Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers,E.; deBoer,G.; Crawford, C.
2009-10-19
The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the "human factor." Gen. Eugene Habiger, a former "Assistant Secretary for Safeguards and Security" at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that "good security is 20% equipment and 80% people." Although eliminating the "human factor" is not possible, accounting for and mitigating the riskmore » of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.« less
Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Cary E.; de Boer, Gloria; De Castro, Kara
2010-10-01
The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the “human factor.” Gen. Eugene Habiger, a former “Assistant Secretary for Safeguards and Security” at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that “good security is 20% equipment and 80% people.”1 Although eliminating the “human factor” is not possible, accounting for and mitigating the riskmore » of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.« less
Security culture for nuclear facilities
NASA Astrophysics Data System (ADS)
Gupta, Deeksha; Bajramovic, Edita
2017-01-01
Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.
NASA Astrophysics Data System (ADS)
Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz
2017-01-01
The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy levels are assigned in accordance with the CO-PO mapping. Finally, the course has to fulfill the International Engineering Alliance (IEA) Graduate Attributes of the Washington Accord.
The 2015 National Security Strategy: Authorities, Changes, Issues for Congress
2016-04-05
Strategy: Authorities, Changes, Issues for Congress Congressional Research Service 3 reverse the spread of nuclear and biological weapons and...secure nuclear materials; advance peace, security, and opportunity in the greater Middle East; invest in the capacity of strong and capable...and norms on issues ranging from maritime security to trade and human rights.” 6 On Russia, the document says, “... we will continue to impose
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
... Analysis Report (FSAR). On December 1, 2009, UniStar Nuclear Energy (UNE), acting on behalf of the COL... Exclusion From Environmental Review With respect to the exemption's impact on the quality of the human... relation to security issues. Therefore, the common defense and security is not impacted by this exemption...
Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health
Pregenzer, Arian
2014-01-01
Reducing the risks of nuclear war, limiting the spread of nuclear weapons, and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation, and counterterrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclear technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters worldwide provide significant benefits to global public health. PMID:24524501
The Security of Russia's Nuclear Arsenal: The Human Factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, D.Y.
1999-10-12
Assertions by the Russian military that all of their nuclear weapons are secure against theft and that nuclear units within the military are somehow insulated from the problems plaguing the Russian military should not be accepted uncritically. Accordingly, we should not give unwarranted credence to the pronouncements of military figures like Cal.-Gen. Igor Valynkin, Chief of the Defense Ministry's 12th Main Directorate, which oversees the country's nuclear arsenal. He contends that ''Russian nuclear weapons are under reliable supervision'' and that ''talk about the unreliability of our control over nuclear weapons has only one pragmatic goal--to convince international society that themore » country is incapable of maintaining nuclear safety and to introduce international oversight over those weapons, as it is done, for example, in Iraq.'' While the comparison to Iraq is preposterous, many analysts might agree with Valynkin's sanguine appraisal of the security of Russia's nuclear weapons. In contrast, I argue that the numerous difficulties confronting the military as a whole should cause concern in the West over the security of the Russian nuclear arsenal.« less
Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health
Dreicer, Mona; Pregenzer, Arian
2014-04-01
Reducing the risks of nuclear war, limiting the spread of nuclear weapons and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation and counter-terrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclearmore » technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters world-wide provide significant benefits to global public health.« less
Human Reliability Program Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landers, John; Rogers, Erin; Gerke, Gretchen
A Human Reliability Program (HRP) is designed to protect national security as well as worker and public safety by continuously evaluating the reliability of those who have access to sensitive materials, facilities, and programs. Some elements of a site HRP include systematic (1) supervisory reviews, (2) medical and psychological assessments, (3) management evaluations, (4) personnel security reviews, and (4) training of HRP staff and critical positions. Over the years of implementing an HRP, the Department of Energy (DOE) has faced various challenges and overcome obstacles. During this 4-day activity, participants will examine programs that mitigate threats to nuclear security andmore » the insider threat to include HRP, Nuclear Security Culture (NSC) Enhancement, and Employee Assistance Programs. The focus will be to develop an understanding of the need for a systematic HRP and to discuss challenges and best practices associated with mitigating the insider threat.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander
The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzedmore » by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.« less
Downgrade of the Savannah River Sites FB-Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
SADOWSKI, ED; YOURCHAK, RANDY; PRETZELLO MARJI
2005-07-05
This paper will discuss the Safeguards & Security (S&S) activities that resulted in the downgrade of the Savannah River Site's FB-Line (FBL) from a Category I Material Balance Area (MBA) in a Material Access Area (MAA) to a Category IV MBA in a Property Protection Area (PPA). The Safeguards activities included measurement of final product items, transferal of nuclear material to other Savannah River Site (SRS) facilities, discard of excess nuclear material items, and final measurements of holdup material. The Security activities included relocation and destruction of classified documents and repositories, decertification of a classified computer, access control changes, updatesmore » to planning documents, deactivation and removal of security systems, Human Reliability Program (HRP) removals, and information security training for personnel that will remain in the FBL PPA.« less
44 CFR 352.21 - Participating Federal agencies.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS COMMERCIAL NUCLEAR POWER PLANTS: EMERGENCY PREPAREDNESS PLANNING...) Department of Defense; (3) Department of Energy; (4) Department of Health and Human Services; (5) Department...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farnham, Irene
This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impactedmore » groundwater« less
Nuclear Security Education Program at the Pennsylvania State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor
The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less
Laboratory Directed Research and Development FY2010 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, K J
2011-03-22
A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pepper, Susan E.
2014-10-10
Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department contributes to the National Nuclear Security Administration Office of Nonproliferation and International Security Next Generation Safeguards Initiative (NGSI) through university engagement, safeguards internships, safeguards courses, professional development, recruitment, and other activities aimed at ensuring the next generation of international safeguards professionals is adequately prepared to support the U.S. safeguards mission. This report is a summary of BNL s work under the NGSI program in Fiscal Year 2014.
A Transferrable Belief Model Representation for Physical Security of Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Gerts
This work analyzed various probabilistic methods such as classic statistics, Bayesian inference, possibilistic theory, and Dempster-Shafer theory of belief functions for the potential insight offered into the physical security of nuclear materials as well as more broad application to nuclear non-proliferation automated decision making theory. A review of the fundamental heuristic and basic limitations of each of these methods suggested that the Dempster-Shafer theory of belief functions may offer significant capability. Further examination of the various interpretations of Dempster-Shafer theory, such as random set, generalized Bayesian, and upper/lower probability demonstrate some limitations. Compared to the other heuristics, the transferrable beliefmore » model (TBM), one of the leading interpretations of Dempster-Shafer theory, can improve the automated detection of the violation of physical security using sensors and human judgment. The improvement is shown to give a significant heuristic advantage over other probabilistic options by demonstrating significant successes for several classic gedanken experiments.« less
Augmenting Probabilistic Risk Assesment with Malevolent Initiators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; David Schwieder
2011-11-01
As commonly practiced, the use of probabilistic risk assessment (PRA) in nuclear power plants only considers accident initiators such as natural hazards, equipment failures, and human error. Malevolent initiators are ignored in PRA, but are considered the domain of physical security, which uses vulnerability assessment based on an officially specified threat (design basis threat). This paper explores the implications of augmenting and extending existing PRA models by considering new and modified scenarios resulting from malevolent initiators. Teaming the augmented PRA models with conventional vulnerability assessments can cost-effectively enhance security of a nuclear power plant. This methodology is useful for operatingmore » plants, as well as in the design of new plants. For the methodology, we have proposed an approach that builds on and extends the practice of PRA for nuclear power plants for security-related issues. Rather than only considering 'random' failures, we demonstrated a framework that is able to represent and model malevolent initiating events and associated plant impacts.« less
Sandia National Laboratories: National Security Missions: Nuclear Weapons:
Safety & Security Sandia National Laboratories Exceptional service in the national interest & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Twitter YouTube Flickr RSS Top Nuclear Weapons About Nuclear Weapons at Sandia Safety & Security
NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2
Thomas D'Agostino
2017-12-09
Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.
NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1
Thomas D'Agostino
2017-12-09
Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.
NNSA Administrator Looks to Future of Nuclear Security at STRATCOM Symposium
Thomas D'Agostino
2017-12-09
Administrator Thomas P. DAgostino of the National Nuclear Security Administration (NNSA) discusses the future of the Nuclear Security Enterprise and its strategic deterrence mission in light of President Obamas unprecedented nuclear security agenda.
To discuss illicit nuclear trafficking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balatsky, Galya I; Severe, William R; Wallace, Richard K
2010-01-01
The Illicit nuclear trafficking panel was conducted at the 4th Annual INMM workshop on Reducing the Risk from Radioactive and Nuclear Materials on February 2-3, 2010 in Washington DC. While the workshop occurred prior to the Nuclear Security Summit, April 12-13 2010 in Washington DC, some of the summit issues were raised during the workshop. The Communique of the Washington Nuclear Security Summit stated that 'Nuclear terrorism is one of the most challenging threats to international security, and strong nuclear security measures are the most effective means to prevent terrorists, criminals, or other unauthorized actors from acquiring nuclear materials.' Themore » Illicit Trafficking panel is one means to strengthen nuclear security and cooperation at bilateral, regional and multilateral levels. Such a panel promotes nuclear security culture through technology development, human resources development, education and training. It is a tool which stresses the importance of international cooperation and coordination of assistance to improve efforts to prevent and respond to incidents of illicit nuclear trafficking. Illicit trafficking panel included representatives from US government, an international organization (IAEA), private industry and a non-governmental organization to discuss illicit nuclear trafficking issues. The focus of discussions was on best practices and challenges for addressing illicit nuclear trafficking. Terrorism connection. Workshop discussions pointed out the identification of terrorist connections with several trafficking incidents. Several trafficking cases involved real buyers (as opposed to undercover law enforcement agents) and there have been reports identifying individuals associated with terrorist organizations as prospective plutonium buyers. Some specific groups have been identified that consistently search for materials to buy on the black market, but no criminal groups were identified that specialize in nuclear materials or isotope smuggling. In most cases, sellers do not find legitimate buyers; however, there have been specific cases where sellers did find actual terrorist group representatives. There appears to be a connection between terrorist groups engaged in trafficking conventional arms and explosives components that are also looking for both nuclear materials and radioisotopes. Sale opportunities may create additional demand for such materials. As we can observe from Figure 1, many cases in the mid-90s involved kilogram quantities of material. There were smaller amounts of material moved in 2001, 2003 and 2006. While we have seen less trafficking cases involving PujHEU in recent years, the fact that it continues at all is troubling. The trafficking cases can be presented through their life cycle: Diversion of materials leads to Trafficker and then to Terrorist/Proliferator. Most of the information we have in trafficking cases is on the Trafficker. In 16 cases reported by the IAEA, there are 10 prosecutions of the involved trafficker. However, there are no confirmed diversions of material recorded in any of the 18 seizures. Most seizures were sting operations performed by law enforcement or security agents with no actual illicit end-user involved.« less
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
Building Foundations for Nuclear Security Enterprise Analysis Utilizing Nuclear Weapon Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josserand, Terry Michael; Young, Leone; Chamberlin, Edwin Phillip
The Nuclear Security Enterprise, managed by the National Nuclear Security Administration - a semiautonomous agency within the Department of Energy - has been associated with numerous assessments with respect to the estimating, management capabilities, and practices pertaining to nuclear weapon modernization efforts. This report identifies challenges in estimating and analyzing the Nuclear Security Enterprise through an analysis of analogous timeframe conditions utilizing two types of nuclear weapon data - (1) a measure of effort and (2) a function of time. The analysis of analogous timeframe conditions that utilizes only two types of nuclear weapon data yields four summary observations thatmore » estimators and analysts of the Nuclear Security Enterprise will find useful.« less
A HUMAN FACTORS META MODEL FOR U.S. NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe, Jeffrey C.
Over the last several years, the United States (U.S.) Department of Energy (DOE) has sponsored human factors research and development (R&D) and human factors engineering (HFE) activities through its Light Water Reactor Sustainability (LWRS) program to modernize the main control rooms (MCR) of commercial nuclear power plants (NPP). Idaho National Laboratory (INL), in partnership with numerous commercial nuclear utilities, has conducted some of this R&D to enable the life extension of NPPs (i.e., provide the technical basis for the long-term reliability, productivity, safety, and security of U.S. NPPs). From these activities performed to date, a human factors meta model formore » U.S. NPP control room modernization can now be formulated. This paper discusses this emergent HFE meta model for NPP control room modernization, with the goal of providing an integrated high level roadmap and guidance on how to perform human factors R&D and HFE for those in the U.S. nuclear industry that are engaging in the process of upgrading their MCRs.« less
Nuclear Technology Requires Control by the People, anywhere on Our Planet.
NASA Astrophysics Data System (ADS)
Synek, Miroslav
2000-03-01
------- Human society on our planet, in its historical development, utilizing the knowledge of physics, has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized "push-button". Whenever this technology falls under the control of an irresponsible , miscalculating, or, insane, DICTATOR, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very survival of all humanity on our planet could be threatened. --- Therefore, it is a historical urgency that this technology is under the control by a government of the people, by the people and for the people, based on a sufficiently secure system of FREE ELECTIONS, in any country on our planet, wherever and whenever such a threatening possibility exists.
Radiation Protection Research Needs Workshop: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewji, Shaheen A.; Davis, Jason; Hertel, Nolan E.
In order to protect humans and the environment when using ionizing radiation for the advancement and benefit of society, accurately quantifying radiation and its potential effects remains the driver for ensuring the safety and secure use of nuclear and radiological applications of technology. In the realm of radiation protection and its various applications with the nuclear fuel cycle, (nuclear) medicine, emergency response, national defense, and space exploration, the scientific and research needs to support state and federal radiation protection needs in the United States in each of these areas are still deficient.
Nuclear security policy in the context of counter-terrorism in Cambodia
NASA Astrophysics Data System (ADS)
Khun, Vuthy; Wongsawaeng, Doonyapong
2016-01-01
The risk of nuclear or dirty bomb attack by terrorists is one of the most urgent and threatening danger. The Cambodian national strategy to combat weapons of mass destruction (WMD) depicts a layered system of preventive measures ranging from securing materials at foreign sources to interdicting weapons or nuclear or other radioactive materials at ports, border crossings, and within the Cambodian institutions dealing with the nuclear security to manage the preventive programs. The aim of this study is to formulate guidance, to identify scenario of threat and risk, and to pinpoint necessary legal frameworks on nuclear security in the context of counterterrorism based on the International Atomic Energy Agency nuclear security series. The analysis of this study is guided by theoretical review, the review of international laws and politics, by identifying and interpreting applicable rules and norms establishing the nuclear security regime and how well enforcement of the regime is carried out and, what is the likelihood of the future reform might be. This study will examine the existing national legal frameworks of Cambodia in the context of counterterrorism to prevent acts of nuclear terrorism and the threat of a terrorist nuclear attack within the Cambodia territory. It will shed light on departmental lanes of national nuclear security responsibility, and provide a holistic perspective on the needs of additional resources and emphasis regarding nuclear security policy in the context of counterterrorism in Cambodia.
Visual Inspection Reliability for Precision Manufactured Parts.
See, Judi E
2015-12-01
Sandia National Laboratories conducted an experiment for the National Nuclear Security Administration to determine the reliability of visual inspection of precision manufactured parts used in nuclear weapons. Visual inspection has been extensively researched since the early 20th century; however, the reliability of visual inspection for nuclear weapons parts has not been addressed. In addition, the efficacy of using inspector confidence ratings to guide multiple inspections in an effort to improve overall performance accuracy is unknown. Further, the workload associated with inspection has not been documented, and newer measures of stress have not been applied. Eighty-two inspectors in the U.S. Nuclear Security Enterprise inspected 140 parts for eight different defects. Inspectors correctly rejected 85% of defective items and incorrectly rejected 35% of acceptable parts. Use of a phased inspection approach based on inspector confidence ratings was not an effective or efficient technique to improve the overall accuracy of the process. Results did verify that inspection is a workload-intensive task, dominated by mental demand and effort. Hits for Nuclear Security Enterprise inspection were not vastly superior to the industry average of 80%, and they were achieved at the expense of a high scrap rate not typically observed during visual inspection tasks. This study provides the first empirical data to address the reliability of visual inspection for precision manufactured parts used in nuclear weapons. Results enhance current understanding of the process of visual inspection and can be applied to improve reliability for precision manufactured parts. © 2015, Human Factors and Ergonomics Society.
New Brunswick Laboratory. Progress report, October 1995--September 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL`s interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group,more » Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL`s status among DOE laboratories and facilities. Noteworthy are the facts that NBL`s small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badwan, Faris M.; Demuth, Scott F
Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.« less
10 CFR 1.46 - Office of Nuclear Security and Incident Response.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Office of Nuclear Security and Incident Response. 1.46 Section 1.46 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.46 Office of Nuclear Security and Incident Response. The Office of Nuclear...
10 CFR 1.46 - Office of Nuclear Security and Incident Response.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Office of Nuclear Security and Incident Response. 1.46 Section 1.46 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.46 Office of Nuclear Security and Incident Response. The Office of Nuclear...
10 CFR 1.46 - Office of Nuclear Security and Incident Response.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Office of Nuclear Security and Incident Response. 1.46 Section 1.46 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.46 Office of Nuclear Security and Incident Response. The Office of Nuclear...
10 CFR 1.46 - Office of Nuclear Security and Incident Response.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Office of Nuclear Security and Incident Response. 1.46 Section 1.46 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.46 Office of Nuclear Security and Incident Response. The Office of Nuclear...
10 CFR 1.46 - Office of Nuclear Security and Incident Response.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Office of Nuclear Security and Incident Response. 1.46 Section 1.46 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Program Offices § 1.46 Office of Nuclear Security and Incident Response. The Office of Nuclear...
Applications Using High Flux LCS gamma-ray Beams: Nuclear Security and Contributions to Fukushima
NASA Astrophysics Data System (ADS)
Fujiwara, Mamoru
2014-09-01
Nuclear nonproliferation and security are an important issue for the peaceful use of nuclear energy. Many countries now collaborate together for preventing serious accidents from nuclear terrorism. Detection of hidden long-lived radioisotopes and fissionable nuclides in a non-destructive manner is useful for nuclear safeguards and management of nuclear wastes as well as nuclear security. After introducing the present situation concerning the nuclear nonproliferation and security in Japan, we plan to show the present activities of JAEA to detect the hidden nuclear materials by means of the nuclear resonance fluorescence with energy-tunable, monochromatic gamma-rays generated by Laser Compton Scattering (LCS) with an electron beam. The energy recovery linac (ERL) machine is now under development with the KEK-JAEA collaboration for realizing the new generation of gamma-ray sources. The detection technologies of nuclear materials are currently developed using the existing electron beam facilities at Duke University and at NewSubaru. These developments in Japan will contribute to the nuclear security program in Japan and to the assay of melted nuclear fuels in the Fukushima Daiichi nuclear power plants.
Improving Insider Threat Training Awareness and Mitigation Programs at Nuclear Facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, Shannon
In recent years, insider threat programs have become an important aspect of nuclear security, and nuclear security training courses. However, many nuclear security insider threat programs fail to address the insider threat attack and monitoring potential that exists on information technology (IT) systems. This failure is critical because of the importance of information technology and networks in today’s world. IT systems offer an opportunity to perpetrate dangerous insider attacks, but they also present an opportunity to monitor for them and prevent them. This paper suggests a number of best practices for monitoring and preventing insider attacks on IT systems, andmore » proposes the development of a new IT insider threat tabletop that can be used to help train nuclear security practitioners on how best to implement IT insider threat prevention best practices. The development of IT insider threat best practices and a practical tabletop exercise will allow nuclear security practitioners to improve nuclear security trainings as it integrates a critical part of insider threat prevention into the broader nuclear security system.« less
Roadmap to a Sustainable Structured Trusted Employee Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Cameron W; Eisele, Gerhard R
2013-08-01
Organizations (facility, regulatory agency, or country) have a compelling interest in ensuring that individuals who occupy sensitive positions affording access to chemical biological, radiological and nuclear (CBRN) materials facilities and programs are functioning at their highest level of reliability. Human reliability and human performance relate not only to security but also focus on safety. Reliability has a logical and direct relationship to trustworthiness for the organization is placing trust in their employees to conduct themselves in a secure, safe, and dependable manner. This document focuses on providing an organization with a roadmap to implementing a successful and sustainable Structured Trustedmore » Employee Program (STEP).« less
Nuclear security policy in the context of counter-terrorism in Cambodia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khun, Vuthy, E-mail: vuthy.khun@gmail.com; Wongsawaeng, Doonyapong
The risk of nuclear or dirty bomb attack by terrorists is one of the most urgent and threatening danger. The Cambodian national strategy to combat weapons of mass destruction (WMD) depicts a layered system of preventive measures ranging from securing materials at foreign sources to interdicting weapons or nuclear or other radioactive materials at ports, border crossings, and within the Cambodian institutions dealing with the nuclear security to manage the preventive programs. The aim of this study is to formulate guidance, to identify scenario of threat and risk, and to pinpoint necessary legal frameworks on nuclear security in the contextmore » of counterterrorism based on the International Atomic Energy Agency nuclear security series. The analysis of this study is guided by theoretical review, the review of international laws and politics, by identifying and interpreting applicable rules and norms establishing the nuclear security regime and how well enforcement of the regime is carried out and, what is the likelihood of the future reform might be. This study will examine the existing national legal frameworks of Cambodia in the context of counterterrorism to prevent acts of nuclear terrorism and the threat of a terrorist nuclear attack within the Cambodia territory. It will shed light on departmental lanes of national nuclear security responsibility, and provide a holistic perspective on the needs of additional resources and emphasis regarding nuclear security policy in the context of counterterrorism in Cambodia.« less
Public perspectives on nuclear security. US national security surveys, 1993--1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herron, K.G.; Jenkins-Smith, H.C.
This is the third report in a series of studies to examine how US attitudes about nuclear security are evolving in the post-Cold War era and to identify trends in public perceptions and preferences relevant to the evolution of US nuclear security policy. It presents findings from three surveys: a nationwide telephone survey of randomly selected members of the US general public; a written survey of randomly selected members of American Men and Women of Science; and a written survey of randomly selected state legislators from all fifty US states. Key areas of investigation included nuclear security, cooperation between USmore » and Russian scientists about nuclear issues, vulnerabilities of critical US infrastructures and responsibilities for their protection, and broad areas of US national science policy. While international and US national security were seen to be slowly improving, the primary nuclear threat to the US was perceived to have shifted from Russia to China. Support was found for nuclear arms control measures, including mutual reductions in stockpiles. However, respondents were pessimistic about eliminating nuclear armaments, and nuclear deterrence continued to be highly values. Participants favored decreasing funding f/or developing and testing new nuclear weapons, but supported increased investments in nuclear weapons infrastructure. Strong concerns were expressed about nuclear proliferation and the potential for nuclear terrorism. Support was evident for US scientific cooperation with Russia to strengthen security of Russian nuclear assets. Elite and general public perceptions of external and domestic nuclear weapons risks and external and domestic nuclear weapons benefits were statistically significantly related to nuclear weapons policy options and investment preferences. Demographic variables and individual belief systems were systematically related both to risk and benefit perceptions and to policy and spending preferences.« less
The role of the health physicist in nuclear security.
Waller, Edward J; van Maanen, Jim
2015-04-01
Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards.
The Role of the Health Physicist in Nuclear Security
Waller, Edward J.; van Maanen, Jim
2015-01-01
Abstract Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards. PMID:25706142
International Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, James E.
2012-08-14
This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; andmore » (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.« less
Nuclear and radiological Security: Introduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, James Christopher
Nuclear security includes the prevention and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer, or other malicious acts involving nuclear or other radioactive substances or their associated facilities. The presentation begins by discussing the concept and its importance, then moves on to consider threats--insider threat, sabotage, diversion of materials--with considerable emphasis on the former. The intrusion at Pelindaba, South Africa, is described as a case study. The distinction between nuclear security and security of radiological and portable sources is clarified, and the international legal framework is touched upon. The paper concludes by discussing the responsibilities of themore » various entities involved in nuclear security.« less
NASA Astrophysics Data System (ADS)
Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri
2015-04-01
Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students' enrolment and performance, and teaching staff's human resource development.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... DEPARTMENT OF ENERGY National Nuclear Security Administration Extension of the Public Comment... Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada AGENCY: National Nuclear Security Administration, U.S. Department of Energy...
Entrepreneurial proliferation: Russia`s nuclear industry suits the buyers market. Master`s thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, T.D.; Williams, A.R.
1995-06-01
The Soviet Union collapsed in December 1991, bringing an end to four decades of the Cold War. A system of tight centralized controls has given way to chaotic freedom and un-managed, entrepreneurial capitalism. Of immediate concern to most world leaders has been the control and safety of over 30,000 Soviet nuclear weapons. After 1991, the Soviet, centralized system of management lost one key structural element: a reliable `human factor` for nuclear material control. The Soviet systems for physical security and material control are still in place in the nuclear inheritor states - Russia, Ukraine, Khazakhnstan, and Belarus - but theymore » do not restrain or regulate their nuclear industry. In the chaos created by the Soviet collapse, the nonproliferation regime may not adequately temper the supply of the nuclear materials of the new inheritor states. This could permit organizations or states seeking nuclear weapons easier access to fissile materials. New initiatives such as the United States Cooperative Threat Reduction program, which draws upon U.S. technology and expertise to help the NIS solve these complex problems, are short-tern tactics. At present there are no strategies which address the long-tern root problems caused by the Soviet collapse.This thesis demonstrates the extent of the nuclear control problems in Russia. Specifically, we examine physical security, material control and accounting regulation and enforcement, and criminal actions. It reveals that the current lack of internal controls make access to nuclear materials easier for aspiring nuclear weapons States.« less
Taking Steps to Protect Against the Insider Threat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Noah Gale; Williams, Martha; Lewis, Joel
2015-10-16
Research reactors are required (in accordance with the Safeguards Agreement between the State and the IAEA) to maintain a system of nuclear material accounting and control for reporting quantities of nuclear material received, shipped, and held on inventory. Enhancements to the existing accounting and control system can be made at little additional cost to the facility, and these enhancements can make nuclear material accounting and control useful for nuclear security. In particular, nuclear material accounting and control measures can be useful in protecting against an insider who is intent on unauthorized removal or misuse of nuclear material or misuse ofmore » equipment. An enhanced nuclear material accounting and control system that responds to nuclear security is described in NSS-25G, Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities, which is scheduled for distribution by the IAEA Department of Nuclear Security later this year. Accounting and control measures that respond to the insider threat are also described in NSS-33, Establishing a System for Control of Nuclear Material for Nuclear Security Purposes at a Facility During Storage, Use and Movement, and in NSS-41, Preventive and Protective Measures against Insider Threats (originally issued as NSS-08), which are available in draft form. This paper describes enhancements to existing material control and accounting systems that are specific to research reactors, and shows how they are important to nuclear security and protecting against an insider.« less
The nuclear issue: where do we go from here?.
Rotblat, Joseph
2003-01-01
The drive for the elimination of nuclear weapons is going badly and there is currently little support from the general public. The United States Nuclear Posture Review incorporates nuclear capability into conventional war planning. The Stockpile Stewardship Program is designed to maintain nuclear weapon capability. The US is planning an essentially new earth-penetrating nuclear weapon and is prepared to test this in the national interest if thought necessary. These policies could stimulate nuclear proliferation by others, do nothing to deter terrorism, promote persisting polarization of the world, are a clear breach of the Non-Proliferation Treaty and rest world security on a continued balance of terror. A renewed mass campaign to counteract all this, on legal and moral grounds in particular, is urgently needed. IPPNW and kindred organizations must restore sanity in our policies and humanity to our actions.
