assignments and could serve as a framework for improving centralized data management and service delivery. PMID:11186038

  3. Nuclear power and probabilistic safety assessment (PSA): past through future applications

    NASA Astrophysics Data System (ADS)

    Stamatelatos, M. G.; Moieni, P.; Everline, C. J.

    1995-03-01

    Nuclear power reactor safety in the United States is about to enter a new era -- an era of risk- based management and risk-based regulation. First, there was the age of `prescribed safety assessment,' during which a series of design-basis accidents in eight categories of severity, or classes, were postulated and analyzed. Toward the end of that era, it was recognized that `Class 9,' or `beyond design basis,' accidents would need special attention because of the potentially severe health and financial consequences of these accidents. The accident at Three Mile Island showed that sequences of low-consequence, high-frequency events and human errors can be much more risk dominant than the Class 9 accidents. A different form of safety assessment, PSA, emerged and began to gain ground against the deterministic safety establishment. Eventually, this led to the current regulatory requirements for individual plant examinations (IPEs). The IPEs can serve as a basis for risk-based regulation and management, a concept that may ultimately transform the U.S. regulatory process from its traditional deterministic foundations to a process predicated upon PSA. Beyond the possibility of a regulatory environment predicated upon PSA lies the possibility of using PSA as the foundation for managing daily nuclear power plant operations.

  4. Conduct and results of the Interagency Nuclear Safety Review Panel's evaluation of the Ulysses space mission

    SciTech Connect

    Sholtis, J.A. Jr. ); Gray, L.B. ); Huff, D.A. ); Klug, N.P. ); Winchester, R.O. )

    1991-01-01

    The recent 6 October 1990 launch and deployment of the nuclear-powered Ulysses spacecraft from the Space Shuttle {ital Discovery} culminated an extensive safety review and evaluation effort by the Interagency Nuclear Safety Review Panel (INSRP). After more than a year of detailed independent review, study, and analysis, the INSRP prepared a Safety Evaluation Report (SER) on the Ulysses mission, in accordance with Presidential Directive-National Security Council memorandum 25. The SER, which included a review of the Ulysses Final Safety Analysis Report (FSAR) and an independent characterization of the mission risks, was used by the National Aeronautics and Space Administration (NASA) in its decision to request launch approval as well as by the Executive Office of the President in arriving at a launch decision based on risk-benefit considerations. This paper provides an overview of the Ulysses mission and the conduct as well as the results of the INSRP evaluation. While the mission risk determined by the INSRP in the SER was higher than that characterized by the Ulysses project in the FSAR, both reports indicated that the radiological risks were relatively small. In the final analysis, the SER proved to be supportive of a positive launch decision. The INSRP evaluation process has demonstrated its effectiveness numerous times since the 1960s. In every case, it has provided the essential ingredients and perspective to permit an informed launch decision at the highest level of our Government.

  5. Barriers and solutions in implementing occupational health and safety services at a large nuclear weapons facility.

    PubMed

    Takaro, T K; Ertell, K; Salazar, M K; Beaudet, N; Stover, B; Hagopian, A; Omenn, G; Barnhart, S

    2000-01-01

    The Hanford Nuclear Reservation is one of the U.S. Department of Energy's largest nuclear weapons sites. The enormous changes experienced by Hanford over the last several years, as its mission has shifted from weapons production to cleanup, has profoundly affected its occupational health and safety services. Innovative programs and new initiatives hold promise for a safer workplace for the thousands of workers at Hanford and other DOE sites. However, occupational health and safety professionals continue to face multiple organizational, economic, and cultural challenges. A major problem identified during this review was the lack of coordination of onsite services. Because each health and safety program operates independently (albeit with the guidance of the Richland field operations office), many services are duplicative and the health and safety system is fragmented. The fragmentation is compounded by the lack of centralized data repositories for demographic and exposure data. Innovative measures such as a questionnaire-driven Employee Job Task Analysis linked to medical examinations has allowed the site to move from the inefficient and potentially dangerous administrative medical monitoring assignment to defensible risk-based assignments and could serve as a framework for improving centralized data management and service delivery.

  6. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    NASA Astrophysics Data System (ADS)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  7. Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel

    SciTech Connect

    Marshall, William BJ J; Wagner, John C

    2012-01-01

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., <40 years). Extended storage (ES) time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k{sub eff}. Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

  8. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  9. Naval flight deck injuries: a review of Naval Safety Center data, 1977-91.

    PubMed

    Shappell, S A

    1995-06-01

    A comprehensive review of injuries sustained by personnel working on naval flight decks between January 1977 and December 1991 was conducted using database records maintained at the U.S. Naval Safety Center, Norfolk, VA. Data included all fatalities, permanent total disabilities, permanent partial disabilities, and major injuries resulting in 5 or more lost work days. Injuries were coded using ICD-9-CM codes for analysis. A total of 918 flight deck personnel were reported injured during this 15-yr period, including 43 fatalities, 5 permanent total disabilities, 42 permanent partial disabilities, and 828 major injuries. Of the non-fatalities, a plethora of fractures, traumatic amputations, major lacerations, dislocations, contusions, concussions, burns, crushing injuries, sprains, and strains were reported. Nearly all naval platforms with a flight deck reported an injury. While an average of 51 injuries per 100,000 aircraft recoveries were reported annually on aircraft carriers from 1977-86, a marked reduction to a rate of roughly 30 injuries was observed annually from 1987-90. What makes injuries sustained on the flight deck particularly disconcerting is that over 90% can be attributed to human causal factors. PMID:7646412

  10. Development of a framework of human-centered automation for the nuclear industry

    SciTech Connect

    Nelson, W.R.; Haney, L.N.

    1993-01-01

    Introduction of automated systems into control rooms for advanced reactor designs is often justified on the basis of increased efficiency and reliability, without a detailed assessment of how the new technologies will influence the role of the operator. Such a technology-centered'' approach carries with it the risk that entirely new mechanisms for human error will be introduced, resulting in some unpleasant surprises when the plant goes into operation. The aviation industry has experienced some of these surprises since the introduction of automated systems into the cockpits of advanced technology aircraft. Pilot errors have actually been induced by automated systems, especially when the pilot doesn't fully understand what the automated systems are doing during all modes of operation. In order to structure the research program for investigating these problems, the National Aeronautics and Space Administration (NASA) has developed a framework for human-centered automation. This framework is described in the NASA document Human-Centered Aircraft Automation Philosophy by Charles Billings. It is the thesis of this paper that a corresponding framework of human-centered automation should be developed for the nuclear industry. Such a framework would serve to guide the design and regulation of automated systems for advanced reactor designs, and would help prevent some of the problems that have arisen in other applications that have followed a technology-centered'' approach.

  11. Development of a framework of human-centered automation for the nuclear industry

    SciTech Connect

    Nelson, W.R.; Haney, L.N.

    1993-04-01

    Introduction of automated systems into control rooms for advanced reactor designs is often justified on the basis of increased efficiency and reliability, without a detailed assessment of how the new technologies will influence the role of the operator. Such a ``technology-centered`` approach carries with it the risk that entirely new mechanisms for human error will be introduced, resulting in some unpleasant surprises when the plant goes into operation. The aviation industry has experienced some of these surprises since the introduction of automated systems into the cockpits of advanced technology aircraft. Pilot errors have actually been induced by automated systems, especially when the pilot doesn`t fully understand what the automated systems are doing during all modes of operation. In order to structure the research program for investigating these problems, the National Aeronautics and Space Administration (NASA) has developed a framework for human-centered automation. This framework is described in the NASA document Human-Centered Aircraft Automation Philosophy by Charles Billings. It is the thesis of this paper that a corresponding framework of human-centered automation should be developed for the nuclear industry. Such a framework would serve to guide the design and regulation of automated systems for advanced reactor designs, and would help prevent some of the problems that have arisen in other applications that have followed a ``technology-centered`` approach.

  12. An Evaluation of North Korea’s Nuclear Test by Belbasi Nuclear Tests Monitoring Center-KOERI

    NASA Astrophysics Data System (ADS)

    Necmioglu, O.; Meral Ozel, N.; Semin, K.

    2009-12-01

    Bogazici University and Kandilli Observatory and Earthquake Research Institute (KOERI) is acting as the Turkish National Data Center (NDC) and responsible for the operation of the International Monitoring System (IMS) Primary Seismic Station (PS-43) under Belbasi Nuclear Tests Monitoring Center for the verification of compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) since February 2000. The NDC is responsible for operating two arrays which are part of the IMS, as well as for transmitting data from these stations to the International Data Centre (IDC) in Vienna. The Belbasi array was established in 1951, as a four-element (Benioff 1051) seismic array as part of the United States Atomic Energy Detection System (USAEDS). Turkish General Staff (TGS) and U.S. Air Force Technical Application Center (AFTAC) under the Defense and Economic Cooperation Agreement (DECA) jointly operated this short period array. The station was upgraded and several seismometers were added to array during 1951 and 1994 and the station code was changed from BSRS (Belbasi Seismic Research Station) to BRTR-PS43 later on. PS-43 is composed of two sub-arrays (Ankara and Keskin): the medium-period array with a ~40 km radius located in Ankara and the short-period array with a ~3 km radius located in Keskin. Each array has a broadband element located at the middle of the circular geometry. Short period instruments are installed at depth 30 meters from the surface while medium and broadband instruments are installed at depth 60 meters from surface. On 25 May 2009, The Democratic People’s Republic of Korea (DPRK) claimed that it had conducted a nuclear test. Corresponding seismic event was recorded by IMS and IDC released first automatic estimation of time (00:54:43 GMT), location (41.2896°N and 129.0480°E) and the magnitude (4.52 mb) of the event in less than two hours time (USGS: 00:54:43 GMT; 41.306°N, 129.029°E; 4.7 mb) During our preliminary analysis of the 25th May 2009 DPRK

  13. National Resource Center for Health and Safety in Child Care and Early Education

    MedlinePlus

    ... Health and Safety in Child Care and Early Education (NRC) at the University of Colorado College of ... Safety Performance Standards; Guidelines for Early Care and Education Programs, 3 rd Edition ( CFOC3 ) As a collaborator ...

