Science.gov

Sample records for nuclear ship savannah

  1. 77 FR 19534 - Special Local Regulations; Savannah Tall Ships Challenge, Savannah River, Savannah, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... Benjamin Mercado, Marine Safety Unit Savannah Office of Waterways Management, Coast Guard; telephone (912) 652-4353, email Benjamin.Mercado@uscg.mil . If you have questions on viewing the docket, call Renee...

  2. 77 FR 6039 - Special Local Regulations; Savannah Tall Ships Challenge, Savannah River, Savannah, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ...: If you have questions on this proposed rule, call or email Chief Petty Officer Benjamin Mercado... Benjamin.Mercado@uscg.mil . If you have questions on viewing or submitting material to the docket, call... Benjamin Mercado, Marine Safety Unit Savannah Office of Waterways Management, Coast Guard; telephone...

  3. Vertical Ship Motion Study for Savannah, GA Entrance Channel

    DTIC Science & Technology

    2011-09-01

    that is recommended based on the accessibility predictions . Only inbound transits at speeds of 10 kt are discussed as they are the main ships of...that is recommended based on the accessibility predictions . Again, only inbound transits at speeds of 10 kt are discussed as they are the main ships...Huval, and C. Hewlett. 1996. Squat Predictions for Maneuvering Applications, International Conference on Marine Simulation and Ship Maneuverability

  4. Ship Forces on the Shoreline of the Savannah Harbor Project

    DTIC Science & Technology

    2007-08-01

    tonnage length, ft beam, ft draft, ft Direct date Dock CF CDF FP TI POB time INBOUND: flintereems gen cargo 4503 367 49.2 20 in 15-Sep 1615 1509 1320...41482 864 105.6 30.5 in 21-Sep 250 2330 POB = time pilot boards ship ERDC/CHL TR-07-7 14 Table 3. Concluded. OUTBOUND:(SAIL) Name type gross...tonnage length, ft beam, ft draft, ft Direct date POB time CF CDF FP TI schackenborg Ro-ro 14775 530 79.7 21.7 out 15-Sep 140 saimaagracht gen

  5. Destructive Testing of an ES-3100 Shipping Container at the Savannah River National Laboratory

    SciTech Connect

    Loftin, B.; Abramczyk, G.

    2015-06-09

    Destructive testing of an ES-3100 Shipping Container was completed by the Packaging Technology and Pressurized Systems organization within the Savannah River National Laboratory in order to qualify the ES-3100 as a candidate storage and transport package for applications at various facilities at the Savannah River Site. The testing consisted of the detonation of three explosive charges at separate locations on a single ES-3100. The locations for the placement were chosen based the design of the ES-3100 as well as the most likely places for the package to incur damage as a result of the detonation. The testing was completed at an offsite location, which raised challenges as well as allowed for development of new partnerships for this testing and for potential future testing. The results of the testing, the methods used to complete the testing, and similar, potential future work will be discussed.

  6. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect

    Gray, L.W.

    1986-10-04

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  7. Nuclear Material Processing at the Savannah River Site

    SciTech Connect

    Severynse, T.F.

    1998-07-01

    Plutonium production for national defense began at Savannah River in the mid-1950s, following construction of production reactors and separations facilities. Following the successful completion of its production mission, the site`s nuclear material processing facilities continue to operate to perform stabilization of excess materials and potentially support the disposition of these materials. A number of restoration and productivity improvement projects implemented in the 1980s, totaling nearly a billion dollars, have resulted in these facilities representing the most modern and only remaining operating large-scale processing facilities in the DOE Complex. Together with the Site`s extensive nuclear infrastructure, and integrated waste management system, SRS is the only DOE site with the capability and mission of ongoing processing operations.

  8. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    SciTech Connect

    N /A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  9. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    SciTech Connect

    Magoulas, V.

    2013-06-03

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national

  10. TRANSFER OF EXCESS NUCLEAR MATERIAL FROM LOS ALAMOS TO SAVANNAH RIVER SITE FOR LONG-TERM DISPOSITION

    SciTech Connect

    C. W. HOTH; L. A. FOSTER; T. F YARBRO

    2001-06-01

    Los Alamos National Laboratory is preparing excess nuclear material for shipment to Savannah River Site (SRS) for final disposition. Prior to shipment the nuclear material will be stabilized and packaged to meet strict criteria. The criterion that must be met include: (1) the DOE stabilization, packaging and storage requirements for plutonium bearing materials, DOE-STD-3013, (2) shipping container packaging requirements, (3) SRS packaging and storage criteria, and (4) DOE Material Disposition criteria for either immobilization or MOX reactor fuel. Another issue in preparing for this transfer is the DOE certification of shipping containers and the availability of shipping containers. This transfer of the nuclear material is fully supported by the EM, DP and NN Sections of the DOE, as well as, by LANL and SRS, yet a strong collaboration is needed to meet all established requirements relating to stabilization, packaging, shipment, storage and final disposition. This paper will present the overall objectives, the issues and the planned strategy to accomplish this nuclear material transfer.

  11. Propulsion of space ships by nuclear explosion

    NASA Astrophysics Data System (ADS)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  12. Separator assembly for use in spent nuclear fuel shipping cask

    DOEpatents

    Bucholz, James A.

    1983-01-01

    A separator assembly for use in a spent nuclear fuel shipping cask has a honeycomb-type wall structure defining parallel cavities for holding nuclear fuel assemblies. Tubes formed of an effective neutron-absorbing material are embedded in the wall structure around each of the cavities and provide neutron flux traps when filled with water.

  13. Environmental assessment for DOE permission for off-loading activities to support the movement of commercial low level nuclear waste across the Savannah River Site

    SciTech Connect

    1995-02-01

    This environmental assessment investigates the potential environmental and safety effects which could result from the land transport of low level radioactive wastes across the Savannah River Plant. Chem-Nuclear Systems operates a low level radioactive waste burial facility adjacent to the Savannah River Plant and is seeking permission from the DOE to transport the waste across Savannah River Plant.

  14. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These “123 agreements” are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  15. Investigation of cable deterioration in the containment building of the Savannah River Nuclear Reactor

    SciTech Connect

    Gillen, K.T.; Clough, R.L.; Jones, L.H.

    1982-08-01

    This report describes an investigation of the deterioration of polyethylene and polyvinylchloride cable materials which occurred in the containment building of the Savannah River nuclear reactor located at Aiken, South Carolina. Radiation dosimetry and temperature mapping data of the containment area indicated that the maximum dose experienced by the cable materials was only 2.5 Mrad at an average operating temperature of 43/sup 0/C. Considering this relatively moderate environment, the amount of material degradation seemed surprising. To understand these findings, an experimental program was performed on the commercial polyethylene and polyvinylchloride materials used at the plant to investigate their degradation behavior under combined ..gamma..-radiation and elevated temperature conditions. It is established that the material deterioration at the plant resulted from radiation-induced oxidation and that the degradation rate can be correlated with local levels of radiation intensity in the containment area.

  16. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  17. Preventing the importation of illicit nuclear materials in shipping containers.

    PubMed

    Wein, Lawrence M; Wilkins, Alex H; Baveja, Manas; Flynn, Stephen E

    2006-10-01

    We develop a mathematical model to find the optimal inspection strategy for detecting a nuclear weapon (or nuclear material to make a weapon) from being smuggled into the United States in a shipping container, subject to constraints of port congestion and an overall budget. We consider an 11-layer security system consisting of shipper certification, container seals, and a targeting software system, followed by passive (neutron and gamma), active (gamma radiography), and manual testing at overseas and domestic ports. Currently implemented policies achieve a low detection probability, and improved security requires passive and active testing of trusted containers and manually opening containers that cannot be penetrated by radiography. The annual cost of achieving a high detection probability of a plutonium weapon using existing equipment in traditional ways is roughly several billion dollars if testing is done domestically, and is approximately five times higher if testing is performed overseas. Our results suggest that employing high-energy x-ray radiography and elongating the passive neutron tests at overseas ports may provide significant cost savings, and several developing technologies, radiation sensors inside containers and tamper-resistant electronic seals, should be pursued aggressively. Further effort is critically needed to develop a practical neutron interrogation scheme that reliably detects moderately shielded, highly enriched uranium.

  18. Site-wide seismic risk model for Savannah River Site nuclear facilities

    SciTech Connect

    Eide, S.A.; Shay, R.S.; Durant, W.S.

    1993-09-01

    The 200,000 acre Savannah River Site (SRS) has nearly 30 nuclear facilities spread throughout the site. The safety of each facility has been established in facility-specific safety analysis reports (SARs). Each SAR contains an analysis of risk from seismic events to both on-site workers and the off-site population. Both radiological and chemical releases are considered, and air and water pathways are modeled. Risks to the general public are generally characterized by evaluating exposure to the maximally exposed individual located at the SRS boundary and to the off-site population located within 50 miles. Although the SARs are appropriate methods for studying individual facility risks, there is a class of accident initiators that can simultaneously affect several of all of the facilities, Examples include seismic events, strong winds or tornados, floods, and loss of off-site electrical power. Overall risk to the off-site population from such initiators is not covered by the individual SARs. In such cases multiple facility radionuclide or chemical releases could occur, and off-site exposure would be greater than that indicated in a single facility SAR. As a step towards an overall site-wide risk model that adequately addresses multiple facility releases, a site-wide seismic model for determining off-site risk has been developed for nuclear facilities at the SRS. Risk from seismic events up to the design basis earthquake (DBE) of 0.2 g (frequency of 2.0E-4/yr) is covered by the model. Present plans include expanding the scope of the model to include other types of initiators that can simultaneously affect multiple facilities.

  19. The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships

    SciTech Connect

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    2013-07-01

    From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight ice-breakers and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: ice-breaker 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear ice-breakers 'Arktika' and 'Sibir' are berthing. The ice-breakers carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices of the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of icebreakers the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear ice-breakers, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear icebreaker decommissioning and dismantling projects. (authors)

  20. Truck and rail charges for shipping spent fuel and nuclear waste

    SciTech Connect

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

  1. Use of Modeling for Prevention of Solids Formation During Canyon Processing of Legacy Nuclear Materials at the Savannah River Site

    SciTech Connect

    Rhodes, W. D.; Crooks III, W. J.; Christian, J. D.

    2002-02-26

    The Savannah River Site (SRS) Environmental Management (EM) nuclear material stabilization program includes the dissolution and processing of legacy materials from various DOE sites. The SRS canyon facilities were designed to dissolve and process spent nuclear fuel and targets. As the processing of typical materials is completed, unusual and exotic nuclear materials are being targeted for stabilization. These unusual materials are often difficult to dissolve using historical flowsheet conditions and require more aggressive dissolver solutions. Solids must be prevented in the dissolver to avoid expensive delays associated with the build-up of insoluble material in downstream process equipment. Moreover, it is vital to prevent precipitation of all solids, especially plutonium-bearing solids, since their presence in dissolver solutions raises criticality safety issues. To prevent precipitation of undesirable solids in aqueous process solutions, the accuracy of computer models to predict precipitate formation requires incorporation of plant specific fundamental data. These data are incorporated into a previously developed thermodynamic computer program that applies the Pitzer correlation to derive activity coefficient parameters. This improved predictive model will reduce unwanted precipitation in process solutions at DOE sites working with EM nuclear materials in aqueous solutions.

  2. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hobbs, D

    2007-11-15

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90 and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction, for {sup 137}Cs removal. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239 and Pu-240. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  3. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hobbs, D

    2008-01-22

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90 and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction, for Cs-137 removal. The MST and separated Cs-137 will be encapsulated into a borosilicate glass waste form for eventual entombment at the federal repository. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239 and Pu-240. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  4. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hobbs D. T.; Poirier, M. R.; Barnes, M. J.; Stallings, M. E.; Nyman, M. D.

    2005-11-22

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 137}Cs, {sup 90}Sr and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include caustic side solvent extraction, for {sup 137}Cs removal, and sorption of {sup 90}Sr and alpha-emitting radionuclides onto monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu and {sup 240}Pu. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the baseline MST material.

  5. Nuclear structure studies in the seaborgium region at SHIP

    SciTech Connect

    Antalic, S. Andel, B.; Heßberger, F. P.; Khuyagbaatar, J.; Ackermann, D.; Heinz, S.; Hofmann, S.; Kindler, B.; Laatiaoui, M.; Lommel, B.; Kalaninová, Z.; Piot, J.; Vostinar, M.

    2015-10-15

    New decay data for the isotopes {sup 259}Sg and {sup 255}Rf were obtained at the velocity filter SHIP using an α-decay spectroscopy measurement. Both isotopes were produced and studied via a one neutron evaporation channel in the compound fusion reaction {sup 54}Cr+{sup 208}Pb. New isomeric states were observed and the single-particle level systematics for isotones with 151 and 153 neutrons were extended. A change of the ground-state configuration for the heaviest N = 151 isotones was observed. Detailed Monte-Carlo simulation for the α decay of {sup 259}Sg applying the GEANT4 toolkit was performed and compared with experimental data.

  6. Nuclear structure studies in the seaborgium region at SHIP

    NASA Astrophysics Data System (ADS)

    Antalic, S.; Heßberger, F. P.; Andel, B.; Ackermann, D.; Heinz, S.; Hofmann, S.; Kalaninová, Z.; Kindler, B.; Khuyagbaatar, J.; Laatiaoui, M.; Lommel, B.; Piot, J.; Vostinar, M.

    2015-10-01

    New decay data for the isotopes 259Sg and 255Rf were obtained at the velocity filter SHIP using an α-decay spectroscopy measurement. Both isotopes were produced and studied via a one neutron evaporation channel in the compound fusion reaction 54Cr+208Pb. New isomeric states were observed and the single-particle level systematics for isotones with 151 and 153 neutrons were extended. A change of the ground-state configuration for the heaviest N = 151 isotones was observed. Detailed Monte-Carlo simulation for the α decay of 259Sg applying the Geant4 toolkit was performed and compared with experimental data.

  7. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-06-10

    submarine, the Dolphin (AGSS-555), was procured in FY1961, entered service in 1968, and retired in January 2007. Navy Nuclear-Powered Surface Ships...and lasers ; (J) survivability due to increased performance and reduced signatures; (K) high power density propulsion; (L) operational tempo; (M

  8. 78 FR 20625 - Spent Nuclear Fuel Management at the Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ...). This end product will not be useable in nuclear weapons, but will be available for use in commercial... of SNF at SRS, particularly the SRS SNF EIS and the Proposed Nuclear Weapons Nonproliferation...

  9. Shipping and storage cask data for spent nuclear fuel

    SciTech Connect

    Johnson, E.R.; Notz, K.J.

    1988-11-01

    This document is a compilation of data on casks used for the storage and/or transport of commercially generated spent fuel in the US based on publicly available information. In using the information contained in the following data sheets, it should be understood that the data have been assembled from published information, which in some instances was not internally consistent. Moreover, it was sometimes necessary to calculate or infer the values of some attributes from available information. Nor was there always a uniform method of reporting the values of some attributes; for example, an outside surface dose of the loaded cask was sometimes reported to be the maximum acceptable by NRC, while in other cases the maximum actual dose rate expected was reported, and in still other cases the expected average dose rate was reported. A summary comparison of the principal attributes of storage and transportable storage casks is provided and a similar comparison for shipping casks is also shown. References to source data are provided on the individual data sheets for each cask.

  10. Alternative dispositioning methods for HEU spent nuclear fuel at the Savannah River Site

    SciTech Connect

    Krupa, J.F.; McKibben, J.M.; Parks, P.B.; DuPont, M.E.

    1995-11-01

    The United States has a strong policy on prevention of the international spread of nuclear weapons. This policy was announced in Presidential Directive PDD-13 and summarized in a White House press release September 27, 1993. Two cornerstones of this policy are: seek to eliminate where possible the accumulation of stockpiles of highly- enriched uranium or plutonium; propose{hor_ellipsis}prohibiting the production of highly-enriched uranium (HEU) or plutonium for nuclear explosives purposes or outside international safeguards. The Department of Energy is currently struggling to devise techniques that safely and efficiently dispose of spent nuclear fuel (SNF) while satisfying national non-proliferation policies. SRS plans and proposals for disposing of their SNF are safe and cost effective, and fully satisfy non-proliferation objectives.

  11. Sediment toxicity in Savannah Harbor

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1995-01-01

    Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Potential release of contaminants stored in harbor sediments through dredging and shipping operations requires that contaminated areas be identified for proper management of the system and protection of wildlife resources. During 1991, Hyalella azteca were exposed in 10-d static-renewal toxicity tests to pore-water and solid-phase sediment samples collected from 26 sites within Savannah Harbor. Pore-water toxicity was more pronounced than that for solidphase sediment. Toxicity and reduced leaf consumption demonstrated impaired sediment quality at specific sites within Savannah Harbor and Back River. Factors responsible for the decreased sediment quality were ammonia, alkalinity, and metal concentrations (cadmium, chromium, lead, molybdenum, and nickel). Elevated concentrations of metals and toxicities in Back River sediments indicated impacts from adjacent dredge-spoil areas.

  12. 46 CFR 7.75 - Savannah River/Tybee Roads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Savannah River/Tybee Roads. 7.75 Section 7.75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.75 Savannah River/Tybee Roads. A line drawn from the southwesternmost extremity of...

  13. 46 CFR 7.75 - Savannah River/Tybee Roads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Savannah River/Tybee Roads. 7.75 Section 7.75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.75 Savannah River/Tybee Roads. A line drawn from the southwesternmost extremity of...

  14. 46 CFR 7.75 - Savannah River/Tybee Roads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Savannah River/Tybee Roads. 7.75 Section 7.75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.75 Savannah River/Tybee Roads. A line drawn from the southwesternmost extremity of...

  15. 46 CFR 7.75 - Savannah River/Tybee Roads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Savannah River/Tybee Roads. 7.75 Section 7.75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.75 Savannah River/Tybee Roads. A line drawn from the southwesternmost extremity of...

  16. 46 CFR 7.75 - Savannah River/Tybee Roads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Savannah River/Tybee Roads. 7.75 Section 7.75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.75 Savannah River/Tybee Roads. A line drawn from the southwesternmost extremity of...

  17. Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance

    NASA Astrophysics Data System (ADS)

    Petroski, Robert; Wood, Lowell

    2014-07-01

    Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including

  18. An adaptive simulation model for analysis of nuclear material shipping operations

    SciTech Connect

    Boerigter, S.T.; Sena, D.J.; Fasel, J.H.

    1998-12-31

    Los Alamos has developed an advanced simulation environment designed specifically for nuclear materials operations. This process-level simulation package, the Process Modeling System (ProMoS), is based on high-fidelity material balance criteria and contains intrinsic mechanisms for waste and recycle flows, contaminant estimation and tracking, and material-constrained operations. Recent development efforts have focused on coupling complex personnel interactions, personnel exposure calculations, and stochastic process-personnel performance criteria to the material-balance simulation. This combination of capabilities allows for more realistic simulation of nuclear material handling operations where complex personnel interactions are required. They have used ProMoS to assess fissile material shipping performance characteristics at the Los Alamos National Laboratory plutonium facility (TA-55). Nuclear material shipping operations are ubiquitous in the DOE complex and require the largest suite of varied personnel interacting in a well-timed manner to accomplish the task. They have developed a baseline simulation of the present operations and have estimated the operational impacts and requirement of the pit production mission at TA-55 as a result of the SSM-PEIS. Potential bottlenecks have been explored and mechanisms for increasing operational efficiency are identified.

  19. Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns

    SciTech Connect

    Marsha Keister; Kathryn McBride

    2006-08-01

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge—to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.

  20. Nuclear Criticality Safety Evaluation of the 9965, 9968, 9972, 9973, 9974, and 9975 Shipping Casks

    SciTech Connect

    Frost, R.L.

    1999-02-26

    A Nuclear Criticality Safety Evaluation (NCSE) has been performed for the 9965, 9968, 9972, 9973, 9974, and 9975 SRS-designed shipping casks. This was done in support of the recertification effort for the 9965 and 9968, and the certification of the newly designed 9972-9975 series. The analysis supports the use of these packages as Fissile Class I for shipment of fissionable material from the SRS FB-Line, HB-Line, and from Lawrence Livermore national Laboratory. six different types of material were analyzed with varying Isotopic composition, of both oxide and metallic form. The mass limits required to support the fissile Class I rating for each of the envelopes are given in the Table below. These mass limits apply if DOE approves an exception as described in 10 CFR 71.55(c), such that water leakage into the primary containment vessel does not need to be considered in the criticality analysis. If this exception is not granted, the mass limits are lower than those shown below. this issue is discussed in detail in sections 5 and 6 of the report.One finding from this work is important enough to highlight in the abstract. The fire tests performed for this family of shipping casks indicates only minimal charring of the Celotex thermal insulation. Analysis of the casks with no Celotex insulation (assuming it has all burned away), results in values of k-eff that exceed 1.0. Therefore, the Celotex insulation must remain intact in order to guarantee sub criticality of the 9972-9975 family of shipping casks.

  1. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    NASA Astrophysics Data System (ADS)

    Grogan, Brandon R.; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-12-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system.

  2. Nuclear waste shipping container response to severe accident conditions, A brief critique of the modal study

    SciTech Connect

    Audin, L.

    1990-12-01

    The Modal Study (NUREG/CR-4829) attempts to upgrade the analysis of spent nuclear fuel transportation accidents, and to verify the validity of the present regulatory scheme of cask performance standards as a means to minimize risk. While an improvement over many prior efforts in this area (such as NUREG-0170), it unfortunately fails to create a realistic simulation either of a shipping cask, the severe conditions to which it could be subjected, or the potential damage to the spent fuel cargo during an accident. There are too many deficiencies in its analysis to allow acceptance of its results for the presumed cask design, and many pending changes in new containers, cargoes and shipping patterns will limit applicability of the Modal Study to future shipments. In essence, the Modal Study is a good start, but is too simplistic, incomplete, outdated and open to serious question to be used as the basis for any present-day environmental or risk assessment of spent fuel transportation. It needs to be redone, with peer review during its production and experimental verification of its assumptions, before it has any relevance to the shipments planned to Yucca Mountain. Finally, it must be expanded into a full risk assessment by inputing its radiological release fractions and probabilities into a valid dispersal simulation to properly determine the impact of its results. 51 refs.

  3. FURTHER DEVELOPMENT OF MODIFIED MONOSODIUM TITANATE, AN IMPROVED SORBENT FOR PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Taylor-Pashow, K.; Hobbs, D.; Fondeur, F.; Fink, S.

    2011-01-12

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include caustic side solvent extraction, for Cs-137 removal, and sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239, and Pu-240. This paper describes recent results from the development of an improved titanate material that exhibits increased removal kinetics and effective capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  4. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect

    Not Available

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  5. CANE FIBERBOARD DEGRADATION WITHIN THE 9975 SHIPPING PACKAGE DURING LONG-TERM STORAGE APPLICATION

    SciTech Connect

    Daugherty, W.; Dunn, K.; Hackney, B.

    2013-06-19

    The 9975 shipping package is used as part of the configuration for long-term storage of special nuclear materials in the K Area Complex at the Savannah River Site. The cane fiberboard overpack in the 9975 package provides thermal insulation, impact absorption and criticality control functions relevant to this application. The Savannah River National Laboratory has conducted physical, mechanical and thermal tests on aged fiberboard samples to identify degradation rates and support the development of aging models and service life predictions in a storage environment. This paper reviews the data generated to date, and preliminary models describing degradation rates of cane fiberboard in elevated temperature – elevated humidity environments.

  6. Spent Nuclear Fuel Trasportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns

    SciTech Connect

    M. Keister; K, McBride

    2006-08-28

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository (if licensed) in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge--to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned. The objective of this lessons learned study was to identify successful, best-in-class trends and commonalities from past shipping campaigns, which OCRWM could consider when planning for the development and operation of a repository transportation system. Note: this paper is for analytical and discussion purposes only, and is not an endorsement of, or commitment by, OCRWM to follow any of the comments or trends. If OCRWM elects to make such commitments at a future time, they will be appropriately documented in formal programmatic policy statements, plans and procedures. Reviewers examined an extensive study completed in 2003 by DOE's National Transportation Program (NTP), Office of Environmental Management (EM), as well as plans and documents related to SNF shipments since issuance of the NTP report. OCRWM examined specific planning, business, institutional and operating practices that have been identified by DOE, its transportation contractors

  7. Savannah River Site Environmental Report for 1997

    SciTech Connect

    Arnett, M.W.; Mamatey, A.R.

    1998-08-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  8. Nuclear waste-form risk assessment for US Defense waste at Savannah River Plant. Annual report FY 1981

    SciTech Connect

    Cheung, H.; Edwards, L.L.; Harvey, T.F.; Jackson, D.D.; Revelli, M.A.

    1981-12-01

    Savannah River Plant has been supporting the Lawrence Livermore National Laboratory in its present effort to perform risk assessments of alternative waste forms for defense waste. This effort relates to choosing a suitable combination of solid form and geologic medium on the basis of risk of exposure to future generations; therefore, the focus is on post-closure considerations of deep geologic repositories. The waste forms being investigated include borosilicate glass, SYNROC, and others. Geologic media under consideration are bedded salt, basalt, and tuff. The results of our work during FY 1981 are presented in this, our second annual report. The two complementary tasks that comprise our program, analysis of waste-form dissolution and risk assessment, are described.

  9. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  10. Hospitalizations for Accidents and Induries in the U.S. Navy. IV. A Comparison of Nuclear and Conventionally Powered Surface Ships.

    DTIC Science & Technology

    1986-04-01

    particular hazards associated with each occupation and work environment , and...accidental injury-related hospitalizations as a function of the work environment , determining if duty aboard nuclear powered ships was more or less hazardous than duty aboard conventionally powered ships of the same type.

  11. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  12. Spent nuclear fuel shipping cask handling capabilities of commercial light water reactors

    SciTech Connect

    Daling, P.M.; Konzek, G.J.; Lezberg, A.J.; Votaw, E.F.; Collingham, M.I.

    1985-04-01

    This report describes an evaluation of the cask handling capabilities of those reactors which are operating or under construction. A computerized data base that includes cask handling information was developed with information from the literature and utility-supplied data. The capability of each plant to receive and handle existing spent fuel shipping casks was then evaluated. Modal fractions were then calculated based on the results of these evaluations and the quantities of spent fuel projected to be generated by commercial nuclear power plants through 1998. The results indicated that all plants are capable of receiving and handling truck casks. Up to 118 out of 130 reactors (91%) could potentially handle the larger and heavier rail casks if the maximum capability of each facility is utilized. Design and analysis efforts and physical modifications to some plants would be needed to achieve this high rail percentage. These modifications would be needed to satisfy regulatory requirements, increase lifting capabilities, develop rail access, or improve other deficiencies. The remaining 12 reactors were determined to be capable of handling only the smaller truck casks. The percentage of plants that could receive and handle rail casks in the near-term would be reduced to 64%. The primary reason for a plant to be judged incapable of handling rail casks in the near-term was a lack of rail access. The remaining 36% of the plants would be limited to truck shipments. The modal fraction calculations indicated that up to 93% of the spent fuel accumulated by 1998 could be received at federal storage or disposal facilities via rail (based on each plant's maximum capabilities). If the near-term cask handling capabilities are considered, the rail percentage is reduced to 62%.