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2009-10-15
and technical measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage ...Talks On Nuclear Security,” The Boston Globe, May 5, 2009. 79 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or...a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 80 Martellini, 2008. 81 For more information
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
Nuclear Security Objectives of an NMAC System
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Rebecca Lynn
After completing this module, you should be able to: Describe the role of Nuclear Material Accounting and Control (NMAC) in comprehensive nuclear security at a facility; Describe purpose of NMAC; Identify differences between the use of NMAC for IAEA safeguards and for facility nuclear security; List NMAC elements and measures; and Describe process for resolution of irregularities
Organizational Culture for Safety, Security, and Safeguards in New Nuclear Power Countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovacic, Donald N
2015-01-01
This chapter will contain the following sections: Existing international norms and standards for developing the infrastructure to support new nuclear power programs The role of organizational culture and how it supports the safe, secure, and peaceful application of nuclear power Identifying effective and efficient strategies for implementing safety, security and safeguards in nuclear operations Challenges identified in the implementation of safety, security and safeguards Potential areas for future collaboration between countries in order to support nonproliferation culture
The abolition of war as a goal of environmental policy.
Snyder, Brian F; Ruyle, Leslie E
2017-12-15
Since the 1950s, select military and political leaders have had the capacity to kill all or nearly all human life on Earth. The number of people entrusted with this power grows each year through proliferation and the rise of new political leaders. If humans continue to maintain and develop nuclear weapons, it is highly probable that a nuclear exchange will occur again at some point in the future. This nuclear exchange may or may not annihilate the human species, but it will cause catastrophic effects on the biosphere. The international community has attempted to resolve this existential problem via treaties that control and potentially eliminate nuclear weapons, however, these treaties target only nuclear weapons, leaving the use of war as a normalized means for settling conflict. As long as war exists as a probable future, nations will be under pressure to develop more powerful weapons. Thus, we argue that the elimination of nuclear weapons alone is not a stable, long-term strategy. A far more secure strategy would be the elimination of war as a means of settling international disputes. Therefore, those concerned about environmental sustainability or the survival of the biosphere should work to abolish war. Copyright © 2017 Elsevier B.V. All rights reserved.
Review of July 2013 Nuclear Security Insider Threat Exercise November 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pederson, Ann C.; Snow, Catherine L.; Townsend, Jeremy
2013-11-01
This document is a review of the Nuclear Security Insider Threat Exercise which was hosted at ORNL in July 2013. Nuclear security culture and the insider threat are best learned through experience. Culture is inherently difficult to teach, and as such is best learned through modeled behaviors and learning exercise. This TTX, NSITE, is a tool that strives to aid students in learning what an effective (and ineffective) nuclear security culture might look like by simulating dynamic events that strengthen or weaken the nuclear security regime. The goals of NSITE are to stimulate complex thought and discussion and assist decisionmore » makers and management in determining the most effective policies and procedures for their country or facility.« less
Summary Report for the Radiation Detection for Nuclear Security Summer School 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkle, Robert C.; Baciak, James E.; Woodring, Mitchell L.
Executive Summary The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the 3rd Radiation Detection for Nuclear Security Summer School from 16 – 27 June 2014. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectivesmore » of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security. In fact, we are beginning to see previous students both enroll in graduate programs (former undergraduates) and complete internships at agencies like the National Nuclear Security Administration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herron, Kerry Gale; Jenkins-Smith, Hank C.
2008-01-01
We analyze and compare findings from identical national surveys of the US general public on nuclear security and terrorism administered by telephone and Internet in mid-2007. Key areas of investigation include assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation, including the specific cases of North Korea and Iran; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support formore » domestic policies intended to reduce the threat of terrorism. Also we report findings from an Internet survey conducted in mid 2007 that investigates public views of US energy security, to include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alternative sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include expected implications of global climate change, and relationships among environmental issues and potential policy options.« less
Cyber security best practices for the nuclear industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badr, I.
2012-07-01
When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)
ERIC Educational Resources Information Center
Moran, Matthew; Hobbs, Christopher
2018-01-01
In recent years, nuclear security has gained prominence on the international security agenda. Driven by post 9/11 anxieties and the politicization of fears regarding nuclear terrorism, concerns in this area have spawned a wealth of initiatives, which seek to counter this threat. Principal among these have been efforts to promote nuclear security…
Secure Transportation of HEU in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-07-06
The National Nuclear Security Administration has announced the final shipments of Russian-origin highly enriched uranium (HEU) nuclear fuel from Romania. The material was removed and returned to Russia by air for storage at two secure nuclear facilities, making Romania the first country to remove all HEU since President Obama outlined his commitment to securing all vulnerable nuclear material around the world within four years. This was also the first time NNSA has shipped spent HEU by airplane, a development that will help accelerate efforts to meet the Presidents objective.
Nuclear weapons and medicine: some ethical dilemmas.
Haines, A; de B White, C; Gleisner, J
1983-12-01
The enormous destructive power of present stocks of nuclear weapons poses the greatest threat to public health in human history. Technical changes in weapons design are leading to an increased emphasis on the ability to fight a nuclear war, eroding the concept of deterrence based on mutually assured destruction and increasing the risk of nuclear war. Medical planning and civil defence preparations for nuclear war have recently been increased in several countries although there is little evidence that they will be of significant value in the aftermath of a nuclear conflict. These developments have raised new ethical dilemmas for those in health professions. If there is any risk of use of weapons of mass destruction, then support for deterrence with these weapons as a policy for national or global security appears to be incompatible with basic principles of medical ethics and international law. The primary medical responsibility under such circumstances is to participate in attempts to prevent nuclear war.
Kilopower: Small and Affordable Fission Power Systems for Space
NASA Technical Reports Server (NTRS)
Mason, Lee; Palac, Don; Gibson, Marc
2017-01-01
The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.
Administrator Highlights U.S.-Georgian Nuclear Security Cooperation in Tbilisi
Thomas D'Agostino
2017-12-09
NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, President Obama outlined an ambitious agenda to secure vulnerable nuclear material around the world within four years, calling the danger of a terrorist acquiring nuclear weapons "the most immediate and extreme threat to global security." In this year's State of the Union, he called the threat of nuclear weapons, "the greatest danger to the American people." In order to meet that challenge, the President's FY2011 Budget Request includes close to $2.7 billion for the National Nuclear Security Administration's Defense Nuclear Nonproliferation program -- an increase of 25.7 percent over FY2010. Included in that request is NNSA's Second Line of Defense (SLD) program, which works around the world to strengthen the capability of foreign governments to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime shipping system.
Administrator Highlights U.S.-Georgian Nuclear Security Cooperation in Tbilisi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas D'Agostino
2010-07-16
NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, President Obama outlined an ambitious agenda to secure vulnerable nuclear material around the world within four years, calling the danger of a terrorist acquiring nuclear weapons "the most immediate and extreme threat to global security." In this year's State of the Union, he called the threat of nuclear weapons, "the greatest danger to the American people." In order to meet that challenge, themore » President's FY2011 Budget Request includes close to $2.7 billion for the National Nuclear Security Administration's Defense Nuclear Nonproliferation program -- an increase of 25.7 percent over FY2010. Included in that request is NNSA's Second Line of Defense (SLD) program, which works around the world to strengthen the capability of foreign governments to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime shipping system.« less
Arms Control and Nonproliferation: A Catalog of Treaties and Agreements
2007-08-09
security and control over nuclear weapons and fissile materials. These projects provided Russia with bullet-proof Kevlar blankets, secure canisters ...U.S. security concerns. The United States and Soviet Union began to sign agreements limiting their strategic offensive nuclear weapons in the early...U.S.-Russian relationship. At the same time, however, the two sides began to cooperate on securing and eliminating Soviet-era nuclear , chemical, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri
Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been mademore » clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students’ enrolment and performance, and teaching staff’s human resource development.« less
76 FR 65634 - Assistance to Foreign Atomic Energy Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... Nuclear Nonproliferation (NA-20), Office of Nonproliferation and International Security (NA-24), 1000... Administrator for Defense Nuclear Nonproliferation, National Nuclear Security Administration, U.S. Department of...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eipeldauer, Mary D; Shelander Jr, Bruce R
2012-01-01
The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) wasmore » established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.« less
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
Cultural Awareness in Nuclear Security Programs: A Critical Link
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasser, Al-Sharif Nasser bin; Auda, Jasmine; Bachner, Katherine
Nuclear security programs that offer training and capacity building opportunities to practitioners working in nuclear facilities play a central role in strengthening the global nuclear security architecture. There is often a significant divide, however, between both the development of these programs and their implementation, and between the programs’ intended and actual outcomes. This article argues that this disconnect can often be attributed to an absence of cultural awareness and an inability for internationally-designed programs to effectively resonate with local audiences. Furthermore, the importance of the role of cultural awareness in implementing nuclear security programs will be assessed, and its applicationsmore » in the Jordanian context will be presented.« less
Cultural Awareness in Nuclear Security Programs: A Critical Link
Nasser, Al-Sharif Nasser bin; Auda, Jasmine; Bachner, Katherine
2016-11-20
Nuclear security programs that offer training and capacity building opportunities to practitioners working in nuclear facilities play a central role in strengthening the global nuclear security architecture. There is often a significant divide, however, between both the development of these programs and their implementation, and between the programs’ intended and actual outcomes. This article argues that this disconnect can often be attributed to an absence of cultural awareness and an inability for internationally-designed programs to effectively resonate with local audiences. Furthermore, the importance of the role of cultural awareness in implementing nuclear security programs will be assessed, and its applicationsmore » in the Jordanian context will be presented.« less
Mass and Elite Views on Nuclear Security: US National Security Surveys 1993-1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
HERRON,KERRY G.; JENKINS-SMITH,HANK C.; HUGHES,SCOTT D.
This is the fourth report in an ongoing series of studies examining how US perspectives about nuclear security are evolving in the post-Cold War era. In Volume 1 the authors present findings from a nationwide telephone survey of randomly selected members of the US general public conducted from 13 September to 14 October 1999. Results are compared to findings from previous surveys in this series conducted in 1993, 1995, and 1997, and trends are analyzed. Key areas of investigation reported in Volume 1 include evolving perceptions of nuclear weapons risks and benefits, preferences for related policy and spending issues, andmore » views about three emerging issue areas: deterrent utility of precision guided munitions; response options to attacks in which mass casualty weapons are used; and expectations about national missile defenses. In this volume they relate respondent beliefs about nuclear security to perceptions of nuclear risks and benefits and to policy preferences. They develop causal models to partially explain key preferences, and they employ cluster analysis to group respondents into four policy relevant clusters characterized by similar views and preferences about nuclear security within each cluster. Systematic links are found among respondent demographic characteristics, perceptions of nuclear risks and benefits, policy beliefs, and security policy and spending preferences. In Volume 2 they provide analysis of in-depth interviews with fifty members of the US security policy community.« less
Summary Report for the Radiation Detection for Nuclear Security Summer School 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkle, Robert C.; Baciak, James E.; Stave, Jean A.
The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; themore » second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Physical Security Requirements 1.0... the ZNPS Physical Security Plan (PSP) for the protection of the nuclear material while in transit to... the new physical security requirements in 10 CFR 73.55. The December 2, 2010, letter included...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... Power Station, Unit 1; Exemption From Certain Security Requirements 1.0 Background Exelon Nuclear is the licensee and holder of Facility Operating License No. DPR-2 issued for Dresden Nuclear Power Station (DNPS... protection of licensed activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1...
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical security standards. 110.44 Section 110.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Review of License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient...
Sandia National Laboratories: Directed-energy tech receives funding to
Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research
Understanding the Value of a Computer Emergency Response Capability for Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasper, Peter Donald; Rodriguez, Julio Gallardo
The international nuclear community has a great understanding of the physical security needs relating to the prevention, detection, and response of malicious acts associated with nuclear facilities and radioactive material. International Atomic Energy Agency (IAEA) Nuclear Security Recommendations (INFCIRC_225_Rev 5) outlines specific guidelines and recommendations for implementing and maintaining an organization’s nuclear security posture. An important element for inclusion into supporting revision 5 is the establishment of a “Cyber Emergency Response Team (CERT)” focused on the international communities cybersecurity needs to maintain a comprehensive nuclear security posture. Cybersecurity and the importance of nuclear cybersecurity require that there be a specificmore » focus on developing an International Nuclear CERT (NS-CERT). States establishing contingency plans should have an understanding of the cyber threat landscape and the potential impacts to systems in place to protect and mitigate malicious activities. This paper will outline the necessary components, discuss the relationships needed within the international community, and outline a process by which the NS-CERT identifies, collects, processes, and reports critical information in order to establish situational awareness (SA) and support decision-making« less
Cyber security evaluation of II&C technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Ken
The Light Water Reactor Sustainability (LWRS) Program is a research and development program sponsored by the Department of Energy, which is conducted in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) tomore » address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. The II&C Pathway is conducted by Idaho National Laboratory (INL). Cyber security is a common concern among nuclear utilities and other nuclear industry stakeholders regarding the digital technologies that are being developed under this program. This concern extends to the point of calling into question whether these types of technologies could ever be deployed in nuclear plants given the possibility that the information in them can be compromised and the technologies themselves can potentially be exploited to serve as attack vectors for adversaries. To this end, a cyber security evaluation has been conducted of these technologies to determine whether they constitute a threat beyond what the nuclear plants already manage within their regulatory-required cyber security programs. Specifically, the evaluation is based on NEI 08-09, which is the industry’s template for cyber security programs and evaluations, accepted by the Nuclear Regulatory Commission (NRC) as responsive to the requirements of the nuclear power plant cyber security regulation found in 10 CFR 73.54. The evaluation was conducted by a cyber security team with expertise in nuclear utility cyber security programs and experience in conducting these evaluations. The evaluation has determined that, for the most part, cyber security will not be a limiting factor in the application of these technologies to nuclear power plant applications.« less
78 FR 77606 - Security Requirements for Facilities Storing Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
... regulatory basis; availability of responses to public comments. SUMMARY: The U.S. Nuclear Regulatory... to Carol Gallagher; telephone: 301-287- 3422; email: [email protected] . For technical... Nuclear Security and Incident Response, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001...
2005-05-01
to treat breast cancer. 15. SUBJECT TERMS NFkappaB , tetrathiomolybdate, breast cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a...Sonenshein, G. E. Aberrant nuclear factor-icB/Rel expression and the pathogen- HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt /NF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obama, Barack
Prague, Czech Republic President Obama: Finally, this day demonstrates the determination of the United States and Russia -- the two nations that hold over 90 percent of the world’s nuclear weapons -- to pursue responsible global leadership. Together, we are keeping our commitments under the Nuclear Non-Proliferation Treaty, which must be the foundation for global non-proliferation. While the New START treaty is an important first step forward, it is just one step on a longer journey. As I said last year in Prague, this treaty will set the stage for further cuts. And going forward, we hope to pursue discussionsmore » with Russia on reducing both our strategic and tactical weapons, including non-deployed weapons. President Medvedev and I have also agreed to expand our discussions on missile defense. This will include regular exchanges of information about our threat assessments, as well as the completion of a joint assessment of emerging ballistic missiles. And as these assessments are completed, I look forward to launching a serious dialogue about Russian-American cooperation on missile defense. But nuclear weapons are not simply an issue for the United States and Russia -- they threaten the common security of all nations. A nuclear weapon in the hands of a terrorist is a danger to people everywhere -- from Moscow to New York; from the cities of Europe to South Asia. So next week, 47 nations will come together in Washington to discuss concrete steps that can be taken to secure all vulnerable nuclear materials around the world in four years. And the spread of nuclear weapons to more states is also an unacceptable risk to global security -- raising the specter of arms races from the Middle East to East Asia. Earlier this week, the United States formally changed our policy to make it clear that those non-nuclear weapons states that are in compliance with the Nuclear Non-Proliferation Treaty and their non-proliferation obligations will not be threatened by America’s nuclear arsenal. This demonstrates, once more, America’s commitment to the NPT as a cornerstone of our security strategy. Those nations that follow the rules will find greater security and opportunity. Those nations that refuse to meet their obligations will be isolated, and denied the opportunity that comes with international recognition. That includes accountability for those that break the rules -- otherwise the NPT is just words on a page. That’s why the United States and Russia are part of a coalition of nations insisting that the Islamic Republic of Iran face consequences, because they have continually failed to meet their obligations. We are working together at the United Nations Security Council to pass strong sanctions on Iran. And we will not tolerate actions that flout the NPT, risk an arms race in a vital region, and threaten the credibility of the international community and our collective security. While these issues are a top priority, they are only one part of the U.S.-Russia relationship. Today, I again expressed my deepest condolences for the terrible loss of Russian life in recent terrorist attacks, and we will remain steadfast partners in combating violent extremism. We also discussed the potential to expand our cooperation on behalf of economic growth, trade and investment, as well as technological innovation, and I look forward to discussing these issues further when President Medvedev visits the United States later this year, because there is much we can do on behalf of our security and prosperity if we continue to work together. When one surveys the many challenges that we face around the world, it’s easy to grow complacent, or to abandon the notion that progress can be shared. But I want to repeat what I said last year in Prague: When nations and peoples allow themselves to be defined by their differences, the gulf between them widens. When we fail to pursue peace, then it stays forever beyond our grasp. This majestic city of Prague is in many ways a monument to human progress. And this ceremony is a testament to the truth that old adversaries can forge new partnerships. I could not help but be struck the other day by the words of Arkady Brish, who helped build the Soviet Union’s first atom bomb. At the age of 92, having lived to see the horrors of a World War and the divisions of a Cold War, he said, We hope humanity will reach the moment when there is no need for nuclear weapons, when there is peace and calm in the world. It’s easy to dismiss those voices. But doing so risks repeating the horrors of the past, while ignoring the history of human progress. The pursuit of peace and calm and cooperation among nations is the work of both leaders and peoples in the 21st century. For we must be as persistent and passionate in our pursuit of progress as any who would stand in our way. Once again, President Medvedev, thank you for your extraordinary leadership.« less
What Are the Security Threats to Further Development of Nuclear Power Plants in the U.S.
2010-03-01
as-a-secure- fuel -alternative &catid=94:0409content&itemid=342. (accessed May 2009). Bush, President George W. “Expand the Circle of Development by...SECURITY THREATS TO FURTHER DEVELOPMENT OF NUCLEAR POWER PLANTS IN THE U.S.? by Tammie L. Nottestad March 2010 Thesis Advisor: Robert Looney...Master’s Thesis 4. TITLE AND SUBTITLE What Are the Security Threats to Further Development of Nuclear Power Plants in the U.S.? 6. AUTHOR(S
3 CFR - Blue Ribbon Commission on America's Nuclear Future
Code of Federal Regulations, 2011 CFR
2011-01-01
... America's Nuclear Future Memorandum for the Secretary of Energy Expanding our Nation's capacity to generate clean nuclear energy is crucial to our ability to combat climate change, enhance energy security... safe, secure, and responsible use of nuclear energy. These efforts are critical to accomplishing many...
Powerful nuclear technology, anywhere, requires functioning system of free elections
NASA Astrophysics Data System (ADS)
Synek, Miroslav
2000-03-01
Historical development on our planet, utilizing the knowledge of physics, has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized ``push-button". Whenever this technology falls under the control of an irresponsible, miscalculating, or, insane, dictator, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very survival of all humanity on our planet could be threatened. Therefore, it is a historical urgency that this technology is under the control by a government of the people, by the people and for the people, based on a sufficiently secure system of free elections, in any country on our planet, wherever and whenever such a threatening possibility exists.
University of Texas Safeguards by Design Problem Statement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, Eric Benton; Scherer, Carolynn P.; Ruggiero, Christy E.
This document describes the problem statement that students at the University of Texas will use for their senior level capstone design class. The purpose of this project is to introduce students to Safeguards by Design concepts as part of their capstone design course at the culmination of their degree program. This work is supported by Los Alamos National Laboratory with FY17 and FY18 programmatic funding from the U. S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA), through the Office of Defense Nuclear Nonproliferation (DNN), Office of International Nuclear Safeguards (INS), Next Generation Safeguards Initiative (NGSI), Human Resource Developmentmore » Program, Safeguards by Design Project.« less
Providing security assurance in line with national DBT assumptions
NASA Astrophysics Data System (ADS)
Bajramovic, Edita; Gupta, Deeksha
2017-01-01
As worldwide energy requirements are increasing simultaneously with climate change and energy security considerations, States are thinking about building nuclear power to fulfill their electricity requirements and decrease their dependence on carbon fuels. New nuclear power plants (NPPs) must have comprehensive cybersecurity measures integrated into their design, structure, and processes. In the absence of effective cybersecurity measures, the impact of nuclear security incidents can be severe. Some of the current nuclear facilities were not specifically designed and constructed to deal with the new threats, including targeted cyberattacks. Thus, newcomer countries must consider the Design Basis Threat (DBT) as one of the security fundamentals during design of physical and cyber protection systems of nuclear facilities. IAEA NSS 10 describes the DBT as "comprehensive description of the motivation, intentions and capabilities of potential adversaries against which protection systems are designed and evaluated". Nowadays, many threat actors, including hacktivists, insider threat, cyber criminals, state and non-state groups (terrorists) pose security risks to nuclear facilities. Threat assumptions are made on a national level. Consequently, threat assessment closely affects the design structures of nuclear facilities. Some of the recent security incidents e.g. Stuxnet worm (Advanced Persistent Threat) and theft of sensitive information in South Korea Nuclear Power Plant (Insider Threat) have shown that these attacks should be considered as the top threat to nuclear facilities. Therefore, the cybersecurity context is essential for secure and safe use of nuclear power. In addition, States should include multiple DBT scenarios in order to protect various target materials, types of facilities, and adversary objectives. Development of a comprehensive DBT is a precondition for the establishment and further improvement of domestic state nuclear-related regulations in the field of physical and cyber protection. These national regulations have to be met later on by I&C platform suppliers, electrical systems suppliers, system integrators and turn-key providers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petru, Ernest Frank
The Human Resources (HR) Division is a critical part of Los Alamos National Laboratory, an internationally recognized science and R&D facility with a specialized workforce of more than 10,000. The Laboratory’s mission is to solve national security challenges through scientific excellence. The HR Division partners with employees and managers to support the Laboratory in hiring, retaining, and motivating an exceptional workforce. The Laboratory is owned by the U.S. Department of Energy (DOE), with oversight by the DOE’s National Nuclear Security Administration (NNSA). In 2006, NNSA awarded the contract for managing and operating the Laboratory to Los Alamos National Security, LLCmore » (LANS), and a for-profit consortium. This report expounds on performance excellence efforts, presenting a strategic plan and operations.« less
NNSA Program Develops the Next Generation of Nuclear Security Experts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brim, Cornelia P.; Disney, Maren V.
2015-09-02
NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert S. Anderson; Mark Schanfein; Trond Bjornard
2011-07-01
Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is tomore » provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.« less
76 FR 30326 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... International Security, National Nuclear Security Administration, Department of Energy. ACTION: Proposed... United States of America and the Government of Japan Concerning Peaceful Uses of Nuclear Energy. DATES... Energy. Anne M. Harrington, Deputy Administrator, Defense Nuclear Nonproliferation. [FR Doc. 2011-12919...
Lessons Learned in Over a Decade of Technical Support for U.S. Nuclear Cyber Security Programmes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glantz, Clifford S.; Landine, Guy P.; Craig, Philip A.
Pacific Northwest National Laboratory’s (PNNL) nuclear cyber security team has been providing technical support to the U.S. Nuclear Regulatory Commission (NRC) since 2002. This team has provided cyber security technical experties in conducting cyber security inspections, developing of regulatory rules and guidance, reviewing facility cyber security plans, developing inspection guidance, and developing and teaching NRC inspectors how to conduct cyber security assessments. The extensive experience the PNNL team has gathered has allowed them to compile a lenghty list of recommendations on how to improve cyber security programs and conduct assessments. A selected set of recommendations are presented, including the needmore » to: integrate an array of defenisve strategies into a facility’s cyber security program, coordinate physical and cyber security activities, train phycial security forces to resist a cyber-enabled physical attack, improve estimates of the consequences of a cyber attack, properly resource cyber security assessments, appropropriately account for insider threats, routinely monitor security devices for potential attacks, supplement compliance-based requirements with risk-based decision making, and introduce the concept of resilience into cyber security programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLEJWAS,THOMAS E.; SANDERS,THOMAS L.; EAGAN,ROBERT J.
2000-01-01
Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadershipmore » or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.« less
Nuclear weapons and medicine: some ethical dilemmas.
Haines, A; de B White, C; Gleisner, J
1983-01-01
The enormous destructive power of present stocks of nuclear weapons poses the greatest threat to public health in human history. Technical changes in weapons design are leading to an increased emphasis on the ability to fight a nuclear war, eroding the concept of deterrence based on mutually assured destruction and increasing the risk of nuclear war. Medical planning and civil defence preparations for nuclear war have recently been increased in several countries although there is little evidence that they will be of significant value in the aftermath of a nuclear conflict. These developments have raised new ethical dilemmas for those in health professions. If there is any risk of use of weapons of mass destruction, then support for deterrence with these weapons as a policy for national or global security appears to be incompatible with basic principles of medical ethics and international law. The primary medical responsibility under such circumstances is to participate in attempts to prevent nuclear war. PMID:6668585
Homeland Security and Defense Applications
None
2018-01-16
Homeland Security and Defense Applications personnel are the best in the world at detecting and locating dirty bombs, loose nukes, and other radiological sources. The site trains the Nation's emergency responders, who would be among the first to confront a radiological or nuclear emergency. Homeland Security and Defense Applications highly training personnel, characterize the threat environment, produce specialized radiological nuclear detection equipment, train personnel on the equipment and its uses, test and evaluate the equipment, and develop different kinds of high-tech equipment to defeat terrorists. In New York City for example, NNSS scientists assisted in characterizing the radiological nuclear environment after 9/11, and produced specialized radiological nuclear equipment to assist local officials in their Homeland Security efforts.
DOE R&D Accomplishments Database
Hecker, S. S.
1988-04-01
The contributions of the Department of Energy (DOE) nuclear weapons laboratories to the nation's security are reviewed in testimony before the Subcommittee on Procurement and Military Nuclear Systems of the House Armed Services Committee. Also presented are contributions that technology will make in maintaining the strategic balance through deterrence, treaty verification, and a sound nuclear weapons complex as the nation prepares for significant arms control initiatives. The DOE nuclear weapons laboratories can contribute to the broader context of national security, one that recognizes that military strength can be maintained over the long term only if it is built upon the foundations of economic strength and energy security.
Nuclear Forensics: Report of the AAAS/APS Working Group
NASA Astrophysics Data System (ADS)
Tannenbaum, Benn
2008-04-01
This report was produced by a Working Group of the American Physical Society's Program on Public Affairs in conjunction with the American Association for the Advancement of Science Center for Science, Technology and Security Policy. The primary purpose of this report is to provide the Congress, U.S. government agencies and other institutions involved in nuclear forensics with a clear unclassified statement of the state of the art of nuclear forensics; an assessment of its potential for preventing and identifying unattributed nuclear attacks; and identification of the policies, resources and human talent to fulfill that potential. In the course of its work, the Working Group observed that nuclear forensics was an essential part of the overall nuclear attribution process, which aims at identifying the origin of unidentified nuclear weapon material and, in the event, an unidentified nuclear explosion. A credible nuclear attribution capability and in particular nuclear forensics capability could deter essential participants in the chain of actors needed to smuggle nuclear weapon material or carry out a nuclear terrorist act and could also encourage states to better secure such materials and weapons. The Working Group also noted that nuclear forensics result would take some time to obtain and that neither internal coordination, nor international arrangements, nor the state of qualified personnel and needed equipment were currently enough to minimize the time needed to reach reliable results in an emergency such as would be caused by a nuclear detonation or the intercept of a weapon-size quantity of material. The Working Group assesses international cooperation to be crucial for forensics to work, since the material would likely come from inadequately documented foreign sources. In addition, international participation, if properly managed, could enhance the credibility of the deterrent effect of attribution. Finally the Working Group notes that the U.S. forensics capability involved a number of agencies and other groups that would have to cooperate rapidly in an emergency and that suitable exercises to ensure such cooperation were needed.
Nuclear Arms and National Security. 1983 National Issues Forum.
ERIC Educational Resources Information Center
Melville, Keith, Ed.
Appropriate for secondary school social studies, this booklet outlines approaches for dealing with the threat of nuclear warfare in six sections. The first section, "Learning to Live with Nuclear Weapons," introduces the topic and considers what can be done to decrease the risk of nuclear warfare without jeopardizing the nation's security. "Arms…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
.... Background Nuclear Regulatory Commission Pursuant to Section 103 of the Atomic Energy Act of 1954, as amended... NUCLEAR REGULATORY COMMISSION DEPARTMENT OF HOMELAND SECURITY [NRC-2012-0015] Memorandum of Understanding Between the U.S. Nuclear Regulatory Commission and the Department of Homeland Security Regarding...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, David A.