  14. 77 FR 50722 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... COMMISSION Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants... regulatory guide (DG), DG-1208, ``Software Unit Testing for Digital Computer Software used in Safety Systems... revision endorses, with clarifications, the enhanced consensus practices for testing of computer...

  15. 77 FR 50720 - Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... COMMISSION Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants... regulatory guide (DG), DG-1207, ``Test Documentation for Digital Computer Software used in Safety Systems of... software and computer systems as described in the Institute of Electrical and Electronics Engineers...

  16. 75 FR 52046 - Development of U.S. Nuclear Regulatory Commission Safety Culture Policy Statement: Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... COMMISSION Development of U.S. Nuclear Regulatory Commission Safety Culture Policy Statement: Public Meeting... solicit comments on the revision of its draft safety culture policy statement, including the revised... public comments submitted in response to the draft policy statement (74 FR 57525, November 6,...

  17. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... the Federal Register of January 22, 2013, in FR Doc. 2013-01132, 78 FR 4404, please make the following... Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms..., Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in that notice....

  18. Validation of Nuclear Criticality Safety Software and 27 energy group ENDF/B-IV cross sections

    SciTech Connect

    Lee, B.L. Jr.

    1994-08-01

    The validation documented in this report is based on calculations that were executed during June through August 1992, and was completed in June 1993. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Martin Marietta Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM 3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. When the validation results are treated as a single group, there is 95% confidence that 99.9% of future calculations of similar critical systems will have a calculated K{sub eff} > 0.9616. Based on this result the Portsmouth Nuclear Criticality Safety Department has adopted the calculational acceptance criteria that a k{sub eff} + 2{sigma} {le} 0.95 is safety subcritical. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

  19. Technical basis for environmental qualification of computer-based safety systems in nuclear power plants

    SciTech Connect

    Korsah, K.; Wood, R.T.; Tanaka, T.J.; Antonescu, C.E.

    1997-10-01

    This paper summarizes the results of research sponsored by the US Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. This research was conducted by the Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL). ORNL investigated potential failure modes and vulnerabilities of microprocessor-based technologies to environmental stressors, including electromagnetic/radio-frequency interference, temperature, humidity, and smoke exposure. An experimental digital safety channel (EDSC) was constructed for the tests. SNL performed smoke exposure tests on digital components and circuit boards to determine failure mechanisms and the effect of different packaging techniques on smoke susceptibility. These studies are expected to provide recommendations for environmental qualification of digital safety systems by addressing the following: (1) adequacy of the present preferred test methods for qualification of digital I and C systems; (2) preferred standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging in qualification testing for equipment that is to be located in mild environments; and (5) determination of an appropriate approach to address smoke in a qualification program.

  20. Continuously improving safety of nuclear installations: An approach to be reinforced after the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Repussard, Jacques; Schwarz, Michel

    2012-05-01

    After the Three Mile Island accident in 1979 and the Chernobyl accident in 1986, the Fukushima accident shows that the probability of a core meltdown accident in an LWR (Light Water Reactor) has been largely underestimated. The consequences of such an accident are unacceptable: except in the case of TMI2 (Three Mile Island 2) large areas around the damaged plants are contaminated for decades and populations have to be relocated for long periods. This article presents the French approach which consists in improving continuously the safety of the Nuclear Power Plants (NPP) on the basis of lessons learned from operating experience and from the progress in R&D (Research and Development). It details the key role played by IRSN (Institut de radioprotection et de sûreté nucléaire), the French TSO (Technical and scientific Safety Organization), and shows how the Fukushima accident contributes to this approach in improving NPP robustness. It concludes on the necessity to keep on networking TSOs, to share knowledge as well as R&D resources, with the ultimate goal of enhancing and harmonizing nuclear safety worldwide.

  1. WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities

    NASA Technical Reports Server (NTRS)

    Uhrig, Robert E.; Carter, Richard J.

    1993-01-01

    This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.

  2. Technical support for the Ukrainian State Committee for Nuclear Radiation Safety on specific waste issues

    SciTech Connect

    Little, C.A.

    1995-07-01

    The government of Ukraine, a now-independent former member of the Soviet Union, has asked the United States to assist its State Committee for Nuclear and Radiation Safety (SCNRS) in improving its regulatory control in technical fields for which it has responsibility. The US Nuclear Regulatory Commission (NRC) is providing this assistance in several areas, including management of radioactive waste and spent fuel. Radioactive wastes resulting from nuclear power plant operation, maintenance, and decommissioning must be stored and ultimately disposed of appropriately. In addition, radioactive residue from radioisotopes used in various industrial and medical applications must be managed. The objective of this program is to provide the Ukrainian SCNRS with the information it needs to establish regulatory control over uranium mining and milling activities in the Zheltye Vody (Yellow Waters) area and radioactive waste disposal in the Pripyat (Chernobyl) area among others. The author of this report, head of the Environmental Technology Section, Health Sciences Research Division of Oak Ridge National Laboratory, accompanied NRC staff to Ukraine to meet with SCNRS staff and visit sites in question. The report highlights problems at the sites visited and recommends license conditions that SCNRS can require to enhance safety of handling mining and milling wastes. The author`s responsibility was specifically for the visit to Zheltye Vody and the mining and milling waste sites associated with that facility. An itinerary for the Zheltye Vody portion of the trip is included as Appendix A.

  3. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  4. Global Survey of the Concepts and Understanding of the Interfaces Between Nuclear Safety, Security, and Safeguards

    SciTech Connect

    Kovacic, Don N.; Stewart, Scott; Erickson, Alexa R.; Ford, Kerrie D.; Mladineo, Stephen V.

    2015-07-15

    There is increasing global discourse on how the elements of nuclear safety, security, and safeguards can be most effectively implemented in nuclear power programs. While each element is separate and unique, they must nevertheless all be addressed in a country’s laws and implemented via regulations and in facility operations. This topic is of particular interest to countries that are currently developing the infrastructure to support nuclear power programs. These countries want to better understand what is required by these elements and how they can manage the interfaces between them and take advantages of any synergies that may exist. They need practical examples and guidance in this area in order to develop better organizational strategies and technical capacities. This could simplify their legal, regulatory, and management structures and avoid inefficient approaches and costly mistakes that may not be apparent to them at this early stage of development. From the perspective of IAEA International Safeguards, supporting Member States in exploring such interfaces and synergies provides a benefit to them because it acknowledges that domestic safeguards in a country do not exist in a vacuum. Instead, it relies on a strong State System of Accounting and Control that is in turn dependent on a capable and independent regulatory body as well as a competent operator and technical staff. These organizations must account for and control nuclear material, communicate effectively, and manage and transmit complete and correct information to the IAEA in a timely manner. This, while in most cases also being responsible for the safety and security of their facilities. Seeking efficiencies in this process benefits international safeguards and nonproliferation. This paper will present the results of a global survey of current and anticipated approaches and practices by countries and organizations with current or future nuclear power programs on how they are implementing, or

  5. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  6. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  7. Style, content and format guide for writing safety analysis documents: Volume 2, Safety assessment reports for DOE non-nuclear facilities

    SciTech Connect

    Mahn, J.A.; Silver, R.C.; Balas, Y.; Gilmore, W.

    1995-07-01

    The purpose of Volume 2 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Assessment Reports (SAs) for DOE non-nuclear facilities at Sandia National Laboratories. The scope of Volume 2 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SAs for DOE non-nuclear facilities.

  8. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    NASA Technical Reports Server (NTRS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  9. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    NASA Technical Reports Server (NTRS)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  10. Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.

    SciTech Connect

    Darby, John L.

    2011-05-01

    As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

  11. Pacific Northwest Laboratory: Annual report for 1986 to the Assistant Secretary for Environment, Safety and Health: Part 5, Nuclear and operational safety

    SciTech Connect

    Faust, L.G.; Kennedy, W.E.; Steelman, B.L.; Selby, J.M.

    1987-02-01

    Part 5 of the 1986 Annual Report to the Department of Energy's Assistant Secretary for Environment, Safety and Health presents Pacific Northwest Laboratory's progress on work performed for the Office of Nuclear Safety, the Office of Operational Safety, and for the Office of Environmental Analysis. For each project, as identified by the Field Task Proposal/Agreement, articles describe progress made during fiscal year 1986. Authors of these articles represent a broad spectrum of capabilities derived from three of the seven research departments of the Laboratory, reflecting the interdisciplinary nature of the work.

  12. Institutional implications of establishing safety goals for nuclear power plants. [PWR; BWR

    SciTech Connect

    Morris, F.A.; Hooper, R.L.

    1983-07-01

    The purpose of this project is to anticipate and address institutional problems that may arise from the adoption of NRC's proposed Policy Statement on Safety Goals for Nuclear Power Plants. The report emphasizes one particular category of institutional problems: the possible use of safety goals as a basis for legal challenges to NRC actions, and the resolution of such challenges by the courts. Three types of legal issues are identified and analyzed. These are, first, general legal issues such as access to the legal system, burden of proof, and standard of proof. Second is the particular formulation of goals. Involved here are such questions as sustainable rationale, definitions, avoided issues, vagueness of time and space details, and degree of conservatism. Implementation brings up the third set of issues which include interpretation and application, linkage to probabilistic risk assessment, consequences as compared to events, and the use of results.

  13. Safety implications of cultural and cognitive issues in nuclear power plant operation.

    PubMed

    Carvalho, Paulo V R; Dos Santos, Isaac L; Vidal, Mario C R

    2006-03-01

    This research project was designed to investigate cultural and cognitive issues related to the work of nuclear power plant operators during their time on the job in the control room and during simulator training (emergency situations), in order to show how these issues impact on plant safety. The modeling of the operators work deals with the use of operational procedures, the constant changes in the focus of attention and the dynamics of the conflicting activities. The paper focuses on the relationships between the courses of action of the different operators and the constraints imposed by their working environment. It shows that the safety implications of the control room operators' cognitive and cultural issues go far beyond the formal organizational constructs usually implied. Our findings indicate that the competence required for the operators are concerned with developing the possibility of constructing situation awareness, managing conflicts, gaps and time problems created by ongoing task procedures, and dealing with distractions, developing skills for collaborative work.

  14. Real-time software use in nuclear materials handling criticality safety control

    SciTech Connect

    Huang, S.; Lappa, D.; Chiao, T.; Parrish, C.; Carlson, R.; Lewis, J.; Shikany, D.; Woo, H.

