Science.gov

Sample records for nuclear sciences department

  1. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  2. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  3. Strengthening Science Departments

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  4. Strengthening Science Departments

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  5. Applications of Nuclear Science for Stewardship Science

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.

    2013-03-01

    Stewardship science is research important to national security interests that include stockpile stewardship science, homeland security, nuclear forensics, and non-proliferation. To help address challenges in stewardship science and workforce development, the Stewardship Science Academic Alliances (SSAA) was inaugurated ten years ago by the National Nuclear Security Administration of the U. S. Department of Energy. The goal was to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper presents an overview of recent research in low-energy nuclear science supported by the Stewardship Science Academic Alliances and the applications of this research to stewardship science.

  6. Earth Sciences Department Annual Report, 1984

    SciTech Connect

    Henry, A.L.; Donohue, M.L.

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  7. Western Nuclear Science Alliance

    SciTech Connect

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  8. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  9. Final Progress Report to the Department of Energy's Office of Science on the Committee on Nuclear Physics

    SciTech Connect

    Board on Physics and Astronomy

    2001-01-01

    The Committee on Nuclear Physics (CNP), under the National Research Council's Board on Physics and Astronomy (BPA), conducted an assessment of the field as part of the BPA's survey of physics in the last decade, titled ''Physics in a New Era.'' The CNP report was published by the National Academy Press in early 1999 under the title ''Nuclear Physics: The Core of Matter, The Fuel of Stars.''

  10. 76 FR 31945 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Science Foundation on scientific priorities within the field of basic nuclear science research....

  11. 77 FR 9219 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... the National Science Foundation on scientific priorities within the field of basic nuclear science...

  12. 78 FR 62609 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of... within the field of basic nuclear science research. Additionally, the renewal of the DOE/NSF Nuclear...

  13. 75 FR 71425 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Department of Energy and National Science Foundation's Nuclear Physics Offices Technical Talk on FRIB Public... minutes of the meeting will be available on the U.S. Department of Energy's Office of Nuclear Physics Web...

  14. 75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Department of Energy and National Science Foundation's Nuclear Physics Office. Technical Talk on Deep... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing. Rachel Samuel...

  15. 78 FR 12044 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... advice and guidance on a continuing basis to the Department of Energy and the National Science Foundation...

  16. 78 FR 69658 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    .../NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory... within the field of basic nuclear science research. Tentative Agenda: Agenda will include discussions...

  17. 75 FR 6651 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... the National Science Foundation on scientific priorities within the field of basic nuclear...

  18. 76 FR 8359 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...

  19. 78 FR 56870 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory. Committee (NSAC... and the National Science Foundation on scientific priorities within the field of basic nuclear...

  20. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  1. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  2. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  3. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  4. 77 FR 51791 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Energy and the National Science Foundation on scientific priorities within the field of basic...

  5. 76 FR 62050 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of... that the DOE/NSF Nuclear Science Advisory Committee (NSAC) will be renewed for a two- year period beginning on September 30, 2011. The Committee will provide advice to the Director, Office of Science...

  6. Nuclear criticality safety department training implementation

    SciTech Connect

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-09-06

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document.

  7. Nuclear Forensics for High School Science

    NASA Astrophysics Data System (ADS)

    Mader, Catherine; Doss, Heide; Plisch, Monica; Isola, Drew; Mirakovitz, Kathy

    2011-04-01

    We developed an education module on nuclear forensics, designed for high school science classrooms. The lessons include a mix of hands-on activities, computer simulations, and written exercises. Students are presented with realistic scenarios designed to develop their knowledge of nuclear science and its application to nuclear forensics. A two-day teacher workshop offered at Hope College attracted 20 teachers. They were loaned kits to implement activities with their students, and each teacher spent 3--7 days on the lessons. All who reported back said they would do it again and would share the lessons with colleagues. Many said that access to equipment and ready-made lessons enabled them to expand what they taught about nuclear science and introduce nuclear forensics. A few teachers invited guest speakers to their classroom, which provided an excellent opportunity to share career information with students. We acknowledge generous support from the Department of Homeland Security and the AIP Meggars Award.

  8. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  9. Department of Energy: Nuclear S&T workforce development programs

    SciTech Connect

    Bingham, Michelle; Bala, Marsha; Beierschmitt, Kelly; Steele, Carolyn; Sattelberger, Alfred P.; Bruozas, Meridith A.

    2016-01-01

    The U.S. Department of Energy (DOE) national laboratories use their expertise in nuclear science and technology (S&T) to support a robust national nuclear S&T enterprise from the ground up. Traditional academic programs do not provide all the elements necessary to develop this expertise, so the DOE has initiated a number of supplemental programs to develop and support the nuclear S&T workforce pipeline. This document catalogs existing workforce development programs that are supported by a number of DOE offices (such as the Offices of Nuclear Energy, Science, Energy Efficiency, and Environmental Management), and by the National Nuclear Security Administration (NNSA) and the Naval Reactor Program. Workforce development programs in nuclear S&T administered through the Department of Homeland Security, the Nuclear Regulatory Commission, and the Department of Defense are also included. The information about these programs, which is cataloged below, is drawn from the program websites. Some programs, such as the Minority Serving Institutes Partnership Programs (MSIPPs) are available through more than one DOE office, so they appear in more than one section of this document.

  10. Department of Energy Nuclear Energy Standards Program

    SciTech Connect

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed.

  11. The NUCLEONICA Nuclear Science Portal

    SciTech Connect

    Magill, Joseph; Dreher, Raymond

    2009-08-19

    NUCLEONICA (www.nucleonica.net) is a new nuclear science web portal which provides a customisable, integrated environment and collaboration platform using the latest internet 'Web 2.0' technology. NUCLEONICA is aimed at professionals, academics and students working in nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. A unique feature of the portal is the wide range of user friendly web-based nuclear science applications. The portal is also ideal for education and training purposes and as a knowledge management platform to preserve nuclear knowledge built up over many decades.

  12. NUCLEAR SCIENCE REFERENCES CODING MANUAL

    SciTech Connect

    WINCHELL,D.F.

    2007-04-01

    given in the Appendices. The NSR database has been in existence for decades, and responsibility for its upkeep has passed through many hands. Those familiar with the contents of NSR will note that not all of the formats and conventions discussed in this manual have always been adhered to. In recent years, however, these conventions have been followed fairly consistently, and it is expected that the preparation of new entries will follow these guidelines. The most up-to-date information about NSR contents and policies can be found at the NSR web site: http://www.nndc.bnl.gov/nsr. This manual is an update to BNL-NCS-51800 (Rev. 08/96) by S. Ramavataram and C.L. Dunford. Discussions with Mark Kellett of the IAEA are gratefully acknowledged, as are comments and suggestions from the NNDC staff and members of the U.S. Nuclear Data Program. This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U.S.Department of Energy.

  13. A Visit to the Computer Science Department,

    DTIC Science & Technology

    1983-01-11

    THE COMPUTER SCIENCE DEPARTMENT by Zbong Qing FES 23 I Approved for public "release; Udistribution unlimited. -- 83 02 023 AI FTD-zD(sj)T-&7-42 EDITED...TRANSLATION FTD-ID(RS)T-1722-82 11 January 1983 MICROFICHE NR: PTD-83-C-000022 A VISIT TO THE COMPUTER SCIENCE DEPARTMENT ly: Zhong Qing English...Zhong Qing AernauicsInstitute,anBejgAro nautics Institute all have computer science departments. Why are computer science departments needed at

  14. Nuclear Weapons and Science Education.

    ERIC Educational Resources Information Center

    Wellington, J. J.

    1984-01-01

    Provides suggestions on how science teachers can, and should, deal with the nuclear weapons debate in a balanced and critical way. Includes a table outlining points for and against deterrence and disarmament. (JN)

  15. Nuclear Weapons and Science Education.

    ERIC Educational Resources Information Center

    Wellington, J. J.

    1984-01-01

    Provides suggestions on how science teachers can, and should, deal with the nuclear weapons debate in a balanced and critical way. Includes a table outlining points for and against deterrence and disarmament. (JN)

  16. Veterinary Science Departments: Their Role in Academia

    ERIC Educational Resources Information Center

    Curtin, Terrence M.

    1977-01-01

    The roles played by veterinary science departments are creditable and important, says this head of a department of veterinary science. Those roles will reflect an absolute increase in participation with veterinary schools on a regional and national basis, and a relative increase in direct involvement in veterinary education. (LBH)

  17. Animal science departments of the future.

    PubMed

    Britt, J H; Aberle, E D; Esbenshade, K L; Males, J R

    2008-11-01

    Departments of animal science were established in agricultural colleges of public universities just over 100 yr ago, shortly before the founding of today's American Society of Animal Science. These departments and colleges have been remarkably resilient, changing little structurally. Yet, the future portends significant changes in these departments and colleges in response to shifts in how public higher education is financed and how society views the roles of animals in providing food and companionship. Funding for public higher education will continue to decline as a percentage of government appropriations. Public universities will garner more funding from gifts, endowments, grants, contracts, and tuition but will be held more accountable than today by public officials. Departments of animal science will retain strong constituencies and will be major units of most agricultural colleges; however, their students and faculty will be more diverse. Departments of animal science will focus on more species of animals and on a greater role of animals in society. Disciplines of faculty members in departments of animal science will become broader, and research projects will be more complex and have longer horizons, ultimately focused more on sustainability. Departments will share more resources across state and national boundaries, and there will be less duplication of effort regionally. Departments of animal science will continue to be important academic units of universities into the 22nd century.

  18. Critical Path to Nuclear Science and Technology Knowledge Transfer and Skill Development in K-12 Schools: Why America Needs Action and Support from Federal and State Education Departments Now

    SciTech Connect

    Vincenti, J.R.; Anderson, G.E.

    2006-07-01

    With the signing of President Bush's energy bill in August of 2005, the successful application of the new energy legislation may have more to do with educational standards required in our schools than applications of research and technology in the long-term. Looking inside the new legislation, the future of that legislation's success may not just hinge on investment in technology, but ensuring that our citizens, especially our youth, are prepared and better informed to be able to understand, react, and apply the economically and national security driven intent of the law. How can our citizens make sense of change if they lack the skills to be able to understand, not only the technology, but also the science that drives the change? President Bush's passage of the 1,724-page bill emphasizes conservation, clean energy research, and new and improved technology. The legislation also provides for economic incentives toward building more nuclear power plants. This paper will use four questions as a focal point to emphasize the need for both state and federal education departments to review their current standards and respond to deficiencies regarding learning about radioactivity, radiation, and nuclear science and technology. The questions are: 1. Will America accept new nuclear power development? 2. Will waste issues be resolved concerning high- and low-level radioactive waste management and disposal? 3. Will nuclear 'anything' be politically correct when it comes to your backyard? 4. Is our youth adequately educated and informed about radioactivity, radiation, and nuclear science and technology? This paper will use Pennsylvania as a case study to better understand the implications and importance of the educational standards in our school systems. This paper will also show how the deficiency found in Pennsylvania's academic standards, and in other states, has a significant impact on the ability to fulfill the legislation's intent of realizing energy independence and

  19. Limitations on diversity in basic science departments.

    PubMed

    Leboy, Phoebe S; Madden, Janice F

    2012-08-01

    It has been over 30 years since the beginning of efforts to improve diversity in academia. We can identify four major stages: (1) early and continuing efforts to diversify the pipeline by increasing numbers of women and minorities getting advanced degrees, particularly in science, technology, engineering, and math (STEM); (2) requiring academic institutions to develop their own "affirmative action plans" for hiring and promotion; (3) introducing mentoring programs and coping strategies to help women and minorities deal with faculty practices from an earlier era; (4) asking academic institutions to rethink their practices and policies with an eye toward enabling more faculty diversity, a process known as institutional transformation. The thesis of this article is that research-intensive basic science departments of highly ranked U.S. medical schools are stuck at stage 3, resulting in a less diverse tenured and tenure-track faculty than seen in well-funded science departments of major universities. A review of Web-based records of research-intensive departments in universities with both medical school and nonmedical school departments indicates that the proportion of women and Black faculty in science departments of medical schools is lower than the proportion in similarly research-intensive university science departments. Expectations for faculty productivity in research-intensive medical school departments versus university-based departments may lead to these differences in faculty diversity.

  20. Education Department's Senese Outlines Science, Math Programs.

    ERIC Educational Resources Information Center

    Lepkowski, Wil

    1983-01-01

    Presented is an interview with Donald J. Senese (Department of Education Assistant Secretary) in which the department's functions, responsibilities, and philosophies in precollege science/mathematics education are outlined and discussed. Specific questions answered relate to curriculum development, creationism, copyright ownership of software,…

  1. NUCLEAR SCIENCE, AN INTRODUCTORY COURSE.

    ERIC Educational Resources Information Center

    SULCOSKI, JOHN W.

    THIS CURRICULUM GUIDE DESCRIBES A TWELFTH-GRADE INTERDISCIPLINARY, INTRODUCTORY NUCLEAR SCIENCE COURSE. IT IS BELIEVED TO FILL THE NEED FOR AN ADVANCED COURSE THAT IS TIMELY, CHALLENGING, AND APPROPRIATE AS A SEQUENTIAL ADDITION TO THE BIOLOGY-CHEMISTRY-PHYSICS SEQUENCE. PRELIMINARY INFORMATION COVERS SUCH MATTERS AS (1) RADIOISOTOPE WORK AREAS,…

  2. Learning Nuclear Science with Marbles

    NASA Astrophysics Data System (ADS)

    Constan, Zach

    2010-02-01

    Nuclei are small: if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are dense: the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about nuclear science. But how does one move beyond analogies like those above and offer a better understanding of the extraordinary world of the nucleus? This is the challenge faced by the outreach program at Michigan State University's National Superconducting Cyclotron Laboratory (NSCL), a National Science Foundation-supported facility specializing in the creation and study of rare isotopes. It was necessary to devise a model of the nucleus that students could interact with and even use to approximate the nuclear reactions that create exotic nuclei. The solution was to use magnetic marbles.

  3. Mixed reaction to science department proposal

    NASA Astrophysics Data System (ADS)

    The recommendation last month by a presidential commission that a federal Department of Science and Technology be created to encompass “major civilian research and development (R&D) agencies” has elicited a mixed reaction from members of the geophysical sciences community.The Commission on Industrial Competitiveness, created by President Ronald Reagan in June 1983 to study ways to strengthen the ability of the United States to compete in a global marketplace, recommended establishment of a Cabinet-level science department “to promote national interest in and policies for research and technological innovation.” The commission, chaired by John A. Young, president of the Hewlett-Packard Company, was composed primarily of presidents and chief executive officers of major technology corporations but also included members of academia and government. Creation of a federal science and technology 'department is one of many suggestions contained in the commission's final report, Global Competition: The New Reality.

  4. ANSTO: Australian Nuclear Science and Technology Organization

    NASA Astrophysics Data System (ADS)

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for the nuclear medicine industry and research. It also operates national nuclear facilities (HIFAR and Moata research reactors), promotes training, provides advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities.

  5. Leading Learning: Science Departments and the Chair

    ERIC Educational Resources Information Center

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  6. Leading Learning: Science Departments and the Chair

    ERIC Educational Resources Information Center

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  7. Pioneer women in nuclear science

    NASA Astrophysics Data System (ADS)

    Rayner-Canham, M. F.; Rayner-Canham, G. W.

    1990-11-01

    It is a commonly accepted myth that Marie Curie and Lise Meitner were the only women working in the field of nuclear science during the early part of this century. In fact, there were at least 14 others who published work in this field between 1900 and 1915. This paper provides biographical notes on these women and explores the role of the supervisors. Part of the reason for the significant number of women researchers could have been the supportive attitude of Ernest Rutherford toward female physics graduates. In addition, we argue that several of these women provide better role models for potential women physicists than Marie Curie.

  8. Nuclear Science Division: 1993 Annual report

    SciTech Connect

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  9. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  10. NUCLEAR SCIENCE CURRICULUM PROJECT. INSTRUCTIONAL RESOURCES SUPPLEMENT.

    ERIC Educational Resources Information Center

    Culver City Unified School District, CA.

    DESIGNED AS AN ADJUNCT TO MATERIALS DEVELOPED BY THE NUCLEAR SCIENCE CURRICULUM PROJECT, THIS DOCUMENT PROVIDES RESOURCE MATERIAL WITH WHICH THE NUCLEAR SCIENCE CURRICULUM MAY BE ENRICHED, AND ADDRESSES ITSELF TO (1) INSTRUCTIONAL AIDS PRESENTLY AVAILABLE, (2) USE OF INSTRUCTIONAL AIDS TO SUPPLEMENT THE CURRENT SCIENCE CURRICULA, (3) FACILITIES…

  11. Department of the Interior Climate Science Centers

    USGS Publications Warehouse

    Jones, Sonya A.

    2011-01-01

    What is a Climate Science Center? On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs), which will integrate DOI science and management expertise with similar contributions from our partners to provide information to support adaptation and mitigation efforts on both public and private lands, across the United States and internationally.The Southeast CSC, hosted by NC State University (NCSU), will collaborate with a number of other universities, State and Federal agencies, and nongovernmental organizations (NGOs) with interest and expertise in climate science. The primary partner for the Southeast CSC will be the Landscape Conservation Cooperatives (LCCs) in the Southeast, including the Appalachian, Gulf Coastal Plains and Ozarks, Gulf Coast Prairie, Peninsular Florida, and the South Atlantic. CSC collaborations are focused on common science priorities, addressing priority partner needs, minimizing redundancies in science, sharing scientific findings, and expanding understanding of climate change impacts in the Southeast.

  12. Department of Energy: An Organizational Look at Americas Nuclear Deterrent

    DTIC Science & Technology

    2016-09-01

    study performs a detailed literature review to identify and understand major 5 organizational cultural challenges. The literature review provides the...DEPARTMENT OF ENERGY: AN ORGANIZATIONAL LOOK AT AMERICA’S NUCLEAR DETERRENT GRADUATE RESEARCH PAPER David O. Pabst, Maj, USAF...DEPARTMENT OF ENERGY: AN ORGANIZATIONAL LOOK AT AMERICA’S NUCLEAR DETERRENT GRADUATE RESEARCH PAPER Presented to the Faculty

  13. Secondary school science department chairs leading change

    NASA Astrophysics Data System (ADS)

    Gaubatz, Julie A.

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders navigate the change process within their departments, this study examined the change stories of six secondary school science department chairs who had led change attempts. In total, these department chairs shared six stories of successful change attempts and four unsuccessful change attempts. The topics of leadership and change were accessed through department chair interviews, document analysis, and a leadership inventory. Department chair leadership was analyzed with Blake and McCanse's (1991) Leadership Grid, and further explored using Yukl, Gordon, and Taber's (2002) detailed characterization of this grid. The change processes described in these department chair stories were analyzed using the frameworks provided by Ely's (1990) conditions of change, and Havelock and Zlotolow (1995) CREATER change stages model. In general, the findings of this study support Havelock and Zlotolow's CREATER model, as well as Ely's conditions of change, with dissatisfaction with the status quo emerging as the essential condition for successful change. This study connects these change process frameworks to specific leadership strategies and behaviors, and uses these connections to illuminate differences between successful and unsuccessful instances of change. These findings, along with other unanticipated findings emerging from department chair stories of change, such as the adverse influence of contentious resistors and the importance of team construction, add both to the literature on change and leadership and to the crucial point where these concepts intersect.

  14. Science Ideals and Science Careers in a University Biology Department

    ERIC Educational Resources Information Center

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  15. Science Ideals and Science Careers in a University Biology Department

    ERIC Educational Resources Information Center

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  16. The Frontiers of Nuclear Science: A Long-Range Plan

    SciTech Connect

    None, None

    2007-12-01

    In a letter dated July 17, 2006, the Department of Energy’s (DOE) Office of Science for Nuclear Physics and the National Science Foundation’s (NSF) Mathematical and Physical Sciences Directorate charged the Nuclear Science Advisory Committee (NSAC) to “conduct a study of the opportunities and priorities for U.S. nuclear physics research and recommend a long range plan that will provide a framework for coordinated advancement of the nation’s nuclear science research programs over the next decade.” This request set in motion a bottom-up review and forward look by the nuclear science community. With input from this community-wide process, a 59 member working group, which included the present NSAC members, gathered at the beginning of May, 2007, to develop guidance on how to optimize the future research directions for the field based on the projected resources outlined in the charge letter from DOE and NSF. A new long range plan—The Frontiers of Nuclear Science—grew out of this meeting. For the last decade, the top priority for nuclear science has been to utilize the flagship facilities that were built with investments by the nation in the 1980s and 1990s. Research with these facilities has led to many significant new discoveries that have changed our understanding of the world in which we live. But new discoveries demand new facilities, and the successes cannot continue indefinitely without new investment.

  17. Progress in Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito

    Recent studies of condensed matter nuclear science (CMNS) including cold fusion have accumulated some convincing data and theoretical modeling, and we are about to conclude that (1) deuteron-related clean fusion reactions and (2) cold and special transmutations may take place in the environment of condensed matter containing deuterons and protons. This emerging field of CMNS is expected to give us strong impact on the future of basic sciences for energy-application, fundamental nuclear science, and condensed matter sciences.

  18. Nuclear Science Centre, New Delhi

    SciTech Connect

    Mehta, G.; Potukuchi, P.; Roy, A.

    1995-08-01

    Argonne is collaborating with the Nuclear Science Centre (NSC), New Delhi, to develop a new type of superconducting accelerating structure for low-velocity heavy ions. A copper model has been evaluated and tests on the niobium prototype are currently in progress. Some technical details of this project are described in the Superconducting Linac Development section of this report. All funding for the prototype has come from the NSC, and they have also stationed two staff members at ATLAS for the past two years to gain experience and work on this project. Additional NSC personnel visited ATLAS for extended periods during 1994 for electronics and cryogenics experience and training. Two NSC staff members are scheduled to spend several months at ANL during 1995 to continue tests and developments of the prototype resonators and to initiate fabrication of the production models for their linac project.

  19. Nuclear Science Teaching Aids and Activities.

    ERIC Educational Resources Information Center

    Woodburn, John H.

    This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…

  20. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  1. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  2. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  3. The impact of a nuclear crisis on a radiology department.

    PubMed

    Weidner, W A; Miller, K L; Latshaw, R F; Rohrer, G V

    1980-06-01

    The experiences of the radiology department at the Milton S. Hershey Medical Center of the Pennsylvania State University College of Medicine during the Three Mile Island Nuclear Power Plant accident are presented. Emergency plans are reviewed.

  4. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, L E

    2007-09-17

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  5. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, Larry

    2007-10-26

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  6. Global Security, Medical Isotopes, and Nuclear Science

    NASA Astrophysics Data System (ADS)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  7. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  8. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  9. New Directions in Nuclear Science Education

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.

    2004-10-01

    Central to the future of nuclear science is preparing the next generation of leaders in nuclear science education and basic and applied research. While graduate students and post-doctoral scholars play critical roles in realizing the research, the responsibility for education by nuclear scientists extends to undergraduates and students in the schools, as well as informing the public. In Spring 2003 an NSAC subcommittee was charged to assess the NSF and DOE educational investments relevant to nuclear science and identify key strategies to prepare the next generations of nuclear scientists. As part of this charge, the members of this committee have conducted surveys of all components of the educational pathways in nuclear science: current undergraduate and graduate students and post-doctoral scholars and recent Ph.D.s in our fields. We also considered the role nuclear scientists could play in K-12 education and outreach to the public, and the current and projected employment demographics of nuclear scientists. This talk will summarize the preliminary recommendations that will be part of a report of this subcommittee to NSAC in Fall 2004. NSAC Subcommittee on Education: Cornelius Beausang, Joseph Cerny (chair), Timothy Hallman, Calvin Howell, Andrea Palounek, Warren Rogers, Bradley Sherrill, Robert Welsh, and Sherry Yennello.

  10. The Future of Nuclear Science in Australia

    SciTech Connect

    Dillich, Jack

    2002-07-01

    The replacement of Australia's only nuclear reactor, the 44 year old HIFAR, with a state-of-the-art research facility represents an exciting development in nuclear science. The design for the replacement reactor incorporates many safety features, including extraordinary defence-in-depth. The facilities will include advanced capabilities in the areas of radiopharmaceutical production and neutron scattering research. (author)

  11. Individual and Collective Leadership in School Science Departments

    ERIC Educational Resources Information Center

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-01-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two…

  12. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  13. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  14. Radiation safety audit of a high volume Nuclear Medicine Department.

    PubMed

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-10-01

    Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure.

  15. Radiation safety audit of a high volume Nuclear Medicine Department

    PubMed Central

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-01-01

    Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361

  16. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  17. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  18. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    ERIC Educational Resources Information Center

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  19. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    ERIC Educational Resources Information Center

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  20. Embedding Enterprise in Science and Engineering Departments

    ERIC Educational Resources Information Center

    Handscombe, Robert D.; Rodriguez-Falcon, Elena; Patterson, Eann A.

    2008-01-01

    Purpose: This paper aims to focus on the attempts to implement the challenges of teaching enterprise to science and engineering students by the embedding approach chosen by the White Rose Centre for Enterprise (WRCE), one of the centres formed under the Science Engineering Challenge in the UK. Design/methodology/approach: WRCE's objective was to…

  1. Embedding Enterprise in Science and Engineering Departments

    ERIC Educational Resources Information Center

    Handscombe, Robert D.; Rodriguez-Falcon, Elena; Patterson, Eann A.

    2008-01-01

    Purpose: This paper aims to focus on the attempts to implement the challenges of teaching enterprise to science and engineering students by the embedding approach chosen by the White Rose Centre for Enterprise (WRCE), one of the centres formed under the Science Engineering Challenge in the UK. Design/methodology/approach: WRCE's objective was to…

  2. Secondary School Science Department Chairs Leading Change

    ERIC Educational Resources Information Center

    Gaubatz, Julie A.

    2012-01-01

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders…

  3. Secondary School Science Department Chairs Leading Change

    ERIC Educational Resources Information Center

    Gaubatz, Julie A.

    2012-01-01

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders…

  4. Materials Science for Nuclear Detection

    SciTech Connect

    Peurrung, Anthony J.

    2008-03-01

    In response to the elevated importance of nuclear detection technology, a variety of research efforts have sought to accelerate the discovery and development of useful new radiation detection materials These efforts have goals such as improving our understanding of how these materials perform, supporting the development of formalized discovery tools, or enabling rapid and effective performance characterization. This article provides an overview of these efforts along with an introduction to the history, physics, and taxonomy of these materials.

  5. RAON experimental facilities for nuclear science

    SciTech Connect

    Kwon, Y. K.; Kim, Y. K.; Komatsubara, T.; Moon, J. Y.; Park, J. S.; Shin, T. S.; Kim, Y. J.

    2014-05-02

    The Rare Isotope Science Project (RISP) was established in December 2011 and has put quite an effort to carry out the design and construction of the accelerator complex facility named “RAON”. RAON is a rare isotope (RI) beam facility that aims to provide various RI beams of proton-and neutron-rich nuclei as well as variety of stable ion beams of wide ranges of energies up to a few hundreds MeV/nucleon for the researches in basic science and application. Proposed research programs for nuclear physics and nuclear astrophysics at RAON include studies of the properties of exotic nuclei, the equation of state of nuclear matter, the origin of the universe, process of nucleosynthesis, super heavy elements, etc. Various high performance magnetic spectrometers for nuclear science have been designed, which are KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus), LAMPS (Large Acceptance Multi-Purpose Spectrometer), and ZDS (Zero Degree Spectrometer). The status of those spectrometers for nuclear science will be presented with a brief report on the RAON.

  6. Science Instructional Leadership: The Role of the Department Chair

    ERIC Educational Resources Information Center

    Peacock, Jeremy S.

    2014-01-01

    With science teachers facing comprehensive curriculum reform that will shape science education for decades to come, high school department chairs represent a critical resource for instructional leadership and teacher support. While the historical literature on the department chair indicates that chairs are in prime positions to provide…

  7. Science Instructional Leadership: The Role of the Department Chair

    ERIC Educational Resources Information Center

    Peacock, Jeremy S.

    2014-01-01

    With science teachers facing comprehensive curriculum reform that will shape science education for decades to come, high school department chairs represent a critical resource for instructional leadership and teacher support. While the historical literature on the department chair indicates that chairs are in prime positions to provide…

  8. Bourdieu, Department Chairs and the Reform of Science Education

    ERIC Educational Resources Information Center

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-01-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's "thinking tools" of "field", "habitus" and "capital", we case study the work of two teachers who both actively pursue the teaching and learning of science as…

  9. Bourdieu, Department Chairs and the Reform of Science Education

    ERIC Educational Resources Information Center

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-01-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's "thinking tools" of "field", "habitus" and "capital", we case study the work of two teachers who both actively pursue the teaching and learning of science as…

  10. 78 FR 716 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    .../NSF Nuclear Science Advisory Committee AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC). DATES... on scientific priorities within the field of basic nuclear science research. Tentative Agenda:...