  13. Nuclear waste form risk assessment for US defense waste at Savannah River Plant. Annual report fiscal year 1980

    SciTech Connect

    Cheung, H.; Jackson, D.D.; Revelli, M.A.

    1981-07-01

    Waste form dissolution studies and preliminary performance analyses were carried out to contribute a part of the data needed for the selection of a waste form for the disposal of Savannah River Plant defense waste in a deep geologic repository. The first portion of this work provides descriptions of the chemical interactions between the waste form and the geologic environment. We reviewed critically the dissolution/leaching data for borosilicate glass and SYNROC. Both chemical kinetic and thermodynamic models were developed to describe the dissolution process of these candidate waste forms so as to establish a fundamental basis for interpretation of experimental data and to provide directions for future experiments. The complementary second portion of this work is an assessment of the impacts of alternate waste forms upon the consequences of disposal in various proposed geological media. Employing systems analysis methodology, we began to evaluate the performance of a generic waste form for the case of a high risk scenario for a bedded salt repository. Results of sensitivity analysis, uncertainty analyses, and sensitivity to uncertainty analysis are presented.

  14. 78 FR 36431 - Safety Zone; Inbound Transit of M/V TEAL, Savannah River; Savannah, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... facilitates the safe transit and offload of four oversized ship to shore (STS) cranes. The moving safety zone... regulated navigation areas and other limited access areas: 33 U.S.C. 1231; 46 U.S.C. Chapter 701, 3306, 3703... safety zone to facilitate the safe transit of the M/V TEAL and four STS cranes on the Savannah River....

  15. The Cost-Effectiveness of Nuclear Power for Navy Surface Ships

    DTIC Science & Technology

    2011-05-01

    serve in the fleet for 50 years, the ships that CBO considered would require no additional outlays for midlife refueling. Thus, CBO estimated that the...the Federal Reserve’s Actions During the Financial Crisis (May 2010); and Costs and Policy Options for Federal Student Loan Programs (March 2010

  16. Proposed Holistic Strategy for the Closure of F-Area, A Large Nuclear Industrial Complex at the Savannah River Site, South Carolina

    SciTech Connect

    SHEDROW, CB

    2004-02-10

    F-Area is a large nuclear complex located near the center of the Department of Energy's (DOEs) Savannah River Site in South Carolina. The present closure strategy for F-Area is based on established SRS protocol for a site-specific, graded approach to deactivation and decommissioning. Uncontaminated facilities will be closed under the National Environmental Policy Act (NEPA). Facilities requiring removal or in-situ disposition of residual chemical and/or radiological inventories will be decommissioned under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The F-Area Tank Farm, which is permitted under the Clean Water Act, will be closed in accordance with an industrial wastewater closure plan. F-Area closure will also involve the near- and long-term remediation of contaminated soil and groundwater resources. The proposed holistic F-Area closure strategy would enhance the existing project-specific SRS closure protocol by incorporating a comprehensive area-wide groundwater modeling tool, or Composite Analysis. The use of this methodology would allow for the assessment of the relative impacts of individual projects, as well as the cumulative effect of all F-Area closure actions, on area groundwater resources. Other critical elements of the proposed strategy include (i) the consistent use of site-specific Risk Assessments (RAs) and Performance Assessments (PAs), (ii) the closer integration of selected soil and groundwater closure projects and near-term D and D projects, and (iii) the creation of an Area Core Team (ACT) consisting of DOE and selected regulator decision-makers to direct area D and D and environmental restoration activities. This holistic approach would facilitate the effective targeting of agency resources on high priority projects whose closure would have the greatest impact on achieving the desired area-wide risk-based end-state and accelerate delisting of F-Area from the National Priority List (NPL).

  17. United States Seaport Security: Protection Against a Nuclear Device Attack Delivered in a Shipping Cargo Container

    DTIC Science & Technology

    2014-06-13

    help my wife and kids in their times of need cannot be conveyed in words. Lastly, I would like to express appreciation to my beloved wife of eleven...and Gulf of Mexico. Inner coastal ports, river terminals, and Great Lakes shipping ports will not be considered. The research on this subject is...2007, PLB’s security division placed in full-time service two video - equipped submersible robots (worth $30,000 each) outfitted with video , sonar

  18. Assessment of spent nuclear fuel shipping cask handling capabilities of commercial light water reactors

    SciTech Connect

    Daling, P.M.

    1985-08-01

    Realistic truck/rail modal fractions are specifically needed to support the Monitored Retrievable Storage (MRS) and repository facility designs and envirionmental assessment activities. The objective of this study was to evaluate the spent fuel shipping cask handling capabilities at operating and planned commercial LWRs and use this information to estimate realistic truck/rail modal fractions. The cask handling parameter data collected in this study includes cask handling crane capabilities, dimensions of loading pools, structural limits, availability of rail service, past experience with spent fuel shipments (i.e., which cask was used.), and any other conditions which could impede or preclude use of a particular shipping cask. The results of this evaluation are presented for each reactor. A summary of the results which indicates the number of plants that are capable of handling each transport mode is presented. Note that two types of highway shipments are considered; legal-weight truck (LWT) and overweight truck (OWT). The primary differences between these two types of highway shipments are the size and cargo capacity of the spent fuel shipping casks. The OWT cask is roughly 50% heavier, 50% larger in diameter, and has a 300% larger cargo capacity. As a result of this size differential, some plants are capable of handling LWT casks but not OWT casks.

  19. Nuclear shipping and storage containers with depleted uranium (DU) shielding Department of Transportation (DOT) certification tests. Final report

    SciTech Connect

    Meyer, W.R.

    1996-01-01

    The U.S. Army Defense Ammunition Center and School (USADACS), Validation Engineering Division (SIOAC-DEV), was tasked by Industrial Operations Command (IOC), AMSIO-SMA-N, to conduct Department of Transportation (DOT) tests on nuclear hazardous waste containers containing concrete and 30mm DU rounds for shielding. Two series of tests were conducted due to fluctuations in radiation levels experienced during the first series of tests. During the second series of tests no fluctuations in radiation were noted with only minor problems experienced with pressure leakage around the base of two of three containers. Except for the leakage noted above, no other problems were experienced with all containers meeting the other requirements for DOT shipping and storage containers. This report contains results of the tests conducted.

  20. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. and Co., Aiken, SC . Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. and Co., Aiken, SC . Savannah River Lab.)

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  1. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-03-29

    entered service in 1959, retired in 1988-1990. A non-nuclear-powered, non-combat auxiliary research submarine, the Dolphin (AGSS-555), was...and extended combat operations; (I) power for advanced sensors and weapons, including electromagnetic guns and lasers ; (J) survivability due to

  2. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-09-29

    FY1956, entered service in 1959, retired in 1988-1990. A non-nuclear-powered, non-combat auxiliary research submarine, the Dolphin (AGSS-555), was...forward presence, and extended combat operations; (I) power for advanced sensors and weapons, including electromagnetic guns and lasers ; (J

  3. Radioiodine in the Savannah River Site environment

    SciTech Connect

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  4. Savannah River Site (SRS) environmental overview

    SciTech Connect

    O'Rear, M.G. ); Steele, J.L.; Kitchen, B.G. )

    1990-01-01

    The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) (formerly the Savannah River Plant (SRP)) comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site.

  5. Overview of Requirements for Using Overweight Vehicles to Ship Spent Nuclear Fuel

    SciTech Connect

    Thrower, A.W.; Offner, J.; Bolton, P.

    2008-07-01

    The U.S. Department of Energy's (DOE's) Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada, considered a range of options for transportation. In evaluating the impacts of the mostly-legal weight truck scenario, DOE assumed that some shipments would use overweight trucks. The use of overweight trucks is also considered in the Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada, issued for public comment in Fall 2007. With the exception of permit requirements and operating restrictions, the vehicles for overweight shipments would be similar to legal-weight truck shipments but might weigh as much as 52,200 kilograms (115,000 pounds). The use of overweight trucks was determined to be acceptable for the Office of Civilian Radioactive Waste Management (OCRWM) Program because the payload is not divisible and the packaging alone may make shipments overweight. Overweight truck shipments are common, and states routinely issue overweight permits, some for vehicles with a gross vehicle weight up to 58,500 kilograms (129,000 pounds). This paper will present an overview of state overweight truck permitting policies and national and regional approaches to promote safety and uniformity. In conclusion: Overweight truck shipments are made routinely by carriers throughout the country. State permits are obtained by the carriers or by companies that provide permitting services to the carriers. While varying state permit restrictions may add complexity to OCRWM's planning activities, the well-established experience of commercial carriers and efforts to bring uniformity to the permitting process should allow the overweight shipment of SNF to be a viable option. (authors)

  6. Structural code benchmarking for the analysis of impact response of nuclear material shipping casks

    SciTech Connect

    Glass, R.E.

    1984-01-01

    The Transportation Technology Center at Sandia National Laboratories has initiated a program to benchmark thermal and structural codes that are available to the nuclear material transportation community. The program consists of the following five phrases: (1) code inventory and review, (2) development of a cask-like set of problems, (3) multiple independent numerical analyses of the problems, (4) transfer of information, and (5) performance of experiments to obtain data for comparison with the numerical analyses. This paper will summarize the results obtained by the independent numerical analyses. The analyses indicate the variability that can be expected both due to differences in user-controlled parameters and from code-to-code differences. The results show that in purely elastic analyses, differences can be attributed to user controlled parameters. Model problems involving elastic/plastic material behavior and large deformations, however, have greater variability with significant differences reported for implicit and explicit integration schemes in finite element programs. This variability demonstrates the need to obtain experimental data to properly benchmark codes utilizing elastic/plastic material models and large deformation capability.

  7. Savannah River restart Peer Evaluation Program examination report

    SciTech Connect

    Morgan, M.P.

    1990-11-01

    During the period of August 13, 1990 through September 14, 1990 the Savannah River Peer Evaluation Program was administered to forty-eight certified Central Control Room Operators and Supervisors assigned to the K Reactor, on the Savannah River Site (SRS). This examination was conducted in response to recommendations made by the Defense Nuclear Facilities Safety Board. The examination process was administered by Westinghouse-Savannah River Company (WSRC) and evaluated in parallel by WSRC Peer Evaluators and Training Evaluators from Department of Energy (DOE). A detailed discussion of the examination development and administration methodology is provided in appendices. 4 tabs.

  8. SUCCESSES AND EMERGING ISSUES IN SIMULATING THE PROCESSING BEHAVIOR OF LIQUID-PARTICLE NUCLEAR WASTE SLURRIES AT THE SAVANNAH RIVER SITE - 205E

    SciTech Connect

    Koopman, D.; Lambert, D.; Stone, M.

    2009-09-02

    Slurries of inorganic solids, containing both stable and radioactive elements, were produced during the cold war as by-products of the production of plutonium and enriched uranium and stored in large tanks at the Savannah River Site. Some of this high level waste is being processed into a stable glass waste form today. Waste processing involves various large scale operations such as tank mixing, inter-tank transfers, washing, gravity settling and decanting, chemical adjustment, and vitrification. The rheological properties of waste slurries are of particular interest. Methods for modeling flow curve data and predicting the properties of slurry blends are particularly important during certain operational phases. Several methods have been evaluated to predict the rheological properties of sludge slurry blends from the data on the individual slurries. These have been relatively successful.

  9. MERCURY-NITRITE-RHODIUM-RUTHENIUM INTERACTIONS IN NOBLE METAL CATALYZED HYDROGEN GENERATION FROM FORMIC ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136C

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J; Stone, M.

    2009-09-02

    Chemical pre-treatment of radioactive waste at the Savannah River Site is performed to prepare the waste for vitrification into a stable waste glass form. During pre-treatment, compounds in the waste become catalytically active. Mercury, rhodium, and palladium become active for nitrite destruction by formic acid, while rhodium and ruthenium become active for catalytic conversion of formic acid into hydrogen and carbon dioxide. Nitrite ion is present during the maximum activity of rhodium, but is consumed prior to the activation of ruthenium. Catalytic hydrogen generation during pre-treatment can exceed radiolytic hydrogen generation by several orders of magnitude. Palladium and mercury impact the maximum catalytic hydrogen generation rates of rhodium and ruthenium by altering the kinetics of nitrite ion decomposition. New data are presented that illustrate the interactions of these various species.

  10. Waste management units: Savannah River Site

    SciTech Connect

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  11. Savannah River Site Environmental Report for 2002

    SciTech Connect

    Mamatey, A.R.

    2003-07-21

    The Savannah River Site (SRS), one of the facilities in the U.S. Department of Energy (DOE) complex, was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in nuclear weapons. The site covers approximately 310 square miles in South Carolina and borders the Savannah River. Various industrial, manufacturing, medical, and farming operations are conducted near the site. Several major industrial and manufacturing facilities are located in the area, and a variety of crops is produced on local farms. SRS is bounded on its southwestern border by the Savannah River for about 35 river miles and is approximately 160 river miles from the Atlantic Ocean. The SRS region is part of the Southern Bottomland Hardwood Swamp region, which extends south from Virginia to Florida and west along the Gulf of Mexico to the Mississippi River drainage basin. Originally, site facilities generated materials for nuclear weapons. Since the end of the Cold War in 199 1, however, their purpose has shifted to the stabilization of nuclear materials from onsite and offsite sources to ensure safe long-term storage or disposal. SRS has always been concerned about the safety of the public. The site is committed to protecting human health and reducing the risks associated with past, current, and future operations. Sampling locations, sample media, sampling frequency, and types of analysis are selected based on environmental regulations, exposure pathways, public concerns, and measurement capabilities.

  12. Savannah River Site Robotics

    SciTech Connect

    2010-01-01

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  13. Savannah River Site Robotics

    ScienceCinema

    None

    2016-07-12

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  14. N.S. Savannah Reactor Vessel Metal Extraction and Radiochemical Analysis

    SciTech Connect

    Ranellone, Richard; Bowen, John; Stouky, Jon; Wiegand, John

    2008-01-15

    In early 2006 a project was concluded to determine radioisotopic inventory and Curie content of the N.S. Savannah Reactor Pressure Vessel (RPV), Internals and Neutron Shield Tank (NST) by extracting metal samples and performing radiochemical analysis. The objective of this project was to determine if the RPV and internals could be removed, packaged, shipped and disposed as Class A radioactive waste without opening the RPV or conducting further sampling of the RPV/Internals. The N.S. Savannah is de-fueled and has been shut down for 37 years. The following conclusions can be drawn from this project: - Results are consistent with previous analyses and are based upon conservative methodology and assumptions. - Nuclide concentration for the N/S Savannah reactor pressure vessel and internals package are shown to be within Class A disposal limits when averaged over the entire volume of metal in the Reactor Pressure Vessel and internals. - Performance of N.S. Savannah's nuclear reactor was excellent. During normal operations, the reactor seldom operated above 80% of its rated power level, thereby minimizing thermal stresses on the fuel cladding. In addition, the fuel rods were not subjected to any accident or severe transient conditions that could result in cladding breeches with subsequent release of fission products and fuel particles to the primary coolant loop. The trace quantities of Cesium-137 observed in the primary loop water indicate that some pinhole penetrations of fuel rod cladding may have occurred during operations. Another source of Cesium-137 could be the presence of uranium fuel on the exterior of the fuel rod cladding (tramp uranium), a condition not uncommon in the N.S. Savannah fuel fabrication time frame. Fissioning of this 'tramp uranium' would cause the rapid release of chemically active Cesium-137 into the reactor coolant. However, the absence of other fission products (e.g., Strontium-90) as well as uranium and transuranic isotopes in the reactor

  15. EFFECTS OF MOISTURE IN THE 9975 SHIPPING PACKAGE FIBERBOARD ASSEMBLY

    SciTech Connect

    Daugherty, W.; Dunn, K.; Murphy, J.; Hackney, B.

    2010-02-11

    The fiberboard assembly used in 9975 shipping packages as an impact-absorption and insulation component has the capacity to absorb moisture, with an accompanying change to its properties. While package fabrication requirements generally maintain the fiberboard moisture content within manufacturing range, there is the potential during use or storage for atypical handling or storage practices which result in the absorption of additional moisture. In addition to performing a transportation function, the 9975 shipping packages are used as a facility storage system for special nuclear materials at the Savannah River Site. A small number of packages after extended storage have been found to contain elevated moisture levels. Typically, this condition is accompanied by an axial compaction of the bottom fiberboard layers, and the growth of mold. In addition to potential atypical practices, fiberboard can exchange moisture with the surrounding air, depending on the ambient humidity. Laboratory data have been generated to correlate the equilibrium moisture content of cane fiberboard with the humidity of the surrounding air. These data are compared to measurements taken within shipping packages. With a reasonable measurement of the fiberboard moisture content, an estimate of the fiberboard properties can be made. Over time, elevated moisture levels will negatively impact performance properties, and promote fiberboard mold growth and resultant degradation.

  16. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    SciTech Connect

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue to address the highest-risk waste

  17. The Planning, Licensing, Modifications, and Use of a Russian Vessel for Shipping Spent Nuclear Fuel by Sea in Support of the DOE RRRFR Program

    SciTech Connect

    Michael Tyacke; Dr. Igor Bolshinsky; Wlodzimierz Tomczak; Sergey Naletov; Oleg Pichugin

    2001-10-01

    The Russian Research Reactor Fuel Return (RRRFR) Program, under the U.S. Department of Energy’s Global Threat Reduction Initiative, began returning Russian-supplied high-enriched uranium (HEU) spent nuclear fuel (SNF), stored at Russian-designed research reactors throughout the world, to Russia in January 2006. During the first years of making HEU SNF shipments, it became clear that the modes of transportation needed to be expanded from highway and railroad to include sea and air to meet the extremely aggressive commitment of completing the first series of shipments by the end of 2010. The first shipment using sea transport was made in October 2008 and used a non-Russian flagged vessel. The Russian government reluctantly allowed a one-time use of the foreign-owned vessel into their highly secured seaport, with the understanding that any future shipments would be made using a vessel owned and operated by a Russian company. ASPOL-Baltic of St. Petersburg, Russia, owns and operates a small fleet of vessels and has a history of shipping nuclear materials. ASPOL-Baltic’s vessels were licensed for shipping nuclear materials; however, they were not licensed to transport SNF materials. After a thorough review of ASPOL Baltic’s capabilities and detailed negotiations, it was agreed that a contract would be let with ASPOL-Baltic to license and refit their MCL Trader vessel for hauling SNF in support of the RRRFR Program. This effort was funded through a contract between the RRRFR Program, Idaho National Laboratory, and Radioactive Waste Management Plant of Swierk, Poland. This paper discusses planning, Russian and international maritime regulations and requirements, Russian authorities’ reviews and approvals, licensing, design, and modifications made to the vessel in preparation for SNF shipments. A brief summary of actual shipments using this vessel, experiences, and lessons learned also are described.

  18. Ship Tracks

    Atmospheric Science Data Center

    2013-04-19

    article title:  Ship Tracks in a Stratiform Cloud Layer     ... stratocumulus. These striking linear patterns are known as "ship tracks", and are produced when fine particles (also called aerosols) from ... be used with the red filter placed over your left eye. Ship tracks are important examples of aerosol-cloud interactions. They are ...

  19. Cesium in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  20. Cesium in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  1. Onsite transportation of radioactive materials at the Savannah River Site

    SciTech Connect

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  2. Investigations of active interrogation techniques to detect special nuclear material in maritime environments: Standoff interrogation of small- and medium-sized cargo ships

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Patton, Bruce W.; Grogan, Brandon R.; Henkel, James J.; Murphy, Brian D.; Johnson, Jeffrey O.; Mihalczo, John T.

    2013-12-01

    In this work, several active interrogation (AI) sources are evaluated to determine their usefulness in detecting the presence of special nuclear material (SNM) in fishing trawlers, small cargo transport ships, and luxury yachts at large standoff distances from the AI source and detector. This evaluation is performed via computational analysis applying Monte Carlo methods with advanced variance reduction techniques. The goal is to determine the AI source strength required to detect the presence of SNM. The general conclusion of this study is that AI is not reliable when SNM is heavily shielded and not tightly coupled geometrically with the source and detector, to the point that AI should not be considered a via interrogation option in these scenarios. More specifically, when SNM is shielded by hydrogenous material large AI source strengths are required if detection is based on neutrons, which is not surprising. However, if the SNM is shielded by high-Z material the required AI source strengths are not significantly different if detection is based on neutrons or photons, which is somewhat surprising. Furthermore, some of the required AI source strengths that were calculated are very large. These results coupled with the realities of two ships moving independently at sea and other assumptions made during this analysis make the use of standoff AI in the maritime environment impractical.

  3. Savannah River Restart Peer Evaluation Program final examination report

    SciTech Connect

    Morgan, M.P.; Draper, D.G.

    1991-12-01

    During the period of August 13, 1990 through September 6, 1991 the Savannah River Peer Evaluation Program was administered during three distinct phases to 73 certified Central Control Room Operators, Central Control Room Supervisors, and Shift Technical Engineers assigned to the K Reactor, on the Savannah River Site (SRS). This program was conceived and developed by the Department of Energy (DOE) and it`s implementation satisfies recommendations made by the Defense Nuclear Facilities Safety Board. The review identified both strengths and weaknesses of the procedures and personnel.

  4. Savannah River Restart Peer Evaluation Program final examination report

    SciTech Connect

    Morgan, M.P.; Draper, D.G.

    1991-12-01

    During the period of August 13, 1990 through September 6, 1991 the Savannah River Peer Evaluation Program was administered during three distinct phases to 73 certified Central Control Room Operators, Central Control Room Supervisors, and Shift Technical Engineers assigned to the K Reactor, on the Savannah River Site (SRS). This program was conceived and developed by the Department of Energy (DOE) and it's implementation satisfies recommendations made by the Defense Nuclear Facilities Safety Board. The review identified both strengths and weaknesses of the procedures and personnel.

  5. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-12-31

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  6. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-01-01

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  7. Savannah River Site Eastern Transportation Hub: A Concept For a DOE Eastern Packaging, Staging and Maintenance Center - 13143

    SciTech Connect

    England, Jeffery L.; Adams, Karen; Maxted, Maxcine; Ruff Jr, Clarence; Albenesius, Andrew; Bowers, Mark D.; Fountain, Geoffrey; Hughes, Michael; Gordon, Sydney; O'Connor, Stephen

    2013-07-01

    The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow for efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose

  8. Remote sensing at Savannah River

    SciTech Connect

    Corey, J.C.

    1986-01-01

    The paper discusses remote sensing systems used at the Savannah River Plant. They include three ground-based systems: ground penetrating radar, sniffers, and lasers; and four airborne systems: multispectral photography, lasers, thermal imaging, and radar systems. (ACR)

  9. Savannah River Site generic data base development

    SciTech Connect

    Blanton, C.H.; Eide, S.A.

    1993-06-30

    This report describes the results of a project to improve the generic component failure data base for the Savannah River Site (SRS). A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. This information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor) for each component failure mode.

  10. Ship Hydrodynamics

    ERIC Educational Resources Information Center

    Lafrance, Pierre

    1978-01-01

    Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)

  11. Westinghouse independent safety review of Savannah River production reactors

    SciTech Connect

    Leggett, W.D.; McShane, W.J. ); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. . Nuclear and Advanced Technology Div.); Toto, G. . Nuclear Services Div.); Fauske, H.K. ); Call, D.W. (Westinghouse Savannah R

    1989-04-01

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

  12. 230. Photocopy of Bird's Eye View of Savannah from Georgia ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    230. Photocopy of Bird's Eye View of Savannah from Georgia Historical Society Augustus Koch, Publisher, Savannah 1891 DETAIL - Savannah Victorian Historic District, Bounded by Gwinnett, East Broad, West Broad Street & Anderson Lane, Savannah, Chatham County, GA

  13. Lock 1 (Savannah River Lock), Elevation of North Wall, Detail ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 1 (Savannah River Lock), Elevation of North Wall, Detail of Wall Foundation, Detail of Gate Pocket - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  14. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  15. Savannah River site environmental report for 1996

    SciTech Connect

    Arnett, M.; Mamatey, A.

    1998-12-31

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  16. 33 CFR 165.T0704 - Safety Zone: Savannah River, Savannah, Georgia.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone: Savannah River, Savannah, Georgia. 165.T0704 Section 165.T0704 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF....T0704 Safety Zone: Savannah River, Savannah, Georgia. (a) Location. The following area is a safety...

  17. 33 CFR 165.T0704 - Safety Zone: Savannah River, Savannah, Georgia.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone: Savannah River, Savannah, Georgia. 165.T0704 Section 165.T0704 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF....T0704 Safety Zone: Savannah River, Savannah, Georgia. (a) Location. The following area is a safety...

  18. 33 CFR 165.T0704 - Safety Zone: Savannah River, Savannah, Georgia.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zone: Savannah River, Savannah, Georgia. 165.T0704 Section 165.T0704 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF....T0704 Safety Zone: Savannah River, Savannah, Georgia. (a) Location. The following area is a safety...

  19. Savannah River Site Environmental Implentation Plan

    SciTech Connect

    Not Available

    1989-08-01

    This report describes the organizational responsibilities for the Savannah River Site Environmental program. Operations, Engineering and projects, Environment, safety, and health, Quality assurance, and the Savannah River Laboratory are described.

  20. Downgrade of the Savannah River Sites FB-Line

    SciTech Connect

    SADOWSKI, ED; YOURCHAK, RANDY; PRETZELLO MARJI; MIXON, BONNIE; LYNN, ROBBIE

    2005-07-05

    This paper will discuss the Safeguards & Security (S&S) activities that resulted in the downgrade of the Savannah River Site's FB-Line (FBL) from a Category I Material Balance Area (MBA) in a Material Access Area (MAA) to a Category IV MBA in a Property Protection Area (PPA). The Safeguards activities included measurement of final product items, transferal of nuclear material to other Savannah River Site (SRS) facilities, discard of excess nuclear material items, and final measurements of holdup material. The Security activities included relocation and destruction of classified documents and repositories, decertification of a classified computer, access control changes, updates to planning documents, deactivation and removal of security systems, Human Reliability Program (HRP) removals, and information security training for personnel that will remain in the FBL PPA.

  1. Worker Alienation and Compensation at the Savannah River Site.

    PubMed

    Ashwood, Loka; Wing, Steve

    2016-05-01

    Corporations operating U.S. nuclear weapons plants for the federal government began tracking occupational exposures to ionizing radiation in 1943. However, workers, scholars, and policy makers have questioned the accuracy and completeness of radiation monitoring and its capacity to provide a basis for workers' compensation. We use interviews to explore the limitations of broad-scale, corporate epidemiological surveillance through worker accounts from the Savannah River Site nuclear weapons plant. Interviewees report inadequate monitoring, overbearing surveillance, limited venues to access medical support and exposure records, and administrative failure to report radiation and other exposures at the plant. The alienation of workers from their records and toil is relevant to worker compensation programs and the accuracy of radiation dose measurements used in epidemiologic studies of occupational radiation exposures at the Savannah River Site and other weapons plants.