    1997-06-01

    This paper addresses the use of real-time software to assist handlers of fissionable nuclear material. We focus specifically on the issue of workstation mass limits, and the need for handlers to be aware of, and check against, those mass limits during material transfers. Here ``mass limits`` generally refer to criticality safety mass limits; however, in some instances, workstation mass limits for some materials may be governed by considerations other than criticality, e.g., fire or release consequence limitation. As a case study, we provide a simplified reliability comparison of the use of a manual two handler system with a software-assisted two handler system. We identify the interface points between software and handlers that are relevant to criticality safety.

  15. Guidelines for nuclear power plant safety issue prioritization information development. Supplement 3

    SciTech Connect

    Andrews, W.B.; Bickford, W.E.; Counts, C.A.; Gallucci, R.H.V.; Heaberlin, S.W.; Powers, T.B.; Weakley, S.A.

    1985-09-01

    This supplemental report is the fourth in a series that document and use methods developed to calculate, for prioritization purposes, the risk, dose and cost impacts of implementing resolutions to reactor safety issues. The initial report in this series was published by Andrews et al. in 1983 as NUREG/CR-2800. This supplement consists of two parts describing separate research efforts: (1) an alternative human factors methodology approach, and (2) a prioritization of the NRC's Human Factors Program Plan. The alternative human factors methodology approach may be used in specific future cases in which the methods identified in the initial report (NUREG/CR-2800) may not adequately assess the proper impact for resolution of new safety issues. The alternative methodology included in this supplement is entitled ''Methodology for Estimating the Public Risk Reduction Affected by Human Factors Improvement.'' The prioritization section of this report is entitled ''Prioritization of the US Nuclear Regulatory Commission Human Factors Program Plan.''

  16. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    SciTech Connect

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  17. Probabilistic cost-benefit analysis of enhanced safety features for strategic nuclear weapons at a representative location

    SciTech Connect

    Stephens, D.R.; Hall, C.H.; Holman, G.S.; Graham, K.F.; Harvey, T.F.; Serduke, F.J.D.

    1993-10-01

    We carried out a demonstration analysis of the value of developing and implementing enhanced safety features for nuclear weapons in the US stockpile. We modified an approach that the Nuclear Regulatory Commission (NRC) developed in response to a congressional directive that NRC assess the ``value-impact`` of regulatory actions for commercial nuclear power plants. Because improving weapon safety shares some basic objectives with NRC regulations, i.e., protecting public health and safety from the effects of accidents involving radioactive materials, we believe the NRC approach to be appropriate for evaluating weapons-safety cost-benefit issues. Impact analysis includes not only direct costs associated with retrofitting the weapon system, but also the expected costs (or economic risks) that are avoided by the action, i.e., the benefits.

  18. Determining a cost/effectiveness/safety tradeoff methodology for strategic nuclear warheads

    SciTech Connect

    Erickson, S.A. Jr.; Hall, C.H.

    1992-04-27

    Department of Energy national laboratories are charged with anticipating with a long leadtime which technologies for nuclear warheads should be developed. The Safe Warhead System Study was constituted to provide Lawrence Livermore National Laboratory management with information and suggestions for making such decisions for enhanced safety warheads. The Minuteman III replacement warheads were analyzed as a test case and that information was used to identify and describe the dominant issues, to develop a methodology and to make initial recommendations. The test case work resulted in several insights into how ongoing design and engineering interacts with the technology ranking and on how to cope with the ubiquitous uncertainties relating to our current ICBM force.

  19. Operation Aqueduct: Onsite radiological safety report for announced nuclear tests, October 1989--September 1990

    SciTech Connect

    Hernandez, G.M.; Jacklin, A.K.

    1992-01-01

    Aqueduct was the name assigned to the series of underground nuclear weapons tests conducted at the Nevada Test Site (NTS) from October 1, 1989, through September 30, 1990. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear event by a telemetry system. Reynolds Electrical & Engineering Co., Inc. (REECO) Health Protection Department (HPD) Radiation Protection Technicians (RPTS) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene (IH) coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  20. Operation Aqueduct: Onsite radiological safety report for announced nuclear tests, October 1989--September 1990

    SciTech Connect

    Hernandez, G.M.; Jacklin, A.K.

    1992-01-01

    Aqueduct was the name assigned to the series of underground nuclear weapons tests conducted at the Nevada Test Site (NTS) from October 1, 1989, through September 30, 1990. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear event by a telemetry system. Reynolds Electrical Engineering Co., Inc. (REECO) Health Protection Department (HPD) Radiation Protection Technicians (RPTS) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene (IH) coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  1. Optical fiber sensors to improve the safety of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ferdinand, P.; Magne, S.; Laffont, G.

    2013-09-01

    Safety must always prevail in Nuclear Power Plants (NPPs), as shown at Fukushima-Daiichi. So, innovations are clearly needed to strengthen instrumentations, which went inoperative during this nuclear accident as a consequence of power supply losses. Possible improvements concern materials and structures, which may be remotely monitored thanks to Optical Fiber Sensors (OFS). We detail topics involving OFS helpful for monitoring, in nominal conditions as well as during a severe accident. They include distributed sensing (Rayleigh, Raman, Brillouin) for both temperature sensing and structure monitoring as well as H2 concentration and ionizing radiation monitoring. For future plants, Fiber Bragg Grating (FBG) sensors are considered up to high temperature for sodium-cooled fast reactor monitoring. These applications can benefit from fiber advantages: sensor multiplexing, multi-km range, no risk-to-people, no common failure mode with other technologies, remote sensing, and the ability to operate in case of power supply lost in the NPP.

  2. Use of artificial intelligence to enhance the safety of nuclear power plants

    SciTech Connect

    Uhrig, R.E.

    1988-01-01

    In the operation of a nuclear power plant, the sheer magnitude of the number of process parameters and systems interactions poses difficulties for the operators, particularly during abnormal or emergency situations. Recovery from an upset situation depends upon the facility with which the available raw data can be converted into and assimilated as meaningful knowledge. Plant personnel are sometimes affected by stress and emotion, which may have varying degrees of influence on their performance. Expert systems can take some of the uncertainty and guesswork out of their decisions by providing expert advice and rapid access to a large information base. Application of artificial intelligence technologies, particularly expert systems, to control room activities in a nuclear power plant has the potential to reduce operator error and improve power plant safety and reliability. 12 refs.

  3. Operation Cornerstone onsite radiological safety report for announced nuclear tests, October 1988--September 1989

    SciTech Connect

    Not Available

    1990-08-01

    Cornerstone was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site (NTS) from October 1, 1988, through September 30, 1989. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Radiation Protection Technicians (RPT) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage were provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  4. Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities

    SciTech Connect

    Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

    2011-03-13

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

  5. Historical perspectives on selected health and safety aspects of nuclear weapons testing.

    PubMed

    Black, S C; Potter, G D

    1986-07-01

    This paper presents a general review of public safety standards as adapted by the nuclear weapons testing program in the United States, and the impact of these changing standards on the nuclear testing program itself. The review notes the importance of improvements in diagnostic instrumentation and methodologies from a relatively simple degree of sophistication to their current high level. Use of the improved methodologies uncovered a serious oversight affecting human exposure, namely, that of not recognizing the relative importance of all potential transport/dosimetric pathways for risk assessment. The testing program, from its inception in the Pacific in 1946 to the present time in Nevada, is viewed from the perspective of providing improved radiation protection to the general public.

  6. Uranium Enrichment Standards of the Y-12 Nuclear Detection and Sensor Testing Center

    SciTech Connect

    Cantrell, J.

    2012-05-23

    The Y-12 National Security Complex has recently fabricated and characterized a new series of metallic uranium standards for use in the Nuclear Detection and Sensor Testing Center (NDSTC). Ten uranium metal disks with enrichments varying from 0.2 to 93.2% {sup 235}U were designed to provide researchers access to a wide variety of measurement scenarios in a single testing venue. Special care was taken in the selection of the enrichments in order to closely bracket the definitions of reactor fuel at 4% {sup 235}U and that of highly enriched uranium (HEU) at 20% {sup 235}U. Each standard is well characterized using analytical chemistry as well as a series of gamma-ray spectrometry measurements. Gamma-ray spectra of these standards are being archived in a reference library for use by customers of the NDSTC. A software database tool has been created that allows for easier access and comparison of various spectra. Information provided through the database includes: raw count data (including background spectra), regions of interest (ROIs), and full width half maximum calculations. Input is being sought from the user community on future needs including enhancements to the spectral database and additional Uranium standards, shielding configurations and detector types. A related presentation are planned for the INMM 53rd Annual Meeting (Hull, et al.), which describe new uranium chemical compound standards and testing opportunities at Y-12 Nuclear Detection and Sensor Testing Center (NDSTC).

  7. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  8. 78 FR 6820 - Patient Safety Organizations: Voluntary Relinquishment From Ryder Trauma Center

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... Relinquishment From Ryder Trauma Center AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION... accepted a notification of voluntary relinquishment from Ryder Trauma Center of its status as a PSO, and... PSOs. AHRQ has accepted a notification from Ryder Trauma Center, PSO number P0019, which is a...

  9. Safety of interim storage solutions of used nuclear fuel during extended term

    SciTech Connect

    Shelton, C.; Bader, S.; Issard, H.; Arslan, M.

    2013-07-01

    In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

  10. Integration of the advanced transparency framework to advanced nuclear systems : enhancing Safety, Operations, Security and Safeguards (SOSS).

    SciTech Connect

    Mendez, Carmen Margarita; Rochau, Gary Eugene; Cleary, Virginia D.

    2008-08-01

    The advent of the nuclear renaissance gives rise to a concern for the effective design of nuclear fuel cycle systems that are safe, secure, nonproliferating and cost-effective. We propose to integrate the monitoring of the four major factors of nuclear facilities by focusing on the interactions between Safeguards, Operations, Security, and Safety (SOSS). We proposed to develop a framework that monitors process information continuously and can demonstrate the ability to enhance safety, operations, security, and safeguards by measuring and reducing relevant SOSS risks, thus ensuring the safe and legitimate use of the nuclear fuel cycle facility. A real-time comparison between expected and observed operations provides the foundation for the calculation of SOSS risk. The automation of new nuclear facilities requiring minimal manual operation provides an opportunity to utilize the abundance of process information for monitoring SOSS risk. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to enhance the safety, operations, security and safeguards associated with the functioning of the nuclear fuel cycle facility. Sandia National Laboratories (SNL) has developed a risk algorithm for safeguards and is in the process of demonstrating the ability to monitor operational signals in real-time though a cooperative research project with the Japan Atomic Energy Agency (JAEA). The risk algorithms for safety, operations and security are under development. The next stage of this work will be to integrate the four algorithms into a single framework.