  11. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  12. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect

    Kubic, Jr., William L.

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  13. Instructional leaders for all? High school science department heads and instructional leadership across all science disciplines

    NASA Astrophysics Data System (ADS)

    Sanborn, Stephen

    Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.

  14. Webometric Analysis of Departments of Librarianship and Information Science.

    ERIC Educational Resources Information Center

    Thomas, Owen; Willett, Peter

    2000-01-01

    Describes a webometric analysis of linkages to library and information science (LIS) department Web sites in United Kingdom universities. Concludes that situation data are not well suited to evaluation of LIS departments and that departments can boost Web site visibility by hosting a wide range of materials. (Author/LRW)

  15. PEOPLE IN PHYSICS: Women in nuclear science

    NASA Astrophysics Data System (ADS)

    Stuart, B. H.

    1996-03-01

    The field of nuclear science has seen an unusually large number of discoveries by women this century. This article focuses on the acclaimed work of Marie Curie, her daughter Irène Joliot-Curie, Lise Meitner and Maria Goeppert-Mayer.

  16. The Mysterious Box: Nuclear Science and Art.

    ERIC Educational Resources Information Center

    Keisch, Bernard

    In this booklet intended for junior high school science students a short story format is used to provide examples of the use of nuclear chemistry and physics in the analysis of paints and pigments for authentication of paintings. The techniques discussed include the measurement of the relative amounts of lead-210 and radium-226 in white-lead…

  17. The Mysterious Box: Nuclear Science and Art.

    ERIC Educational Resources Information Center

    Keisch, Bernard

    In this booklet intended for junior high school science students a short story format is used to provide examples of the use of nuclear chemistry and physics in the analysis of paints and pigments for authentication of paintings. The techniques discussed include the measurement of the relative amounts of lead-210 and radium-226 in white-lead…

  18. On Hiring Science Faculty with Education Specialties for Your Science (Not Education) Department

    ERIC Educational Resources Information Center

    Bush, S. D.; Pelaez, N. J.; Rudd, J. A.; Stevens, M. T.; Williams, K. S.; Allen, D. E.; Tanner, K. D.

    2006-01-01

    In this article, the authors highlight an issue in science education facing many university and college science departments: hiring faculty who can bring to the department specialized expertise in science education. To begin to address this issue, a collaborative team of tenure-track faculty--all of whom are primarily trained in science and have…

  19. Midwest Nuclear Science and Engineering Consortium

    SciTech Connect

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  20. Individual and Collective Leadership in School Science Departments

    NASA Astrophysics Data System (ADS)

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-09-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two contrasting school contexts were explored dialectically in this study. The structure ∣ agency and individual∣collective dialectics guided our interpretation of data from lesson observations, interviews and questionnaire responses, especially as they related to teachers' preparation of units of work (i.e., planned curriculum). As well as recognising thin coherence in teachers' responses we identify contradictions in teachers' perceived and enacted leadership roles, and perceptions of influences on curriculum planning and teaming within the two science departments. Throughout the article we disrupt traditional individualistic leadership discourses and suggest possibilities for more widespread application of an individual | collective leadership dialectic in school science departments.

  1. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  2. Molecular forensic science analysis of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  3. Bourdieu, Department Chairs and the Reform of Science Education

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-11-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's 'thinking tools' of 'field', 'habitus' and 'capital', we case study the work of two teachers who both actively pursue the teaching and learning of science as inquiry. One teacher, Dan, has been a department chair since 2000, and has actively encouraged his department to embrace science as inquiry. The other teacher, Leslie, worked for one year in Dan's department before being transferred to another school where science teaching continues to be more traditional. Our work suggests that there are three crucial considerations for chairs seeking to lead the reform of science teaching within their department. The first of these is the development of a reform-minded habitus, as this appears to be foundational to the capital that can be expended in the leadership of reform. The second is an understanding of how to wield power and position in the promotion of reform. The third is the capacity to operate simultaneously and strategically within, and across, two fields; the departmental field and the larger science education field. This involves downplaying administrative logics, and foregrounding more inquiry-focused logics as a vehicle to challenge traditional science-teaching dispositions-the latter being typically dominated by concerns about curriculum 'coverage'.

  4. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    SciTech Connect

    Cizewski, J.A.

    2014-06-15

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  5. Examining Prospective Science Teachers' Satisfaction with Their Department

    ERIC Educational Resources Information Center

    Erdogan, Mehmet; Usak, Muhammet

    2007-01-01

    The purpose of this study was to explore how satisfied prospective science teachers are with their department (academic staff and administration) at different Faculties of Education in Turkey. For this purpose, Prospective Science Teachers Satisfaction Questionnaire (PSTSQ) was developed by considering related literature. PSTSQ consists of two…

  6. Curriculum Reform and a Science Department: A Bourdieuian Analysis

    ERIC Educational Resources Information Center

    Melville, Wayne

    2010-01-01

    This article will describe the dispositions of science teachers in the context of a curriculum reform. Using Bourdieu's notions of "habitus" and "the field," the analysis of the data highlights the necessity for curriculum reformers to view the field of the science department as a contested space. From this understanding flow…

  7. How a Department Effects Change: Closeup on Political Science.

    ERIC Educational Resources Information Center

    Peterson, Nancy A.

    1975-01-01

    The way a department is governed, and the relationships enjoyed by its members, provide at least part of the ground for the other activities that take place there. Discussions with members of the Political Science department reveal several recurring themes, including democratic governance, the absence of power groups, respect for differing…

  8. LANSCE nuclear science facilities and activities

    SciTech Connect

    Nelson, Ronald O

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  9. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) the use or operation of nuclear reactors or other nuclear devices in a United States Government-owned... 10 Energy 2 2012-01-01 2012-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy...

  10. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) the use or operation of nuclear reactors or other nuclear devices in a United States Government-owned... 10 Energy 2 2014-01-01 2014-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy...

  11. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) the use or operation of nuclear reactors or other nuclear devices in a United States Government-owned... 10 Energy 2 2013-01-01 2013-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy...

  12. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) the use or operation of nuclear reactors or other nuclear devices in a United States Government-owned... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy...

  13. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) the use or operation of nuclear reactors or other nuclear devices in a United States Government-owned... 10 Energy 2 2011-01-01 2011-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy...

  14. Nuclear science outreach program for high school girls

    SciTech Connect

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  15. On teaching computer ethics within a computer science department.

    PubMed

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  16. Summaries of FY 1980 research in the nuclear sciences

    SciTech Connect

    Not Available

    1980-06-01

    A compilation and index of the projects funded in fiscal year 1980 by the DOE Division of Nuclear Sciences/Office of Basic Energy Sciences is provided. These summaries constitute the basic document by which the DOE nuclear sciences program can be made known in some technical detail to interested persons. (RWR)

  17. 76 FR 69252 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... of Energy and National Science Foundation's Nuclear Physics Office's Update on the Neutron Charge... Office of Nuclear Physics Web site for viewing. Issued in Washington, DC on November 1, 2011. Carol A...

  18. District Leadership for Science Education: Using K-12 Departments to Support Elementary Science Education under NCLB

    ERIC Educational Resources Information Center

    Miller, Christopher L.

    2010-01-01

    By contrasting two case studies of school districts, this paper illustrates the effectiveness of K-12 science departments in supporting elementary science education, especially in response to NCLB's push towards the articulation of curriculum across all grades and as a response to the erosion of instructional time on science in elementary schools…

  19. Career Preparation and the Political Science Major: Evidence from Departments

    ERIC Educational Resources Information Center

    Collins, Todd A.; Knotts, H. Gibbs; Schiff, Jen

    2012-01-01

    We know little about the amount of career preparation offered to students in political science departments. This lack of information is particularly troubling given the state of the current job market and the growth of applied degree programs on university campuses. To address this issue, this article presents the results of a December 2010 survey…

  20. Affirmative Action in Science Departments: A Challenge for Higher Education.

    ERIC Educational Resources Information Center

    Marcus, Laurence R.

    As part of a study of the implementation of affirmative action in academic affairs at the University of Massachusetts at Amherst, interviews were conducted with the heads of ten of the eleven departments and programs of the Faculty of Natural Sciences and Mathematics (FNSM). The data received were combined with written data available in…

  1. Career Preparation and the Political Science Major: Evidence from Departments

    ERIC Educational Resources Information Center

    Collins, Todd A.; Knotts, H. Gibbs; Schiff, Jen

    2012-01-01

    We know little about the amount of career preparation offered to students in political science departments. This lack of information is particularly troubling given the state of the current job market and the growth of applied degree programs on university campuses. To address this issue, this article presents the results of a December 2010 survey…

  2. Tenure Standards in Political Science Departments: Results from a Survey of Department Chairs

    ERIC Educational Resources Information Center

    Rothgeb, John M., Jr.; Burger, Betsy

    2009-01-01

    This article presents the results from a survey of political science department chairs regarding the tenure procedures and standards at their colleges or universities. The findings reveal that only a small fraction of the colleges and universities in the United States refuse to offer tenure or are attempting to limit tenure. We also find general…

  3. Tenure Standards in Political Science Departments: Results from a Survey of Department Chairs

    ERIC Educational Resources Information Center

    Rothgeb, John M., Jr.; Burger, Betsy

    2009-01-01

    This article presents the results from a survey of political science department chairs regarding the tenure procedures and standards at their colleges or universities. The findings reveal that only a small fraction of the colleges and universities in the United States refuse to offer tenure or are attempting to limit tenure. We also find general…

  4. Scientific Opportunities to Reduce Risk in Nuclear Process Science - 9279

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-03-01

    In this document, we propose that scientific investments for the disposal of nuclear and hazardous wastes should not be focused solely on what may be viewed as current Department of Energy needs, but also upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EM’s Engineering and Technology Roadmap.

  5. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    NASA Astrophysics Data System (ADS)

    Gillich, Don; Shannon, Mike; Kovanen, Andrew; Anderson, Tom; Bright, Kevin; Edwards, Ronald; Danon, Yaron; Moretti, Brian; Musk, Jeffrey

    2011-06-01

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of ˜100 keV. Within the next year, cadets and faculty at USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.

  6. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    SciTech Connect

    Gillich, Don; Kovanen, Andrew; Anderson, Tom; Bright, Kevin; Edwards, Ronald; Moretti, Brian; Shannon, Mike; Musk, Jeffrey; Danon, Yaron

    2011-06-01

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of {approx}100 keV. Within the next year, cadets and faculty at USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.

  7. U.S. State Department urged to beef up science component

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. State Department often comes under pressure to respond to a variety of international emergencies one after another, from the U.S. embassy bombings in Kenya and Tanzania to Hurricane Mitch in Central America to the crisis in Kosovo.Many of the department's priorities include significant science, technology, and health (STH) components: nuclear nonproliferation, global climate change, protecting scientific databases, and international food and water supply safety, including arsenic in drinking water wells in Bangladesh, among other varied issues.

  8. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  9. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  10. Nuclear Science Division annual report for 1991

    SciTech Connect

    Myers, W.D.

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

  11. Nuclear Science Division annual report for 1991

    SciTech Connect

    Myers, W.D.

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

  12. Molecular forensic science of nuclear materials

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  13. Nuclear Science Outreach in the World Year of Physics

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  14. Nuclear science and technology, a four-week residential summer program for high school rising seniors at NCSU

    SciTech Connect

    Stam, E. )

    1992-01-01

    In 1982, the North Carolina State University (NCSU) Department of Nuclear Engineering (NE Department) established a 2-week residential summer program on nuclear science and technology for high school rising seniors to stimulate their interest in nuclear engineering as a career. The program was designed with the following goals in mind: (1) to expose the students to mathematics and science fundamentals, which are essential for a career in science or engineering; (2) to demonstrate the use of nuclear energy and nuclear techniques in areas that affect the well being, technical progress, and the shape of our society; (3) to acquaint the students with the resources of NCSU when contemplating a career in science of engineering; and (4) to provide a relaxed setting for student-faculty interaction, which can provide motivation and guidance toward a career in science or engineering and ease the transition from high school to college.

  15. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  16. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  17. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    SciTech Connect

    Friedlander, E.M.

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

  18. Estimated dose from diagnostic nuclear medicine patients to people outside the Nuclear Medicine department.

    PubMed

    Bartlett, Marissa L

    2013-11-01

    Patients undergoing nuclear medicine scans can be a source of radiation exposure for staff, family and the public. In this paper, 12 common nuclear medicine scans are considered. Doses are estimated for a range of scenarios, to hospital staff, to the public and to the patients' co-workers and family. Estimates are based on dose rates measured as patients left the Nuclear Medicine department. Radiopharmaceutical clearance is calculated from biokinetic models described in International Commission on Radiological Protection publications 53, 80 and 106. For all scan types, and all scenarios, doses are estimated to be substantially less than the trigger level of 300 µSv. Within the hospital, Intensive Care Unit staff receive the highest dose (up to 80 µSv) from patients who have had a myocardial scan or a positron emission tomography scan. For out-patients, the highest doses (up to 100 µSv) are associated with travel on public transport (for 4 h) on the same day as the scan.

  19. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  20. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-08-28

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOE’s Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EM’s responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EM’s mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The

  1. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  2. Science, Society, and America's Nuclear Waste: Ionizing Radiation, Unit 2. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…

  3. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    SciTech Connect

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  4. Nuclear Science Division 1994 annual report

    SciTech Connect

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  5. Nuclear and Related Analytical Techniques for Environmental and Life Sciences

    SciTech Connect

    Frontasyeva, Marina

    2010-01-05

    The role of nuclear analytical techniques (NATs) in Environmental and Life Sciences is discussed. Examples of radioanalytical investigations at the IBR-2 pulsed fast reactor in Dubna illustrate the environmental, biomedical, geochemical and industrial applications of instrumental neutron activation analysis.

  6. Observations on gender equality in a UK Earth Sciences department

    NASA Astrophysics Data System (ADS)

    Imber, Jonathan; Allen, Mark; Chamberlain, Katy; Foulger, Gillian; Gregory, Emma; Hoult, Jill; Macpherson, Colin; Winship, Sarah

    2016-04-01

    The progress of women to senior positions within UK higher education institutes has been slow. Women are worst represented in science, engineering and technology disciplines, where, in 2011, only 15% of professors were female. The national position is reflected in the Department of Earth Sciences at Durham University. The Department's gender profile shows steadily increasing proportions of females from undergraduate (ca. 38%) to postgraduate (ca. 42%) to postdoctoral (ca. 45%) levels, before dropping sharply with increasing seniority to 33% (n=1), 14% (n=1), 14% (n=1) and 13% (n=2), respectively, of lecturers, senior lecturers, readers and professors. The data suggest there is no shortage of talented female postgraduates and postdoctoral researchers; however, females are not applying, not being shortlisted, or not being appointed to academic roles in the expected proportions. Analysis of applications to academic positions in the Department during the period 2010-2015 suggests that "head hunting" senior academics, in some cases driven by external factors such as the UK Research Excellence Framework, resulted in a small proportion (between 0% and 11%) of female applicants. These results can be explained by the small number of senior female Earth Scientists nationally and, probably, internationally. Junior lectureship positions attracted between 24% and 33% female applicants, with the greatest proportion of females applying where the specialism within Earth Sciences was deliberately left open. In addition to these externally advertised posts, the Department has had some success converting independent research Fellowships, held by female colleagues, into permanent academic positions (n=2 between 2010 and 2015). Data for academic promotions show there is a significant negative correlation between year of appointment to first academic position within the Department (r=0.81, n=19, p<0.01), and the time taken to achieve first promotion at Durham. Data for our promoted

  7. Expanding Science Knowledge: Enabled by Nuclear Power

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2011-01-01

    The availability of Radioisotope Power Sources (RPSs) power opens up new and exciting mission concepts (1) New trajectories available (2) Power for long term science and operations Astonishing science value associated with these previously non-viable missions

  8. UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.

    ERIC Educational Resources Information Center

    Dhabanandana, Salag

    This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…

  9. What Opinions Do High School Students Hold About Nuclear Science?

    ERIC Educational Resources Information Center

    Crater, Harold L.

    1977-01-01

    In 1975, selected high ability secondary students attended a program in Nuclear and Environmental Science. Likert-like pre- and posttests concerning aspects of nuclear technology were given to the students. Results indicated no favorable or unfavorable changes in student attitudes towards the ideas sampled. Sample questions included. (MA)

  10. Middle School Students, Science Textbooks, Television and Nuclear War Issues.

    ERIC Educational Resources Information Center

    Hamm, Mary

    The extent to which the issue of nuclear war technology is treated in middle-school science texts, and how students learn about nuclear war and war technology were studied. Five raters compared the most widely used textbooks for grades 6 and 7 to determine the amount of content on: (1) population growth; (2) world hunger; (3) war technology; (4)…

  11. The use of nuclear medicine techniques in the emergency department

    PubMed Central

    McGlone, B; Balan, K

    2001-01-01

    Nuclear medicine techniques have received little attention in the practice of emergency medicine, yet radionuclide imaging can provide valuable and unique information in the management of acutely ill patients. In this review, emphasis is placed on the role of these techniques in patients with bone injuries, non-traumatic bone pain and in those with pleuritic chest pain. New developments such as single photon emission computed tomography (SPECT) in myocardial infarction are outlined and older techniques such as scrotal scintigraphy are reviewed. Radionuclide techniques are discussed in a clinical context and in relation to alternative imaging modalities or strategies that may be available to the emergency medicine physician. Aspects of a 24 hour nuclear medicine service are considered. PMID:11696487

  12. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    SciTech Connect

    Jesse Schrieber

    2008-07-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

  13. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  14. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    SciTech Connect

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-05-11

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. Our review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. Furthermore, the development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  15. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  16. Opportunities in Nuclear Science: A Long-Range Plan for the Next Decade

    SciTech Connect

    None, None

    2002-04-01

    The DOE/NSF Nuclear Science Advisory Committee of the Department of Energy and the National Science Foundation is charged with providing advice on a continuing basis regarding the management of the national basic nuclear science research program. In July 2000, the Committee was asked to study the opportunities and priorities for U.S. nuclear physics research, and to develop a long-range plan that will serve as a frame-work for the coordinated advancement of the field for the next decade. The plan contained here is the fifth that has been pre-pared since the Committee was established. Each of the earlier plans has had substantial impact on new directions and initiatives in the field.

  17. Opportunities in Research in Nuclear Science at MSI

    NASA Astrophysics Data System (ADS)

    van Bibber, Karl

    2013-04-01

    Nuclear science and engineering, once thought to be a field in decline, is experiencing a remarkable renaissance, with all the major nuclear science and engineering programs in the US having doubled in the past ten years, a growth which continues unabated. Students view the vast potential of nuclear power and radiation as transformative for energy, industry and medicine, but also see the associated challenges of nonproliferation and environmental stewardship as important societal goals worthy of their future careers. In order to replenish the pipeline of critical nuclear skills into the DOE national labs for the national security mission, the NNSA Office of Nuclear Nonproliferation in 2011 launched a major education and pipeline initiative called the Nuclear Science and Security Consortium (NSSC), comprised of seven research universities and four national labs. Against the backdrop of the projected dearth of scientists and engineers in the 21st century who could hold security clearances, the NNSA augmented this program with a MSI component to engage traditionally underrepresented minority institutions and students, and thus reach out to previously untapped pools of talent. This talk will review the NSSC MSI program after one year, including the Summer Fellowship Program and the Research Grant Program, along with the experience of two NSSC universities with long-standing research relationships with MSI partners in nuclear science and engineering. The perspective from the DOE labs will be discussed as well, who are the intended beneficiaries of the transition from students to career scientists.

  18. Coupled-Cluster Theory for Nuclear Science

    NASA Astrophysics Data System (ADS)

    Dean, D. J.

    2003-10-01

    I discuss an initial implementation of the coupled-cluster method for nuclear structure calculations and apply our method to 4He. In this procedings I will discuss the effect of center-of-mass removal on our results.

  19. Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"

    SciTech Connect

    2009-02-01

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our

  20. Impact of contributions of Glenn T. Seaborg on nuclear science

    SciTech Connect

    Hoffman, Darleane C.

    2000-12-26

    Glenn Theodore Seaborg (1912-199) was a world-renowned nuclear chemist, a Nobel Laureate in chemistry in 1951, co-discoverer of plutonium and nine other transuranium elements, Chairman of the U.S. Atomic Energy Commission from 1961-71, scientific advisor to ten U.S. presidents, active in national and international professional societies, an advocate for nuclear power as well as for a comprehensive nuclear test ban treaty, a prolific writer, an avid hiker, environmentalist, and sports enthusiast. He was known and esteemed not only by chemists and other scientists throughout the world, but also by lay people, politicians, statesmen, and students of all ages. This memorial includes a brief glimpse of Glenn Seaborg's early life and education, describes some of his major contributions to nuclear science over his long and fruitful career, and highlights the profound impact of his contributions on nuclear science, both in the U.S. and in the international community.

  1. Using the World Wide WEB to promote science education in nuclear energy and RWM

    SciTech Connect

    Robinson, M.

    1996-12-31

    A priority of government and business in the United States and other first tier industrial countries continues to be the improvement of science, mathematics and technology (SMT) instruction in pre university level education. The U.S. federal government has made SMT instruction an educational priority and set goals for improving it in the belief that science, math and technology education are tied to our economic well being and standard of living. The new national standards in mathematics education, science education and the proposed standards in technology education are all aimed at improving knowledge and skills in the essential areas that the federal government considers important for protecting our technological advantage in the world economy. This paper will discuss a pilot project for establishing graphical Web capability in a limited number of rural Nevada schools (six) with support from the US Department of Energy (DOE) and the state of Nevada. The general goals of the pilot project are as follows: (1) to give rural teachers and students access to up to date science information on the Web; (2) to determine whether Web access can improve science teaching and student attitudes toward science in rural Nevada schools; and (3) to identify science content on the Web that supports the National Science Standards and Benchmarks. A specific objective that this paper will address is stated as the following question: What potential do nuclear energy information office web sites offer for changing student attitudes about nuclear energy and creating greater nuclear literacy.

  2. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    SciTech Connect

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

  3. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    DOE PAGES

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; ...

    2016-05-11

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. Our review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. Furthermore, the development of chronometric methods for age dating nuclearmore » materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.« less

  4. Science Goals of the U.S. Department of the Interior Southeast Climate Science Center

    USGS Publications Warehouse

    Dalton, Melinda S.

    2011-01-01

    In 2011, the U.S. Department of the Interior Southeast Climate Science Center (CSC) finalized the first draft of its goals for research needed to address the needs of natural and cultural partners for climate science in the Southeastern United States. The science themes described in this draft plan were established to address the information needs of ecoregion conservation partnerships, such as the Landscape Conservation Cooperatives (LCCs) and other regional conservation-science and resource-management partners. These themes were developed using priorities defined by partners and stakeholders in the Southeast and on a large-scale, multidisciplinary project-the Southeast Regional Assessment Project (SERAP)-developed in concert with those partners. Science products developed under these themes will provide models of potential future conditions, assessments of likely impacts, and tools that can be used to inform the conservation management decisions of LCCs and other partners. This information will be critical as managers try to anticipate and adapt to climate change. Resource managers in the Southeast are requesting this type of information, in many cases as a result of observed climate change effects. The Southeast CSC draft science plan identifies six science themes and frames the activities (tasks, with examples of recommended near-term work for each task included herein) related to each theme that are needed to achieve the objectives of the Southeast CSC.

  5. Nuclear Chemistry, Science (Experimental): 5316.62.

    ERIC Educational Resources Information Center

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  6. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  7. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent...

  8. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

  9. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent...

  10. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

  11. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

  12. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent...

  13. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

  14. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent...

  15. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent...

  16. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operation of nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel... of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

  17. Little science, big science: strategies for research portfolio selection in academic surgery departments.

    PubMed

    Shah, Anand; Pietrobon, Ricardo; Cook, Chad; Sheth, Neil P; Nguyen, Lam; Guo, Lucie; Jacobs, Danny O; Kuo, Paul C

    2007-12-01

    To evaluate National Institutes of Health (NIH) funding for academic surgery departments and to determine whether optimal portfolio strategies exist to maximize this funding. The NIH budget is expected to be relatively stable in the foreseeable future, with a modest 0.7% increase from 2005 to 2006. Funding for basic and clinical science research in surgery is also not expected to increase. NIH funding award data for US surgery departments from 2002 to 2004 was collected using publicly available data abstracted from the NIH Information for Management, Planning, Analysis, and Coordination (IMPAC) II database. Additional information was collected from the Computer Retrieval of Information on Scientific Projects (CRISP) database regarding research area (basic vs. clinical, animal vs. human, classification of clinical and basic sciences). The primary outcome measures were total NIH award amount, number of awards, and type of grant. Statistical analysis was based on binomial proportional tests and multiple linear regression models. The smallest total NIH funding award in 2004 to an individual surgery department was a single $26,970 grant, whereas the largest was more than $35 million comprising 68 grants. From 2002 to 2004, one department experienced a 336% increase (greatest increase) in funding, whereas another experienced a 73% decrease (greatest decrease). No statistically significant differences were found between departments with decreasing or increasing funding and the subspecialty of basic science or clinical research funded. Departments (n = 5) experiencing the most drastic decrease (total dollars) in funding had a significantly higher proportion of type K (P = 0.03) grants compared with departments (n = 5) with the largest increases in total funding; the latter group had a significantly increased proportion of type U grants (P = 0.01). A linear association between amount of decrease/increase was found with the average amount of funding per grant and per

  18. Developing an emergency department crowding dashboard: A design science approach.

    PubMed

    Martin, Niels; Bergs, Jochen; Eerdekens, Dorien; Depaire, Benoît; Verelst, Sandra

    2017-08-30

    As an emergency department (ED) is a complex adaptive system, the analysis of continuously gathered data is valuable to gain insight in the real-time patient flow. To support the analysis and management of ED operations, relevant data should be provided in an intuitive way. Within this context, this paper outlines the development of a dashboard which provides real-time information regarding ED crowding. The research project underlying this paper follows the principles of design science research, which involves the development and study of artifacts which aim to solve a generic problem. To determine the crowding indicators that are desired in the dashboard, a modified Delphi study is used. The dashboard is implemented using the open source Shinydashboard package in R. A dashboard is developed containing the desired crowding indicators, together with general patient flow characteristics. It is demonstrated using a dataset of a Flemish ED and fulfills the requirements which are defined a priori. The developed dashboard provides real-time information on ED crowding. This information enables ED staff to judge whether corrective actions are required in an effort to avoid the adverse effects of ED crowding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  20. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  1. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  2. Fusion Nuclear Science Facility (FNSF) motivation and required capabilities

    NASA Astrophysics Data System (ADS)

    Peng, Y. K. M.; Park, J. M.; Canik, J. M.; Diem, S. J.; Sontag, A. C.; Lumsdaine, A.; Murakami, M.; Katoh, Y.; Burgess, T. W.; Korsah, K.; Patton, B. D.; Wagner, J. C.; Yoder, G. L.; Cole, M. J.; Fogarty, P. J.; Sawan, M.

    2011-10-01

    A compact (R0 ~ 1.2-1.3m), low aspect ratio, low-Q (<3) Fusion Nuclear Science Facility (FNSF) was recently assessed to provide a fully integrated, D-T-fueled, continuously driven plasma, volumetric nuclear environment of copious neutrons. This environment would be used to carry out, for the first time, discovery-driven research in fusion nuclear science and materials, in parallel with and complementary to ITER. This research would aim to test, discover, and understand new nuclear-nonnuclear synergistic interactions involving plasma material interactions, neutron material interactions, tritium fuel breeding and transport, and power extraction, and innovate and develop solutions for DEMO components. Progress will be reported on the fusion nuclear-nonnuclear coupling effects identified that motivate research on such an FNSF, and on the required capabilities in fusion plasma, device operation, and fusion nuclear science and engineering to fulfill its mission. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

  3. Application of nuclear-physics methods in space materials science

    NASA Astrophysics Data System (ADS)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  4. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    SciTech Connect

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  5. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  6. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  7. Forecasting Science and Technology for the Department of Defense

    DTIC Science & Technology

    2009-12-01

    areas as astronomy, atmospheric sciences, and chemical engineering. Because the trend in research is toward multidisciplinary and transdisciplinary ...biosensing in a nonlinear manner. These technological convergences represented a transdisciplinary approach to science, one in which basic concepts

  8. Using Mathematics in Science: Working with Your Mathematics Department

    ERIC Educational Resources Information Center

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  9. Using Mathematics in Science: Working with Your Mathematics Department

    ERIC Educational Resources Information Center

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  10. Basic research supported by the Office of Basic Energy Sciences, U.S. Department of Energy

    SciTech Connect

    Kelley, R.D.