The article is an excerpt of an interview with David A. Christian, Senior Vice President-Nuclear and Chief Nuclear Officer, Dominion Generation conducted at NEI's Nuclear Energy Assembly in New Orleans, Louisiana on 13 May 2004. It highlights the company's energy diversity, and in particular, activities related to early-site permits and possible future plans for nuclear power plant development in the U.S. The interview touches on questions related to the Consortium (composed of Dominion, AECL Technologies, the U.S. subsidiary of AECL, Hatachi America and Bechtel Power Corp.) and the DOE financial support involved (approximately 50%) along with comments related to jobmore » impacts, energy security and climate change impacts, human resource issues (particularly about getting high school students interested in jobs related to the nuclear industry) and public policy. The interview ends with a discussion of investment interest and the state of standardization in the industry.« less
A Short Guide to U.S. Arms Control Policy.
ERIC Educational Resources Information Center
Howard, Norman, Ed.; Sussman, Colleen, Ed.
Steps the United States is taking to lessen the danger of war while building international confidence and security are described. The commitment of the United States to arms control is based on the conviction that the United States and the Soviet Union have a common interest in the avoidance of nuclear war and the survival of the human race. A…
A Strategy for American Power: Energy, Climate and National Security
2008-06-01
principle applies to the suppliers of energy, particularly oil, since the United States gets...outlined four principles : • Human-induced climate change is real; • The consequences of climate change will be significant and will hit the poor...savings, in terms of higher macroeconomic output in times of energy price volatility, associated with the development of nuclear capacity in Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.
Fuel Cycle Technologies 2014 Achievement Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Bonnie C.
2015-01-01
The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities.more » FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.« less
The Importance of International Technical Nuclear Forensics to Deter Illicit Trafficking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D K
2007-01-30
Illicit trafficking of nuclear materials is a transboundary problem that requires a cooperative approach involving international nuclear forensics to ensure all states understand the threat posed by nuclear smuggling as well as a means to best deter the movement of nuclear contraband. To achieve the objectives, all cases involving illicit trafficking of nuclear and radiological materials must be vigorously pursued and prosecuted when appropriate. The importance of outreach and formal government-to-government relationships with partner nations affected by nuclear trafficking cannot be under-estimated. States that are situated on smuggling routes may be well motivated to counter nuclear crimes to bolster theirmore » own border and transportation security as well as strengthen their economic and political viability. National law enforcement and atomic energy agencies in these states are aggressively pursuing a comprehensive strategy to counter nuclear smuggling through increasing reliance on technical nuclear forensics. As part of these activities, it is essential that these organizations be given adequate orientation to the best practices in this emerging discipline including the categorization of interdicted nuclear material, collection of traditional and nuclear forensic evidence, data analysis using optimized analytical protocols, and how to best fuse forensics information with reliable case input to best develop a law enforcement or national security response. The purpose of formalized USG relationship is to establish an institutional framework for collaboration in international forensics, improve standards of forensics practice, conduct joint exercises, and pursue case-work that benefits international security objectives. Just as outreach and formalized relationships are important to cultivate international nuclear forensics, linking nuclear forensics to ongoing national assistance in border and transpiration security, including port of entry of entry monitoring, nuclear safeguards, and emerging civilian nuclear power initiatives including the Global Nuclear Energy Partnership are crucial components of a successful nuclear detection and security architecture. Once illicit shipments of nuclear material are discovered at a border, the immediate next question will be the nature and the source of the material, as well as the identity of the individual(s) involved in the transfer as well as their motivations. The Nuclear Smuggling International Technical Working Group (ITWG) is a forum for the first responder, law enforcement, policy, and diplomatic community to partner with nuclear forensics experts worldwide to identify requirements and develop technical solutions in common. The ITWG was charted in 1996 and since that time approximately 30 member states and organizations have participated in 11 annual international meetings. The ITWG also works closely with the IAEA to provide countries with support for forensic analyses. Priorities include the development of common protocols for the collection of nuclear forensic evidence and laboratory investigations, organization of forensic round-robin analytical exercises and technical forensic assistance to requesting nations. To promote the science of nuclear forensics within the ITWG the Nuclear Forensics Laboratory Group was organized in 2004. A Model Action Plan for nuclear forensics was developed by the ITWG and published as an IAEA Nuclear security Series document to guide member states in their own forensics investigations. Through outreach, formalized partnerships, common approaches and security architectures, and international working groups, nuclear forensics provides an important contribution to promoting nuclear security and accountability.« less
78 FR 40131 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... Concerning Peaceful Uses of Nuclear Energy and the Agreement Between the Government of the United States of America and Australia Concerning Peaceful Uses of Nuclear Energy. DATES: This subsequent arrangement will... Nonproliferation and International Security, National Nuclear Security Administration, Department of Energy...
77 FR 35366 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... Uses of Nuclear Energy and the Agreement for Cooperation Between the United States of America and the Republic of Kazakhstan Concerning Peaceful Uses of Nuclear Energy. DATES: This subsequent arrangement will... Nonproliferation and International Security, National Nuclear Security Administration, Department of Energy...
76 FR 37343 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... International Security, National Nuclear Security Administration, Department of Energy. ACTION: Proposed... arrangement under the Agreement for Cooperation Concerning Civil Uses of Nuclear Energy Between the Government... Peaceful Uses of Nuclear Energy Between the United States of America and the European Atomic Energy...
Reviews of the Comprehensive Nuclear-Test-Ban Treaty and U.S. security
NASA Astrophysics Data System (ADS)
Jeanloz, Raymond
2017-11-01
Reviews of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) by the National Academy of Sciences concluded that the United States has the technical expertise and physical means to i) maintain a safe, secure and reliable nuclear-weapons stockpile without nuclear-explosion testing, and ii) effectively monitor global compliance once the Treaty enters into force. Moreover, the CTBT is judged to help constrain proliferation of nuclear-weapons technology, so it is considered favorable to U.S. security. Review of developments since the studies were published, in 2002 and 2012, show that the study conclusions remain valid and that technical capabilities are better than anticipated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert S. Anderson; Mark Schanfein; Trond Bjornard
2011-07-01
Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's abilitymore » to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pregenzer, Arian Leigh
2011-12-01
The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunitiesmore » for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.« less
Peace and security in Northeast Asia: The nuclear issue and the Korean Peninsula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kihl, Y.W.; Hayes, P.; Scalapino, R.A.
1996-01-01
Korean security was the focus of world-wide attention and concern in 1993--95 with North Korea's 'suspected' nuclear weapons program. Dubbed by some as the first post-Cold War nuclear crisis, it was triggered by the United Nations Security Council's move to impose economic sanctions on North Korea. Although the immediate crisis was defused diplomatically, the nuclear time bomb continues to tick on the Korean peninsula, and the issues remain under close international surveillance. This important book examines North Korea's nuclear controversy from a variety of perspectives, including nuclear reactor technology and technology transfer, economic sanctions and incentives, strategic calculus and confidence-buildingmore » measures, the major powers, and environmental challenges that a nuclear-free zone in Korea will present.« less
National Center for Nuclear Security: The Nuclear Forensics Project (F2012)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klingensmith, A. L.
These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.
78 FR 69139 - Physical Security-Design Certification and Operating Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... scheduled to close on October 30, 2013. The Nuclear Energy Institute (NEI) submitted a letter on October 9... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Physical Security--Design Certification and Operating Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan--draft section...
Certified Training for Nuclear and Radioactive Source Security Management.
Johnson, Daniel
2017-04-01
Radioactive sources are used by hospitals, research facilities and industry for such purposes as diagnosing and treating illnesses, sterilising equipment and inspecting welds. Unfortunately, many States, regulatory authorities and licensees may not appreciate how people with malevolent intentions could use radioactive sources, and statistics confirm that a number of security incidents happen around the globe. The adversary could be common thieves, activists, insiders, terrorists and organised crime groups. Mitigating this risk requires well trained and competent staff who have developed the knowledge, attributes and skills necessary to successfully discharge their security responsibilities. The International Atomic Energy Agency and the World Institute for Nuclear Security are leading international training efforts. The target audience is a multi-disciplinary group of professionals with management responsibilities for security at facilities with radioactive sources. These efforts to promote training and competence amongst practitioners have been recognised at the 2014 and 2016 Nuclear Security and Nuclear Industry Summits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor... activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Felicia Angelica; Waymire, Russell L.
2013-10-01
Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documentsmore » have also been provided to KHNP-CRI.« less
US changes course on nuclear-weapons strategy
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2010-05-01
US President Barack Obama has signalled a new approach to nuclear-weapons policy that limits their use against other states and documents how the country will ensure the viability of existing stockpiles. The Nuclear Posture Review (NPR), which sets out the US's nuclear strategy over a 10-year period, also calls for a highly skilled workforce to ensure "the long-term safety, security and effectiveness of the nuclear arsenal and to support the full range of nuclear-security work".
Norms Versus Security: What is More Important to Japan’s View of Nuclear Weapons
2017-03-01
objectives: “1) prevent the spread of nuclear weapons and weapons technology, 2) promote cooperation in the peaceful uses of nuclear energy , and 3...http://www.world- nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-accident.aspx. 40 “Japanese Wary of Nuclear Energy ...PewResearchCenter, accessed February 22, 2017. http://www.pewglobal.org/2012/06/05/japanese-wary-of- nuclear - energy / 41 Malcolm Foster, “Thousands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herron, K.G.; Jenkins-Smith, H.C.
This study analyzes findings from a national survey of 2,490 randomly selected members of the US public conducted between September 30 and November 14, 1995. It provides an over time comparison of public perceptions about nuclear weapons risks and benefits and key nuclear policy issues between 1993 and 1995. Other areas of investigation include policy preferences regarding nuclear proliferation, terrorism, US/Russian nuclear cooperation, and personal security. Public perceptions of post-cold war security were found to be evolving in unexpected ways. The perceived threat of nuclear conflict involving the US had not declined, and the threat of nuclear conflict between othermore » countries and fears of nuclear proliferation and terrorism had increased. Perceived risks associated with managing the US nuclear arsenal were also higher. Perceptions of external and domestic benefits from US nuclear weapons were not declining. Support was found for increasing funding for nuclear weapons safety, training, and maintenance, but most respondents favored decreasing funding for developing and testing new nuclear weapons. Strong support was evident for programs and funding to prevent nuclear proliferation and terrorism. Though skeptical that nuclear weapons can be eliminated, most respondents supported reducing the US nuclear arsenal, banning nuclear test explosions, and ending production of fissile materials to make nuclear weapons. Statistically significant relationships were found between perceptions of nuclear weapons risks and benefits and policy and spending preferences. Demographic variables and basic social and political beliefs were systematically related both to risk and benefit perceptions and policy and spending options.« less
Nuclear Security in the 21^st Century
NASA Astrophysics Data System (ADS)
Archer, Daniel E.
2006-10-01
Nuclear security has been a priority for the United States, starting in the 1940s with the secret cities of the Manhattan Project. In the 1970s, the United States placed radiation monitoring equipment at nuclear facilities to detect nuclear material diversion. Following the breakup of the Soviet Union, cooperative Russian/U.S. programs were launched in Russia to secure the estimated 600+ metric tons of fissionable materials against diversion (Materials Protection, Control, and Accountability -- MPC&A). Furthermore, separate programs were initiated to detect nuclear materials at the country's borders in the event that these materials had been stolen (Second Line of Defense - SLD). In the 2000s, new programs have been put in place in the United States for radiation detection, and research is being funded for more advanced systems. This talk will briefly touch on the history of nuclear security and then focus on some recent research efforts in radiation detection. Specifically, a new breed of radiation monitors will be examined along with the concept of sensor networks.
Neutron and Gamma Imaging for National Security Applications
NASA Astrophysics Data System (ADS)
Hornback, Donald
2017-09-01
The Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D/NA-22) possesses, in part, the mission to develop technologies in support of nuclear security efforts in coordination with other U.S. government entities, such as the Department of Defense and the Department of Homeland Security. DNN R&D has long supported research in nuclear detection at national labs, universities, and through the small business innovation research (SBIR) program. Research topics supported include advanced detector materials and electronics, detection algorithm development, and advanced gamma/neutron detection systems. Neutron and gamma imaging, defined as the directional detection of radiation as opposed to radiography, provides advanced detection capabilities for the NNSA mission in areas of emergency response, international safeguards, and nuclear arms control treaty monitoring and verification. A technical and programmatic overview of efforts in this field of research will be summarized.
Giving Back: Collaborations with Others in Ecological Studies on the Nevada National Security Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott A. Wade; Kathryn S. Knapp; Cathy A. Wills
2013-02-24
Formerly named the Nevada Test Site, the Nevada National Security Site (NNSS) was the historical site for nuclear weapons testing from the 1950s to the early 1990s. The site was renamed in 2010 to reflect the diversity of nuclear, energy, and homeland security activities now conducted at the site. Biological and ecological programs and research have been conducted on the site for decades to address the impacts of radiation and to take advantage of the relatively undisturbed and isolated lands for gathering basic information on the occurrence and distribution of native plants and animals. Currently, the Office of the Assistantmore » Manager for Environmental Management of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) oversees the radiological biota monitoring and ecological compliance programs on the NNSS. The top priority of these programs are compliance with federal and state regulations. They focus on performing radiological dose assessments for the public who reside near the NNSS and for populations of plants and animals on the NNSS and in protecting important species and habitat from direct impacts of mission activities. The NNSS serves as an invaluable outdoor laboratory. The geographic and ecological diversity of the site offers researchers many opportunities to study human influences on ecosystems. NNSA/NSO has pursued collaborations with outside agencies and organizations to be able to conduct programs and studies that enhance radiological biota monitoring and ecosystem preservation when budgets are restrictive, as well as to provide valuable scientific information to the human health and natural resource communities at large. NNSA/NSO is using one current collaborative study to better assess the potential dose to the off-site public from the ingestion of game animals, the most realistic pathway for off-site public exposure at this time from radionuclide contamination on the NNSS. A second collaborative study is furthering desert tortoise conservation measures onsite. It is the goal of NNSA/NSO to continue to develop such collaborations in the sharing of resources, such as personnel, equipment, expertise, and NNSS land access, with outside entities to meet mutually beneficial goals cost effectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, Scott A.; Knapp, Kathryn S.; Wills, Cathy A.
2013-07-01
Formerly named the Nevada Test Site, the Nevada National Security Site (NNSS) was the historical site for nuclear weapons testing from the 1950's to the early 1990's. The site was renamed in 2010 to reflect the diversity of nuclear, energy, and homeland security activities now conducted at the site. Biological and ecological programs and research have been conducted on the site for decades to address the impacts of radiation and to take advantage of the relatively undisturbed and isolated lands for gathering basic information on the occurrence and distribution of native plants and animals. Currently, the Office of the Assistantmore » Manager for Environmental Management of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) oversees the radiological biota monitoring and ecological compliance programs on the NNSS. The top priority of these programs are compliance with federal and state regulations. They focus on performing radiological dose assessments for the public who reside near the NNSS and for populations of plants and animals on the NNSS and in protecting important species and habitat from direct impacts of mission activities. The NNSS serves as an invaluable outdoor laboratory. The geographic and ecological diversity of the site offers researchers many opportunities to study human influences on ecosystems. NNSA/NSO has pursued collaborations with outside agencies and organizations to be able to conduct programs and studies that enhance radiological biota monitoring and ecosystem preservation when budgets are restrictive, as well as to provide valuable scientific information to the human health and natural resource communities at large. NNSA/NSO is using one current collaborative study to better assess the potential dose to the off-site public from the ingestion of game animals, the most realistic pathway for off-site public exposure at this time from radionuclide contamination on the NNSS. A second collaborative study is furthering desert tortoise conservation measures onsite. It is the goal of NNSA/NSO to continue to develop such collaborations in the sharing of resources, such as personnel, equipment, expertise, and NNSS land access, with outside entities to meet mutually beneficial goals cost effectively. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, P. W.
Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... milling, the Agreement States of Colorado, Utah, Texas and Washington should be contacted. [48 FR 16032... 10 Energy 2 2012-01-01 2012-01-01 false Communications. 70.5 Section 70.5 Energy NUCLEAR... Director, Division of Security Policy, Office of Nuclear Security and Incident Response, U.S. Nuclear...
Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Energy United States of America National Nuclear Security Administration Visit Blogger Join Us on key role in national security and nuclear deterrence in an increasingly dangerous and unstable world
The Superpowers: Nuclear Weapons and National Security. National Issues Forums.
ERIC Educational Resources Information Center
Mitchell, Greg; Melville, Keith
Designed to stimulate thinking about United States-Soviet relationships in terms of nuclear weapons and national security, this document presents ideas and issues that represent differing viewpoints and positions. Chapter 1, "Rethinking the U.S.-Soviet Relationship," considers attempts to achieve true national security, and chapter 2,…
THE NEXT GENERATION SAFEGUARDS PROFESSIONAL NETWORK: PROGRESS AND NEXT STEPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhernosek, Alena V; Lynch, Patrick D; Scholz, Melissa A
2011-01-01
President Obama has repeatedly stated that the United States must ensure that the international safeguards regime, as embodied by the International Atomic Energy Agency (IAEA), has 'the authority, information, people, and technology it needs to do its job.' The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) works to implement the President's vision through the Next Generation Safeguards Initiative (NGSI), a program to revitalize the U.S. DOE national laboratories safeguards technology and human capital base so that the United States can more effectively support the IAEA and ensure that it meets current and emerging challenges to the internationalmore » safeguards system. In 2009, in response to the human capital development goals of NGSI, young safeguards professionals within the Global Nuclear Security Technology Division at Oak Ridge National Laboratory launched the Next Generation Safeguards Professional Network (NGSPN). The purpose of this initiative is to establish working relationships and to foster collaboration and communication among the next generation of safeguards leaders. The NGSPN is an organization for, and of, young professionals pursuing careers in nuclear safeguards and nonproliferation - as well as mid-career professionals new to the field - whether working within the U.S. DOE national laboratory complex, U.S. government agencies, academia, or industry or at the IAEA. The NGSPN is actively supported by the NNSA, boasts more than 70 members, maintains a website and newsletter, and has held two national meetings as well as an NGSPN session and panel at the July 2010 Institute of Nuclear Material Management Annual Meeting. This paper discusses the network; its significance, goals and objectives; developments and progress to date; and future plans.« less
FY 2016 - Stockpile Stewardship and Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-03-01
This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.
ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.
2010-09-29
Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) formore » construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.« less
76 FR 30325 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
..., 2011. For the Department of Energy. Anne M. Harrington, Deputy Administrator, Defense Nuclear... International Security, National Nuclear Security Administration, Department of Energy. ACTION: Proposed... arrangement under the Agreement for [[Page 30326
ERIC Educational Resources Information Center
Aloise, Gene
2008-01-01
There are 37 research reactors in the United States, mostly located on college campuses. Of these, 33 reactors are licensed and regulated by the Nuclear Regulatory Commission (NRC). Four are operated by the Department of Energy (DOE) and are located at three national laboratories. Although less powerful than commercial nuclear power reactors,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn
In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less
Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn; ...
2015-12-24
In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less
Digital Signal Processing Methods for Safety Systems Employed in Nuclear Power Industry
NASA Astrophysics Data System (ADS)
Popescu, George
Some of the major safety concerns in the nuclear power industry focus on the readiness of nuclear power plant safety systems to respond to an abnormal event, the security of special nuclear materials in used nuclear fuels, and the need for physical security to protect personnel and reactor safety systems from an act of terror. Routine maintenance and tests of all nuclear reactor safety systems are performed on a regular basis to confirm the ability of these systems to operate as expected. However, these tests do not determine the reliability of these safety systems and whether the systems will perform for the duration of an accident and whether they will perform their tasks without failure after being engaged. This research has investigated the progression of spindle asynchronous error motion determined from spindle accelerations to predict bearings failure onset. This method could be applied to coolant pumps that are essential components of emergency core cooling systems at all nuclear power plants. Recent security upgrades mandated by the Nuclear Regulatory Commission and the Department of Homeland Security have resulted in implementation of multiple physical security barriers around all of the commercial and research nuclear reactors in the United States. A second part of this research attempts to address an increased concern about illegal trafficking of Special Nuclear Materials (SNM). This research describes a multi element scintillation detector system designed for non - invasive (passive) gamma ray surveillance for concealed SNM that may be within an area or sealed in a package, vehicle or shipping container. Detection capabilities of the system were greatly enhanced through digital signal processing, which allows the combination of two very powerful techniques: 1) Compton Suppression (CS) and 2) Pulse Shape Discrimination (PSD) with less reliance on complicated analog instrumentation.
15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology...
15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology...
15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology...
Fukushima Daiichi Information Repository FY13 Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis; Phelan, Cherie; Schwieder, Dave
The accident at the Fukushima Daiichi nuclear power station in Japan is one of the most serious in commercial nuclear power plant operating history. Much will be learned that may be applicable to the U.S. reactor fleet, nuclear fuel cycle facilities, and supporting systems, and the international reactor fleet. For example, lessons from Fukushima Daiichi may be applied to emergency response planning, reactor operator training, accident scenario modeling, human factors engineering, radiation protection, and accident mitigation; as well as influence U.S. policies towards the nuclear fuel cycle including power generation, and spent fuel storage, reprocessing, and disposal. This document describesmore » the database used to establish a centralized information repository to store and manage the Fukushima data that has been gathered. The data is stored in a secured (password protected and encrypted) repository that is searchable and available to researchers at diverse locations.« less
Burger, Joanna; Clarke, James; Gochfeld, Michael
2011-01-01
The USA is entering an era of energy diversity, and increasing nuclear capacity and concerns focus on accidents, security, waste, and pollution. Physical buffers that separate outsiders from nuclear facilities often support important natural ecosystems but may contain contaminants. The US Nuclear Regulatory Commission (NRC) licenses nuclear reactors; the applicant provides environmental assessments that serve as the basis for Environmental Impact Statements developed by NRC. We provide a template for the types of information needed for safe siting of nuclear facilities with buffers in three categories: ecological, fate and transport, and human health information that can be used for risk evaluations. Each item on the lists is an indicator for evaluation, and individual indicators can be selected for specific region. Ecological information needs include biodiversity (species, populations, communities) and structure and functioning of ecosystems, habitats, and landscapes, in addition to common, abundant, and unique species and endangered and rare ones. The key variables of fate and transport are sources of release for radionuclides and other chemicals, nature of releases (atmospheric vapors, subsurface liquids), features, and properties of environmental media (wind speed, direction and atmospheric stability, hydraulic gradient, hydraulic conductivity, groundwater chemistry). Human health aspects include receptor populations (demography, density, dispersion, and distance), potential pathways (drinking water sources, gardening, fishing), and exposure opportunities (lifestyle activities). For each of the three types of information needs, we expect that only a few of the indicators will be applicable to a particular site and that stakeholders should agree on a site-specific suite.
NASA Astrophysics Data System (ADS)
Lieber, Keir
Nuclear deterrence rests on the survivability of nuclear arsenals. For much of the nuclear age, counterforce disarming attacks those aimed at eliminating nuclear forces were nearly impossible because of the ability of potential victims to hide and protect their weapons. However, technological developments are eroding this foundation of nuclear deterrence. Advances rooted in the computer revolution have made nuclear forces around the world far more vulnerable than before. Specifically, two key approaches that countries have relied on to ensure arsenal survivability since the dawn of the nuclear age hardening and concealment have been undercut by leaps in weapons accuracy and a revolution in remote sensing. Various models, methods, and evidence demonstrate the emergence of new possibilities for counterforce disarming strikes. In short, the task of securing nuclear arsenals against attack is a far greater challenge than it was in the past. The new era of counterforce challenges the basis for confidence in contemporary deterrence stability, raises critical issues for national and international security policy, and sheds light on one of the enduring theoretical puzzles of the nuclear era: why international security competition has endured in the shadow of the nuclear revolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachner, Katherine M.; Mladineo, Stephen V.
The NNSA Material Protection, Control, and Accounting (MPC&A) program has been engaged for fifteen years in upgrading the security of nuclear materials in Russia. Part of the effort has been to establish the conditions necessary to ensure the long-term sustainability of nuclear security. A sustainable program of nuclear security requires the creation of an indigenous infrastructure, starting with sustained high level government commitment. This includes organizational development, training, maintenance, regulations, inspections, and a strong nuclear security culture. The provision of modern physical protection, control, and accounting equipment to the Russian Federation alone is not sufficient. Comprehensive infrastructure projects support themore » Russian Federation's ability to maintain the risk reduction achieved through upgrades to the equipment. To illustrate the contributions to security, and challenges of implementation, this paper discusses the history and next steps for an indigenous Tamper Indication Device (TID) program, and a Radiation Portal Monitoring (RPM) program.« less
Nuclear technology requires free elections
NASA Astrophysics Data System (ADS)
Synek, Miroslav
1999-10-01
The historical development on our planet has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized ``push-button." If this technology ever falls under the control of an irresponsible, miscalculating, or insane DICTATOR, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very SURVIVAL OF ALL HUMANITY on our planet could be threatened. Therefore, it is a historical urgency that this technology is under the control by the people, through a sufficiently secure system of FREE ELECTIONS, in any country, wherever and whenever such a threatening possibility exists. Of course, a starting system of FREE ELECTIONS, even if quite rudimentary, should try to provide for its continuous functioning, with an underlying appropriate freedom of expression and with rules for its continuation, while aiming towards continuous improvements.
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2010-10-07
Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 99...prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage facilities and personnel reliability... nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs of Staff Admiral Michael
Secrecy vs. the need for ecological information: challenges to environmental activism in Russia.
Jandl, T
1998-01-01
This article identifies the lessons learned from the Nikitin case study in Russia. The Nikitin case involves the analysis of sources of radioactive contamination in several Russian counties and in the Russian Northern Fleet. Norway was interested in the issue due to proximity to the storage sites. The issue involved national security and environmental protection. It was learned that mixing national security issues with environmental issues offers dangerous and multiple challenges. Environmental groups must build relationships with a wide audience. International security policy must include the issues of globalization of trade and the spread of environmental problems into the global commons (oceans and atmosphere). The risk of an environmentally dangerous accident as a consequence of Cold War activities is greater than the risk of nuclear war. Secrecy in military affairs is not justified when there is inadequate storage of nuclear weapons and contaminated materials. In Russia, the concern is great due to their economic transition and shortages of funds for even the most basic needs, which excludes nuclear waste clean up. The Bellona Foundation studied the extent of nuclear pollution from military nuclear reactors in the Kola peninsula of northwest Russia, in 1994 and 1996. Russian security police arrested one of the report authors for alleged national security violations. A valuable lesson learned was that local Russian environmental groups needed international support. The military nuclear complex poses an enormous hazard. Limiting inspections is an unacceptable national security risk. The new Russian law on state secrets is too broad.
Resilient Control and Intrusion Detection for SCADA Systems
2014-05-01
Control. McGraw-Hill, 1996. [89] L. Greenemeier. Robots arrive at fukushima nuclear site with unclear mission. Scientific American, 2011. [90] M. Grimes...security engineering task. SCADA systems are hard real-time systems [251] because the completion of an operation after its deadline is considered useless and...that the attacker, after gaining unauthenticated access, could change the operator display values so that when an alarm actually goes off, the human
Review of the MDF-LSA 100 Spray Decontamination System
2011-12-01
decontamination technology. In October 2000, SNL received funding from the U.S. Department of Energy’s and National Nuclear Security Administration’s...UNCLASSIFIED DSTO-GD-0662 The MDF-LSA 200 is supplied or created as a foam, liquid or aerosol. The foam can be sprayed from handheld canisters . When the foam...DSTO Publications Repository http://dspace.dsto.defence.gov.au/dspace/ 14. RELEASE AUTHORITY Chief, Human Protection and Performance
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Persons desiring to transit the area of the security zone may contact the Captain of the Port at telephone... REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas Fifth Coast Guard District § 165.505 Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake...
Technology Advancement and the CTBT: Taking One Step Back from the Nuclear Brink
NASA Astrophysics Data System (ADS)
Perry, W. J.