  11. A survey of nuclear-related agreements and possibilities for nuclear cooperation in South Asia: Cooperative Monitoring Center Occasional Paper/15

    SciTech Connect

    RAJEN,GAURAV

    2000-04-01

    Several existing nuclear-related agreements already require India and Pakistan, as members, to share information. The agreements are bilateral, regional, and international. Greater nuclear transparency between India and Pakistan could be promoted by first understanding the information flows required by existing agreements. This understanding is an essential step for developing projects that can incrementally advance the sensitivity of the information being shared. This paper provides a survey of existing nuclear-related agreements involving India and Pakistan, and suggests future confidence-building projects using the frameworks provided by these agreements. The Bilateral Agreement on the Prohibition of Attack against Nuclear Reactors and Nuclear Facilities is discussed as a basis for creating further agreements on restricting the use and deployment of nuclear weapons. The author suggests options for enhancing the value of the list of nuclear facilities exchanged annually as a part of this agreement. The International Atomic Energy Agency's regional cooperation agreement among countries in the Asia-Pacific region is an opportunity for greater subregional nuclear cooperation in South Asia. Linking the regional agreement with South Asian environmental cooperation and marine pollution protection efforts could provide a framework for projects involving Indian and Pakistani coastal nuclear facilities. Programs of the Food and Agriculture Organization of the United Nations that use nuclear techniques to increase food and crop production and optimize water management in arid areas also provide similar opportunities for nuclear cooperation. Other frameworks for nuclear cooperation originate from international conventions related to nuclear safety, transportation of nuclear wastes, worker protection against ionizing radiation, and the nondeployment of nuclear weapons in certain areas. The information shared by existing frameworks includes: laws and regulations (including

  12. Nuclear Energy Knowledge and Validation Center (NEKVaC) Needs Workshop Summary Report

    SciTech Connect

    Gougar, Hans

    2015-02-01

    The Department of Energy (DOE) has made significant progress developing simulation tools to predict the behavior of nuclear systems with greater accuracy and of increasing our capability to predict the behavior of these systems outside of the standard range of applications. These analytical tools require a more complex array of validation tests to accurately simulate the physics and multiple length and time scales. Results from modern simulations will allow experiment designers to narrow the range of conditions needed to bound system behavior and to optimize the deployment of instrumentation to limit the breadth and cost of the campaign. Modern validation, verification and uncertainty quantification (VVUQ) techniques enable analysts to extract information from experiments in a systematic manner and provide the users with a quantified uncertainty estimate. Unfortunately, the capability to perform experiments that would enable taking full advantage of the formalisms of these modern codes has progressed relatively little (with some notable exceptions in fuels and thermal-hydraulics); the majority of the experimental data available today is the "historic" data accumulated over the last decades of nuclear systems R&D. A validated code-model is a tool for users. An unvalidated code-model is useful for code developers to gain understanding, publish research results, attract funding, etc. As nuclear analysis codes have become more sophisticated, so have the measurement and validation methods and the challenges that confront them. A successful yet cost-effective validation effort requires expertise possessed only by a few, resources possessed only by the well-capitalized (or a willing collective), and a clear, well-defined objective (validating a code that is developed to satisfy the need(s) of an actual user). To that end, the Idaho National Laboratory established the Nuclear Energy Knowledge and Validation Center to address the challenges of modern code validation and to

  13. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    SciTech Connect

    Badwan, Faris M.; Demuth, Scott F

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  14. Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants

    SciTech Connect

    O, J.M.; Higgins, J.; Stephen Fleger - NRC

    2011-09-19

    The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.

  15. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    SciTech Connect

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex.

  16. Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society

    SciTech Connect

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  17. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Galvez, Cristhian

    2011-12-01

    The Pebble Bed Advanced High Temperature Reactor (PB-AHTR) is a pebble fueled, liquid salt cooled, high temperature nuclear reactor design that can be used for electricity generation or other applications requiring the availability of heat at elevated temperatures. A stage in the design evolution of this plant requires the analysis of the plant during a variety of potential transients to understand the primary and safety cooling system response. This study focuses on the performance of the passive safety cooling system with a dual purpose, to assess the capacity to maintain the core at safe temperatures and to assist the design process of this system to achieve this objective. The analysis requires the use of complex computational tools for simulation and verification using analytical solutions and comparisons with experimental data. This investigation builds upon previous detailed design work for the PB-AHTR components, including the core, reactivity control mechanisms and the intermediate heat exchanger, developed in 2008. In addition the study of this reference plant design employs a wealth of auxiliary information including thermal-hydraulic physical phenomena correlations for multiple geometries and thermophysical properties for the constituents of the plant. Finally, the set of performance requirements and limitations imposed from physical constrains and safety considerations provide with a criteria and metrics for acceptability of the design. The passive safety cooling system concept is turned into a detailed design as a result from this study. A methodology for the design of air-cooled passive safety systems was developed and a transient analysis of the plant, evaluating a scrammed loss of forced cooling event was performed. Furthermore, a design optimization study of the passive safety system and an approach for the validation and verification of the analysis is presented. This study demonstrates that the resulting point design responds properly to the

  18. TWRS safety program plan

    SciTech Connect

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their

  19. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  20. Exploration of High-Dimensional Scalar Function for Nuclear Reactor Safety Analysis and Visualization

    SciTech Connect

    Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Michael Pernice; Robert Nourgaliev

    2013-05-01

    The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA) explicitly accounts for the time element in modeling the probabilistic system evolution and uses numerical simulation tools to account for possible dependencies between failure events. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce which may be difficult to visualize and analyze in order to extract useful information. We present a software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations. We provide a user’s guide to our software tool by highlighting its analysis and visualization capabilities, along with a use case involving dataset from a nuclear reactor safety simulation.

  1. Development of a Method for Quantifying the Reliability of Nuclear Safety-Related Software

    SciTech Connect

    Yi Zhang; Michael W. Golay

    2003-10-01

    The work of our project is intended to help introducing digital technologies into nuclear power into nuclear power plant safety related software applications. In our project we utilize a combination of modern software engineering methods: design process discipline and feedback, formal methods, automated computer aided software engineering tools, automatic code generation, and extensive feasible structure flow path testing to improve software quality. The tactics include ensuring that the software structure is kept simple, permitting routine testing during design development, permitting extensive finished product testing in the input data space of most likely service and using test-based Bayesian updating to estimate the probability that a random software input will encounter an error upon execution. From the results obtained the software reliability can be both improved and its value estimated. Hopefully our success in the project's work can aid the transition of the nuclear enterprise into the modern information world. In our work, we have been using the proprietary sample software, the digital Signal Validation Algorithm (SVA), provided by Westinghouse. Also our work is being done with their collaboration. The SVA software is used for selecting the plant instrumentation signal set which is to be used as the input the digital Plant Protection System (PPS). This is the system that automatically decides whether to trip the reactor. In our work, we are using -001 computer assisted software engineering (CASE) tool of Hamilton Technologies Inc. This tool is capable of stating the syntactic structure of a program reflecting its state requirements, logical functions and data structure.

  2. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997

    SciTech Connect

    1997-09-01

    Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

  3. Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination

    SciTech Connect

    Jacobson, Victor Levon

    2002-08-01

    U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

  4. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  5. The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel

    SciTech Connect

    Tehan, Terry

    2000-09-27

    The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

  6. Aging Management Guideline for commercial nuclear power plants: Motor control centers; Final report

    SciTech Connect

    Toman, G.; Gazdzinski, R.; O`Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  7. Criticality Safety Analysis Of As-loaded Spent Nuclear Fuel Casks

    SciTech Connect

    Banerjee, Kaushik; Scaglione, John M

    2015-01-01

    The final safety analysis report (FSAR) or the safety analysis report (SAR) for a particular spent nuclear fuel (SNF) cask system documents models and calculations used to demonstrate that a system meets the regulatory requirements under all normal, off-normal, and accident conditions of spent fuel storage, and normal and accident conditions of transportation. FSAR/SAR calculations and approved content specifications are intended to be bounding in nature to certify cask systems for a variety of fuel characteristics with simplified SNF loading requirements. Therefore, in general, loaded cask systems possess excess and uncredited criticality margins (i.e., the difference between the licensing basis and the as-loaded calculations). This uncredited margin could be quantified by employing more detailed cask-specific evaluations that credit the actual as-loaded cask inventory, and taking into account full (actinide and fission product) burnup credit. This uncredited criticality margin could be potentially used to offset (1) uncertainties in the safety basis that needs to account for the effects of system aging during extended dry storage prior to transportation, and (2) increases in SNF system reactivity over a repository performance period (e.g., 10,000 years or more) as the system undergoes degradation and internal geometry changes. This paper summarizes an assessment of cask-specific, as-loaded criticality margins for SNF stored at eight reactor sites (215 loaded casks were analyzed) under fully flooded conditions to assess the margins available during transportation after extended storage. It is observed that the calculated keff margin varies from 0.05 to almost 0.3 Δkeff for the eight selected reactor sites, demonstrating that significant uncredited safety margins are present. In addition, this paper evaluates the sufficiency of this excess margin in applications involving direct disposal of currently loaded SNF casks.

  8. Fireworks Information Center

    MedlinePlus

    ... Home / Safety Education / Safety Education Centers En Español Fireworks Information Center This is an information center on ... Video Put Safety First This Fourth of July Fireworks Information What are consumer fireworks and where are ...

  9. Materials Characterization Center. Second workshop on irradiation effects in nuclear waste forms. Summary report

    SciTech Connect

    Weber, W.J.; Turcotte, R.P.