    1995-08-01

    This presentation will outline the basic research activities of the Office of Basic Energy Sciences (BES) of the U.S. Department of Energy. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department`s mission. Of particular focus in the presentation are the research programs, amounting to about $10 million, supported by the Materials Sciences Division and the Chemical Sciences Division which are fairly directly related to electrochemical technologies.

  11. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    ERIC Educational Resources Information Center

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-01-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own…

  12. Nuclear Science Division, 1995--1996 annual report

    SciTech Connect

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  13. NNS computing facility manual P-17 Neutron and Nuclear Science

    SciTech Connect

    Hoeberling, M.; Nelson, R.O.

    1993-11-01

    This document describes basic policies and provides information and examples on using the computing resources provided by P-17, the Neutron and Nuclear Science (NNS) group. Information on user accounts, getting help, network access, electronic mail, disk drives, tape drives, printers, batch processing software, XSYS hints, PC networking hints, and Mac networking hints is given.

  14. Navigating nuclear science: Enhancing analysis through visualization

    SciTech Connect

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  15. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    SciTech Connect

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G.

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists. (WHK)

  16. Status report of the US Department of Energy`s International Nuclear Safety Program

    SciTech Connect

    1994-12-01

    The US Department of Energy (DOE) implements the US Government`s International Nuclear Safety Program to improve the level of safety at Soviet-designed nuclear power plants in Central and Eastern Europe, Russia, and Unkraine. The program is conducted consistent with guidance and policies established by the US Department of State (DOS) and the Agency for International Development and in close collaboration with the Nuclear Regulatory Commission. Some of the program elements were initiated in 1990 under a bilateral agreement with the former Soviet Union; however, most activities began after the Lisbon Nuclear Safety Initiative was announced by the DOS in 1992. Within DOE, the program is managed by the International Division of the Office of Nuclear Energy. The overall objective of the International Nuclear Safety Program is to make comprehensive improvements in the physical conditions of the power plants, plant operations, infrastructures, and safety cultures of countries operating Soviet-designed reactors. This status report summarizes the Internatioal Nuclear Safety Program`s activities that have been completed as of September 1994 and discusses those activities currently in progress.

  17. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    PubMed Central

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  18. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    PubMed

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy.

  19. Implementing and Sustaining Science Curriculum Reform: A Study of Leadership Practices among Teachers within a High School Science Department

    ERIC Educational Resources Information Center

    Larkin, Douglas B.; Seyforth, Scott C.; Lasky, Holly J.

    2009-01-01

    This study presents a description and analysis of a ninth-grade integrated science curriculum developed and implemented by teachers within a high school science department and subsequently sustained for over 25 years. The Integrated Science Program (ISP) at Lakeside Southwest High School depicted here offers a unique example of longitudinal…

  20. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments.

    PubMed

    Shafe, A; Mortazavi, S M J; Joharnia, A; Safaeyan, Gh H

    2016-09-01

    Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.

  1. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments

    PubMed Central

    Shafe, A.; Mortazavi, S.M.J.; Joharnia, A.; Safaeyan, Gh.H.

    2016-01-01

    Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination. PMID:27853728

  2. U.S. Department of Energy facilities needed to advance nuclear power.

    PubMed

    Ahearne, John F

    2011-01-01

    This talk is based upon a November 2008 report by the U.S. Department of Energy (DOE) Nuclear Energy Advisory Committee (NEAC). The report has two parts, a policy section and a technology section. Here extensive material from the Technical Subcommittee section of the NEAC report is used.

  3. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2013

    DTIC Science & Technology

    2013-10-01

    130 Foreign Affairs 633 Physical Therapist 1222 Patent Attorney 131 International Relations 644 Medical Technologist 1301 General Physical Science...132 Intelligence 662 Optometrist 1306 Health Physics 150 Geography 665 Speech Pathology and Audiology 1310 Physics 170 History 680 Dental Officer

  4. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  5. 77 FR 6131 - Memorandum of Understanding Between the U.S. Nuclear Regulatory Commission and the Department of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... facilities, airports, dams, military and chemical facilities, and pipelines. Department of Homeland Security... this agreement is: Branch Chief, Reactor Security Licensing Branch, Office of Nuclear Security and...

  6. Practical matters for the control of contamination in a nuclear medicine department.

    PubMed

    Nicol, A; Robertson, J; McCurrach, A

    2011-03-01

    A practicable and safe methodology is required for the control of contamination arising due to work in nuclear medicine departments, taking account of the range of radionuclides used for diagnostic and therapeutic procedures. A method for categorising radionuclides is proposed, based on their contamination derived limits. The categories utilised are: low energy gamma, imaging gamma, high energy gamma with beta, low energy beta, high energy beta and (51)Cr. A framework for the preparation of a risk assessment for the control of contamination in a nuclear medicine department is presented. This includes assessment of the procedures performed, occupancies and workflows for the department and a review of control measures. A risk assessment should also include a contamination monitoring programme and a practicable approach is presented.

  7. Basic Research Policy of the Department of Defense: Report of the Defense Science Board Task Force

    DTIC Science & Technology

    1968-02-20

    Classification) Basic Research Policy of the Department of Defense, Report of the Defense Science Board Task Force, UNCLASSIFIED 12 PERSONAL AUTHOR(S) N/A...obsolete. SECURITY CLASSIFICATION OF THIS PAGE — In wcnssrnw BASIC RESEARCH POLICY OF THE DEPARTMENT OF DEFENSE Report of the Defense Science Board Task...BOARD SUBJECT: Report of Task Force on Basic Research Policy The Task Force of the Defense Science Board, appointed at the request of the

  8. Individuals and Leadership in an Australian Secondary Science Department: A Qualitative Study

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John; Bartley, Anthony

    2007-01-01

    In this article, we consider the complex and dynamic inter-relationships between individual science teachers, the social space of their work and their dispositions towards teacher leadership. Research into the representation of school science departments through individual science teachers is scarce. We explore the representations of four…

  9. Individuals and Leadership in an Australian Secondary Science Department: A Qualitative Study

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John; Bartley, Anthony

    2007-01-01

    In this article, we consider the complex and dynamic inter-relationships between individual science teachers, the social space of their work and their dispositions towards teacher leadership. Research into the representation of school science departments through individual science teachers is scarce. We explore the representations of four…

  10. 2000 U.S. Department of Energy Strategic Plan: Strength through Science Powering the 21st Century

    SciTech Connect

    None,

    2000-09-01

    The Department of Energy conducts programs relating to energy resources, national nuclear security, environmental quality, and science. In each of these areas, the US is facing significant challenges. Our economic well-being depends on the continuing availability of reliable and affordable supplies of clean energy. Our Nation's security is threatened by the proliferation of weapons of mass destruction. Our environment is under threat from the demands a more populated planet and the legacies of 20th-century activities. Science and the technology derived from it offer the promise to improve the Nation's health and well-being and broadly expand human knowledge. In conducting its programs, the Department of Energy (DOE) employs unique scientific and technical assets, including 30,000 scientists, engineers, and other technical staff, in a complex of outstanding national laboratories that have a capital value of over $45 billion. Through its multidisciplinary research and development activities and its formidable assemblage of scientific and engineering talent, DOE focuses its efforts on four programmatic business lines: (1) Energy Resources--promoting the development and deployment of systems and practices that provide energy that is clean, efficient, reasonably priced, and reliable. (2) National Nuclear Security--enhancing national security through military application of nuclear technology and by reducing global danger from the potential spread of weapons of mass destruction. (3) Environmental Quality--cleaning up the legacy of nuclear weapons and nuclear research activities, safely managing nuclear materials, and disposing of radioactive wastes. (4) Science--advancing science and scientific tools to provide the foundation for DOE's applied missions and to provide remarkable insights into our physical and biological world. In support of the above four business lines, DOE provides management services to ensure that the technical programs can run efficiently. Our

  11. M. D. Faculty Salaries in Psychiatry and All Clinical Science Departments, 1980-2006

    ERIC Educational Resources Information Center

    Haviland, Mark G.; Dial, Thomas H.; Pincus, Harold Alan

    2009-01-01

    Objective: The authors compare trends in the salaries of physician faculty in academic departments of psychiatry with those of physician faculty in all academic clinical science departments from 1980-2006. Methods: The authors compared trend lines for psychiatry and all faculty by academic rank, including those for department chairs, by graphing…

  12. M. D. Faculty Salaries in Psychiatry and All Clinical Science Departments, 1980-2006

    ERIC Educational Resources Information Center

    Haviland, Mark G.; Dial, Thomas H.; Pincus, Harold Alan

    2009-01-01

    Objective: The authors compare trends in the salaries of physician faculty in academic departments of psychiatry with those of physician faculty in all academic clinical science departments from 1980-2006. Methods: The authors compared trend lines for psychiatry and all faculty by academic rank, including those for department chairs, by graphing…

  13. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    SciTech Connect

    Soelberg, Renae

    2015-03-01

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and University of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.

  14. Recent Developments in Cold Fusion / Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2006-03-01

    Krivit is recognized internationally as an expert on the subject matter of cold fusion / condensed matter nuclear science. He is the editor of New Energy Times, the leading source of information for the field of cold fusion. He is the author of the 2005 book, The Rebirth of Cold Fusion and founder of New Energy Institute, an independent nonprofit public benefit corporation dedicated to accelerating the progress of new, sustainable and environmentally friendly energy sources.

  15. Recommendations for a Department of Energy nuclear energy R and D agenda

    SciTech Connect

    1997-12-01

    On January 14, 1997, the President requested that his Committee of Advisors on Science and Technology (PCAST) make ``recommendations ... by October 1, 1997 on how to ensure that the United States has a program that addresses its energy and environmental needs for the next century.`` In its report, Federal Energy Research and Development for the Challenges of the Twenty-First Century, the PCAST Panel stated that ``the United States faces major energy-related challenges as it enters the twenty-first century`` and links these challenges to national economic and environmental well-being as well as to national security. The Panel concluded that ``Fission belongs in the R and D portfolio.`` In conjunction with this activity, the DOE Office of Nuclear Energy, Science and Technology, together with seven of the national laboratories, undertook a study to recommend nuclear energy R and D responses to the challenges and recommendations identified by the PCAST Panel. This seven-laboratory study included an analysis of past and present nuclear energy policies, current R and D activities, key issues, and alternative scenarios for domestic and global nuclear energy R and D programs and policies. The results are summarized. Nuclear power makes important contributions to the nation`s well-being that can be neither ignored nor easily replaced without significant environmental and economic costs, particularly in an energy future dominated by global energy growth but marked by significant uncertainties and potential instabilities. Future reliance on these contributions requires continuing past progress on the issues confronting nuclear power today: safety, waste management, proliferation, and economics. A strong nuclear energy agenda will enable the U.S. government to meet its three primary energy responsibilities: (1) respond to current needs; (2) prepare the country for anticipated future developments; and (3) safeguard the country from unexpected future events.

  16. The ABC`s of nuclear science workshop

    SciTech Connect

    McMahn, P.; Carlock, M.S.; Mattis, H.; Norman, E.; Seaborg, G.

    1997-12-31

    Over the last several years the Contemporary Physics Education Project (CPEP) has developed two wall charts which illustrate contemporary aspects of particle and plasma physics for high school and undergraduate students. We are now working with CPEP on the development of a similar chart for nuclear science. This chart will illustrate the basics of nuclear science coupled with the exciting research which is being done in this field. This workshop will explore the wall chart, along with materials and experiments that have been developed to accompany it. The set of experiments have been developed by high school teachers, chemists, and physicists working together, and include experiments such as, {open_quotes}the ABCs of Nuclear Science,{close_quotes} and experiments exploring the various kinds of radioactive decay, radioactivity in common household products, half-live measurements, radiography, etc. Teachers who join the project as chart field testers will receive a poster size chart and accompanying materials free of charge. The materials also include a video about cosmic rays has also been produced for the classroom.

  17. Integrating industry nuclear codes and standards into United States Department of Energy facilities

    SciTech Connect

    Jacox, J.

    1995-02-01

    Recently the United States Department of Energy (DOE) has mandated facilities under their jurisdiction use various industry Codes and Standards developed for civilian power reactors that operate under U.S. Nuclear Regulatory Commission License. While this is a major step forward in putting all our nuclear facilities under common technical standards there are always problems associated with implementing such advances. This paper will discuss some of the advantages and problems experienced to date. These include the universal challenge of educating new users of any technical documents, repeating errors made by the NRC licensed facilities over the years and some unique problems specific to DOE facilities.

  18. A study of technetium-99m wastage in selected private sector nuclear medicine imaging departments.

    PubMed

    Mathurine, Germaine; Bresser, Philippa; Teixeira, Nadia

    2013-12-01

    South African nuclear medicine imaging departments have been fortunate in being able to receive an uninterrupted supply of molybdenum-99 (99Mo)/technetium-99m (99mTc) generators. Nuclear medicine radiographers practising in private sector services in the northern Gauteng region indicated a possible problem with the quantities of wasted and unused 99mTc radiopharmaceuticals returned to the radiopharmaceutical supply laboratory. Daily radiopharmaceutical deliveries are a combination of ordered packages and standard packages. The purpose of the standard package is to accommodate emergency and after-hours nuclear medicine services. The purpose of the study was to interrogate the unconfirmed reports of 99mTc radiopharmaceutical wastage. A descriptive quantitative research design was conducted in six private sector nuclear medicine imaging practices in the northern Gauteng region. Overt observations of the quantities of radiopharmaceutical supply, usage and wastage were conducted over 2 days in each of these practices. Ordered packages comprised 14% of the total 99mTc radiopharmaceutical deliveries to these six nuclear medicine imaging departments. It was identified that:(1) a total of 83.2% of ordered packages and 35.1% of standard packages of preprepared syringes were utilized;(2) a total of 36% of ordered packages and 22.6% of standard packages of bulk 99mTc were utilized; and (3) a total of 70.6% of the total quantity of radiopharmaceuticals was returned to the radiopharmaceutical laboratory. The total wastage represented 45.5% of the ordered packages and 75.8% of the standard packages. Wastage of 74 GBq of 99mTc from six sites over 12 days should raise concerns for the nuclear medicine industry. A review of the system framework that supports communication between the radiopharmaceutical supplier/s and the nuclear medicine imaging practices is recommended.

  19. A study of technetium-99m wastage in selected private sector nuclear medicine imaging departments

    PubMed Central

    Bresser, Philippa; Teixeira, Nadia

    2013-01-01

    Background South African nuclear medicine imaging departments have been fortunate in being able to receive an uninterrupted supply of molybdenum-99 (99Mo)/technetium-99m (99mTc) generators. Nuclear medicine radiographers practising in private sector services in the northern Gauteng region indicated a possible problem with the quantities of wasted and unused 99mTc radiopharmaceuticals returned to the radiopharmaceutical supply laboratory. Daily radiopharmaceutical deliveries are a combination of ordered packages and standard packages. The purpose of the standard package is to accommodate emergency and after-hours nuclear medicine services. The purpose of the study was to interrogate the unconfirmed reports of 99mTc radiopharmaceutical wastage. Methods A descriptive quantitative research design was conducted in six private sector nuclear medicine imaging practices in the northern Gauteng region. Overt observations of the quantities of radiopharmaceutical supply, usage and wastage were conducted over 2 days in each of these practices. Results Ordered packages comprised 14% of the total 99mTc radiopharmaceutical deliveries to these six nuclear medicine imaging departments. It was identified that: (1) a total of 83.2% of ordered packages and 35.1% of standard packages of preprepared syringes were utilized; (2) a total of 36% of ordered packages and 22.6% of standard packages of bulk 99mTc were utilized; and (3) a total of 70.6% of the total quantity of radiopharmaceuticals was returned to the radiopharmaceutical laboratory. The total wastage represented 45.5% of the ordered packages and 75.8% of the standard packages. Conclusion Wastage of 74 GBq of 99mTc from six sites over 12 days should raise concerns for the nuclear medicine industry. A review of the system framework that supports communication between the radiopharmaceutical supplier/s and the nuclear medicine imaging practices is recommended. PMID:24089081

  20. U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan

    USGS Publications Warehouse

    Jones, Sonya A.; Dalton, Melinda S.

    2012-01-01

    Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response

  1. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2011

    DTIC Science & Technology

    2011-05-01

    Attorney 130 Foreign Affairs 633 Physical Therapist 1222 Patent Attorney 131 International Relations 644 Medical Technologist 1301 General Physical...Science 132 Intelligence 662 Optometrist 1306 Health Physics 150 Geography 665 Speech Pathology and Audiology 1310 Physics 170 History 680 Dental... teachers are in S&E fields. Within these limitations, the Census Bureau’s 2007 American Community Survey permits an analysis of trends in the

  2. Canadian emergency department preparedness for a nuclear, biological or chemical event.

    PubMed

    Kollek, Daniel

    2003-01-01

    Since the terror attacks of September 11th, emergency departments across North America have become more aware of the need to be prepared to deal with a mass casualty terror event, particularly one involving nuclear, biological or chemical contaminants. The effects of such an attack could also be mimicked by accidental release of toxic chemicals, radioactive substances or biological agents unrelated to terrorist activity. The purpose of this study was to review the risks and characteristics of these events and to assess the preparedness of Canadian emergency departments to respond. This was done by means of a survey, which showed a significant risk of a mass casualty event (most likely chemical) coupled with a deficiency in preparedness -- most notably in the availability of appropriate equipment, antidotal therapy and decontamination capability. There were also significant deficiencies in the ability to respond to a major biologic or nuclear event.

  3. Strategic plan for the US Department of Energy Nuclear Weapons Complex Polymer Waste Stream

    SciTech Connect

    Swartz, W.E. Jr.

    1991-08-08

    This plan addresses the objectives and implementation strategy for the US Department of Energy (DOE) Nuclear Weapons Complex (NWC) Polymer Waste Stream (PWS) program through FY 1996. The purpose of the plan is to develop a comprehensive hazard/waste minimization program for PWS projects. The overall focus of the strategy is directed toward hazard/waste minimization for PWS processes. This involves the elimination/minimization of processes and materials that result in potential exposure of the work force to hazardous materials during the production of nuclear weapons and pose a threat to the environment by the potential release of toxic or environmentally harmful materials. The Department of Energy established the Waste Minimization Management Group (WMMG) in August 1990. The WMMG was given the mission of establishing and coordinating a comprehensive program which would minimize waste and hazards in the production of weapons within the NWC.

  4. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-10-27

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  5. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  6. Preliminary design specification for Department of Energy standardized spent nuclear fuel canisters. Volume 1: Design specification

    SciTech Connect

    1998-08-19

    This document (Volume 1) is the preliminary design specification for the canisters to be used during the handling, storage, transportation, and repository disposal of Department of Energy (DOE) spent nuclear fuel (SNF). This document contains no procurement information, such as the number of canisters to be fabricated, explicit timeframes for deliverables, etc. A companion document (Volume 2) provides background information and design philosophy in order to help engineers better understand the established design requirements for these DOE SNF canisters.

  7. Feminist Science in the Case of a Reform-Minded Biology Department

    NASA Astrophysics Data System (ADS)

    Buxton, Cory A.

    This study explores how science and scientists were produced and reproduced within the setting of a university biology department. Building on recent work in the anthropology of education and feminist science studies, the author explored the reflexive questions of whether increased women's representation in science changed science practice and whether changing science practice increased women's representation insolence. The author examined both the contextual and constitutive values of science as they were negotiated and played out in the training of scientists in this setting. The author found some ways in which these values were shifting as more women assumed places of leadership in the department. At the same time, the author identified other ways in which the presence of women did not seem to cause the types of changes that feminist science studies have hypothesized. These findings can be interpreted through the anthropological perspective of practice theory, in which individuals are seen as exerting agency both within and against institutional structures.

  8. Individuals and Leadership in an Australian Secondary Science Department: A Qualitative Study

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Wallace, John; Bartley, Anthony

    2007-12-01

    In this article, we consider the complex and dynamic inter-relationships between individual science teachers, the social space of their work and their dispositions towards teacher leadership. Research into the representation of school science departments through individual science teachers is scarce. We explore the representations of four individual teachers to the assertions of teacher leadership proposed by Silva et al. (Teach Coll Rec, 102(4):779-804, 2000). These representations, expressed during regular science department meetings, occur in the social space of Bourdieu's "field" and are a reflection of the "game" of science education being played within the department. This departmentally centred space suggests an important implication when considering the relationship between subject departments and their schools. The development of an individual's representation of teacher leadership and the wider "field" of science education appears to shape the individual towards promoting their own sense of identity as a teacher of science, rather than as a teacher within a school. Our work suggests that for these individuals, the important "game" is science education, not school improvement. Consequently, the subject department may be a missing link between efforts to improve schools and current organizational practices.

  9. Improving efficiency management of radiopharmaceutical materials at a nuclear medicine department.

    PubMed

    Al Ahmed, Ali; Al-Surimi, Khaled

    2015-01-01

    The cost of radiopharmaceutical materials is highly expensive compared with other resources employed in nuclear medicine department. Hence, inefficient utilization of these costly materials will lead to waste and more financial burden on the healthcare system, increasing the patient waiting list for important diagnostic procedures, especially in those with need urgent care on time. The available data for the previous 12 months about positron emission tomography / computed tomography (PET/CT) unit at nuclear medicine departments showed that over 16% of radiopharmaceutical materials were not utilized and being wasted due to increased number of cancelled or rescheduled oncology patients. The overall financial cost for the underutilized radiopharmaceutical materials due to cancelled and rescheduled procedures for 142 patient were about 39,760 US dollar. Most of these are the oncology patients with diabetes arriving at the nuclear medicine department with high blood glucose level and so are not fit for the procedure. This project aims to improve the oncology diabetic patients preparation for PET/CT procedure to avoid wasting the radiopharmaceutical materials. After implementing the PDSA cycles on 14 oncology patients we found that the quantity of not utilized radiopharmaceuticals were significantly reduced. On the other hand, majority of oncology diabetic patients became more aware about the importance of following the required preparation instruction.

  10. Nuclear Science References (NSR) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Nuclear Science References (NSR) database is an indexed bibiliography of primary and secondary references in nuclear physics research. About 80 journals are regularly scanned for articles. Recent references are added on a weekly basis. Approximately 4300 entries are added to the database annually. In general, articles are included in NSR if they include measured, calculated, or deduced quantitative nuclear structure or reaction data. Papers that apply previously known data are generally not included. Examples of this include neutron activation analysis using known cross sections or radiological dating using known half-lives. The database can be searched like a normal bibliographic database but can also be searched by the data that distinguishes it, data such as the nuclide, target/parent/daughter, reaction, incident particles, and outgoing particles. (Specialized Interface) [Taken from the NSR Help pages at http://www.nndc.bnl.gov/nsr/nsr_help.jsp

  11. The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments

    NASA Astrophysics Data System (ADS)

    Beutel, Ann M.; Nelson, Donna J.

    This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.

  12. Overview of United States Department of Energy activities to support life extension of nuclear power plants

    SciTech Connect

    Harrison, D.L.; Rosinski, S.T.

    1993-11-01

    Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US The operating license of the first of these plants will expire in the year 2000; one-third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: establishment of regulations, technical standards, and procedures for the preparation and review of a license renewal application; development, verification, and validation of technical criteria and bases for monitoring, refurbishing, and/or replacing plant equipment; and demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE`s Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues in the principal areas of reactor pressure vessel (RPV) integrity, fatigue, and environmental qualification (EQ).

  13. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. |

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  14. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  15. Surface analysis for students in Nuclear Engineering and Radiological Sciences

    SciTech Connect

    Rotberg, V.H.; Busby, J.; Toader, O.; Was, G.S.

    2003-08-26

    Students in Nuclear Engineering and Radiological Sciences at the University of Michigan are required to learn about the various applications of radiation. Because of the broad applicability of accelerators to surface analysis, one of these courses includes a laboratory session on surface analysis techniques such as Rutherford Backscattering Analysis (RBS) and Nuclear Reaction Analysis (NRA). In this laboratory session, the students determine the concentration of nitrogen atoms in various targets using RBS and NRA by way of the 14N(d,{alpha})12C reaction. The laboratory is conducted in a hands-on format in which the students conduct the experiment and take the data. This paper describes the approach to teaching the theory and experimental methods behind the techniques, the conduct of the experiment and the analysis of the data.

  16. Glenn T. Seaborg and heavy ion nuclear science

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. Studies of low energy deep inelastic reactions are discussed, and special emphasis is placed on charge equilibration. Additionally, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions are reported. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  17. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  18. Delivery and collection of radioactive packages to and from UK hospital nuclear medicine departments.

    PubMed

    Lawson, Richard S; Davies, Glyn; Hesslewood, Stuart R; Hinton, Paul J; Maxwell, Alan

    2004-12-01

    Under radiation protection legislation in the UK, employers have a duty to maintain appropriate records to account for radioactive materials in their possession and to ensure security of these materials. This applies to radioactive packages, containing items such as technetium generators, which are regularly delivered to hospital nuclear medicine departments. It also applies to the collection of packages, such as those containing used generators for return to the supplier. This article has been written by the professional bodies representing nuclear medicine in the UK in order to provide guidance to hospitals on appropriate procedures that will comply with the legislation. General principles, which should be met by any acceptable protocol, are stated, and practical guidance on how these may be implemented is given. Some example scenarios are outlined.

  19. UNITED STATES DEPARTMENT OF HEALTH AND HUMAN SERVICES BIODOSIMETRY AND RADIOLOGICAL/NUCLEAR MEDICAL COUNTERMEASURE PROGRAMS.

    PubMed

    Homer, Mary J; Raulli, Robert; DiCarlo-Cohen, Andrea L; Esker, John; Hrdina, Chad; Maidment, Bert W; Moyer, Brian; Rios, Carmen; Macchiarini, Francesca; Prasanna, Pataje G; Wathen, Lynne

    2016-09-01

    The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats.

  20. Status of science education in state departments of education: An initial report

    NASA Astrophysics Data System (ADS)

    Dowling, Kenneth W.; Yager, Robert E.

    The past five years have been characterized as times of assessment in science education. One aspect of the profession where little information has been reported is the service and leadership provided by the various Departments of Education that exist as a part of the 50 state governments. Information was collected from the 50 states concerning the professional preparation of state science consultants, the nature of the positions, number of workers employed in such units, changes in support staff, facilities, and budget for each five year interval between 1960-1980. Science consultants are 46 years of age, have completed more than 10 years of classroom teaching, have been supervisors at the last level, have been in state positions for one-eight years, and have a Master's degree (half have the Ph.D.). Science consultants in the state department of education work in local schools, write proposals, assist with other administrative duties, work as members of evaluation teams. They spend two-thirds of their time in science education per se. The duties have become more general with less time spent exclusively on science education duties. The positions have become more involved with regulations, evaluations; the consultants enjoying less flexibility in their jobs. There has been a decline in terms of numbers of consultants, budget for science education; and general support for science education projects in state departments of education during the 20-year period surveyed.

  1. Magnet design considerations for Fusion Nuclear Science Facility

    SciTech Connect

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  2. Magnet Design Considerations for Fusion Nuclear Science Facility

    SciTech Connect

    Zhai, Y.; Kessel, C.; El-Guebaly, L.; Titus, P.

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  3. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  4. Preliminary design specification for Department of Energy standardized spent nuclear fuel canisters. Volume 2: Rationale document

    SciTech Connect

    1998-08-19

    This document (Volume 2) is a companion document to a preliminary design specification for the design of canisters to be used during the handling, storage, transportation, and repository disposal of Department of Energy (DOE) spent nuclear fuel (SNF). This document contains no procurement information, such as the number of canisters to be fabricated, explicit timeframes for deliverables, etc. However, this rationale document does provide background information and design philosophy in order to help engineers better understand the established design criteria (contained in Volume 1 respectively) necessary to correctly design and fabricate these DOE SNF canisters.

  5. NUCLEAR DATA NEEDS FOR ADVANCED REACTOR SYSTEMS. A NEA NUCLEAR SCIENCE COMMITTEE INITIATIVE.

    SciTech Connect

    SALVATORES,J.M.; ALIBERTI, G.; PALMIOTTI, G.; ROCHMAN, D.; OBLOZINSKY, P.; HERMANN, M.; TALOU, P.; KAWANO, T.; LEAL, L.; KONING, A.; KODELI, I.