2016-12-01
Technology plays a pivotal role in international nuclear security and technological advancement continues to support a path toward stability. One near-term and readily-obtainable step back from the nuclear brink is the Comprehensive Nuclear-test Ban Treaty (CTBT). The technology to independently verify adherence to the CTBT has matured in the 20 years since the Treaty was opened for signature. Technology has also improved the safety and reliability of the US nuclear stockpile in the absence of testing. Due to these advances over the past two decades neither verification nor stockpiles effectiveness should be an impediment to the Treaty's entry into force. Other technical and geo-political evolution in this same period has changed the perceived benefit of nuclear weapons as instruments of security. Recognizing the change technology has brought to deliberation of nuclear security, nations are encouraged to take this one step away from instability.This presentation will reflect on the history and assumptions that have been used to justify the build-up and configuration of nuclear stockpiles, the changes in technology and conditions that alter the basis of these original assumptions, and the re-analysis of security using current and future assumptions that point to the need for revised nuclear policies. The author has a unique and well informed perspective as both the most senior US Defense Official and a technologist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodie, K B; Mailhiot, C; Eaglesham, D
Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted themore » assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme conditions--Fundamental investigations of the properties and performance of states of matter under extreme dynamic, environmental, and nanoscale conditions, with an emphasis on materials of interest to Laboratory programs and mission needs. (2) Chemistry under extreme conditions and chemical engineering to support national security programs--Insights into the chemical reactions of energetic materials in the nuclear stockpile through models of molecular response to extreme conditions of temperature and pressure, advancing a new technique for processing energetic materials by using sol-gel chemistry, providing materials for NIF optics, and furthering developments to enhance other high-power lasers. (3) Science supporting national objectives at the intersection of chemistry, materials science, and biology--Multidisciplinary research for developing new technologies to combat chemical and biological terrorism, to monitor changes in the nation's nuclear stockpile, and to enable the development and application of new physical-science-based methodologies and tools for fundamental biology studies and human health applications. (4) Applied nuclear science for human health and national security: Nuclear science research that is used to develop new methods and technologies for detecting and attributing nuclear materials, assisting Laboratory programs that require nuclear and radiochemical expertise in carrying out their missions, discovering new elements in the periodic table, and finding ways of detecting and understanding cellular response to radiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schurman, D.L.; Datesman, G.H. Jr; Truitt, J.O.
The report presents a system for evaluating and correcting deficiencies in security-force effectiveness in licensed nuclear facilities. There are four checklists which security managers can copy directly, or can use as guidelines for developing their own checklists. The checklists are keyed to corrective-action guides found in the body of the report. In addition to the corrective-action guides, the report gives background information on the nature of security systems and discussions of various special problems of the licensed nuclear industry.
Nuclear Power Plant Cyber Security Discrete Dynamic Event Tree Analysis (LDRD 17-0958) FY17 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Denman, Matthew R.; Williams, R. A.
Instrumentation and control of nuclear power is transforming from analog to modern digital assets. These control systems perform key safety and security functions. This transformation is occurring in new plant designs as well as in the existing fleet of plants as the operation of those plants is extended to 60 years. This transformation introduces new and unknown issues involving both digital asset induced safety issues and security issues. Traditional nuclear power risk assessment tools and cyber security assessment methods have not been modified or developed to address the unique nature of cyber failure modes and of cyber security threat vulnerabilities.more » iii This Lab-Directed Research and Development project has developed a dynamic cyber-risk in- formed tool to facilitate the analysis of unique cyber failure modes and the time sequencing of cyber faults, both malicious and non-malicious, and impose those cyber exploits and cyber faults onto a nuclear power plant accident sequence simulator code to assess how cyber exploits and cyber faults could interact with a plants digital instrumentation and control (DI&C) system and defeat or circumvent a plants cyber security controls. This was achieved by coupling an existing Sandia National Laboratories nuclear accident dynamic simulator code with a cyber emulytics code to demonstrate real-time simulation of cyber exploits and their impact on automatic DI&C responses. Studying such potential time-sequenced cyber-attacks and their risks (i.e., the associated impact and the associated degree of difficulty to achieve the attack vector) on accident management establishes a technical risk informed framework for developing effective cyber security controls for nuclear power.« less
Global Security, Medical Isotopes, and Nuclear Science
NASA Astrophysics Data System (ADS)
Ahle, Larry
2007-10-01
Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.
Nuclear deterrence in the Arab-Israeli conflict. A case study in Egyptian-Israeli relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shikaki, K.I.
1986-01-01
In order to achieve security and stability, and maximize the chances for resolving the Arab-Israeli conflict, should Egypt and Israel adopt declared nuclear deterrence doctrines. Or would such a move be ineffective, dangerous, or even disastrous. The nuclearization of the Middle East is not necessary: military threats to the survival of the states in the region do not justify the introduction of nuclear weapons. Nuclearization is not desirable: deterrence theory's assumptions and implications exhibit intellectual weakness and its explanatory power is unsatisfactory; nuclear deterrence may reduce the frequency of war, but it pays little attention to the consequences of war;more » and in comparison to defense, nuclear deterrence may lack credibility. Presently, Israel has nuclear capability and delivery systems sufficient to provide security to its vital areas through deterrence of or defense against Arab attacks. The Arabs do not, however, believe that such security extends to the Arab territories occupied by Israel during the June 1967 war. To supply security, nuclear deterrence must be effective, stable, and credible. In a multinuclear environment, the Egyptians and Israelis are likely to meet the requirement for an effective deterrence: the possession of a nuclear capability sufficient to inflict an enormous amount of death and destruction. If the Arabs and Israelis sought and adopted strategies of deterrence, they might be able to meet the requirement for a stable deterrence: the acquisition of second strike capabilities.« less
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2010-02-04
Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008...measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage facilities and personnel...strategic nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs of Staff Admiral
Zero Nuclear Weapons and Nuclear Security Enterprise Modernization
2011-01-01
national security strategy. For the first time since the Manhattan Project , the United States was no longer building nuclear weapons and was in fact...50 to 60 years to the Manhattan Project and are on the verge of catastrophic failure. Caustic chemicals and processes have sped up the corrosion and...day, the United States must fund the long-term modernization effort of the entire enter prise. Notes 1. Nuclear Weapon Archive, “The Manhattan
The Iran Nuclear Crisis: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagan, Scott
2007-05-07
Will Iran develop nuclear weapons capabilities and what effects would such capabilities have on international peace and security? Despite two recent U.N. Security Council resolutions sanctioning Iran for its nuclear activities, the government in Tehran continues to press ahead with efforts to expand its uranium enrichment program to industrial scale. But both the Tehran regime and the Iranian people remain divided on the nuclear question, creating opportunities for a negotiated settlement. It is essential for US security that the Iranian program be contained, for nuclear weapons in Iran would increase risks of regional instability, terrorist use, and further proliferation. Themore » U.S. and its negotiating partners have already missed a number of potential opportunities for a diplomatic breakthrough, but the right mix of incentives designed to address the reasons driving Iran’s nuclear program could still succeed in producing an acceptable outcome.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Homeland Security and Defense Applications personnel are the best in the world at detecting and locating dirty bombs, loose nukes, and other radiological sources. The site trains the Nation's emergency responders, who would be among the first to confront a radiological or nuclear emergency. Homeland Security and Defense Applications highly training personnel, characterize the threat environment, produce specialized radiological nuclear detection equipment, train personnel on the equipment and its uses, test and evaluate the equipment, and develop different kinds of high-tech equipment to defeat terrorists. In New York City for example, NNSS scientists assisted in characterizing the radiological nuclear environmentmore » after 9/11, and produced specialized radiological nuclear equipment to assist local officials in their Homeland Security efforts.« less
78 FR 5438 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... DEPARTMENT OF ENERGY National Nuclear Security Administration Proposed Agency Information Collection AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Notice and... techniques or other forms of information technology. DATES: Comments regarding this proposed information...
Instrumentation, Control, and Intelligent Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-09-01
Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a majormore » center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.« less
National Security in the Nuclear Age: Public Library Proposal and Booklist. May 1987 Update.
ERIC Educational Resources Information Center
Dane, Ernest B.
To increase public understanding of national security issues, this document proposes that a balanced and up-to-date collection of books and other materials on national security in the nuclear age be included in all U.S. public libraries. The proposal suggests that the books be grouped together on an identified shelf. Selection criteria for the…
Nuclear Forensics: A Methodology Applicable to Nuclear Security and to Non-Proliferation
NASA Astrophysics Data System (ADS)
Mayer, K.; Wallenius, M.; Lützenkirchen, K.; Galy, J.; Varga, Z.; Erdmann, N.; Buda, R.; Kratz, J.-V.; Trautmann, N.; Fifield, K.
2011-09-01
Nuclear Security aims at the prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear material. Nuclear Forensics is a key element of nuclear security. Nuclear Forensics is defined as a methodology that aims at re-establishing the history of nuclear material of unknown origin. It is based on indicators that arise from known relationships between material characteristics and process history. Thus, nuclear forensics analysis includes the characterization of the material and correlation with production history. To this end, we can make use of parameters such as the isotopic composition of the nuclear material and accompanying elements, chemical impurities, macroscopic appearance and microstructure of the material. In the present paper, we discuss the opportunities for attribution of nuclear material offered by nuclear forensics as well as its limitations. Particular attention will be given to the role of nuclear reactions. Such reactions include the radioactive decay of the nuclear material, but also reactions with neutrons. When uranium (of natural composition) is exposed to neutrons, plutonium is formed, as well as 236U. We will illustrate the methodology using the example of a piece of uranium metal that dates back to the German nuclear program in the 1940's. A combination of different analytical techniques and model calculations enables a nuclear forensics interpretation, thus correlating the material characteristics with the production history.
Impacts of Vehicle (In)Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chugg, J.; Rohde, K.
Nuclear and radioactive material is routinely transported worldwide every day. Since 2010, the complexity of the transport vehicle to support such activities has grown exponentially. Many core functions of a vehicle are now handled by small embedded computer modules with more being added each year to enhance the owner’s experience and convenience. With a system as complex as today’s automobile, the potential for cyber security issues is certain. Hackers have begun exploring this new domain with public information increasingly disseminated. Because vehicles are allowed into and around secure nuclear facilities, the potential for using a vehicle as a new cybermore » entry point or vector into the facility is now plausible and must be mitigated. In addition, compromising such a vehicle could aide in illicit removal of nuclear material, putting sensitive cargo at risk. Because cyber attacks can now be introduced using vehicles, cyber security, needs to be integrated into an organization’s design basis threat document. Essentially, a vehicle now extends the perimeter for which security professionals are responsible.Electronic Control Units (ECU) responsible for handling all core and ancillary vehicle functions are interconnected using the controller area network (CAN) bus. A typical CAN network in a modern automobile contains 50 or more ECUs. The CAN protocol now supports a wide variety of areas, including automotive, road transportation, rail transportation, industrial automation, power generation, maritime, military vehicles, aviation, and medical devices. In many ways, the nuclear industry is employing the CAN bus protocol or other similar broadcast serial networks. This paper will provide an overview of the current state of automobile and CAN Bus security, as well as an overview of what has been publicly disclosed by many research organizations. It will then present several hypotheses of how vehicle security issues may impact nuclear activities. An initial discussion of how a vehicle can be used as a new threat vector to penetrate secure facilities will be presented. This includes how a modern automobile can be used as the exploitation mechanism for nearby devices such as laptops, cell phones, and wireless access points. Additional discussion will highlight how vehicle security might impact transportation of nuclear material through remote exploitation of a moving vehicle. The final discussion will include what possible implications might be relative to the physical protection systems at nuclear facilities. The audience will also be given details regarding the complexity of attack, thus implying the likelihood of successful exploitation, and information on how such attacks may be mitigated. Emerging security products for automobiles will be discussed and other mitigation methods will be detailed (e.g. disabling vehicle cellular modems). As a result, the audience will have a greater understanding of how to add vehicle security as a part of a comprehensive nuclear security policy.Finally, this paper will highlight the similarities between CAN Bus and other broadcast serial bus networks such as Profibus or DeviceNet, helping educate the reader on how susceptible this type of networking is to nefarious attacks and how it might affect components connected to many different nuclear systems, including control systems, safety systems, emergency systems, and support systems.« less
2006-12-01
of providing nuclear power. Once you have the nuclear weapons, they require a delivery system resulting in a missile program. It is afforded higher...out that some domestic advancements may be made in certain sectors, such as nuclear bombs and missiles, because resources may be spent on narrowly...capital, fighter, aviation, nuclear weapons, missiles 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION
Keeping Nuclear Materials Secure
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
For 50 years, Los Alamos National Laboratory has been helping to keep nuclear materials secure. We do this by developing instruments and training inspectors that are deployed to other countries to make sure materials such as uranium are being used for peaceful purposes and not diverted for use in weapons. These measures are called “nuclear safeguards,” and they help make the world a safer place.
Sandia National Laboratories: Privacy and Security
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Homer, Mary J; Raulli, Robert; DiCarlo-Cohen, Andrea L; Esker, John; Hrdina, Chad; Maidment, Bert W; Moyer, Brian; Rios, Carmen; Macchiarini, Francesca; Prasanna, Pataje G; Wathen, Lynne
2016-09-01
The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.
National Center for Nuclear Security - NCNS
None
2018-01-16
As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.
Leveraging Safety Programs to Improve and Support Security Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, Janice; Snell, Mark K.; Pratt, R.
2015-10-01
There has been a long history of considering Safety, Security, and Safeguards (3S) as three functions of nuclear security design and operations that need to be properly and collectively integrated with operations. This paper specifically considers how safety programmes can be extended directly to benefit security as part of an integrated facility management programme. The discussion will draw on experiences implementing such a programme at Sandia National Laboratories’ Annular Research Reactor Facility. While the paper focuses on nuclear facilities, similar ideas could be used to support security programmes at other types of high-consequence facilities and transportation activities.
Sandia National Laboratories: National Security Missions: International
Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia
Federal securities law and the need to disclose the risk of canceling nuclear plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sponseller, D.
1984-11-08
Almost every electric utility company involved in nuclear plant construction has experienced difficulty as a result of the deteriorating condition of the nuclear industry as a whole. The thrust of a growing number of lawsuits brought against electric companies for alleged violations of federal securities laws is that the companies failed to reveal cost overruns, delays, and the risk of cancellation and write-off of nuclear plants in their annual reports and registration statements. A review of several suits and the disclosure requirements of securities statutes concludes that, although investors have known about utility problems, they have just become aware thismore » year that the entire financial viability of the electric companies is threatened.« less
Kamenopoulou, Vassiliki; Dimitriou, Panayiotis; Hourdakis, Constantine J; Maltezos, Antonios; Matikas, Theodore; Potiriadis, Constantinos; Camarinopoulos, Leonidas
2006-10-01
In light of the exceptional circumstances that arose from hosting the Olympic Games in Athens in 2004 and from recent terrorist events internationally, Greece attributes the highest priority to security issues. According to its statutory role, the Greek Atomic Energy Commission is responsible for emergency preparedness and response in case of nuclear and radiological events, and advises the Government on the measures and interventions necessary to protect the public. In this context, the Commission participated in the Nuclear, Radiological, Biological, and Chemical Threat National Emergency Plan, specially developed for the Olympic Games, and coordinated by the Olympic Games Security Division. The objective of this paper is to share the experience gained during the organization of the Olympic Games and to present the nuclear security program implemented prior to, during, and beyond the Games, in order to prevent, detect, assess, and respond to the threat of nuclear terrorism. This program adopted a multi-area coverage of nuclear security, including physical protection of nuclear and radiological facilities, prevention of smuggling of radioactive materials through borders, prevention of dispersion of these materials into the Olympic venues, enhancement of emergency preparedness and response to radiological events, upgrading of the technical infrastructure, establishment of new procedures for assessing the threat and responding to radiological incidents, and training personnel belonging to several organizations involved in the National Emergency Response Plan. Finally, the close cooperation of Greek Authorities with the International Atomic Energy Agency and the U.S. Department of Energy, under the coordination of the Greek Atomic Energy Commission, is also discussed.
EMP Threats to US National Security: Congressional Responses
NASA Astrophysics Data System (ADS)
Huessy, Peter
2011-04-01
The US Congress is considering how best to respond to concerns that EMP is a real and present danger to US security. The threats come from a variety of areas: solar storms, non-nuclear EMP from man-made machines and devices; and nuclear EMP from a nuclear device exploded above CONUS or other critical areas important to the United States and its allies. Responses have to date included passage in the House of legislation to protect the electrical grid in the United States from such threats and hearings before the Homeland Security Committee. Additional efforts include examining missile defense responses, protection of the maritime domain, and hardening of US military and related civilian infrastructure. The House of Representatives has also examined what Europe, the European Union and NATO, both government and private industry, have done in these areas. Complicating matters are related issues of cyber-security and overall homeland security priorities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-11-01
The Board`s mission is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. The annual report of the Board presents information on regulatory requirements; nuclear facilities, from uranium mines to nuclear power plants and related operations; regulation of nuclear materials; radioactive waste management; compliance monitoring; research; non-proliferation, safeguards and security; international activities, and public information. A financial statement is also included.
Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, Bethany M
2012-04-02
The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrialmore » safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.« less
Joint Force Quarterly. Issue 58, 3rd Quarter
2010-06-01
rise to concerns over the future security of the Soviet nuclear arsenal. Anticipating the possibility of loosely controlled nuclear weapons inside...broader Cooperative Threat Reduction program—an unprecedented effort to reduce nuclear dangers by secur- ing or eliminating Russian weapons systems and...volume is about applications of the biological sciences, here called “biologi- cally inspired innovations,” to the military. Rather than treating
Nuclear Terrorism - Dimensions, Options, and Perspectives in Moldova
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok; Susmann, P.; Braman, Eric W.; Enaki, Nicolae A.
Securing nuclear materials, controlling contraband and preventing proliferation is an international priority to resolve using technology, diplomacy, strategic alliances, and if necessary, targeted military exercises. Nuclear security consists of complementary programs involving international legal and regulatory structure, intelligence and law enforcement agencies, border and customs forces, point and stand-off radiation detectors, personal protection equipment, preparedness for emergency and disaster, and consequence management teams. The strategic goal of UNSCR 1540 and the GICNT is to prevent nuclear materials from finding their way into the hands of our adversaries. This multi-jurisdictional and multi-agency effort demands tremendous coordination, technology assessment, policy development and guidance from several sectors. The overall goal envisions creating a secured environment that controls and protects nuclear materials while maintaining the free flow of commerce and individual liberty on international basis. Integral to such efforts are technologies to sense/detect nuclear material, provide advance information of nuclear smuggling routes, and other advanced means to control nuclear contraband and prevent proliferation. We provide an overview of GICNT and several initiatives supporting such efforts. An overview is provided of technological advances in support of point and stand-off detection and receiving advance information of nuclear material movement from perspectives of the Republic of Moldova.
Remote Sensing Laboratory - RSL
None
2018-01-16
One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.
Remote Sensing Laboratory - RSL
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-11-06
One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less
Can Nuclear Terrorists be Deterred?
NASA Astrophysics Data System (ADS)
Ferguson, Charles
2005-04-01
Conventional thinking since September 11, 2001, posits that nuclear-armed terrorists cannot be deterred. However, not all terrorist groups are alike. For instance, those that are strongly affiliated with a national territory or a constituency that can be held hostage are more likely to be self-deterred against using or even acquiring nuclear weapons. In contrast, international terrorist organizations, such as al Qaeda, or apocalyptic groups, such as Aum Shinrikyo, may welcome retaliatory nuclear strikes because they embrace martyrdom. Such groups may be immune to traditional deterrence, which threatens direct punishment against the group in question or against territory or people the terrorists' value. Although deterring these groups may appear hopeless, nuclear forensic techniques could provide the means to establish deterrence through other means. In particular, as long as the source of the nuclear weapon or fissile material could be identified, the United States could threaten a retaliatory response against a nation that did not provide adequate security for its nuclear weapons or weapons-usable fissile material. This type of deterrent threat could be used to compel the nation with lax security to improve its security to meet rigorous standards.
International Safeguards and the Pacific Northwest National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Khris B.; Smith, Leon E.; Frazar, Sarah L.
Established in 1965, Pacific Northwest National Laboratory’s (PNNL) strong technical ties and shared heritage with the nearby U.S. Department of Energy Hanford Site were central to the early development of expertise in nuclear fuel cycle signatures, separations chemistry, plutonium chemistry, environmental monitoring, modeling and analysis of reactor systems, and nuclear material safeguards and security. From these Hanford origins, PNNL has grown into a multi-program science and engineering enterprise that utilizes this diversity to strengthen the international safeguards regime. Today, PNNL supports the International Atomic Energy Agency (IAEA) in its mission to provide assurances to the international community that nations domore » not use nuclear materials and equipment outside of peaceful uses. PNNL also serves in the IAEA’s Network of Analytical Laboratories (NWAL) by providing analysis of environmental samples gathered around the world. PNNL is involved in safeguards research and development activities in support of many U.S. Government programs such as the National Nuclear Security Administration’s (NNSA) Office of Research and Development, NNSA Office of Nonproliferation and Arms Control, and the U.S. Support Program to IAEA Safeguards. In addition to these programs, PNNL invests internal resources including safeguards-specific training opportunities for staff, and laboratory-directed research and development funding to further ideas that may grow into new capabilities. This paper and accompanying presentation highlight some of PNNL’s contributions in technology development, implementation concepts and approaches, policy, capacity building, and human capital development, in the field of international safeguards.« less
U.S. Security Cooperation with India and Pakistan: A Comparative Study
2013-06-01
Pakistan’s nuclear ambitions, and resulted in further sanctions200 Pakistan spent the better part of the 1990s seething about the U.S. “abandonment... nuclear accident that happens in future. (From India’s perspective, the problem of liability has been exacerbated by the Fukushima disaster and anti...14. SUBJECT TERMS: United States, India, Pakistan, Security Cooperation, South Asia, Cold War, Defense Cooperation, Kashmir, Nuclear
Molecular Characterization of Human MUC16 (CA125) in Breast Cancer
2015-04-01
and O-linked glycosylation takes place as it progresses through the cis-medial-trans Golgi apparatus . In addition, the juxta-membrane ectodomain...swapping experiment. Further, the cleavage of MUC16 was found to take place in the Golgi /post- Golgi compartments and is dependent on the acidic pH in the...therapeutic interventions based on MUC16. 15. SUBJECT TERMS Mucin 16 (MUC16), MUC16-Cter, Golgi /post- Golgi , nuclear localization 16. SECURITY
Strategic Studies Quarterly: Volume 10, No. 4 Winter 2016
2016-01-01
capabilities for intelligence col- lection, communications , and missile warning-capabilities largely in- tended to support strategic nuclear forces. 1...WINTER 2016 NASA in the Second Space Age: Exploration, Partnering, and Security declined by 12 percent in real terms from FYlO to FY15. 11 The BCA...orbit as part of the Apollo program, six of which landed on the moon, while there have been hun- dreds of manned missions to LEO. The risks to humans
Assessment on security system of radioactive sources used in hospitals of Thailand
NASA Astrophysics Data System (ADS)
Jitbanjong, Petchara; Wongsawaeng, Doonyapong
2016-01-01
Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources used in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... designed to minimize proliferation risks world-wide, including the Nuclear Non- Proliferation Treaty, the U... and licensees ensure that they comply with requirements designed to minimize proliferation risks... NRC's regulations on physical security, information security, material control and accounting, cyber...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... geothermal energy demonstration project and research center. Reduced Operations Alternative The Reduced... DEPARTMENT OF ENERGY National Nuclear Security Administration Draft Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Kristi M.; Baker, Kathryn A.
A technical letter report to the NRC summarizing the findings of a benchmarking study, literature review, and workshop with experts on current industry standards and expert judgments about needs for security during the construction phase of critical infrastructure facilities in the post-September 11 U.S. context, with a special focus on the construction phase of nuclear power plants and personnel security measures.
Physics and Its Multiple Roles in the International Atomic Energy Agency
NASA Astrophysics Data System (ADS)
Massey, Charles D.
2017-01-01
The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.
Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.
2013-01-01
Nuclear Thermal Propulsion (NTP) is a concept which uses a nuclear reactor to heat a propellant to high temperatures without combustion and can achieve significantly greater specific impulse than chemical engines. NTP has been considered many times for human and cargo missions beyond low earth orbit. A lot of development and technical maturation of NTP components took place during the Rover/NERVA program of the 60's and early 70's. Other NTP programs and studies followed attempting to further mature the NTP concept and identify a champion customer willing to devote the funds and support the development schedule to a demonstration mission. Budgetary constraints require the use of an affordable development and qualification strategy that takes into account all the previous work performed on NTP to construct an existing database, and include lessons learned and past guidelines followed. Current guidelines and standards NASA uses for human rating chemical rocket engines is referenced. The long lead items for NTP development involve the fuel elements of the reactor and ground testing the engine system, subsystem, and components. Other considerations which greatly impact the development plans includes the National Space Policy, National Environmental Policy Act, Presidential Directive/National Security Council Memorandum #25 (Scientific or Technological Experiments with Possible Large-Scale Adverse Environmental Effects and Launch of Nuclear Systems into Space), and Safeguards and Security. Ground testing will utilize non-nuclear test capabilities to help down select components and subsystems before testing in a nuclear environment to save time and cost. Existing test facilities with minor modifications will be considered to the maximum extent practical. New facilities will be designed to meet minimum requirements. Engine and test facility requirements are based on the driving mission requirements with added factors of safety for better assurance and reliability. Emphasis will be placed on small engines, since the smaller the NTP engine, the easier it is to transport, assemble/disassemble, and filter the exhaust during tests. A new ground test concept using underground bore holes (modeled after the underground nuclear test program) to filter the NTP engine exhaust is being considered. The NTP engine system design, development, test, and evaluation plan includes many engine components and subsystems, which are very similar to those used in chemical engines, and can be developed in conjunction with them Other less mature NTP engine components and subsystems (e.g., reactor) will be thoroughly analyzed and tested to acceptable levels recommended by the referenced standards and guidelines. The affordable development strategy also considers a prototype flight test, as a final step in the development process. Preliminary development schedule estimates show that an aggressive development schedule (without much margin) will be required to be flight ready for a 2033 human mission to Mars.
Nuclear waste`s human dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erikson, K.; Colglazier, E.W.; White, G.F.
1994-12-31
The United States has pinned its hopes for a permanent underground repository for its high-level nuclear wastes on Yucca Mountain, Nevada. Nevertheless, the Department of Energy`s (DOE) site research efforts have failed {open_quotes}to adequately consider human behavior and emotions,{close_quotes} write Kai Erikson of Yale University, E. William Colglazier of the National Academy of Sciences, and Gilbert F. White of the University of Colorado. The authors maintain that it is impossible to predict changes in geology, seismology, and hydrology that may affect the Yucca Mountain area over the next 1,000 years. Predicting human behavior in that time frame remains even moremore » daunting, they insist. They admit that {open_quotes}DOE...has been given the impossible assignment to take tens of thousands of metric tons of the most hazardous materials ever created and, in the face of growing opposition, entomb them so that they will do little harm for thousands of years.{close_quotes} The researchers suggest that the government seek a secure, retrievable storage arrangement while it continues its search for safer long-term options.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilligan, Kimberly V.; Gaudet, Rachel N.
In 2007, the U.S. Department of Energy National Nuclear Security Administration (DOE NNSA) Office of Nonproliferation and Arms Control (NPAC) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. One of the report’s key recommendations was for DOE NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency (IAEA) General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: policy development and outreach, conceptsmore » and approaches, technology and analytical methodologies, human capital development (HCD), and infrastructure development. This report addresses the HCD component of NGSI. The goal of the HCD component as defined in the NNSA Program Plan is “to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.” The major objectives listed in the HCD goal include education and training, outreach to universities and professional societies, postdoctoral appointments, and summer internships at national laboratories.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe, Jeffrey .C; Boring, Ronald L.
Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation andmore » control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.« less
A revised timescale for human evolution based on ancient mitochondrial genomes
Johnson, Philip L.F.; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G.; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes
2016-01-01
Summary Background Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Result Here we use mitochondrial genome sequences from 10 securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) of less than 62,000-95,000 years ago. Conclusion Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population split times, they can provide valid upper bounds; our results exclude most of the older dates for African and non-African split times recently suggested by de novo mutation rate estimates in the nuclear genome. PMID:23523248
A revised timescale for human evolution based on ancient mitochondrial genomes.
Fu, Qiaomei; Mittnik, Alissa; Johnson, Philip L F; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes
2013-04-08
Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome. Copyright © 2013 Elsevier Ltd. All rights reserved.
Arms Control and Nonproliferation: A Catalog of Treaties and Agreements
2007-01-29
U.S. security concerns. The United States and Soviet Union began to sign agreements limiting their strategic offensive nuclear weapons in the early...Russian relationship. At the same time, however, the two sides began to cooperate on securing and eliminating Soviet-era nuclear , chemical, and...the former Soviet Union. The United States is also a leader of an international regime that attempts to limit the spread of nuclear weapons. This
Arms Control and Nonproliferation: A Catalog of Treaties and Agreements
2007-06-01
security concerns. The United States and Soviet Union began to sign agreements limiting their strategic offensive nuclear weapons in the early 1970s...Russian relationship. At the same time, however, the two sides began to cooperate on securing and eliminating Soviet-era nuclear , chemical, and biological...former Soviet Union. The United States is also a leader of an international regime that attempts to limit the spread of nuclear weapons. This regime
Nuclear Weapons Security Crisis: What Does History Teach?
2013-07-01
Department of Defense. Much of the work to prepare the book for publi- cation was done by NPEC’s research associate, Kate Harrison, and the staff...of the Strategic Studies Insti- tute, especially Dr. James Pierce and Rita Rummel. This book would not have been possible without their help...nuclear security crises detailed in this book gone differently—had the rebel faction of the French military seized the nuclear device that was to
15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Review of license applications by BIS...
15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Review of license applications by BIS...
Limits of Military Power for National Security.
ERIC Educational Resources Information Center
Melman, Seymour
1981-01-01
Reviews the post World War II nuclear-military arms race and claims that it is possible to define significant limits of military power for national security. Topics discussed include public opinion regarding the arms race, constraints on military power, conventional forces, checkmating conventional strategy, and the seriousness of nuclear false…
77 FR 3257 - Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... DEPARTMENT OF ENERGY Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Amended Record of Decision. SUMMARY: The U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... DEPARTMENT OF ENERGY National Nuclear Security Administration Extension of the Public Review and... Disposition Supplemental Environmental Impact Statement AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Extension of the public review and comment period and announcement of an...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Policy. 11.5 Section 11.5 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR... concepts of justice, a personnel security program in the interests of the common defense and security for...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Policy. 11.5 Section 11.5 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR... concepts of justice, a personnel security program in the interests of the common defense and security for...
Federal Funding for Health Security in FY2017.
Boddie, Crystal; Watson, Matthew; Sell, Tara Kirk
2016-01-01
This latest article in the Federal Funding for Health Security series assesses FY2017 US government funding in 5 domains critical to strengthening health security: biosecurity, radiological and nuclear security, chemical security, pandemic influenza and emerging infectious disease, and multiple-hazard and general preparedness.
Physical Security Modeling for the Shipboard Nuclear Weapons Security Program,
1982-04-01
I AOA1IR 396 NAVAL SURFACE WEAPONS CENTER SILVER SPRING MO F/G 15/3 PHYSICAL SECURITY MODELING FOR THE SHIPROARD NUCLEAR WEAPONS SE--ETEEU) APR A2 E ...WEAPONS SECURITY )PROGRAM 0% BY E . G. JACOUES D. L BARTUSEK R. W. MONROE M. S. SCHWARTZ WEAPONS SYSTEMS DEPARTMENT 1 APRIL 1982 A4pm lvW for p uic r...ASSIPICATIO N O F Tb IS PAGE t’W "mu Dat e E DLeT R)....... t READ W~STRUCTIoNs’ REPORT DOCUMENTATION PAGE BEFORE COMPLETNG FORM4 . REPiQRT NUM1e[i ja. VT
A Cyber Security Self-Assessment Method for Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glantz, Clifford S.; Coles, Garill A.; Bass, Robert B.
2004-11-01
A cyber security self-assessment method (the Method) has been developed by Pacific Northwest National Laboratory. The development of the Method was sponsored and directed by the U.S. Nuclear Regulatory Commission. Members of the Nuclear Energy Institute Cyber Security Task Force also played a substantial role in developing the Method. The Method's structured approach guides nuclear power plants in scrutinizing their digital systems, assessing the potential consequences to the plant of a cyber exploitation, identifying vulnerabilities, estimating cyber security risks, and adopting cost-effective protective measures. The focus of the Method is on critical digital assets. A critical digital asset is amore » digital device or system that plays a role in the operation, maintenance, or proper functioning of a critical system (i.e., a plant system that can impact safety, security, or emergency preparedness). A critical digital asset may have a direct or indirect connection to a critical system. Direct connections include both wired and wireless communication pathways. Indirect connections include sneaker-net pathways by which software or data are manually transferred from one digital device to another. An indirect connection also may involve the use of instructions or data stored on a critical digital asset to make adjustments to a critical system. The cyber security self-assessment begins with the formation of an assessment team, and is followed by a six-stage process.« less
Nuclear Security for Floating Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skiba, James M.; Scherer, Carolynn P.
2015-10-13
Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology aremore » proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.119 Security facility...
Index Nuclear Wallet Cards Contents Current Version Radioactive Nuclides (Homeland Security) Nuclear Materials Management & Safeguards System 8th Edition 2011 Nuclear Wallet Cards Resources Search Nuclear Wallet Cards 8th Edition PDF Format 8thEdition, Android Market Download Nuclear Wallet Cards Nuclear
10 CFR 95.33 - Security education.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Security education. 95.33 Section 95.33 Energy NUCLEAR... INFORMATION AND RESTRICTED DATA Physical Security § 95.33 Security education. All cleared employees must be... information. The facility may obtain defensive security, threat awareness, and other education and training...
Federal Funding for Health Security in FY2017
Watson, Matthew; Sell, Tara Kirk
2016-01-01
This latest article in the Federal Funding for Health Security series assesses FY2017 US government funding in 5 domains critical to strengthening health security: biosecurity, radiological and nuclear security, chemical security, pandemic influenza and emerging infectious disease, and multiple-hazard and general preparedness. PMID:27575382
10 CFR 95.33 - Security education.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Security education. 95.33 Section 95.33 Energy NUCLEAR... INFORMATION AND RESTRICTED DATA Physical Security § 95.33 Security education. All cleared employees must be... information. The facility may obtain defensive security, threat awareness, and other education and training...
10 CFR 95.33 - Security education.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Security education. 95.33 Section 95.33 Energy NUCLEAR... INFORMATION AND RESTRICTED DATA Physical Security § 95.33 Security education. All cleared employees must be... information. The facility may obtain defensive security, threat awareness, and other education and training...
10 CFR 95.33 - Security education.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Security education. 95.33 Section 95.33 Energy NUCLEAR... INFORMATION AND RESTRICTED DATA Physical Security § 95.33 Security education. All cleared employees must be... information. The facility may obtain defensive security, threat awareness, and other education and training...
Cooperative global security programs modeling & simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briand, Daniel
2010-05-01
The national laboratories global security programs implement sustainable technical solutions for cooperative nonproliferation, arms control, and physical security systems worldwide. To help in the development and execution of these programs, a wide range of analytical tools are used to model, for example, synthetic tactical environments for assessing infrastructure protection initiatives and tactics, systematic approaches for prioritizing nuclear and biological threat reduction opportunities worldwide, and nuclear fuel cycle enrichment and spent fuel management for nuclear power countries. This presentation will describe how these models are used in analyses to support the Obama Administration's agenda and bilateral/multinational treaties, and ultimately, to reducemore » weapons of mass destruction and terrorism threats through international technical cooperation.« less
U.S. Maritime Interests in the South Atlantic. Appendix I
1977-10-01
it could develop a nuclear program if it wanted to. It may however run into conflict with Chile over access to the Atlantic since there have been...America, the tradeoffs between the support for authoritarian governments in Brazil, Argentina and Chile and the human rights issue has to be seen...security ties with Chile , and neutralization of Argentina’s links with Peru.12 He sees the most "grave and urgent" problems between these two countries
Assessment on security system of radioactive sources used in hospitals of Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jitbanjong, Petchara, E-mail: petcharajit@gmail.com; Wongsawaeng, Doonyapong
Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources usedmore » in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources.« less
Structuring Cooperative Nuclear RIsk Reduction Initiatives with China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Larry; Reinhardt, Jason Christian; Hecker, Siegfried
The Stanford Center for International Security and Cooperation engaged several Chinese nuclear organizations in cooperative research that focused on responses to radiological and nuclear terrorism. The objective was to identify joint research initiatives to reduce the global dangers of such threats and to pursue initial technical collaborations in several high priority areas. Initiatives were identified in three primary research areas: 1) detection and interdiction of smuggled nuclear materials; 2) nuclear forensics; and 3) radiological (“dirty bomb”) threats and countermeasures. Initial work emphasized the application of systems and risk analysis tools, which proved effective in structuring the collaborations. The extensive engagementsmore » between national security nuclear experts in China and the U.S. during the research strengthened professional relationships between these important communities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, C.; Joe, J.
The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is developing a scientific basis through targeted research and development (R&D) to support the U.S. nuclear power plant (NPP) fleet in extending their existing licensing period and ensuring their long-term reliability, productivity, safety, and security. Over the last several years, human factors engineering (HFE) professionals at the Idaho National Laboratory (INL) have supported the LWRS Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway across several U.S. commercial NPPs in analog-to-digital migrations (i.e., turbine control systems) and digital-to-digital migrations (i.e., Safety Parameter Display System). These effortsmore » have included in-depth human factors evaluation of proposed human-system interface (HSI) design concepts against established U.S. Nuclear Regulatory Commission (NRC) design guidelines from NUREG-0700, Rev 2 to inform subsequent HSI design prior to transitioning into Verification and Validation. This paper discusses some of the overarching design issues observed from these past HFE evaluations. In addition, this work presents some observed challenges such as common tradeoffs utilities are likely to face when introducing new HSI technologies into NPP hybrid control rooms. The primary purpose of this work is to distill these observed design issues into general HSI design guidance that industry can use in early stages of HSI design.« less
Components of a Course on National Security Policy.
ERIC Educational Resources Information Center
Quester, George H.
1987-01-01
Describes the components of a course on the formation of national security policy. Includes information on the amount of emphasis and instructional approach to take with each component of the course. Components include the nature of strategy, the role of war in international politics, disarmament and arms control, nuclear weapons and nuclear war,…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... focuses on the unique aspects of nuclear safety and security and highlights the Commission's expectations... safety culture and (2) high level descriptions or traits of areas important to safety culture. The... NRC headquarters. Please allow time at both locations to register with building security upon entering...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
.... Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need... provisions of the NRC-approved Cyber Security Plan. The proposed change is consistent with Nuclear Energy...-approved Cyber Security Plan. The proposed change is consistent with Nuclear Energy Institute (NEI) 08-09...
10 CFR 95.33 - Security education.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Security education. 95.33 Section 95.33 Energy NUCLEAR... INFORMATION AND RESTRICTED DATA Physical Security § 95.33 Security education. All cleared employees must be... providing security education and training. A licensee or other entity subject to part 95 may obtain...
10 CFR 95.49 - Security of automatic data processing (ADP) systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Security of automatic data processing (ADP) systems. 95.49 Section 95.49 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.49 Security of...
Critical Infrastructure Protection- Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bofman, Ryan K.
Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.
Believing Your Eyes: Strengthening the Reliability of Tags and Seals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brim, Cornelia P.; Denlinger, Laura S.
2013-07-01
NNSA’s Office of Nonproliferation and International Security (NIS) is working together with scientific experts at the DOE national laboratories to develop the tools needed to safeguard and secure nuclear material from diversion, theft, and sabotage--tasks critical to support future arms control treaties that may involve the new challenge of monitoring nuclear weapons dismantlement. Use of optically stimulated luminescent material is one method to enhance the security and robustness of existing tamper indicating devices such as tags and seals.
National Labs and Nuclear Emergency Response
NASA Astrophysics Data System (ADS)
Budil, Kimberly
2015-04-01
The DOE national laboratories, and in particular the three NNSA national security laboratories, have long supported a broad suite of national nuclear security missions for the U.S. government. The capabilities, infrastructure and base of expertise developed to support the U.S. nuclear weapons stockpile have been applied to such challenges as stemming nuclear proliferation, understanding the nuclear capabilities of adversaries, and assessing and countering nuclear threats including essential support to nuclear emergency response. This talk will discuss the programs that are underway at the laboratories and the essential role that science and technology plays therein. Nuclear scientists provide expertise, fundamental understanding of nuclear materials, processes and signatures, and tools and technologies to aid in the identification and mitigation of nuclear threats as well as consequence management. This talk will also discuss the importance of direct engagement with the response community, which helps to shape research priorities and to enable development of useful tools and techniques for responders working in the field. National Labs and Nuclear Emergency Response.
The Interface of Safety and Security in Transport: A Regional Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Tim; Duhamel, David A; Nandakumar, A. N.
Security of nuclear and other radioactive material in transport continues to be a challenge for States that are working on strengthening their nuclear security regime. One reason for this is that State regulatory agencies and other organizations lack the resources and trained personnel to dedicate to this field. For over 50 years safety has been a major focus in the use, storage and transport of radioactive material. Only recently, since the late 1990s, has dedicated focus been given to the field of security. One way to assist States to advance nuclear security is to reach out to safety workers (regulators,more » inspectors, and safety compliance personnel) and showcase the need to better integrate safety and security practices. A recent IAEA regional workshop in Bangkok, Thailand (June 2015) yielded profound results when subject matter experts lectured on both the safety and the security of radioactive material in transport. These experts presented and discussed experiences and best practices for: 1) developing and implementing safety requirements and security recommendations for radioactive material in transport; 2) national and international cooperation; and 3) preventing shipment delays/denials of radioactive material. The workshop participants, who were predominantly from safety organizations, shared that they received the following from this event: 1. A clear understanding of the objectives of the IAEA safety requirements and security recommendations for radioactive material in transport. 2. A general understanding of and appreciation for the similarities and differences between safety requirements and security recommendations for radioactive material in transport. 3. A greater appreciation of the interface between transport safety and security and potential impacts of this interface on the efforts to strengthen the compliance assurance regime for the safe transport of radioactive material. 4. A general understanding of assessing the transport security scenarios and developing transport security plans. Many participants also reported their appreciation of the workshop exercises that specifically focused on practical aspects of safety and security of transport of radioactive material. These workshop outcomes highlight the important role professionals can offer when they receive additional safety training and education for radioactive material in transport. Moreover, these professionals can help to increase capacity in countries with developing nuclear security regimes. This paper explores workshop outcomes and transportation regulations and guidelines for radioactive material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, B.H.
This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview.
The Application of materials attractiveness in a graded approach to nuclear materials security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebbinghaus, B.; Bathke, C.; Dalton, D.
2013-07-01
The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that ismore » necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED.« less
Twenty-Five Year Site Plan FY2013 - FY2037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, William H.
2012-07-12
Los Alamos National Laboratory (the Laboratory) is the nation's premier national security science laboratory. Its mission is to develop and apply science and technology to ensure the safety, security, and reliability of the United States (U.S.) nuclear stockpile; reduce the threat of weapons of mass destruction, proliferation, and terrorism; and solve national problems in defense, energy, and the environment. The fiscal year (FY) 2013-2037 Twenty-Five Year Site Plan (TYSP) is a vital component for planning to meet the National Nuclear Security Administration (NNSA) commitment to ensure the U.S. has a safe, secure, and reliable nuclear deterrent. The Laboratory also usesmore » the TYSP as an integrated planning tool to guide development of an efficient and responsive infrastructure that effectively supports the Laboratory's missions and workforce. Emphasizing the Laboratory's core capabilities, this TYSP reflects the Laboratory's role as a prominent contributor to NNSA missions through its programs and campaigns. The Laboratory is aligned with Nuclear Security Enterprise (NSE) modernization activities outlined in the NNSA Strategic Plan (May 2011) which include: (1) ensuring laboratory plutonium space effectively supports pit manufacturing and enterprise-wide special nuclear materials consolidation; (2) constructing the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRR-NF); (3) establishing shared user facilities to more cost effectively manage high-value, experimental, computational and production capabilities; and (4) modernizing enduring facilities while reducing the excess facility footprint. Th is TYSP is viewed by the Laboratory as a vital planning tool to develop an effi cient and responsive infrastructure. Long range facility and infrastructure development planning are critical to assure sustainment and modernization. Out-year re-investment is essential for sustaining existing facilities, and will be re-evaluated on an annual basis. At the same time, major modernization projects will require new line-item funding. This document is, in essence, a roadmap that defines a path forward for the Laboratory to modernize, streamline, consolidate, and sustain its infrastructure to meet its national security mission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnesale, A.; Doty, P.; Hoffmann, S.
1983-01-01
At Harvard President Derek Bok's request, six Harvard professors explain nuclear arms issues to help citizens understand all sides of the national security debates. The goal is to encourage public participation in policy formulation. The book emphasizes that escapism will not improve security; that idealistic plans to eliminate nuclear weapons are a form of escapism. Learning to live with nuclear weapons, they suggest, requires an understanding of the current nuclear predicament and the implications of alternative weapons and policy choices. After reviewing these matters, they emphasize that informed persons will continue to disagree, but that knowledge will improve understanding andmore » appreciation of their differences and improve the quality of policy debates. 54 references, 5 figures, 2 tables. (DCK)« less
Post-Cold War Science and Technology at Los Alamos
NASA Astrophysics Data System (ADS)
Browne, John C.
2002-04-01
Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances including our national security contributions, and discuss some of challenges for Los Alamos in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, D Y
The abysmal state of Russia's conventional forces has caused Russia to rely on nuclear weapons to ensure its security. This reliance was formalized in Russia's military doctrine which states that nuclear weapons can be used ''in situations critical to the national security of the RF and its allies.'' In fact, most Russian security analysts believe that this dependence on nuclear weapons will remain for the foreseeable future because the economy will have to improve significantly before a conventional force build up can be contemplated. Yet, despite Russia's need to rely on nuclear weapons, even this may be problematic because itsmore » economic plight may create difficulties in maintaining its current level of nuclear forces. Thus, Russia has a keen interest in negotiating a treaty to reduce Strategic Nuclear Forces below START II levels and would prefer to go even beyond the 2,000-2,500 numbers agreed to by Presidents Yeltsin and Clinton in Helsinki in 1997. Sergei Rogov, an influential defense analyst, believes that Russia's strategic nuclear forces will fall below 1,000 warheads by 2010 irrespective of arms control agreements. Accordingly, Russia is keen to ensure rough parity with the US. To retain a credible deterrent posture at these lower levels, Russia believes that it is important to restrain US sea-launched cruise missiles (SLCM)--forces that have heretofore not been captured as strategic weapons in the START treaties. Russian officials reason that once strategic nuclear forces go to very low levels, SLCM capabilities become strategically significant. In fact, according to two well-known Russian security analysts, Anatoli Diakov and Pavel Podvig, Russia's current START III negotiating position calls for the complete elimination of all SLCMs, both nuclear and conventional. Prior to assessing Russia's position regarding cruise missiles and START III, I will examine Russia's overall view of its security position vis-a-vis the US in order to provide background for Russia's negotiating stance. I will also suggest how the US and Russia might approach START III in a manner that is equitable and focuses on creating a more stable environment.« less
Nuclear Power Plant Security and Vulnerabilities
2009-03-18
Commercial Spent Nuclear Fuel Storage , Public Report...systems that prevent hot nuclear fuel from melting even after the chain reaction has stopped, and storage facilities for highly radioactive spent nuclear ... nuclear fuel cycle facilities must defend against to prevent radiological sabotage and theft of strategic special nuclear material. NRC licensees use
Nuclear energy related capabilities at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickering, Susan Y.
2014-02-01
Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... with the Department of Homeland Security (DHS), to the Coast Guard at all times, including when it is a service in the Department of Homeland Security. The policies herein also affect the Departments of Transportation, Homeland Security, Energy (National Nuclear Security Administration), the Central Intelligence...
Code of Federal Regulations, 2013 CFR
2013-07-01
... with the Department of Homeland Security (DHS), to the Coast Guard at all times, including when it is a service in the Department of Homeland Security. The policies herein also affect the Departments of Transportation, Homeland Security, Energy (National Nuclear Security Administration), the Central Intelligence...
Code of Federal Regulations, 2012 CFR
2012-07-01
... with the Department of Homeland Security (DHS), to the Coast Guard at all times, including when it is a service in the Department of Homeland Security. The policies herein also affect the Departments of Transportation, Homeland Security, Energy (National Nuclear Security Administration), the Central Intelligence...
Code of Federal Regulations, 2013 CFR
2013-07-01
... dissemination of unclassified information pertaining to security measures, including security plans, procedures... security by significantly increasing the likelihood of the illegal production of nuclear weapons or the... the public or the common defense and security. (d) This part and title 10 of the Code of Federal...
Code of Federal Regulations, 2014 CFR
2014-07-01
... dissemination of unclassified information pertaining to security measures, including security plans, procedures... security by significantly increasing the likelihood of the illegal production of nuclear weapons or the... the public or the common defense and security. (d) This part and title 10 of the Code of Federal...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... Clearance and Safeguarding of National Security Information and Restricted Data AGENCY: Nuclear Regulatory... Executive Order 13526, Classified National Security Information. In addition, this direct final rule allowed... licensees (or their designees) to conduct classified [[Page 69287
Nuclear Coexistence: Rethinking U.S. Policy to Promote Stability in an Era of Proliferation
1994-04-01
The Spread of Nuclear Weapons 1989 -90 (Boulder: Westview Press, 1990). 22. See William C. Martel and Steven E. Miller, "Controlling Borders and Nuclear...Security, Fall 1989 , Vol. 14, No. 2, pp. 140-41, for J. Robert Oppenheimer’s concerns about the dangers of the develop- ment of thermonuclear weapons. 4...Paradox of Technology," International Security, Vol. 14, No. 2 (Fall 1989 ), pp. 198-202. 6. Some argue that the U.S. strategy has relatively little
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, W. S.; Yun, S. W.; Lee, D. S.
2012-07-01
Questions of whether past nuclear regulatory body of Korea is not a proper system to monitor and check the country's nuclear energy policy and utilization have been raised. Moreover, a feeling of insecurity regarding nuclear safety after the nuclear accident in Japan has spread across the public. This has stimulated a renovation of the nuclear safety regime in Korea. The Nuclear Safety and Security Commission (NSSC) was launched on October 26, 2011 as a regulatory body directly under the President in charge of strengthening independence and nuclear safety. This was a meaningful event as the NSSC it is a muchmore » more independent regulatory system for Korea. However, the NSSC itself does not guarantee an enhanced public acceptance of the nuclear policy and stable use nuclear energy. This study introduces the new NSSC system and its details in terms of organization structure, appropriateness of specialty, budget stability, and management system. (authors)« less
Experimental Physical Sciences Vitae 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth; Del Mauro, Diana; Patterson, Eileen Frances
Frequently our most basic research experiments stimulate solutions for some of the most intractable national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and nuclear and alternative energy. This publication highlights our talented and creative staff who deliver solutions to these complex scientific and technological challenges by conducting cutting-edge multidisciplinary physical science research.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0184] Office of New Reactors: Proposed NUREG-0800; Standard Review Plan Section 13.6.6, Draft Revision 0 on Cyber Security Plan AGENCY: Nuclear Regulatory... Plants,'' on a proposed Standard Review Plan (SRP) Section 13.6.6 on ``Cyber Security Plan'' (Agencywide...
Nuclear Security Futures Scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Elizabeth James Kistin; Warren, Drake Edward; Hayden, Nancy Kay
This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.
Towards a policy for human security: psychosocial contributions.
Tullio, Francesco
2007-01-01
Inspired by the correspondence between Einstein and Freud in 1936, this paper focuses on the multidimensional aspect of security, exploring its implications within the psychosocial approach. Reflections are therefore centred on the psychological aspects of conflict, on bio-psychic responses to violent solicitation and on ways in which individual emotions are managed and controlled by the State. Some social and economic mechanisms comprising the present global social scenario are explored: the intermesh between economic/industrial organisations and Security Institutions, and the consumerist economic model and its individual/collective consequences, ultimately environmental destruction. As suggested by Einstein, the creation of a supranational organisation would be an essential step towards an effective and economically sustainable international system. This can be achieved through a process that implies the evolution of cultural parameters and the transformation of national institutions. In this sense, the author suggests a decisive role for civil society organisations such as the International Physicians for the Prevention of Nuclear War (IPPNW).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settlemyer, S.R.
1991-09-01
The Nuclear Weapons Management System combines the strengths of an expert system with the flexibility of a database management system to assist the Weapons Officer, Security Officer, and the Personnel Reliability Program Officer in the performance of administrative duties associated with the nuclear weapons programs in the United States Navy. This thesis examines the need for, and ultimately the design of, a system that will assist the Security Officer in administrative duties associated with the Shipboard Self Defense Force. This system, designed and coded utilizing dBASE IV, can be implemented as a stand alone system. Furthermore, it interfaces with themore » expert system submodule that handles the PRP screening process.« less
Characterization of Large Volume CLYC Scintillators for Nuclear Security Applications
NASA Astrophysics Data System (ADS)
Soundara-Pandian, Lakshmi; Tower, J.; Hines, C.; O'Dougherty, P.; Glodo, J.; Shah, K.
2017-07-01
We report on our development of large volume Cs2LiYCl6 (CLYC) detectors for nuclear security applications. Three-inch diameter boules have been grown and 3-in right cylinders have been fabricated. Crystals containing either >95% 6Li or >99% 7Li have been grown for applications specific to thermal or fast neutron detection, respectively. We evaluated their gamma and neutron detection properties and the performance is as good as small size crystals. Gamma and neutron efficiencies were measured for large crystals and compared with smaller size crystals. With their excellent performance characteristics, and the ability to detect fast neutrons, CLYC detectors are excellent triple-mode scintillators for use in handheld and backpack instruments for nuclear security applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... the Standard Review Plan (SRP), concerning the physical security reviews of design certification... NRC staff with the physical security review of applications for design certifications, incorporate... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Proposed Revision to Physical Security--Standard...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Security. 39.71 Section 39.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Security, Records, Notifications § 39.71 Security. (a) A logging supervisor must be physically present at a temporary jobsite whenever...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Security. 39.71 Section 39.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Security, Records, Notifications § 39.71 Security. (a) A logging supervisor must be physically present at a temporary jobsite whenever...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Security. 39.71 Section 39.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Security, Records, Notifications § 39.71 Security. (a) A logging supervisor must be physically present at a temporary jobsite whenever...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Security. 39.71 Section 39.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Security, Records, Notifications § 39.71 Security. (a) A logging supervisor must be physically present at a temporary jobsite whenever...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Security. 39.71 Section 39.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Security, Records, Notifications § 39.71 Security. (a) A logging supervisor must be physically present at a temporary jobsite whenever...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
SNL has a combination of experimental facilities, nuclear engineering, nuclear security, severe nuclear accidents, and nuclear safeguards expertise that can enable significant progress towards molten salts and fuels for Molten Salt Reactors (MSRs). The following areas and opportunities are discussed in more detail in this white paper.
Mechanisms for training security inspectors to enhance human performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhalter, H.E.; Sessions, J.C.