    1982-01-01

    The purpose of this second workshop on irradiations effects was to continue the discussions initiated at the first workshop and to obtain guidance for the Materials Characterization Center in developing test methods. The following major conclusions were reached: Ion or neutron irradiations are not substitutes for the actinide-doping technique, as described by the MCC-6 Method for Preparation and Characterization of Actinide-Doped Waste Forms, in the final evaluation of any waste form with respect to the radiation effects from actinide decay. Ion or neutron irradiations may be useful for screening tests or more fundamental studies. The use of these simulation techniques as screening tests for actinide decay requires that a correlation between ion or neutron irradiations and actinide decay be established. Such a correlation has not yet been established and experimental programs in this area are highly recommended. There is a need for more fundamental studies on dose-rate effects, temperature dependence, and the nature and importance of alpha-particle effects relative to the recoil nucleus in actinide decay. There are insufficient data presently available to evaluate the potential for damage from ionizing radiation in nuclear waste forms. No additional test methods were recommended for using ion or neutron irradiations to simulate actinide decay or for testing ionization damage in nuclear waste forms. It was recognized that additional test methods may be required and developed as more data become available. An American Society for Testing and Materials (ASTM) Task Group on the Simulation of Radiation Effects in Nuclear Waste Forms (E 10.08.03) was organized to act as a continuing vehicle for discussions and development of procedures, particularly with regard to ion irradiations.

  10. Establishment of a Photon Data Section of the BNL National Nuclear Data Center: A preliminary proposal

    SciTech Connect

    Hanson, A.L.; Pearlstein, S.

    1992-05-01

    It is proposed to establish a Photon Data Section (PDS) of the BNL National Nuclear Data Center (NNDC). This would be a total program encompassing both photon-atom and photon-nucleus interactions. By utilizing the existing NNDC data base management expertise and on-line access capabilities, the implementation of photon interaction data activities within the existing NNDC nuclear structure and nuclear-reaction activities can reestablish a viable photon interaction data program at minimum cost. By taking advantage of the on-line capabilities, the x-ray users` community will have access to a dynamic, state-of-the-art data base of interaction information. The proposed information base would include data that presently are scattered throughout the literature usually in tabulated form. It is expected that the data bases would include at least the most precise data available in photoelectric cross sections, atomic form factors and incoherent scattering functions, anomalous scattering factors, oscillator strengths and oscillator densities, fluorescence yields, Auger electron yields, etc. It could also include information not presently available in tabulations or in existing data bases such as EXAFS (extended x-ray absorption fine structure) reference spectra, chemical bonding induced shifts in the photoelectric absorption edge, matrix corrections, x-ray Raman, and x-ray resonant Raman cross sections. The data base will also include the best estimates of the accuracy of the interaction data as it exists in the data base. It is proposed that the PDS would support computer programs written for calculating scattering cross sections for given solid angles, sample geometries, and polarization of incident x-rays, for calculating Compton profiles, and for analyzing data as in EXAFS and x-ray fluorescence.

  11. Establishment of a Photon Data Section of the BNL National Nuclear Data Center: A preliminary proposal

    SciTech Connect

    Hanson, A.L.; Pearlstein, S.

    1992-05-01

    It is proposed to establish a Photon Data Section (PDS) of the BNL National Nuclear Data Center (NNDC). This would be a total program encompassing both photon-atom and photon-nucleus interactions. By utilizing the existing NNDC data base management expertise and on-line access capabilities, the implementation of photon interaction data activities within the existing NNDC nuclear structure and nuclear-reaction activities can reestablish a viable photon interaction data program at minimum cost. By taking advantage of the on-line capabilities, the x-ray users' community will have access to a dynamic, state-of-the-art data base of interaction information. The proposed information base would include data that presently are scattered throughout the literature usually in tabulated form. It is expected that the data bases would include at least the most precise data available in photoelectric cross sections, atomic form factors and incoherent scattering functions, anomalous scattering factors, oscillator strengths and oscillator densities, fluorescence yields, Auger electron yields, etc. It could also include information not presently available in tabulations or in existing data bases such as EXAFS (extended x-ray absorption fine structure) reference spectra, chemical bonding induced shifts in the photoelectric absorption edge, matrix corrections, x-ray Raman, and x-ray resonant Raman cross sections. The data base will also include the best estimates of the accuracy of the interaction data as it exists in the data base. It is proposed that the PDS would support computer programs written for calculating scattering cross sections for given solid angles, sample geometries, and polarization of incident x-rays, for calculating Compton profiles, and for analyzing data as in EXAFS and x-ray fluorescence.

  12. Materials characterization center workshop on the irradiation effects in nuclear waste forms

    SciTech Connect

    Roberts, F.P.; Turcotte, R.P.; Weber, W.J.

    1981-01-01

    The Workshop on Irradiation Effects in Nuclear Waste Forms sponsored by the Materials Characterization Center (MCC) brought together experts in radiation damage in materials and waste-management technology to review the problems associated with irradiation effects on waste-form integrity and to evaluate standard methods for generating data to be included in the Nuclear Waste Materials Handbook. The workshop reached the following conclusions: the concept of Standard Test for the Effects of Alpha-Decay in Nuclear Waste Solids, (MCC-6) for evaluating the effects of alpha decay is valid and useful, and as a result of the workshop, modifications to the proposed procedure will be incorpoated in a revised version of MCC-6; the MCC-6 test is not applicable to the evaluation of radiation damage in spent fuel; plutonium-238 is recommended as the dopant for transuranic and defense high-level waste forms, and when high doses are required, as in the case of commercial high-level waste forms, /sup 244/Cm can be used; among the important property changes caused by irradiation are those that lead to greater leachability, and additionally, radiolysis of the leachant may increase leach rates; research is needed in this area; ionization-induced changes in physical properties can be as important as displacement damage in some materials, and a synergism is also likely to exist from the combined effects of ionization and displacement damage; and the effect of changing the temperature and dose rates on property changes induced by radiation damage needs to be determined.

  13. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending December 31, 1992

    SciTech Connect

    Cash, R.J.; Dukelow, G.T.; Forbes, C.J.

    1993-03-01

    This is the seventh quarterly report on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by heating it to high temperatures [above 285{degrees}C (545{degrees}F)]. In the mid 1950s approximately 140 metric tons of ferrocyanide were added to 24 underground high-level radioactive waste tanks. An implementation plan (Cash 1991) responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990) was issued in March 1991 describing the activities that were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to US Department of Energy by Westinghouse Hanford Company in December 1992. Milestones completed this quarter are described in this report. Contents of this report include: Introduction; Defense Nuclear Facilities Safety Board Implementation Plan Task Activities (Defense Nuclear Facilities Safety Board Recommendation for enhanced temperature measurement, Recommendation for continuous temperature monitoring, Recommendation for cover gas monitoring, Recommendation for ferrocyanide waste characterization, Recommendation for chemical reaction studies, and Recommendation for emergency response planning); Schedules; and References. All actions recommended by the Defense Nuclear Facilities Safety Board for emergency planning by Hanford Site emergency preparedness organizations have been completed.

  14. Contribution to the safety assessment of instrumentation and control software for nuclear power plants: Application to SPIN N4

    SciTech Connect

    Soubies, B.; Henry, J.Y.; Le Meur, M.

    1995-04-01

    1300 MWe pressurised water reactors (PWRs), like the 1400 MWe reactors, operate with microprocessor-based safety systems. This is particularly the case for the Digital Integrated Protection System (SPIN), which trips the reactor in an emergency and sets in action the safeguard functions. The softwares used in these systems must therefore be highly dependable in the execution of their functions. In the case of SPIN, three players are working at different levels to achieve this goal: the protection system manufacturer, Merlin Gerin; the designer of the nuclear steam supply system, Framatome; the operator of the nuclear power plants, Electricite de France (EDF), which is also responsible for the safety of its installations. Regulatory licenses are issued by the French safety authority, the Nuclear Installations Safety Directorate (French abbreviation DSIN), subsequent to a successful examination of the technical provisions adopted by the operator. This examination is carried out by the IPSN and the standing group on nuclear reactors. This communication sets out: the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs (N4 series); the approach adopted by the IPSN to evaluate the safety software of the protection system for the N4 series of reactors.

  15. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  16. "Dot COM", a nuclear transit center for the primary piRNA pathway in Drosophila.

    PubMed

    Dennis, Cynthia; Zanni, Vanessa; Brasset, Emilie; Eymery, Angeline; Zhang, Liang; Mteirek, Rana; Jensen, Silke; Rong, Yikang S; Vaury, Chantal

    2013-01-01

    The piRNA pathway protects genomes by silencing mobile elements. Despite advances in understanding the processing events that generate piRNAs for silencing, little is known about how primary transcripts are transported from their genomic clusters to their processing centers. Using a model of the Drosophila COM/flamenco locus in ovarian somatic cells, we identified a prominent nuclear structure called Dot COM, which is enriched in long transcripts from piRNA clusters but located far from their transcription sites. Remarkably, transcripts from multiple clusters accumulate at Dot COM, which is often juxtaposed with Yb-bodies, the cytoplasmic processing centers for cluster transcripts. Genetic evidence suggests that the accumulation of precursor transcripts at Dot COM represents one of the most upstream events in the piRNA pathway. Our results provide new insights into the initial steps of the piRNA pathway, and open up a new research area important for a complete understanding of this conserved pathway. PMID:24039799

  17. Sensing of single nuclear spins in random thermal motion with proximate nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Bruderer, M.; Fernández-Acebal, P.; Aurich, R.; Plenio, M. B.

    2016-03-01

    Nitrogen-vacancy (NV) centers in diamond have emerged as valuable tools for sensing and polarizing spins. Motivated by potential applications in chemistry, biology, and medicine, we show that NV-based sensors are capable of detecting single spin targets even if they undergo diffusive motion in an ambient thermal environment. Focusing on experimentally relevant diffusion regimes, we derive an effective model for the NV-target interaction, where parameters entering the model are obtained from numerical simulations of the target motion. The practicality of our approach is demonstrated by analyzing two realistic experimental scenarios: (i) time-resolved sensing of a fluorine nuclear spin bound to an N-heterocyclic carbene-ruthenium (NHC-Ru) catalyst that is immobilized on the diamond surface and (ii) detection of an electron spin label by an NV center in a nanodiamond, both attached to a vibrating chemokine receptor in thermal motion. We find in particular that the detachment of a fluorine target from the NHC-Ru carrier molecule can be monitored with a time resolution of a few seconds.