    2007-04-22

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered.

  6. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  7. Knowledge about the availability of the pharmacist in the Nuclear Medicine Department: A questionnaire-based study among health-care professionals.

    PubMed

    Parasuraman, Subramani; Mueen Ahmed, K K; Bin Hashim, Tin Soe Saifullah; Muralidharan, Selvadurai; Kumar, Kalaimani Jayaraja; Ping, Wu Yet; Syamittra, Balakrishnan; Dhanaraj, Sokkalingam Arumugam

    2014-12-01

    The objective of this study was to analyze the knowledge about the availability of the pharmacist in the nuclear medicine department among health-care professionals through a prospective cohort study. A total of 741 health-care professionals participated in the study by answering 10 simple questions about the role of the pharmacist in the nuclear medicine department and the availability of pharmacist in the nuclear medicine department. An online questionnaire system was used to conduct the study, and participants were invited to participate through personal communications and by promoting the study through social websites including Facebook, LinkedIn and Google (including Gmail and Google+). The study was conducted between April 2013 and March 2014 using the http://www.freeonlinesurveys.com/Webserver. Finally, the data provided by 621 participants was analyzed. Group frequency analysis was performed using Statistical Package for the Social Sciences (SPSS) version 16 (SPSS Inc. USA). The participants were from Malaysia, India, Pakistan, Sri Lanka, Bangladesh, UAE and Nepal. In total, 312 (50.2%) female health-care professionals and 309 (49.8%) male health-care professionals participated in the study. Of the 621 participants, 390 were working in hospitals, and 231 were not working in hospitals. Of the participants who were working in hospitals, 57.6% were pharmacists. The proportion of study participants who were aware of nuclear pharmacists was 55.39%. Awareness about the role of the pharmacist in nuclear medicine was poor. The role of the pharmacist in a nuclear medicine unit needs to be highlighted and promoted among health-care professionals and hence that the nuclear medicine team can provide better pharmaceutical care.

  8. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  9. From Crisis to Transition: The State of Russian Science Based on Focus Groups with Nuclear Physicists

    SciTech Connect

    Gerber, T P; Ball, D Y

    2001-12-09

    The collapse of the Soviet system led to a sharp contraction of state funding for science. Formerly privileged scientists suddenly confronted miserly salaries (often paid late), plummeting social prestige, deteriorating research facilities and equipment, and few prospects for improvement. Many departed the field of science for more lucrative opportunities, both within Russia and abroad. The number of inventions, patent applications, and publications by Russian scientists declined. Reports of desperate nuclear physicists seeking work as tram operators and conducting hunger strikes dramatized the rapid collapse of one of the contemporary world's most successful scientific establishments. Even more alarming was the 1996 suicide of Vladimir Nechai, director of the second largest nuclear research center in Russia (Chelyabinsk-70, now known as Snezhinsk). Nechai, a respected theoretical physicist who spent almost 40 years working on Soviet and Russian nuclear programs, killed himself because he could no longer endure his inability to rectify a situation in which his employees had not been paid for more than 5 months and were ''close to starvation.'' The travails of Russia's scientists sparked interest in the West primarily because of the security threat posed by their situation. The seemingly relentless crisis in science raised fears that disgruntled scientists might sell their nuclear weapons expertise to countries or organizations that harbor hostile intentions toward the United States. Such concerns are particularly pressing in the wake of the September 2001 terrorist attacks in the US. At the same time, we should not overlook other critical implications that the state of Russian science has for Russia's long-term economic and political development. It is in the West's interest to see Russia develop a thriving market economy and stable democracy. A successful scientific community can help on both counts. Science and technology can attract foreign investment and fuel

  10. Department of Energy interest and involvement in nuclear plant license renewal activities

    SciTech Connect

    Bustard, L.D. ); Harrison, D.L. . Office of LWR Safety and Technology)

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort. 18 refs.

  11. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    ERIC Educational Resources Information Center

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive…

  12. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  13. Implementing Change within a School Science Department: Progressive and Dissonant Voices

    NASA Astrophysics Data System (ADS)

    Rigano, Donna L.; Ritchie, Stephen M.

    2003-06-01

    The purpose of this study was to describe the teaching and leadership experiences of a science teacher who, as head of department, was preparing to introduce changes in the science department of an independent school in response to the requirements of the new junior science syllabus in Queensland, Australia. This teacher consented to classroom observations and interviews with the researchers where his beliefs about teaching practice and change were explored. Other science teachers at the school also were interviewed about their reactions to the planned changes. Interpretive analysis of the data provides an account of the complex interactions, negotiations, compromises, concessions, and trade-offs faced by the teacher during a period of education reform. Perceived barriers existing within the school that impeded proposed change are identified.

  14. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  15. Dose received by occupationally exposed workers at a nuclear medicine department

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Sánchez-Uribe, N. A.; Rodríguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-01

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of "Instituto Nacional de Cancerología" (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are 131I, 18F, 68Ga, 99mTc, 111In and 11C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of "Instituto Nacional de Investigaciones Nucleares" (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the "Reglamento General de Seguridad Radiológica", México (50 mSv), as well as within the lower limit recommended by the "International Commission on Radiation Protection" (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  16. Dose received by occupationally exposed workers at a nuclear medicine department

    SciTech Connect

    Avila, O.; Sanchez-Uribe, N. A.; Rodriguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-23

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of 'Instituto Nacional de Cancerologia' (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are {sup 131}I, {sup 18}F, {sup 68}Ga, {sup 99m}Tc, {sup 111}In and {sup 11}C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of 'Instituto Nacional de Investigaciones Nucleares' (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the {sup R}eglamento General de Seguridad Radiologica{sup ,} Mexico (50 mSv), as well as within the lower limit recommended by the 'International Commission on Radiation Protection' (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  17. Nuclear data needs for advanced reactor systems. A NEA nuclear science committee initiative.

    SciTech Connect

    Salvatores, M.; Aliberti, G.; Palmiotti, G.; Rochman, D.; Oblozinsky, P.; Hermann, M.; Talou, P.; Kawano, T.; Leal, L.; Koning, A.; Kodeli, I.; Nuclear Engineering Division; CEA Cadarache; BNL; LANL; ORNL; NRG-Petten; NEA-Databank

    2008-01-01

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered. The methodology, the systems considered and the sensitivity approach are consistent with the work reported in ref. [1]. For the present study, the approach has been extended to the ABTR Na-cooled core, recently studied within the GNEP initiative [2]. Sensitivity coefficients (in a 15 energy group structure) have been calculated at ANL with the ERANOS code system [3] for all reactors and for the parameters most sensitive to nuclear data uncertainties: Multiplication factor, Power peak, Burn-up {Delta}k/k, Coolant void reactivity coefficient, Doppler reactivity coefficient, Nuclide density at end of cycle (transmutation potential), Neutron source at fuel fabrication, Dose in a repository.

  18. Department of Energy Nanoscale Science Research Centers: Approach to Nanomaterial ES&H

    SciTech Connect

    None, None

    2008-05-12

    The following non-mandatory guidance is intended for the Nanoscale Science Research Centers (NSRCs) funded by the Basic Energy Sciences program office under the U.S. Department of Energy's Office of Science. It describes practices thought appropriate to the management of environmental, safety and health (ES&H) concerns associated with laboratory-scale operations involving the design, synthesis, or characterization of engineered nanomaterials, In general, it is intended to apply to precursors, intermediates, and wastes used during, or resulting from synthesizing such nanomaterials. In general, it is not intended to apply to materials for which an occupational exposure limit has been established.

  19. Perspective on Department of Energy Geospatial Science: Past, Present, and Future

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    For many decades, the Department of Energy (DOE) has been a leader in basic scientific and engineering research that utilizes geospatial science to advance the state of knowledge in disciplines impacting national security, energy sustainability, and environmental stewardship. DOE recently established a comprehensive Geospatial Science Program that will provide an enterprise geographic information system infrastructure connecting all elements of DOE to critical geospatial data and associated geographic information services (GIServices). The Geospatial Science Program will provide a common platform for enhanced scientific and technical collaboration across DOE's national laboratories and facilities.

  20. Applications of the nuclear microprobe in planetary science

    NASA Astrophysics Data System (ADS)

    Vis, R. D.

    1997-07-01

    Nuclear microprobes have been used in a variety of studies on extra-terrestrial materials. Although by far the most used analytical technique is micro-PIXE, valuable contributions have also been given to planetary science using other methods available among the suite of analytical techniques provided by the microprobe. Also a few studies of the application of synchrotron radiation to planetary science has been published. Research aims are either to get a full analysis of very small objects such as cosmic dust or to extract elemental profiles over areas of interest. In the latter case, these distributions may give insight into the temperature history of the objects studied. In this way single crystals, chondrules in ordinary chondrites but also phase transitions in iron-meteorites have been investigated. Being by far the oldest objects available for research and being conserved for billions of years without serious wearing and erosion as would happen on earth, their detailed studies provide knowledge about the early history of the solar system and on primary geological processes.

  1. A brief history of geospatial science in the Department of Energy

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    The U.S. Department of Energy (DOE) has a rich history of significant contributions to geospatial science spanning the past four decades. In the early years, work focused on basic research, such as development of algorithms for processing geographic data and early use of LANDSAT imagery. The emphasis shifted in the mid-1970s to development of geographic information system (GIS) applications to support programs such as the National Uranium Resource Evaluation (NURE), and later to issue-oriented GIS applications supporting programs such as environmental restoration and management (mid-1980s through present). Throughout this period, the DOE national laboratories represented a strong chorus of voices advocating the importance of geospatial science and technology in the decades to come. The establishment of a Geospatial Science Program by the DOE Office of the Chief Information Officer in 2005 reflects the continued potential of geospatial science to enhance DOE's science, projects, and operations, as is well demonstrated by historical analysis.

  2. The Science of Nuclear Materials Detection using gamma-ray beams: Nuclear Resonance Fluorescence

    NASA Astrophysics Data System (ADS)

    Ohgaki, Hideaki

    2014-09-01

    facility in AIST, Japan. As well, 1-D, 2-D isotope imaging by using LCS gamma-ray and NRF has been conducted. Since 2009 we have started a development of a non-destructive inspection system under the MEXT program in Japan. Series of experiments of the developing system have been conducted in HIGS facility in Duke University and JAEA Kansai Photon Science Institute. We will report on the recent result of these experiments in the workshop. An atomic nucleus is excited by absorption of incident photons with an energy the same as the excitation energy of the level, and subsequently a gamma-ray is emitted as it de-excites. This phenomenon is called Nuclear Resonance Fluorescence and mostly used for studies on Nuclear Physics field. By measuring the NRF gamma-rays, we can identify nuclear species in any materials because the energies of the NRF gamma-rays uniquely depend on the nuclear species. For example, 235U has an excitation level at 1733 keV. If we irradiate a material including 235U with a gamma-ray tuned at this excitation level, the material absorbs the gamma-ray and re-emits another gamma-ray immediately to move back towards the ground state. Therefore we can detect the 235U by measuring the re-emitted (NRF) gamma-rays. Several inspection methods using gamma-rays, which can penetrate a thick shielding have been proposed and examined. Bertozzi and Ledoux have proposed an application of nuclear resonance fluorescence (NRF) by using bremsstrahlung radiations. However the signal-to-noise (SN) ratio of the NRF measurement with the bremsstrahlung radiation is, in general, low. Only a part of the incident photons makes NRF with a narrow resonant band (meV-eV) whereas most of incident radiation is scattered by atomic processes in which the reaction rate is higher than that of NRF by several orders of magnitudes and causes a background. Thus, the NRF with a gamma-ray quasi-monochromatic radiation beam is proposed. The monochromatic gamma-rays are generated by using laser

  3. Science Flight Program of the Nuclear Compton Telescope

    NASA Astrophysics Data System (ADS)

    Boggs, Steven

    This is the lead proposal for this program. We are proposing a 5-year program to perform the scientific flight program of the Nuclear Compton Telescope (NCT), consisting of a series of three (3) scientific balloon flights. NCT is a balloon-borne, wide-field telescope designed to survey the gamma-ray sky (0.2-5 MeV), performing high-resolution spectroscopy, wide-field imaging, and polarization measurements. NCT has been rebuilt as a ULDB payload under the current 2-year APRA grant. (In that proposal we stated our goal was to return at this point to propose the scientific flight program.) The NCT rebuild/upgrade is on budget and schedule to achieve flight-ready status in Fall 2013. Science: NCT will map the Galactic positron annihilation emission, shedding more light on the mysterious concentration of this emission uncovered by INTEGRAL. NCT will survey Galactic nucleosynthesis and the role of supernova and other stellar populations in the creation and evolution of the elements. NCT will map 26-Al and positron annihilation with unprecedented sensitivity and uniform exposure, perform the first mapping of 60-Fe, search for young, hidden supernova remnants through 44-Ti emission, and enable a host of other nuclear astrophysics studies. NCT will also study compact objects (in our Galaxy and AGN) and GRBs, providing novel measurements of polarization as well as detailed spectra and light curves. Design: NCT is an array of germanium gamma-ray detectors configured in a compact, wide-field Compton telescope configuration. The array is shielded on the sides and bottom by an active anticoincidence shield but is open to the 25% of the sky above for imaging, spectroscopy, and polarization measurements. The instrument is mounted on a zenith-pointed gondola, sweeping out ~50% of the sky each day. This instrument builds off the Compton telescope technique pioneered by COMPTEL on the Compton Gamma Ray Observatory. However, by utilizing modern germanium semiconductor strip detectors

  4. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    NASA Astrophysics Data System (ADS)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if

  5. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  6. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  7. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    SciTech Connect

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  8. Women Accuse Rutgers Political-Science Department of Bias and Hostility

    ERIC Educational Resources Information Center

    Moser, Kate

    2008-01-01

    Female faculty members and graduate students at Rutgers University in New Brunswick's political-science department feel unfairly compensated and shut out of leadership positions by their male counterparts, says an internal university report obtained by "The Chronicle." In at least one case, a woman has been afraid to complain about…

  9. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  10. Growing Collegial Cultures in Subject Departments in Secondary Schools: Working with Science Staff.

    ERIC Educational Resources Information Center

    Busher, Hugh; Blease, Derek

    2000-01-01

    Considers how particular approaches to leading and managing laboratory technicians in some (British) secondary-school science departments enhanced collegiality. In some schools, lab paraprofessionals are involved in decision-making. Trust, delegation based on ability, cooperative values, inclusive leadership styles, and a sense of belonging were…

  11. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  12. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerologia Department of Nuclear Medicine

    SciTech Connect

    Avila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; Gamboa de Buen, I.; Buenfil, A. E.; Brandan, M. E.

    2010-12-07

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  13. Screening for beryllium disease among construction trade workers at Department of Energy nuclear sites.

    PubMed

    Welch, Laura; Ringen, Knut; Bingham, Eula; Dement, John; Takaro, Tim; McGowan, William; Chen, Anna; Quinn, Patricia

    2004-09-01

    To determine whether current and former construction workers are at significant risk for occupational illnesses from work at the Department of Energy's (DOE) nuclear weapons facilities, screening programs were undertaken at the Hanford Nuclear Reservation, Oak Ridge Reservation, and the Savannah River Site. Medical examination for beryllium disease used a medical history and a beryllium blood lymphocyte proliferation test (BeLPT). Stratified and multivariate logistic regression analyses were used to explore the risk of disease by age, race, sex, trade, duration of DOE employment, reported work in buildings where beryllium was used, and time since last DOE site employment. Of the 3,842 workers included in this study, 34% reported exposure to beryllium. Overall, 2.2% of workers had at least one abnormal BeLPT test, and 1.4% were also abnormal on a second test. Regression analyses demonstrated increased risk of having at least one abnormal BeLPT to be associated with ever working in a site building where beryllium activities had taken place. The prevalence of beryllium sensitivity and chronic beryllium disease (CBD) in construction workers is described and the positive predictive value of the BeLPT in a population with less intense exposure to beryllium than other populations that have been screened is discussed. The BeLPT findings and finding of cases of CBD demonstrate that some of these workers had significant exposure, most likely, during maintenance, repair, renovation, or demolition in facilities where beryllium was used.

  14. Nuclear Medicine

    MedlinePlus

    ... Home » Science Education » Science Topics » Nuclear Medicine SCIENCE EDUCATION SCIENCE EDUCATION Science Topics Resource Links for General Public Resource ... Related Documents: Nuclear Medicine Fact Sheet.pdf SCIENCE EDUCATION Science Topics Resource Links for General Public Resource ...

  15. Research programs for Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy

    SciTech Connect

    Not Available

    1988-01-01

    A chemical sciences review meeting was held in which research programs in chemistry were discussed. Major topics included: chemistry of actinides and fission products, interactions of solvents, solutes and surfaces in supercritical extraction, chemical and physical principles in multiphase separations, and chemical kinetics of enzyme catalyzed reactions. Individual projects are processed separately for the data bases. (CBS)

  16. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    SciTech Connect

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  17. Public Outreach of the South Texas Health Physic Society and Texas A&M University Nuclear Engineering Department

    SciTech Connect

    Berry, R. O.

    2003-02-24

    In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A&M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to site a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue.

  18. Radiation doses of employees of a Nuclear Medicine Department after implementation of more rigorous radiation protection methods.

    PubMed

    Piwowarska-Bilska, Hanna; Supinska, Aleksandra; Listewnik, Maria H; Zorga, Piotr; Birkenfeld, Bozena

    2013-11-01

    The appropriate radiation protection measures applied in departments of nuclear medicine should lead to a reduction in doses received by the employees. During 1991-2007, at the Department of Nuclear Medicine of Pomeranian Medical University (Szczecin, Poland), nurses received on average two-times higher (4.6 mSv) annual doses to the whole body than those received by radiopharmacy technicians. The purpose of this work was to examine whether implementation of changes in the radiation protection protocol will considerably influence the reduction in whole-body doses received by the staff that are the most exposed. A reduction in nurses' exposure by ~63 % took place in 2008-11, whereas the exposure of radiopharmacy technicians grew by no more than 22 % in comparison with that in the period 1991-2007. Proper reorganisation of the work in departments of nuclear medicine can considerably affect dose reduction and bring about equal distribution of the exposure.

  19. Topics in nuclear and radiochemistry for college curricula and high school science programs

    SciTech Connect

    Not Available

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

  20. High-performance superconductors for Fusion Nuclear Science Facility

    SciTech Connect

    Zhai, Yuhu; Kessel, Chuck; Barth, Christian; Senatore, Carmine

    2016-11-09

    High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steel jacket for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced JcNb3Sn RRP strands (Jc > 1000 A/mm2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.

  1. High-performance superconductors for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; Barth, Christian; ...

    2016-11-09

    High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steel jacketmore » for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced JcNb3Sn RRP strands (Jc > 1000 A/mm2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.« less

  2. 75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... of the Secretary Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification... Warner, USAF Military Assistant, Defense Science Board, 3140 Defense Pentagon, Room 3B888A, Washington... INFORMATION: The mission of the Defense Science Board is to advise the Secretary of Defense and the Under...

  3. Annual review of nuclear and particle science. Vol. 52

    SciTech Connect

    Quigg, C.,

    2002-01-01

    The 2002 volume of the ''Annual Review of Nuclear and Particle Science'' ranges from the applied to the speculative, from the accomplished to the inchoate, bearing witness to the vitality and diversity of subatomic physics. Milla Baldo Ceolin's prefatory chapter , ''The Discreet Charm of the Nuclear Emulsion Era,'' takes us back to the rebirth of particle physics in Europe after World War II through international emulsion collaborations that revealed wonders unimagined. Gaisser & Honda detail progress toward understanding the flux of atmospheric neutrinos, which is crucial for interpreting evidence for neutrino oscillations and searching for extraterrestrial neutrino sources. Elliott & Vogel's status report on double beta decay explores the sensitivity frontier and the prospects for testing the notion that the neutrino is its own antiparticle. Kado & Tully take stock of searches for electroweak theory's Higgs boson at CERN's Large Electron-Positron collider. Lee & Redwine draw lessons from three decades' exploration of pion-nucleus interactions at meson factories. Bedaque & van Kolck review recent progress in effective field theories that permit systematic treatment of few-nucleon systems. El-Khadra & Luke describe the ways in which Quantum Chromodynamics makes possible a precise determination of the b-quark mass. Harrison, Peggs, & Roser report on Brookhaven National Laboratory's Relativistic Heavy-Ion Collider, which explores new realms of collisions among heavy nuclei. Gomez

  4. A brief history of Sandia National Laboratories and the Department of Energy%3CU%2B2019%3Es Office of Science : interplay between science, technology, and mission.

    SciTech Connect

    Tsao, Jeffrey Yeenien; Myers, Samuel Maxwell, Jr.; Simmons, Jerry Alvon; McIlroy, Andrew; Vook, Frederick L.; Collis, Samuel Scott; Picraux, Samuel Thomas

    2011-08-01

    In 1957, Sandia National Laboratories (Sandia) initiated its first programs in fundamental science, in support of its primary nuclear weapons mission. In 1974, Sandia initiated programs in fundamental science supported by the Department of Energy's Office of Science (DOE-SC). These latter programs have grown to the point where, today in 2011, support of Sandia's programs in fundamental science is dominated by that Office. In comparison with Sandia's programs in technology and mission applications, however, Sandia's programs in fundamental science are small. Hence, Sandia's fundamental science has been strongly influenced by close interactions with technology and mission applications. In many instances, these interactions have been of great mutual benefit, with synergies akin to a positive 'Casimir's spiral' of progress. In this report, we review the history of Sandia's fundamental science programs supported by the Office of Science. We present: (a) a technical and budgetary snapshot of Sandia's current programs supported by the various suboffices within DOE-SC; (b) statistics of highly-cited articles supported by DOE-SC; (c) four case studies (ion-solid interactions, combustion science, compound semiconductors, advanced computing) with an emphasis on mutually beneficial interactions between science, technology, and mission; and (d) appendices with key memos and reminiscences related to fundamental science at Sandia.

  5. The effect of a state Department of Education mentoring program for teachers on science student achievement

    NASA Astrophysics Data System (ADS)

    Lyon, Gilda Darlene

    The purpose of this study was to assess the effect of the Georgia Department of Education Science Specialist teacher-mentoring program on student achievement on science standardized tests. This study analyzed the impact this program has had on student achievement in participating high schools when compared with high schools across the state where the program had not intervened. The Georgia High School Graduation Test, physical science end-of-course, and biology end-of-course test data, from a three year period, were collected from the Georgia Department of Education website and analyzed using an independent-t test and the Mann-Whitney test. While test score improvements cannot be entirely attributed to the Science Specialist mentoring program, the study revealed state-wide increases in physical science end-of-course tests and the Georgia High School Graduation Test scores over the three-year period in those schools participating in the teacher-mentoring program. Significant increases in students with disabilities populations and economically disadvantaged populations were also noted.

  6. A,B,C`s of nuclear science

    SciTech Connect

    Noto, V.A.; Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R.

    1995-08-07

    This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

  7. Surveillance of hearing loss among older construction and trade workers at Department of Energy nuclear sites.

    PubMed

    Dement, John; Ringen, Knut; Welch, Laura; Bingham, Eula; Quinn, Patricia

    2005-11-01

    Medical screening programs at three Departments of Energy (DOE) nuclear weapons facilities (Hanford Nuclear Reservation, Oak Ridge, and the Savannah River Site) have included audiometric testing since approximately 1996. This report summarizes hearing evaluations through March 31, 2003. Occupational examinations included a medical history, limited physical examination, and tests for medical effects from specific hazards, including audiometric testing. Hearing thresholds by frequency for DOE workers were compared to age-standardized thresholds among an external comparison population of industrial workers with noise exposures <80 dBA. Multivariate analyses were used to explore the risk of hearing impairment by duration of construction trade work and self-reported noise exposure, while controlling for potential confounders such as age, race, sex, smoking, elevated serum cholesterol, hypertension, solvent exposures, and recreational noise exposures. Hearing thresholds among DOE workers were much higher than observed in a comparison population of industrial workers with low noise exposures. Overall, 59.7% of workers examined were found to have material hearing impairment by NIOSH criteria. Age, duration of construction work, smoking, and self-reported noise exposure increased the risk of hearing loss. The risk of material hearing impairment was significantly elevated for construction trade workers compared to the external comparison population (odds-ratio = 1.6, 95% CI = 1.3-2.1) and increased with the duration of trade work. These medical screening programs confirm worker concerns about risks for hearing loss and the need for hearing conservation programs for construction workers, with emphasis on the prevention of noise exposures.

  8. [90th anniversary of the Chair and Department of Forensic Medicine Poznan University of Medical Sciences].

    PubMed

    Zaba, Czesław

    2011-01-01

    The paper outlines the history of the Chair and Department of Forensic Medicine Poznan University of Medical Sciences since it was established until today. Changes in the appearance and organization of the seat of the institution were discussed briefly. The profiles of all former heads of the Department, their contribution to the development and improvement of the institution and formation of the new scientific forensic medicine staff were presented. The specification and analysis of the scientific staff achievements was performed, especially taking into account their scientific publications and scope of the research that contributed to the efficient service activities for the prosecution and police, as well as society.

  9. The Jefferson Science Fellows (JSF) program at the US Department of State

    NASA Astrophysics Data System (ADS)

    Peterson, Roy

    2014-09-01

    In 2004 the US Department of State and the National Academies established the Jefferson Science Fellows program, to bring tenured faculty in sciences, engineering, and medicine to the Department of State or USAID for a year in residence, with continuing connections. Over twenty physical scientists have been Fellows, working in a wide variety of offices on a broad range of topics. The main advantage to Fellows is the opportunity to make an impact on important national and international issues, applying skills and judgments gained through their research, teaching, and service. The JSF experience can also create broader horizons for physicists, especially beyond the laboratory. The selection process and examples, including my own, will be described. Information can be found at //sites.nationalacademies.org/PGA/Jefferson/.

  10. Mortality of older construction and craft workers employed at Department of Energy (DOE) nuclear sites.

    PubMed

    Dement, John M; Ringen, Knut; Welch, Laura S; Bingham, Eula; Quinn, Patricia

    2009-09-01

    The U.S. Department of Energy (DOE) established medical screening programs at the Hanford Nuclear Reservation, Oak Ridge Reservation, the Savannah River Site, and the Amchitka site starting in 1996. Workers participating in these programs have been followed to determine their vital status and mortality experience through December 31, 2004. A cohort of 8,976 former construction workers from Hanford, Savannah River, Oak Ridge, and Amchitka was followed using the National Death Index through December 31, 2004, to ascertain vital status and causes of death. Cause-specific standardized mortality ratios (SMRs) were calculated based on US death rates. Six hundred and seventy-four deaths occurred in this cohort and overall mortality was slightly less than expected (SMR = 0.93, 95% CI = 0.86-1.01), indicating a "healthy worker effect." However, significantly excess mortality was observed for all cancers (SMR = 1.28, 95% CI = 1.13-1.45), lung cancer (SMR = 1.54, 95% CI = 1.24-1.87), mesothelioma (SMR = 5.93, 95% CI = 2.56-11.68), and asbestosis (SMR = 33.89, 95% CI = 18.03-57.95). Non-Hodgkin's lymphoma was in excess at Oak Ridge and multiple myeloma was in excess at Hanford. Chronic obstructive pulmonary disease (COPD) was significantly elevated among workers at the Savannah River Site (SMR = 1.92, 95% CI = 1.02-3.29). DOE construction workers at these four sites were found to have significantly excess risk for combined cancer sites included in the Department of Labor' Energy Employees Occupational Illness Compensation Program (EEOCIPA). Asbestos-related cancers were significantly elevated. (c) 2009 Wiley-Liss, Inc.

  11. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    SciTech Connect

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  12. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    SciTech Connect

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  13. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  14. U.S. Department of the Interior South Central Climate Science Center

    USGS Publications Warehouse

    Shipp, Allison A.

    2012-01-01

    On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs) for the purpose of integrating DOI science and management expertise with similar contributions from our partners to provide information to support strategic adaptation and mitigation efforts on public and private lands across the United States and internationally. The South Central Climate Science Center (SC CSC) is supported by a consortium of partners that include The University of Oklahoma, Texas Tech University, Louisiana State University, The Chickasaw Nation, The Choctaw Nation of Oklahoma, Oklahoma State University, and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory. Additionally, the SC CSC will collaborate with a number of other universities, State and federal agencies, and nongovernmental organizations (NGOs) with interests and expertise in climate science. The primary partners of the SC CSC are the Landscape Conservation Cooperatives (LCCs), which include the Desert, Eastern Tallgrass Prairie and Big Rivers, Great Plains, Gulf Coast Prairie, Gulf Coastal Plains and Ozarks, and Southern Rockies. CSC collaborations are focused on common science priorities that address priority partner needs, eliminate redundancies in science, share scientific information and findings, and expand understanding of climate change impacts in the south-central United States and Mexico.