The Department of Energy (DOE) has established qualification standards for protective force personnel employed at nuclear facilities (10 CFR Part 1046 (Federal Register)). Training mechanisms used at Los Alamos to enhance human performance in meeting DOE standards include, but are not limited to, the following: for cardio-respiratory training, they utilize distance running, interval training, sprint training, pacing, indoor aerobics and circuit training; for muscular strength, free weights, weight machines, light hand weights, grip strength conditioners, and calistenics are employed; for muscular endurance, participants do high repetitions (15 - 40) using dumbbells, flex weights, resistive rubber bands, benches, and calisthenics; formore » flexibility, each training session devotes specific times to stretch the muscles involved for a particular activity. These training mechanisms with specific protocols can enhance human performance.« less
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
10 CFR 1.32 - Office of the Executive Director for Operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...
Applications of nuclear techniques relevant for civil security
NASA Astrophysics Data System (ADS)
Valkovi, Vlado
2006-05-01
The list of materials which are subject to inspection with the aim of reducing the acts of terrorism includes explosives, narcotics, chemical weapons, hazardous chemicals and radioactive materials. To this we should add also illicit trafficking with human beings. The risk of nuclear terrorism carried out by sub-national groups is considered not only in construction and/or use of nuclear device, but also in possible radioactive contamination of large urban areas. Modern personnel, parcel, vehicle and cargo inspection systems are non-invasive imaging techniques based on the use of nuclear analytical techniques. The inspection systems use penetrating radiations: hard x-rays (300 keV or more) or gamma-rays from radioactive sources (137Cs and 60Co with energies from 600 to 1300 keV) that produce a high resolution radiograph of the load. Unfortunately, this information is ''non-specific'' in that it gives no information on the nature of objects that do not match the travel documents and are not recognized by a visual analysis of the radiographic picture. Moreover, there are regions of the container where x and gamma-ray systems are ''blind'' due to the high average atomic number of the objects irradiated that appear as black spots in the radiographic image. Contrary to that is the use of neutrons; as results of the bombardment, nuclear reactions occur and a variety of nuclear particles, gamma and x-ray radiation is emitted, specific for each element in the bombarded material. The problem of material (explosive, drugs, chemicals, etc.) identification can be reduced to the problem of measuring elemental concentrations. Neutron scanning technology offers capabilities far beyond those of conventional inspection systems. The unique automatic, material specific detection of terrorist threats can significantly increase the security at ports, border-crossing stations, airports, and even within the domestic transportation infrastructure of potential urban targets as well as protecting armed forces and infrastructure.
EEL hits provision of NRC's proposed security rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-06-01
The Edison Electric Institute (EEI) opposes key provisions in the Nuclear Regulatory Commission's proposed rules for the security of nuclear plants. The objections focus on areas of nuclear plant access, physical protection of facilities, and personal searches. EEI feels that the nuclear industry has implemented effective access measures to provide reasonable assurance against insider threats. It objects to the proposal that workers denied access authorization could petition for a review of their case under conventional labor-management collective bargaining agreements. A counter-proposal by EEI exempts authorizes employees from pat-down searches on the grounds that such searches will make employees unhappy andmore » lower productivity.« less
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Prohibited securities. 5801.102 Section... CONDUCT FOR EMPLOYEES OF THE NUCLEAR REGULATORY COMMISSION § 5801.102 Prohibited securities. (a) General prohibition. No covered employee, and no spouse or minor child of a covered employee, shall own securities...
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
Design of virtual SCADA simulation system for pressurized water reactor
NASA Astrophysics Data System (ADS)
Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman
2016-02-01
The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, Joseph F
2009-01-01
With the end of the Cold War, in a dramatically changed security environment, the advances in nonnuclear strategic capabilities along with reduced numbers and roles for nuclear forces has altered the calculus of deterrence and defense, at least for the United States. For many, this opened up a realistic possibility of a nuclear-free world. It soon became clear that the initial post-Cold War hopes were exaggerated. The world did change fundamentally, but it did not become more secure and stable. In place of the old Soviet threat, there has been growing concern about proliferation and terrorism involving nuclear and othermore » weapons of mass destruction (WMD), regional conflicts, global instability and increasingly serious new and emerging threats, including cyber attacks and attacks on satellites. For the United States at least, in this emerging environment, the political rationales for nuclear weapons, from deterrence to reassurance to alliance management, are changing and less central than during the Cold War to the security of the United States, its friends and allies. Nuclear weapons remain important for the US, but for a far more limited set of roles and missions. As the Perry-Schlesinger Commission report reveals, there is a domestic US consensus on nuclear policy and posture at the highest level and for the near term, including the continued role of nuclear arms in deterring WMD use and in reassuring allies. Although the value of nuclear weapons has declined for the United States, the value of these weapons for Russia, China and so-called 'rogue' states is seen to be rising. The nuclear logic of NATO during Cold War - the need for nuclear weapons to counter vastly superior conventional capabilities of the Soviet Union and the Warsaw Pact - is today heard from Russians and even some proliferants. Moreover, these weapons present a way for rogues to achieve regional hegemony and possibly to deter interventions by the United States or others. While the vision of a nuclear-free world is powerful, both existing nuclear powers and proliferators are unlikely to forego nuclear weapons entirely in a world that is dangerous and uncertain. And the emerging world would not necessarily be more secure and stable without nuclear weapons. Even if nuclear weapons were given up by the United States and other nuclear-weapon states, there would continue to be concerns about the proliferation of nuclear, chemical and biological weapons, which would not disappear and could worsen. WMD terrorism would remain a concern that was largely unaffected by US and other nuclear-weapon decisions. Conventional capabilities would not disappear and the prospects for warfare could rise. In addition, new problems could arise if rogue states or other non-status-quo powers attempted to take advantage of moves toward disarmament, while friends and allies who are not reassured as in the past could reconsider their options if deterrence declined. To address these challenges, non- and counter-proliferation and counterterrorismincluding defenses and consequence management-are priorities, especially in light of an anticipated 'renaissance' in civil nuclear power. The current agenda of the United States and others includes efforts to: (1) Strengthen International Atomic Energy Agency (IAEA) and its safeguards system; (2) Strengthen export controls, especially for sensitive technologies, by limiting the development of reprocessing and enrichment technologies and by requiring the Additional Protocol as a condition of supply; (3) Establish a reliable supply regime, including the possibility of multilateral or multinational ownership of fuel cycle facilities, as a means to promote nuclear energy without increasing the risks of proliferation or terrorism; (4) Implement effectively UN Security Council Resolution 1540; and (5) Strengthen and institutionalize the Proliferation Security Initiative and the Global Initiative to Combat Nuclear Terrorism. These and other activities are important in themselves, and are essential to maintaining and strengthening the Nonproliferation Treaty (NPT) bargain by bolstering two of its pillars - nonproliferation and peaceful nuclear energy cooperation. There is no alternative, and little prospect for a better deal.« less
The NPR, NPT and the prospects for disarmament
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, Joseph F
2010-10-04
In Prague's Hradcany Square on April 5, 2009, President Barack Obama offered a bold vision of the nuclear future that encompasses both reducing nuclear dangers and pursuing the goal of a world without nuclear weapons while maintaining, as long as nuclear weapons remain, a safe secure, and effective arsenal, to deter potential adversaries and to assure U.S. allies and other security partners that they can count on America's security commitments. The agenda put forward in Prague involves the full range of issues from deterrence to nonproliferation and disarmament. The 2010 Nuclear Posture Review (NPR) report, reflecting the twin objectives ofmore » the Prague speech, for the first time places the United States effort to lead expanded international efforts to rebuild and strengthen the global nuclear nonproliferation regime at the top the U.S. nuclear agenda. This attention underscores the fact that the top priority of the United States is to discourage additional states from acquiring nuclear weapon capabilities and to stop terrorist groups from acquiring weapon-usable nuclear materials. It also reinforced the view that positively influencing the 2010 Review Conference (RevCon) of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) was a key objective of the Obama Administration. The NPR developed both the vision and the policy, but details of implementation will need to be developed and better understood. This paper will address the Nuclear Posture Review and its implementation, as well as it's relation to, and impact on, the NPT RevCon and the long term prospects for nonproliferation and disarmament.« less
Federal funding for health security in FY2015.
Boddie, Crystal; Sell, Tara Kirk; Watson, Matthew
2014-01-01
Previous articles in this series have provided funding information for federal civilian biodefense programs and programs focused on radiological and nuclear preparedness and consequence management. This year the authors have expanded the focus of the analysis to US federal funding for health security. This article provides proposed funding amounts for FY2015, estimated amounts for FY2014, and actual amounts for FY2010 through FY2013 in 5 domains critical to health security: biodefense programs, radiological and nuclear programs, chemical programs, pandemic influenza and emerging infectious disease programs, and multiple-hazard and preparedness programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinn, D J
This month's issue has the following articles: (1) Homeland Security Begins Abroad--Commentary by John C. Doesburg; (2) Out of Harm's Way--New physical protection and accountability systems, together with a focus on security, safeguard nuclear materials in the Russian Federation; (3) A Calculated Journey to the Center of the Earth--Determining the permeability of partially melted metals in a mineral matrix unlocks secrets about the formation of Earth's core; (4) Wireless That Works--Communication technologies using ultrawideband radar are improving national security; and (5) Power to the People--Edward Teller envisioned safe and plentiful nuclear power for peaceful applications.
1975-04-15
flue gas desulfurization technology seems to oe progressing so that by the late 1970s utilities may be able to burn high-sultur coal directly with...CObHqat ion•.V Conferva 1i on 0’ I , gas . and shale Coa I Lir.’I ronmcntal control Nuclear fission Nuclear fusion Other a. So I a r B...abandonment of all import controls , its findings on th: key problem of import dependence and security did not reflect a dear conviction that a
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report documents the research that has been undertaken as background for preparation of a marketing campaign for middle and high school students to increase interest in national security careers at the National Nuclear Security Administration. This work is a part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. Previous research on the development of a properly trained and skilled national security workforce has identified a lack of interest by k-12 students in the STEM (Science, Technology, Engineering, and Mathematics) fields. Further, participation in these careers by womenmore » and minority populations is limited and is not increasing. Added to this are low educational achievement levels in New Mexico, where the marketing campaign will be deployed.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... Standard Review Plan, Section 13.6.2, Revision 1 on Physical Security--Design Certification AGENCY: Nuclear... comment on NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants,'' on a proposed Revision 1 to Standard Review Plan (SRP), Section 13.6.2 on ``Physical Security...
Hydrogen Production from Nuclear Energy
NASA Astrophysics Data System (ADS)
Walters, Leon; Wade, Dave
2003-07-01
During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... disclosure pursuant to the Act and National Security Information that has been determined pursuant to... et seq.). Administrator means the Administrator of the National Nuclear Security Administration...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... disclosure pursuant to the Act and National Security Information that has been determined pursuant to... et seq.). Administrator means the Administrator of the National Nuclear Security Administration...
10 CFR 2.911 - Admissibility of restricted data or other national security information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... security information. 2.911 Section 2.911 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR... Proceedings Involving Restricted Data and/or National Security Information § 2.911 Admissibility of restricted data or other national security information. A presiding officer shall not receive any Restricted Data...
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Physical security standards. 110.44 Section 110.44 Energy... License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient... publication INFCIRC/225/Rev. 4 (corrected), June 1999, “The Physical Protection of Nuclear Material and...
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Physical security standards. 110.44 Section 110.44 Energy... License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient... publication INFCIRC/225/Rev. 4 (corrected), June 1999, “The Physical Protection of Nuclear Material and...
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Physical security standards. 110.44 Section 110.44 Energy... License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient... publication INFCIRC/225/Rev. 4 (corrected), June 1999, “The Physical Protection of Nuclear Material and...
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical security standards. 110.44 Section 110.44 Energy... License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient... publication INFCIRC/225/Rev. 4 (corrected), June 1999, “The Physical Protection of Nuclear Material and...
10 CFR 2.911 - Admissibility of restricted data or other national security information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... security information. 2.911 Section 2.911 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR... Proceedings Involving Restricted Data and/or National Security Information § 2.911 Admissibility of restricted data or other national security information. A presiding officer shall not receive any Restricted Data...
10 CFR 95.35 - Access to matter classified as National Security Information and Restricted Data.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Information and Restricted Data. 95.35 Section 95.35 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.35 Access to matter classified as National Security Information and Restricted Data. (a...
U.S. Strategic Nuclear Forces: Background, Developments, and Issues
2017-02-10
Department of Energy questioned the management practices at the National Nuclear Security Administration (NNSA), which is responsible for the LEP, arguing...U.S. Strategic Nuclear Forces: Background, Developments, and Issues Amy F. Woolf Specialist in Nuclear Weapons Policy February 10, 2017...
NASA Astrophysics Data System (ADS)
Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders
2009-08-01
The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.
Nonproliferation Graduate Fellowship Program Annual Report: Class of 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMakin, Andrea H.
2012-08-20
Annual report for the Nonproliferation Graduate Fellowship Program (NGFP), which PNNL administers for the National Nuclear Security Administration (NNSA). Features the Class of 2011. The NGFP is a NNSA program with a mission to cultivate future technical and policy leaders in nonproliferation and international security. Through the NGFP, outstanding graduate students with career interests in nonproliferation are appointed to program offices within the Office of Defense Nuclear Nonproliferation (DNN). During their one-year assignment, Fellows participate in programs designed to detect, prevent, and reverse the proliferation of nuclear weapons.
North Korea’s Second Nuclear Test: Implications of U.N. Security Council Resolution 1874
2010-04-15
butter” (or in North Korea’s case, rice ) and, in the process, creating a humanitarian disaster. The additional sanctions in U.N. Resolution 1874 target...the May 2009 North Korean nuclear test. See also CRS Report RL34327, Proliferation Security Initiative (PSI), by Mary Beth Nikitin. 72 “Nuclear Black ...Beverages 5,137,988 5,084,449 6,652,041 33 Perfumery, Cosmetic Products 1,322,454 1,672,327 1,688,481 42 Leather Art; Saddlery, Etc. 772,645 1,441,805
The Nuclear Non-Proliferation Treaty: Regulating Nuclear Weapons around the World
ERIC Educational Resources Information Center
Middleton, Tiffany Willey
2010-01-01
In May 2010, scientists, national security experts, and state delegates from nations around the world will convene in New York for the 2010 Nuclear Non-Proliferation Treaty Review Conference. They will review current guidelines for nuclear testing and possession of nuclear weapons in accordance with the Nuclear Non-Proliferation Treaty of 1968,…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-320; NRC-2013-0065] GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain Security Requirements AGENCY: Nuclear Regulatory Commission. ACTION: Exemption. FOR FURTHER INFORMATION CONTACT: John B. Hickman, Office of Federal and State Materials and Environmental...
A translatable predictor of human radiation exposure.
Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P
2014-01-01
Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.
The long darkness: Psychological and moral perspectives on nuclear winter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinspoon, L.
1986-01-01
This book presents papers on the risks of nuclear weapons. Topics considered include nuclear war and climatic catastrophe, evolutionary and developmental considerations, a biological comment on Erikson's notion of pseudospeciation, national security, unexamined assumptions and inescapable consequences, opposing the nuclear threat (the convergence of moral analysis and empirical data), and nuclear winter.
Advanced Simulation and Computing Business Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rummel, E.
To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsiblemore » for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.« less
Confidence in Nuclear Weapons as Numbers Decrease and Time Since Testing Increases
NASA Astrophysics Data System (ADS)
Adams, Marvin
2011-04-01
As numbers and types of nuclear weapons are reduced, the U.S. objective is to maintain a safe, secure and effective nuclear deterrent without nuclear-explosive testing. A host of issues combine to make this a challenge. An evolving threat environment may prompt changes to security systems. Aging of weapons has led to ``life extension programs'' that produce weapons that differ in some ways from the originals. Outdated and changing facilities pose difficulties for life-extension, surveillance, and dismantlement efforts. A variety of factors can make it a challenge to recruit, develop, and retain outstanding people with the skills and experience that are needed to form the foundation of a credible deterrent. These and other issues will be discussed in the framework of proposals to reduce and perhaps eliminate nuclear weapons.
National Security in the Nuclear Age. A Proposed Booklist and Public Education Ideas for Libraries.
ERIC Educational Resources Information Center
Dane, Ernest B.
A bibliography on national security in the nuclear age is divided into three sections. The first section describes a proposal calling for the compilation of a balanced and up-to-date collection of books and other materials on this issue to be included in all U.S. public libraries. Also discussed are selection criteria for the book list, project…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... Standard Review Plan Section 13.6.3, Revision 1 on Physical Security--Early Site Permit AGENCY: Nuclear... comment on NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants,'' on a proposed Revision 1 to Standard Review Plan (SRP), Section 13.6.3 on ``Physical Security...
Compact Gamma-Beam Source for Nuclear Security Technologies
NASA Astrophysics Data System (ADS)
Gladkikh, P.; Urakawa, J.
2015-10-01
A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.
Training on Transport Security of Nuclear/Radioactive Materials for Key Audiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Ronald; Liu, Yung; Shuler, J.M.
Beginning in 2013, the U.S. Department of Energy (DOE) Packaging Certification Program (PCP), Office of Packaging and Transportation, Office of Environmental Management has sponsored a series of three training courses on Security of Nuclear and Other Radioactive Materials during Transport. These courses were developed and hosted by Argonne National Laboratory staff with guest lecturers from both the U.S. and international organizations and agencies including the U.S. Nuclear Regulatory Commission (NRC), Federal Bureau of Investigation (FBI), the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), DOE national laboratories, the International Atomic Energy Agency (IAEA), the World Nuclear Transport Institutemore » (WNTI), and the World Institute for Nuclear Security (WINS). Each of the three courses held to date were one-week in length. The courses delved in detail into the regulatory requirements for transport security, focusing on international and U.S.-domestic requirements and guidance documents. Lectures, in-class discussions and small group exercises, including tabletop (TTX) and field exercises were designed to enhance the learning objectives for the participants. For example, the field exercise used the ARG-US radio frequency identification (RFID) remote surveillance system developed by Argonne for DOE/PCP to track and monitor packages in a mock shipment, following in-class exercises of developing a transport security plan (TSP) for the mock shipment, performing a readiness review and identifying needed corrective actions. Participants were able to follow the mock shipment on the webpage in real time in the ARG-US Command Center at Argonne including “staged” incidents that were designed to illustrate the importance of control, command, communication and coordination in ensuring transport security. Great lessons were learned based on feedback from the participant’s course evaluations with the series of the courses. Since the development of the relevant teaching materials for the course have largely been completed, tailoring the course for targeted audiences becomes a relatively easy task, requiring less effort and providing more flexibility for both the lecturers and future participants. One-day or two-day courses with focus specifically on the U.S. transport security requirements can be delivered, at locations away from Argonne, by one or two principal lecturers to targeted audiences such as regulators, shippers, carriers, state and local law enforcement personnel, and emergency responders. This paper will highlight the lessons learned in hosting previous one-week courses and discuss the development of options for detailed and/or customized courses/workshops for targeted key audiences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrzanowski, P; Walter, K
For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory'smore » significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer simulations performed on NNSA's Advanced Simulation and Computing (ASC) Program supercomputers at Livermore. ASC Purple and BlueGene/L, the world's fastest computer, together provide nearly a half petaflop (500 trillion operations per second) of computer power for use by the three NNSA national laboratories. Livermore-led teams were awarded the Gordon Bell Prize for Peak Performance in both 2005 and 2006. The winning simulations, run on BlueGene/L, investigated the properties of materials at the length and time scales of atomic interactions. The computing power that makes possible such detailed simulations provides unprecedented opportunities for scientific discovery. Laboratory scientists are meeting the extraordinary challenge of creating experimental capabilities to match the resolution of supercomputer simulations. Working with a wide range of collaborators, we are developing experimental tools that gather better data at the nanometer and subnanosecond scales. Applications range from imaging biomolecules to studying matter at extreme conditions of pressure and temperature. The premier high-energy-density experimental physics facility in the world will be the National Ignition Facility (NIF) when construction is completed in 2009. We are leading the national effort to perform the first fusion ignition experiments using NIF's 192-beam laser and prepare to explore some of the remaining important issues in weapons physics. With scientific colleagues from throughout the nation, we are also designing revolutionary experiments on NIF to advance the fields of astrophysics, planetary physics, and materials science. Mission-directed, multidisciplinary science and technology at Livermore is also focused on reducing the threat posed by the proliferation of weapons of mass destruction as well as their acquisition and use by terrorists. The Laboratory helps this important national effort by providing its unique expertise, integration analyses, and operational support to the Department of Homeland Security. For this vital facet of the Laboratory's national security mission, we are developing advanced technologies, such as a pocket-size explosives detector and an airborne persistent surveillance system, both of which earned R&D 100 Awards. Altogether, Livermore won seven R&D 100 Awards in 2006, the most for any organization. Emerging threats to national and global security go beyond defense and homeland security. Livermore pursues major scientific and technical advances to meet the need for a clean environment; clean, abundant energy; better water management; and improved human health. Our annual report highlights the link between human activities and the warming of tropical oceans, as well as techniques for imaging biological molecules and detecting bone cancer in its earliest stages. In addition, we showcase many scientific discoveries: distant planets, the composition of comets, a new superheavy element.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... data or national security information. 2.906 Section 2.906 Energy NUCLEAR REGULATORY COMMISSION RULES... to Adjudicatory Proceedings Involving Restricted Data and/or National Security Information § 2.906 Obligation of parties to avoid introduction of restricted data or national security information. It is the...
10 CFR 2.907 - Notice of intent to introduce restricted data or national security information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... security information. 2.907 Section 2.907 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR... Proceedings Involving Restricted Data and/or National Security Information § 2.907 Notice of intent to introduce restricted data or national security information. (a) If, at the time of publication of a notice...
Code of Federal Regulations, 2011 CFR
2011-01-01
... or other national security information. 2.908 Section 2.908 Energy NUCLEAR REGULATORY COMMISSION... Applicable to Adjudicatory Proceedings Involving Restricted Data and/or National Security Information § 2.908 Contents of notice of intent to introduce restricted data or other national security information. (a) A...
10 CFR 2.911 - Admissibility of restricted data or other national security information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Admissibility of restricted data or other national security information. 2.911 Section 2.911 Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND... National Security Information § 2.911 Admissibility of restricted data or other national security...
10 CFR 2.911 - Admissibility of restricted data or other national security information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Admissibility of restricted data or other national security information. 2.911 Section 2.911 Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND... National Security Information § 2.911 Admissibility of restricted data or other national security...
Code of Federal Regulations, 2010 CFR
2010-01-01
... or other national security information. 2.908 Section 2.908 Energy NUCLEAR REGULATORY COMMISSION... Applicable to Adjudicatory Proceedings Involving Restricted Data and/or National Security Information § 2.908 Contents of notice of intent to introduce restricted data or other national security information. (a) A...
Code of Federal Regulations, 2010 CFR
2010-01-01
... data or national security information. 2.906 Section 2.906 Energy NUCLEAR REGULATORY COMMISSION RULES... to Adjudicatory Proceedings Involving Restricted Data and/or National Security Information § 2.906 Obligation of parties to avoid introduction of restricted data or national security information. It is the...
10 CFR 2.907 - Notice of intent to introduce restricted data or national security information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... security information. 2.907 Section 2.907 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR... Proceedings Involving Restricted Data and/or National Security Information § 2.907 Notice of intent to introduce restricted data or national security information. (a) If, at the time of publication of a notice...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.111 Physical security, material control...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.111 Physical security, material control...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.111 Physical security, material control...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.111 Physical security, material control...
Code of Federal Regulations, 2010 CFR
2010-01-01
... establish an industrial security program for the purpose of safeguarding classified information under the... Agent for the National Industrial Security Program. Commission means the Nuclear Regulatory Commission... designated by the Executive Director for Operations, is eligible for a security clearance for access to...
77 FR 49833 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... with States at Commercial Nuclear Power Plants and Other Nuclear Production and Utilization Facilities... or asked to report: Nuclear Power Plant Licensees, Materials Security Licensees and those States... and interested in monitoring the safety status of nuclear power plants and radioactive materials. This...
Federal Funding for Health Security in FY2015
Sell, Tara Kirk; Watson, Matthew
2014-01-01
Previous articles in this series have provided funding information for federal civilian biodefense programs and programs focused on radiological and nuclear preparedness and consequence management. This year the authors have expanded the focus of the analysis to US federal funding for health security. This article provides proposed funding amounts for FY2015, estimated amounts for FY2014, and actual amounts for FY2010 through FY2013 in 5 domains critical to health security: biodefense programs, radiological and nuclear programs, chemical programs, pandemic influenza and emerging infectious disease programs, and multiple-hazard and preparedness programs. PMID:24988432
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, S.A.
1989-06-21
The treaty between the Soviet Union and the United States eliminating a whole class of intermediate-range nuclear forces (INF) in Europe raises a number of questions about NATO's future ability to deter Warsaw Pact aggression. Future choices on Alliance strategy and doctrine will be influenced by a variety of factors, including the image of new thinking in Soviet security policy enunciated by General Secretary Gorbachev, changing West European opinion toward the use of nuclear weapons for NATO deterrence, the complications inherent in further nuclear and conventional arms-control negotiations, assessments of the current conventional arms balance in Europe, and ongoing questionsmore » about NATO cohesion as well as the continued coupling of American security with that of her European allies. In the post-INF environment it may well be that U.S. Navy nuclear assets will assume an increasingly important role, particularly the Tomahawk Land Attack Missile/Nuclear (TLAM/N). The TLAM/N has many attractive attributes that can be supportive of NATO deterrence of the WTO, but there are also a number of unresolved questions to be addressed concerning this particular weapons system. Modernization of NATO's land-based short-range nuclear forces (SNF), such as the Lance missile, is also seen by many as critical to the maintenance of Alliance security in the aftermath of INF.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... ENERGY (GENERAL PROVISIONS) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION... Energy, including the National Nuclear Security Administration (NNSA). Essential technology-related... manufacture of a nuclear weapon in violation of either domestic (e.g., the Atomic Energy Act) or international...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ENERGY (GENERAL PROVISIONS) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION... Energy, including the National Nuclear Security Administration (NNSA). Essential technology-related... manufacture of a nuclear weapon in violation of either domestic (e.g., the Atomic Energy Act) or international...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ENERGY (GENERAL PROVISIONS) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION... Energy, including the National Nuclear Security Administration (NNSA). Essential technology-related... manufacture of a nuclear weapon in violation of either domestic (e.g., the Atomic Energy Act) or international...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY (GENERAL PROVISIONS) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION... Energy, including the National Nuclear Security Administration (NNSA). Essential technology-related... manufacture of a nuclear weapon in violation of either domestic (e.g., the Atomic Energy Act) or international...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ENERGY (GENERAL PROVISIONS) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION... Energy, including the National Nuclear Security Administration (NNSA). Essential technology-related... manufacture of a nuclear weapon in violation of either domestic (e.g., the Atomic Energy Act) or international...
Singh, Vijay K; Newman, Victoria L; Seed, Thomas M
2015-01-01
One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. As such, this type of security threat is considered to be of relatively low risk, but one that would have an extraordinary high impact on health and well-being of the US citizenry. Psychological counseling and medical assessments would be necessary for all those significantly impacted by the nuclear/radiological event. Direct medical interventions would be necessary for all those individuals who had received substantial radiation exposures (e.g., >1 Gy). Although no drugs or products have yet been specifically approved by the United States Food and Drug Administration (US FDA) to treat the effects of acute radiation syndrome (ARS), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and pegylated G-CSF have been used off label for treating radiation accident victims. Recent threats of terrorist attacks using nuclear or radiologic devices makes it imperative that the medical community have up-to-date information and a clear understanding of treatment protocols using therapeutically effective recombinant growth factors and cytokines such as G-CSF and GM-CSF for patients exposed to injurious doses of ionizing radiation. Based on limited human studies with underlying biology, we see that the recombinants, G-CSF and GM-CSF appear to have modest, but significant medicinal value in treating radiation accident victims. In the near future, the US FDA may approve G-CSF and GM-CSF as ‘Emergency Use Authorization’ (EUA) for managing radiation-induced aplasia, an ARS-related pathology. In this article, we review the status of growth factors for the treatment of radiological/nuclear accident victims.
Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.
Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn
2010-01-01
This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins. Copyright 2009 Elsevier Ltd. All rights reserved.
10 CFR 95.39 - External transmission of documents and material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Procedures Plan for the protection of classified information. (e) Security of classified information in... Section 95.39 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.39 External...
10 CFR 95.39 - External transmission of documents and material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Procedures Plan for the protection of classified information. (e) Security of classified information in... Section 95.39 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.39 External...
10 CFR 95.39 - External transmission of documents and material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Procedures Plan for the protection of classified information. (e) Security of classified information in... Section 95.39 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.39 External...
10 CFR 95.39 - External transmission of documents and material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Procedures Plan for the protection of classified information. (e) Security of classified information in... Section 95.39 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.39 External...