  18. BNL ALARA Center experience with an information exchange system on dose control at nuclear power plants

    SciTech Connect

    Baum, J.W.; Khan, T.A.

    1992-04-01

    The essential elements of an international information exchange system on dose control at nuclear power plants are summarized. Information was collected from literature abstracting services, by attending technical meetings, by circulating data collection forms, and through personal contacts. Data are assembled in various databases and periodically disseminated to several hundred interested participants through a variety of publications and at technical meetings. Immediate on-line access to the data is available to participants with modems, commercially available communications software, and a password that is provided by the Brookhaven National Laboratory (BNL) ALARA Center to authorized users of the system. Since January 1992, rapid access also has been provided to persons with fax machines. Some information is available for ``polling`` the BNL system at any time, and other data can be installed for polling on request. Most information disseminated to data has been through publications; however, new protocols, simplified by the ALARA Center staff, and the convenience of fax machines are likely to make the earlier availability of information through these mechanisms increasingly important.

  19. Safety Analysis Report for Packaging (SARP): Model AL-M1 nuclear packaging (DOE C of C No. USA/9507/BLF)

    SciTech Connect

    Coleman, H.L.; Whitney, M.A.; Williams, M.A.; Alexander, B.M.; Shapiro, A.

    1987-11-24

    This Safety Analysis Report for Packaging (SARP) satisfies the request of the US Department of Energy for a formal safety analysis of the shipping container identified as USA/9507/BLF, also called AL-M1, configuration 5. This report makes available to all potential users the technical information and the limits pertinent to the construction and use of the shipping containers. It includes discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control. A complete physical and technical description of the package is presented. The package consists of an inner container centered within an insulated steel drum. The configuration-5 package contains tritiated water held on sorbent material. There are two other AL-M1 packages, designated configurations 1 and 3. These use the same insulated outer drum, but licensing of these containers will not be addressed in this SARP. Design and development considerations, the tests and evaluations required to prove the ability of the container to withstand normal transportation conditions, and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion) are discussed. Tables, graphs, dimensional sketches, photographs, technical references, loading and shipping procedures, Monsanto Research Corporation-Mound experience in using the containers, and a copy of the DOE/OSD/ALO Certificate of Compliance are included.

  20. Dynamic two-center interference in high-order harmonic generation from molecules with attosecond nuclear motion.

    PubMed

    Baker, S; Robinson, J S; Lein, M; Chirilă, C C; Torres, R; Bandulet, H C; Comtois, D; Kieffer, J C; Villeneuve, D M; Tisch, J W G; Marangos, J P

    2008-08-01

    We report a new dynamic two-center interference effect in high-harmonic generation from H2, in which the attosecond nuclear motion of H2+ initiated at ionization causes interference to be observed at lower harmonic orders than would be the case for static nuclei. To enable this measurement we utilize a recently developed technique for probing the attosecond nuclear dynamics of small molecules. The experimental results are reproduced by a theoretical analysis based upon the strong-field approximation which incorporates the temporally dependent two-center interference term.

  1. Cooperative Monitoring Center Occasional Paper/6: Pakistani Perceptions and Prospects of Reducing the Nuclear Danger in South Asia

    SciTech Connect

    Kamal, N.

    1999-01-01

    The Indian and Pakistani nuclear tests in May 1998 triggered a full-blown nuclear debate. For the first time, hard-liners, moderates, and pacifists engaged in an extensive public discussion that helped to make the people of Pakistan more sensitive to the dangers of nuclear competition. Pakistan's concerns about its conventional military inferiority, both in the present and future, and the belief that nuclear capability would deter India from exerting its superior military strength, constituted the bedrock of its perception on the nuclear issue. Ofilcial Pakistani statements, both immediately after the nuclear tests and later, have advocated restraint on the issue of nuclearization, indicating cognizance of the importance of avoiding a regional nuclear arms competition, both for security and economic reasons. This paper suggests a variety of nonweaponization and nondeployment options that would serve the security interests of India and Pakistan. Besides preventing a hair-trigger situation, these options could reduce the financial and logistical burden of ensuring the safety and security of nuclear weapons as well as lower strategic threat-perceptions.

  2. Characterisation of Liquefaction Effects for Beyond-Design Basis Safety Assessment of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László

    2015-04-01

    -tree procedure. Earlier studies have shown that the potentially liquefiable layer at Paks Nuclear Power Plant is situated in relatively large depth. Therefore the applicability and adequacy of the methods at high overburden pressure is important. In case of existing facilities, the geotechnical data gained before construction aren't sufficient for the comprehensive liquefaction analysis. Performance of new geotechnical survey is limited. Consequently, the availability of the data has to be accounted while selection the analysis methods. Considerations have to be made for dealing with aleatory uncertainty related to the knowledge of the soil conditions. It is shown in the paper, a careful comparison and analysis of the results obtained by different methodologies provides the basis of the selection of practicable methods for the safety analysis of nuclear power plant for beyond design basis liquefaction hazard.

  3. A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

    SciTech Connect

    Mark Schanfein

    2009-07-01

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

  4. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    SciTech Connect

    Weiss, A J

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs.

  5. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    SciTech Connect

    Baum, J W; Boccio, J L; Diamond, D; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Higgins, J C; Weiss, A J

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987.

  6. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, October 1--December 31, 1988

    SciTech Connect

    Weiss, A J; Azarm, A; Baum, J W; Boccio, J L; Carew, J; Diamond, D J; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Haber, S B

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988.

  7. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--March 31, 1989

    SciTech Connect

    Weiss, A.J.

    1989-08-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1988.

  8. Child passenger safety: potential impact of the Washington State booster seat law on childcare centers

    PubMed Central

    Chang, B; Ebel, B; Rivara, F

    2002-01-01

    Objectives: To examine factors associated with compliance and with perceived readiness for the new Washington State booster seat law, and to identify perceived barriers to compliance among licensed childcare centers. Design/methods: Surveys were mailed to a random sample of 550 licensed childcare centers in Washington State, approximately nine months before the law was to go into effect. Results: Only 18% of centers reported being compliant with the law at the time of the survey. Factors associated with current compliance included awareness and knowledge of the law, and being comfortable asking staff and parents to use booster seats. A lack of center-owned booster seats was associated with a lower likelihood of compliance. Only 43% of centers had already started preparing for the law, and only 48% believed they would definitely be ready in time. Conclusion: This study suggests that Washington State childcare centers need support and assistance to increase their knowledge of booster seats and reduce the financial costs of compliance. PMID:12460963

  9. [Implementing new technology in radiation oncology: The French agency for nuclear safety (ASN) report].

    PubMed

    Lartigau, É-F; Lisbona, A; Isambert, A; Cadot, P; Derreumaux, S; Dupuis, O; Gérard, J-P; Ledu, D; Mahé, M-A; Marchesi, V; Mazurier, J; De Oliveira, A; Phare, O; Aubert, B

    2015-10-01

    In August 2013, the French nuclear safety agency (ASN) requested the permanent group of experts in radiation protection in medicine (GPMED) to propose recommendations on the implementation of new technology and techniques in radiation oncology. These recommendations were finalized in February 2015 by the GPMED. In April 2015, the ASN sent a letter to the French ministry of health (DGS/DGOS), and its national health agencies (ANSM, INCa, HAS). In these letters, ASN proposed that, from the 12 recommendations made by the GPMED, an action plan should be established, whose control could be assigned to the French national cancer institute (INCa), as a pilot of the national committee for radiotherapy and that this proposal has to be considered at the next meeting of the national committee of radiotherapy.

  10. Safety of Percutaneous Cryoablation in Patients with Painful Bone and Soft Tissue Tumors: A Single Center Prospective Study (SCIRO-1502).

    PubMed

    Iguchi, Toshihiro; Sakurai, Jun; Hiraki, Takao; Gobara, Hideo; Fujiwara, Hiroyasu; Matsui, Yusuke; Masaoka, Yoshihisa; Kanazawa, Susumu

    2016-08-01

    This single center prospective study is being conducted to evaluate the safety of the cryoablation for patients with pathologically diagnosed painful bone and soft tissue tumors. Enrollment of 10 patients is planned over the 3-year recruitment period. Patients have related local pain after receiving medications or external radiation therapies will be included in this study. Cryoablation will be percutaneously performed under imaging guidance, and a temperature sensor will be used during treatment as necessary. The primary endpoint is prevalence of severe adverse events within 4 weeks after therapy. The secondary endpoint is effectiveness 4 weeks after the procedure. PMID:27549678

  11. Energetic Materials Center Report--Small-Scale Safety and Thermal Testing Evaluation of Butyl Nitrate

    SciTech Connect

    Hsu, Peter C.; Reynolds, John G.

    2013-04-26

    Butyl Nitrate (BN) was examined by Small-Scale Safety and Thermal (SSST) Testing techniques to determine its sensitivity to impact, friction, spark and thermal exposure simulating handling and storage conditions. Under the conditions tested, the BN exhibits thermal sensitivity above 150 °C, and does not exhibit sensitive to impact, friction or spark.

  12. Seismic performance assessment of base-isolated safety-related nuclear structures

    USGS Publications Warehouse

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2010-01-01

    Seismic or base isolation is a proven technology for reducing the effects of earthquake shaking on buildings, bridges and infrastructure. The benefit of base isolation has been presented in terms of reduced accelerations and drifts on superstructure components but never quantified in terms of either a percentage reduction in seismic loss (or percentage increase in safety) or the probability of an unacceptable performance. Herein, we quantify the benefits of base isolation in terms of increased safety (or smaller loss) by comparing the safety of a sample conventional and base-isolated nuclear power plant (NPP) located in the Eastern U.S. Scenario- and time-based assessments are performed using a new methodology. Three base isolation systems are considered, namely, (1) Friction Pendulum??? bearings, (2) lead-rubber bearings and (3) low-damping rubber bearings together with linear viscous dampers. Unacceptable performance is defined by the failure of key secondary systems because these systems represent much of the investment in a new build power plant and ensure the safe operation of the plant. For the scenario-based assessments, the probability of unacceptable performance is computed for an earthquake with a magnitude of 5.3 at a distance 7.5 km from the plant. For the time-based assessments, the annual frequency of unacceptable performance is computed considering all potential earthquakes that may occur. For both assessments, the implementation of base isolation reduces the probability of unacceptable performance by approximately four orders of magnitude for the same NPP superstructure and secondary systems. The increase in NPP construction cost associated with the installation of seismic isolators can be offset by substantially reducing the required seismic strength of secondary components and systems and potentially eliminating the need to seismically qualify many secondary components and systems. ?? 2010 John Wiley & Sons, Ltd.