  2. 33 CFR 117.936 - Savannah River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Savannah River. 117.936 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.936 Savannah River. See § 117.371, Savannah River, listed under Georgia....

  3. 33 CFR 117.371 - Savannah River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Savannah River. 117.371 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.371 Savannah River. (a) The draw of the Houlihan bridge (US 17) mile 21.6 at Savannah shall open on signal if at least three hours advance...

  4. 33 CFR 117.371 - Savannah River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Savannah River. 117.371 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.371 Savannah River. (a) The draw of the Houlihan bridge (US 17) mile 21.6 at Savannah shall open on signal if at least three hours advance...

  5. 33 CFR 117.371 - Savannah River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Savannah River. 117.371 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.371 Savannah River. (a) The draw of the Houlihan bridge (US 17) mile 21.6 at Savannah shall open on signal if at least three hours advance...

  6. 33 CFR 117.936 - Savannah River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Savannah River. 117.936 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.936 Savannah River. See § 117.371, Savannah River, listed under Georgia....

  7. 33 CFR 117.371 - Savannah River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Savannah River. 117.371 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.371 Savannah River. (a) The draw of the Houlihan bridge (US 17) mile 21.6 at Savannah shall open on signal if at least three hours advance...

  8. 33 CFR 117.371 - Savannah River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Savannah River. 117.371 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.371 Savannah River. (a) The draw of the Houlihan bridge (US 17) mile 21.6 at Savannah shall open on signal if at least three hours advance...

  9. 33 CFR 117.936 - Savannah River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Savannah River. 117.936 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.936 Savannah River. See § 117.371, Savannah River, listed under Georgia....

  10. 33 CFR 117.936 - Savannah River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Savannah River. 117.936 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.936 Savannah River. See § 117.371, Savannah River, listed under Georgia....

  11. 33 CFR 117.936 - Savannah River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Savannah River. 117.936 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.936 Savannah River. See § 117.371, Savannah River, listed under Georgia....

  12. CSR behavior and aging model for the Viton© Fluorelastomer O-rings in the 9975 shipping package

    SciTech Connect

    Mcwilliams, A. J.; Daugherty, W. L.; Skidmore, T. E.

    2015-12-01

    The 9975 Type B shipping package is used within the DOE complex for shipping special nuclear materials. This package is re-certified annually in accordance with Safety Analysis Report for Packaging (SARP) requirements. The package is also used at the Savannah River Site as part of the long-term storage configuration of special nuclear materials. As such, the packages do not undergo annual recertification during storage, with uncertainty as to how long some of the package components will meet their functional requirements in the storage environment. The packages are currently approved for up to 15 years storage, and work continues to provide a technical basis to extend that period. This report describes efforts by the Savannah River National Laboratory (SRNL) to extend the service life estimate of Viton® GLT and GLT-S fluoroelastomer O-rings used in the 9975 shipping package. O-rings of both GLT and GLT-S compositions are undergoing accelerated aging at elevated temperature, and are periodically tested for compression stress relaxation (CSR) behavior. The CSR behavior of O-rings was evaluated at temperatures from 175 to 400 °F. These collective data were used to develop predictive models for extrapolation of CSR behavior to relevant service temperatures (< 156 °F). The predictive model developed from the CSR data conservatively indicates a service life of approximately 37 years for Viton GLT O-rings at the maximum effective service temperature of 156 °F. The estimated service life for Viton GLT-S O-rings is significantly longer.

  13. Savannah River Site Environmental Report for 1994

    SciTech Connect

    Arnett, M.W.; Mamatey, A.; Spitzer, D.

    1994-12-16

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site`s mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  14. Savannah River Site generic data base development

    SciTech Connect

    Blanchard , A.

    2000-01-04

    This report describes the results of a project to improve the generic component failure database for the Savannah River Site (SRS). Additionally, guidelines were developed further for more advanced applications of database values. A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. For each component failure mode, this information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor based on a lognormal distribution). Results are presented in a table in this report. A major difference between generic database and previous efforts is that this effort estimates failure rates based on actual data (failure events) rather than on existing failure rate estimates. This effort was successful in that over 75% of the results are now based on actual data. Also included is a section on guidelines for more advanced applications of failure rate data. This report describes the results of a project to improve the generic component failure database for the Savannah River site (SRS). Additionally, guidelines were developed further for more advanced applications of database values.

  15. Design and Criticality Considerations for 9977 and 9978 Shipping Packages

    SciTech Connect

    Reed, R; Biswas, D; Abramczyk, G

    2008-11-25

    Savannah River National Laboratory (SRNL) has developed two new, Type B, state-of-the-art, general purpose, fissile material Shipping Packages, designated 9977 and 9978, as replacements for the U.S. DOT specification 6M container, phased out in September 30, 2008 due to non-compliance with current requirements 10CFR71 regulation. The packages accommodate plutonium, uranium and other special nuclear materials in bulk quantities and in many forms with capabilities exceeding those of the 6M. These packages provide a high degree of single containment and comply with 10CFR71, Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10CFR20 (As Low As Reasonably Achievable (ALARA)). Allowed package contents were determined accounting for nuclear criticality, radiation shielding, and decay heat rate. The Criticality Safety Index (CSI) for the package is 1.0. The package utilizes passive cooling to maintain internal temperatures within limits. Radiation shielding analyses have established the contents for which the packages can be shipped under non-exclusive use in the Safe-Secure Trailer or under exclusive use. The packages are designed to ship radioactive contents in several configurations; Radioisotope Thermoelectric Generators (RTGs), nested food-pack cans, site specific containers, and DOE-STD-3013 containers. Each shipping package includes a 35-gallon stainless steel outer drum, insulation, a drum liner, and a single containment vessel (CV). The 9977 includes a 6-inch ID CV while the 9978 includes a 5-inch ID CV. One inch of Fiberfrax{reg_sign} insulation is wrapped around and attached to the sides and bottom of the liner. The volume between the Fiberfrax{reg_sign} and the drum wall is filled with polyurethane foam. Top and bottom aluminum Load Distribution Fixtures (LDFs) within the drum liner cavity, above and below the CV, center the CV in the liner, stiffen the package radially, and distribute loads away from the CV. The 6CV fits directly into the LDFs while

  16. 2. Photocopy of section of panoramic map of 'Savannah, Georgia ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of section of panoramic map of 'Savannah, Georgia 1891' showing Savannah Repair Shops; drawn and published by Augustus Koch, Morning-News Lithograph, Savannah, GA. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  17. Ship Design

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Guided missile cruiser equipped with advanced Aegis fleet defense system which automatically tracks hundreds of attacking aircraft or missiles, then fires and guides the ship's own weapons in response. Designed by Ingalls Shipbuilding for the US Navy, the U.S.S. Ticonderoga is the first of four CG-47 cruisers to be constructed. NASTRAN program was used previously in another Navy/Ingalls project involving design and construction of four DDG-993 Kidd Class guided missile destroyers.

  18. Technical Review Report for the Application for Contents Amendment for Shipping Isentropic Compression Experiment (ICE) Apparatus in 9977 Packaging

    SciTech Connect

    West, M

    2009-04-16

    This report documents the review of Application for Contents Amendment for Shipping Isentropic Compression Experiment (ICE) Apparatus in 9977 Packaging, prepared by Savannah River Packaging Technology (SRPT) of Savannah River National Laboratory (SRNL) of Savannah River Nuclear Solutions, LLC, -- the Submittal -- at the request of the Department of Energy's (DOE) National Nuclear Security Agency's (NNSA) Albuquerque Facility Operations Division, for the shipment of the ICE apparatus from Los Alamos National Laboratory (LANL), to Sandia National Laboratory (SNL). The ICE apparatus consists of a stainless steel assembly containing about 8 grams of {sup 239}Pu or its dose equivalent as noted in Table 1, Comparison of 9977 Content C.1 and the ICE Radioactive Contents, of the Submittal. The ICE target is mounted on the transport container assembly base. A Viton{sup R} O-ring seals the transport container base to the transport container body. Another Viton{sup R} O-ring seals the transport container handle to the transport container body. The ICE apparatus weighs less than 30 pounds and has less than 0.6 watts decay heat rate. For the Model 9977 Package, the maximum payload weight is 100 pounds and the maximum decay heat rate is 19 watts. Thus, the maximum payload weight and the maximum decay heat rate for the Model 9977 Package easily bound those for the ICE apparatus. This Addendum supplements the Safety Analysis Report for Packaging (SARP), Revision 2, for the Model 9977 Package and Addendum 1, Revision 2, to Revision 2 of the Model 9977 Package SARP. The ICE apparatus is considered as part of Content Envelope C.6, Samples and Sources, under the submittal for the Model 9978 Package SARP currently under review. The Staff at Lawrence Livermore National Laboratory (LLNL) recommends that the Submittal be approved by the DOE-Headquarters Certifying Official (EM-60), and incorporated into a subsequent revision to the current Certificate of Compliance (CoC), to the Model

  19. BALLISTICS TESTING OF THE 9977 SHIPPING PACKAGE FOR STORAGE APPLICATIONS

    SciTech Connect

    Loftin, B.; Abramczyk, G.; Koenig, R.

    2012-06-06

    Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223 caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.

  20. 5. Photocopy of a photograph from Artwork in Savannah (Chicago: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of a photograph from Artwork in Savannah (Chicago: W.H. Parish Publishing Co., 1893) Photographer unknown, 1893 'RESIDENCE OF C.H. DORSETT' - Savannah Victorian Historic District, 215 West Gwinnett Street (House), Savannah, Chatham County, GA

  1. 229. Photocopy of Bird's Eye View of Savannah from Georgia ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    229. Photocopy of Bird's Eye View of Savannah from Georgia Historical Society A. Ruger, Publisher, St. Louis 1871 DETAIL - Savannah Victorian Historic District, Bounded by Gwinnett, East Broad, West Broad Street & Anderson Lane, Savannah, Chatham County, GA

  2. 1. Lowlevel birdseye view looking SW at the Savannah Repair ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Low-level birdseye view looking SW at the Savannah Repair Shops. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  3. Savannah River Laboratory monthly report, November 1991

    SciTech Connect

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  4. Savannah River Laboratory monthly report, September 1991

    SciTech Connect

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  5. Savannah River Laboratory monthly report, September 1991

    SciTech Connect

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  6. Savannah River Laboratory monthly report, October 1991

    SciTech Connect

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  7. Savannah River Laboratory monthly report, October 1991

    SciTech Connect

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  8. Savannah River Laboratory monthly report, July 1991

    SciTech Connect

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  9. Savannah River Laboratory monthly report, July 1991

    SciTech Connect

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  10. Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Combination Smokestack, Water Tank & Privies, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  11. Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Brick Storage Vaults under Jones Street, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  12. 33 CFR 80.715 - Savannah River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Savannah River. 80.715 Section 80.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Seventh District § 80.715 Savannah River. A line drawn from...

  13. 33 CFR 80.715 - Savannah River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Savannah River. 80.715 Section 80.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Seventh District § 80.715 Savannah River. A line drawn from...

  14. 33 CFR 80.715 - Savannah River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Savannah River. 80.715 Section 80.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Seventh District § 80.715 Savannah River. A line drawn from...

  15. 33 CFR 80.715 - Savannah River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Savannah River. 80.715 Section 80.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Seventh District § 80.715 Savannah River. A line drawn from...

  16. 33 CFR 80.715 - Savannah River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Savannah River. 80.715 Section 80.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Seventh District § 80.715 Savannah River. A line drawn from...

  17. Savannah River Site Environmental Report for 1998

    SciTech Connect

    Arnett, M

    1999-06-09

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  18. Aging Behavior of the Viton® Fluoroelastomer O-Rings in the 9975 Shipping Package

    SciTech Connect

    Daugherty, W.; Mcwilliams, A.; Skidmore, E.

    2015-06-09

    The 9975 Type B shipping package is used within the DOE complex for shipping special nuclear materials. This package is re-certified annually in accordance with Safety Analysis Report requirements. The package is also used at the Savannah River Site as part of the long-term storage configuration of special nuclear materials. As such, the packages do not undergo annual recertification during storage, with uncertainty as to how long some of the package components will meet their functional requirements in the storage environment. The packages are currently approved for up to 15 years storage, and work continues to provide a technical basis to extend that period. This paper describes efforts by the Savannah River National Laboratory (SRNL) to extend the service life estimate of Viton® GLT and GLT-S fluoroelastomer O-rings used in the 9975 shipping package. O-rings of both compositions are undergoing accelerated aging at elevated temperature, and are periodically tested for compression stress relaxation (CSR) behavior and leak performance. The CSR behavior of O-rings was evaluated at temperatures from 79 °C to 177 °C. These collective data were used to develop predictive models for extrapolation of CSR behavior to relevant service temperatures (< 75 °C). O-rings were also aged in Primary Containment Vessel (PCV) fixtures at temperatures ranging from 79 °C to 232 °C. The fixtures are helium leak tested periodically to determine if they remain leak-tight. The PCV fixture tests demonstrate that the 9975 O-rings will remain leak-tight at temperatures up to 149 °C for 3 years or more, and no leak failures have been observed with up to 8 years aging at 93 °C. Significantly longer periods of leak-tight service are expected at the lower temperatures actually experienced in the storage environment. The predictive model developed from the CSR data conservatively indicates a service life of more than 20 years at the bounding temperature of 75 °C. Although the

  19. Comparative phylogeography of African savannah ungulates.

    PubMed

    Lorenzen, E D; Heller, R; Siegismund, H R

    2012-08-01

    The savannah biome of sub-Saharan Africa harbours the highest diversity of ungulates (hoofed mammals) on Earth. In this review, we compile population genetic data from 19 codistributed ungulate taxa of the savannah biome and find striking concordance in the phylogeographic structuring of species. Data from across taxa reveal distinct regional lineages, which reflect the survival and divergence of populations in isolated savannah refugia during the climatic oscillations of the Pleistocene. Data from taxa across trophic levels suggest distinct savannah refugia were present in West, East, Southern and South-West Africa. Furthermore, differing Pleistocene evolutionary biogeographic scenarios are proposed for East and Southern Africa, supported by palaeoclimatic data and the fossil record. Environmental instability in East Africa facilitated several spatial and temporal refugia and is reflected in the high inter- and intraspecific diversity of the region. In contrast, phylogeographic data suggest a stable, long-standing savannah refuge in the south.

  20. Shipping container for fissile material

    DOEpatents

    Crowder, H.E.

    1984-12-17

    The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

  1. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  2. Final Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-12-15

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.

  3. 228. Photocopy of map from City of Savannah, Engineering Dept. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    228. Photocopy of map from City of Savannah, Engineering Dept. John McKinnon, surveyor of Chatham County 1800 CITY OF SAVANNAH AND ENVIRONS - Savannah Victorian Historic District, Bounded by Gwinnett, East Broad, West Broad Street & Anderson Lane, Savannah, Chatham County, GA

  4. ADAPTING A CERTIFIED SHIPPING PACKAGE FOR STORAGE APPLICATIONS

    SciTech Connect

    Loftin, B.; Abramczyk, G.

    2012-06-05

    For years shipping packages have been used to store radioactive materials at many DOE sites. Recently, the K-Area Material Storage facility at the Savannah River Site became interested in and approved the Model 9977 Shipping Package for use as a storage package. In order to allow the 9977 to be stored in the facility, there were a number of evaluations and modifications that were required. There were additional suggested modifications to improve the performance of the package as a storage container that were discussed but not incorporated in the design that is currently in use. This paper will discuss the design being utilized for shipping and storage, suggested modifications that have improved the storage configuration but were not used, as well as modifications that have merit for future adaptations for both the 9977 and for other shipping packages to be used as storage packages.

  5. Building America Case Study: Savannah Gardens, Savannah, Georgia

    SciTech Connect

    2016-03-01

    Southface Energy Institute (Southface) partnered with owners and/or builders with various market constraints and ultimate goals for three projects in different climate zones: Savannah, GA (CZ 2), Clemson, SC (CZ 3), and LaFayette, GA (CZ 4). This report documents the design process, computational energy modeling, construction, envelope performance metrics, long-term monitoring results, and successes and failures of the design and execution of these high performance homes. The three bedroom/two bathroom test home in Savannah Gardens on an elevated slab foundation has a semi-conditioned, encapsulated attic. A neighboring home built to EarthCraft specifications was also monitored as a control for exterior foam insulation and a heat pump water heater (HPWH). For the JMC Patrick Square, a single-story project in Clemson, the small-scale production builder wanted to increase their level of energy efficiency beyond their current green building practices, including bringing ducts into conditioned space. Through a combination of upgrade measures the team met this goal and achieved many Zero Energy Ready Home requirements. LaFayette Housing Authority undertook a development of 30 affordable rental housing units in 15 duplexes in LaFayette, GA. Because they would be long-term owners, their priorities were low utility bills for the residents and durable, maintainable buildings. The team employed BEopt to optimize building envelope and systems choices, including 2x6 advanced framed walls, insulated slab, and heat pump water heater in a utility closet which was ducted to/from an encapsulated attic.

  6. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    SciTech Connect

    Not Available

    1991-04-01

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig.

  7. Savannah River Site 1991 Road Erosion Inventory.

    SciTech Connect

    Jones, Cliff.

    2007-06-22

    Final Report. USDA Forest Service, Savannah River, Aiken, SC. 28 pp. Abstract - This paper explains the rationale and results of a 1991 road erosion inventory conducted by members of the USDA Forest Service – Savannah River (FS-SR) and USDA Natural Resources Conservation Service (NRCS). The inventory provided information for the Department of Energy - Savannah River (DOE-SR) to justify the need for developing an erosion and sediment control program with appropriate funding, personnel, and equipment. Federally managed since the early 1950’s, the SRS is located on 198,344 acres (80,301 hectares) in the South Carolina counties of Aiken, Barnwell, and Allendale. Located along the eastern border of the Savannah River, the SRS is located within the Upper and Lower Coastal Plains of South Carolina.

  8. Savannah River Site environmental data for 1995

    SciTech Connect

    Arnett, M.W.

    1995-12-31

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs.

  9. Advanced separations at Savannah River Site

    SciTech Connect

    Thompson, M.; McCabe, D.

    1996-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (cesium, strontium, tritium, actinides) and hazardous components (polychlorinated biphenyls (PCBs), cyanide, metal ions).

  10. Savannah River Technology Center, monthly report

    SciTech Connect

    Not Available

    1994-04-01

    This is the monthly report to detail the research currently being conducted at the Savannah River Technology Center. The areas of research are in Tritium, Seperation processes, Environmental Engineering, and Waste Management.

  11. MERCHANT MARINE SHIP REACTOR

    DOEpatents

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  12. Merchant Marine Ship Reactor

    DOEpatents

    Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.

    1961-05-01

    A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)

  13. TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Farfan, E.; Foley, T.

    2010-02-10

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

  14. PERFORMANCE OF THE SAVANNAH RIVER SITE COULOMETER FOR NEPTUNIUM PROCESSACCOUNTABILITY AND NEPTUNIUM OXIDE PRODUCT CHARACTERIZATION

    SciTech Connect

    Holland, M; Patterson Nuessle, P; Sheldon Nichols, S; Joe Cordaro, J; George Reeves, G

    2008-06-04

    The Savannah River Site's (SRS) H-Area B-Line (HB-Line) nuclear facility is processing neptunium solutions for stabilization as an oxide. The oxide will eventually be reprocessed and fabricated into target material and the 237Np irradiated to produce {sup 238}Pu in support of National Aeronautics and Space Administration space program missions. As part of nuclear materials accountability, solution concentrations were measured using a high-precision controlled-potential coulometer developed and manufactured at the SRS for plutonium accountability measurements. The Savannah River Site Coulometer system and measurement methodology for plutonium meets performance standards in ISO 12183-2005, 'Controlled-Potential Coulometric Assay of Plutonium'. The Department of Energy (DOE) does not produce or supply a neptunium metal certified reference material, which makes qualifying a measurement method and determining accuracy and precision difficult. Testing and performance of the Savannah River Site Coulometer indicates that it can be used to measure neptunium process solutions and dissolved neptunium oxide without purification for material control and accountability purposes. Savannah River Site's Material Control and Accountability organization has accepted the method uncertainty for accountability and product characterization measurements.

  15. 33 CFR 165.751 - Security Zone: LNG mooring slip, Savannah River, Savannah, Georgia.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: LNG mooring slip... § 165.751 Security Zone: LNG mooring slip, Savannah River, Savannah, Georgia. (a) Security zone. The... security zone; or (4) Actively engaged in escort, maneuvering, or support duties for an LNG tankship....

  16. Savannah River Site computing architecture

    SciTech Connect

    Not Available

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site's production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  17. Savannah River Site computing architecture

    SciTech Connect

    Not Available

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site`s production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  18. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    SciTech Connect

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  19. Hospital Ship Replacement

    DTIC Science & Technology

    2011-08-01

    designed to operate primarily when anchored to reduce the effects of roll. Quantum markets two separate zero speed active roll fin models for small ...ships. Feasibility of scaling fins to the size of the hospital ship requires validation. 3.12 Lifeboats and Liferafts The safety appliances designated ...for Innovation in Ship Design Technical Report Hospital Ship Replacement By Hannah Allison, Christopher Mehrvarzi, Rebecca Piks, Beau Lovdahl

  20. 231. Photocopy of Photograph from Artwork of Savannah and August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    231. Photocopy of Photograph from Artwork of Savannah and August Georgia (Chicago: Gravure Illustration Co., 1902) Photographer unknown 1902 'SCENE ON BOLTON STREET, E.' - Savannah Victorian Historic District, Bounded by Gwinnett, East Broad, West Broad Street & Anderson Lane, Savannah, Chatham County, GA

  1. 243. Photocopy of photograph from Artwork of Savannah, Ga. (Chicago: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    243. Photocopy of photograph from Artwork of Savannah, Ga. (Chicago: W.H. Parish Publishing Co., 1893) Photographer unknown, 1893 'RESIDENCE OF J.A.G. CARSON' - Savannah Victorian Historic District, Bounded by Gwinnett, East Broad, West Broad Street & Anderson Lane, Savannah, Chatham County, GA

  2. Law enforcement tools available at the Savannah River Site

    SciTech Connect

    Hofstetter, K.J.

    2000-03-29

    A number of nuclear technologies developed and applied at the Savannah River Site in support of nuclear weapons material production and environmental remediation can be applied to problems in law enforcement. Techniques and equipment for high-sensitivity analyses of samples are available to identify and quantify trace elements and establish origins and histories of forensic evidence removed from crime scenes. While some of theses capabilities are available at local crime laboratories, state-of-the-art equipment and breakthroughs in analytical techniques are continually being developed at DOE laboratories. Extensive experience with the handling of radioactive samples at the DOE labs minimizes the chances of cross-contamination of evidence received from law enforcement. In addition to high-sensitivity analyses, many of the field techniques developed for use in a nuclear facility can assist law enforcement personnel in detecting illicit materials and operations, in retrieving of pertinent evidence and in surveying crime scenes. Some of these tools include chemical sniffers, hand-held detectors, thermal imaging, etc. In addition, mobile laboratories can be deployed to a crime scene to provide field screening of potential evidence. A variety of portable sensors can be deployed on vehicle, aerial, surface or submersible platforms to assist in the location of pertinent evidence or illicit operations. Several specific nuclear technologies available to law enforcement and their potential uses are discussed.

  3. Savannah River Laboratory monthly report

    SciTech Connect

    Not Available

    1985-12-01

    Efforts in the area of nuclear reactors and scientific computations are reported, including: robotics; reactor irradiation of nonend-bonded target slugs; computer link with Los Alamos National Laboratory; L-reactor thermal mitigation; aging of carbon in SRP reactor airborne activity confinement systems; and reactor risk assessment for earthquakes. Activities in chemical processes and environmental technology are reported, including: solids formation in a plutonium product stream; revised safety analysis reporting for F and H-Canyon operations; organic carbon analysis of DWPF samples; applications of Fourier transform infrared spectrometry; water chemistry analyzer for SRP reactors; and study of a biological community in Par Pond. Defense waste and laboratory operations activities include: Pu-238 waste incinerator startup; experimental canister frit blaster; saltstone disposal area design; powder metallurgy core diameter measurement; and a new maintenance shop facility. Nuclear materials planning encompasses decontamination and decommissioning of SRP facilities and a comprehensive compilation of environmental and nuclear safety issues. (LEW)

  4. Infections on Cruise Ships.

    PubMed

    Kak, Vivek

    2015-08-01

    The modern cruise ship is a small city on the seas, with populations as large as 5,000 seen on large ships. The growth of the cruise ship industry has continued in the twenty-first century, and it was estimated that nearly 21.3 million passengers traveled on cruise ships in 2013, with the majority of these sailing from North America. The presence of large numbers of individuals in close proximity to each other facilitates transmission of infectious diseases, often through person-to-person spread or via contaminated food or water. An infectious agent introduced into the environment of a cruise ship has the potential to be distributed widely across the ship and to cause significant morbidity. The median cruise ship passenger is over 45 years old and often has chronic medical problems, so it is important that, to have a safe cruise ship experience, any potential for the introduction of an infecting agent as well as its transmission be minimized. The majority of cruise ship infections involve respiratory and gastrointestinal infections. This article discusses infectious outbreaks on cruise ships and suggests preventative measures for passengers who plan to travel on cruise ships.

  5. SALT CORE SAMPLING EVOLUTION AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Nance, T; Daniel Krementz, D; William Cheng, W

    2007-11-29

    The Savannah River Site (SRS), a Department of Energy (DOE) facility, has over 30 million gallons of legacy waste from its many years of processing nuclear materials. The majority of waste is stored in 49 buried tanks. Available underground piping is the primary and desired pathway to transfer waste from one tank to another until the waste is delivered to the glass plant, DWPF, or the grout plant, Saltstone. Prior to moving the material, the tank contents need to be evaluated to ensure the correct destination for the waste is chosen. Access ports are available in each tank top in a number of locations and sizes to be used to obtain samples of the waste for analysis. Material consistencies vary for each tank with the majority of waste to be processed being radioactive salts and sludge. The following paper describes the progression of equipment and techniques developed to obtain core samples of salt and solid sludge at SRS.

  6. SPENT FUEL MANAGEMENT AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Vormelker, P; Robert Sindelar, R; Richard Deible, R

    2007-11-03

    Spent nuclear fuels are received from reactor sites around the world and are being stored in the L-Basin at the Savannah River Site (SRS) in Aiken, South Carolina. The predominant fuel types are research reactor fuel with aluminum-alloy cladding and aluminum-based fuel. Other fuel materials include stainless steel and Zircaloy cladding with uranium oxide fuel. Chemistry control and corrosion surveillance programs have been established and upgraded since the early 1990's to minimize corrosion degradation of the aluminum cladding materials, so as to maintain fuel integrity and minimize personnel exposure from radioactivity in the basin water. Recent activities have been initiated to support additional decades of wet storage which include fuel inspection and corrosion testing to evaluate the effects of specific water impurity species on corrosion attack.