  15. Young Doctorate Faculty in Selected Science and Engineering Departments, 1975-1980. Higher Education Panel Reports, No. 30.

    ERIC Educational Resources Information Center

    Atelsek, Frank J.; Gomberg, Irene L.

    Focus in this survey, conducted at the request of the National Science Foundation, is on young doctorate faculty (i.e., those receiving their Ph.D. in the last five years) employed full-time in science and engineering departments at Ph.D.-granting institutions. Questionnaire responses were obtained from 1,148 departments at 137 institutions. They…

  16. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  17. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  18. Investigation of public exposure resulted from the radioiodine delay tank facility of nuclear medicine department

    SciTech Connect

    Yusof, Mohd Fahmi Mohd Ali, Abdul Muhaimin Mat; Abdullah, Reduan; Idris, Abdullah Waidi

    2016-01-22

    The study is carried out to assess the exposure rate that could contribute to public exposure in a radioiodine ward delay tank facility of Radiotherapy, Oncology and Nuclear Medicine, Department, Hospital Universiti Sains Malaysia (HUSM). The exposure rate at several locations including the delay tank room, doorway and at the public walking route was measured using Victoreen 415P-RYR survey meter. The radioactive level of the {sup 131}I waste was measured using Captus 3000 well counting system. The results showed that exposure rate and total count of the delay tank sample increased when the radioiodine ward was fully occupied with patient and reduced when the ward was vacant. Occupancy of radioiodine ward for two consecutive weeks had dramatically increased the exposure rate around the delay tank and radioactive level of {sup 131}I waste. The highest exposure rate and radioactive level was recorded when the ward was occupied for two consecutive weeks with 177.00 µR/h and 58.36 kcpm respectively. The exposure rate decreased 15.76 % when the door of the delay tank room was closed. The exposure rate at public walking route decreased between 15.58 % and 36.92 % as the distance increased between 1 and 3 m.

  19. Technical Report for Calculations of Atmospheric Dispersion at Onsite Locations for Department of Energy Nuclear Facilities

    SciTech Connect

    Levin, Alan; Chaves, Chris

    2015-04-04

    The Department of Energy (DOE) has performed an evaluation of the technical bases for the default value for the atmospheric dispersion parameter χ/Q. This parameter appears in the calculation of radiological dose at the onsite receptor location (co-located worker at 100 meters) in safety analysis of DOE nuclear facilities. The results of the calculation are then used to determine whether safety significant engineered controls should be established to prevent and/or mitigate the event causing the release of hazardous material. An evaluation of methods for calculation of the dispersion of potential chemical releases for the purpose of estimating the chemical exposure at the co-located worker location was also performed. DOE’s evaluation consisted of: (a) a review of the regulatory basis for the default χ/Q dispersion parameter; (b) an analysis of this parameter’s sensitivity to various factors that affect the dispersion of radioactive material; and (c) performance of additional independent calculations to assess the appropriate use of the default χ/Q value.

  20. Investigation of public exposure resulted from the radioiodine delay tank facility of nuclear medicine department

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Ali, Abdul Muhaimin Mat; Abdullah, Reduan; Idris, Abdullah Waidi

    2016-01-01

    The study is carried out to assess the exposure rate that could contribute to public exposure in a radioiodine ward delay tank facility of Radiotherapy, Oncology and Nuclear Medicine, Department, Hospital Universiti Sains Malaysia (HUSM). The exposure rate at several locations including the delay tank room, doorway and at the public walking route was measured using Victoreen 415P-RYR survey meter. The radioactive level of the 131I waste was measured using Captus 3000 well counting system. The results showed that exposure rate and total count of the delay tank sample increased when the radioiodine ward was fully occupied with patient and reduced when the ward was vacant. Occupancy of radioiodine ward for two consecutive weeks had dramatically increased the exposure rate around the delay tank and radioactive level of 131I waste. The highest exposure rate and radioactive level was recorded when the ward was occupied for two consecutive weeks with 177.00 µR/h and 58.36 kcpm respectively. The exposure rate decreased 15.76 % when the door of the delay tank room was closed. The exposure rate at public walking route decreased between 15.58 % and 36.92 % as the distance increased between 1 and 3 m.

  1. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    SciTech Connect

    1997-12-01

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  2. Scientific Method in Teaching Physics in Languages and Social Sciences Department of High—Schools

    NASA Astrophysics Data System (ADS)

    Nagl, Mirko G.; Obadović, Dušanka Ž.; Stojanović, Maja M.

    2010-01-01

    The expansion of scientific materials in the last few decades, demands that the contemporary educational system should select and develop methods of effective learning in the process of acquiring skills and knowledge usable and feasible for a longer period of time. Grammar schools as general educational institutions possess all that is necessary for the development of new teaching methods and fitting into contemporary social tendencies. In the languages and social sciences department in of grammar schools physics is the only natural sciences subject present during all four years. The classical approach to teaching is tiring as such and creates aversion towards learning physic when it deals with pupils oriented towards social sciences. The introduction of scientific methods raises the motivation to a substantial level and when applied both the teacher and pupils forget when the class starts or ends. The assignment has shown the analysis of initial knowledge of physics of the pupils attending the first grade of languages and social sciences department of of grammar schools as a preparation for the introduction of the scientific method, the analysis of the initial test with the topic of gravitation, as well as the analysis of the final test after applying the scientific method through the topic of gravitation. The introduction of the scientific method has duly justified the expectations and resulted in increasing the level of achievement among the pupils in the experimental class.

  3. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    SciTech Connect

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  4. Department of Defense Chemical, Biological, Radiological and Nuclear Defense Program Overview

    DTIC Science & Technology

    2004-04-06

    effectively execute the National Strategy for Combating Weapons of Mass Destruction. Ensure all capabilities are integrated and coordinated within the... BACTERIA VIRUSES RICKETTSIAE GENETIC ENGINEERED MICRO-ORGANISMS BWCW CLEARLY CHEMICAL CLEARLY BIOLOGICAL Traditional Nuclear Nuclear Bombs Nuclear Missiles...systems integration, and information flow in a timely and cost effective manner Goal 5 Leverage DOD CBRN defense expertise to support vital national

  5. Nuclear power risks: challenge to the credibility of science

    SciTech Connect

    Welch, B.L.

    1980-01-01

    For a quarter of a century the Federal Government and the nuclear industry have deliberately deceived the American public about the risks of nuclear power. Facts have been systematically withheld, distorted, and obscured, and calculations have been deliberately biased in order to present nuclear power in an unrealistically favorable light. Most persistent and flagrant have been: (a) attempts to normalize public perception of nuclear accident casualties with those of more familiar accidents; and (b) the cloaking of the objectively undocumentable faith of the atomic energy establishment that a nuclear accident is extremely unlikely in a smokescreen of invalid, pseudoquantitative statistical probabilities in order to convince the public that the chance of an accident is negligible. Prime examples of these abuses are found in the Rasmussen report on nuclear reactor safety and in its representation to the public.

  6. Materials Science and Technology, Volume 10B, Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Frost, Brian R. T.

    1996-12-01

    The second of two volumes in this series to deal with the information required for the use of materials in the nuclear power industry. The two volumes together contain the most comprehensive collection of information ever published in nuclear materials. Contents: Motta/Lemaignan: Zirconium Alloys. Dietz: Structural Materials. Ullmaier/Schilling: Physics of Radiation Damage in Solids. Smith/Mattas/Billone: First Wall and Blanket Materials. Boltax: Mixed Oxide Fuel Pin Performance. Oversby: Nuclear Wate Materials.

  7. The Perceptions of Globalization at a Public Research University Computer Science Graduate Department

    NASA Astrophysics Data System (ADS)

    Nielsen, Selin Yildiz

    Based on a qualitative methodological approach, this study focuses on the understanding of a phenomenon called globalization in a research university computer science department. The study looks into the participants' perspectives about the department, its dynamics, culture and academic environment as related to globalization. The economic, political, academic and social/cultural aspects of the department are taken into consideration in investigating the influences of globalization. Three questions guide this inquiry: 1) How is the notion of globalization interpreted in this department? 2) How does the perception of globalization influence the department in terms of finances, academics, policies and social life And 3) How are these perceptions influence the selection of students? Globalization and neo-institutional view of legitimacy is used as theoretical lenses to conceptualize responses to these questions. The data include interviews, field notes, official and non-official documents. Interpretations of these data are compared to findings from prior research on the impact of globalization in order to clarify and validate findings. Findings show that there is disagreement in how the notion of globalization is interpreted between the doctoral students and the faculty in the department. This disagreement revealed the attitudes and interpretations of globalization in the light of the policies and procedures related to the department. How the faculty experience globalization is not consistent with the literature in this project. The literature states that globalization is a big part of higher education and it is a phenomenon that causes the changes in the goals and missions of higher education institutions (Knight, 2003, De Witt, 2005). The data revealed that globalization is not the cause for change but more of a consequence of actions that take place in achieving the goals and missions of the department.

  8. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.

    This study analyzed a state department of education's ability to have actual influence over the improvement of science achievement and proficiency by having direct relationships with science teachers in Georgia's lowest performing schools. The study employed a mixed ANOVA analysis of the mean scale scores and proficiency rates of the science portion of the Georgia High School Graduation Test (GHSGT) for the years 2004 through 2007 to determine if the intervention by the Science Mentor Program (SMP) had significant effect on the science achievement and proficiency within the cohort of schools, as compared to a set of schools receiving no intervention, on various subgroups within the schools, and on various levels of intervention within the SMP. All data used in this study are available to the public through the Georgia Department of Education (GaDOE). SMP schools were selected based on their level of intervention for three consecutive years. Non-SMP schools were selected based on demographic similarities in economically disadvantaged, white, African-American, and students with disabilities to ensure a match of pairings for analyses. The results of this study showed significant improvement of scale scores and proficiency rates between 2004 and 2007. The study showed significant increases in all schools regardless of treatment. The study also showed significant differences in performance within the subgroups. Males, white, non-Economically Disadvantaged, and regular education students were all found to have significantly better performance in both achievement and proficiency rate. Economically Disadvantaged students were found to have a significant difference with regard to treatment groups. There was a significant difference between the mean scale score and proficiency rates of Economically Disadvantaged students in schools receiving high-intervention and schools receiving no-intervention. Further analysis showed that the only significant difference was in 2004, the

  9. Surveillance of respiratory diseases among construction and trade workers at Department of Energy nuclear sites.

    PubMed

    Dement, John M; Welch, Laura; Bingham, Eula; Cameron, Buck; Rice, Carol; Quinn, Patricia; Ringen, Knut

    2003-06-01

    Medical screening programs were begun in 1996 and 1997 at three Department of Energy (DOE) nuclear weapons facilities (Hanford Nuclear Reservation, Oak Ridge, and the Savannah River Site) to evaluate whether current and former construction workers are at significant risk for occupational illnesses. The focus of this report is pneumoconiosis associated with exposures to asbestos and silica among workers enrolled in the screening programs through September 30, 2001. Workers provided a detailed work and exposure history and underwent a respiratory examination, which included a respiratory history and symptom questionnaire, a posterior-anterior (P-A) chest radiograph, and spirometry. Both stratified and multivariate logistic regression analyses were used to explore the risk of disease by duration of DOE employment and frequency of exposure, while controlling for potential confounders such as age, race, sex, and other work in the construction and building trades. Of the 2602 workers, 25.2% showed one or more chest X-ray changes by ILO criteria and 42.7% demonstrated one or more pulmonary function defects. The overall prevalence of parenchymal changes by ILO criteria (profusion 1/0 or greater) was 5.4%. In the logistic regression models, the odds ratio for parenchymal disease was 2.6 (95% confidence interval (CI) = 1.0-6.6) for workers employed 6 to 20 years at Hanford or Savannah River and increased to 3.6 (95% CI = 1.1-11.6) for workers employed more than 35 years, with additional incremental risks for workers reporting routine exposures to asbestos or silica. Continued surveillance of workers is important given their increased risk of disease progression and their risk for asbestos related malignancies. Smoking cessation programs should also be high priority and continued abstinence for former smokers reinforced. Although the observed respiratory disease patterns are largely reflective of past exposures, these findings suggest that DOE needs to continue to review

  10. The Role of Geoscience Departments in Developing the Earth Science Teacher Workforce: A Workshop Report

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; MacDonald, R. H.; Karsten, J.

    2003-12-01

    Undergraduate geoscience departments play a critical role in the preparation of future teachers. This workshop sponsored by AGU and NAGT with funding from NSF brought together geoscience faculty known for their work in teacher preparation, Earth Science teachers and representatives from schools of education. Discussion focused on critical contributions of geoscience departments in recruiting, mentoring and advising future teachers; designing research and teaching experiences for future teachers; developing links between education and geoscience departments; supporting alumni in the teaching profession; and the role of introductory courses in teacher preparation. Each participant contributed a short essay describing the strengths of their program for teachers. The essay collection provides a snapshot of the breadth and innovative nature of current practice in geoscience departments around the country (serc.carleton.edu/NAGTWorkshops/teacherprep03). A summary of the program, powerpoint presentations, and discussion highlights are also available on the website. Of special interest are 1) approaches to introductory courses including revision of teaching methods in the general introductory course to demonstrate a range of pedagogy; separate introductory course sections or laboratory sections for pre-service teachers; and an integrated science approach for pre-service elementary teachers; 2) results of brainstorming sessions on mechanisms for recruiting and supporting Earth Science teachers suggesting a range of activities taking place before, during, and after participation in the geoscience program; 3) a summary of why teaching and research experiences are important for pre-service teachers and recommendations for program elements that lead to successful experiences and 4) plenary presentations on lessons learned from the NSF programs (Prival) and effective program design (Ridkey).

  11. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    ERIC Educational Resources Information Center

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  12. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    ERIC Educational Resources Information Center

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  13. Long-term environmental monitoring at two US Department of Energy Nuclear Sites

    SciTech Connect

    Gray, R.H.

    1996-12-31

    The U.S. Department of Energy`s Hanford Site was established in southeastern Washington during the 1940s to produce plutonium during World War II. The Pantex Plant in the Texas Panhandle was originally used by the U.S. Army for loading conventional ammunition shells and bombs. The Plant was rehabilitated and enhanced in the 1950s to assemble nuclear weapons. Environmental monitoring has been ongoing at both locations for several decades. Monitoring objectives are to detect and assess potential impacts of facility operations on air, surface and ground waters, foodstuffs, fish, wildlife, soils, and vegetation. Currently, measured concentrations of airborne radionuclides around the perimeters of both sites are below applicable guidelines. The low levels of {sup 137}Cs and {sup 90}Sr in some onsite Hanford wildlife samples and concentrations of radionuclides in soils and vegetation from onsite and offsite at both locations are typical of those attributable to naturally occurring radioactivity and to worldwide fallout. Ironically, by virtue of its size (1,450 km{sup 2} [560 mi{sup 2})], restricted public access, and conservative use of undeveloped land, the Hanford Site has provided a sanctuary for plant and animal populations that have been eliminated from, or greatly reduced on, surrounding agricultural and range lands. Ongoing studies will determine if this is also true at Pantex Plant. The Hanford Reach of the Columbia River and its islands and the Pantex Plant with its playas both serve as refuges for raptorial birds and migratory waterfowl. In addition, the Hanford Reach serves as a migration route for several species of salmon, and chinook salmon and steelhead trout spawn there. Bald eagles congregate along the Hanford Reach in the fall and winter to feed on the spawned-out carcasses of salmon and on wintering waterfowl.

  14. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  15. Detection and Monitoring of Airborne Nuclear Waste Materials. Annual Report to Department of Energy.

    DTIC Science & Technology

    1979-12-04

    DETECTOR BASED ON LASER INDUCED FLUORESCENCE 2.1 INTRODUCTION Of the six major iodine isotopes produced in nuclear reactors , 1291 represents only...mechanisms associated with various operational components of nuclear reactors . Its production is indigenous to these operations and represents an... Reactors " C. Kunz, W. E. Mahoney and T. W. Miller Annual Meeting of the American Nuclear Society, New Orleans, LA, June 1975. 41 4. "Removal of 14

  16. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    USGS Publications Warehouse

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  17. The challenge of achieving professionalism and respect of diversity in a UK Earth Sciences department

    NASA Astrophysics Data System (ADS)

    Imber, Jonathan; Taylor, Michelle; Callaghan, Mark; Castiello, Gabriella; Cooper, George; Foulger, Gillian; Gregory, Emma; Herron, Louise; Hoult, Jill; Lo, Marissa; Love, Tara; Macpherson, Colin; Oakes, Janice; Phethean, Jordan; Riches, Amy

    2017-04-01

    The Department of Earth Sciences, Durham University, has a balanced gender profile at undergraduate, postgraduate and postdoctoral levels (38%, 42% and 45% females, respectively), but one of the lowest percentages, relative to the natural applicant pool, of female academic staff amongst UK geoscience departments. There are currently 9% female academic staff at Durham, compared with a median value (in November 2015) of 20% for all Russell Group geoscience departments in the UK. Despite the fact that the female staff group is relatively senior, the Department's current academic management is essentially entirely male. The Department has an informal working culture, in which academics operate an "open door" policy, and staff and students are on first name terms. This culture, open plan office space, and our fieldwork programme, allow staff and students to socialise. A positive outcome of this culture is that > 95% of final year undergraduate students deemed the staff approachable (National Student Survey 2016). Nevertheless, a survey of staff and research student attitudes revealed significant differences in the way males and females perceive our working environment. Females are less likely than males to agree with the statements that "the Department considers inappropriate language to be unacceptable" and "inappropriate images are not considered acceptable in the Department". That anyone could find "inappropriate" language and images "acceptable" is a measure of the challenge faced by the Department. Males disagree more strongly than females that they "have felt uncomfortable because of [their] gender". The Department is proactively working to improve equality and diversity. It held a series of focus group meetings, divided according to gender and job role, to understand the differences in male and female responses. Female respondents identified examples of inappropriate language (e.g. sexual stereotyping) that were directed at female, but not male, colleagues. Males

  18. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    SciTech Connect

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  19. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    SciTech Connect

    None,

    2003-09-30

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  20. Nuclear Power in the Classroom: A Union of Science and Social Studies Education.

    ERIC Educational Resources Information Center

    Shillenn, James K.; Vincenti, John R.

    This paper examines issues that K-12 science and social studies teachers need to keep in mind when teaching about nuclear power. The information needs to be presented in as objective a manner as possible. Science needs to become more social oriented. Team teaching should be encouraged. Elementary and secondary inservice teacher education is…

  1. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  2. The Hudson's Bay Company as a context for science in the Columbia Department.

    PubMed

    Schefke, Brian

    2008-01-01

    This article aims to elucidate and analyze the links between science, specifically natural history, and the imperialist project in what is now the northwestern United States and western Canada. Imperialism in this region found its expression through institutions such as the Hudson's Bay Company (HBC). I examine the activities of naturalists such as David Douglas and William Tolmie Fraser in the context of the fur trade in the Columbia Department. Here I show how natural history aided Britain in achieving its economic and political goals in the region. The key to this interpretation is to extend the role of the HBC as an imperial factor to encompass its role as a patron for natural history. This gives a better understanding of the ways in which imperialism--construed as mercantile, rather than military--delineated research priorities and activities of the naturalists who worked in the Columbia Department.

  3. Program plan for US Department of Energy support for nuclear engineering education

    SciTech Connect

    Perkins, L.

    1992-05-11

    This document describes the plan developed to address the growing concern for the continued deterioration of nuclear engineering education in the United States and its ability to meet the manpower demands for this Nation's work force requiring nuclear related talent in the foreseeable future.

  4. Investigation of an online, problem-based introduction to nuclear sciences: A case study

    SciTech Connect

    Schmidt, M.; Easter, M.; Jiazhen, W.; Jonassen, D.

    2006-07-01

    An online, grant-funded course on nuclear engineering in society was developed at a large Midwestern university with the goal of providing non-majors a meaningful introduction to the many applications of nuclear science in a modern society and to stimulate learner interest in academic studies and/or professional involvement in nuclear science. Using a within-site case study approach, the current study focused on the efficacy of the online learning environment's support of learners' acquisition of knowledge and the impact of the environment on learners' interest in and beliefs about nuclear sciences in society. Findings suggest the environment successfully promoted learning and had a positive impact on learners' interests and beliefs. (authors)

  5. Meeting at the crossroads: collaboration between information technology departments and health sciences libraries.

    PubMed

    King, Samuel; Cataldi-Roberts, Erica; Wentz, Erin

    2017-01-01

    The purposes of this survey were to determine the nature and extent of collaboration between health sciences libraries and their information technology (IT) departments, to identify strengths and issues connected to this relationship, and to provide examples demonstrating exceptional collaborative success. A fourteen-question survey was sent to a broad selection of health care and academic libraries through a variety of email discussion lists and was limited to one response per institution. Convenience sampling was used to collect the responses. An overwhelming majority of libraries described the relationship with their IT departments as good or excellent, and there were a variety of creative joint initiatives underway. Opportunities exist for continued and expanded library/IT collaboration. Good quality relationships between libraries and their IT departments are essential due to the interconnected nature of their services, and fortunately, this appears to be the norm at a variety of institutions. Mutual respect, open communication, realization of each department's mission, and responsiveness to each other's needs are part of what makes these relationships successful, which in turn leads to successful collaborative ventures that bode well for the future of both services.

  6. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  7. Five-year external reviews of the eight Department of Interior Climate Science Centers: Southeast Climate Science Center

    USGS Publications Warehouse

    Rice, Kenneth G.; Beier, Paul; Breault, Tim; Middleton, Beth A.; Peck, Myron A.; Tirpak, John M.; Ratnaswamy, Mary; Austen, Douglas; Harrison, Sarah

    2017-01-01

    In 2008, the U.S. Congress authorized the establishment of the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Department of Interior (DOI). Housed administratively within the U.S. Geological Survey (USGS), NCCWSC is part of the DOI’s ongoing mission to meet the challenges of climate change and its effects on wildlife and aquatic resources. From 2010 through 2012, NCCWSC established eight regional DOI Climate Science Centers (CSCs). Each of these regional CSCs operated with the mission to “synthesize and integrate climate change impact data and develop tools that the Department’s managers and partners can use when managing the Department’s land, water, fish and wildlife, and cultural heritage resources” (Salazar 2009). The model developed by NCCWSC for the regional CSCs employed a dual approach of a federal USGS-staffed component and a parallel host-university component established competitively through a 5-year cooperative agreement with NCCWSC. At the conclusion of this 5-year agreement, a review of each CSC was undertaken, with the Southeast Climate Science Center (SE CSC) review in February 2016. The SE CSC is hosted by North Carolina State University (NCSU) in Raleigh, North Carolina, and is physically housed within the NCSU Department of Applied Ecology along with the Center for Applied Aquatic Ecology, the North Carolina Cooperative Fish and Wildlife Research Unit (CFWRU), and the North Carolina Agromedicine Institute. The U.S. Department of Agriculture Southeast Regional Climate Hub is based at NCSU as is the National Oceanic and Atmospheric Administration (NOAA) Southeast Regional Climate Center, the North Carolina Institute for Climate Studies, the North Carolina Wildlife Resources Commission, the NOAA National Weather Service, the State Climate Office of North Carolina, and the U.S. Forest Service Eastern Forest Environmental Threat Assessment Center. This creates a strong core of organizations operating in

  8. Final Report to the Department of the Energy for Project Entitled Rare Isotope Science Assessment Committee

    SciTech Connect

    Donald Shapero; Timothy I. Meyer

    2007-08-14

    The Rare Isotope Science Assessment Committee (RISAC) was convened by the National Research Council in response to an informal request from the DOE’s Office of Nuclear Physics and the White House Office of Management and Budget. The charge to the committee is to examine and assess the broader scientific and international contexts of a U.S.-based rare-isotope facility. The committee met for the first time on December 16-17, 2005, in Washington, DC, and held three subsequent meetings. The committee’s final report was publicly released in unedited, prepublication form on Friday, December 8, 2006. The report was published in full-color by the National Academies Press in April 2007. Copies of the report were distributed to key decision makers and stakeholders around the world.

  9. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  10. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  11. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  12. Ideology in science and technology: the case of civilian nuclear power

    SciTech Connect

    Harrod, A.N.

    1987-01-01

    This dissertation traces the complicated interrelationships between ideology and interest within the civilian nuclear power controversy. The first chapter introduces the topic. The second chapter provides a social-political-economic overview of the context in which the conflicting ideologies arose. Factors looked at are the ascendancy of the physical sciences, the development of nuclear energy, the disenchantment with science and technology and the consequent rise of an anti-nuclear ideology. Chapter III uses the theories of Alvin Gouldner to understand the structure of ideology. The chapter defines ideology's similarities to and differences from scientific discourse. Chapter IV examines the ideological discourse of a selected sample of scientists who have spoken for and against civilian nuclear power. In parallel to chapter IV, chapter V examines a scientific controversy among the sample of experts. It shows how scientific disagreement can be produced and how ideology is most closely linked to science. Chapter VI examines the social interests of the scientists and experts to discover ways that interests have shaped the ideological and scientific positions for and against civilian nuclear energy. Based on the foregoing, chapter VII concludes that the introduction of science and experts into a controversy cannot be expected to end disagreement over policy because of the link between science and ideology.

  13. Meeting at the crossroads: collaboration between information technology departments and health sciences libraries

    PubMed Central

    King, Samuel; Cataldi-Roberts, Erica; Wentz, Erin

    2017-01-01

    Objective The purposes of this survey were to determine the nature and extent of collaboration between health sciences libraries and their information technology (IT) departments, to identify strengths and issues connected to this relationship, and to provide examples demonstrating exceptional collaborative success. Methods A fourteen-question survey was sent to a broad selection of health care and academic libraries through a variety of email discussion lists and was limited to one response per institution. Convenience sampling was used to collect the responses. Results An overwhelming majority of libraries described the relationship with their IT departments as good or excellent, and there were a variety of creative joint initiatives underway. Opportunities exist for continued and expanded library/IT collaboration. Conclusions Good quality relationships between libraries and their IT departments are essential due to the interconnected nature of their services, and fortunately, this appears to be the norm at a variety of institutions. Mutual respect, open communication, realization of each department’s mission, and responsiveness to each other’s needs are part of what makes these relationships successful, which in turn leads to successful collaborative ventures that bode well for the future of both services. PMID:28096743

  14. Mechanical Engineering Department Technical Review

    SciTech Connect

    Carr, R.B.; Denney, R.M.

    1981-07-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  15. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  16. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  17. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect

    Garaizar, Xabier

    2009-07-02

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  18. Graduate Students from Developing Countries in U.S. Science Departments. A Handbook for Department Chairs and Faculty Members.

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Washington, DC.

    This guide is intended to assist college faculty members working with graduate students from developing nations who may need help bridging the gap between their educational backgrounds and the requirements of graduate science programs which are primarily planned for U.S. students. Differences are noted in the pre-graduate school training of such…

  19. A Look at the Definition, Pedagogy, and Evaluation of Scientific Literacy within the Natural Science Departments at a Southwestern University

    ERIC Educational Resources Information Center

    Flynn, Deborah Kay

    2011-01-01

    This study focuses on the promotion of scientific literacy within the natural science departments and how faculty within these departments define, incorporate, and evaluate scientific literacy in their courses. The researcher examined data from participant interviews, observations, and archival material from courses taught by the participants. The…

  20. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    ERIC Educational Resources Information Center

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  1. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    ERIC Educational Resources Information Center

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  2. Annual Report and Abstracts of Research of the Department of Computer and Information Science, July 1976-June 1977.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Computer and Information Science Research Center.