10 CFR 95.39 - External transmission of documents and material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Procedures Plan for the protection of classified information. (e) Security of classified information in... Section 95.39 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.39 External...
Nuclear Data Needs and Capabilities for Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.
2015-05-27
In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applicationsmore » (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0118] Final Memorandum of Understanding Between the U.S. Nuclear Regulatory Commission and the U.S. Department of Homeland Security on Chemical Facility Anti-Terrorism Standards AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability. FOR FURTHER...
10 CFR 784.6 - National security considerations for waiver of certain sensitive inventions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... or under any Government contract or subcontract of the Naval Nuclear Propulsion Program or the nuclear weapons programs or other atomic energy defense activities of the Department of Energy, a...) under the Naval Nuclear Propulsion Program or the nuclear weapons programs or other atomic energy...
10 CFR 784.6 - National security considerations for waiver of certain sensitive inventions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... or under any Government contract or subcontract of the Naval Nuclear Propulsion Program or the nuclear weapons programs or other atomic energy defense activities of the Department of Energy, a...) under the Naval Nuclear Propulsion Program or the nuclear weapons programs or other atomic energy...
10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...
10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...
10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...
10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...
10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...
10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...
10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...
10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...
10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...
10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...
75 FR 5485 - Blue Ribbon Commission on America's Nuclear Future
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... Commission on America's Nuclear Future Memorandum for the Secretary of Energy Expanding our Nation's capacity to generate clean nuclear energy is crucial to our ability to combat climate change, enhance energy... the safe, secure, and responsible use of nuclear energy. These efforts are critical to accomplishing...
STEM Leader from the Roeper School: An Interview with Nuclear Engineer Clair J. Sullivan
ERIC Educational Resources Information Center
Ambrose, Don
2016-01-01
Clair J. Sullivan is an assistant professor in the Department of Nuclear, Plasma and Radiological Engineering at the University of Illinois at Urbana-Champaign (UIUC). Her research interests include radiation detection and measurements; gamma-ray spectroscopy; automated isotope identification algorithms; nuclear forensics; nuclear security;…
32 CFR 223.5 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... regarding nuclear weapons security and the protection of SNM at DoD nuclear reactor facilities as DoD UCNI... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (UCNI) § 223.5 Responsibilities. (a) The Under Secretary of Defense... compliance with the DOE program for controlling DOE UCNI. (b) The Assistant Secretary of Defense for Nuclear...
32 CFR 223.5 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... regarding nuclear weapons security and the protection of SNM at DoD nuclear reactor facilities as DoD UCNI... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION (UCNI) § 223.5 Responsibilities. (a) The Under Secretary of Defense... compliance with the DOE program for controlling DOE UCNI. (b) The Assistant Secretary of Defense for Nuclear...
1980 Rabinowitch Essay: A Nuclear Education Campaign.
ERIC Educational Resources Information Center
Markusen, Eric; And Others
1981-01-01
Proposes an educational campaign that: (1) provides opportunities for citizens to learn about facts and issues relating to nuclear war; (2) stimulates the search for national security policies likely to lead to nuclear war; and (3) generates a political will to initiate social changes that eliminate threats of nuclear war. (CS)
Revolution in nuclear detection affairs
NASA Astrophysics Data System (ADS)
Stern, Warren M.
2014-05-01
The detection of nuclear or radioactive materials for homeland or national security purposes is inherently difficult. This is one reason detection efforts must be seen as just one part of an overall nuclear defense strategy which includes, inter alia, material security, detection, interdiction, consequence management and recovery. Nevertheless, one could argue that there has been a revolution in detection affairs in the past several decades as the innovative application of new technology has changed the character and conduct of detection operations. This revolution will likely be most effectively reinforced in the coming decades with the networking of detectors and innovative application of anomaly detection algorithms.
Improving US Theater Nuclear Doctrine. A Critical Analysis,
1983-01-01
the Armed Forces Staff College. In addition to these monographs, the NDU Press publishes the National Security Essay Series, books , issue pa- pers... secondhand or thirdhand. He then lacks responsiveness to deal with changes there. 11 US Doctrine Has a Defensive Bias. The defensive bias of US nuclear...security. The research results, normally published in monographs, issue papers, or books , are made available to cognizant Government officials and
USSR Report, International Affairs
1987-01-23
not exceeded by one iota the limit set by the SALT II Treaty, Its nuclear testing ranges have been silent since the imposition of the moratorium...the state’s security , and in the nuclear age this can only be built on reciprocity. In its far-reaching initiatives our country has been...proposal on amending the mandate of the Conference on Confidence and Security Building Measures and Disarmament in Europe. The essence of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreie, Ken; Findlay, Rick
The U.S. Department of Energy (DOE) Office of Legacy Management (LM) prepared this Long-Term Surveillance and Maintenance Plan (LTSMP) for the Gnome-Coach, New Mexico, Site (the Gnome site). The Gnome site is approximately 25 miles east of Carlsbad in Eddy County, New Mexico (Figure 1). The site was the location of a 3-kiloton-yield underground nuclear test and radioisotope groundwater tracer test. The tests resulted in residual contamination and post-detonation features that require long-term oversight. Long-term responsibility for the site was transferred from the DOE National Nuclear Security Administration Nevada Site Office to LM on October 1, 2006. Responsibilities include surveillance,more » monitoring, and maintenance of institutional controls (ICs) as part of the long-term stewardship of the site. Long-term stewardship is designed to ensure protection of human health and the environment.« less
Design of virtual SCADA simulation system for pressurized water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman
The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles ofmore » energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.« less
Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities
Solodov, Alexander; Williams, Adam; Al Hanaei, Sara; ...
2017-04-18
Unmanned aerial vehicles (UAV) are among the major growing technologies that have many beneficial applications, yet they can also pose a significant threat. Recently, several incidents occurred with UAVs violating privacy of the public and security of sensitive facilities, including several nuclear power plants in France. The threat of UAVs to the security of nuclear facilities is of great importance and is the focus of this work. This paper presents an overview of UAV technology and classification, as well as its applications and potential threats. We show several examples of recent security incidents involving UAVs in France, USA, and Unitedmore » Arab Emirates. Further, the potential threats to nuclear facilities and measures to prevent them are evaluated. The importance of measures for detection, delay, and response (neutralization) of UAVs at nuclear facilities are discussed. An overview of existing technologies along with their strength and weaknesses are shown. Finally, the results of a gap analysis in existing approaches and technologies is presented in the form of potential technological and procedural areas for research and development. Furthermore based on this analysis, directions for future work in the field can be devised and prioritized.« less
Nuclear Fuel Cycle Introductory Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpius, Peter Joseph
2017-02-02
The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.
75 FR 1830 - Final Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-13
... review of applications for permits and licenses. RG 5.71, ``Cyber Security Programs for Nuclear... NUCLEAR REGULATORY COMMISSION [NRC-2010-0009] Final Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide...
Kraemer, Sara; Carayon, Pascale
2007-03-01
This paper describes human errors and violations of end users and network administration in computer and information security. This information is summarized in a conceptual framework for examining the human and organizational factors contributing to computer and information security. This framework includes human error taxonomies to describe the work conditions that contribute adversely to computer and information security, i.e. to security vulnerabilities and breaches. The issue of human error and violation in computer and information security was explored through a series of 16 interviews with network administrators and security specialists. The interviews were audio taped, transcribed, and analyzed by coding specific themes in a node structure. The result is an expanded framework that classifies types of human error and identifies specific human and organizational factors that contribute to computer and information security. Network administrators tended to view errors created by end users as more intentional than unintentional, while errors created by network administrators as more unintentional than intentional. Organizational factors, such as communication, security culture, policy, and organizational structure, were the most frequently cited factors associated with computer and information security.
The Future of the U.S. Nuclear Weapons Program
NASA Astrophysics Data System (ADS)
Brooks, Linton F.
2007-03-01
This paper will examine our plans for the future of the U.S. nuclear weapons program including efforts to ``transform'' the stockpile and supporting infrastructure. We proceed from the premise that the United States will need a safe, secure, and reliable nuclear deterrent for the foreseeable future. Moreover, the Stockpile Stewardship Program is working. Today's stockpile---comprised of legacy warheads left over from the Cold War---is safe and reliable. That said, we see increased risk, absent nuclear testing, in assuring the long-term safety and reliability of our current stockpile. Nor is today's nuclear weapons complex sufficiently ``responsive'' to fixing technical problems in the stockpile, or to potential adverse geopolitical change. Our task is to work to ensure that the U.S. nuclear weapons enterprise, including the stockpile and supporting infrastructure, meets long-term national security needs. Our approach is to develop and field replacement warheads for the legacy stockpile---so-called Reliable Replacement Warheads (RRW)---as a means to transform both the nuclear stockpile and supporting infrastructure.
Nuclear threat in the post cold-war era. Monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurey, W.S.
1995-05-14
This monograph discusses the nuclear threat that the United States faces following the downfall of the Soviet Union. The Russian and Chinese nuclear arsenals represent a formidable threat that must be countered and a new threat is emerging in the third world despite efforts to counter the proliferation of weapons of mass destruction. The monograph reviews the current status of both the Russian and Chinese arsenals and lists the programs that are being undertaken to modernize and improve their respective nuclear capabilities. Both nations are taking significant steps to preserve and improve their nuclear strike capability. The proliferation of nuclearmore » weapons technology, fissile material, and ballistic missiles in the third world is an emerging threat to national security interests. The lack of appropriate security measures during the on-going dismantling of the former Soviet nuclear arsenal presents an opportunity for rogue states and terrorist organizations to readily obtain the materials to produce their own nuclear weapons.« less
Sandia National Laboratories: National Security Programs
policy. Topics About Nuclear Weapons Safety & Security Science & Technology Defense Systems & science and technology to help defend and protect the United States. Topics About Defense Systems & . Topics Stationary Power Earth Science Transportation Energy Energy Research Global Security Birc We
Elementary! A Nuclear Forensics Workshop Teaches Vital Skills to International Practitioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brim, Cornelia P.; Minnema, Lindsay T.
The article describes the Nuclear Forensics Workshop sponsored by the International Atomic Energy Agency (IAEA), the Office of Nonproliferation and International Security (NIS) and hosted by Pacific Northwest National Laboratory October 28-November 8, 2013 in Richland,Washington. Twenty-six participants from 10 countries attended the workshop. Experts from from Los Alamos, Lawrence Livermore, and Pacific Northwest national laboratories collaborated with an internationally recognized cadre of experts from the U.S. Department of Homeland Security and other U.S. agencies, IAEA, the Australian Nuclear Science and Technology Organisation, the United Kingdom Atomic Weapons Establishment (AWE), and the European Union Joint Research Center Institute for Transuraniummore » Elements, to train practitioners in basic methodologies of nuclear forensic examinations.« less
The future of U.S.-Russia nuclear arms control
NASA Astrophysics Data System (ADS)
Pifer, Steven
2017-11-01
Nuclear arms control has long made contributions to U.S.-Soviet and U.S.-Russian security, but the current regime is at risk. The 1987 Intermediate-range Nuclear Forces Treaty may be headed for collapse. Both the United States and Russia are modernizing their strategic forces, and the fate of the 2010 New Strategic Arms Reduction Treaty is unclear. In the unlikely case that the sides are prepared to go beyond New START, there are ways to address further reductions and related issues. A collapse of the arms control regime, on the other hand, would mean the end of constraints on U.S. and Russian nuclear forces, a significant loss of transparency, and potential costs to U.S. security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestovich, Kimberly Shay
Harnessing the power of the nuclear sciences for national security and to benefit others is one of Los Alamos National Laboratory’s missions. MST-8 focuses on manipulating and studying how the structure, processing, properties, and performance of materials interact at the atomic level under nuclear conditions. Within this group, single crystal scintillators contribute to the safety and reliability of weapons, provide global security safeguards, and build on scientific principles that carry over to medical fields for cancer detection. Improved cladding materials made of ferritic-martensitic alloys support the mission of DOE-NE’s Fuel Cycle Research and Development program to close the nuclear fuelmore » cycle, aiming to solve nuclear waste management challenges and thereby increase the performance and safety of current and future reactors.« less
2014-01-01
Background Human security shifts traditional concepts of security from interstate conflict and the absence of war to the security of the individual. Broad definitions of human security include livelihoods and food security, health, psychosocial well-being, enjoyment of civil and political rights and freedom from oppression, and personal safety, in addition to absence of conflict. Methods In March 2010, we undertook a population-based health and livelihood study of female refugees from conflict-affected Central African Republic living in Djohong District, Cameroon and their female counterparts within the Cameroonian host community. Embedded within the survey instrument were indicators of human security derived from the Leaning-Arie model that defined three domains of psychosocial stability suggesting individuals and communities are most stable when their core attachments to home, community and the future are intact. Results While the female refugee human security outcomes describe a population successfully assimilated and thriving in their new environments based on these three domains, the ability of human security indicators to predict the presence or absence of lifetime and six-month sexual violence was inadequate. Using receiver operating characteristic (ROC) analysis, the study demonstrates that common human security indicators do not uncover either lifetime or recent prevalence of sexual violence. Conclusions These data suggest that current gender-blind approaches of describing human security are missing serious threats to the safety of one half of the population and that efforts to develop robust human security indicators should include those that specifically measure violence against women. PMID:24829613
The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship
NASA Astrophysics Data System (ADS)
Graham, Thomas, Jr.
2014-05-01
The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a "threat to peace and security", in effect a violation of international law, which in today's world it clearly would be.
The Nuclear Posture Review (NPR) : are we safer?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brune, Nancy E.
2010-07-01
Nuclear Posture Review (NPR) is designed to make world safer by reducing the role of U.S. nuclear weapons and reducing the salience of nuclear weapons. U.S. also seeks to maintain a credible nuclear deterrent and reinforce regional security architectures with missile defenses and other conventional military capabilities. But recent studies suggest that nuclear proliferation is a direct response to the perceived threat of U.S. conventional capabilities not U.S. nuclear stockpile. If this is true, then the intent of the NPR to reduce the role and numbers of nuclear weapons and strengthen conventional military capabilities may actually make the world lessmore » safe. First stated objective of NPR is to reduce the role and numbers of U.S. nuclear weapons, reduce the salience of nuclear weapons and move step by step toward eliminating them. Second stated objective is a reaffirmation of U.S. commitment to maintaining a strong deterrent which forms the basis of U.S. assurances to allies and partners. The pathway - made explicit throughout the NPR - for reducing the role and numbers of nuclear weapons while maintaining a credible nuclear deterrent and reinforcing regional security architectures is to give conventional forces and capabilities and missile defenses (e.g. non-nuclear elements) a greater share of the deterrence burden.« less
The ``Nuclear Renaissance'' and the Spread of Nuclear Weapons
NASA Astrophysics Data System (ADS)
Lyman, Edwin S.
2007-05-01
As interest grows around the world in nuclear power as an energy source that could help control greenhouse gas emissions, some have proclaimed the arrival of a ``nuclear renaissance.'' But can the increased risks of more nuclear power be managed? The political crisis surrounding Iran's pursuit of uranium enrichment has exposed weaknesses in the nuclear nonproliferation regime. Also, al Qaeda's declared interest in weapons of mass destruction raises the concern that terrorists could acquire nuclear weapons by stealing materials from poorly secured facilities. Growth of nuclear energy would require the construction of many additional uranium enrichment plants. And the generation of more spent nuclear fuel without a credible waste disposal strategy would increase political support for reprocessing, which separates large quantities of weapon-usable plutonium from spent fuel. There is little evidence that the various institutional arrangements and technical schemes proposed to mitigate the security risks of a major nuclear expansion would be effective. This talk will focus on the measures necessary to allow large-scale global growth of nuclear power without resulting in an unacceptably high risk of nuclear proliferation and nuclear terrorism, and will discuss the feasibility of such measures. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.E1.2
76 FR 2892 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
... Peaceful Uses of Nuclear Energy and the Agreement for Cooperation in the Peaceful Uses of Nuclear Energy... Energy. Thomas P. D'Agostino, Administrator, National Nuclear Security Administration. [FR Doc. 2011-905... DEPARTMENT OF ENERGY Proposed Subsequent Arrangement AGENCY: Office of Nonproliferation and...
Marketing Strategy and Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report documents the marketing campaign that has been designed for middle and high school students in New Mexico to increase interest in participation in national security careers at the National Nuclear Security Administration. This marketing campaign builds on the research that was previously conducted, as well as the focus groups that were conducted. This work is a part of the National Nuclear Security Preparedness Project (NSPP) being performed under a Department of Energy (DOE) / National Nuclear Security Administration (NNSA) grant. Outcome analysis was performed to determine appropriate marketing strategies. The analysis was based upon focus groups with middlemore » school and high school students, student interactions, and surveys completed by students to understand and gauge student interest in Science, Technology, Engineering, and Math (STEM) subjects, interest in careers at NNSA, future job considerations, and student desire to pursue post-secondary education. Further, through the focus groups, students were asked to attend a presentation on NNSA job opportunities and employee requirements. The feedback received from the students was utilized to develop the focus and components of the marketing campaign.« less
Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL
linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group energy security, heavy ion physics, nuclear astrophysics, physics beyond the standard model, neutrino
Department of Energy: An Organizational Look at Americas Nuclear Deterrent
2016-09-01
DEPARTMENT OF ENERGY : AN ORGANIZATIONAL LOOK AT AMERICA’S NUCLEAR DETERRENT GRADUATE RESEARCH PAPER David O. Pabst, Maj, USAF...DEPARTMENT OF ENERGY : AN ORGANIZATIONAL LOOK AT AMERICA’S NUCLEAR DETERRENT GRADUATE RESEARCH PAPER Presented to the Faculty...Panel 2014). Thus, the Department of Energy serves to maintain a credible nuclear deterrent by ensuring a safe, secure, and effective nuclear
Gulf States Strategic Vision to Face Iranian Nuclear Project
2015-09-01
STRATEGIC VISION TO FACE IRANIAN NUCLEAR PROJECT by Fawzan A. Alfawzan September 2015 Thesis Advisor: James Russell Second Reader: Anne...nuclear weapons at a high degree. Nuclear capabilities provided Iran with uranium enrichments abilities and nuclear weapons to enable the country to...IN SECURITY STUDIES (STRATEGIC STUDIES) from the NAVAL POSTGRADUATE SCHOOL September 2015 Approved by: James Russell Thesis
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... DEPARTMENT OF ENERGY DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities... Nuclear Facilities Safety Board, Office of Health, Safety and Security, U.S. Department of Energy, 1000... Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board...
The nuclear dilemma and the just war tradition
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, W.V.; Langan, J.
This book presents papers on the ethical aspects of nuclear weapons. Topics considered include the concept of a ''just'' war, national defense, political aspects, religion and politics, the failure of deterrence, conventional warfare, nuclear deterrence and democratic politics, the future of the nuclear debate, non-proliferation policy, arms control, national security, and government policies.
10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...
10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...
10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...
10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...
10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...
Department of Energy: Nuclear S&T workforce development programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, Michelle; Bala, Marsha; Beierschmitt, Kelly
The U.S. Department of Energy (DOE) national laboratories use their expertise in nuclear science and technology (S&T) to support a robust national nuclear S&T enterprise from the ground up. Traditional academic programs do not provide all the elements necessary to develop this expertise, so the DOE has initiated a number of supplemental programs to develop and support the nuclear S&T workforce pipeline. This document catalogs existing workforce development programs that are supported by a number of DOE offices (such as the Offices of Nuclear Energy, Science, Energy Efficiency, and Environmental Management), and by the National Nuclear Security Administration (NNSA) andmore » the Naval Reactor Program. Workforce development programs in nuclear S&T administered through the Department of Homeland Security, the Nuclear Regulatory Commission, and the Department of Defense are also included. The information about these programs, which is cataloged below, is drawn from the program websites. Some programs, such as the Minority Serving Institutes Partnership Programs (MSIPPs) are available through more than one DOE office, so they appear in more than one section of this document.« less
10 CFR 39.31 - Labels, security, and transportation precautions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Labels, security, and transportation precautions. 39.31 Section 39.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL... explosion or fire. (2) The licensee shall lock and physically secure the transport package containing...
10 CFR 39.31 - Labels, security, and transportation precautions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Labels, security, and transportation precautions. 39.31 Section 39.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL... explosion or fire. (2) The licensee shall lock and physically secure the transport package containing...
10 CFR 39.31 - Labels, security, and transportation precautions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Labels, security, and transportation precautions. 39.31 Section 39.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL... explosion or fire. (2) The licensee shall lock and physically secure the transport package containing...
Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franusich, Michael D.
SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less
78 FR 72072 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
... Uses of Nuclear Energy Between the United States of America and the European Atomic Energy Community... Nuclear Security Administration, Department of Energy. Telephone: 202-586-3806 or email: Sean.Oehlbert... program. KAERI originally obtained the material from the U.S. Department of Energy/National Nuclear...
Code of Federal Regulations, 2012 CFR
2012-01-01
...: Document Control Desk, Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or Director, Division of Security Policy... 10 Energy 2 2012-01-01 2012-01-01 false Communications. 73.4 Section 73.4 Energy NUCLEAR...
The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Thomas Jr.
The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclearmore » stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.« less
Ansari, Armin; Buddemeier, Brooke
2018-02-01
The National Council on Radiation Protection and Measurements (NCRP) Program Area Committee (PAC) 3 covers the broad subject of nuclear and radiological security and safety and provides guidance and recommendations for response to nuclear and radiological incidents of both an accidental and deliberate nature. In 2017, PAC 3 Scientific Committee 3-1 completed the development of Guidance for Emergency Responder Dosimetry, and began development of a companion commentary on operational aspects of that guidance. PAC 3 members also organized the technical program for the 2017 Annual Meeting of the NCRP on “Assessment of National Efforts in Emergency Preparedness for Nuclear Terrorism:more » Is There a Need for Realignment to Close Remaining Gaps.” Based on discussions and presentations at the annual meeting, PAC 3 is working to develop a commentary on the subject that could serve as a roadmap for focusing our national efforts on the most pressing needs for preparing the nation for nuclear and radiological emergencies. PAC 3 is also engaged in active discussions, exploring the landscape of priority issues for its future activities. Lastly, an important consideration in this discussion is the extent of NCRP’s present and potential future resources to support the work of its scientific committees.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansari, Armin; Buddemeier, Brooke
The National Council on Radiation Protection and Measurements (NCRP) Program Area Committee (PAC) 3 covers the broad subject of nuclear and radiological security and safety and provides guidance and recommendations for response to nuclear and radiological incidents of both an accidental and deliberate nature. In 2017, PAC 3 Scientific Committee 3-1 completed the development of Guidance for Emergency Responder Dosimetry, and began development of a companion commentary on operational aspects of that guidance. PAC 3 members also organized the technical program for the 2017 Annual Meeting of the NCRP on “Assessment of National Efforts in Emergency Preparedness for Nuclear Terrorism:more » Is There a Need for Realignment to Close Remaining Gaps.” Based on discussions and presentations at the annual meeting, PAC 3 is working to develop a commentary on the subject that could serve as a roadmap for focusing our national efforts on the most pressing needs for preparing the nation for nuclear and radiological emergencies. PAC 3 is also engaged in active discussions, exploring the landscape of priority issues for its future activities. Lastly, an important consideration in this discussion is the extent of NCRP’s present and potential future resources to support the work of its scientific committees.« less
10 CFR 26.129 - Assuring specimen security, chain of custody, and preservation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Assuring specimen security, chain of custody, and preservation. 26.129 Section 26.129 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.129 Assuring specimen security, chain of custody, and preservation. (a) Each...
10 CFR 26.129 - Assuring specimen security, chain of custody, and preservation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Assuring specimen security, chain of custody, and preservation. 26.129 Section 26.129 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.129 Assuring specimen security, chain of custody, and preservation. (a) Each...
10 CFR 26.129 - Assuring specimen security, chain of custody, and preservation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Assuring specimen security, chain of custody, and preservation. 26.129 Section 26.129 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.129 Assuring specimen security, chain of custody, and preservation. (a) Each...
75 FR 10328 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... Plan, Safeguards Contingency Plan, and Cyber Security Plan referred to collectively hereafter as... its security plans. Pursuant to 10 CFR 51.32, ``Finding of no significant impact,'' the Commission has... by designing and implementing comprehensive site security programs. The amendments to 10 CFR 73.55...
10 CFR 26.129 - Assuring specimen security, chain of custody, and preservation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Assuring specimen security, chain of custody, and preservation. 26.129 Section 26.129 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.129 Assuring specimen security, chain of custody, and preservation. (a) Each...
10 CFR 26.129 - Assuring specimen security, chain of custody, and preservation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Assuring specimen security, chain of custody, and preservation. 26.129 Section 26.129 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.129 Assuring specimen security, chain of custody, and preservation. (a) Each...
Code of Federal Regulations, 2010 CFR
2010-01-01
... significance (Category III), and for protection of Restricted Data, National Security Information, Safeguards... 10 Energy 2 2010-01-01 2010-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
32 CFR Appendix A to Part 223 - Procedures for Identifying and Controlling DoD UCNI
Code of Federal Regulations, 2011 CFR
2011-07-01
... security measures, including security plans, procedures, and equipment, for the physical protection of DoD... stand-alone personal computers, or shared-logic work processing systems, if protection from unauthorized... and security by increasing significantly the likelihood of the illegal production of nuclear weapons...
NNDC Stand: Activities and Services of the National Nuclear Data Center
NASA Astrophysics Data System (ADS)
Pritychenko, B.; Arcilla, R.; Burrows, T. W.; Dunford, C. L.; Herman, M. W.; McLane, V.; Obložinský, P.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.
2005-05-01
The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic nuclear research, applied nuclear technologies including energy, shielding, medical and homeland security. In 2004, to answer the needs of nuclear data users community, NNDC completed a project to modernize data storage and management of its databases and began offering new nuclear data Web services. The principles of database and Web application development as well as related nuclear reaction and structure database services are briefly described.
Revolution in nuclear detection affairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Warren M.
The detection of nuclear or radioactive materials for homeland or national security purposes is inherently difficult. This is one reason detection efforts must be seen as just one part of an overall nuclear defense strategy which includes, inter alia, material security, detection, interdiction, consequence management and recovery. Nevertheless, one could argue that there has been a revolution in detection affairs in the past several decades as the innovative application of new technology has changed the character and conduct of detection operations. This revolution will likely be most effectively reinforced in the coming decades with the networking of detectors and innovativemore » application of anomaly detection algorithms.« less
National and International Security Applications of Cryogenic Detectors—Mostly Nuclear Safeguards
NASA Astrophysics Data System (ADS)
Rabin, Michael W.
2009-12-01
As with science, so with security—in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badwan, Faris M.; Demuth, Scott Francis; Miller, Michael Conrad
Small Modular Reactors (SMR) with power levels significantly less than the currently standard 1000 to 1600-MWe reactors have been proposed as a potential game changer for future nuclear power. SMRs may offer a simpler, more standardized, and safer modular design by using factory built and easily transportable components. Additionally, SMRs may be more easily built and operated in isolated locations, and may require smaller initial capital investment and shorter construction times. Because many SMRs designs are still conceptual and consequently not yet fixed, designers have a unique opportunity to incorporate updated design basis threats, emergency preparedness requirements, and then fullymore » integrate safety, physical security, and safeguards/material control and accounting (MC&A) designs. Integrating safety, physical security, and safeguards is often referred to as integrating the 3Ss, and early consideration of safeguards and security in the design is often referred to as safeguards and security by design (SSBD). This paper describes U.S./Russian collaborative efforts toward developing an internationally accepted common approach for implementing SSBD/3Ss for SMRs based upon domestic requirements, and international guidance and requirements. These collaborative efforts originated with the Nuclear Energy and Nuclear Security working group established under the U.S.-Russia Bilateral Presidential Commission during the 2009 Presidential Summit. Initial efforts have focused on review of U.S. and Russian domestic requirements for Security and MC&A, IAEA guidance for security and MC&A, and IAEA requirements for international safeguards. Additionally, example SMR design features that can enhance proliferation resistance and physical security have been collected from past work and reported here. The development of a U.S./Russian common approach for SSBD/3Ss should aid the designer of SMRs located anywhere in the world. More specifically, the application of this approach may lead to more proliferation resistant and physically secure design features for SMRs.« less
Why new neutron detector materials must replace helium-3
NASA Astrophysics Data System (ADS)
Hurd, Alan J.; Kouzes, Richard T.