  7. Decontamination and decommissioning experience at the Savannah River Site

    SciTech Connect

    Monson, R.W.

    1994-07-01

    A continuing concern within the DOE complex is how to address the retirement contains special of a facility which nuclear material (SNM). When the life expectancy of a facility has been reached, decisions must be made pertaining to (1) rial from the facility, removing the mate (2) accounting for the material and (3) final disposition of the material. This paper will discuss such a decontamination and decommissioning (D&D) process which we are presently dealing with at the Savannah River Site. The process must follow DOE Order 5633.3A as well as internal Company procedures regarding MC&A. In some D&D cases the material can be exempt from the DOE Order when all of the following criteria are met: (1) the material has been declared waste, (2) the material has been written off the MC&A books, and (3) the material is under the control of a waste management organization.

  8. Genetic Evidence for Contrasting Wetland and Savannah Habitat Specializations in Different Populations of Lions (Panthera leo).

    PubMed

    Moore, Andy E; Cotterill, Fenton P D Woody; Winterbach, Christiaan W; Winterbach, Hanlie E K; Antunes, Agostinho; O'Brien, Stephen J

    2016-03-01

    South-central Africa is characterized by an archipelago of wetlands, which has evolved in time and space since at least the Miocene, providing refugia for animal species during Pleistocene arid episodes. Their importance for biodiversity in the region is reflected in the evolution of a variety of specialist mammal and bird species, adapted to exploit these wetland habitats. Populations of lions (Panthera leo) across south-central and east Africa have contrasting signatures of mitochondrial DNA haplotypes and biparental nuclear DNA in wetland and savannah habitats, respectively, pointing to the evolution of distinct habitat preferences. This explains the absence of genetic admixture of populations from the Kalahari savannah of southwest Botswana and the Okavango wetland of northern Botswana, despite separation by only 500 km. We postulate that ancestral lions were wetland specialists and that the savannah lions evolved from populations that were isolated during arid Pleistocene episodes. Expansion of grasslands and the resultant increase in herbivore populations during mesic Pleistocene climatic episodes provided the stimulus for the rapid population expansion and diversification of the highly successful savannah lion specialists. Our model has important implications for lion conservation.

  9. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect

    Smith, M.; Iverson, D.

    2010-12-08

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  10. Assessment of Technetium in the Savannah River Site Environment

    SciTech Connect

    Carlton, W.H.; Denham, M.; Evans, A.G.

    1993-07-01

    Assessment of Technetium in the Savannah River Site Environment is the last in a series of eight documents on individual radioisotopes released to the environment as a result of SRS operations. The earlier documents describe the environmental consequences of tritium cesium, iodine, uranium plutonium, strontium, and carbon. Technetium transport and metabolism have been studied by the nuclear industry because it is a fission product of uranium, and by the medical community because {sup 99m}Tc commonly is used as a diagnostic imaging agent in nuclear medicine. Technetium has been produced at SRS during the operation of five production reactors. The only isotope with environmental significance is {sup 99}Tc. Because of the small activities of {sup 99}Tc relative to other fission products, such as {sup 90}Sr and {sup 137}Cs, no measurements were made of releases to either the atmosphere or surface waters. Dose calculations were made in this document using conservative estimates of atmospheric releases and from a few measurements of {sup 99}Tc concentrations in the Savannah River. Technetium in groundwater has been found principally in the vicinity of the separation areas seepage basins. Technetium is soluble in water and follows groundwater flow with little retardation. While most groundwater samples are negative or show little technetium a few samples have levels slightly above the limits set by the EPA for drinking water. The overall radiological impact of SRS {sup 99}Tc releases on the offsite maximally exposed individual during 38 years of operations can be characterized by maximum individual doses of 0.1 mrem (atmospheric) and 0.8 mrem (liquid), compared with a dose of 13,680 mrem from non-SRS sources during the same time period. Technetium releases have resulted in a negligible risk to the environment and the population it supports.

  11. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee,...

  12. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee,...

  13. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee,...

  14. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee,...

  15. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee,...

  16. Savannah River Site Public and regulatory involvement in the transuranic (TRU) program and their effect on decisions to dispose of Pu-238 heat source tru waste onsite

    SciTech Connect

    Bert Crapse, H.M.; Sonny, W.T.

    2007-07-01

    The key to successful public involvement at the Savannah River Site (SRS) has been and continues to be vigorous, up-front involvement of the public and state regulators with technical experts. The SRS Waste Management Program includes all forms of radioactive waste. All of the decisions associated with the management of these wastes are of interest to the public and successful program implementation would be impossible without including the public up-front in the program formulation. Serious problems can result if program decisions are made without public involvement, and if the public is informed after key decisions are made. This paper will describe the regulatory and public involvement program and their effects on the decisions concerning the disposal at the Savannah River Site (SRS) of heat source Pu-238 TRU waste. As can be imagined, a decision to dispose of TRU waste onsite versus shipment to the Waste Isolation Pilot Plan (WIPP) in New Mexico for disposal is of considerable interest to the stakeholders in South Carolina. The interaction between the stakeholders not only include the general public, but also the South Carolina Department of Health and Environmental Control (SCDHEC) and Region IV of the Environmental Protection Agency (EPA). The discussions, educational sessions, and negotiations include resolution of equity issues as well and moved forward to an understanding of the difficulties including risk management faced by the Ship-to- WIPP program. Once the program was better understood, the real negotiations concerning equity, safety, and risk to workers from handling Pu-238 waste could begin. This paper will also discuss the technical, regulatory, and public involvement aspects of disposal onsite that must be properly communicated if the program is to be successful. The Risk Based End State Vision Report for the Savannah River Site includes a variance that proposes on-site near surface disposal of waste from the program to produce Pu-238 heat sources

  17. Carolina bays of the Savannah River Plant

    SciTech Connect

    Schalles, J.F. ); Sharitz, R.R.; Gibbons, J.W.; Leversee, G.J.; Knox, J.N. )

    1989-01-01

    Much of the research to date on the Carolina bays of the Savannah River Plant and elsewhere has focused on certain species or on environmental features. Different levels of detail exist for different groups of organisms and reflect the diverse interests of previous investigators. This report summarizes aspects of research to date and presents data from numerous studies. 70 refs., 14 figs., 12 tabs.

  18. Phacoemulsification in an adult Savannah monitor lizard.

    PubMed

    Colitz, Carmen M H; Lewbart, Greg; Davidson, Michael G

    2002-09-01

    An adult male Savannah monitor lizard (Varanus exanthematicus) was presented for bilateral lens opacities that had progressed rapidly over the previous 2 months. A diagnosis of bilateral mature cataracts was made and phacoemulsification cataract extraction was performed. Surgery restored vision and normal activity to the patient.

  19. Savannah River Technology Center monthly report

    SciTech Connect

    Not Available

    1994-03-01

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: Acorn Cleaning Study, tritium, separation processes, bioremediation programs, environmental remediation, environmental sampling, waste management, statistical design, phase I array experiments, and, Monte Carlo Neutron Photon input files.

  20. Land Use Baseline Report Savannah River Site

    SciTech Connect

    Noah, J.C.

    1995-06-29

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  1. Savannah River Laboratory monthly report, February 1992

    SciTech Connect

    Ferrell, J.M.; Ice, L.W.

    1992-02-01

    This report is a progress report for the Savannah River Laboratory for the month of February 1992. The progress and activities in six categories were described in the report. The categories are reactor, tritium, separations, environmental, waste management, and general. Each category described numerous and varied activities. Some examples of these activities described are such things as radiation monitoring, maintenance, modifications, and remedial action.

  2. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect

    Not Available

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  3. The Savannah River Site's groundwater monitoring program

    SciTech Connect

    Not Available

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  4. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    SciTech Connect

    Paller, M. )

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  5. SHIPPING CONTAINER FOR RADIOACTIVE MATERIAL

    DOEpatents

    Nachbar, H.D.; Biggs, B.B.; Tariello, P.J.; George, K.O.

    1963-01-15

    A shipping container is described for transponting a large number of radioactive nuclear fuel element modules which produce a substantial amount of heat. The container comprises a primary pressure vessel and shield, and a rotatable head having an access port that can be indexed with module holders in the container. In order to remove heat generated in the fuel eleme nts, a heat exchanger is arranged within the container and in contact with a heat exchange fluid therein. The heat exchanger communicates with additional external heat exchangers, which dissipate heat to the atmosphere. (AEC)

  6. 3D Geological Modeling of the General Separations Area, Savannah River Site: A Preliminary Workflow and Model

    SciTech Connect

    Flach, G.P.

    2002-10-29

    The Savannah River Site, located in South Carolina, contains nuclear defense products and nuclear waste byproducts as result of national defense operations dating to the 1950s. The facility has been the subject of a variety of scientific investigations focusing on potential groundwater transportation of nuclides and other hazardous materials through the different aquifers within the air. The area of particular interest, and the subject of this report, is the General Separations Area.

  7. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-01-01

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  8. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-12-31

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  9. Ocean drilling ship chosen

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The Sedco/BP 471, owned jointly by Sedco, Inc., of Dallas, Tex., and British Petroleum, has been selected as the drill ship for the Ocean Drilling Program (ODP). The contract, with a specified initial term of 4 years with 10 1-year options after that, is expected to be signed by mid March by Texas A&M University, the ODP science operator, and Sedco, Inc. Texas A&M will develop the design for scientific and laboratory spaces aboard the Sedco/BP 471 and will oversee the ship conversion. Testing and shakedown of the ship is scheduled for the coming autumn; the first scientific cruise is scheduled for next January.One year ago, the commercial drilling market sagged, opening up the option for leasing a commercial drill ship (Eos, February 22, 1983, p. 73). Previously, the ship of choice had been the Glomar Explorer; rehabilitating the former CIA salvage ship would have been extremely expensive, however.

  10. Operational Readiness Review: Savannah River Replacement Tritium Facility

    SciTech Connect

    Not Available

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members.

  11. An Arsenal Ship Design

    DTIC Science & Technology

    1996-12-01

    and dental services underway. 5. Disbursing Office In addition to being paperless, the Arsenal Ship is also a cashless ship. The ship does not have...Vending Machines Cashless ship (i.e. Use MARC card) O 10.4.3 Provide Crew Entertainment O 10.4.3.1 Closed Circuit TV Shipboard Multi-Media Resource Center...Administration MARC (Multi-technology Automated Reader Card) O 10.5.2 Distribution of Pay/Banking/Postal Services Shifting to Cashless Services

  12. Land and water use characteristics in the vicinity of the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-03-01

    Routine operations at the Savannah River Site (SRS) result in the release of small amounts of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the offsite maximum individual and the offsite population within 50 miles of the SRS are estimated on a yearly basis. These estimates are generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose model parameters for facilities not having enough data to develop site-specific values. A survey of land and water use characteristics for the Savannah River area has been conducted to determine as many site-specific values as possible for inclusion in the dose models used at the SRS. These site parameters include local characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates. The report that follows describes the origin of the NRC default values, the methodology for deriving regional data, the results of the study, and the derivations of region-specific usage and consumption rates. 33 refs., 3 figs., 8 tabs.

  13. VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN LABORATORY AND SP-SE REACTOR ROOM,LEVEL -15’, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  14. Lightning protection for the process canyons at the Savannah River site

    SciTech Connect

    McAfee, D.E.

    1995-12-31

    Westinghouse Savannah River Company (WSRC) has performed Lightning Studies for the existing Process Canyons at the Savannah River Site (SRS). These studies were initiated to verify the lightning protection systems for the facilities and to compare the installations to the National Fire Protection (NFPA) Standard 780, Lighting Protection Code, 1992. The original study of the F-Canyon was initiated to develop answers to concerns raised by the Defense Nuclear Facility Safety Board (DNFSB). Once this study was completed it was determined that a similar study for H-Canyon would be prudent; followed by an evaluation of the Defense Waste Processing Facility (DWPF) Vitrification Building (S-Canyon). This paper will provide an overview of the nature of lightning and the principals of lightning protection. This will provide the reader with a basic understanding of the phenomena of lighting and its potential for damaging structures, components, and injuring personnel in or near the structure.

  15. MEASUREMENT AND PREDICTION OF RADIOLYTIC HYDROGEN PRODUCTION IN DEFENSE WASTE PROCESSING SLURRIES AT SAVANNAH RIVER SITE

    SciTech Connect

    Bibler, N; John Pareizs, J; Terri Fellinger, T; Cj Bannochie, C

    2007-01-10

    This paper presents results of measurements and predictions of radiolytic hydrogen production rates from two actual process slurries in the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS). Hydrogen is a flammable gas and its production in nuclear facilities can be a safety hazard if not mitigated. Measurements were made in the Shielded Cells of Savannah River National Laboratory (SRNL) using a sample of Sludge Batch 3 (SB3) currently being processed by the DWPF. Predictions were made using published values for rates of radiolytic reactions producing H{sub 2} in aqueous solutions and the measured radionuclide and chemical compositions of the two slurries. The agreement between measured and predicted results for nine experiments ranged from complete agreement to 24% difference. This agreement indicates that if the composition of the slurry being processed is known, the rate of radiolytic hydrogen production can be reasonably estimated.

  16. ADVANCES IN SE-79 ANALYSES ON SAVANNAH RIVER SITE RADIOACTIVE WASTE MATRICES

    SciTech Connect

    Diprete, D; C Diprete, C; Ned Bibler, N; Cj Bannochie, C; Michael Hay, M

    2009-03-16

    Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize {sup 79}Se in radioactive waste inventories. Successful analysis of {sup 79}Se in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of {sup 79}Se in the types of matrices present at SRS requires an extremely efficient and selective separation of {sup 79}Se from high levels of interfering radionuclides. A robust {sup 79}Se radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying {sup 79}Se from a wide range of interfering radioactive species. In addition to a dramatic improvements in the Kd, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 hours.

  17. Preliminary Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-09-19

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Several issues were presented at the meeting for discussion. This is a short summary that is organized in accordance with the primary issues discussed, which is not necessarily a chronological record. Issues include: SRS Meteorological Data and its Use in MACCS2; Deposition Velocities for Particles; Deposition Velocities for Tritium; MACCS2 Dispersion Coefficients; Use of Low Surface Roughness in Open Areas; Adequacy of Meteorological Tower and Instrumentation; Displacement Height; and Validity of MACCS2 Calculations at Close-in Distances. A longer report will be issued at a later date that expands upon these topics and recommendations.

  18. Critical Protection Item Classification for a waste processing facility at Savannah River Site. Revision 1

    SciTech Connect

    Ades, M.J.; Garrett, R.J.

    1993-12-31

    As a part of its compliance with the Department of Energy requirements for safety of nuclear facilities at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC) assigns functional classifications to structures, systems and components (SSCs). As a result, changes in design, operations, maintenance, testing, and inspections of SSCs are performed and backfit requirements are established. This paper describes the Critical Protection Item (CPI) Classification for waste processing facility (WPF) at SRS. The descriptions of the WPF and the processes considered are provided elsewhere. The proposed CPI classification methodology includes the evaluation of the onsite radiological consequences, and the onsite and offsite non-radiological consequences from postulated accidents at the WPF, and comparison of these consequences with allowable frequency-dependent limits. When allowable limits are exceeded, CPIs are identified for accident mitigation.

  19. Ships to the Sea.

    ERIC Educational Resources Information Center

    Department of the Navy, Washington, DC.

    This lesson contains materials for the U.S. Navy Museum's "Ships to the Sea" program. The program is appropriate for students in grades 2-4 and was designed in accordance with local and national social studies standards. The materials introduce students to the world of ship technology and naval terminology. The lesson is presented in…

  20. Wetland restoration and compliance issues on the Savannah River site

    SciTech Connect

    Wein, G.R.; McLeod, K.W.; Sharitz, R.R. )

    1993-01-01

    Operation of the nuclear production reactors on the Savannah River Site has faced potential conflicts with wetland regulations on several occasions. This paper provides two examples in which regulatory compliance and restoration research have been meshed, providing both compliance and better knowledge to aid future regulatory needs. The decision to restart the L reactor required the mitigation of thermal effluents under Sec. 316 of the Clean Water Act. The National Pollutant Discharge Elimination System, permit for the selected mitigation alternative, a 405-ha once-through cooling reservoir, required the establishment of a balanced biological community (BBC) within the lake. To promote the development of a BBC, the reservoir was seeded with water from an existing BBC (Par Pond) and stocked with fish and had artificial reefs constructed. The US Department of Energy (DOE) also requested that the Savannah River Ecology Laboratory establish littoral/wetland vegetation along the shoreline to provide aquatic and wildlife habitat, shoreline stabilization, and a good faith effort toward the establishment of a BBC. The development of wetland vegetation was deemed important to the successful development of a BBC within L Lake. However, in a similar cooling reservoir system constructed in 1957 (Par Pond), wetland vegetation successfully developed without any planting effort. Other than the good faith effort toward a BBC, there is no reason to assume a littoral/wetland community would not develop of its own accord. However, research conducted at L Lake indicates that the planting of wetland vegetation at L Lake accelerated the process of natural selection over that of areas that were not planted.

  1. Characterization of Savannah River Plant waste glass

    SciTech Connect

    Plodinec, M J

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria.

  2. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  3. Installation Restoration Program. Preliminary Assessment: 165th Tactical Airlift Group and the Savannah Permanent Field Training Site, Savannah International Airport, Savannah, Georgia

    DTIC Science & Technology

    1987-12-01

    CONTENTS Page EXECUTIVE SUMMARY. .. .. ... ........ ........... ES-i 1. INTRODUCTION............ . .. .. .. .. .. .. .. .. .....- A. Background...VT-i AvnIi[at111ty Codes L) eoa I CONTENTS (Continued) 3 Page 3 GLOSSARY OF TERMS ........ .............................. GL-l U BIBLIOGRAPHY...waters of the canal do support aquatic life and the canal is fished. The city of Savannah obtains some municiple water from the Savannah River. From

  4. Tritium protection at the Savannah River Plant

    SciTech Connect

    Reinig, W.C.

    1988-01-01

    The Savannah River Plant produces tritium for the nation's defense. In addition to the planned production, unwanted tritium results from neutron irradiation of the heavy water moderator in the plant's reactors. During the past 30 years, continual improvements have been made in methods to protect the large workforce at the reactors and at the tritium facility from the potential hazards of tritium. This paper describes the current protection program.

  5. Watershed modeling at the Savannah River Site.

    SciTech Connect

    Vache, Kellie

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  6. Assessment of plutonium in the Savannah River Site environment. Revision 1

    SciTech Connect

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  7. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  8. Nuclear powerplants for mobile applications.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  9. Savannah River Remediation Cost Savings Initiative - 12339

    SciTech Connect

    Davis, Neil R.

    2012-07-01

    Savannah River enjoyed two years of increased funding as a result of the American Reinvestment and Recovery Act and Department of Energy (DOE) directed scope additions. Moving into FY2012, a much lower funding level is anticipated. In the past, the first response to a reduced funding scenario was to defer scope and slow down the program. This time, Savannah River decided that a better process was needed to try to maximize value to the government. This approach was named the Cost Savings Initiative (CSI). The CSI process is similar to a zero-based budget concept. Every element of work scope was screened to eliminate everything that was not directly related to safety and regulatory compliance. Then the schedules for the regulatory-driven scope were deferred such that the regulatory milestones were achieved just in time with no acceleration. This resulted in a strategy that met regulatory requirements in FY2012-13 with some remaining funding but not in FY2014-15. The remaining funding was then invested in cost savings initiatives in FY2012-13 to reduce the future cost of doing business in the FY2014-15 timeframe and beyond. This resulted in a Strategy that: - Meets all regulatory commitments; - Meets some regulatory commitments early; and - Preserves most of the life cycle savings that were built in to the baseline plan The CSI process used at Savannah River may be considered for application elsewhere in the DOE Complex. (authors)

  10. Meteorological annual report for 1995 at the Savannah River Site

    SciTech Connect

    Hunter, C.H.; Tatum, C.P.

    1996-12-01

    The Environmental Technology Section (ETS) of the Savannah River Technology Center (SRTC) collects, archives, and analyzes basic meteorological data supporting a variety of activities at SRS. These activities include the design, construction, and operation of nuclear and non-nuclear facilities, emergency response, environmental compliance, resource management, and environmental research. This report contains tabular and graphical summaries of data collected during 1995 for temperature, precipitation, relative humidity, wind, barometric pressure, and solar radiation. Most of these data were collected at the central Climatology Facility. Summaries of temperature and relative humidity were generated with data from the lowest level of measurement at the Central Climatology Site tower (13 feet above ground). (Relative humidity is calculated from measurements of dew-point temperature.) Wind speed summaries were generated with data from the second measurement level (58 feet above ground). Wind speed measurements from this level are believed to best represent open, well-exposed areas of the Site. Precipitation summaries were based on data from the Building 773-A site since quality control algorithms for the central Climatology Facility rain gauge data were not finalized at the time this report was prepared. This report also contains seasonal and annual summaries of joint occurrence frequencies for selected wind speed categories by 22.5 degree wind direction sector (i.e., wind roses). Wind rose summaries are provided for the 200-foot level of the Central Climatology tower and for each of the eight 200-foot area towers.

  11. 77 FR 30518 - Support of Deployment of Prototype Small Modular Reactors at the Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ...DOE-Savannah River Operations Office (SR), in conjunction with the Savannah River National Laboratory (SRNL), announces the availability of support for deployment of Small Modular Reactors (SMR) on the Savannah River Site...

  12. Savannah River Laboratory monthly report

    SciTech Connect

    Not Available

    1986-02-01

    Brief summaries are given in the areas of defense waste and laboratory operations, nuclear reactors and scientific computation, and chemical processes and environmental technology. The performance of waste glass samples has been tested. A prototype Pu-238 waste incinerator is being tested. A monitor system is being developed to allow unattended computer system operation. A program to review and update the Reactor Technical Standards and Specifications is in progress. Analysis of a medium LOCA in a reactor D/sub 2/O coolant system is reported. Preliminary results are given for alternative degreasers. Modernization of a JOSHUA computer system is reported. The safety of a fuel tube fabrication building is discussed. The program to evaluate reactor materials is summarized. A design has been developed for a silver-mordenite packed bed reactor to remove radioactive iodine from uranium fuel dissolver off-gas. Automated online analyzers were developed. Ground-penetrating radar has been evaluated. The safety of two space probes powered by plutonium dioxide thermal generators was evaluated. (LEW)

  13. [Psychopathology service on ships].

    PubMed

    Nowosielski, Radosław; Mazurek, Tomasz; Florkowski, Antoni

    2010-06-01

    The aim of this study was to describe the specific engineering services and suitability of candidates for the psychophysical performance. Navy ships are equipped with equipment and weapons are controlled by electronic devices ship and crew. Advanced technology puts high demands on operator. For the ship's staff are recruited soldiers of the psychophysical characteristics predisposing to this kind of action. The paper uses personal experience to work in military units of the Navy, and data from the literature. Terms of sailing ships off the summer season are defined as difficult. The crew during a combat mission felt the risks associated with movements of the ship in difficult meteorological conditions, and associated with the implementation of the task. The development of ship's technical equipment, working in isolated groups, functioning within a limited space, noise, vibration, electromagnetic waves heighten the emotional burden on crew members. Military service on Navy ships require high psycho-physical predisposition, resistance to stress. The crucial factor is proper selection among the candidates based on psychiatric and psychological counseling for military and medical jurisprudence. Also plays a significant role for training doctors and specialists in psychoprophylaxy of military units in the field of mental hygiene.

  14. Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)

    SciTech Connect

    Matthews, R. A.

    1982-04-01

    In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

  15. The inositol 5-phosphatase SHIP1 is a nucleo-cytoplasmic shuttling protein and enzymatically active in cell nuclei.

    PubMed

    Nalaskowski, Marcus M; Metzner, Anja; Brehm, Maria A; Labiadh, Sena; Brauer, Helena; Grabinski, Nicole; Mayr, Georg W; Jücker, Manfred

    2012-03-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in hematopoietic cells. SHIP1 mediates its regulatory function after relocalization from the cytoplasm to the plasma membrane where it converts its substrate PI(3,4,5)P(3) to PI(3,4)P(2) thereby terminating PI3-kinase mediated signaling. In addition, SHIP1 converts Ins(1,3,4,5)P(4) to Ins(1,3,4)P(3) thereby regulating inositol phosphate metabolism. Here we report, that SHIP1 can be detected in nuclear puncta of Jurkat cells by confocal microscopy after expression of SHIP1 from a tetracycline inducible vector. SHIP1-containing nuclear puncta partially co-localize with FLASH, a multifunctional nuclear protein that has been linked to apoptotic signaling and transcriptional control. Nuclear localization was confirmed for endogenously expressed SHIP1 in the myeloid leukemia cell line TF1. In addition, enzymatically active SHIP1 was found in nuclear fractions of Jurkat cells with a similar specific activity as cytoplasmic SHIP1. Further analysis revealed that SHIP1 is a nucleocytoplasmic shuttling protein which is actively imported into and exported out of the nucleus. Nuclear import is mediated by two canonical nuclear localization signals (NLS) i.e. K(327)KSK and K(547)KLR. Mutational inactivation of each NLS motif inhibited nuclear import and reduced the proliferation of cells indicating a functional role of nuclear SHIP1 for cell growth. Our data indicate that SHIP1 is partly localized in the nucleus and suggest that SHIP1 plays a role for nuclear phosphoinositide and/or nuclear inositol phosphate signaling.

  16. Total Ship System Engineering

    DTIC Science & Technology

    1996-10-01

    LONG LEAD PRODUCTION I PROCUREMENT / SUPPORT / (IF REQUIRED) / A PMR *~~~ IA AI COR AWARD (L" d Ship) .. . pi .. ., f X .. = ,,.f A.. ,, .. . . D ...in place of Combat Control. With this convention, the partitioning shown is applicable to all ship types. System of Systems As indicated earlier, the...tablishment of this framework begins with domain analysis, to es- tablish a common foun- dation for specifying system concepts and requirements. Next, in

  17. 33 CFR 165.T0704 - Safety Zone: Savannah River, Savannah, Georgia.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... terminated by the Captain of the Port, Savannah, GA. (c) Regulation. In accordance with the general... the Captain of the Port or a representative of the Captain of the Port. (2) The “representative of the Captain of the Port” is any Coast Guard commissioned, warrant or petty officer who has been designated...

  18. 33 CFR 165.T0704 - Safety Zone: Savannah River, Savannah, Georgia.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... terminated by the Captain of the Port, Savannah, GA. (c) Regulation. In accordance with the general... the Captain of the Port or a representative of the Captain of the Port. (2) The “representative of the Captain of the Port” is any Coast Guard commissioned, warrant or petty officer who has been designated...

  19. Historic view entitled "FORT PULASKI (/) MOUTH OF SAVANNAH RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic view entitled "FORT PULASKI (/) MOUTH OF SAVANNAH RIVER AND TYBEE ISLAND, GA.," of 48th NY infantry on the south wall looking to the southeast corner (note: cockspur beacon in near background and Tybee Island in far background) - Fort Pulaski, Cockspur Island, Savannah, Chatham County, GA

  20. Guide to Savannah River Laboratory Analytical Services Group

    SciTech Connect

    Not Available

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  1. Savannah River Site Environmental Report for 2004

    SciTech Connect

    Mamatey, Albert R.