    The annual report of the Department of Computer and Information Science includes abstracts of research carried out during the 1976-77 academic year with support from grants by governmental agencies and industry, as well as The Ohio State University. The report covers the department's organizational structure, objectives, highlights of department…

  3. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  4. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  5. Applications of Nuclear Physics Accelerators for Photon Science

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn

    2013-10-01

    Synchrotron radiation has been extensively developed as a source of high brightness light for materials science, chemistry and biology. Gains in brightness of 12 orders of magnitude have been achieved over conventional x-ray tubes. Now a new evolution is being enabled using superconducting linear accelerators to produce coherent light with a brightness another 8 orders of magnitude higher still. We will review the prospects of this development for photon science. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes

  6. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2009-08-04

    such as thorium and uranium, is present everywhere, often in trace amounts. Cosmic rays generate low levels of neutrons. Some commercial goods contain...radioactive material, such as ceramics (which may contain uranium) and kitty litter (which may contain thorium and uranium). Other radioactive...11 HEU that has been through a nuclear reactor picks up small quantities of U-232, which decays through intermediate steps to thallium-208, which

  7. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2008-11-06

    other nuclear facilities, tracking materials at border crossings and choke points, screening maritime cargo containers, and examining actual or...generate low levels of neutrons. Some commercial goods contain radioactive material, such as ceramics (which may contain uranium) and kitty litter (which...alert individuals to the presence of elevated levels of radiation. They may use any of several types of detector material. They are lightweight and

  8. The U.S. Department of Energy, National Nuclear Security Agency's Use of Geographic Information Systems for Nuclear Emergency Response Support

    SciTech Connect

    A. L. Guber

    2001-06-01

    The U.S, Department of Energy (DOE), National Nuclear Security Agency's (NNSA) Remote Sensing Laboratory (RSL) provides Geographic Information System (GIS) support during nuclear emergency response activities. As directed by the NNSA, the RSL GIS staff maintains databases and equipment for rapid field deployment during an emergency response. When on location, GIS operators provide information products to on-site emergency managers as well as to emergency managers at the DOE Headquarters (HQ) Emergency Operations Center (EOC) in Washington, D.C. Data products are derived from multiple information sources in the field including radiological prediction models, field measurements taken on the ground and from the air, and pertinent information researched on the Internet. The GIS functions as a central data hub where it supplies the information to response elements in the field, as well as to headquarters officials at HQ during emergency response activities.

  9. Future directions for separation science in nuclear and radiochemistry

    SciTech Connect

    Pruett, D.J.

    1986-01-01

    Solvent extraction and ion exchange have been the most widely used separation techniques in nuclear and radiochemistry since their development in the 1940s. Many successful separations processes based on these techniques have been used for decades in research laboratories, analytical laboratories, and industrial plants. Thus, it is easy to conclude that most of the fundamental and applied research that is needed in these areas has been done, and that further work in these ''mature'' fields is unlikely to be fruitful. A more careful review, however, reveals that significant problems remain to be solved, and that there is a demand for the development of new reagents, methods, and systems to solve the increasingly complex separations problems in the nuclear field. Specifically, new separation techniques based on developments in membrane technology and biotechnology that have occurred over the last 20 years should find extensive applications in radiochemical separations. Considerable research is needed in such areas as interfacial chemistry, the design and control of highly selective separation agents, critically evaluated data bases and mathematical models, and the fundamental chemistry of dilute solutions if these problems are to be solved and new techniques developed in a systematic way. Nonaqueous separation methods, such as pyrochemical and fluoride volatility processes, have traditionally played a more limited role in nuclear and radiochemistry, but recent developments in the chemistry and engineering of these processes promises to open up new areas of research and application in the future.

  10. [Paternity exclusion tests in the Department of Forensic Medicine, University of Medical Sciences in Poznan].

    PubMed

    Koralewska-Kordel, Małgorzata; Kordel, Krzysztof; Przybylski, Zygmunt; Wiśniewski, Sławomir A

    2006-01-01

    The study comprises the analysis of expert's hemogenetic reports carried out in the Department of Forensic Medicine, University of Medical Sciences in Poznan, in the years 1980-2004 and associated with paternity determination or exclusion. In the analyzed period, the authors established 1064 cases of paternity exclusion in serological tests, 97 paternity exclusions in the HLA examinations, and 129 cases of paternity exclusions processed in DNA testing. On the base of gene frequencies, the theoretical chance of paternity exclusion was determined for every test. The significant usefulness of DNA testing in legal processes did not cause an increase in the percentage of paternity exclusions. Moreover, the authors observed a significant decrease in the number of paternity exclusions in comparison with results of serological tests (from 24.25% to 19.43%). With the drop in the number of births, the number of expert's reports significantly decreased.

  11. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    SciTech Connect

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  12. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    SciTech Connect

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  13. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    SciTech Connect

    George W. Griffith

    2011-10-01

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows for ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.

  14. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    Not Available

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  15. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    SciTech Connect

    Not Available

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  16. HEPA filter testing - Department of Energy Office of Nuclear Energy Facilities

    SciTech Connect

    Sherwood, G.L. Jr.

    1995-02-01

    This paper provides the background of, and some results from, a review of HEPA filter testing during 1993 at selected Department of Energy (DOE) facilities. Recommendations for improvements in standards resulting from the review are also presented.

  17. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Astrophysics Data System (ADS)

    Doherty, Michael P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  18. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  19. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  20. The Debrecen Scanning Nuclear Microprobe and its Applications in Biology and Environmental Science

    SciTech Connect

    Kertesz, Zsofia

    2007-11-26

    Nuclear microscopy is one of the most powerful tools which are able to determine quantitative trace element distributions in complex samples on a microscopic scale. The advantage of nuclear microprobes are that different ion beam analytical techniques, like PIXE, RBS, STIM and NRA can be applied at the same time allowing the determination of the sample structure, major, minor and trace element distribution simultaneously.In this paper a nuclear microprobe setup developed for the microanalysis of thin complex samples of organic matrix at the Debrecen Scanning Nuclear Microprobe Facility is presented. The application of nuclear microscopy in life sciences is shown through an example, the study of penetration of TiO{sub 2} nanoparticles of bodycare cosmetics in skin layers.

  1. Nuclear Deterrence in the 21st Century: The Role of Science and Engineering

    SciTech Connect

    Martz, Joseph C; Ventura, Jonathan S

    2008-01-01

    Twenty-first century security challenges are multi-polar and asymmetric. A few nations have substantial nuclear arsenals and active nuclear weapons programs that still threaten vital US national security directly or by supporting proliferation. Maintaining a credible US nuclear deterrent and containing further proliferation will continue to be critical to US national security. Overlaid against this security backdrop, the rising worldwide population and its effects on global climate, food, and energy resources are greatly complicating the degree and number of security challenges before policy makers.This new paradigm requires new ways to assure allies that the United States remains a trusted security partner and to deter potential adversaries from aggressive actions that threaten global stability. Every U.S. President since Truman has affirmed the role of nuclear weapons as a supreme deterrent and protector of last resort of U.S. national security interests. Recently, President Bush called for a nuclear deterrent consistent with the 'lowest number of nuclear weapons' that still protects U.S. interests. How can this be achieved? And how can we continue on a path of nuclear reductions while retaining the security benefits of nuclear deterrence? Science and engineering have a key role to play in a potential new paradigm for nuclear deterrence, a concept known as 'capability-based deterrence.'

  2. Nuclear theory and science of the facility for rare isotope beams

    NASA Astrophysics Data System (ADS)

    Balantekin, A. B.; Carlson, J.; Dean, D. J.; Fuller, G. M.; Furnstahl, R. J.; Hjorth-Jensen, M.; Janssens, R. V. F.; Li, Bao-An; Nazarewicz, W.; Nunes, F. M.; Ormand, W. E.; Reddy, S.; Sherrill, B. M.

    2014-03-01

    The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This review overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas.

  3. An assessment of Chemical, Biological, Radiologic, Nuclear, and Explosive preparedness among emergency department healthcare providers in an inner city emergency department.

    PubMed

    Kotora, Joseph G

    2015-01-01

    Emergency healthcare providers are required to care for victims of Chemical, Biological, Radiologic, Nuclear, and Explosive (CBRNE) agents. However, US emergency departments are often ill prepared to manage CBRNE casualties. Most providers lack adequate knowledge or experience in the areas of patient decontamination, hospital-specific disaster protocols, interagency familiarization, and available supply of necessary medical equipment and medications. This study evaluated the CBRNE preparedness of physicians, nurses, and midlevel providers in an urban tertiary care emergency department. This retrospective observational survey study used a previously constructed questionnaire instrument. A total of 205 e-mail invitations were sent to 191 eligible providers through an online survey distribution tool (Survey Monkey®). Respondents were enrolled from February 1, 2014 to March 15, 2014. Simple frequencies of correct answers were used to determine the level of preparedness of each group. Cronbach's coefficient α was used to validate the precision of the study instrument. Finally, validity coefficients and analysis of variance ANOVA were used to determine the strength of correlation between demographic variables, as well as the variation between individual responses. Fifty-nine providers responded to the questionnaire (31.14 percent response rate). The overall frequency of correct answers was 66.26 percent, indicating a relatively poor level of CBRNE preparedness. The study instrument lacked precision and reliability (coefficient α 0.4050). Significant correlations were found between the frequency of correct answers and the respondents' gender, practice experience, and previous experience with a CBRNE incident. Significant variance exists between how providers believe casualties should be decontaminated, which drugs should be administered, and the interpretation of facility-specific protocols. Emergency care providers are inadequately prepared to manage CBRNE incidents

  4. Gender Ratios in High School Science Departments: The Effect of Percent Female Faculty on Multiple Dimensions of Students' Science Identities

    ERIC Educational Resources Information Center

    Gilmartin, Shannon; Denson, Nida; Li, Erika; Bryant, Alyssa; Aschbacher, Pamela

    2007-01-01

    To examine how school characteristics are tied to science and engineering views and aspirations of students who are underrepresented in science and engineering fields, this mixed-methods study explores relationships between aspects of students' science identities, and the representation of women among high school science teachers. Quantitative…

  5. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  6. Material control and accounting in the Department of Energy's nuclear fuel complex

    SciTech Connect

    1989-01-01

    Material control and accounting takes place within an envelope of activities related to safeguards and security, as well as to safety, health, and environment, all of which need to be managed to assure that the entire nuclear fuel complex can operate in a societally accepted manner. Within this envelope the committee was directed to carry out the following scope of work: (1) Review the MCandA systems in use at selected DOE facilities that are processing special nuclear material (SNM) in various physical and chemical forms. (2) Design and convene a workshop for senior representatives from each of DOE's facilities on the flows and inventories of nuclear materials. (3) Plan and conduct a series of site visits to each of the facilities to observe first hand the processing operations and the related MCandA systems. (4) Review the potential improvement in overall safeguard systems effectiveness, as measured by expected reduction in inventory difference control limits and inventory differences for materials balance accounts and facilities, or other criteria as appropriate. Indicate how this affects the relative degree of uncertainty in the system. (5) Review the efficiency of operating the MCandA system with and without the upgrading options and assess whether upgrading will contribute further efficiencies in operation, which may reduce many of the current operations costs. Determine if the current system is cost-effective. (6) Recommend the most promising technical approaches for further development by DOE and further study as warranted.

  7. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel

  8. Characteristics of physicians engaged in basic science: a questionnaire survey of physicians in basic science departments of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2012-01-01

    The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.

  9. Parameter Selection for Department of Energy Spent Nuclear Fuel to be Used in the Yucca Mountain License Application

    SciTech Connect

    D. L. Fillmore

    2003-10-01

    This report contains the chemical, physical, and radiological parameters that were chosen to represent the U.S. Department of Energy spent nuclear fuel in the Yucca Mountain license application. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data are reported for representative fuels and bounding fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported were not generated under any quality assurance program.

  10. Parameter selection for Department of Energy spent nuclear fuel to be used in the Yucca Mountain Viability Assessment

    SciTech Connect

    Fillmore, D.L.

    1998-06-01

    This report contains the chemical, physical, and radiological parameters that were chosen to represent the Department of Energy spent nuclear fuel in the Yucca Mountain Viability Assessment. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data is reported for representative fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported was not generated under any Q.A. Program.

  11. U.S. Department of Energy & Nuclear Regulatory Commission Advanced Fuel Cycle Research & Development Seminar Series FY 2007 & 2008

    SciTech Connect

    Grandy, Christopher

    2008-08-01

    In fiscal year 2007, the Advanced Burner Reactor project initiated an educational seminar series for the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) personnel on various aspects of fast reactor fuel cycle closure technologies. This important work was initiated to inform DOE and NRC personnel on initial details of sodium-cooled fast reactor, separations, waste form, and safeguard technologies being considered for the Advanced Fuel Cycle Research and Development program, and to learn the important lesson from the licensing process for the Clinch River Breeder Reactor Plant that educating the NRC staff early in the regulatory process is very important and critical to a project success.

  12. Nuclear science and engineering and health physics fellowships: 1984 description. Research areas for the practicum

    SciTech Connect

    Not Available

    1984-01-01

    This booklet describes available research areas at participating centers where a practicum may be held under the Nuclear Science and Engineering and Health Physics Fellowship program. After a year of graduate study each fellow is expected to arrange for a practicum period at one of the participating centers.

  13. Defense Science Board Task Force on the Review of the Defense Nuclear Agency Technology Base Program

    DTIC Science & Technology

    1982-04-01

    LTNCusTA RIE1D DEFENSE SCIENCE BOARD TASK FORCE REPORT REVIEW OF THE DEFENSE NUCLEAR AGENCY TECHNOLGY BASE PROGRAM April 1982 Office of the Under Secretary...become a " sugar daddy" for service labs that are under funding pressure. Nonetheless, the fact remains that a necessary condition for the utilization of

  14. An Analysis of World-Wide Contributions to "Nuclear Science Abstracts," Volume 22 (1968).

    ERIC Educational Resources Information Center

    Vaden, William M.

    Beginning with volume 20, "Nuclear Science Abstracts" (NSA) citations, exclusive of abstracts, have been recorded on magnetic tape. The articles have been categorized by 34 elements of the citations such as title, author, source, journal, report number, etc. At the time of this report more than 130,000 citations had been stored for…

  15. Searching the "Nuclear Science Abstracts" Data Base by Use of the Berkeley Mass Storage System

    ERIC Educational Resources Information Center

    Herr, J. Joanne; Smith, Gloria L.

    1972-01-01

    Advantages of the Berkeley Mass Storage System (MSS) for information retrieval other than its size are: high serial-read rate, archival data storage; and random-access capability. By use of this device, the search cost in an SDI system based on the Nuclear Science Abstracts" data base was reduced by 20 percent. (6 references) (Author/NH)

  16. Science, society, and America's nuclear waste. [Contains glossary

    SciTech Connect

    Not Available

    1992-01-01

    High-energy, ionizing radiation is called ionizing because it can knock electrons out of atoms and molecules, creating electrically charged particles called ions. Material that ionizing radiation passes through absorbs energy from the radiation mainly through this process of ionization. Ionizing radiation can be used for many beneficial purposes, but it also can cause serious, negative health effects. That is why it is one of the most thoroughly studied subjects in modern science. Most of our attention in this publication is focused on ionizing radiation -- what it is, where it comes from, and some of its properties.

  17. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program

  18. Application of Systems Engineering to U.S. Department of Energy Privatization Project Selection at the Hanford Nuclear Reservation

    SciTech Connect

    J. A. Layman

    1999-06-01

    The privatization efforts at the U.S. Department of Energy's Hanford Nuclear Reservation have been very successful primarily due to a disciplined process for project selection and execution. Early in the development of Privatization at Hanford, the Department of Energy determined that a disciplined alternatives generation and analysis (AGA) process would furnish the candidate projects with the best probability for success. Many factors had to be considered in the selection of projects. Westinghouse Hanford Company was assigned to develop this process and facilitate the selection of the first round of candidate privatization projects. Team members for the AGA process were assembled from all concerned organizations and skill groups. Among the selection criteria were legal, financial and technical considerations which had to be weighed.

  19. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    SciTech Connect

    Mahoney, J.

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

  20. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.

  1. Comparison of Radiation Dose Studies of the 2011 Fukushima Nuclear Accident Prepared by the World Health Organization and the U.S. Department of Defense

    DTIC Science & Technology

    2012-11-01

    R T Comparison of Radiation Dose Studies of the 2011 Fukushima Nuclear Accident Prepared by the World Health Organization and the U.S. Department...AND SUBTITLE Comparison of Radiation Dose Studies of the 2011 Fukushima Nuclear Accident Prepared by the World Health Organization and the U.S...in Japan on March 11, 2011 led to releases of radioactive materials from the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Station

  2. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  3. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  4. Evaluation of Nondestructive Assay/Nondestructive Examination Capabilities for Department of Energy Spent Nuclear Fuel

    SciTech Connect

    Luptak, A.J.; Bulmahn, K.D.

    1998-09-01

    This report summarizes an evaluation of the potential use of nondestructive assay (NDA) and nondestructive examination (NDE) technologies on DOE spent nuclear fuel (SNF). It presents the NDA/NDE information necessary for the National Spent Nuclear Fuel Program (NSNFP) and the SNF storage sites to use when defining that role, if any, of NDA/NDE in characterization and certification processes. Note that the potential role for NDA/NDE includes confirmatory testing on a sampling basis and is not restricted to use as a primary, item-specific, data collection method. The evaluation does not attempt to serve as a basis for selecting systems for development or deployment. Information was collected on 27 systems being developed at eight DOE locations. The systems considered are developed to some degree, but are not ready for deployment on the full range of DOE SNF and still require additional development. The system development may only involve demonstrating performance on additional SNF, packaging the system for deployment, and developing calibration standards, or it may be as extensive as performing additional basic research. Development time is considered to range from one to four years. We conclude that NDA/NDE systems are capable of playing a key role in the characterization and certification of DOE SNF, either as the primary data source or as a confirmatory test. NDA/NDE systems will be able to measure seven of the nine key SNF properties and to derive data for the two key properties not measured directly. The anticipated performance goals of these key properties are considered achievable except for enrichment measurements on fuels near 20% enrichment. NDA/NDE systems can likely be developed to measure the standard canisters now being considered for co-disposal of DOE SNF. This ability would allow the preparation of DOE SNF for storage now and the characterization and certification to be finalize later.

  5. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  6. ASAS Centennial Paper: The future of teaching and research in companion animal biology in departments of animal sciences.

    PubMed

    McNamara, J P

    2009-01-01

    Departments of animal sciences must be relevant to a society in which a small number of people can raise almost all the food animal products needed. The declining number of people involved in animal agriculture has decreased enrollment of students interested in food animals in many departments of animal science. However, several departments welcomed students from a diverse background and began research on animals other than food animals. In many states, the undergraduate enrollment is made up primarily of students interested only in companion animals. A benefit of this is that we have recruited new students into animal agriculture and they have gone on to excellent careers. We have a new challenge now: how to maintain and expand the efforts in teaching, research, and outreach of companion animal science. Departments wishing to expand in teaching have examples of successful courses and curricula from other departments. Some departments have expanded their teaching efforts across their own university to teach about pets to a wider audience than their own majors; other departments can follow. In research, a small number of faculty have been able to establish extramurally funded projects on pets, including horses. But it will be difficult for more than a handful of departments to have a serious research effort in dogs, cats, birds, fish, or exotic animals. Departments will have to make a concerted effort to invest in such endeavors; joint ventures with other universities and colleges of veterinary medicine (or medicine) will probably be required. Funding sources for "traditional" efforts in nutrition, reproduction, and physiology are small and inconsistent; however, with the progress of the equine, canine, and feline genome projects, there should be opportunities from federal funding sources aimed at using animal models for human health. In addition, efforts in animal behavior and welfare can be expanded, perhaps with some funding from private foundations or animal

  7. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    NASA Astrophysics Data System (ADS)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  8. The Department of Energy`s interagency agreement with the National Institute of Environmental Health Sciences: Audit report

    SciTech Connect

    1998-07-01

    The Department of Energy (Department) and the National Institute of Environmental Health Sciences (NIEHS) entered into an interagency agreement in September 1992 to develop model safety and health training programs for workers involved in waste cleanup activities at Departmental facilities. Under the terms of the agreement, recipients of NIEHS training grants were to provide Hazardous Waste Operations and Emergency Response (HAZWOPER) training to Departmental sites. By June 1997, the Department had obligated over $40 million to the agreement. The objective of this audit was to determine whether the interagency agreement with NIEHS was the most cost-effective method of acquiring the training.

  9. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  10. Health consequences of Chernobyl: the New York Academy of Sciences publishes an antidote to the nuclear establishment's pseudo-science.

    PubMed

    Katz, Alison Rosamund

    2010-01-01

    In February 2010, the New York Academy of Sciences published the most complete and up-to-date collection of evidence, from independent, scientific sources all over the world, on the health and environmental consequences of the Chernobyl accident. For 24 years, through a high-level, internationally coordinated cover-up of the world's most serious industrial accident, the nuclear lobby has deprived the world of a unique and critically important source of scientific information. The International Atomic Energy Agency (IAEA), mouthpiece of the nuclear establishment, has coordinated the cover-up through the dissemination and imposition of crude pseudo-science. Regrettably, the World Health Organization, a U.N. agency on which the world's people rely for guidance, is subordinate to the IAEA in matters of radiation and health, has participated in the cover-up, and stands accused of non-assistance to populations in danger. The new book on Chernobyl makes available huge amounts of evidence from independent studies undertaken in the affected countries, unique and valuable data that have been ignored by the international health establishment. This comprehensive account of the full dimensions of the catastrophe reveals the shameful inadequacy of current international assistance to the affected populations. It also demonstrates, once more, that future energy options cannot include nuclear power.

  11. Fundamental Science-Based Simulation of Nuclear Waste Forms

    SciTech Connect

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  12. An overview of radioactive waste disposal procedures of a nuclear medicine department.

    PubMed

    Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S

    2011-04-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.

  13. An overview of radioactive waste disposal procedures of a nuclear medicine department

    PubMed Central

    Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.

    2011-01-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225

  14. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    SciTech Connect

    Doherty, M.P. )

    1993-01-10

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  15. On the use of nuclear data libraries in science and technology

    NASA Astrophysics Data System (ADS)

    Hermsdorf, D.

    1984-08-01

    For adequate representation and comprehensive computer-readbale storage of experimental and evaluated nuclear data different data bases and structures have been elaborated in the past. Under the auspices of the IAEA the internationally accepted formats EXPOR, ENDF/B and ENSDF have been adopted for the exchange of data bases. From these data bases libraries have been complied to fulfil data demands arising from different applications in science and technology. In this paper, some problems in using nuclear data libraries by customers are discussed.

  16. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    SciTech Connect

    Johnson, A.E.; Harbour, J.L.

    1993-06-01

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

  17. Protecting contract workers: case study of the US Department of Energy's nuclear and chemical waste management.

    PubMed

    Gochfeld, Michael; Mohr, Sandra

    2007-09-01

    Increased reliance on subcontractors in all economic sectors is a serious occupational health and safety challenge. Short-term cost savings are offset by long-term liability. Hiring subcontractors brings specialized knowledge but also young, inexperienced, inadequately trained workers onto industrial and hazardous waste sites, which leads to increased rates of accidents and injuries. Reliable data on subcontractor occupational health and safety programs and performance are sparse. The US Department of Energy has an excellent safety culture on paper, but procurement practices and contract language deliver a mixed message--including some safety disincentives. Its biphasic safety outcome data are consistent with underreporting by some subcontractors and underachievement by others. These observations are relevant to the private and public sectors. Occupational health and safety should be viewed as an asset, not merely a cost.

  18. Impact Assessment of a Department-Wide Science Education Initiative Using Students' Perceptions of Teaching and Learning Experiences

    ERIC Educational Resources Information Center

    Jones, Francis

    2017-01-01

    Evaluating major post-secondary education improvement projects involves multiple perspectives, including students' perceptions of their experiences. In the final year of a seven-year department-wide science education initiative, we asked students in 48 courses to rate the extent to which each of 39 teaching or learning strategies helped them learn…

  19. 75 FR 4411 - Agency Information Collection Activities: Department of the Interior Regional Climate Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... Regional Climate Science Centers AGENCY: United States Geological Survey (USGS), Interior. ACTION: Notice... to serve as a Host organization. Host organizations must be able to contribute climate science... of the Interior Regional Climate Science Centers. Type of Request: New. Respondent Obligation...

  20. Beryllium disease among construction trade workers at Department of Energy nuclear sites.

    PubMed

    Welch, Laura S; Ringen, Knut; Dement, John; Bingham, Eula; Quinn, Patricia; Shorter, Janet; Fisher, Miles

    2013-10-01

    A medical surveillance program was developed to identify current and former construction workers at significant risk for beryllium related disease from work at the DOE nuclear weapons facilities, and to improve surveillance among beryllium exposed workers. Medical examinations included a medical history and a beryllium blood lymphocyte proliferation test (BeLPT). Stratified and multivariate logistic regression analyses were used to explore the risk of disease by age, race, trade, and reported work in buildings where beryllium was used. After adjusting for covariates, the risk of BeS was significantly higher among boilermakers, roofers, and sheet metal workers, as suggested in the stratified analyses. Workers identified as sensitized to beryllium were interviewed to determine whether they had been subsequently diagnosed with chronic beryllium disease. Between 1998 and December 31, 2010 13,810 workers received a BeLPT through the BTMed program; 189 (1.4%) were sensitized to beryllium, and 28 reported that they had had a compensation claim accepted for CBD. These data on former construction workers gives us additional information about the predictive value of the blood BeLPT test for detection of CBD in populations with lower total lifetime exposures and more remote exposures than that experienced by current workers in beryllium machining operations. Through this surveillance program we have identified routes of exposures to beryllium and worked with DOE site personnel to identity and mitigate those exposures which still exist, as well as helping to focus attention on the risk for beryllium exposure among current demolition workers at these facilities. Copyright © 2013 Wiley Periodicals, Inc.

  1. Tritium Plasma Experiment Upgrade and Improvement of Surface Diagnostic Capabilities at STAR Facility for Enhancing Tritium and Nuclear PMI Sciences

    SciTech Connect

    Shimada, M.; Taylor, C. N.; Pawelko, R. J.; Cadwallader, L. C.; Merrill, B. J.

    2016-04-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  2. The Gemini Science User Support Department: A community-centered approach to user support

    NASA Astrophysics Data System (ADS)

    Chené, André-Nicolas; Thomas-Osip, Joanna

    2016-01-01

    The Gemini Science User Support Department (SUSD) was formed a little more than a year ago to create a collaborative community of users and staff and to consolidate existing post-observing support throughout the observatory for more efficient use of resources as well as better visibility amongst our user community. This poster is an opportunity to exchange ideas about how Gemini can improve your experience while working with the Observatory and present details about new avenues of post-observing support coming soon. We encourage your feedback at any time.Shortly after its creation, the SUSD conducted a complete revision of the communication cycle between Gemini and its community of researchers. The cycle was then revisited from the perspective of an astronomer interested in using Gemini for their research. This exercise led to a series of proposed changes that are currently under development, and the implementation of a sub-selection is expected in 2016, including the following. (1) Email notifications: Gemini users will receive new forms of email communications that are more instructive and tailored to their program. The objective is to direct the users more efficiently toward the useful links and documentation all along the lifecycle of the program, from phaseII to after the data are completely reduced. (2) HelpDesk system: The HelpDesk will become more user-friendly and transparent. (3) Webpages: The organization of the Gemini webpages will be redesigned to optimize navigation; especially for anything regarding more critical periods likes phaseIs and phaseIIs. (4) Data Reduction User Forum: Following recommendations from Gemini users, new capabilities were added to the forum, like email notifications, and a voting system, in order to make it more practical. This forum's objective is to bring the Gemini community together to exchange their ideas, thoughts, questions and solutions about data reduction, a sort of Reddit, StackOverflow or Slashdot for Gemini data.

  3. National Academy of Sciences survey on risks associated with nuclear power

    SciTech Connect

    Buchanan, J.R.

    1980-01-01

    A critical review of the literature pertaining to the risks associated with nuclear electric power was sponsored by the Committee on Science and Public Policy of the National Academy of Sciences. Although the full report (consisting of over 25 chapters) has not yet been published, this paper presents highlights from the Summary and Synthesis Chapter, which was released separately. Of the risks whose magnitudes can be estimated with reasonable accuracy, the most serious is the exposure of future generations to /sup 14/C from reactors and reprocessing plants. Prospects are good for reducing this risk considerably, since carbon can be collected and stored as waste.

  4. Nuclear shipping and storage containers with depleted uranium (DU) shielding Department of Transportation (DOT) certification tests. Final report

    SciTech Connect

    Meyer, W.R.

    1996-01-01

    The U.S. Army Defense Ammunition Center and School (USADACS), Validation Engineering Division (SIOAC-DEV), was tasked by Industrial Operations Command (IOC), AMSIO-SMA-N, to conduct Department of Transportation (DOT) tests on nuclear hazardous waste containers containing concrete and 30mm DU rounds for shielding. Two series of tests were conducted due to fluctuations in radiation levels experienced during the first series of tests. During the second series of tests no fluctuations in radiation were noted with only minor problems experienced with pressure leakage around the base of two of three containers. Except for the leakage noted above, no other problems were experienced with all containers meeting the other requirements for DOT shipping and storage containers. This report contains results of the tests conducted.