  13. Safety significance of inadvertent operation of motor operated valves in nuclear power plants

    SciTech Connect

    Ruger, C.J.; Higgins, J.C.; Carbonaro, J.F.; Hall, R.E.

    1994-05-01

    This report addresses concerns about the consequences of valve mispositioning which were brought to the forefront following an event at Davis Besse in 1985 (NRC, 1985a). The concern related to the ability to reposition ``position changeable`` motor operated valves (MOVs) in the event of their inadvertent operation from the control room and was documented in Nuclear Regulatory Commission (NRC) Bulletin 85-03 (NRC, 1985b) and Generic Letter (GL) 89-10 (NRC, 1989). The mispositioned MOVs may not be able to be returned to their required position due to high differential pressure (dP) or high flow conditions across the valves. The inability to reposition such valves may have significant safety consequences as in the Davis Besse event. However, full consideration of such mispositioning in safety analyses and in MOV test programs can be labor intensive and expensive. Industry raised concerns that consideration of position changeable valves under GL 89-10 would not decrease the probability of core damage to an extent which would justify licensee costs. As a response, Brookhaven National Laboratory (BNL) has conducted separate scoping studies for both Boiling Water Reactors (BWRS) and Pressurized Water Reactors (PWRs) using Probabilistic Risk Assessment (PRA) techniques to determine if such valve mispositioning by itself is significant to safety. The approach utilized internal events PRA models to survey the order of magnitude of the risk significance of valve mispositioning by considering the failure of selected position changeable MOVS. The change in core damage frequency (CDF) was determined for each valve considered and the results were presented as a risk increase ratio for each of four assumed MOV failure rates. The risk increase ratios resulting from this failure rate sensitivity study can be used as a basis for a judgement determination of the risk significance of the MOV mispositioning issue for BWRs and PWRS.

  14. Additional Studies of the Criticality Safety of Failed Used Nuclear Fuel

    SciTech Connect

    Marshall, William BJ J; Wagner, John C

    2013-01-01

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for periods potentially greater than 40 years. Extended storage (ES) time and irradiation to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, could result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. Criticality analyses are conducted considering representative UNF designs covering a range of enrichments and burnups in multiple cask systems. Prior work developed a set of failed fuel configuration categories and specific configurations were evaluated to understand trends and quantify the consequences of worst-case potential reconfiguration progressions. These results will be summarized here and indicate that the potential impacts on subcriticality can be rather significant for certain configurations (e.g., >20% keff). It can be concluded that the consequences of credible fuel failure configurations from ES or transportation following ES are manageable (e.g., <5% keff). The current work expands on these efforts and examines some modified scenarios and modified approaches to investigate the effectiveness of some techniques for reducing the calculated increase in keff. The areas included here are more realistic modeling of some assembly types and the effect of reconfiguration of some assemblies in the storage and transportation canister.

  15. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis

    1986-07-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  16. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  17. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis

    1986-01-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  18. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    SciTech Connect

    Maraman, W.J.

    1980-02-01

    Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

  19. Assessment of modular construction for safety-related structures at advanced nuclear power plants

    SciTech Connect

    Braverman, J.; Morante, R.; Hofmayer, C.

    1997-03-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules.

  20. Landscape modeling for dose calculations in the safety assessment of a repository for spent nuclear fuel

    SciTech Connect

    Lindborg, Tobias; Kautsky, Ulrik; Brydsten, Lars

    2007-07-01

    The Swedish Nuclear Fuel and Waste Management Co.,(SKB), pursues site investigations for the final repository for spent nuclear fuel at two sites in the south eastern part of Sweden, the Forsmark- and the Laxemar site. Data from the two site investigations are used to build site descriptive models of the areas. These models describe the bedrock and surface system properties important for designing the repository, the environmental impact assessment, and the long-term safety, i.e. up to 100,000 years, in a safety assessment. In this paper we discuss the methodology, and the interim results for, the landscape model, used in the safety assessment to populate the Forsmark site in the numerical dose models. The landscape model is built upon ecosystem types, e.g. a lake or a mire, (Biosphere Objects) that are connected in the landscape via surface hydrology. Each of the objects have a unique set of properties derived from the site description. The objects are identified by flow transport modeling, giving discharge points at the surface for all possible flow paths from the hypothetical repository in the bedrock. The landscape development is followed through time by using long-term processes e.g. shoreline displacement and sedimentation. The final landscape model consists of a number of maps for each chosen time period and a table of properties that describe the individual objects which constitutes the landscape. The results show a landscape that change over time during 20,000 years. The time period used in the model equals the present interglacial and can be used as an analogue for a future interglacial. Historically, the model area was covered by sea, and then gradually changes into a coastal area and, in the future, into a terrestrial inland landscape. Different ecosystem types are present during the landscape development, e.g. sea, lakes, agricultural areas, forest and wetlands (mire). The biosphere objects may switch from one ecosystem type to another during the

  1. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  2. Peer review of the Barselina Level 1 probabilistic safety assessment of the Ignalina Nuclear Power Plant, Unit 2

    SciTech Connect

    McKay, S.L.; Coles, G.A.

    1995-01-01

    The Barselina Project is a Swedish-funded, cooperative effort among Lithuania, Russia and Sweden to transfer Western probabilistic safety assessment (PSA) methodology to the designers/operators of Ignalina Nuclear Power Plant (INPP). The overall goal is to use the PSA as a tool for assessing plant operational safety. The INPP is a two-unit, Former Soviet Union-designed nuclear facility located in Lithuania. The results of this PSA will ultimately be used to identify plant-specific improvements in system design and the conduct of facility operations, allowing improved operational safety. Pacific Northwest Laboratory (PNL) was asked to perform an independent expert peer review of the Barselina PSA. This report documents the findings of this review. This review, financed with nuclear safety assistance funds through the US Agency for International Development (USAID) and the US Department of Energy (DOE), satisfies Task II of the PNL peer review of the Barselina project. The objective is to provide an independent, in-proce ss examination of the Barselina Level 1 PSA of Ignalina Nuclear Power Plant, Unit 2. The review consisted of an investigation of the project documentation, interviews, and extensive discussions with the PSA staff during critical stages of the project. PNL assessed the readability, completeness, consistency, validity, and applicability of the PSA. The major aspects explored were its purpose, major assumptions, analysis/modeling, results, and interpretation. It was not within the scope of this review to perform plant walkdowns or to review material other than the PSA documentation.

  3. John F. Kennedy Space Center, Safety, Reliability, Maintainability and Quality Assurance, Survey and Audit Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This document is the product of the KSC Survey and Audit Working Group composed of civil service and contractor Safety, Reliability, and Quality Assurance (SR&QA) personnel. The program described herein provides standardized terminology, uniformity of survey and audit operations, and emphasizes process assessments rather than a program based solely on compliance. The program establishes minimum training requirements, adopts an auditor certification methodology, and includes survey and audit metrics for the audited organizations as well as the auditing organization.

  4. Setting quality and safety priorities in a target-rich environment: an academic medical center's challenge.

    PubMed

    Mort, Elizabeth A; Demehin, Akinluwa A; Marple, Keith B; McCullough, Kathryn Y; Meyer, Gregg S

    2013-08-01

    Hospitals are continually challenged to provide safer and higher-quality patient care despite resource constraints. With an ever-increasing range of quality and safety targets at the national, state, and local levels, prioritization is crucial in effective institutional quality goal setting and resource allocation.Organizational goal-setting theory is a performance improvement methodology with strong results across many industries. The authors describe a structured goal-setting process they have established at Massachusetts General Hospital for setting annual institutional quality and safety goals. Begun in 2008, this process has been conducted on an annual basis. Quality and safety data are gathered from many sources, both internal and external to the hospital. These data are collated and classified, and multiple approaches are used to identify the most pressing quality issues facing the institution. The conclusions are subject to stringent internal review, and then the top quality goals of the institution are chosen. Specific tactical initiatives and executive owners are assigned to each goal, and metrics are selected to track performance. A reporting tool based on these tactics and metrics is used to deliver progress updates to senior hospital leadership.The hospital has experienced excellent results and strong organizational buy-in using this effective, low-cost, and replicable goal-setting process. It has led to improvements in structural, process, and outcomes aspects of quality.

  5. Design, operation, and safety of single-room interventional MRI suites: practical experience from two centers.

    PubMed

    White, Mark J; Thornton, John S; Hawkes, David J; Hill, Derek L G; Kitchen, Neil; Mancini, Laura; McEvoy, Andrew W; Razavi, Reza; Wilson, Sally; Yousry, Tarek; Keevil, Stephen F

    2015-01-01

    The design and operation of a facility in which a magnetic resonance imaging (MRI) scanner is incorporated into a room used for surgical or endovascular cardiac interventions presents several challenges. MR safety must be maintained in the presence of a much wider variety of equipment than is found in a diagnostic unit, and of staff unfamiliar with the MRI environment, without compromising the safety and practicality of the interventional procedure. Both the MR-guided cardiac interventional unit at Kings College London and the intraoperative imaging suite at the National Hospital for Neurology and Neurosurgery are single-room interventional facilities incorporating 1.5 T cylindrical-bore MRI scanners. The two units employ similar strategies to maintain MR safety, both in original design and day-to-day operational workflows, and between them over a decade of incident-free practice has been accumulated. This article outlines these strategies, highlighting both similarities and differences between the units, as well as some lessons learned and resulting procedural changes made in both units since installation.

  6. Quality Management Procedures Influence the Food Safety Practices at Childcare Centers

    ERIC Educational Resources Information Center

    Enke, Allison A.; Briley, Margaret E.; Curtis, Suzanne R.; Greninger, Sue A.; Staskel, Deanna M.