    2005-06-07

    The Savannah River Site Environmental Report for 2004 (WSRC-TR-2005-00005) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting,'' and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  2. Savannah River Site environmental report for 1988

    SciTech Connect

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A.; Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01

    This volume of Savannah River Site Environmental report for 1988 (WSRC-RP-89-59-1) contains the figures and tables referenced in Volume 1. The figures contain graphic illustrations of sample locations and/or data. The tables contain summaries of the following types of data: Federal and State standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation dose commitments from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results.

  3. Electronic Denitration Savannah River Site Radioactive Waste

    SciTech Connect

    Hobbs, D.T.

    1995-04-11

    Electrochemical destruction of nitrate in radioactive Savannah River Site Waste has been demonstrated in a bench-scale flow cell reactor. Greater than 99% of the nitrate can be destroyed in either an undivided or a divided cell reactor. The rate of destruction and the overall power consumption is dependent on the cell configuration and electrode materials. The fastest rate was observed using an undivided cell equipped with a nickel cathode and nickel anode. The use of platinized titanium anode increased the energy requirement and costs compared to a nickel anode in both the undivided and divided cell configurations.

  4. Savannah River Site environmental report for 1991

    SciTech Connect

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  5. Savannah River Site environmental report for 1995

    SciTech Connect

    Arnett, M.W.; Mamatey, A.

    1995-12-31

    The 1990s have brought dramatic change to the Savannah River Site (SRS) in its role as a key part of the U.S. Department of Energy`s (DOE) weapons complex. Shrinking federal budgets, sharp workforce reductions, the end of the Cold War, and a major shift in mission objectives have combined to severely test the mettle of SRS-South Carolina`s largest employer. But the sprawling 310-square-mile site`s employees have responded to the test in admirable fashion, effectively shifting their emphasis from weapons production to environmental restoration. This report describes the environmental report for the SRS for 1995.

  6. Savannah River Site Environmental Data for 1994

    SciTech Connect

    Arnett, M.W.

    1994-12-16

    Tables in this document present data from routine environmental monitoring and surveillance programs at the Savannah River Site. An attempt has been made to include all available data from environmental research programs. The first section of the book is a collection of maps of radiological and non radiological sampling locations. Also included are a list of the media sampled, along with sample sizes and representative aliquots; the minimum detectable concentrations for gamma analysis of soil, food, fish and wildlife, and vegetation samples; and a list of the minimum detectable concentrations for Environmental Monitoring Section radiological analyses.

  7. SAVANNAH RIVER ENVIRONMENTAL REPORT FOR 2006

    SciTech Connect

    Mamatey, A

    2007-08-22

    The ''Savannah River Site Environmental Report for 2006'' (WSRC-TR-2007-00008) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  8. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2005

    SciTech Connect

    Mamatey, A

    2006-07-18

    The ''Savannah River Site Environmental Report for 2005'' (WSRC-TR-2006-00007) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  9. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2007

    SciTech Connect

    Mamatey, A

    2008-08-27

    The Savannah River Site Environmental Report for 2007 (WSRC-STI-2008-00057) prepared for the US Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting', and DOE Order 5400.5, 'Radiation Protection of the Public and Environment'. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; (4) assess the impact of SRS operations on the public and the environment.

  10. Risks of nuclear fuel reprocessing

    SciTech Connect

    Durant, W.S.

    1990-01-01

    The Savannah River Site's primary function is the production of weapons materials. It consists of four reactors, two fuel reprocessing facilities, a fuel fabrication facility, a nuclear fuel facility for the Navy and a heavy water recycle facility. Under construction is a facility to convert the site's liquid wastes into borosilicate glass. The topic of this paper is risks of nuclear fuel reprocessing. Also discussed are facility operations. 18 figs.

  11. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2010-10-01 2010-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping...

  12. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2011-10-01 2011-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping...

  13. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2012-10-01 2012-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping...

  14. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2014-10-01 2014-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping...

  15. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2013-10-01 2013-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping...

  16. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    SciTech Connect

    Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

    1996-12-31

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS.

  17. Upsurge in coal port developments. [Developments at Savannah, GA and Baltimore, MD for coal export

    SciTech Connect

    Not Available

    1980-11-01

    A major new port for exporting coal is being developed at Savannah, GA. Annual capacity is to be up to 15,000,000 tpy and the cost about $60,000,000. Storage will be provided for 1,000,000 tons of coal and blending facilities will be provided. Consolidation Coal Co. has purchased the Canton Terminal and Railroad Co., at Baltimore, MD. The annual capacity will be increased to 10,000,000 tpy. Occidental Petroleum Co. has contracted for an export facility at Curtis Bay, Baltimore with a 300,000 ton storage facility and unloading facilities rated at 3500 tph and ship loading facilities rated at 6000 tph. (LTN)

  18. Robotics at Savannah River site: activity report

    SciTech Connect

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report.

  19. Chlorine demand of Savannah River water

    SciTech Connect

    Wilde, E.W.

    1989-01-01

    Savannah River water used for cooling SRS reactors was tested for chlorine demand and the rate of decay for both free and total residual chlorine on seven quarterly dates between 1986 and 1988. Test conditions included chlorine dosages of 1, 3, and 5 mg/l and a variety of contact times ranging from less than 1 minute to one day. Statistically significant differences were detected in the chlorine demand for the seven dates; however, there was no discernible seasonality to the variation. The chlorine demand, amount of combined residual chlorine formed and the persistence of total residual chlorine following a dose of 5 mg/l was significantly greater on one of the seven sampling dates (February, 1988) compared to all of the other dates. These differences could not be attributed to water temperature, pH, ammonia nitrogen concentration, or the amount of rainfall prior to or during the collection of the cooling water. Except as noted above, dissipation of chlorine was similar among the sampling dates. Most reactions of available chlorine with other constituents in the cooking water occurred in the first minute of contact, although measurable total chlorine residuals generally persisted for 24 hours after the dose had been administered. The results of this study indicate that, with occasional exceptions, a chlorine dose of between 3 and 5 mg/l will provide a free chlorine residual of 1 mg/l in Savannah River water. 14 refs., 3 figs., 4 tabs.

  20. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  1. Savannah River Site environmental report for 1993

    SciTech Connect

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.

    1994-08-01

    Savannah River Site (SRS) conducts effluent monitoring and environmental surveillance to ensure the safety of the public and the well-being of the environment. DOE Order 5400,1, ``General Environmental Protection Program,`` requires the submission of an environmental report that documents the impact of facility operations on the environment and on public health. SRS has had an extensive environmental surveillance program in place since 1951 (before site startup). At that time, data generated by the on-site surveillance program were reported in site documents. Beginning in 1959, data from off-site environmental monitoring activities were presented in reports issued for public dissemination. Separate reporting of SRS`s on- and off-site environmental monitoring activities continued until 1985, when data from both surveillance programs were merged into a single public document. The Savannah River Site Environmental Report for 1993 is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 1993. For complete program descriptions, consult the ``SRS Environmental Monitoring Plan`` (WSRC-3Ql-2-1000). It documents the rationale and design criteria for the monitoring program, the frequency of monitoring and analysis, the specific analytical and sampling procedures, and the quality assurance requirements.

  2. Mammals of the Savannah River Site

    SciTech Connect

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-12-31

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ``The Forbearer Census`` and ``White-tailed Deer Studies``. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master`s theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  3. Mammals of the Savannah River Site

    SciTech Connect

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-01-01

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, The Forbearer Census'' and White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  4. Design Space Exploration and Optimization Using Modern Ship Design Tools

    DTIC Science & Technology

    2014-06-01

    or less displacement with the effect of increasing or decreasing the form drag. Adjusting the Fullness Factors can be thought of as filling-in or...between 1907 and 1914 to create these equa- tions. Since this series is specific to variations on an older hull form and since modern ships tend to have a...Engines (2 options), Gas Turbines (2 options), and Nuclear Reactor. Steam Turbines is an older form of propulsion that is not found in new naval ship

  5. DEMOLITIONS OF THE SAVANNAH RIVER SITE'S CONCENTRATOR AND FINISHING FACILITIES

    SciTech Connect

    Mcdonagh, P; Cathy Sizemore, C

    2007-01-17

    The Savannah River Site (SRS) has produced Special Nuclear Materials (SNMs) starting in the early 1950's to the mid 1970's for the Atomic Energy Commission (AEC) and from the mid 1970's to the present for the Department of Energy (DOE). In that time, over 1,000 facilities have been built in the sixteen (16) operational areas of the eight hundred (800) square kilometer site. Over the years, many of the facilities have been dispositioned by the DOE as inactive. In FY-03, DOE identified two hundred and forty-seven (247) (inactive or soon to be inactive) facilities that required demolition. Demolition work was scheduled to start in FY-04 and be completed in the first quarter of FY-07. Two-hundred and thirty-nine (239) of these facilities have been demolished employing Routine demolition techniques. This presentation reviews and discusses two (2) of the eight (8) Non-Routine demolitions Facilities, 420-D ''The Concentrator Facility'', and 421-D ''The Finishing Facility''.

  6. Assessment of strontium in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Strom, R.N.

    1992-12-31

    This document on strontium is published as a part of the Radiological Assessment Program (RAP). It is the sixth in a series of eight documents on individual radioisotopes released to the environment as a result of SRS (Savannah River Site) operations. Strontium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Strontium has been produced at SRS during the operation of 5 production reactors. About 300 curies of radiostrontium were released into streams in the late 50s and 60s, primarily from leaking fuel elements in reactor storage basins. Smaller quantities were released from the fuel reprocessing operations. About 400 Ci were released to seepage basins. A much smaller quantity, about 2 Ci, was released to the atmosphere. The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 6.2 mrem (atmospheric) and 1.4 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Radiostrontium releases have resulted in a negligible risk to the environment and the population it supports.

  7. Simulators for Safer Shipping

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Each year one ship out of every five afloat collides with another vessel, rams a dock, or runs a ground. CAORF (Computer Aided Operations Research Facility), designed and built by Sperry Rand Corporation, incorporates technology developed in a wide variety of aerospace simulation and technical training programs. CAORF can be set up to duplicate the exact handling qualities of any vessel under various conditions of wind, tide and current. Currently a dozen different ships can be "plugged in." Bridge instrumentation is typical of modern shipboard equipment including radar, internal and external c.ommunications and new collision avoidance systems. From repetitive operation of simulated ships, MarAd is building a valuable data base for improving marine safety.

  8. Automated ship image acquisition

    NASA Astrophysics Data System (ADS)

    Hammond, T. R.

    2008-04-01

    The experimental Automated Ship Image Acquisition System (ASIA) collects high-resolution ship photographs at a shore-based laboratory, with minimal human intervention. The system uses Automatic Identification System (AIS) data to direct a high-resolution SLR digital camera to ship targets and to identify the ships in the resulting photographs. The photo database is then searchable using the rich data fields from AIS, which include the name, type, call sign and various vessel identification numbers. The high-resolution images from ASIA are intended to provide information that can corroborate AIS reports (e.g., extract identification from the name on the hull) or provide information that has been omitted from the AIS reports (e.g., missing or incorrect hull dimensions, cargo, etc). Once assembled into a searchable image database, the images can be used for a wide variety of marine safety and security applications. This paper documents the author's experience with the practicality of composing photographs based on AIS reports alone, describing a number of ways in which this can go wrong, from errors in the AIS reports, to fixed and mobile obstructions and multiple ships in the shot. The frequency with which various errors occurred in automatically-composed photographs collected in Halifax harbour in winter time were determined by manual examination of the images. 45% of the images examined were considered of a quality sufficient to read identification markings, numbers and text off the entire ship. One of the main technical challenges for ASIA lies in automatically differentiating good and bad photographs, so that few bad ones would be shown to human users. Initial attempts at automatic photo rating showed 75% agreement with manual assessments.

  9. 77 FR 24695 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. . 92... Hilton Savannah DeSoto, 15 East Liberty Street Savannah, GA 31401. FOR FURTHER INFORMATION CONTACT:...

  10. 76 FR 25682 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463... Savannah, Two West Bay Street, Savannah, GA 31402. FOR FURTHER INFORMATION CONTACT: Gerri Flemming,...

  11. 78 FR 54461 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463.... ADDRESSES: Embassy Suites-Savannah, 145 Mulberry Boulevard, Savannah, GA 31322. FOR FURTHER...

  12. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect

    Blanton, P.; Eberl, K.

    2008-09-14

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50

  13. Hydrodynamics of Ship Propellers

    NASA Astrophysics Data System (ADS)

    Breslin, John P.; Andersen, Poul

    1996-11-01

    This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and movements that the propeller generates on the shaft and on the ship hull. The first part of the book is devoted to fundamentals of the flow about hydrofoil sections and wings, and to propellers in uniform flow, with guidance for design and pragmatic analysis of performance. The second part covers the development of unsteady forces arising from operation in nonuniform hull wakes. A final chapter discusses the optimization of efficiency of compound propulsors. Researchers in ocean technology and naval architecture will find this book appealing.

  14. Ship Vibration Design Guide

    DTIC Science & Technology

    1989-07-01

    design full- power speed and all on a per shaft basis, plus the pertinent hull form and propulsion data for the similar ships. A sample of this type of...more appropriate. Based on the studies of Hadler and Cheng [10], the hull form chosen for the T-AO 187, the twin-screw open transom design, appears to...Rate Peak-to-Peak Hull Pressure Over Propeller Tip versus Ship Speed for U.S. Navy Oiler, Based on Model Tests ................................... 3

  15. Predicting Ship Fuel Consumption: Update.

    DTIC Science & Technology

    1996-07-01

    ship propulsion fuel consumption as a function of ship speed for U.S. Navy combatant and auxiliary ships. Prediction is based on fitting an analytic function to published ship class speed-fuel use data using nonlinear regression. The form of the analytic function fitted is motivated by the literature on ship powering and resistance. The report discusses data sources and data issues, and the impact of ship propulsion plant configuration on fuel use. The regression coefficients of the exponential function fitted, tabular numerical comparison of

  16. Designing Adaptable Ships: Modularity and Flexibility in Future Ship Designs

    DTIC Science & Technology

    2016-01-01

    web page). v Contents Preface...55 Contents vii... integrated into the new design while reducing the construction cost of the ship. Recommendations We offer both short-term, ship-specific recommendations and

  17. Efficient Solutions for New Homes Case Study: Savannah Gardens

    SciTech Connect

    2016-03-15

    The Savannah Housing Department is leading sustainable and affordable housing development in Georgia. It partnered with Southface Energy Institute, a member of the U.S. Department of Energy’s Partnership for Home Innovation Building America research team, to seek cost-effective solutions for increasing the energy efficiency of the Savannah Housing Department’s standard single-family home plans in the Savannah Gardens Community. Based on engineering, cost, and constructability analyses, the combined research team chose to pilot two technologies to evaluate efficiency and comfort impacts for homeowners: a heat-pump water heater in an encapsulated attic and an insulated exterior wall sheathing.

  18. Rheology of Savannah River site tank 42 HLW radioactive sludge

    SciTech Connect

    Ha, B.C.

    1997-11-05

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer.

  19. The Good Ship Lollipop

    ERIC Educational Resources Information Center

    Murray, Donald M.

    1976-01-01

    A cruise ship converted into a college took students to many foreign countries giving them the opportunity to study other cultures, politics, mores, and histories through their own observations and experiences under the guidance of teachers using a planned curriculum. (JD)

  20. Recovery Ship Freedom Star

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Freedom Star, one of NASA's two solid rocket booster recovery ships, is towing a barge containing the third Space Shuttle Super Lightweight External Tank (SLWT) into Port Canaveral. This SLWT was slated for use to launch the orbiter Discovery on mission STS-95 in October 1998. This first time towing arrangement, part of a cost saving plan by NASA to prudently manage existing resources, began June 12 from the Michoud Assembly Facility in New Orleans where the Shuttle's external tanks were manufactured. The barge was transported up Banana River to the LC-39 turn basin using a conventional tug boat. Previously, NASA relied on an outside contractor to provide external tank towing services at a cost of about $120,000 per trip. The new plan allowed NASA's Space Flight Operations contractor, United Space Alliance (USA), to provide the same service to NASA using the recovery ships during their downtime between Shuttle launches. Studies showed a potential savings of about $50,000 per trip. The cost of the necessary ship modifications would be paid back by the fourteenth tank delivery. The other recovery ship, Liberty Star, also underwent deck strengthening enhancements and had the necessary towing wench installed.

  1. Savannah River Site environmental implementation plan

    SciTech Connect

    Not Available

    1989-08-01

    Formal sitewide environmental planning at the Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period.

  2. Savannah River Site environmental data for 1992

    SciTech Connect

    Arnett, M.W.

    1993-09-01

    The figures and tables in this report represent a capsule view of the routine environmental monitoring and surveillance programs at the Savannah River Site. An attempt has been made to include all available data from environmental research programs. The first section of the book is a collection of maps of radiological and nonradiological sampling locations. Also included are general radiological and nonradiological sampling and analysis schedules; a list of the media sampled, along with sample sizes and representative aliquots; a list of the lower limits of detection for radiological detection instruments; the minimum detectable concentrations for gamma analysis of water and air samples; and the minimum detectable concentrations for gamma analysis of soil, food, fish and wildlife, and vegetation samples. Following the first section are data tables containing radiological and nonradiological effluent monitoring results, radiological and nonradiological environmental surveillance results, dose estimates, quality assurance activities, and results of nonroutine occurrences and special surveys.

  3. Savannah River Site environmental data for 1993

    SciTech Connect

    Arnett, M.W.

    1994-05-01

    The figures and tables in this report represent a capsule view of the routine environmental monitoring and surveillance programs at the Savannah River Site. An attempt has been made to include all available data from environmental research programs. The first section of the book is a collection of maps of radiological and nonradiological sampling locations. Also included are general radiological and nonradiological sampling and analysis schedules; a list of the media sampled, along with sample sizes and representative aliquots; a list of the lower limits of detection for radiological detection instruments; the minimum detectable concentrations for gamma analysis of water and air samples; and the minimum detectable concentrations for gamma analysis of soil, food, fish and wildlife, and vegetation samples. Following the first section are data tables containing radiological and nonradiological effluent monitoring results, radiological and nonradiological environmental surveillance results, dose estimates, quality assurance activities, and results of nonroutine occurrences and special surveys.

  4. Savannah River Site environmental report for 1989

    SciTech Connect

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    The purpose of this report is to meet three of the primary objectives of the Savannah River Site (SRS) environmental monitoring program. These objectives are to assess actual or potential exposures to populations form the presence of radioactive and nonradioactive materials from normal operations or nonroutine occurrences; to demonstrate compliance with applicable authorized limits and legal requirements; and to communicate results of the monitoring program to the public. This 1989 report contains descriptions of radiological and nonradiological monitoring programs, it provides data obtained from these programs, and it describes various environmental research activities ongoing at the site. Also included are summaries of environmental management and compliance activities, a summary of National Environmental Policy Act activities, and a listing of environmental permits issued by regulatory agencies.

  5. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect

    Not Available

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  6. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect

    Not Available

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  7. Thermodynamic Modeling of Savannah River Evaporators

    SciTech Connect

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  8. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2008

    SciTech Connect

    Mamatey, A.

    2009-09-15

    The Savannah River Site Environmental Report for 2008 (SRNS-STI-2009-00190) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts.

  9. Savannah River Site's Site Specific Plan

    SciTech Connect

    Not Available

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  10. Savannah River Site Environmental Implementation Plan

    SciTech Connect

    Not Available

    1989-08-01

    Formal sitewide environmental planning at the . Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan (Volume 2) provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period.

  11. Savannah River Site environmental report for 1989

    SciTech Connect

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    this volume of Savannah River Site Environmental Report for 1989 (WSRC-IM-90-60) contains the figures and tables referenced in Volume I. The figures contain graphic illustrations of sample locations and/or data. The tables present summaries of the following types of data federal and state standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation committed dose from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results. The figures and tables in this report contain information about the routine environmental monitoring program at SRS unless otherwise indicated. No attempt has been made to include all data from environmental research programs. Variations in the report's content from year to year reflect changes in the routine environmental monitoring program or the inability to obtain certain samples from a specific location. 42 figs., 188 tabs.

  12. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect

    Not Available

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  13. Deer monitoring at the Savannah River Site

    SciTech Connect

    Fledderman, P.D.

    1992-01-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter's cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data.

  14. Deer monitoring at the Savannah River Site

    SciTech Connect

    Fledderman, P.D.

    1992-10-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter`s cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data.

  15. Savannah River Site ALARA Program appraisals

    SciTech Connect

    Johnson, J.R.

    1992-06-01

    ALARA Program audits are recommended in PNL-6566, ``Health Physics Manual of Good Practices for Reducing Radiation Exposure to Levels that are As Low As Reasonably Achievable (ALARA).`` The Department of Energy (DOE) Order 5480.11, ``Radiation Protection For Occupational Workers,`` requires contractors to conduct internal audits of all functional elements of the radiological protection program, which includes the ALARA program, as often as necessary, but at a minimum every three years. At the Savannah River Site (SRS), these required audits are performed as part of the Health Protection Internal Appraisal Program. This program was established to review the Site radiological protection program, which includes the ALARA program, on an ongoing basis and to provide recommendations for improvement directly to senior Health Protection management. This paper provides an overview of the SRS Health Protection Internal Appraisal program. In addition, examples of specific performance criteria and detailed appraisal guidelines used ALARA appraisals are provided.

  16. Savannah River Site ALARA Program appraisals

    SciTech Connect

    Johnson, J.R.

    1992-01-01

    ALARA Program audits are recommended in PNL-6566, Health Physics Manual of Good Practices for Reducing Radiation Exposure to Levels that are As Low As Reasonably Achievable (ALARA).'' The Department of Energy (DOE) Order 5480.11, Radiation Protection For Occupational Workers,'' requires contractors to conduct internal audits of all functional elements of the radiological protection program, which includes the ALARA program, as often as necessary, but at a minimum every three years. At the Savannah River Site (SRS), these required audits are performed as part of the Health Protection Internal Appraisal Program. This program was established to review the Site radiological protection program, which includes the ALARA program, on an ongoing basis and to provide recommendations for improvement directly to senior Health Protection management. This paper provides an overview of the SRS Health Protection Internal Appraisal program. In addition, examples of specific performance criteria and detailed appraisal guidelines used ALARA appraisals are provided.

  17. Advanced separations at Savannah River site

    SciTech Connect

    Thompson, M.C.

    1997-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (Cs, Sr, tritium, actinides) and hazardous components (poly-chlorinated biphenyls [PCBs], cyanide, metal ions). This task provides testbeds for ESP-developed materials and technology using actual SRS waste streams. The work includes different SRS waste streams: high-level waste (HLW) solutions currently stored in underground tanks onsite, water recycled from the waste vitrification plant, groundwater and other aqueous streams contaminated with metal ions and radionuclides, and reactor basin water in excess facilities. Another part of this task is to provide a report on materials for Cs removal from aqueous solutions for use as a reference.

  18. Wildflowers of the Savannah River Site

    SciTech Connect

    Seger, Tona

    2015-08-01

    This guidebook is a resource to help field personnel (nonbotanists) identify plants on the Savannah River Site (SRS) premises. Although not a complete flora guide, this publication contains information about 123 plant species found on the SRS. Plants are listed by their common names and arranged by the color of the flower. The SRS supports a diverse array of plant communities. Land use history, the establishment of the SRS, and current land management practices have shaped the flora presently found on the SRS. Located south of Aiken, SC, SRS spans 198,344 acres with land covering Aiken, Allendale, and Barnwell Counties. Situated on the Upper Coastal Plain and Sandhills physiographic provinces, the SRS has more than 50 distinct soil types. The topography is rolling to flat with elevation ranges from 50 to 400 feet above sea level.

  19. Wallops Ship Surveillance System

    NASA Technical Reports Server (NTRS)

    Smith, Donna C.

    2011-01-01

    Approved as a Wallops control center backup system, the Wallops Ship Surveillance Software is a day-of-launch risk analysis tool for spaceport activities. The system calculates impact probabilities and displays ship locations relative to boundary lines. It enables rapid analysis of possible flight paths to preclude the need to cancel launches and allow execution of launches in a timely manner. Its design is based on low-cost, large-customer- base elements including personal computers, the Windows operating system, C/C++ object-oriented software, and network interfaces. In conformance with the NASA software safety standard, the system is designed to ensure that it does not falsely report a safe-for-launch condition. To improve the current ship surveillance method, the system is designed to prevent delay of launch under a safe-for-launch condition. A single workstation is designated the controller of the official ship information and the official risk analysis. Copies of this information are shared with other networked workstations. The program design is divided into five subsystems areas: 1. Communication Link -- threads that control the networking of workstations; 2. Contact List -- a thread that controls a list of protected item (ocean vessel) information; 3. Hazard List -- threads that control a list of hazardous item (debris) information and associated risk calculation information; 4. Display -- threads that control operator inputs and screen display outputs; and 5. Archive -- a thread that controls archive file read and write access. Currently, most of the hazard list thread and parts of other threads are being reused as part of a new ship surveillance system, under the SureTrak project.

  20. Radiological consequences of ship collisions that might occur in U.S. Ports during the shipment of foreign research reactor spent nuclear fuel to the United States in break-bulk freighters

    SciTech Connect

    Sprung, J.L.; Bespalko, S.J.; Massey, C.D.; Yoshimura, R.; Johnson, J.D.; Reardon, P.C.; Ebert, M.W.; Gallagher D.W.

    1996-08-01

    Accident source terms, source term probabilities, consequences, and risks are developed for ship collisions that might occur in U.S. ports during the shipment of spent fuel from foreign research reactors to the United States in break-bulk freighters.

  1. 78 FR 13712 - U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... COMMISSION U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the... Savannah River Site F-Area Tank Farm Facility in Accordance with the National Defense Authorization Act for... DOE's waste disposal activities at the F-Area Tank Farm at the Savannah River Site, in accordance...

  2. Three-dimensional modeling of ground-water flow in the vicinity of the Savannah River Site, South Carolina and Georgia

    SciTech Connect

    Baum, J.S. . Water Resources Div.)

    1993-03-01

    Ground water may be flowing beneath and transverse to the Savannah River (trans-river flow) in the vicinity of the Savannah River Site (SRS) within the Coastal Plain aquifers in South Carolina and Georgia. The hydrologic system of the Coastal Plain physiographic province in South Carolina and Georgia is comprised of a complex wedge of fluvial, deltaic, and marine sedimentary deposits. Rural and industrial areas with known sources of ground-water contamination, including a nuclear processing and disposal facility, are located in the Savannah River drainage basin. The possible migration of contaminants under the Savannah River into ground-water supplies has caused concern about public health and the environment. The US Geological Survey (USGS), in cooperation with the US Department of Energy and the Georgia Department of Natural Resources, is evaluating trans-river flow in the vicinity of the Savannah River Site under pre-development, present, and hypothetical development conditions. Results of the study may be used as a guide in water-resources management in the basin. Simulation of the ground-water flow system using the USGS three-dimensional, finite-difference model (MODFLOW) under steady-state and transient conditions is expected to identify areas with the greatest potential for trans-river flow, and guide the development of higher resolution sub-regional or localized models. Model boundary conditions will include natural hydrologic flow boundaries, where available, and head-dependent and specified head boundaries where natural hydrologic boundaries are not present.