  5. Mortality of older construction and craft workers employed at department of energy (DOE) nuclear sites: follow-up through 2011.

    PubMed

    Ringen, Knut; Dement, John; Welch, Laura; Bingham, Eula; Quinn, Patricia; Chen, Anna; Haas, Scott

    2015-02-01

    The Building Trades National Medical Screening Program (BTMed) was established in 1996 to provide occupational medicine screening examinations for construction workers who have worked at US Department of Energy nuclear sites. Workers participating in BTMed between 1998 and 2011 were followed to determine their vital status and mortality experience through December 31, 2011. The cohort includes 18,803 BTMed participants and 2,801 deaths. Cause-specific Standardized Mortality Ratios (SMRs) were calculated based on US death rates. Mortality was elevated for all causes, all cancers, cancers of the trachea, bronchus, and lung and lymphatic and hematopoietic system, mesothelioma, COPD, and asbestosis. Construction workers employed at DOE sites have a significantly increased risk for occupational illnesses. Risks are associated with employment during all time periods covered including after 1980. The cancer risks closely match the cancers identified for DOE compensation from radiation exposures. Continued medical surveillance is important. © 2014 Wiley Periodicals, Inc.

  6. Nuclear Medical Science Officers: Army Health Physicists Serving and Defending Their Country Around the Globe

    NASA Astrophysics Data System (ADS)

    Melanson, Mark; Bosley, William; Santiago, Jodi; Hamilton, Daniel

    2010-02-01

    Tracing their distinguished history back to the Manhattan Project that developed the world's first atomic bomb, the Nuclear Medical Science Officers are the Army's experts on radiation and its health effects. Serving around the globe, these commissioned Army officers serve as military health physicists that ensure the protection of Soldiers and those they defend against all sources of radiation, military and civilian. This poster will highlight the various roles and responsibilities that Nuclear Medical Science Officers fill in defense of the Nation. Areas where these officers serve include medical health physics, deployment health physics, homeland defense, emergency response, radiation dosimetry, radiation research and training, along with support to the Army's corporate radiation safety program and international collaborations. The poster will also share some of the unique military sources of radiation such as depleted uranium, which is used as an anti-armor munition and in armor plating because of its unique metallurgic properties. )

  7. Contributions of the SCK.CEN Academy to education and training in nuclear science and technology

    SciTech Connect

    Coeck, Michele

    2015-07-01

    Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear installations, SCK.CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK.CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In the interest of maintaining a competent workforce in industry, Healthcare, research, and policy, and of transferring nuclear knowledge and skills to the next generations, the SCK.CEN Academy takes it as its mission to: - provide guidance for students and early-stage researchers; - organize academic courses and customized training for professionals; - offer policy support with regard to education and training matters; - care for critical-intellectual capacities for society. Specifically in the domain of nuclear instrumentation the SCK.CEN Academy provides an opportunity to students at Bachelor, Master and PhD level to make use of the SCK.CEN infrastructure to support their thesis research or to perform an internship with the aim to improve and extend their knowledge and skills in a specific research or technical domain. Further, they can contribute to new findings in the field of nuclear instrumentation. The students are guided by our scientists, engineers and technicians who have years of experience in the relevant field. In addition, the SCK.CEN Academy contributes to traditional university education programs and delivers courses in several nuclear topics such as dosimetry. We also coordinate the Belgian Nuclear higher Engineering Network (BNEN), a one year (60 ECTS) master-after-master specialization in nuclear engineering in which 6 Belgian universities and SCK.CEN are involved. Beyond the contributions to academic education, we also provide several customized training

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect

    Not Available

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  9. Research productivity of Canadian ophthalmology departments in top 10 ophthalmology and vision science journals from 2001 to 2010.

    PubMed

    Schlenker, Matthew B; Manalo, Elbert; Wong, Agnes M F

    2013-02-01

    To evaluate the research productivity of Canadian ophthalmology departments in terms of research volume, impact, funding, and cost-efficiency, and compare these measures with the top 6 U.S. departments. Systemic review. Using the Web of Science, we obtained the number of peer-reviewed research articles and citations in which an author listed an ophthalmology department (or affiliated university or hospital) from 2001 to 2010 in the top 10 ophthalmology and vision sciences journals, as well as the Canadian Journal of Ophthalmology. Federal research funding received from the Canadian Institutes of Health Research and National Institutes of Health was also obtained. The 3 universities that produced the highest number of articles were the University of Toronto (UofT), McGill University, and the University of British Columbia (UBC). UofT also produced the largest number of citations, followed by UBC and Dalhousie University. For the number of citations per article, the top 3 were the University of Ottawa, Dalhousie University, and the University of Calgary. McGill University, the University of Montreal, and UofT received the most federal funding. The 3 Canadian universities with the lowest funding (cost) per article were UofT, UBC, and McMaster University. The top contributors to the Canadian Journal of Ophthalmology from 2001 to 2010 were UofT, the University of Ottawa, and McGill University. Larger Canadian departments tended to generate higher research volume and obtained more federal funding, but smaller departments also contributed significantly, and sometimes surpassed larger departments, in terms of research impact and cost-efficiency. The top 6 U.S. departments generated higher research volume and received more federal research funding than their Canadian counterparts. However, when research impact and cost-efficiency were examined, Canadian departments performed similar to the top U.S. departments. Copyright © 2013 Canadian Ophthalmological Society. Published

  10. ECAT ART - a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department.

    PubMed

    Bailey, D L; Young, H; Bloomfield, P M; Meikle, S R; Glass, D; Myers, M J; Spinks, T J; Watson, C C; Luk, P; Peters, A M; Jones, T

    1997-01-01

    Advances in fully three-dimensional (3D) image reconstruction techniques have permitted the development of a commercial, rotating, partial ring, fully 3D positron emission tomographic (PET) scanner, the ECAT ART. The system has less than one-half the number of bismuth germanate detectors compared with a full ring scanner with the equivalent field of view, resulting in reduced capital cost. The performance characteristics, implications for installation in a nuclear medicine department, and clinical utility of the scanner are presented in this report. The sensitivity (20 cm diameterx20 cm long cylindrical phantom, no scatter correction) is 11400 cps.kBq-1.ml-1. This compares with 5800 and 40500 cps.kBq-1.ml-1 in 2D and 3D respectively for the equivalent full ring scanner (ECAT EXACT). With an energy window of 350-650 keV the maximum noise equivalent count (NEC) rate was 27 kcps at a radioactivity concentration of approximately 15 kBq.ml-1 in the cylinder. Spatial resolution is approximately 6 mm full width at half maximum on axis degrading to just under 8 mm at a distance of 20 cm off axis. Installation and use within the nuclear medicine department does not appreciably increase background levels of radiation on gamma cameras in adjacent rooms and the dose rate to an operator in the same room is 2 microSv. h-1 for a typical fluorine-18 fluorodeoxyglucose (18F-FDG) study with an initial injected activity of 370 MBq. The scanner has been used for clinical imaging with18F-FDG for neurological and oncological applications. Its novel use for imaging iron-52 transferrin for localising erythropoietic activity demonstrates its sensitivity and resolution advantages over a conventional dual-headed gamma camera. The ECAT ART provides a viable alternative to conventional full ring PET scanners without compromising the performance required for clinical PET imaging.

  11. [Introduction of a quality management system compliant with DIN EN 9001:2000 in a university department of nuclear medicine].

    PubMed

    Jansen-Schmidt, V; Paschen, U; Kröger, S; Bohuslavizki, K H; Clausen, M

    2001-12-01

    In 1995, the management of the University Clinic Hamburg-Eppendorf proposed to establish a total quality assurance (QA) system. A revised QA-system has been introduced stepwise in the department of nuclear medicine since 1997, and certification was achieved in accordance with DIN EN ISO 9001:2000 on February 14, 2001. The QA-handbook is divided into two parts. The first part contains operational (diagnostic and therapeutic) procedures in so-called standard operating procedures (SOP). They describe the indication of procedures as well as the competences and time necessary in a standardized manner. Up to now, more than 70 SOPs have been written as a collaborative approach between technicians and physicians during daily clinical routine after analysing and discussing the procedures. Thus, the results were more clearly defined processes and more satisfied employees. The second part consists of general rules and directions concerning the security of work and equipment as well as radiation protection tasks, hygiene etc. as it is required by the law. This part was written predominantly by the management of the department of nuclear-medicine and the QA-coordinator. Detailed information for the patients, documentation of the work-flows as well as the medical report was adopted to the QM-system. Although in the introduction phase of a QA-system a vast amount of time is necessary, some months later a surplus for the clinical workday will become available. The well defined relations of competences and procedures will result in a gain of time, a reduction of costs and a help to ensure the legal demands. Last but not least, the QA-system simply helps to build up confidence and acceptance both by the patients and the referring physicians.

  12. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerología Department of Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; de Buen, I. Gamboa; Buenfil, A. E.; Brandan, M. E.

    2010-12-01

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerología, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with 137Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrología, to known 137Cs gamma radiation air kerma. Radionuclides considered for this study are 131I, 18F, 67Ga, 99mTc, 111In, 201Tl and 137Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with 131I and 137Cs. High dose values were found at the waste storage room, outside corridor of 137Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the 137Cs brachytherapy corridor is equal to (18.51±0.02)×10-3 mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05±0.03)×10-3 mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  13. Anomalous Nuclear Reaction in Earth's Interior: a New Field in Physics Science?

    NASA Astrophysics Data System (ADS)

    Jiang, Songsheng; He, Ming

    2012-05-01

    Tritium (3H) in excess of the atmospheric values was found at volcanic Lakes Pavin (France), Laacher (Germany) and Nemrut (Turkey), as well as Kilauea Volcano at Hawaii (USA) and other volcanoes. Because 3H has a short half-life of 12.3 years, the tritium and the resulting 3He must have formed recently in the Earth. The result suggests that nuclear reactions may generate a significant amount of tritium in the interior of the Earth, although we have not yet learned what the reaction mechanism may be responsible. The nuclear reaction that can be responsible for tritium production in the Earth is probably a new research field in physics science. Nuclear reactions that generate tritium might be a source of “missing" energy (heat) in the interior of the Earth. Finding in-situ 3H in the mantle may exhibit an alternative explanation of 3He origin in the deep Earth.

  14. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  15. University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor

    SciTech Connect

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01

    The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

  16. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability

    NASA Astrophysics Data System (ADS)

    Gade, A.; Sherrill, B. M.

    2016-05-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.

  17. The condition of interdisciplinary communication among various Educational and Research Departments of Isfahan University of Medical Sciences.

    PubMed

    Mazaheri, Elaheh; Geraei, Ehsan; Zare-Farashbandi, Firoozeh; Papi, Ahmad

    2017-01-01

    The study aimed to assess interdisciplinary communication among various Educational and Research Departments of Isfahan University of Medical Sciences (IUMS) in clinical medical sciences using social network analysis. The study was carried out using scientometrics method and interdisciplinary communication network analysis. Interdisciplinary network of 1298 articles in medical sciences published in Journal of Isfahan Medical School was evaluated using macro- and micro-level criteria of network analysis. Ravar Matrix, UCINET, and VOSviewer software were used to analyze the interdisciplinary network of medical sciences articles. Findings showed that "Students Research Committee" and "School of Medicine," the affiliations of the medical students in general practice with scores of 272 and 197, "Epidemiology and Biostatistics," "Community Medicine," and "Internal Medicine" with 170, 101, and 99, respectively, possessed the first ranking of productivity index in scientific communication. Furthermore, in betweenness centrality index, "Epidemiology and Biostatistics" (3427.807), "Students Research Committee" (2967.180), and "Community Medicine" (1770.300) have an appropriate position in the network. Based on the centrality index, "Epidemiology and Biostatistics" (22.412), "Students Research Committee" (22.185) as well as "Community Medicine" and "School of Medicine" (both 21.554) acquired the least amount of distance with other nodes in network. Given the increased specialization in medical fields in recent years, communication between researchers with various specializations and creation of interdisciplinary or multidisciplinary departments had turned into an undeniable necessity. Therefore, communication between educational or research departments can facilitate the flow of information between researchers; and consequently, the top ranking departments in this study had more participation in scientific production of IUMS and getting more scores in annual evaluation by

  18. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  19. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  20. Progress and challenges of nuclear science development in Vietnam - an outlook on the occassion of the 10-th anniversary of the Dalat Nuclear Research Reactor

    SciTech Connect

    Hien, P.D.

    1994-12-31

    Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclear science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.

  1. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  2. Scientometric mapping of vacuum research in nuclear science & technology: a global perspective

    NASA Astrophysics Data System (ADS)

    Kademani, B. S.; Sagar, A.; Kumar, A.; Kumar, V.

    2008-05-01

    This paper attempts to analyse the growth and development of Vacuum research in Nuclear Science and Technology, as reflected in publication output covered by International Nuclear Information System (INIS) database during 2002-2006. A total of 12027 papers were published in the field of vacuum science. United States topped the list with 1936 (16.10%) publications followed by Japan with 1770 (14.70%) publications, The highest number of publications (3276) were published in 2004. The average number of publications published per year were 2405.4. The highest number of publications were in 'Physics of Elementary Particles and Fields' with 2644 (21.98%) publications. The authorship and collaboration trend is towards multi-authored papers. The highly productive institutions were: Japan Atomic Energy Research Institute (Japan) with 366 publications, University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University Japan (Japan) with 224 publications and Chinese Academy of Science (P-R-China) with 223 publications. The most preferred journals for publication were: Journal of Vacuum Science and Technology-A with 857 papers, Physical Review -D with 765 papers, Journal of High Energy Physics with 500 papers, Thin Solid Films with 311 papers, Journal of Electron Spectroscopy and Related Phenomena with 309 papers, and AIP Conference Proceedings with 308 papers.

  3. Success With Offering a Diversity of Majors in the Earth Science Department at the University of Northern Colorado

    NASA Astrophysics Data System (ADS)

    Nesse, W. D.; Taber, M. R.; Hoyt, W. H.

    2003-12-01

    Today, the number of geology majors at the University of Northern Colorado (UNC) has declined to just 10 percent of the mid-1980s peak. At issue is the sustainability of a viable geology program, with a minimum of three tenure-track faculty and few graduating geology students. One solution to the sustainability issue is diversity of Earth Science Majors within a given department. At UNC we have five emphasis areas: Environmental Earth Science, General Earth Science, Geology, Meteorology, and Secondary and Middle Level Teaching. We have had the good fortune to add many Meteorology and Environmental Earth Science majors, while the Geology, Middle Level Teaching, and General Earth Science majors have declined in number. As students' academic goals fluctuate in the geosciences (often directly tied to the marketability), the diversity of major offerings allows for the department to maintain a balance in the number of majors. Today, we are close to the number of Earth Science majors we've averaged over the last 20 years (~135 majors). Strong advising is essential for our evolving systems to work for the students and the Department. Another stabilizing factor for the Department is the masters program, which provides graduate student teaching assistants at a low cost to the university-most of our teaching assistants teach General Geology labs, and that course continues to be an effective recruiting mechanism for all of the emphasis areas to some degree. State budget constraints have forced creativity in course offerings. For example, we still require a Geology Field Camp for graduation, but send our students to other university field camps - a cost saving for us. In addition, many of our courses serve multiple emphasis areas, mirroring the nature of earth system science. Moreover, we have managed to combine some upper division courses (mineralogy and earth materials, for example), offered others on an alternate-year basis, reduce the number of upper division electives, and

  4. Uncomfortable Departments: British Historians of Science and the Importance of Disciplinary Communities

    ERIC Educational Resources Information Center

    Fyfe, Aileen

    2015-01-01

    This paper explores issues around disciplinary belonging and academic identity. Historians of science learn to think and practise like historians in terms of research practice, but this paper shows that British historians of science do not think of themselves as belonging to the disciplinary community of historians. They may be confident that they…

  5. Capturing citation activity in three health sciences departments: a comparison study of Scopus and Web of Science.

    PubMed

    Sarkozy, Alexandra; Slyman, Alison; Wu, Wendy

    2015-01-01

    Scopus and Web of Science are the two major citation databases that collect and disseminate bibliometric statistics about research articles, journals, institutions, and individual authors. Liaison librarians are now regularly called upon to utilize these databases to assist faculty in finding citation activity on their published works for tenure and promotion, grant applications, and more. But questions about the accuracy, scope, and coverage of these tools deserve closer scrutiny. Discrepancies in citation capture led to a systematic study on how Scopus and Web of Science compared in a real-life situation encountered by liaisons: comparing three different disciplines at a medical school and nursing program. How many articles would each database retrieve for each faculty member using the author-searching tools provided? How many cited references for each faculty member would each tool generate? Results demonstrated troubling differences in publication and citation activity capture between Scopus and Web of Science. Implications for librarians are discussed.

  6. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema

    Thomas D'Agostino

    2016-07-12

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  7. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema

    Thomas D'Agostino

    2016-07-12

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  8. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    SciTech Connect

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  9. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    SciTech Connect

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  10. The Place of International Law in Departments of Political Science/Government.

    ERIC Educational Resources Information Center

    Ku, Charlotte

    This paper focuses on the teaching of international law in the University of Virginia's (Charlottesville) Department of Government and Foreign Affairs. It highlights the international law curriculum as part of the Foreign Affairs Department's course offerings and describes the purposes and objectives of courses in this curriculum. Problems that…

  11. Pre-Service Science Teachers' Views about Nuclear Energy with Respect to Gender and University Providing Instruction

    ERIC Educational Resources Information Center

    Ates, H.; Saracoglu, M.

    2016-01-01

    The purpose of this research was to investigate pre-service science teachers' (PST) views about nuclear energy and to examine what effects, if any, of gender and the university of instruction had on their views. Data were collected through the Risks and Benefits about Nuclear Energy Scale (Iseri, 2012). The sample consisted of 214 PSTs who…

  12. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  13. A Magnetic Tape Library System for the Computer Science Department NPGS (Naval Postgraduate School); Requirements Analysis, Design, and Implementation.

    DTIC Science & Technology

    1985-12-01

    Willis R . Greer, Jr., Chairman, Department of Administrative Sciences Kneale T. Marshall, E .Yif Information and Policy Scie!es - iwV...FRA\\’ES---------------------------------------- ’,~~ r L - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - J. DATABASE...be ,eveicoed ’bv r theSiS Student I0 9 ’ The current tape library is a combination of a casual computer listing of approximately 600 tapes, and opened

  14. The Department of Defense Statement on Science in the Science and Technology Program before the Subcommittee on Research and Development of the Committee on Armed Services of the United States House of Representatives, 99th Congress, Second Session.

    DTIC Science & Technology

    1986-03-12

    none. 4 TABLE I SCIENCE AND TECHNOLOGY PROGRAM (Dollars in Millions) FY 1986 FY 1987 Research Military Departments ............................. 858 876...is potentially applicable to a wide range of military aircraft from fighters to strategic bombers. )j 20 .~ .. . . . . Also, flight tests of the...Environmental Sciences Research and Global Environmental Support Meteorology, oceanography, terrestrial science and space science are major military

  15. Professional development in person: identity and the construction of teaching within a high school science department

    NASA Astrophysics Data System (ADS)

    Deneroff, Victoria

    2016-06-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development focused on inquiry science teaching. I use a social practice theory lens to analyze my own stories as well as Marie's. I make the case that science teaching is best understood as mediated by socially-constructed identities rather than as the end-product of knowledge and beliefs. The cognitive paradigm for understanding teachers' professional learning fails to consistently produce transformations of teaching practice. In order to design professional development with science teachers that is generative of new knowledge, and is self-sustaining, we must understand how to build knowledge of how to problematize identities and consciously use social practice theory.

  16. Experiments in progress: The geography of science in the Atomic Energy Commission's peaceful uses of nuclear explosives program, 1956-1973

    NASA Astrophysics Data System (ADS)

    Kirsch, Scott Lawrence

    From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.

  17. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2016-04-07

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  18. LSU Health Sciences Center New Orleans Department of Radiology: effects of Hurricane Katrina.

    PubMed

    Duggal, Anshu; Letourneau, Janis G; Bok, Leonard R

    2009-05-01

    This case study chronicles the impact of Hurricane Katrina on the Department of Radiology at the Louisiana State University School of Medicine in New Orleans and the department's subsequent efforts to recover and re-dedicate itself to providing quality patient care and resident education. Hurricane Katrina damaged the department's facilities, severely decreased departmental cash flow, disrupted resident education, and resulted in faculty exodus. Because of the "catastrophic loss of resources" suffered by the department, the Accreditation Council for Graduate Medical Education (ACGME) proposed expedited withdrawal of accreditation for the Diagnostic Radiology Residency Program, to which the department agreed. Since Katrina, the program has taken steps toward regaining its pre-Katrina status as a successful residency program that produced satisfied, successful residents. These steps include the appointment of a new department head of radiology, the recruitment of academic directors for each of the nine subspecialties, the reopening of the University Hospital, and the growth of annual procedure volume. All institutions face the possibility of a natural disaster. It is imperative to have a plan in place to ensure continued resident education, patient safety, and ACGME accreditation.

  19. Long-term stewardship of the environmental legacy at restored sites within the Department of Energy nuclear weapons complex.

    PubMed

    Wells, James R; Spitz, Henry B

    2003-11-01

    It is readily apparent, as the Department of Energy Office of Environmental Management proceeds in remediating its vast network of contaminated nuclear weapons facilities, that final cleanup at many facilities will not be performed to a level allowing unrestricted use of the facility. Instead, these facilities must rely on engineering, administrative, and institutional controls to ensure the level of cleanup performed at the site remains adequately protective of public health and the environment. In order for these controls to remain effective, however, a plan for long-term stewardship of these sites must be developed that is approved by the U.S. Congress. Although this sounds simple enough for the present, serious questions remain regarding how best to implement a program of stewardship to ensure its effectiveness over time, particularly for sites with residual contamination of radionuclides with half-lives on the order of thousands of years. Individual facilities have attempted to answer these questions at the site-specific level. However, the complexities of the issues require federal support and oversight to ensure the programs implemented at each of the facilities are consistent and effective. The Department of Energy recently submitted a report to Congress outlining the extent of long-term stewardship needs at each of its facilities. As a result, the time is ripe for forward thinking Congressional action to address the relevant issues and ensure the remedy of long-term stewardship successfully carries out its intended purpose and remains protective of public health and the environment. The regulatory elements necessary for the stewardship program to succeed can only be implemented through the plenary powers of the U.S. Congress.

  20. Outreach and Education in the Life Sciences A Case Study of the U.S. Department of Energy National Laboratories

    SciTech Connect

    Weller, Richard E.; Burbank, Roberta L.; Mahy, Heidi A.

    2010-03-15

    This project was intended to assess the impact of the U.S. Department of Energy’s National Nuclear Security Agency (DOE/NNSA) -sponsored education and outreach activities on the Biological Weapons Convention (BWC) in DOE national laboratories. Key activities focused on a series of pilot education and outreach workshops conducted at ten national laboratories. These workshops were designed to increase awareness of the BWC, familiarize scientists with dual-use concerns related to biological research, and promote the concept of individual responsibility and accountability

  1. The Australian Institute of Nuclear Science & Engineering - a model for University-National Laboratory collaboration

    SciTech Connect

    Gammon, R.B.

    1994-12-31

    This paper describes the aims and activities of the Australian Institute of Nuclear Science and Engineering (AINSE), from its foundation in 1958 through to 1993. The philosophy, structure and funding of the Institute are briefly reviewed, followed by an account of the development of national research facilities at the Lucas Heights Research Laboratories, with particular emphasis on nuclear techniques of analysis using neutron scattering instruments and particle accelerators. AINSE`s program of Grants, Fellowships and Studentships are explained with many examples given of projects having significance in the context of Australia`s national goals. Conference and training programs are also included. The achievements during these years demonstrate that AINSE has been an efficient and cost- effective model for collaboration between universities and a major national laboratory. In recent years, industry, government organisations and the tertiary education system have undergone major re-structuring and rationalization. A new operational structure for AINSE has evolved in response to these changes and is described.

  2. Discrepancies on quality perceived by the patients versus professionals on the quality of a nuclear medicine department.

    PubMed

    Rodrigo-Rincon, I; Goñi-Girones, E; Serra-Arbeloa, P; Martinez-Lozano, M E; Reyes-Pérez, M

    2015-01-01

    To evaluate the discrepancies between the professionals and outpatients on quality perceived of a Nuclear Medicine Department (NMD). This cross-sectional study has been carried out using two questionnaires: a validated patient experience questionnaire and a quality perception questionnaire for professionals. Both questionnaires use the same 25 categorical items to measure service quality, 2 Likert scale items to measure satisfaction and willingness to recommend the NMD and 1 open-ended question. The patient questionnaire included 6 socio-demographic items and one job-related question (professionals). The categorical items were classified as "conformity" or "non-conformity." The response rate was 36.7% for outpatients and 100% for professionals. Mean value for satisfaction with the NMD was 9 points for patients and 6.9 points for professionals. Mean number of non-conformity items per person was 2.8 for the patient group and 8.7 for the professional group. Cohen's Kappa value was 0.112, indicating poor agreement in the classification of items as strong points and areas for improvement. Of the 25 items, the professionals and patients coincided on 12 (48%). Agreement was low between the quality perception of patients and professionals. The patients scored quality of service higher than the NMD professionals did. These instruments are useful aid to help health organizations detect areas for improvement, and to improve the quality of the service provided to patients. Copyright © 2014 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  3. Specificity and sensitivity of SPECT myocardial perfusion studies at the Nuclear Medicine Department of the Limassol General Hospital in Cyprus

    NASA Astrophysics Data System (ADS)

    Koumna, S.; Yiannakkaras, Ch; Avraamides, P.; Demetriadou, O.

    2011-09-01

    The aim is to determine the sensitivity and specificity of Myocardial Perfusion Imaging (MPI) performed at the Nuclear Medicine Department of the Limassol General Hospital in Cyprus. Through a retrospective analysis, patient results obtained by MPI were compared to results obtained by Invasive Angiography. We analyzed data from 96 patients that underwent both MPI and Angiography during the years 2009-2010, with a maximum time interval of ± 9 months between the two types of medical exams. For 51 patients, the indication was the detection of CAD. For 45 patients, the indication was to assess viability and/or ischemia after MI, PCI or CABG. Out of 84 patients with CAD confirmed by angiography, 80 patients resulted in abnormal MPI (sensitivity of 95% and positive predictive value of 98%). Out of 12 patients with normal coronaries, 10 patients resulted in normal MPI (specificity of 83% and negative predictive value of 71%).In conclusion, for the patients with abnormal MPI and confirmed CAD, MPI was a useful aid for further therapy management.

  4. Five-year external reviews of the eight Department of Interior Climate Science Centers: Alaska Climate Science Center

    USGS Publications Warehouse

    Shasby, Mark; Dolloff, C. Andrew; Hicke, Jeffrey A.; Marcot, Bruce G; McCarl, Bruce; McMahon, Gerard; Morton, John M.

    2017-01-01

    This report primarily addresses the first two purposes of the review while providing comments on the third as identified by the science review team (SRT). A separate report of recommendations for the recompetition, based upon compiled observation from all three reviews conducted in 2016, was submitted to NCCWSC on April 15, 2016 to assist with the development of recompetition documents. To further address host-university administrative competencies and efficiencies, separate interviews of host-university faculty and administrators were conducted by NCCWSC staff in conjunction with the on-site component of the reviews.

  5. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    SciTech Connect

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  6. Using Systems Science to Inform Population Health Strategies in Local Health Departments: A Case Study in San Antonio, Texas.

    PubMed

    Li, Yan; Padrón, Norma A; Mangla, Anil T; Russo, Pamela G; Schlenker, Thomas; Pagán, José A

    Because of state and federal health care reform, local health departments play an increasingly prominent role leading and coordinating disease prevention programs in the United States. This case study shows how a local health department working in chronic disease prevention and management can use systems science and evidence-based decision making to inform program selection, implementation, and assessment; enhance engagement with local health systems and organizations; and possibly optimize health care delivery and population health. The authors built a systems-science agent-based simulation model of diabetes progression for the San Antonio Metropolitan Health District, a local health department, to simulate health and cost outcomes for the population of San Antonio for a 20-year period (2015-2034) using 2 scenarios: 1 in which hemoglobin A1c (HbA1c) values for a population were similar to the current distribution of values in San Antonio, and the other with a hypothetical 1-percentage-point reduction in HbA1c values. They projected that a 1-percentage-point reduction in HbA1c would lead to a decrease in the 20-year prevalence of end-stage renal disease from 1.7% to 0.9%, lower extremity amputation from 4.6% to 2.9%, blindness from 15.1% to 10.7%, myocardial infarction from 23.8% to 17.9%, and stroke from 9.8% to 7.2%. They estimated annual direct medical cost savings (in 2015 US dollars) from reducing HbA1c by 1 percentage point ranging from $6842 (myocardial infarction) to $39 800 (end-stage renal disease) for each averted case of diabetes complications. Local health departments could benefit from the use of systems science and evidence-based decision making to estimate public health program effectiveness and costs, calculate return on investment, and develop a business case for adopting programs.