2014-10-01
Helium-3 has such unique physical and nuclear properties that to a physicist it seems appalling the isotope was once indiscriminately released to the atmosphere as a waste gas. Not gravitationally bound to our planet, a He-3 atom is effectively lost to the human race once released. Consequently, when a confluence of independent factors in national security and research in the last decade created a "custody battle" over this scarce isotope, an intense search for substitutes and alternative technologies ensued for various applications. This Focus Point of EPJ Plus is dedicated to neutron detector alternatives.
Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1994-01-01
The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications.
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2012-06-26
145 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial ...Pakistan’s Civil Nuclear Program.” Some analysts argue that spent nuclear fuel is more vulnerable when being transported . 146 Martellini, 2008. 147...produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment technology, which it mastered by the mid-1980s
2013-07-18
VA) • DFAS • Human Resources - HR Shared Services (Indianapolis, IN) • Personnel Security - HR Shared Services (Indianapolis, IN) DHRA...Security (Camp Lejeune) No Yes Yes AAFES Human Resources No No No Force Protection Yes Yes Yes DFAS Human Resources - HR Shared Services No...No No Personnel Security - HR Shared Services Yes Yes Yes DLA Human Resources No No Yes Personnel Security Yes Yes Yes DoDEA Human
77 FR 27208 - Renewal of Threat Reduction Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... national defense, geopolitical and national security affairs, weapons of mass destruction, nuclear physics... Defense (Nuclear, Chemical and Biological Defense Programs), independent advice and recommendations on: a. Reducing the threat to the United States, its military forces, and its allies and partners posed by nuclear...
78 FR 40444 - Amendment of the Threat Reduction Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
..., geopolitical and national security affairs, WMD, nuclear physics, chemistry, and biology. The Committee members... the Assistant Secretary of Defense for Nuclear, Chemical and Biological Defense Programs (ASD(NCB..., and its allies and partners posed by nuclear, biological, chemical, conventional, and special weapons...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Policy. 10.4 Section 10.4 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL... Nuclear Regulatory Commission to carry out its responsibility for the security of the nuclear energy...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Policy. 10.4 Section 10.4 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL... Nuclear Regulatory Commission to carry out its responsibility for the security of the nuclear energy...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Policy. 10.4 Section 10.4 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL... Nuclear Regulatory Commission to carry out its responsibility for the security of the nuclear energy...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Policy. 10.4 Section 10.4 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL... Nuclear Regulatory Commission to carry out its responsibility for the security of the nuclear energy...
75 FR 67086 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-01
... Cooperation Concerning Civil Uses of Nuclear Energy Between the Government of the United States of America and the Government of Canada and the Agreement for Cooperation in the Peaceful Uses of Nuclear Energy.... For the Department of Energy. Thomas P. D'Agostino, Administrator, National Nuclear Security...
78 FR 52170 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
... Concerning Peaceful Uses of Nuclear Energy, and the Agreement for Cooperation Between the Government of the... Nuclear Energy. DATES: This subsequent arrangement will take effect no sooner than September 6, 2013. FOR..., National Nuclear Security Administration, Department of Energy. Telephone: 202-586-3806 or email: Sean...
75 FR 67086 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-01
... Cooperation Concerning Civil Uses of Nuclear Energy Between the Government of the United States of America and the Government of Canada and the Agreement for Cooperation in the Peaceful Uses of Nuclear Energy... Department of Energy. Thomas P. D'Agostino, Administrator, National Nuclear Security Administration. [FR Doc...
75 FR 67086 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-01
... Cooperation Concerning Civil Uses of Nuclear Energy Between the Government of the United States of America and the Government of Canada and the Agreement for Cooperation in the Peaceful Uses of Nuclear Energy... Energy. Thomas P. D'Agostino, Administrator, National Nuclear Security Administration. [FR Doc. 2010...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Policy. 10.4 Section 10.4 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL... Nuclear Regulatory Commission to carry out its responsibility for the security of the nuclear energy...
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
2018-03-01
GOVERNMENT MILITIAS ON STATE AND HUMAN SECURITY: A COMPARATIVE ANALYSIS OF THE AFGHAN LOCAL POLICE AND THE JANJAWEED by Mark D. Phelps March...MILITIAS ON STATE AND HUMAN SECURITY: A COMPARATIVE ANALYSIS OF THE AFGHAN LOCAL POLICE AND THE JANJAWEED 5. FUNDING NUMBERS 6. AUTHOR(S) Mark D...human security. This thesis examines the relationship and impact of pro-government militias on state and human security by conducting a comparative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfaltzgraff, Robert L
2006-10-22
This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administrationâs âAtoms for Peaceâ concept, the current and future rolemore » of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES... establishment of a new human resources management system within the Department of Homeland Security (DHS), as...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trost, Alan L.
The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) has developed a research and development (R&D) roadmap for its research, development, and demonstration (RD&D) activities to ensure nuclear energy remains a compelling and viable energy option for the U.S. The roadmap defines NE RD&D activities and objectives that address the challenges to research, develop and demonstrate options to the current U.S commercial fuel cycle to enable the safe, secure, economic, and sustainable expansion of nuclear energy, while minimizing proliferation and terrorism risks expanding the use of nuclear power. The roadmap enables the development of technologies and other solutionsmore » that can improve the reliability, sustain the safety, and extend the life of current reactors. In addition, it will help to develop improvements in the affordability of the new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals.« less
NASA Astrophysics Data System (ADS)
Asmus, John F.
Laser divestment entered the field of art conservation through a nonlinear sequence of positive accidental events (serendipity) that involved the cinema industry, the invention of spread-spectrum and frequency-hopping communications, nuclear space propulsion, and oceanography. The unlikely chain of events began with the invention of a secure military communications system by a Viennese motion picture actress (1942). A first evaluation of the novel communications concept took place during a high-altitude nuclear test (TEAK) over the Pacific Ocean in 1958. The secure radio link proved to be a failure; however, analyses of the backscattered electromagnetic radiation contributed to the realization that nuclear-explosion plasmas need not be spherically symmetrical. Nobel Laureate Freeman Dyson exploited this nuclear option to guide in the design and prototype development of the ORION spaceship that was to rendezvous with the planet Saturn in 1970.
"A Hedge against the Future": The Post-Cold War Rhetoric of Nuclear Weapons Modernization
ERIC Educational Resources Information Center
Taylor, Bryan C.
2010-01-01
Rhetoric has traditionally played an important role in constituting the nuclear future, yet that role has changed significantly since the declared end of the Cold War. Viewed from the perspectives of nuclear criticism and postmodern theories of risk and security, current rhetoric of US nuclear modernization demonstrates how contingencies of voice…
2011-05-01
Homeland Security (DHS) and the Department of State (DOS), and by changing the IC’s CPRC representative from the Director of Central Intelli- gence to the...Security Strategy of the United States of America (May 2010), p. 4. 2 Nuclear Posture Review Report (April 6, 2010), p. i 3 National Strategy for...ongoing efforts with GICNT, the Nuclear Forensics International Technical Working Group (ITWG), Forensics En - gagement Working Group (FEWG), NATO
Impact Upon U.S. Security of a South African Nuclear Weapons Capability.
1981-04-01
Simon Brand, dubbed the international companies as the " engine of growth" for the South African economy. The petroleum market, automobile industry , and...thereby halting the flow of metals key to high technology industries which in turn, are critical to U.S. national security. Should Washington’s...to produce nuclear weapons." * More specifically, we found that South Africa has: A sufficient scientific and industrial base on which to conduct
[What should the radiation education in Japan in the future be like?].
Inoue, Hiroyoshi
2014-01-01
In respect to policy and involvement in social cognition of Advanced Science and Technology, people desire to recognize the scientific understanding and social understanding hierarchically and simultaneously. However, the understandings of some sciences and technologies are dependent on the amount of information given and how easy it is to understand it. Nuclear power and radiation are a typical example of such sciences and technologies because their advantages and disadvantages are clear. On the other hand, the Fukushima Nuclear Plant Accident that occurred in March 2011 caused the myth about the safety and security of nuclear power to collapse. Concerns about nuclear power and radiation increased abruptly after the accident. Also the scientific understanding of 'nuclear power' and radiation increased. The content and level of radiation education was highly significant than before the accident. However, it is essential to propose a more detailed explanation for people that are concerned about radioactive contamination of food and also for people living in areas that still have relatively high dose of radioactive material. Although some technical problems such as the influences on the human body by low-dose exposure remain unresolved, not only specialists on nuclear power and radiation, but also the persons that have studied the radiation are desired to explain radiation for familiar people. As a result, in Japan, the learning of individuals spread to society because the Japanese are highly interested in nuclear power and radiation and the understanding of historical background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollahan, K; Nattrass, L
America is in a unique position in its history. In maintaining its position as the world's only superpower, the US consistently finds itself taking on the role of a global cop, chief exporter of hard and soft power, and primary impetus for globalization. A view of the current global situation shows an America that can benefit greatly from the effects of globalization and soft power. Similarly, America's power can be reduced significantly if globalization and its soft power are not handled properly. At the same time, America has slowly come to realize that its next major adversary is not amore » near peer competitor but terrorism and disconnected nations that seek nuclear capabilities. In dealing with this new threat, America needs to come to terms with its own nuclear arsenal and build a security rule set that will establish for the world explicitly what actions will cause the US to consider nuclear weapons release. This rule set; however, needs to be established with sensitivity to the US's international interests in globalization and soft power. The US must find a way to establish its doctrine governing nuclear weapons release without threatening other peaceful nations in the process.« less
Moudy, Robin M; Ingerson-Mahar, Michael; Kanter, Jordan; Grant, Ashley M; Fisher, Dara R; Jones, Franca R
2014-01-01
In 2011, President Obama addressed the United Nations General Assembly and urged the global community to come together to prevent, detect, and fight every kind of biological danger, whether a pandemic, terrorist threat, or treatable disease. Over the past decade, the United States and key international partners have addressed these dangers through a variety of programs and strategies aimed at developing and enhancing countries' capacity to rapidly detect, assess, report, and respond to acute biological threats. Despite our collective efforts, however, an increasingly interconnected world presents heightened opportunities for human, animal, and zoonotic diseases to emerge and spread globally. Further, the technical capabilities required to develop biological agents into a weapon are relatively low. The launch of the Global Health Security Agenda (GHSA) provides an opportunity for the international community to enhance the linkages between the health and security sectors, accelerating global efforts to prevent avoidable epidemics and bioterrorism, detect threats early, and respond rapidly and effectively to biological threats. The US Department of Defense (DoD) plays a key role in achieving GHSA objectives through its force health protection, threat reduction, and biodefense efforts at home and abroad. This article focuses on GHSA activities conducted in the DoD Office of the Assistant Secretary of Defense for Nuclear, Chemical, and Biological Defense.
Fluorescent sensors for the detection of chemical warfare agents.
Burnworth, Mark; Rowan, Stuart J; Weder, Christoph
2007-01-01
Along with biological and nuclear threats, chemical warfare agents are some of the most feared weapons of mass destruction. Compared to nuclear weapons they are relatively easy to access and deploy, which makes them in some aspects a greater threat to national and global security. A particularly hazardous class of chemical warfare agents are the nerve agents. Their rapid and severe effects on human health originate in their ability to block the function of acetylcholinesterase, an enzyme that is vital to the central nervous system. This article outlines recent activities regarding the development of molecular sensors that can visualize the presence of nerve agents (and related pesticides) through changes of their fluorescence properties. Three different sensing principles are discussed: enzyme-based sensors, chemically reactive sensors, and supramolecular sensors. Typical examples are presented for each class and different fluorescent sensors for the detection of chemical warfare agents are summarized and compared.
77 FR 47162 - International Security Advisory Board (ISAB) Meeting Notice; Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... security, nuclear proliferation, and diplomacy. For more information, contact Richard W. Hartman II... 20520, telephone: (202) 736-4290. Dated: July 31, 2012. Richard W. Hartman, II, Executive Director...
77 FR 21142 - International Security Advisory Board (ISAB) Meeting Notice; Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
..., international security, nuclear proliferation, and diplomacy. For more information, contact Richard W. Hartman..., DC 20520, telephone: (202) 736-4290. Dated: March 28, 2012. Richard W. Hartman II, Executive Director...
76 FR 36167 - International Security Advisory Board (ISAB) Meeting Notice; Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
..., international security, nuclear proliferation, and diplomacy. For more information, contact Richard W. Hartman..., DC 20520, telephone: (202) 736-4290. Dated: June 13, 2011. Richard W. Hartman, II., Executive...
76 FR 65542 - N.S. Savannah; Exemption From Certain Security Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-238; NRC-2011-0222] N.S. Savannah; Exemption From Certain Security Requirements 1.0 Background The U.S. Department of Transportation, Maritime [[Page 65543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, Joseph F
2010-12-08
A workshop sponsored by the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars was held at the Wilson Center in Washington, DC, on October 28, 2010. The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review and the 2010 NPT Review Conference. The discussions reflected the importance of the NPR for defining the role of US nuclear forces in dealing with 21st century threats and providing guidance for National Nuclear Security Administration (NNSA) and Department of Defense (DoD) programsmore » and, for many but not all participants, highlighted its role in the successful outcome of the NPT RevCon. There was widespread support for the NPR and its role in developing the foundations for a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. However, some participants raised concerns about its implementation and its long-term effectiveness and sustainability.« less
Going nuclear: The spread of nuclear weapons 1986-1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spector, L.S.
1987-01-01
In the third annual report of the Carnegie Endowment for International Peace on the spread of nuclear weapons, Spector provides a critical survey of the status of nuclear proliferation throughout the world and examines the nuclear potential of nations in the Middle East, Asia, Africa, and Latin America. Drawing on both historical documents and up-to-date reports, the author addresses such specific topics as Israel's nuclear arsenal, nuclear terrorism and its global security implications, arms control and nuclear safeguards, international treaties, weapons buildup, and political radicalism and unrest in nuclear-threshold nations.
15 CFR 742.3 - Nuclear nonproliferation.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.3 Nuclear nonproliferation. (a) License requirements. Section 309(c) of the Nuclear Non-Proliferation Act of 1978 requires BIS to identify items subject to the EAR that could be of...
15 CFR 742.3 - Nuclear nonproliferation.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.3 Nuclear nonproliferation. (a) License requirements. Section 309(c) of the Nuclear Non-Proliferation Act of 1978 requires BIS to identify items subject to the EAR that could be of...
15 CFR 742.3 - Nuclear nonproliferation.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.3 Nuclear nonproliferation. (a) License requirements. Section 309(c) of the Nuclear Non-Proliferation Act of 1978 requires BIS to identify items subject to the EAR that could be of...
15 CFR 742.3 - Nuclear nonproliferation.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.3 Nuclear nonproliferation. (a) License requirements. Section 309(c) of the Nuclear Non-Proliferation Act of 1978 requires BIS to identify items subject to the EAR that could be of...
15 CFR 742.3 - Nuclear nonproliferation.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.3 Nuclear nonproliferation. (a) License requirements. Section 309(c) of the Nuclear Non-Proliferation Act of 1978 requires BIS to identify items subject to the EAR that could be of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... nuclear energy research and development, the decommissioning of the Fukushima Dai-ichi Nuclear Power Station, environmental management, emergency management, nuclear security, and safety and regulatory issues. The Decommissioning and Environmental Management Working Group (DEMWG) under the Bilateral...
Redefining the U.S. Agenda for Nuclear Disarmament, Analysis and Reflections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Lewis A.
With Lewis Dunn’s paper on nuclear disarmament diplomacy, we are inaugurating a new monograph series under the auspices of the Center for Global Security Research at Lawrence Livermore National Laboratory. The series will explore complex emerging challenges in the emerging security environment as they bear on issues of deterrence, assurance, and strategic stability. Our goal is to explore these issues deeply enough to provide significant new understanding that is technically informed and policy relevant. Our premise is that thoughtful students of international security affairs continue to value such in-depth analysis as a way to help make sense of the largemore » flow of data and opinion that reaches all of us on a daily basis. Our ambition is to generate four to six such papers per year on especially salient topics. The views expressed in these papers are those of the author and should not be attributed to the Center, the Laboratory, or the U.S. government. This inaugural paper addresses one of the key questions facing national leadership seven to eight years after President Obama’s April 2009 remarks in Prague and his commitment to take practical steps towards the long-term goal of the elimination of nuclear weapons. In the interim, some important steps have been taken. But there have also been many disappointments. The new presidential administration will face a security landscape quite different from that of eight years ago and must reassess U.S. priorities and approaches. As Lewis Dunn argues, some will be tempted to walk away entirely from the disarmament agenda, while others will advocate even more forcefully for unilateral U.S. steps to further reduce the role and number of nuclear weapons in its posture. Dr. Dunn sets out his own vision of how to adapt and carry forward the disarmament agenda, in a manner informed by developments in the security environment that point to a continuing role for nuclear deterrence. The result is both fresh and compelling.« less
The arms race at a time of decision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotblat, J.; Pascolini, A.
1984-01-01
This book contains thirty-one articles by leading scientists and scholars form East and West presented at the 33rd Pugwash Conference held in Venice in 1983. The contributors provide research findings and recommendations on such topics as space militarization, nuclear strategy and safety, European security, regional security, and the security of the Third World.
Jimmy Carter's National Security Policy: A World Order Critique.
ERIC Educational Resources Information Center
Johansen, Robert C.
This essay evaluates the Carter administration's behavior on national security questions and appraises the extent to which it meets Carter's initial professed national security goals. These goals include the intention to reduce military expenditures, to halt the nuclear arms buildup of the United States and U.S.S.R., to prevent the spread of…
10 CFR 2.911 - Admissibility of restricted data or other national security information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Admissibility of restricted data or other national security information. 2.911 Section 2.911 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR... Proceedings Involving Restricted Data and/or National Security Information § 2.911 Admissibility of restricted...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... involves important physical modifications to the HNP, Unit 1 security system. There are several issues... in which some important security modifications are planned. A direct outside access route to the... implementation deadline, the licensee currently maintains a security system acceptable to the NRC and that will...
10 CFR 10.32 - Recommendation of the NRC Personnel Security Review Panel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Recommendation of the NRC Personnel Security Review Panel. 10.32 Section 10.32 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING... Procedures § 10.32 Recommendation of the NRC Personnel Security Review Panel. (a) The Deputy Executive...
10 CFR 10.32 - Recommendation of the NRC Personnel Security Review Panel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Recommendation of the NRC Personnel Security Review Panel. 10.32 Section 10.32 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING... Procedures § 10.32 Recommendation of the NRC Personnel Security Review Panel. (a) The Deputy Executive...
10 CFR 10.32 - Recommendation of the NRC Personnel Security Review Panel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Recommendation of the NRC Personnel Security Review Panel. 10.32 Section 10.32 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING... Procedures § 10.32 Recommendation of the NRC Personnel Security Review Panel. (a) The Deputy Executive...
Information security management system planning for CBRN facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenaeu, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.
The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... amendment requests approval of the Exelon Cyber Security Plan, provides an Implementation Schedule, and adds... require Exelon to fully implement and maintain in effect all provisions of the approved Cyber Security..., Revision 6, ``Cyber Security Plan for Nuclear Power Reactors.'' Basis for proposed no significant hazards...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... Operating Licenses include: (1) The proposed Cyber Security Plan for CCNPP, Ginna, and NMPNS, (2) an... provisions of the Nuclear Regulatory Commission-approved Cyber Security Plan for CCNPP, Ginna, and NMPNS as... Communication Systems and Networks,'' establish the requirements for a cyber security program. This regulation...
NASA Astrophysics Data System (ADS)
Gilbo, Yekaterina; Wijesooriya, Krishni; Liyanage, Nilanga
2017-01-01
Customarily applied in homeland security for identifying concealed explosives and chemical weapons, NRF (Nuclear Resonance Fluorescence) may have high potential in determining atomic compositions of body tissue. High energy photons incident on a target excite the target nuclei causing characteristic re-emission of resonance photons. As the nuclei of each isotope have well-defined excitation energies, NRF uniquely indicates the isotopic content of the target. NRF radiation corresponding to nuclear isotopes present in the human body is emitted during radiotherapy based on Bremsstrahlung photons generated in a linear electron accelerator. We have developed a Geant4 simulation in order to help assess NRF capabilities in detecting, mapping, and characterizing tumors. We have imported a digital phantom into the simulation using anatomical data linked to known chemical compositions of various tissues. Work is ongoing to implement the University of Virginia's cancer center treatment setup and patient geometry, and to collect and analyze the simulation's physics quantities to evaluate the potential of NRF for medical imaging applications. Preliminary results will be presented.
Succession planning for technical experts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, Bernadette Lugue; Cain, Ronald A.; Dewji, Shaheen A.
This report describes a methodology for identifying, evaluating, and mitigating the loss of key technical skills at nuclear operations facilities. The methodology can be adapted for application within regulatory authorities and research and development organizations, and can be directly applied by international engagement partners of the Department of Energy’s National Nuclear Security Administration (NNSA). The resultant product will be of direct benefit to two types of NNSA missions: (1) domestic human capital development programs tasked to provide focused technical expertise to succeed an aging nuclear operations workforce, and (2) international safeguards programs charged with maintaining operational safeguards for developing/existing nuclearmore » power program in nations where minimal available resources must be used effectively. This report considers succession planning and the critical skills necessary to meet an institution’s goals and mission. Closely tied to succession planning are knowledge management and mentorship. In considering succession planning, critical skill sets are identified and are greatly dependent on the subject matter expert in question. This report also provides examples of critical skills that are job specific.« less
NASA's Kilopower Reactor Development and the Path to Higher Power Missions
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick
2017-01-01
The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.
NASA's Kilopower Reactor Development and the Path to Higher Power Missions
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Oleson, Steven R.; Poston, Dave I.; McClure, Patrick
2017-01-01
The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.
FY 2017 Stockpile Stewardship and Management Plan - Biennial Plan Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-03-01
This year’s summary report updates the Fiscal Year 2016 Stockpile Stewardship and Management Plan (FY 2016 SSMP), the 25-year strategic program of record that captures the plans developed across numerous NNSA programs and organizations to maintain and modernize the scientific tools, capabilities, and infrastructure necessary to ensure the success of NNSA’s nuclear weapons mission. The SSMP is a companion to the Prevent, Counter, and Respond: A Strategic Plan to Reduce Global Nuclear Threats (FY 2017-2021) report, the planning document for NNSA’s nuclear threat reduction mission. New versions of both reports are published each year in response to new requirements andmore » challenges. Much was accomplished in FY 2015 as part of the program of record described in this year’s SSMP. The science-based Stockpile Stewardship Program allowed the Secretaries of Energy and Defense to certify for the twentieth time that the stockpile remains safe, secure, and effective without the need for underground nuclear explosive testing. The talented scientists, engineers, and technicians at the three national security laboratories, the four nuclear weapons production plants, and the national security site are primarily responsible for this continued success. Research, development, test, and evaluation programs have advanced NNSA’s understanding of weapons physics, component aging, and material properties through first-of-a-kind shock physics experiments, along with numerous other critical experiments conducted throughout the nuclear security enterprise. The multiple life extension programs (LEPs) that are under way made progress toward their first production unit dates. The W76-1 LEP is past the halfway point in total production, and the B61-12 completed three development flight tests. Critical to this success is the budget. The Administration’s budget request for NNSA’s Weapons Activities has increased for all but one of the past seven years, resulting in a total increase of approximately 45 percent since 2010. If adopted by Congress, the FY 2017 budget request will increase funding by $396 million (about 4.5 percent) from the enacted FY 2016 level. A significant portion of the increase would fund the research for multiple life extension programs, support the programs in Directed Stockpile Work, and modernize the physical infrastructure of the nuclear security enterprise.« less
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2012-05-10
2009. 143 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in...Program.” Some analysts argue that spent nuclear fuel is more vulnerable when being transported . 144 Martellini, 2008. Pakistan’s Nuclear Weapons...urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment technology, which it
Projected Costs of U.S. Nuclear Forces, 2017 to 2026
2017-02-01
CBO FEBRUARY 2017 Projected Costs of U.S. Nuclear Forces, 2017 to 2026 Nuclear weapons have been a cornerstone of U.S. national security since they...were developed during World War II. In the Cold War, nuclear forces were central to U.S. defense policy, resulting in the buildup of a large...arsenal. Since that time, nuclear forces have figured less prominently than conventional forces, and the United States has not built any new nuclear
Put a Coalatom in Your Tank: The Compelling Case for a Marriage of Coal and Nuclear Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penfield, Scott R. Jr.; Bolthrunis, Charles O.
2006-07-01
Increasing costs and security concerns with present fossil energy sources, plus environmental concerns related to CO{sub 2} emissions and the emergence of new technologies in the energy and transportation sectors set the stage for a marriage of convenience between coal and nuclear energy. As the price of oil continues to increase and supply becomes increasingly constrained, coal offers a secure domestic alternative to foreign oil as a source of liquid fuels. However, conventional technologies for converting coal to liquid fuels produce large quantities of CO{sub 2} that must be released or sequestered. Advanced nuclear technologies, particularly the High-Temperature Gas-Cooled Reactormore » (HTGR), have the potential to produce hydrogen via water splitting; however, the transportation and storage of hydrogen are significant barriers to the 'Holy Grail', the Hydrogen Economy. In a coal/nuclear marriage, the hydrogen and oxygen provided by nuclear energy are joined with coal as a source of carbon to provide liquid fuels with negligible CO{sub 2} release from the process. In combination with emerging hybrid vehicles, fuels based on a coal/nuclear marriage promise stable prices, increased domestic security and a reduction in CO{sub 2} emissions without the need to completely replace our transportation fuels infrastructure. The intent of this paper is to outline the technical basis for the above points and to show that process energy applications of nuclear energy can provide the basis for answering some of the tougher questions related to energy and the environment. (authors)« less
Industrial Sites - An Approach to Closure
None
2018-01-16
The Environmental Management (EM) Program at the Nevada Site Office was created by the U.S. Department of Energy (DOE) to address the environmental legacy of contamination resulting from more than 50 years of nuclear weapons research, production and testing. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NSO) is responsible for remediating portions of the Nevada National Security Site (formerly the Nevada Test Site) and the Tonopah Test Range, which is within the Nevada Test and Training Range.
2013-12-01
device (IED) in a public park is more difficult than setting off an IED in a secured government building . Alternatively, constructing a pipe bomb is...against nuclear and power industry installations” intended to “seize nuclear materials and use them to build WMD for their own political use.” 5...reactor under construction .469 Damascus faces unresolved allegations that it illicitly tried to build a plutonium production reactor at a site
Saudi Arabia’s Nuclear Posture: Is Hedging the Future
2016-09-01
Three Models in Search of a Bomb .” He argues that security 10 Zachary S. Davis, “The Realist Nuclear...Models in Search of a Bomb ,” International Security 21, no. 3 (Winter 1996): 55, doi: 10.1162/isec.21.3.54. 13 Scott D. Sagan and Kenneth N. Waltz...Lewis, “Sorry, Fareed: Saudi Arabia Can Build a Bomb Any Damn Time It Wants To,” Foreign Policy, June 12, 2015, http://foreignpolicy.com/2015/06/12/sorry
NNSA Administrator Tom D'Agostino's speech at the 2009 ISM Conference
Thomas D'Agostino
2017-12-09
National Nuclear Security Administration Administrator Thomas DAgostino addressed the 2009 Department of Energy Integrated Safety Management (ISM) Conference in Knoxville, Tenn., on Wednesday, Aug. 26. In his remarks, Administrator DAgostino highlighted the NNSAs track record of developing innovative approaches to workplace safety. And, while he noted the improvements in NNSAs safety record over the years, the Administrator highlighted the need to ensure that workers across the nuclear security enterprise never become complacent in their approach to safety.
10 CFR 810.10 - Grant of specific authorization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... “sensitive nuclear technology” as defined in § 810.3, the requirements of sections 127 and 128 of the Atomic... is required may apply for the authorization to the U.S. Department of Energy, National Nuclear Security Administration, Washington, DC 20585, Attention: Director, Nuclear Transfer and Supplier Policy...