  3. Aging Study Of EPDM O-Ring Material For The H1616 Shipping Package - Three Year Status

    SciTech Connect

    Stefek, T.; Daugherty, W.; Skidmore, E.

    2015-11-05

    This is a 3-year status report for tasks carried out per Task Technical Plan SRNL-STI-2011-00506. A series of tasks/experiments were performed at the Savannah River National Laboratory (SRNL) to monitor the aging performance of ethylene propylene diene monomer (EPDM) O-rings used in the H1616 shipping package. The test data provide a technical basis to extend the annual maintenance of the H1616 shipping package to three years and to predict the life of the EPDM O-rings at the bounding service conditions.

  4. 9975 SHIPPING PACKAGE LIFE EXTENSION SURVEILLANCE PROGRAM RESULTS SUMMARY

    SciTech Connect

    Dunn, K.; Daugherty, W.; Hackney, B.; Hoffman, E.; Skidmore, E.

    2011-05-27

    Results from the 9975 shipping package Storage and Surveillance Program at the Savannah River Site (SRS) are summarized for justification to extend the life of the 9975 packages currently stored in the K-Area Complex (KAC). This justification is established with the stipulation that surveillance activities will continue throughout the extended time to ensure the continued integrity of the 9975 materials of construction and to further understand the currently identified degradation mechanisms. The 10 year storage life justification was developed prior to storage. A subsequent report was later used to validate the qualification of the 9975 shipping packages for 10 years in storage. However the qualification for the storage period was provided by the monitoring requirements of the 9975 Storage and Surveillance Program. This report summarizes efforts to determine a new safe storage limit for the 9975 shipping package based on the surveillance data collected since 2005 when the 9975 Storage and Surveillance Program began. The Program has demonstrated that the 9975 package has a robust design that can perform under a variety of conditions. The primary emphasis of the on-going 9975 Storage and Surveillance Program is an aging study of the 9975 Viton{reg_sign} containment vessel O-rings and the Celotex{reg_sign} fiberboard thermal insulation at bounding conditions of radiation, elevated temperatures and/or elevated humidity.

  5. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect

    Sexton, Lindsay; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  6. Technetium-99, iodine-129 and tritium in the waters of the Savannah River Site.

    PubMed

    Beals, D M; Hayes, D W

    1995-12-01

    Surface water samples were collected from streams on and around the Savannah River Site (SRS) to assess current 3H, 99Tc, and 129I concentrations in the water. The SRS is a nuclear facility operated by Westinghouse Savannah River Company for the US Department of Energy. Water quality parameters were measured at the time of collection using field portable instrumentation. The tritium activity was determined by liquid scintillation spectrometry. The isotopes, 99Tc and 129I, were determined by isotope dilution/inductively coupled plasma-mass spectrometry (D.M. Beals, Determination of technetium-99 in aqueous samples by isotope dilution inductively coupled plasma-mass spectrometry. Presented at the 3rd International Conference on Nuclear and Radiochemistry, Vienna, September 1992, unpublished data; D.M. Beals, P. Chastagner and P.K. Turner, Analysis of iodine-129 in aqueous samples by inductively coupled plasma-mass spectrometry. Presented at the 38th Annual Conference on Bioassay, Analytical and Environmental Radiochemistry, Santa Fe, NM, November 1992). Elevated activities of 3H, 99Tc, and 129I were found in some surface streams of the SRS, principally due to migration of ground water from beneath old seepage basins, however the levels in the waters leaving the SRS are well below any regulatory guidelines.

  7. The US Cruise Ship Industry.

    ERIC Educational Resources Information Center

    Miller, Willis H.

    1985-01-01

    The cruise ship industry relates directly to many features of the natural and cultural environments. The U.S. cruise ship industry is analyzed. Discusses the size of the industry, precruise passenger liners, current cruise ships, cruise regions and routes, ports of call, major ports, passengers, and future prospects. (RM)

  8. Mathematical Modeling: Convoying Merchant Ships

    ERIC Educational Resources Information Center

    Mathews, Susann M.

    2004-01-01

    This article describes a mathematical model that connects mathematics with social studies. Students use mathematics to model independent versus convoyed ship deployments and sinkings to determine if the British should have convoyed their merchant ships during World War I. During the war, the British admiralty opposed sending merchant ships grouped…

  9. FIRE_ACE_SHIP_SSFR

    Atmospheric Science Data Center

    2015-10-28

    FIRE_ACE_SHIP_SSFR Project Title:  FIRE III ACE Discipline:  ... Level:  L3 Platform:  SHEBA Ship Instrument:  Solar Spectral Flux Radiometer ... Info:  Surface Heat Budget of the Arctic Ocean (SHEBA) Ship SCAR-B Block:  SCAR-B Products ...

  10. Assessment of Radionuclides in the Savannah River Site Environment Summary

    SciTech Connect

    Carlton, W.H.

    1999-01-26

    This document summarizes the impact of radionuclide releases from Savannah River Site (SRS) facilities from 1954 through 1996. The radionuclides reported here are those whose release resulted in the highest dose to people living near SRS.

  11. Savannah River VM--Intellect application support documentation

    SciTech Connect

    Carter, L.S.

    1988-09-23

    This document details the underlying support programming and structures that support the INTELLECT and KBMS products at the Savannah River Facility. The target audience for this document includes INTELLECT System Administrators, INTELLECT programmers and developers, and VM Systems Programmers.

  12. Adult Education in Savannah, Georgia 1765-1789

    ERIC Educational Resources Information Center

    Long, Huey B.

    1973-01-01

    Advertisements in Savannah, Georgia, newspapers from 1765 through 1789 offered adults leisure-related topics for learning such as drawing, language, music and self-defense through private venture schools. (DS)

  13. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  14. Systems Engineering in the Development and Implementation of the Savannah River Site Transuranic Waste Disposition Program

    SciTech Connect

    Fayfich, R.R.

    1999-03-10

    The use of systems engineering facilitated the strategic planning and implementation of the Savannah River Site (SRS) transuranic waste disposal program. This application represented the first SRS use of systems engineering in the pre-program planning stages during the development of a comprehensive strategic plan for the disposal of transuranic waste at the Department of Energy Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The use of systems engineering focused the efforts of the technical experts to devise a three initiative plan for the disposal of transuranic waste where previous efforts failed. Continued application of systems engineering facilitated the further development and implementation of the first initiative outlined in the strategic plan, i.e., set-up the program and process to begin to characterize and ship waste to the WIPP.This application of systems engineering to the transuranic waste program represented the first opportunity at the SRS for a comprehensive usage of systems engineering at all program levels. The application was initiated at the earliest possible point in the program development, i.e., strategic planning, and successively was used in detailed development and implementation of the program. Systems engineering successfully focused efforts to produce a comprehensive plan for the disposal of SRS transuranic waste at the WIPP, and facilitated development of the SRS capability and infrastructure to characterize, certify, and ship waste.

  15. Littoral Combat Ship (LCS)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-374 Littoral Combat Ship (LCS) As of FY 2017 President’s Budget Defense Acquisition...Executive Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition...Frigates, and down- select to one variant in FY 2019. The FY 2017 acquisition strategy supporting the final procurement of LCS is currently under review

  16. Ship and Shoot

    NASA Technical Reports Server (NTRS)

    Woods, Ron

    2012-01-01

    Ron Woods shared incredibly valuable insights gained during his 28 years at the Kennedy Space Center (KSC) packaging Flight Crew Equipment for shuttle and ISS missions. In particular, Woods shared anecdotes and photos from various processing events. The moral of these stories and the main focus of this discussion were the additional processing efforts and effects related to a "ship-and-shoot" philosophy toward flight hardware.

  17. Innovative Naval Ship Design

    DTIC Science & Technology

    2014-12-18

    Naval Architects and Marine Engineers. In 2013 PI completed the follow-on textbook Innovation in Ship Design . Whereas the first work forms the core of an...In 2011 PI completed a textbook on Practical Design of Advanced Marine Vehicles and has commenced a follow-on work on Tools for Innovation in Naval...Engineering Design . The completed textbook was made available as a PDF file with private distribution on the members-only website of the Society of

  18. 46 CFR Sec. 19 - Ship Repair Summaries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Ship Repair Summaries. Sec. 19 Section 19 Shipping... Sec. 19 Ship Repair Summaries. (a) Ship Repair Summaries shall be prepared on Form MA-159 by the... jurisdiction and submitted to the District Ship Repair and Maintenance office involved. The summaries must...

  19. 46 CFR Sec. 19 - Ship Repair Summaries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Ship Repair Summaries. Sec. 19 Section 19 Shipping... Sec. 19 Ship Repair Summaries. (a) Ship Repair Summaries shall be prepared on Form MA-159 by the... jurisdiction and submitted to the District Ship Repair and Maintenance office involved. The summaries must...

  20. 46 CFR Sec. 19 - Ship Repair Summaries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Ship Repair Summaries. Sec. 19 Section 19 Shipping... Sec. 19 Ship Repair Summaries. (a) Ship Repair Summaries shall be prepared on Form MA-159 by the... jurisdiction and submitted to the District Ship Repair and Maintenance office involved. The summaries must...

  1. 46 CFR Sec. 19 - Ship Repair Summaries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Ship Repair Summaries. Sec. 19 Section 19 Shipping... Sec. 19 Ship Repair Summaries. (a) Ship Repair Summaries shall be prepared on Form MA-159 by the... jurisdiction and submitted to the District Ship Repair and Maintenance office involved. The summaries must...

  2. 46 CFR Sec. 19 - Ship Repair Summaries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Ship Repair Summaries. Sec. 19 Section 19 Shipping... Sec. 19 Ship Repair Summaries. (a) Ship Repair Summaries shall be prepared on Form MA-159 by the... jurisdiction and submitted to the District Ship Repair and Maintenance office involved. The summaries must...

  3. FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect

    Jordan, J.

    2010-06-02

    The Bulk Tritium Shipping Package was designed by Savannah River National Laboratory. This package will be used to transport tritium. As part of the requirements for certification, the package must be shown to meet the scenarios of the Hypothetical Accident Conditions (HAC) defined in Code of Federal Regulations Title 10 Part 71 (10CFR71). The conditions include a sequential 30-foot drop event, 30-foot dynamic crush event, and a 40-inch puncture event. Finite Element analyses were performed to support and expand upon prototype testing. Cases similar to the tests were evaluated. Additional temperatures and orientations were also examined to determine their impact on the results. The peak stress on the package was shown to be acceptable. In addition, the strain on the outer drum as well as the inner containment boundary was shown to be acceptable. In conjunction with the prototype tests, the package was shown to meet its confinement requirements.

  4. Wave energy propelling marine ship

    SciTech Connect

    Kitabayashi, S.

    1982-06-29

    A wave energy propelling marine ship comprises a cylindrical ship body having a hollow space therein for transporting fluid material therewithin, a ship body disposed in or on the sea; a propeller attached to the ship body for the purpose of propelling the marine ship for sailing; a rudder for controlling the moving direction of the marine ship; at least one rotary device which includes a plurality of compartments which are each partitioned into a plurality of water chambers by a plurality of radial plates, and a plurality of water charge and/or discharge ports, wherein wave energy is converted into mechanical energy; and device for adjusting buoyancy of the marine ship so that the rotary device is positioned advantageously on the sea surface.

  5. ROUGHNESS LENGTHS FOR THE SAVANNAH RIVER SITE

    SciTech Connect

    Hunter, C.

    2012-03-28

    Surface roughness values for the areas surrounding the H, D and N-Area meteorological towers were computed from archived 2010 meteorological data. These 15-minute-averaged data were measured with cup anemometers and bidirectional wind vanes (bivanes) 61 m above the surface. The results of the roughness calculation using the standard deviation of elevation angle {sigma}{sub E}, and applying the simple formula based on tree canopy height, gave consistent estimates for roughness around the H-Area tower in the range of 1.76 to 1.86 m (95% confidence interval) with a mean value of 1.81 m. Application of the {sigma}{sub E} method for the 61-m level at D and N-Areas gave mean values of 1.71 and 1.81 with confidence ranges of 1.62-1.81 and 1.73-1.88 meters, respectively. Roughness results are azimuth dependent, and thus are presented as averages over compass sectors spanning 22.5 degrees. Calculated values were compared to other methods of determining roughness, including the standard deviation of the azimuth direction, {sigma}{sub A}, and standard deviation of the wind speed, {sigma}{sub U}. Additional data was obtained from a sonic anemometer at 61-m on the H-Area tower during a period of a few weeks in 2010. Results from the sonic anemometer support our use of {sigma}{sub E} to calculate roughness. Based on the H-Area tower results, a surface roughness of 1.8 m using is recommended for use in dispersion modeling applications that consider the impacts of a contaminant release to individuals along the Site boundary. The canopy surrounding the H-Area tower is relatively uniform (i.e., little variance in roughness by upwind direction), and data supplied by the U.S. Forest Service at Savannah River show that the canopy height and composition surrounding the H-Area tower is reasonably representative of forested areas throughout the SRS reservation. For dispersion modeling analyses requiring assessments of a co-located worker within the respective operations area, recommended

  6. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report

    SciTech Connect

    Paller, M.

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  7. Savannah River Site Waste Removal Program - Past, Present and Future

    SciTech Connect

    Saldivar, E.

    2002-02-25

    The Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store, and treat the high level waste (HLW) created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) requires the high level waste to be removed from the tanks and stabilized into a final waste form. Additionally, closure of the tanks following waste removal must be completed. The SRS HLW System Plan identifies the interfaces of safe storage, waste removal, and stabilization of the high level waste and the schedule for the closure of each tank. HLW results from the dissolution of irradiated fuel components. Desired nuclear materials are recovered and the byproducts are neutralized with NaOH and sent to the High Level Waste Tank Farms at the SRS. The HLW process waste clarifies in the tanks as the sludge settles, resulting in a layer of dense sludge with salt supernate settling above the sludge. Salt supernate is concentrated via evaporation into saltcake and NaOH liquor. This paper discusses the history of SRS waste removal systems, recent waste removal experiences, and the challenges facing future removal operations to enhance efficiency and cost effectiveness. Specifically, topics will include the evolution and efficiency of systems used in the 1960's which required large volumes of water to current systems of large centrifugal slurry pumps, with significant supporting infrastructure and safety measures. Interactions of this equipment with the waste tank farm operations requirements will also be discussed. The cost and time improvements associated with these present-day systems is a primary focus for the HLW Program.

  8. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2016-07-12

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  9. 10 CFR 26.117 - Preparing urine specimens for storage and shipping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Preparing urine specimens for storage and shipping. 26.117 Section 26.117 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.117 Preparing urine specimens for storage and shipping. (a) Both the donor and the...

  10. 10 CFR 26.117 - Preparing urine specimens for storage and shipping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Preparing urine specimens for storage and shipping. 26.117 Section 26.117 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.117 Preparing urine specimens for storage and shipping. (a) Both the donor and the...

  11. 10 CFR 26.117 - Preparing urine specimens for storage and shipping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Preparing urine specimens for storage and shipping. 26.117 Section 26.117 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.117 Preparing urine specimens for storage and shipping. (a) Both the donor and the...

  12. 10 CFR 26.117 - Preparing urine specimens for storage and shipping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Preparing urine specimens for storage and shipping. 26.117 Section 26.117 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.117 Preparing urine specimens for storage and shipping. (a) Both the donor and the...

  13. 10 CFR 26.117 - Preparing urine specimens for storage and shipping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Preparing urine specimens for storage and shipping. 26.117 Section 26.117 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.117 Preparing urine specimens for storage and shipping. (a) Both the donor and the...

  14. The Development of Nuclear Propulsion in the Navy

    DTIC Science & Technology

    1960-03-29

    nuclear power for ship propulsion . The man who approved this project on his own cognizance was Rear Admiral Harold G. Bowen, then Chief of the old...their basic objective, the development of nuclear power for ship propulsion . However, they faced a formidable obstacle. Because of severe security...officials on the possibility of the application of nuclear power to ship propulsion . General Groves stated that the chief handicap was the limited

  15. SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT

    SciTech Connect

    Motyka, T

    2008-11-11

    A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

  16. The Savannah River Site's groundwater monitoring program

    SciTech Connect

    Not Available

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  17. Tritium in the Savannah River Site environment

    SciTech Connect

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  18. Savannah River Site environmental report for 1988

    SciTech Connect

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A.; Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01

    During 1988, as in previous years, Savannah River Site operations had no adverse impact on the general public or the environment. Based on the SRS site-specific code, the maximum radiation dose commitment to a hypothetical individual at the SRS boundary from 1988 SRS atmospheric releases of radioactive materials was 0.46 millirem (mrem) (0.0046 millisievert (mSv)). To obtain the maximum dose, an individual would have had to reside on the SRS boundary at the location of highest dose for 24 hours per day, 365 days per year, consume a maximum amount of foliage and meat which originated from the general vicinity of the plant boundary, and drink a maximum amount of milk from cows grazing at the plant boundary. The average radiation dose commitment from atmospheric releases to the hypothetical individual on the SRS boundary in 1988 was 0.18 mrem (0. 0018 mSv). This person, unlike the maximumly exposed individual, consumes an average amount of foliage, meat, and milk which originated from the foliage and animals living at the plant boundary.

  19. Savannah River Site Annual Meteorology Report 2003

    SciTech Connect

    HUNTER, CHARLESH.

    2004-04-30

    Summaries of meteorological observations collected at the Savannah River Site (SRS) in 2003 reveal a year that was unusually cool and wet. The annual rainfall of 61.2 inches was the third highest of all the years in a period of record that began in 1952. Higher amounts were recorded only in 1964 (73.5 in) and 1971 (68.2 in). Rainfall of 0.01 inch or more occurred on 119 days during the year. Furthermore, the annual average temperature of 62.2 degrees Fahrenheit was the coldest of any year in an available record that dates to 1964. Cool and wet conditions were most pronounced in the spring and summer months. Unusually cold weather also occurred in January and December. The coldest temperature for the year was 12.5 degrees Fahrenheit (Jan 24) and the warmest temperature was 92.4 degrees Fahrenheit (Aug 27). There were no significant occurrences of severe weather (ice/snow, tornado, sustained high wind) during the year. The heavy rain that occurred on April 7 (3.5 inches) was due to an active stationary front over the area and strong southwesterly wind aloft. The remnants of Tropical Storm Bill produced 2.36 inches of rain on July 1. Hurricane Isabelle, which struck the North Carolina coast mid September, did not have a significant affect on the SRS. A thunderstorm on May 3 produced a surface (4-meter) wind gust of 41.7 miles per hour.

  20. Savannah River Site Environmental Report for 2003

    SciTech Connect

    A. MAMATEY

    2003-01-01

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations.

  1. Savannah River Site. Environmental report for 2001

    SciTech Connect

    Arnett, Margaret W.; Mamatey, Albert R.

    2001-12-31

    The goal of the Savannah River Site (SRS)—and that of the U.S. Department of Energy (DOE)—is positive environmental stewardship and full regulatory compliance, with zero violations. The site’s employees maintained progress toward achievement of this goal in 2001, as demonstrated by examples in this chapter. The site’s compliance efforts were near-perfect again in 2001. No notices of violation (NOVs) were issued in 2001 under the Resource Conservation and Recovery Act (RCRA), the Safe Drinking Water Act (SDWA), or the Clean Water Act (CWA). Two NOVs were issued to SRS during 2001—one, associated with permit requirement compliance, was issued under the Clean Air Act (CAA); the other, related to an oil release, was issued under the South Carolina Pollution Control Act. Under the CWA, the site’s National Pollutant Discharge Elimination System (NPDES) compliance rate was 99.6 percent. Also, 274 National Environmental Policy Act (NEPA) reviews of newly proposed actions were conducted and formally documented in 2001, and only one of the year’s 799 Site Item Reportability and Issues Management (SIRIM) program-reportable events was categorized as environmental; it was classified as an off-normal event.

  2. Studies of SHE at SHIP

    SciTech Connect

    Hofmann, Sigurd

    2010-04-30

    The nuclear shell model predicts that the next doubly magic shell-closure beyond {sup 208}Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 184. The outstanding aim of experimental investigations is the exploration of this region of spherical 'Super-Heavy Elements'(SHEs). Experimental methods are described, which allowed for the identification of elements produced on a cross-section level of about 1 pb. Reactions used at SHIP are based on targets of lead and uranium. The decay data reveal that for the heaviest elements, the dominant decay mode is alpha emission, not fission. Decay properties as well as reaction cross-sections are compared with results obtained at other laboratories and with results of theoretical investigations. Finally, plans are presented for the further development of the experimental setup and the application of new techniques, as for instance the precise mass measurement of the produced nuclei using ion traps. At increased sensitivity, detailed exploration of the region of spherical SHEs will start, after first steps on the island of SHEs were made in recent years.

  3. Study of SHE at SHIP

    SciTech Connect

    Hofmanna, Sigurd

    2010-06-01

    The nuclear shell model predicts that the next doubly magic shell-closure beyond {sup 208}Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 184. The outstanding aim of experimental investigations is the exploration of this region of spherical 'SuperHeavy Elements'(SHEs). Experimental methods are described, which allowed for the identification of elements produced on a cross-section level of about 1 pb. Reactions used at SHIP are based on targets of lead and uranium. The decay data reveal that for the heaviest elements, the dominant decay mode is alpha emission, not fission. Decay properties as well as reaction cross-sections are compared with results obtained at other laboratories and with results of theoretical investigations. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques, as for instance the precise mass measurement of the produced nuclei using ion traps. At increased sensitivity, detailed exploration of the region of spherical SHEs will start, after first steps on the island of SHEs were made in recent years.

  4. Global Fleet Station: Station Ship Concept

    DTIC Science & Technology

    2008-02-01

    The SWBS 200 breakdown is shown below: Table 9 - SWBS 200 Weights Summary Group Description Weight (mt) 210 ENERGY GEN SYS (NUCLEAR) 0 220... ENERGY GENERATING SYSTEM (see SWBS 310) 230 PROPULSION UNITS 226.6 240 TRANSMISSION+PROPULSOR SYSTEMS 0.0 250 SUPPORT SYSTEMS 77.9 260 PROPUL SUP SYS...frequency of the ship roll motions in beam seas. It can be seen from Figure 16 that the peak roll RAO occurs at 0.7 rad./s or an 8.5 second wave period

  5. Analysis of a ship-to-ship collision

    SciTech Connect

    Porter, V.L.; Ammerman, D.J.

    1996-02-01

    Sandia National Laboratories is involved in a safety assessment for the shipment of radioactive material by sea. One part of this study is investigation of the consequences of ship-to-ship collisions. This paper describes two sets of finite element analyses performed to assess the structural response of a small freighter and the loading imparted to radioactive material (RAM) packages during several postulated collision scenarios with another ship. The first series of analyses was performed to evaluate the amount of penetration of the freighter hull by a striking ship of various masses and initial velocities. Although these analyses included a representation of a single RAM package, the package was not impacted during the collision so forces on the package could not be computed. Therefore, a second series of analyses incorporating a representation of a row of seven packages was performed to ensure direct package impact by the striking ship. Average forces on a package were evaluated for several initial velocities and masses of the striking ship. In addition to. providing insight to ship and package response during a few postulated ship collisions scenarios, these analyses will be used to benchmark simpler ship collision models used in probabilistic risk assessment analyses.

  6. Rough Sea Transfer Ship

    DTIC Science & Technology

    2008-07-01

    GROUP 2.3 2.36003 TRIAGE 20.00 60.00 GROUP 2.4 2.41005 VENDING MACHINE AREA 1.84 5.53 2.42001 LAUNDRY 27.15 81.44 GROUP 2.5...Research Enterprise Intern Program Rough Seas Transfer Ship Acknowledgements This report is the culmination of work conducted by students hired...under the National Research Enterprise Intern Program sponsored by the Office of Naval Research. This program provides an opportunity for students to

  7. Cockroach infestation on seagoing ships.

    PubMed

    Oldenburg, Marcus; Baur, Xaver

    2008-01-01

    Cockroaches are detected ashore worldwide. At present, little is known about cockroach infestation on ships. The authors' objective in this study was to assess the current prevalence of cockroach infestation on seagoing vessels. In August 2005, port officials investigated cockroach infestation on 59 ships in Hamburg's port via standardized procedures (ie, illuminating hiding places and using pyrethrum spray). About 3 minutes after illumination or chemical provocation, the inspectors counted the number of insects escaping from their hiding places. The examination revealed cockroach presence in the galley or mess room of 6 ships (10.2%). These ships were bigger than 10,000 gross register tons (GRT) and older than 7 years. Inspectors detected the cockroach species Blattella germanica on 5 ships and Blatta orientalis on 1 ship. The standardized use of pyrethrum spray more frequently detected cockroaches than did inspection or illumination of their hiding places.

  8. A New Propulsion System for Ships.

    DTIC Science & Technology

    1980-01-31

    complex relationships involving ship propulsion , ship control and a host of independent problems related to hydrodynamics, structural mechanics, efficiency...namely ship configuration and ship con- trol in addition to ship propulsion . The transmission pump can 1be used for boundary layer control on the...possibly overcome the limitation and performance shortcomings of existing ship propulsion systems. Light weight propulsion systems for naval ship

  9. Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    SciTech Connect

    Jantzen, C

    2004-11-01

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

  10. Future of Magnetohydrodynamic Ship Propulsion,

    DTIC Science & Technology

    1983-08-16

    83 FOREIGN TECHNOLOGY DIVISION FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION by A.P. Baranov DTIQ ~E tJ Approved for public release; 0.. distribution...MAGNETOHYDRODYNAMIC SHIP PROPULSION By: A.P. Baranov -,English pages: 10 Source: Sudostroyeniye, Nr. 12, December 1966, pp. 3-6 . Country of origin: USSR X...equations, etc. merged into this translation were extracted from the best quality copy available. FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION A. P

  11. Advanced Demonstration of Motion Correction for Ship-to-Ship Passive Inspections

    SciTech Connect

    Ziock, Klaus-Peter; Boehnen, Chris Bensing; Ernst, Joseph

    2013-09-30

    Passive radiation detection is a key tool for detecting illicit nuclear materials. In maritime applications it is most effective against small vessels where attenuation is of less concern. Passive imaging provides: discrimination between localized (threat) and distributed (non-threat) sources, removal of background fluctuations due to nearby shorelines and structures, source localization to an individual craft in crowded waters, and background subtracted spectra. Unfortunately, imaging methods cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing sensitivity. This is particularly true for the smaller water craft where passive inspections are most valuable. In this project we performed tests and improved the performance of an instrument (developed earlier under, “Motion Correction for Ship-to-Ship Passive Inspections”) that uses automated tracking of a target vessel in visible-light images to generate a 3D radiation map of the target vessel from data obtained using a gamma-ray imager.