  7. 2012 Special NSREC Issue of the IEEE Transactions on Nuclear Science Comments by the Editors

    NASA Astrophysics Data System (ADS)

    Schwank, Jim; Brown, Dennis; Girard, Sylvain; Gouker, Pascale; Gerardin, Simone; Quinn, Heather; Barnaby, Hugh

    2012-12-01

    The December 2012 special issue of the IEEE Transactions on Nuclear Science contains selected papers from the 49th annual IEEE International Nuclear and Space Radiation Effects Conference (NSREC) held July 16–20, 2012, in Miami, Florida USA. 95 papers presented at the 2012 NSREC were submitted for consideration for this year’s special issue. Those papers that appear in this special issue were able to successfully complete the review process before the deadline for the December issue. A few additional papers may appear in subsequent issues of the TRANSACTIONS. This publication is the premier archival journal for research on space and nuclear radiation effects in materials, devices, circuits, and systems. This distinction is the direct result of the conscientious efforts of both the authors, who present and document their work, and the reviewers, who selflessly volunteer their time and talent to help review the manuscripts. Each paper in this journal has been reviewed by experts selected by the editors for their expertise and knowledge of the particular subject areas. The peer review process for a typical technical journal generally takes six months to one year to complete. To publish this special issue of the IEEE Transactions on Nuclear Science (in December), the review process, from initial submission to final form, must be completed in about 10 weeks. Because of the short schedule, both the authors and reviewers are required to respond very quickly. The reviewers listed on the following pages contributed vitally to this quick-turn review process.We would like to express our sincere appreciation to each of them for accepting this difficult, but critical role in the process. To provide consistent reviews of papers throughout the year, the IEEE Transactions on Nuclear Science relies on a year-round editorial board that manages reviews for submissions throughout the year to the TRANSACTIONS in the area of radiation effects. The review process is managed by a

  8. Department-Level Representations: A New Approach to the Study of Science Teacher Cognition

    ERIC Educational Resources Information Center

    Hutner, Todd L.; Markman, Arthur B.

    2016-01-01

    Research on science teacher cognition is important as findings from this research can be used to improve teacher training, leading to improved classroom practice. Previous research has often relied on two underlying assumptions: Cognition is an individual process, and these processes are detailed and introspective. In this paper, we put forth a…

  9. Capital Middle Schools Science Department, Preliminary List of Behavioral/Performance Objectives.

    ERIC Educational Resources Information Center

    Del Mod System, Dover, DE.

    This monograph provides basic behavioral objectives designed for a middle school science curriculum. Emphasis is placed on the study of the living environment for students in grade five. This includes the study of plants, animals, the human body, and the use of the microscope, classification and the scientific method. Objectives for grade six are…

  10. Department of Defense Science, Technology, Engineering, and Mathematics (STEM) Education Workshop on Computing Education

    DTIC Science & Technology

    2010-10-18

    School Cybercampus ChicTech Tech Ambassadors Competition Arduino Project Lead the Way Pico Crickets™ Workshops MIT Media Lab , STEM Rays, UMASS...Computer Science Equity Alliance Way Arduino “Kids Ahead” SMU Caruth August 2010 14 , STEM Rays, UMASS US FIRST Robotics Competition Autonomous

  11. Department-Level Representations: A New Approach to the Study of Science Teacher Cognition

    ERIC Educational Resources Information Center

    Hutner, Todd L.; Markman, Arthur B.

    2016-01-01

    Research on science teacher cognition is important as findings from this research can be used to improve teacher training, leading to improved classroom practice. Previous research has often relied on two underlying assumptions: Cognition is an individual process, and these processes are detailed and introspective. In this paper, we put forth a…

  12. Mandated Curriculum Change and a Science Department: A Superficial Language Convergence?

    ERIC Educational Resources Information Center

    Melville, Wayne

    2008-01-01

    This article investigates the introduction of a systemic curriculum change, the Essential Learnings curriculum framework, in the Australian state of Tasmania. Using Gee's [(2003). Language in the science classroom: Academic social languages as the heart of school-based literacy. In: R. Yerrick, & W.-M. Roth (Eds.), "Establishing…

  13. Capital Middle Schools Science Department, Preliminary List of Behavioral/Performance Objectives.

    ERIC Educational Resources Information Center

    Del Mod System, Dover, DE.

    This monograph provides basic behavioral objectives designed for a middle school science curriculum. Emphasis is placed on the study of the living environment for students in grade five. This includes the study of plants, animals, the human body, and the use of the microscope, classification and the scientific method. Objectives for grade six are…

  14. Professional Development in Person: Identity and the Construction of Teaching within a High School Science Department

    ERIC Educational Resources Information Center

    Deneroff, Victoria

    2016-01-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development…

  15. Professional Development in Person: Identity and the Construction of Teaching within a High School Science Department

    ERIC Educational Resources Information Center

    Deneroff, Victoria

    2016-01-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development…

  16. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  17. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  18. U.S. Department of Energy Radiological and Environmental Sciences Laboratory

    DTIC Science & Technology

    2012-03-29

    Radiological and Environmental Sciences Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Thyroid Phantoms & • Urine / Fecal Samples – Actinide , fission, & activation products – Unique isotopic activities for each sample matrix – Chemical

  19. Forty years of the Institute for Nuclear Research (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 22 December 2010)

    NASA Astrophysics Data System (ADS)

    2011-09-01

    On 22 December 2010, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 40th anniversary of the Institute for Nuclear Research, RAS, was held at the Institute for Nuclear Research, RAS in Troitsk. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A (Institute for Nuclear Research, RAS, Moscow) "Introductory word"; (2) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) "Contribution of the SAGE results to the understanding of solar physics and neutrino physics"; (3) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) "Baikal neutrino experiment"; (4) Tkachev I I (Institute for Nuclear Research, RAS, Moscow) "Observation of the Greisen - Zatsepin - Kuz'min effect at the Telescope Array Observatory"; (5) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow) "Neutrino T2K experiment: the first results"; (6) Sadykov R A (Institute for Nuclear Research, RAS, Moscow) "Fields of study of condensed media at the neutron facility at the INR, RAS"; (7) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Production of isotopes at the INR, RAS: reality and prospects".The papers written on the base of reports 1-5 and 7 are published below. In addition, the paper "High-power diode-pumped alkali lasers" by A M Shalagin is published. The paper is based on the report presented at the scientific session of the General Assembly of the Physical Sciences Division, RAS (13 December 2010) devoted to the 50th anniversary of the laser, the main materials of the session having been published in Usp. Fiz. Nauk 181 (8) 867 (2011) [Phys. Usp. 54 837 (2011)]. • Institute for Nuclear Research of the Russian Academy of Sciences turns 40, V A Matveev Physics-Uspekhi, 2011, Volume 54, Number 9, Pages 939-940 • The Russian-American gallium experiment SAGE, V N Gavrin Physics-Uspekhi, 2011, Volume 54, Number 9

  20. The condition of interdisciplinary communication among various Educational and Research Departments of Isfahan University of Medical Sciences

    PubMed Central

    Mazaheri, Elaheh; Geraei, Ehsan; Zare-Farashbandi, Firoozeh; Papi, Ahmad

    2017-01-01

    BACKGROUND: The study aimed to assess interdisciplinary communication among various Educational and Research Departments of Isfahan University of Medical Sciences (IUMS) in clinical medical sciences using social network analysis. MATERIALS AND METHODS: The study was carried out using scientometrics method and interdisciplinary communication network analysis. Interdisciplinary network of 1298 articles in medical sciences published in Journal of Isfahan Medical School was evaluated using macro- and micro-level criteria of network analysis. Ravar Matrix, UCINET, and VOSviewer software were used to analyze the interdisciplinary network of medical sciences articles. RESULTS: Findings showed that “Students Research Committee” and “School of Medicine,” the affiliations of the medical students in general practice with scores of 272 and 197, “Epidemiology and Biostatistics,” “Community Medicine,” and “Internal Medicine” with 170, 101, and 99, respectively, possessed the first ranking of productivity index in scientific communication. Furthermore, in betweenness centrality index, “Epidemiology and Biostatistics” (3427.807), “Students Research Committee” (2967.180), and “Community Medicine” (1770.300) have an appropriate position in the network. Based on the centrality index, “Epidemiology and Biostatistics” (22.412), “Students Research Committee” (22.185) as well as “Community Medicine” and “School of Medicine” (both 21.554) acquired the least amount of distance with other nodes in network. CONCLUSION: Given the increased specialization in medical fields in recent years, communication between researchers with various specializations and creation of interdisciplinary or multidisciplinary departments had turned into an undeniable necessity. Therefore, communication between educational or research departments can facilitate the flow of information between researchers; and consequently, the top ranking departments in this study had

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  2. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect

    Not Available

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary

    SciTech Connect

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  4. The Power of Partnerships: Exploring the Relationship between Campus Career Centers and Political Science Departments

    ERIC Educational Resources Information Center

    Despeaux, J. Michael; Knotts, H. Gibbs; Schiff, Jennifer S.

    2014-01-01

    Given the growing emphasis on career preparation in higher education, career centers play important roles on today's college campuses. The literature has focused on the reasons students use career services, but it has not addressed the vital linkage between career centers and academic departments. Using a survey of 279 political science…

  5. The Power of Partnerships: Exploring the Relationship between Campus Career Centers and Political Science Departments

    ERIC Educational Resources Information Center

    Despeaux, J. Michael; Knotts, H. Gibbs; Schiff, Jennifer S.

    2014-01-01

    Given the growing emphasis on career preparation in higher education, career centers play important roles on today's college campuses. The literature has focused on the reasons students use career services, but it has not addressed the vital linkage between career centers and academic departments. Using a survey of 279 political science…

  6. Notes on the 1974 Conference for New Science Department Chairmen at Private Institutions.

    ERIC Educational Resources Information Center

    1974

    To provide firsthand knowledge of investigators and institutions for the evaluation of grants proposals, the Grants staff or Research Corporation visits hundreds of colleges and universities each year. Their finding reveal that department chairmen have a unique influence on the conduct of research and the motivation of students, as well as the…

  7. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  8. Nuclear Science Symposium, 27th, and Symposium on Nuclear Power Systems, 12th, Orlando, Fla., November 5-7, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Martini, M.

    1981-01-01

    Advances in instrumentation for use in nuclear-science studies are described. Consideration is given to medical instrumentation, computerized fluoroscopy, environmental instrumentation, data acquisition techniques, semiconductor detectors, microchannel plates and photomultiplier tubes, reactor instrumentation, neutron detectors and proportional counters, and space instrumentation.

  9. Nuclear Science Symposium, 27th, and Symposium on Nuclear Power Systems, 12th, Orlando, Fla., November 5-7, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Martini, M.

    1981-01-01

    Advances in instrumentation for use in nuclear-science studies are described. Consideration is given to medical instrumentation, computerized fluoroscopy, environmental instrumentation, data acquisition techniques, semiconductor detectors, microchannel plates and photomultiplier tubes, reactor instrumentation, neutron detectors and proportional counters, and space instrumentation.

  10. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    SciTech Connect

    Mahoney, J.

    1986-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

  11. Maximizing the science return of interplanetary missions using nuclear electric power

    SciTech Connect

    Zubrin, R.M.

    1995-01-20

    The multi-kilowatt power sources on the spaecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground pentrating sounding of Pluto, the major planet`s moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expanditures needed to bring a space qualified nuclear electric power source into being. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  12. Challenges in Uncertainty and the Science of Nuclear Waste Disposal (Invited)

    NASA Astrophysics Data System (ADS)

    Alley, W. M.; Alley, R.

    2013-12-01

    Disposal of high-level nuclear waste is a first-of-a-kind endeavor, further saddled by the ambitious goal to achieve containment over periods well beyond human experience. In the United States, as well as other countries, the time period for performance assessment to provide a safety case for deep geologic repositories has gone from 10,000 years in the 1990s to one million years today. Even when the standard was established for 10,000 years, the National Academy of Sciences Board on Radioactive Waste Management warned of the 'scientific trap' set by encouraging the public to expect certainty about repository safety well beyond what science can provide. Paradoxically, the emphasis on predicting repository behavior thousands of centuries into the future stands in stark contrast to a lack of risk assessment of indefinite aboveground storage for the next several generations. We review the uncertainties and technical basis for a geologic repository at Yucca Mountain compared to extended onsite and interim storage. In order to make progress with geologic disposal of nuclear waste, it is important to evaluate any option in the context of the relative merits and limitations of alternative geologic settings, interim storage, and the status quo of extended onsite storage.

  13. Science and Technology in Development Environments - Industry and Department of Defense Case Studies

    DTIC Science & Technology

    2003-11-01

    Administration (ERDA), and Department of Energy (DOE) sponsorship in the liquid-metal fast-breeder reactor ( LMFBR ) program until it was terminated by President... LMFBR program is of some interest in the current context because the NR R&D management approach was applied with more formality, and hence more...water flows. Each fuel plate is a sandwich of a uranium alloy fuel element, covered on both sides by cladding . In the fuel element, the fission

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect

    Not Available

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  16. Like a bridge over troubled water--Opening pathways for integrating social sciences and humanities into nuclear research.

    PubMed

    Turcanu, Catrinel; Schröder, Jantine; Meskens, Gaston; Perko, Tanja; Rossignol, Nicolas; Carlé, Benny; Hardeman, Frank

    2016-03-01

    Research on nuclear technologies has been largely driven by a detachment of the 'technical content' from the 'social context'. However, social studies of science and technology--also for the nuclear domain--emphasize that 'the social' and 'the technical' dimensions of technology development are inter-related and co-produced. In an effort to create links between nuclear research and innovation and society in mutually beneficial ways, the Belgian Nuclear Research Centre started fifteen years ago a 'Programme of Integration of Social Aspects into nuclear research' (PISA). In line with broader science-policy agendas (responsible research and innovation and technology assessment), this paper argues that the importance of such programmes is threefold. First, their multi-disciplinary basis and participatory character contribute to a better understanding of the interactions between science, technology and society, in general, and the complexity of nuclear technology assessment in particular. Second, their functioning as (self -)critical policy supportive research with outreach to society is an essential prerequisite for policies aiming at generating societal trust in the context of controversial issues related to nuclear technologies and exposure to ionising radiation. Third, such programmes create an enriching dynamic in the organisation itself, stimulating collective learning and transdisciplinarity. The paper illustrates with concrete examples these claims and concludes by discussing some key challenges that researchers face while engaging in work of this kind.

  17. Present and Future Applications of Digital Electronics in Nuclear Science - a Commercial Prospective

    NASA Astrophysics Data System (ADS)

    Tan, Hui

    2011-10-01

    Digital readout electronics instrumenting radiation detectors have experienced significant advancements in the last decade or so. This on one hand can be attributed to the steady improvements in commercial digital processing components such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), field-programmable-gate-arrays (FPGAs), and digital-signal-processors (DSPs), and on the other hand can also be attributed to the increasing needs for improved time, position, and energy resolution in nuclear physics experiments, which have spurred the rapid development of commercial off-the-shelf high speed, high resolution digitizers or spectrometers. Absent from conventional analog electronics, the capability to record fast decaying pulses from radiation detectors in digital readout electronics has profoundly benefited nuclear physics researchers since they now can perform detailed pulse processing for applications such as gamma-ray tracking and decay-event selection and reconstruction. In this talk, present state-of-the-art digital readout electronics and its applications in a variety of nuclear science fields will be discussed, and future directions in hardware development for digital electronics will also be outlined, all from the prospective of a commercial manufacturer of digital electronics.

  18. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    USGS Publications Warehouse

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  19. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities

    USGS Publications Warehouse

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard

    2016-09-28

    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the

  20. Geological and geophysical activities at Spallanzani Science Department (Liceo Scientifico Statale "Lazzaro Spallanzani" - Tivoli, Italy)

    NASA Astrophysics Data System (ADS)

    Favale, T.; De Angelis, F.; De Filippis, L.

    2012-04-01

    The high school Liceo Scientifico "Lazzaro Spallanzani" at Tivoli (Rome) has been fully involved in the study of geological and geophysical features of the town of Tivoli and the surrounding area in the last twelve years. Objective of this activity is to promote the knowledge of the local territory from the geological point of view. Main activities: • School year 2001-2002: Setting up inside the school building of a Geological Museum focusing on "Geological Evolution of Latium, Central Italy" (in collaboration with colleagues M. Mancini, and A. Pierangeli). • March, 15, 2001: Conference of Environmental Geology. Lecturer: Prof. Raniero Massoli Novelli, L'Aquila University and Società Italiana di Geologia Ambientale. • School years 2001-2002 and 2002-2003: Earth Sciences course for students "Brittle deformation and tectonic stress in Tivoli area". • November, 2003: Conference of Geology, GIS and Remote Sensing. Lecturers: Prof. Maurizio Parotto and Dr Alessandro Cecili (Roma Tre University, Rome), and Dr Stefano Pignotti (Istituto Nazionale per la Ricerca sulla Montagna, Rome). • November, 2003, 2004 and 2005: GIS DAY, organized in collaboration with ESRI Italia. • School year 2006-2007: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli, Latium, Central Italy" (focus on travertine formation). • School year 2010-2011: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli. Geology, Hydrogeology and Microbiology of the basin, Latium, Central Italy" (focus on thermal springs and spa). In the period 2009-2010 a seismic station with three channels, currently working, was designed and built in our school by the science teachers Felice De Angelis and Tomaso Favale. Our seismic station (code name LTTV) is part of Italian Experimental Seismic Network (IESN) with identification code IZ (international database IRIS-ISC). The three drums are online in real time on websites http

  1. Nuclear Science Division annual report, October 1, 1986--September 30, 1987

    SciTech Connect

    Mahoney, J.

    1988-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report.

  2. [Leisure-time physical activity of first-year students in 3 health science departments].

    PubMed

    Mora i Ripoll, R; Fuentes i Almendras, M; Sentis i Vilalta, J

    1997-12-01

    Physical inactivity is a well-known risk factor for many chronic diseases which have high prevalence in developed countries. The aims of this study are to describe leisure-time physical activity levels and to identify preferences for its practice among first grade students in three Health Sciences Faculties at the University of Barcelona. During the year 1994-95, a total of 887 first grade students of three Faculties, Pharmacy (n = 573), Medicine (n = 222) and Dentistry (n = 92), were interviewed using a recall of their leisure time physical activity over last 8 months. Physical activity level was classified into four categories: non-active, low, medium and high, based on the number of hours per week. Statistical methods consisted in the estimation of rates, comparisons using the chi-square test, and computing the odds ratio. Women were 75% of students. Fifty per cent of men and 71.5% of women referred to be non-active or having low physical activity level (chi 2 = 36.8; DF = 3; p < 0.0001), being no evidence of association with current smoking or overweight (Body Mass Index > or = 25). Among the rest of students, men's most frequently reported activities were football, swimming and tennis, and those of women's were swimming, aerobic and tennis. Physical activity level among first grade health sciences university students is poorly exemplary. More physical activity promotion is needed, particularly to female students, as an important primary preventive measure among this group.

  3. How a tertiary medical nuclear medicine department at the Himalayan area in India can be established and function in an exemplary manner. Basic rules revisited.

    PubMed

    Dhingra, Vandana Kumar; Saini, Sunil; Basu, Sandip

    2015-01-01

    We describe and discuss the various medical, social and financial aspects of setting up, and optimizing, working conditions of a tertiary Nuclear Medicine Department. This department was established in a North Indian state which comprises 93% of hilly area. During the first three years after establishment we have developed infrastructure, cooperation with other departments, improved radiation safety and cost effectiveness of our work and designed future perspectives. The facility was established in a cancer center of a tertiary care hospital where a medical college infrastructure was developed. National guidelines formulated by the Atomic Energy Regulatory Board (AERB) were followed. Our department served a population area of 10.08 million inhabitants. Over the first three years 2,400 patients underwent diagnostic scans and 106 patients underwent low dose radioiodine treatment for thyrotoxicosis. To optimize resources and at the same time, enhance their effectivity, we procured our (99)Mo/ (99m)Tc generator every other week and arranged our daily programme accordingly. Fractionation of cold kits allowed us to perform low cost in-vivo procedures on a daily basis and to save the department's running costs by 30%-50%. We run continuing education nuclear medicine programmes for referring physicians, medical students and paramedical workers which were included in routine practice which led to a consistent growth in patients referral. The need for a positron emission tomography/computed tomography (PET/CT) scan and high dose treatment department for thyroid cancer was strongly felt. Our nuclear medicine department in a peripheral region of a developing country applied better logistics by procuring new generator every fortnight, fractionating the cold kits and by organizing complete teaching programmes.

  4. Science and Technology at Oak Ridge National Laboratory

    SciTech Connect

    Mason, Thomas

    2012-11-01

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  5. Science and Technology at Oak Ridge National Laboratory

    ScienceCinema

    Mason, Thomas

    2016-07-12

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  6. Proceedings of the second US Department of Energy environmental control symposium. Volume 2. Nuclear energy, conservation, and solar energy

    SciTech Connect

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume II contains papers relating to: environmental control aspects of nuclear energy use and development; nuclear waste management; renewable energy sources; transportation and building conservation (fuel economy, gasohol, building standards, and industry); and geothermal energy, power transmission, and energy storage. (DMC)

  7. U.S. Department of Energy, Defense Programs, activities to support the safe, secure dismantlement of nuclear weapons in the Former Soviet Union

    SciTech Connect

    Turner, J.

    1993-12-31

    In September 1991 President Bush announced sweeping cuts in the US nuclear weapon stockpile as well as changes in deployment to remove significant numbers of weapons from alert status and to return to the US for storage many weapons formerly based abroad in US sites. In October 1991 President Gorbachev announced similar moves for the Soviet Union. Even though the Gorbachev announcement represented a substantial step forward in reducing tension between the US and the Soviet Union, the US continued to be concerned about the deteriorating situation in the Soviet Union and the prospects for internal stability. As a result, in November 1991 the Administration began talks with the Soviets in a number of areas including field disablement of nuclear weapons to prevent unauthorized use, emergency response in the event of a weapons accident, and command and control of nuclear weapons. The Nunn-Lugar legislation assured assistance to the Soviet Union in the safe, secure dismantlement (SSD) of weapons to implement the Gorbachev commitment and in the development of measures to prevent the proliferation of weapons of mass destruction. The Department of Energy (DOE) is supporting and collaborating with the Department of Defense (DOD) in several areas due to the DOE responsibilities for developing, assembling, and dismantling US warheads and as the custodian of the nuclear materials stockpile. Russia, as the successor state to the Soviet Union, controls the nuclear weapons of the Former Soviet Union. Thus, DOE`s nuclear weapon and nuclear materials expertise are being applied particularly to Russia. However, the DOE is also providing assistance to Belarus and is prepared to assist Ukraine and Kazakhstan as well if agreements can be reached. In this paper, the DOE SSD activities in support of DOD as the US Executive Agent will be discussed. Two areas will not be covered, namely, DOD activities and the purchase of highly enriched uranium.

  8. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    NASA Astrophysics Data System (ADS)

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  9. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Not Available

    1984-07-01

    The Mechanical Engineering Department publishes abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). General information about the current role and activities of each of the Department's seven divisions precedes the technical abstracts. Further information about a division's work may be obtained from the division leader, whose name is given at the end of each divisional summary. The Department's seven divisions are as follows: Nuclear Test Engineering Division, Nuclear Explosives Engineering Division, Weapons Engineering Division, Energy Systems Engineering Division, Engineering Sciences Division, Magnetic Fusion Engineering Division and Materials Fabrication Division.

  10. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2016-07-12

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  11. The future role of the health sciences library in the Department of Veterans Affairs.

    PubMed Central

    Wiesenthal, D

    1993-01-01

    The Department of Veterans Affairs (VA) conducted a survey to ascertain the perceptions of 322 library service chiefs and health care administrators within the VA health care system. Participants were asked to rate the desirability and probability of twenty-five predetermined statements and to identify the forces that would have an impact, either positive or negative, on whatever statements became reality. The response rate was 93%. Analysis of the data indicated that there was no significant difference between the library managers and health care administrators in their perceptions. Results indicate that both groups believe libraries serve an integral role in VA medical centers and that library services cannot be provided as successfully off site. The data also appear to reveal a clear consensus on the part of both groups for increased library involvement in educational activities and information delivery. PMID:8471999

  12. Nuclear Warfare Water Contamination.

    DTIC Science & Technology

    1982-05-01

    Products x Applied Health Physics, Inc x Applied Physical Technology, Inc x Aptec Nuclear Inc x The Aston Company x Baird Corp x Berthold-Beta...15, Department of the Army, Washington, D. C., June 1966. 61 26. Private Communication, D. C. Lindsten (USAMERADCOM) to John C.Phillips (SA[-Chicago...Detection and Measurement," John Wiley & Sons, New York, 1919. 29. Lichholz, G. G., "Environmental Aspects of Nuclear Power," Ann Arbor, Science, Ann Arbor

  13. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  14. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  15. What is the pharmaceutical industry doing, and what does the pharmaceutical industry want from animal science departments?

    PubMed

    Lauderdale, J W

    1999-02-01

    Perceived contemporary issues are 1) food safety and food healthfulness, 2) environment, 3) sustainability, 4) biotechnology, 5) animal well-being, 6) animals as food, and 7) research funding. Food safety is the paramount contemporary issue, and environment and sustainability issues can be considered as a single issue. Biotechnology, animal well-being, and animals as food are addressed in this paper as separate issues, but they can be considered as components of food safety and healthfulness. The pharmaceutical industry addresses these issues by providing safe and effective products to the livestock industry. These products are used to treat and prevent disease and to increase livestock production efficiency. These products contribute to a safe food supply, enhance protection of the environment, and increase the sustainability of animal agriculture through increased efficiency of livestock production. The pharmaceutical industry wants the following from animal science departments: 1) students skilled in deductive and inductive thinking and communicating to peers and the public; 2) regional research on food safety, such as irradiation, steaming of carcasses, E. coli contamination, antibiotic resistance, production facilities, and carcass contamination; 3) improved research to identify the food values of animal products and effective communication of that research to the public; 4) research on topics having the greatest potential to increase efficiency of animal production consistent with a positive impact on the environment and sustainability of animal production; 5) leadership in developing and using technologies such as biotechnology, not only as descriptors of biological processes, but as technologies to test hypotheses leading to new understandings of biology; 6) research on animal well-being and production facilities that foster animal well-being; 7) research and education on ethical and moral aspects of animals as food through encouragement of one or more

  16. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    SciTech Connect

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  17. MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, J.; Maise, G.; Paniagua, J.

    2001-01-01

    A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for

  18. United States Department of Energy National Nuclear Security Administration Sandia Field Office NESHAP Annual Report CY2014 for Sandia National Laboratories New Mexico

    SciTech Connect

    evelo, stacie; Miller, Mark L.

    2015-05-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2014, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61, Subpart H--NATIONAL EMISSION STANDARDS FOR EMISSIONS OF RADIONUCLIDES OTHER THAN RADON FROM DEPARTMENT OF ENERGY FACILITIES. A description is given of the sources and their contributions to the overall dose assessment. In addition, the maximally exposed individual (MEI) radiological dose calculation and the population dose to local and regional residents are discussed.

  19. Development of Students' Metacognitive Strategies In Science Learning Regarding Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Siriuthen, Warawun; Yuenyong, Chokchai

    2010-07-01

    This research aimed to develop 48 Grade 10 students' learning process and metacognitive strategies in the `Nuclear Energy' topic through the Science, Technology and Society (STS) approach. The STS teaching approach consists of five stages: identification of social issues, identification of potential solutions, need for knowledge, decision-making, and socialization. he data were analyzed through rubric score of learning process and metacognitive strategies, which consists of five strategies: Recalling, Planning, Monitoring and Maintaining, Evaluating, and Relating. The findings revealed that most students used learning process in a high level. They performed a very low level in almost all of the metacognitive strategies. The factors potentially impeded their development of awareness about learning process and metacognitive strategies were characteristics of content and students, learning processes, and student habit.

  20. The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel

    SciTech Connect

    Tehan, Terry

    2000-09-27

    The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.