    2007-01-01

    Childcare in the United States (US) has become a necessary part of life for most working parents with the increased use of center-based childcare over the past three decades. Approximately 13 million preschoolers attend some form of childcare. Literature indicates the main predictors of quality childcare programs are adequate experience and…

  7. Fire and safety materials utilization at the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Reynolds, J. R.

    1971-01-01

    The special needs of the Kennedy Space Center in the area of protective garments for personnel engaged in hazardous emergency operations are discussed. The materials used in the protective clothing and the specialized applications of various materials are described. It is concluded that Nomex is the best general purpose nonflammable material for protective clothing.

  8. Concentration of Actinides in Plant Mounds at Safety Test Nuclear Sites in Nevada

    SciTech Connect

    David S. Shafer; Jenna Gommes

    2008-09-15

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around large shrubs and are common features in deserts in the southwestern United States. Believed to be an important factor in their formation, the shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, {sup 241}Am, and U in plant mounds at safety test sites. The NAEG studies found concentrations of these contaminants to be greater in shrub mounds than in the surrounding areas of desert pavement. For example, at Project 57 on the NTTR, it was estimated that 15 percent of the radionuclide inventory of the site was associated with shrub mounds, which accounted for 17 percent of the surface area of the site, a ratio of inventory to area of 0.85. At Clean Slate III at the TTR, 29 percent of the inventory was associated with approximately 32 percent of the site covered by shrub mounds, a ratio of 0.91. While the total inventory of radionuclides in intershrub areas was greater, the ratio of radionuclide inventory to area was 0.40 and 0.38, respectively, at the two sites. The comparison between the shrub mounds and adjacent desert pavement areas was made for only the top 5 cm since radionuclides at safety test sites are concentrated in the top 5 cm of intershrub areas. Not accounting for radionuclides associated with the shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. As part of its Environmental Restoration Soils Subproject, the U.S. Department of Energy (DOE), National Nuclear

  9. The effect of leader communication style on safety-conscious work environments at domestic nuclear power plants

    NASA Astrophysics Data System (ADS)

    Goldberg, Edward Michael

    Public risk from unsafe nuclear power plant operations increases when plant workers are reluctant to raise issues and concerns. The effect of leader communication style on the safety-conscious work environment (SCWE) at domestic nuclear power plants was evaluated using a descriptive quantitative research study. A sample of 379 plant employees was surveyed to determine leader communication style elements that foster SCWE. The results reveal that leader communication style significantly affects a safety-conscious work environment. Specific attributes such as wit, articulation, self-disclosure, and social composure, confirmation, and experience, were proven to directly affect worker's likelihood to raise issues and concerns. The direct effect of leader, communication style on safe plant operations and the communication actions leaders can take to improve the safety of those operations is discussed.

  10. Recent Experiences of the NASA Engineering and Safety Center (NESC) GN and C Technical Discipline Team (TDT)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2010-01-01

    The NASA Engineering and Safety Center (NESC), initially formed in 2003, is an independently funded NASA Program whose dedicated team of technical experts provides objective engineering and safety assessments of critical, high risk projects. The GN&C Technical Discipline Team (TDT) is one of fifteen such discipline-focused teams within the NESC organization. The TDT membership is composed of GN&C specialists from across NASA and its partner organizations in other government agencies, industry, national laboratories, and universities. This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe selected recent experiences, over the period 2007 to present, of the GN&C TDT in which they directly performed or supported a wide variety of NESC assessments and consultations.

  11. Donor Safety in Adult-Adult Living Donor Liver Transplantation: A Single-Center Experience of 356 Cases

    PubMed Central

    Meng, Haipeng; Yang, Jiayin; Yan, Lunan

    2016-01-01

    Background As an important means to tackle the worldwide shortage of liver grafts, adult-adult living donor liver transplantation (A-ALDLT) is the most massive operation a healthy person could undergo, so donor safety is of prime importance. However, most previous research focused on recipients, while complications in donors have not been fully described or investigated. Material/Methods To investigate donor safety in terms of postoperative complications, the clinical data of 356 A-ALDLT donors in our center from January 2002 to September 2015 were retrospectively analyzed. These patients were divided into a pre-2008 group (before January 2008) and a post-2008 group (after January 2008). Donor safety was evaluated with regard to the type, frequency, and severity of postoperative complications. Results There were no donor deaths in our center during this period. The overall complication rate was 23.0% (82/356). The proportion of Clavien I, II, III, and IV complications was 51.2% (42/82), 25.6% (21/82), 22.0% (18/82), and 1.2% (1/82), respectively. In all the donors, the incidence of Clavien I, II, III, and IV complications was 11.8% (42/356), 5.9% (21/356), 5.1% (18/356), and 0.3% (1/356), respectively. The overall complication rate in the post-2008 group was significantly lower than that in the pre-2008 group (18.1% (41/227) vs. 32.6% (42/129), P<0.01). Biliary complications were the most common, with an incidence of 8.4% (30/356). Conclusions The risk to A-ALDLT donors is controllable and acceptable with improvement in preoperative assessment and liver surgery. PMID:27178367

  12. Report of a workshop on nuclear forces and nonproliferation Woodrow Wilson international center for scholars, Washington, DC October 28, 2010

    SciTech Connect

    Pilat, Joseph F

    2010-12-08

    A workshop sponsored by the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars was held at the Wilson Center in Washington, DC, on October 28, 2010. The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review and the 2010 NPT Review Conference. The discussions reflected the importance of the NPR for defining the role of US nuclear forces in dealing with 21st century threats and providing guidance for National Nuclear Security Administration (NNSA) and Department of Defense (DoD) programs and, for many but not all participants, highlighted its role in the successful outcome of the NPT RevCon. There was widespread support for the NPR and its role in developing the foundations for a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. However, some participants raised concerns about its implementation and its long-term effectiveness and sustainability.

  13. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    SciTech Connect

    Korsah, K.; Wood, R.T.; Hassan, M.; Tanaka, T.J.

    1998-01-01

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants.

  14. Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

    SciTech Connect

    M. D. Staiger; Michael Swenson; T. R. Thomas

    2004-05-01

    This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

  15. National Nuclear Security Administration Service Center Environmental Programs Long-Term Environmental Stewardship Baseline Handbook

    SciTech Connect

    Griswold, D. D.; Rohde, K.

    2003-02-26

    As environmental restoration (ER) projects move toward completion, the planning, integration, and documentation of long-term environmental stewardship (LTES) activities is increasingly important for ensuring smooth transition to LTES. The Long-Term Environmental Stewardship Baseline Handbook (Handbook) prepared by the National Nuclear Security Administration (NNSA) Service Center Environmental Programs Department (EPD) outlines approaches for integrating site-specific LTES planning and implementation into site ER baseline documentation. Since LTES will vary greatly from site to site, the Handbook also provides for flexibility in addressing LTES in ER Project life-cycle baselines, while clearly identifying Environmental Management (EM) requirements. It provides suggestions for enacting LTES principles and objectives through operational activities described in site-specific LTES plans and life cycle ER Project baseline scope, cost, and schedule documentation and tools for more thorough planning, better quantification, broader understanding of risk and risk management factors, and more comprehensive documentation. LTES planning applied to baselines in a phased approach will facilitate seamlessly integrating LTES into site operational activities, thereby minimizing the use of resources.

  16. Filtered fast neutron irradiation system using Texas A&M University Nuclear Science Center Reactor

    NASA Astrophysics Data System (ADS)

    Jang, S. Y.; Kim, C. H.; Reece, W. D.; Braby, L. A.

    2004-09-01

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). For a realistic modeling of the NSCR, the irradiation cell, and the FNIS, this study used the Monte Carlo N-Particle (MCNP) code and a set of high-temperature ENDF/B-VI continuous neutron cross-section data. Sensitivity analysis was performed to find the characteristics of the FNIS as a function of the thickness of the lead-bismuth alloy. A paired ion chamber system was constructed with a tissue-equivalent plastic (A-150) and propane gas for total dose monitoring and with graphite and argon for gamma dose monitoring. This study, in addition, tested the Monte Carlo modeling of the FNIS system, as well as the performance of the system by comparing the calculated results with experimental measurements using activation foils and paired ion chambers.

  17. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    SciTech Connect

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  18. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  19. Diversity of endoscopy center operations and practice variation across California’s safety-net hospital system: a statewide survey

    PubMed Central

    2013-01-01

    Background Little is known about endoscopic services provided or operational practice variation within California public hospital endoscopy centers. Methods A survey was distributed to all 18 California public hospitals with endoscopy centers to assess operational practices. Results Eight of 18 hospitals responded to the survey. Six of the eight responding hospitals used a closed access system for patient referrals. Mean wait time for an endoscopic procedure was 42.4 ± 37.7 days (N = 8) with a mean procedure no-show/cancellation rate of 14.5 ± 8.0% (N = 7). All responding public hospitals performed colonoscopy, esophagogastroduodenoscopy, PEG tube placement, and endoscopic retrograde cholangiopancreatography (ERCP) with two hospitals performing endoscopic ultrasound. There was significant practice variation in the documentation of endoscopic quality and performance measurements among the responding hospitals. Multiple methods were used to communicate pathology results to patients: GI clinic visit (6/8), primary physician (4/8), telephone (2/8) or letter (1/8). Conclusion Our study highlights the diversity and practice variations of endoscopy center operations at California public hospitals and serves as a catalyst for future collaborations among safety-net hospitals. PMID:23767938

  20. [Chemical compound safety: typology of competency accreditation for assay centers and analytical laboratories].

    PubMed

    Menditto, Antonio; Chiodo, Ferdinando

    2002-01-01

    The use of chemicals warrants many benefits on which modern society is entirely dependent. On the other hand, the lack of reliable information about the impact of the use of chemicals raises increasing concern. In order to guarantee the safety of chemicals it is mandatory to proceed to risk assessment, which in turn consists of hazard evaluation and exposure estimation. These activities are strictly dependent upon the availability of reliable data and information, produced by, e.g., test facilities, test laboratories and clinical laboratories, the specific competence of which has been properly recognised. All this applies in the pre-marketing phase as well as during the use of chemical substances. In this latter phase it is necessary to carry out an appropriate monitoring of environment, food and, in specific situations, human beings (biological monitoring). In the field of chemical safety, standards, legal instruments and operative instruments are nowadays available. These tools make it possible to assess both the quality of data and the competence of the entities involved in the production of the data themselves.