  12. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    SciTech Connect

    Chen, K.F.

    1999-05-13

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions.

  13. Use of Electronic Hand-held Devices for Collection of Savannah River Site Environmental Data - 13329

    SciTech Connect

    Marberry, Hugh; Moore, Winston

    2013-07-01

    Savannah River Nuclear Solutions has begun using Xplore Tablet PC's to collect data in the field for soil samples, groundwater samples, air samples and round sheets at the Savannah River Site (SRS). EPA guidelines for groundwater sampling are incorporated into the application to ensure the sample technician follows the proper protocol. The sample technician is guided through the process for sampling and round sheet data collection by a series of menus and input boxes. Field measurements and well stabilization information are entered into the tablet for uploading into Environmental Restoration Data Management System (ERDMS). The process helps to eliminate input errors and provides data integrity. A soil sample technician has the ability to collect information about location of sample, field parameter, describe the soil sample, print bottle labels, and print chain of custody for the sample that they have collected. An air sample technician has the ability to provide flow, pressure, hours of operation, print bottle labels and chain of custody for samples they collect. Round sheets are collected using the information provided in the various procedures. The data are collected and uploaded into ERDMS. The equipment used is weather proof and hardened for the field use. Global Positioning System (GPS) capabilities are integrated into the applications to provide the location where samples were collected and to help sample technicians locate wells that are not visited often. (authors)

  14. The audit of the Replacement High Level Waste Evaporator at the Savannah River Site

    SciTech Connect

    1995-06-26

    The Savannah River Site (Site), owned by the Departmen Energy (Department) and managed by Westinghouse Savannah River Company (Westinghouse), recently changed its primary mission from producing nuclear materials to environmental restoration and waste management. A major focus in the Site`s mission is the storage, treatment, stabilization, and disposal of high level radioactive waste materials. To accomplish this mission, the Site will integrate its high level waste treatment facilities into a High Level Waste System (System), which will process the radioactive waste material in six distinct batches. An integral part of the System is the Replacement High Level Waste Evaporator (Replacement Evaporator) which will evaporate water added to the high level waste during processing, thereby minimizing the volume of the waste stream. Currently, the System has the evaporator and tank farm capacity to accommodate the processing of the first batch of radioactive waste, which is scheduled to begin in March 1996. However, the system will need the Replacement Evaporator to accommodate the volume of water and solvent added during processing of the second batch of radioactive waste scheduled to begin processing in 2004.

  15. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  16. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  17. Ship Creek bioassessment investigations

    SciTech Connect

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  18. Savannah River Site Environmental Implentation Plan. Volume 3, Management and support programs

    SciTech Connect

    Not Available

    1989-08-01

    This report describes the organizational responsibilities for the Savannah River Site Environmental program. Operations, Engineering and projects, Environment, safety, and health, Quality assurance, and the Savannah River Laboratory are described.

  19. Natural Remediation at Savannah River Site

    SciTech Connect

    Lewis, C. M.; Van Pelt, R.

    2002-02-25

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  20. ONSITE TRANSPORTATION AUTHORIZATION CHALLENGES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Watkins, R.; Loftin, B.; Hoang, D.; Maxted, M.

    2012-05-30

    Prior to 2008, transfers of radioactive material within the Savannah River Site (SRS) boundary, referred to as onsite transfers, were authorized by Transportation Safety Basis (TSB) documents that only required approval by the SRS contractor. This practice was in accordance with the existing SRS Transportation Safety Document (TSD). In 2008 the Department of Energy Savannah River Field Office (DOE-SR) requested that the SRS TSD be revised to require DOE-SR approval of all Transportation Safety Basis (TSB) documents. As a result, the primary SRS contractor embarked on a multi-year campaign to consolidate old or generate new TSB documents and obtain DOE-SR approval for each. This paper focuses on the challenges incurred during the rewriting or writing of and obtaining DOE-SR approval of all Savannah River Site Onsite Transportation Safety Basis documents.

  1. 46 CFR 148.60 - Shipping papers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Shipping papers. 148.60 Section 148.60 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.60 Shipping papers. The shipper... appropriate information on the cargo in the form of a shipping paper, in English, prior to...

  2. 46 CFR 148.60 - Shipping papers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Shipping papers. 148.60 Section 148.60 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.60 Shipping papers. The shipper... appropriate information on the cargo in the form of a shipping paper, in English, prior to...

  3. 46 CFR 148.60 - Shipping papers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Shipping papers. 148.60 Section 148.60 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.60 Shipping papers. The shipper... appropriate information on the cargo in the form of a shipping paper, in English, prior to...

  4. Disentangling invasion processes in a dynamic shipping-boating network.

    PubMed

    Lacoursière-Roussel, Anaïs; Bock, Dan G; Cristescu, Melania E; Guichard, Frédéric; Girard, Philippe; Legendre, Pierre; McKindsey, Christopher W

    2012-09-01

    The relative importance of multiple vectors to the initial establishment, spread and population dynamics of invasive species remains poorly understood. This study used molecular methods to clarify the roles of commercial shipping and recreational boating in the invasion by the cosmopolitan tunicate, Botryllus schlosseri. We evaluated (i) single vs. multiple introduction scenarios, (ii) the relative importance of shipping and boating to primary introductions, (iii) the interaction between these vectors for spread (i.e. the presence of a shipping-boating network) and (iv) the role of boating in determining population similarity. Tunicates were sampled from 26 populations along the Nova Scotia, Canada, coast that were exposed to either shipping (i.e. ports) or boating (i.e. marinas) activities. A total of 874 individuals (c. 30 per population) from five ports and 21 marinas was collected and analysed using both mitochondrial cytochrome c oxidase subunit I gene (COI) and 10 nuclear microsatellite markers. The geographical location of multiple hotspot populations indicates that multiple invasions have occurred in Nova Scotia. A loss of genetic diversity from port to marina populations suggests a stronger influence of ships than recreational boats on primary coastal introductions. Population genetic similarity analysis reveals a dependence of marina populations on those that had been previously established in ports. Empirical data on marina connectivity because of boating better explains patterns in population similarities than does natural spread. We conclude that frequent primary introductions arise by ships and that secondary spread occurs gradually thereafter around individual ports, facilitated by recreational boating.

  5. Fireproof impact limiter aggregate packaging inside shipping containers

    DOEpatents

    Byington, Gerald A.; Oakes, Jr., Raymon Edgar; Feldman, Matthew Rookes

    2001-01-01

    The invention is a product and a process for making a fireproof, impact limiter, homogeneous aggregate material for casting inside a hazardous material shipping container, or a double-contained Type-B nuclear shipping container. The homogeneous aggregate material is prepared by mixing inorganic compounds with water, pouring the mixture into the void spaces between an inner storage containment vessel and an outer shipping container, vibrating the mixture inside the shipping container, with subsequent curing, baking, and cooling of the mixture to form a solidified material which encapsulates an inner storage containment vessel inside an outer shipping container. The solidified material forms a protective enclosure around an inner storage containment vessel which may store hazardous, toxic, or radioactive material. The solidified material forms a homogeneous fire-resistant material that does not readily transfer heat, and provides general shock and specific point-impact protection, providing protection to the interior storage containment vessel. The material is low cost, may contain neutron absorbing compounds, and is easily formed into a variety of shapes to fill the interior void spaces of shipping containers.

  6. Audit Report The Procurement of Safety Class/Safety-Significant Items at the Savannah River Site

    SciTech Connect

    2009-04-01

    The Department of Energy operates several nuclear facilities at its Savannah River Site, and several additional facilities are under construction. This includes the National Nuclear Security Administration's Tritium Extraction Facility (TEF) which is designated to help maintain the reliability of the U.S. nuclear stockpile. The Mixed Oxide Fuel Fabrication Facility (MOX Facility) is being constructed to manufacture commercial nuclear reactor fuel assemblies from weapon-grade plutonium oxide and depleted uranium. The Interim Salt Processing (ISP) project, managed by the Office of Environmental Management, will treat radioactive waste. The Department has committed to procuring products and services for nuclear-related activities that meet or exceed recognized quality assurance standards. Such standards help to ensure the safety and performance of these facilities. To that end, it issued Departmental Order 414.1C, Quality Assurance (QA Order). The QA Order requires the application of Quality Assurance Requirements for Nuclear Facility Applications (NQA-1) for nuclear-related activities. The NQA-1 standard provides requirements and guidelines for the establishment and execution of quality assurance programs during the siting, design, construction, operation, and decommissioning of nuclear facilities. These requirements, promulgated by the American Society of Mechanical Engineers, must be applied to 'safety-class' and 'safety-significant' structures, systems and components (SSCs). Safety-class SSCs are defined as those necessary to prevent exposure off site and to protect the public. Safety-significant SSCs are those whose failure could irreversibly impact worker safety such as a fatality, serious injury, or significant radiological or chemical exposure. Due to the importance of protecting the public, workers, and environment, we initiated an audit to determine whether the Department of Energy procured safety-class and safety-significant SSCs that met NQA-1 standards at

  7. Audit of groundwater remediation plans at the Savannah River Site

    SciTech Connect

    1996-06-11

    The Department of Energy was required to reduce groundwater contamination that represented a risk to human health or the environment. To achieve this goal, the Savannah River Operations Office (Savannah River) entered into several formal agreements with Federal and State regulators. The agreements described how Savannah River would reduce the level of contamination until the risks to human health and the environment were lowered to an acceptable level. The agreements called for decreasing groundwater contamination to levels that would comply with South Carolina groundwater regulations, which would allow a hypothetical future resident to someday live above the F and H Areas and drink the groundwater. We believe basing the agreements on drinking water standards was unreasonable because no one will likely live above these areas or drink the groundwater. The more stringent drinking water standards were included in the planning process because Savannah River had not developed a Land Use Plan that would permit rational decision making for the entire site. Lacking a Land Use Plan, the environmental regulators assumed, and Savannah River acceded to, the most stringent usage scenario, that the groundwater under the F and H Areas might one day be used as a source of drinking water. It will take more than one hundred years for the subterranean groundwater to become safe enough for drinking water purposes. Consequently, Savannah River may continue to pursue expensive remediation projects for longer than would be necessary to protect human health and the environment. However, the cost impact of unnecessary clean-up activities is indeterminable because acceptable contamination limits would still have to be negotiated with the South Carolina Department of Health and Environmental Control.

  8. 33 CFR 117.353 - Atlantic Intracoastal Waterway, Savannah River to St. Marys River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Savannah River to St. Marys River. 117.353 Section 117.353 Navigation and Navigable Waters COAST GUARD....353 Atlantic Intracoastal Waterway, Savannah River to St. Marys River. (a) General. Public vessels of... Bridge, SR 204, mile 592.9 near Savannah. The draw will open as necessary on the hour from 7 a.m. to 9...

  9. 40 CFR 81.113 - Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Savannah (Georgia)-Beaufort (South... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.113 Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region. The Savannah (Georgia)-Beaufort (South...

  10. 75 FR 24684 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463..., 601 East Bay Street, Savannah, Georgia 31401. FOR FURTHER INFORMATION CONTACT: Gerri Flemming,...

  11. 40 CFR 81.113 - Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Savannah (Georgia)-Beaufort (South... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.113 Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region. The Savannah (Georgia)-Beaufort (South...

  12. 77 FR 53193 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463... CONTACT: Gerri Flemming, Office of External Affairs, Department of Energy, Savannah River...

  13. 77 FR 13104 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463... of External Affairs, Department of Energy, Savannah River Operations Office, P.O. Box A, Aiken,...

  14. 78 FR 26005 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463...: Gerri Flemming, Office of External Affairs, Department of Energy, Savannah River Operations Office,...

  15. 78 FR 14088 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act requires that....m.-5:30 p.m.; Tuesday, March 26, 2013, 8:00 a.m.-4:30 p.m. ADDRESSES: Westin Savannah Harbor,...

  16. 76 FR 55369 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463... Flemming, Office of External Affairs, Department of Energy, Savannah River Operations Office, P.O. Box...

  17. 33 CFR 100.724 - Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Rowing Regatta; Savannah River, Augusta, GA. 100.724 Section 100.724 Navigation and Navigable Waters... WATERS § 100.724 Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA. (a) Definitions. (1) Regulated area. The regulated area is formed by a line drawn directly across the Savannah...

  18. 33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Savannah River, Augusta GA. 100.732 Section 100.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area is formed by a line drawn directly across the Savannah River at the U.S. Highway 1 Bridge at...

  19. 33 CFR 117.353 - Atlantic Intracoastal Waterway, Savannah River to St. Marys River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Savannah River to St. Marys River. 117.353 Section 117.353 Navigation and Navigable Waters COAST GUARD....353 Atlantic Intracoastal Waterway, Savannah River to St. Marys River. (a) General. Public vessels of... Bridge, SR 204, mile 592.9 near Savannah. The draw will open as necessary on the hour from 7 a.m. to 9...

  20. 76 FR 65706 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463... Flemming, Office of External Affairs, Department of Energy, Savannah River Operations Office, P.O. Box...

  1. 40 CFR 81.113 - Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Savannah (Georgia)-Beaufort (South... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.113 Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region. The Savannah (Georgia)-Beaufort (South...

  2. 78 FR 716 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463..., Office of External Affairs, Department of Energy, Savannah River Operations Office, P.O. Box A, Aiken,...

  3. 75 FR 39007 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463...: Gerri Flemming, Office of External Affairs, Department of Energy, Savannah River Operations Office,...

  4. 33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; Savannah River, Augusta GA. 100.732 Section 100.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area is formed by a line drawn directly across the Savannah River at the U.S. Highway 1 Bridge at...

  5. 76 FR 53829 - Safety Zone; ESI Ironman 70.3 Augusta Triathlon, Savannah River, Augusta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ..., Savannah River, Augusta, GA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the waters of the Savannah River in Augusta, Georgia... Port Savannah or a designated representative. DATES: This rule is effective from 7 a.m. until 11:59...

  6. 33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; Savannah River, Augusta GA. 100.732 Section 100.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area is formed by a line drawn directly across the Savannah River at the U.S. Highway 1 Bridge at...

  7. 33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Savannah River, Augusta GA. 100.732 Section 100.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area is formed by a line drawn directly across the Savannah River at the U.S. Highway 1 Bridge at...

  8. 76 FR 4865 - Reorganization of Foreign-Trade Zone 104 Under Alternative Site Framework Savannah, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Savannah, GA Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U... of general-purpose zones; Whereas, the Savannah Airport Commission, grantee of Foreign-Trade Zone 104..., Liberty, Long, and Screven in and adjacent to the Savannah Customs and Border Protection port of...

  9. 76 FR 38143 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy, DOE... Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L.... ADDRESSES: Savannah Rapids Pavilion, 3300 Evans to Locks Road, Martinez, GA 30907. FOR FURTHER...

  10. 33 CFR 100.724 - Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Rowing Regatta; Savannah River, Augusta, GA. 100.724 Section 100.724 Navigation and Navigable Waters... WATERS § 100.724 Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA. (a) Definitions. (1) Regulated area. The regulated area is formed by a line drawn directly across the Savannah...

  11. 78 FR 65979 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463..., Office of External Affairs, Department of Energy, Savannah River Operations Office, P.O. Box A, Aiken,...

  12. 75 FR 57462 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. No. 92...: Gerri Flemming, Office of External Affairs, Department of Energy, Savannah River Operations Office,...

  13. 76 FR 11772 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463... of External Affairs, Department of Energy, Savannah River Operations Office, P.O. Box A, Aiken,...

  14. 78 FR 16260 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board, Savannah River Site (78 FR 14088). This document makes a correction to that notice..., Savannah River Operations Office, P.O. ] Box A, Aiken, SC 29802; Phone: (803) 952-7886. Corrections In...

  15. 33 CFR 117.353 - Atlantic Intracoastal Waterway, Savannah River to St. Marys River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Savannah River to St. Marys River. 117.353 Section 117.353 Navigation and Navigable Waters COAST GUARD....353 Atlantic Intracoastal Waterway, Savannah River to St. Marys River. (a) General. Public vessels of... Bridge, SR 204, mile 592.9 near Savannah. The draw will open as necessary on the hour from 7 a.m. to 9...

  16. 77 FR 60688 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463... Flemming, Office of External Affairs, Department of Energy, Savannah River Operations Office, P.O. Box...

  17. 40 CFR 81.113 - Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Savannah (Georgia)-Beaufort (South... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.113 Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region. The Savannah (Georgia)-Beaufort (South...

  18. 40 CFR 81.113 - Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Savannah (Georgia)-Beaufort (South... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.113 Savannah (Georgia)-Beaufort (South Carolina) Interstate Air Quality Control Region. The Savannah (Georgia)-Beaufort (South...

  19. 76 FR 34859 - Safety Zone; Augusta Southern Nationals Drag Boat Race, Savannah River, Augusta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ..., Savannah River, Augusta, GA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the waters of the Savannah River in Augusta, Georgia... authorized by the Captain of the Port Savannah or a designated representative. DATES: This rule is...

  20. 33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; Savannah River, Augusta GA. 100.732 Section 100.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area is formed by a line drawn directly across the Savannah River at the U.S. Highway 1 Bridge at...

  1. 33 CFR 100.724 - Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Rowing Regatta; Savannah River, Augusta, GA. 100.724 Section 100.724 Navigation and Navigable Waters... WATERS § 100.724 Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA. (a) Definitions. (1) Regulated area. The regulated area is formed by a line drawn directly across the Savannah...

  2. 77 FR 39235 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463...: Gerri Flemming, Office of External Affairs, Department of Energy, Savannah River Operations Office,...

  3. 33 CFR 117.353 - Atlantic Intracoastal Waterway, Savannah River to St. Marys River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Savannah River to St. Marys River. 117.353 Section 117.353 Navigation and Navigable Waters COAST GUARD....353 Atlantic Intracoastal Waterway, Savannah River to St. Marys River. (a) General. Public vessels of... Bridge, SR 204, mile 592.9 near Savannah. The draw will open as necessary on the hour from 7 a.m. to 9...

  4. 33 CFR 100.724 - Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Rowing Regatta; Savannah River, Augusta, GA. 100.724 Section 100.724 Navigation and Navigable Waters... WATERS § 100.724 Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA. (a) Definitions. (1) Regulated area. The regulated area is formed by a line drawn directly across the Savannah...

  5. 33 CFR 100.724 - Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rowing Regatta; Savannah River, Augusta, GA. 100.724 Section 100.724 Navigation and Navigable Waters... WATERS § 100.724 Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA. (a) Definitions. (1) Regulated area. The regulated area is formed by a line drawn directly across the Savannah...

  6. 78 FR 40130 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. No. 92... CONTACT: Gerri Flemming, Office of External Affairs, Department of Energy, Savannah River...

  7. 33 CFR 117.353 - Atlantic Intracoastal Waterway, Savannah River to St. Marys River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Savannah River to St. Marys River. 117.353 Section 117.353 Navigation and Navigable Waters COAST GUARD....353 Atlantic Intracoastal Waterway, Savannah River to St. Marys River. (a) General. Public vessels of... Bridge, SR 204, mile 592.9 near Savannah. The draw will open as necessary on the hour from 7 a.m. to 9...

  8. 75 FR 9885 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Environmental Management Site-Specific Advisory Board, Savannah River Site AGENCY: Department of Energy. ACTION...-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463... External Affairs, Department of Energy, Savannah River Operations Office, P.O. Box A, Aiken, SC...

  9. Microbial Characteristics of Native Aquatic Species of Savannah River Wetlands

    SciTech Connect

    McKinsey, P.C.

    2000-12-12

    In 1974 the Savannah River Site (SRS) was established as a National Environmental Research Park (NERP) in the United States. NERP provided locations for long-term ecological research investigation. Many of the ecological studies that have been conducted in the past mainly focused on the macroscopic view. The Savannah River Site contains wetlands that are home to many diverse organisms. We conducted a preliminary survey of microbial habitats in order to explore the biodiversity of species-specific symbionts. Bacterial surveys included viable counts, direct counts, isolation, identification, and metabolic profiles.

  10. Machinery Vibration Monitoring Program at the Savannah River Site

    SciTech Connect

    Potvin, M.M.

    1990-01-01

    The Reactor Maintenance's Machinery Vibration Monitoring Program (MVMP) plays an essential role in ensuring the safe operation of the three Production Reactors at the Westinghouse Savannah River Company (WRSC) Savannah River Site (SRS). This program has increased machinery availability and reduced maintenance cost by the early detection and determination of machinery problems. This paper presents the Reactor Maintenance's Machinery Vibration Monitoring Program, which has been documented based on Electric Power Research Institute's (EPRI) NP-5311, Utility Machinery Monitoring Guide, and some examples of the successes that it has enjoyed.

  11. Savannah River Site ECS-2 tests uncertainty report

    SciTech Connect

    Wilkins, S.C.; Larson, R.A.

    1990-07-01

    This document presents a measurement uncertainty analysis for the instruments used in the ECS-2 test series conducted for the Savannah River Site at the Idaho National Engineering Laboratory. The tests are a series of downflow dryout heat transfer experiments designed to support computer code development and verification in setting limits for the Savannah River Production reactors. The measurements include input current, voltage, and power; air and water flows, fluid and metal temperatures, and absolute and differential pressures. An analysis of the data acquisition system as it relates to these measurements is also included. 18 refs., 6 figs., 12 tabs.

  12. Updated emissions from ocean shipping

    NASA Astrophysics Data System (ADS)

    Corbett, James J.; Koehler, Horst W.

    2003-10-01

    Marine vessel inventories demonstrate that ship emissions cannot be neglected in assessing environmental impacts of air pollution, although significant uncertainty in these inventories remains. We address this uncertainty by employing a bottom-up estimate of fuel consumption and vessel activity for internationally registered fleets, including cargo vessels, other commercial vessels, and military vessels. We identify model bias in previous work, which assumed internationally registered ships primarily consume international marine fuels. Updated results suggest fuel consumption is ˜289 million metric tons per year, more than twice the quantity reported as international fuel. According to our analysis, fuel used by internationally registered fleets is apparently allocated to both international and domestic fuel statistics; this implies either that ships operate along domestic routes much of the time or that marine fuel sales to these ships may be misassigned. If the former is true, then allocation of emissions to international shipping routes may underestimate near-coastal emissions from ships. Our updated inventories increases previous ship emissions inventories for all pollutants; for example, global NOx emissions (˜6.87 Tg N) are more than doubled. This work also produces detailed sensitivity analyses of inputs to these estimates, identifying uncertainty in vessel duty-cycle as critical to overall emissions estimates. We discuss implications for assessing ship emissions impacts.

  13. Cruise Ship Port Planning Factors

    DTIC Science & Technology

    2001-01-01

    The cruise ship industry started off like a healthy plant in a small pot. When it was small, it struggled, survived and flourished in the small pot... cruise ship port planning issues, and demonstrates that the market demand will continue to increase in the future. This increase in demand will be driven

  14. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  15. Automated Detection of Anomalous Shipping Manifests to Identify Illicit Trade

    SciTech Connect

    Sanfilippo, Antonio P.; Chikkagoudar, Satish

    2013-11-12

    We describe an approach to analyzing trade data which uses clustering to detect similarities across shipping manifest records, classification to evaluate clustering results and categorize new unseen shipping data records, and visual analytics to provide to support situation awareness in dynamic decision making to monitor and warn against the movement of radiological threat materials through search, analysis and forecasting capabilities. The evaluation of clustering results through classification and systematic inspection of the clusters show the clusters have strong semantic cohesion and offer novel ways to detect transactions related to nuclear smuggling.

  16. Local and Regional Economic Benefits from Forest Products Production Activities at the Savannah River Site: 1955-Present

    SciTech Connect

    Teeter, L.; Blake, J.I.

    2002-01-01

    SRS was established in 1951 as a nuclear materials production facility; however, decline in the defense mission budget at SRS has created a major economic impact on the community in the Central Savannah River Area. SRS has been offsetting these effects by producing revenue (80 million dollars to date) from the sale of forest products since 1955 primarily trees, but also pine straw. Revenue has been re-invested into the infrastructure development, restoration and management of natural resources. Total asset value of the forest-land has increased from 21 million to over 500 million dollars in the same period.

  17. REMOVAL OF CESIUM FROM SAVANNAH RIVER SITE WASTE WITH SPHERICAL RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN EXPERIMENTAL TESTS

    SciTech Connect

    Duignan, M.; Nash, C.

    2010-03-31

    A principal goal at the Savannah River Site (SRS) is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange (IX) columns are being considered for cesium removal. The spherical form of resorcinol formaldehyde ion exchange resin (sRF) is being evaluated for decontamination of dissolved saltcake waste at SRS, which is generally lower in potassium and organic components than Hanford waste. The sRF performance with SRS waste was evaluated in two phases: resin batch contacts and IX column testing with both simulated and actual dissolved salt waste. The tests, equipment, and results are discussed.

  18. Investigation into the feasibility of alternative plutonium shipping forms

    SciTech Connect

    Mishima, J.; Lindsey, C.G.

    1983-06-01

    Pacific Northwest Laboratory (PNL), operated for the Department of Energy by the Battelle Memorial Institute, is conducting a study for the Nuclear Regulatory Commission on the feasibility of altering current plutonium shipping forms to reduce or eliminate the airborne dispersibility of PuO/sub 2/ which might occur during a shipping accident. Plutonium used for fuel fabrication is currently shipped as a PuO/sub 2/ powder with a significant fraction in the respirable size range. If the high-strength container is breached due to stresses imposed during a transportation accident, the PuO/sub 2/ powder could be subject to airborne dispersion. The available information indicated that a potential accident involving fire accompanied by crush/impact forces would lead to failure of current surface shipping containers (no assumptions were made on the possibility of such a severe accident). Criteria were defined for an alternate shipping form to mitigate the effects of such an accident. Candidate techniques and materials were evaluated as alternate shipping forms by a task team consisting of personnel from PNL and Rockwell Hanford Operations (RHO). At this time, the most promising candidate for an alternate plutonium shipping form appears to be pressing PuO/sub 2/ into unsintered (green) pellets. These green pellets satisfy the criteria for a less dispersible form without requiring significant process changes. Discussions of all candidates considered are contained in a series of appendices. Recommendations for further investigations of the applicability of green pellets as an alternate shipping form are given, including the need for a cost-benefit study.

  19. 9975 SHIPPING PACKAGE PERFORMANCE OF ALTERNATE MATERIALS FOR LONG-TERM STORAGE APPLICATION

    SciTech Connect

    Skidmore, E.; Hoffman, E.; Daugherty, W.

    2010-02-24

    The Model 9975 shipping package specifies the materials of construction for its various components. With the loss of availability of material for two components (cane fiberboard overpack and Viton{reg_sign} GLT O-rings), alternate materials of construction were identified and approved for use for transport (softwood fiberboard and Viton{reg_sign} GLT-S O-rings). As these shipping packages are part of a long-term storage configuration at the Savannah River Site, additional testing is in progress to verify satisfactory long-term performance of the alternate materials under storage conditions. The test results to date can be compared to comparable results on the original materials of construction to draw preliminary conclusions on the performance of the replacement materials.

  20. Savannah River Laboratory DOSTOMAN code: a compartmental pathways computer model of contaminant transport

    SciTech Connect

    King, C M; Wilhite, E L; Root, Jr, R W; Fauth, D J; Routt, K R; Emslie, R H; Beckmeyer, R R; Fjeld, R A; Hutto, G A; Vandeven, J A

    1985-01-01

    The Savannah River Laboratory DOSTOMAN code has been used since 1978 for environmental pathway analysis of potential migration of radionuclides and hazardous chemicals. The DOSTOMAN work is reviewed including a summary of historical use of compartmental models, the mathematical basis for the DOSTOMAN code, examples of exact analytical solutions for simple matrices, methods for numerical solution of complex matrices, and mathematical validation/calibration of the SRL code. The review includes the methodology for application to nuclear and hazardous chemical waste disposal, examples of use of the model in contaminant transport and pathway analysis, a user's guide for computer implementation, peer review of the code, and use of DOSTOMAN at other Department of Energy sites. 22 refs., 3 figs.

  1. The organization and operation of the Savannah River Plant`s groundwater monitoring program. Revision 3

    SciTech Connect

    Olson, C.M.; Heffner, J.D.

    1988-09-01

    The Savannah River Plant (SRP) is operated by Du Pont for the Department of Energy. The plant has been operating since 1952 and is one of the largest industrial facilities in the nation. Its function is to produce nuclear materials for the national defense. This paper describes the organization and operation of the Groundwater Monitoring Program (GMP) at the SRP. Groundwater has been actively monitored for radiological parameters at the SRP since the commencement of site operations in the 1950s. More recently, monitoring expanded to include chemical parameters and numerous additional facilities. The GMP is a large monitoring program. Over 700 wells monitor more than 70 facilities which are spread over 300 square miles. The program includes both Du Pont personnel and contractors and is responsible for all phases of groundwater monitoring: the installation (or abandonment) of monitoring wells, the determination of water quality (sample collection, analysis, data review, etc.), and the generation of reports.

  2. Tritium Phytoremediation at the Savannah River Site (SRS), USA: Water Management, Operations, and Research

    NASA Astrophysics Data System (ADS)

    Hitchcock, D. R.; Singer, J.; Barton, C. D.; Seaman, J.

    2003-12-01

    A sprinkler irrigation system is being utilized on a 22-acre upland forested area for the distribution of tritiated groundwater that is collected by a constructed pond before it can enter the Savannah River. Irrigation scheduling for the phytoremediation system is typically based on continuous soil water deficit calculations using observed rainfall data and estimated evapotranspiration. In situ measurements include soil water moisutre and water table depth. Vadose zone soil water samples are also collected for tritium analyses. Complex hydrological, biochemical, and ecological factors, as well as operations strategies, influence remediation system success. Factors that contribute to tritium remediation efficiencies, including relationships with irrigation volumes and frequency, as well as soil and vegetation types and characteristics within irrigation plots, are being evaluated. Related studies associated with the tritium phytoremediation project include vadose zone transport modeling and watershed scale water balance estimations. Data analyses from this project should aid in developing design criteria for future phytoremediation systems at SRS and other nuclear facilities.

  3. Sorption and Transport of Iodine Species in Sediments from the Savannah River and Hanford Sites

    SciTech Connect

    Hu, Q; Zhao, P; Moran, J; Seaman, J

    2004-05-20

    Iodine is an important element in studies of environmental protection and human health, global-scale hydrologic processes and nuclear nonproliferation. Biogeochemical cycling of iodine is complex, because iodine occurs in multiple oxidation states and as inorganic and organic species that may be hydrophilic, atmophilic, and biophilic. In this study, we focused on the sorption and transport behavior of iodine species (iodide, iodate, and 4-iodoaniline) in sediments collected at the Savannah River and Hanford Sites, where anthropogenic {sup 129}I from prior nuclear fuel processing activities poses an environmental risk. We conducted both column and batch experiments to investigate the sorption and transport behavior of iodine, and the sediments we examined exhibit a wide range in organic matter, clay mineralogy, soil pH, and texture. The results of our experiments illustrate complex behavior with various processes occurring, including iodate reduction, irreversible retention or mass loss of iodide, and rate-limited and nonlinear sorption. There was an appreciable iodate reduction to iodide, presumably mediated by the structural Fe(II) in some clay minerals; therefore, careful attention must be given to potential interconversion among species when interpreting the biogeochemical behavior of iodine in the environment. The different iodine species exhibited dramatically different sorption and transport behavior in three sediment samples collected from different depths at the Savannah River Site. This indicates that, when anthropogenic {sup 129}I is deposited on the surface at this site, the different iodine species will have different residence times as they migrate through the various sediment regimes. Our study results yielded additional insight into processes and mechanisms affecting the geochemical cycling of iodine in the environment, and provided quantitative estimates of key parameters (e.g., extent and rate of sorption) for risk assessment at these sites.

  4. Research in Support of Remediation Activities at the Savannah River Site

    SciTech Connect

    Seaman, J.C., B.B. Looney and M.K. Harris

    2007-01-01

    The USDOE Savannah River Site (SRS), an 803-km{sup 2} (310-mile{sup 2}) facility located south of Aiken, SC on the upper Atlantic Coastal Plain and bounded to the west by the Savannah River, was established in the 1950s for the production and refinement of nuclear materials. To fulfill this mission during the past 50 years SRS has operated five nuclear reactors, two large chemical separation areas, waste disposal facilities (landfills, waste ponds, waste tanks, and waste stabilization), and a large number of research and logistics support facilities. Contaminants of concern (COC) resulting from site operations include chlorinated solvents, radionuclides, metals, and metalloids, often found as complex mixtures that greatly complicate remediation efforts when compared with civilian industries. The objective of this article is to provide a description of the lithology and hydrostratigraphy of the SRS, as well as a brief history of site operations and research activities as a preface to the current special section of Vadose Zone Journal (VZJ) dedicated to SRS, focusing mainly on issues that are unique to the USDOE complex. Contributions to the special section reflect a diverse range of topics, from hydrologic tracer experiments conducted both within the vadose and saturated zones to studies specifically aimed at identifying geochemical processes controlling the migration and partitioning of specific contaminants (e.g., TCE, {sup 137}Cs, U, and Pu) in SRS subsurface environments. Addressing the diverse environmental challenges of the SRS provides a unique opportunity to conduct both fundamental and applied research across a range of experimental scales. Hence, the SRS has been a pioneering force in several areas of environmental research and remediation, often through active interdisciplinary collaboration with researchers from other USDOE facilities, academic and federal institutions, and commercial entities.

  5. Demolitions of the Savannah River Site's concentrator and finishing facilities

    SciTech Connect

    McDonagh, Paul

    2008-01-15

    The Savannah River Site (SRS) has produced Special Nuclear Materials (SNMs) starting in the early 1950's to the mid 1970's for the Atomic Energy Commission (AEC) and from the mid 1970's to the present for the Department of Energy (DOE). In that time, over 1,000 facilities have been built in the sixteen operational areas of the eight hundred square kilometer site. Over the years, many of the facilities have been dispositioned by the DOE as inactive. In FY-03, DOE identified two hundred and forty-seven (inactive or soon to be inactive) facilities that required demolition. Demolition work was scheduled to start in FY-04 and be completed in the first quarter of FY-07. Two-hundred and thirty-nine of these facilities have been demolished employing Routine demolition techniques. This presentation reviews and discusses two of the eight Non-Routine demolitions Facilities, 420-D 'The Concentrator Facility', and 421-D 'The Finishing Facility'. Facilities 420-D and 421-D were toppled by attaching rigging from the structural steel building frame to bulldozers and toppling the facilities over. The greatest advantage of this method is that it employs equipment that is on hand at SRS, saving time on locating and leasing offsite equipment as well as operator training. In addition, although the toppled structure does not land in the original facilities footprint, it does land in a contained area that is easily barricaded to prevent access during the operation. There are several disadvantages. First, there must be adequate area for the structure to topple into. Also if the wire rope size required to topple the structure is larger than two in., the ropes become extremely difficult to work with. Lastly, the yield strength of steel members is guaranteed by the manufacturer as a minimum strength, so its ultimate strength is unknown. This requires extremely conservative specifications sizing the bulldozers and any rigging equipment employed. Two hundred and forty-seven facilities have

  6. Hanford and Savannah River Site Programmatic and Technical Integration

    SciTech Connect

    Ramsey, William Gene

    2013-08-15

    Abstract only. The Hanford Site and the Savannah River Site (SRS) were the primary plutonium production facilities within the U.S. nuclear weapons complex. Radioactive wastes were generated as part of these missions and are stored in similar fashion. The majority of radioactivity maintained by the two sites is located in underground carbon steel tanks in the physical form of supernatant, saltcake, or sludge. Disposition of SRS tank waste is ongoing by converting it into glass (pathway for sludge and radionuclides separated from supernatant or dissolved saltcake) or cement (pathway for the decontaminated supernatant and dissolved saltcake). Tank closure activity has also begun at SRS and will continue for the duration of mission. The Hanford tank waste inventory is roughly 2/3rds larger than SRS's by volume- but nominally half the radioactivity. The baseline disposition path includes high-level and low-activity waste vitrification with separate disposition of contact-handled transuranic tank waste. Retrieval of tank waste from aging single­ shell tanks (SSTs) into double-shell tanks (DSTs) is currently ongoing. As vitrification commences later this decade, Hanford will be in a similar operations mode as SRS. Site integration is increasing as the missions align. The ongoing integration is centered on key issues that impact both sites- regardless of mission timeframe. Three recent workshop exchanges have been held to improve communication with the primary intent of improving operations and technical work organization. The topics of these workshops are as follows: DST space utilization, optimization, and closure; Waste Feed Qualification; and, Cementitious Waste Forms. Key goals for these and future exchanges include aligning research and technology, preparing for joint initiatives (to maximize budgetary value for the customer), and reviewing lessons learned. Each site has played a leading role in the development of technology and operational practices that can be

  7. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    SciTech Connect

    Dunn, K.; Bellamy, S.; Daugherty, W.; Sindelar, R.; Skidmore, E.

    2013-08-18

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

  8. 9975 SHIPPING PACKAGE LIFE EXTENSION SURVEILLANCE PROGRAM RESULTS SUMMARY

    SciTech Connect

    Daugherty, W.; Dunn, K.; Hackney, B.; Hoffman, E.; Skidmore, E.

    2011-01-06

    Results from the 9975 Surveillance Program at the Savannah River Site (SRS) are summarized for justification to extend the life of the 9975 packages currently stored in the K-Area Materials Storage (KAMS) facility from 10 years to 15 years. This justification is established with the stipulation that surveillance activities will continue throughout this extended time to ensure the continued integrity of the 9975 materials of construction and to further understand the currently identified degradation mechanisms. The current 10 year storage life was developed prior to storage. A subsequent report was later used to extend the qualification of the 9975 shipping packages for 2 years for shipping plus 10 years for storage. However the qualification for the storage period was provided by the monitoring requirements of the Storage and Surveillance Program. This report summarizes efforts to determine a new safe storage limit for the 9975 shipping package based on the surveillance data collected since 2005 when the surveillance program began. KAMS is a zero-release facility that depends upon containment by the 9975 to meet design basis storage requirements. Therefore, to confirm the continued integrity of the 9975 packages while stored in KAMS, a 9975 Storage and Surveillance Program was implemented alongside the DOE required Integrated Surveillance Program (ISP) for 3013 plutonium-bearing containers. The 9975 Storage and Surveillance Program performs field surveillance as well as accelerated aging tests to ensure any degradation due to aging, to the extent that could affect packaging performance, is detected in advance of such degradation occurring in the field. The Program has demonstrated that the 9975 package has a robust design that can perform under a variety of conditions. As such the primary emphasis of the on-going 9975 Surveillance Program is an aging study of the 9975 Viton(reg.sign) GLT containment vessel O-rings and the Celotex(reg.sign) fiberboard thermal

  9. Savannah River Plant californium-252 Shuffler electronics manual

    SciTech Connect

    Bourret, S.C.; Crane, T.W.; Eccleston, G.W.; Gallegos, E.A.; Garcia, D.L.

    1980-03-01

    Detailed information is presented in this report, an electronics manual for the Savannah River Plant Shuffler, about the electronics associated with the various control and data acquisition functions of the Shuffler subsystems. Circuit diagrams, interconnection information, and details about computer control and programming are included.

  10. The Neighborhood Continuing Education Program Of Savannah, Georgia

    ERIC Educational Resources Information Center

    Hampton, Leonard A.

    1972-01-01

    Several institutions of higher learning combined their efforts and resources to develop a Neighborhood Program that would reach the disadvantaged people in the Savannah Model Cities. Discusses program design, problems, and results of taking the program to the people under conditions and situations to which they could easily identify or relate. (RB)

  11. Savannah: Model Cities Community Mental Health Program. Final Report.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Center for Continuing Education.

    This report details the development of a comprehensive and coordinated continuing education program of mental health training for professional and paraprofessional workers engaged in the delivery of human services to clients who live in a special catchment area formerly known as the Model Cities areas of Savannah, Georgia. The thrust of the…

  12. Ecofutures in Africa: Jenny Robson's "Savannah 2116 AD"

    ERIC Educational Resources Information Center

    Cloete, Elsie

    2009-01-01

    Jenny Robson's "Savannah 2216 AD", a dark, futuristic novel for young adults, provides a strong critique on much of the world's predilection for saving Africa's animals at the expense of those human communities who are perceived to be in the way of the preservation of the continent's remaining wild spaces. Using Robson's novel as…

  13. Natural Gas Storage Research at Savannah River National Laboratory

    ScienceCinema

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2016-07-12

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  14. Natural Gas Storage Research at Savannah River National Laboratory

    SciTech Connect

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2015-05-04

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  15. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    SciTech Connect

    Not Available

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  16. 75 FR 56133 - Savannah Coastal Refuges' Complex, GA and SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... boundary. At Savannah NWR, the focus would increase on acquiring lands from willing sellers by any viable... alternative, we would protect and maintain all refuge lands, primarily focusing on the needs of threatened and... open lands. All ponds, levees, moist-soil water management units, and water control structures...

  17. Software quality assurance (SQA) for Savannah River reactors

    SciTech Connect

    Schaumann, C.M.

    1990-01-01

    Over the last 25 years, the Savannah River Site (SRS) has developed a strong Software Quality Assurance (SQA) program. It provides the information and management controls required of a high quality auditable system. The SRS SQA program provides the framework to meet the requirements in increasing regulation.

  18. Probabilities of Natural Events Occurring at Savannah River Plant

    SciTech Connect

    Huang, J.C.

    2001-07-17

    This report documents the comprehensive evaluation of probability models of natural events which are applicable to Savannah River Plant. The probability curves selected for these natural events are recommended to be used by all SRP/SRL safety analysts. This will ensure a consistency in analysis methodology for postulated SAR incidents involving natural phenomena.

  19. Savannah River Technology Center monthly report, September 1992

    SciTech Connect

    Ferrell, J.M.

    1992-09-01

    This is a monthly progress report from the Savannah River Laboratory for the month of September, 1992. It has sections dealing with work in the broad areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

  20. AmeriFlux US-Wjs Willard Juniper Savannah

    SciTech Connect

    Litvak, Marcy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wjs Willard Juniper Savannah. Site Description - The Juniper Savanna site is located in the Southwestern Tablelands in central New Mexico on a private ranch. Its vegetation is composed of Juniperus monosperma and intermittently grazed C4 perennial grasses of which the dominant species is Bouteloua gracilis.

  1. Ship and Installation Program: Optimal Stationing of Naval Ships

    DTIC Science & Technology

    2006-06-01

    calculate their CGE value [ Keenan 2004]. These instructions are subject to interpretation, and therefore could lead to inconsistencies between the...a specific pier space requirement given in CGEs, as indicated in Table 1.3 [ Keenan 2004]. SHIP allows individual ships to be moved between...complex 0.686 12. Relative Pierside Crane Lift Capability 1.671 13. Relative value of specialized security / emergency services capabilities

  2. Special Operations Forces (SOF) Support Ship. Ship Conversion Feasibility Study

    DTIC Science & Technology

    2003-01-01

    sequence was performed with the goal of maximizing Overall Measure of Effectiveness (OMOE) for minimum cost. The OMOE and cost of the ship were...lists the ROCs for the SOF ship. Measures of effectiveness (MOE) assess the degree to which the various design concepts meet these ROCs. The MOE...Maintain health and well-being of crew 15 Provide upkeep and maintenance of own unit 10 Table 3. Measures of Effectiveness (MOE) MOE # Associated

  3. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2009

    SciTech Connect

    Mamatey, A.; Fanning, R.

    2010-08-19

    The Savannah River Site Environmental Report for 2009 (SRNS-STI-2010-00175) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A,'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts. SRS maintained its record of environmental excellence in 2009, as its operations continued to result in minimal impact to the offsite public and the surrounding environment. The site's radioactive and chemical discharges to air and water were well below regulatory standards for environmental and public health protection; its air and water quality met applicable requirements; and the potential radiation dose from its discharges was less than the national dose standards. The largest radiation dose that an offsite, hypothetical, maximally exposed individual could have received from SRS operations during 2009 was estimated to be 0.12 millirem (mrem). (An mrem is a standard unit of measure for radiation exposure.) The 2009 SRS dose is just 0.12 percent of the DOE all-pathway dose standard of 100 mrem per year, and far less than the natural average dose of about 300 mrem per year (according to Report No. 160 of the National Council of Radiation Protection and Measurements) to people in the United States. This 2009 all-pathway dose of 0.12 mrem was the same as the 2008 dose. Environmental monitoring is conducted extensively within a 2,000-square-mile network extending 25 miles from SRS

  4. In defiance of nuclear deterrence: anti-nuclear New Zealand after two decades.

    PubMed

    Reitzig, Andreas

    2006-01-01

    In 1984, nuclear-armed and nuclear-powered vessels were banned from New Zealand to express the country's rejection of the nuclear deterrence concept. This led to a disagreement with the United States. Today, the ban on nuclear-powered ships is the only element of the nuclear-free legislation that still strains US-New Zealand relations. This article presents the reasons for the ban on nuclear-powered ships, which include scientific safety concerns, a symbolic rejection of the nuclear deterrence posture, and patriotic factors such as a nuclear-free national identity. The military and economic consequences of the ban are also examined. Since the ban on nuclear-powered vessels appears to be neither widely known abroad nor commonly recognised as a supportive disarmament measure outside New Zealand, it is concluded that whatever the future of this ban will be, New Zealand's anti-nuclear image will remain known internationally through the ban on nuclear arms.

  5. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    SciTech Connect

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  6. Savannah River Site/K Area Complex getter life extension report.

    SciTech Connect

    Shepodd, Timothy J.; Woodsmall, Todd; Nissen, April

    2008-08-01

    The K Area Complex (KAC) at the Savannah River Site (SRS) has been utilizing HiTop hydrogen getter material in 9975 Shipping Containers to prevent the development of flammable environments during storage of moisture-containing plutonium oxides. Previous testing and subsequent reports have been performed and produced by Sandia National Laboratories (SNL) to demonstrate the suitability and longevity of the getter during storage at bounding thermal conditions. To date, results have shown that after 18 months of continuous storage at 70 C, the getter is able to both recombine gaseous hydrogen and oxygen into water when oxygen is available, and irreversibly getter (i.e. scavenge) hydrogen from the vapor space when oxygen is not available, both under a CO{sub 2} environment. [Refs. 1-5] Both of these reactions are catalytically enhanced and thermodynamically favorable. The purpose of this paper is to establish the justification that maintaining the current efforts of biannual testing is no longer necessary due to the robust performance of the getter material, the very unlikely potential that the recombination reaction will fail during storage conditions in KAC, and the insignificant aging effects that have been seen in the testing to date.

  7. AREA COMPLETION STRATEGIES AT SAVANNAH RIVER SITE: CHARACTERIZATION FOR CLOSURE AND BEYOND

    SciTech Connect

    Bagwell, L; Mark Amidon, M; Sadika Baladi, S

    2007-06-11

    During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990s, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D&D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an ''area completion'' strategy that: (1) unites several discrete waste units into one conceptual model, (2) integrates historically disparate environmental characterization and D&D activities, (3) reduces the number of required regulatory documents, and (4) in some cases, compresses schedules for achieving a stakeholder-approved end-state.

  8. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    SciTech Connect

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  9. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63... BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s) and vessel(s) are interchangeable or synonymous words, and include every description of...

  10. The Surface Warfare Test Ship

    DTIC Science & Technology

    2000-01-26

    dedicated test platform with a schedule determined by test requirements rather than ship operational tempo. The current SDTS, ex- USS DECATUR (Ex- DDG 31), is...current engineering services in the DD 963 hull, which are to be retained. The SWTS sensor/weapons payload is reduced compared to a DD 963 or DDG 993 ...developed a plan to convert ex- USS DECATUR ( DDG 31) into the Self Defense Test Ship (SDTS). In April 1988, Chief of Naval Operations authorized

  11. Lifecycle Readiness and Ship Deployment

    DTIC Science & Technology

    2013-06-01

    The physical fatigue associated with ship motions has significant consequences for today’s minimally manned ships. “Because of minimally sized...a deployment. The inefficiencies in performance may develop from lack of training, different personal aptitude, and individual’s mental or physical ...exacerbation of symptoms known as the avalanche phenomenon follows which includes: increased salivation, bodily warmth , and light- headedness” (Stevens

  12. Primary particles in ship emissions

    NASA Astrophysics Data System (ADS)

    Fridell, Erik; Steen, Erica; Peterson, Kjell

    There is not much data available regarding particle emissions from ships. In this study the size distributions of particles in ship exhaust from three different ships in normal operational conditions were studied using a cascade impactor. The ships were equipped with slow- or medium-speed main engines and medium-speed auxiliary engines. The fuel was residual oil except for the auxiliary engines on one ship which used marine diesel. Large emissions and a dependence of the sulfur content in the fuel were observed. High amounts of relatively large particles (around 8 μm) were observed. These are attributed to re-entrained soot particles from walls in the engine systems. A strong variation between different ships was observed for the particle-size distribution and for the dependence on engine load. The particle emissions were found to be reduced to about half, over the whole size range, by an SCR system. The total particle emission, measured after dilution, varied between 0.3 and 3 g kW h -1 depending on load, fuel and engine.

  13. 46 CFR 340.4 - Shipping services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Shipping services. 340.4 Section 340.4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY PRIORITY USE AND ALLOCATION OF... of the defense agency in provision of equipment, loading, ocean transport and delivery; and...

  14. Math Model for Naval Ship Handling Trainer.

    ERIC Educational Resources Information Center

    Golovcsenko, Igor V.

    The report describes the math model for an experimental ship handling trainer. The training task is that of a replenishment operation at sea. The model includes equations for ship dynamics of a destroyer, propeller-engine response times, ship separation, interaction effects between supply ship and destroyer, and outputs to a visual display system.…

  15. Stress analysis of closure bolts for shipping casks

    SciTech Connect

    Mok, G.C.; Fischer, L.E. ); Hsu, S.T. )

    1993-01-01

    This report specifies the requirements and criteria for stress analysis of closure bolts for shipping casks containing nuclear spent fuels or high level radioactive materials. The specification is based on existing information conceming the structural behavior, analysis, and design of bolted joints. The approach taken was to extend the ASME Boiler and Pressure Vessel Code requirements and criteria for bolting analysis of nuclear piping and pressure vessels to include the appropriate design and load characteristics of the shipping cask. The characteristics considered are large, flat, closure lids with metal-to-metal contact within the bolted joint; significant temperature and impact loads; and possible prying and bending effects. Specific formulas and procedures developed apply to the bolt stress analysis of a circular, flat, bolted closure. The report also includes critical load cases and desirable design practices for the bolted closure, an in-depth review of the structural behavior of bolted joints, and a comprehensive bibliography of current information on bolted joints.

  16. INFORMATION: Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides

    SciTech Connect

    2010-04-01

    The Administration and the Congress, through policy statements and passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), have signaled that they hope that proactive actions by agency Inspectors General will help ensure that Federal Recovery Act activities are transparent, effective and efficient. In that context, the purpose of this management alert is to share with you concerns that have been raised to the Office of Inspector General regarding the planned disposition of the Savannah River Site's (SRS) inventory of Depleted Uranium (DU) oxides. This inventory, generated as a by-product of the nuclear weapons production process and amounting to approximately 15,600 drums of DU oxides, has been stored at SRS for decades. A Department source we deem reliable and credible recently came to the Office of Inspector General expressing concern that imminent actions are planned that may not provide for the most cost effective disposition of these materials. During April 2009, the Department chose to use funds provided under the Recovery Act to accelerate final disposition of the SRS inventory of DU oxides. After coordination with State of Utah regulators, elected officials and the U.S. Nuclear Regulatory Commission, the Department initiated a campaign to ship the material to a facility operated by EnergySolutions in Clive, Utah. Although one shipment of a portion of the material has already been sent to the EnergySolutions facility, the majority of the product remains at SRS. As had been planned, both for the shipment already made and those planned in the near term, the EnergySolutions facility was to have been the final disposal location for the material. Recently, a member of Congress and various Utah State officials raised questions regarding the radioactive and other constituents present in the DU oxides to be disposed of at the Clive, Utah, facility. These concerns revolved around the characterization of the material and its acceptability under

  17. Synthesis of historical archaeological sites on the Savannah River Plant, Aiken and Barnwell Counties, South Carolina

    SciTech Connect

    Brooks, R.D.

    1988-01-01

    The object of this report is to provide historical synthesis of the Savannah River Plant region integrated with the historical archeological record. The first chapter discusses the historic research concerns of the Savannah River Archaeological Research Program, the Physical Geography of the Savannah River Plant in regard to climate, coil, and vegetation, and the Human Geography of the region. Chapter 2 presents the Chronology of historic sites from the archarological record on the Savannah River Plant. Chapter 3 discusses the Settlement of the Savannah River Valley and the Agricultural Land use on the Savannah River Plant. Chapter 4 presents the results of historic research into the Mill Dams located on the Savannah River Plant their political importance and location. Chapter 5 discribes the Archaeological Methodology used and the Archaeological Resources of the Savannah River Plant. Chapter 6 present the Conclusions and Recommendations of the Savannah River Plant Archaeological Research Program in regards to the historical archeological sites on the Savannah River Plant. 80 refs., 13 figs., 23 tabs.

  18. Examination of shipping package 9975-02403

    SciTech Connect

    Daugherty, W. L.

    2016-03-01

    SRNL examined shipping package 9975-02403 following storage of nuclear material in K-Area Complex (KAC). As a result of field surveillance activities in KAC, this package was identified to contain several non-conforming and other conditions. Further examination of this package in SRNL confirmed significant moisture and mold in the bottom layers of the lower fiberboard assembly, and identified additional corrosion along the seam weld and on the bottom of the drum. It was recently recommended that checking for corrosion along the bottom edge of the drum be implemented for packages that are removed from storage, as well as high wattage packages remaining in storage. The appearance of such corrosion on 9975-02403 further indicates that such corrosion may provide an indication of significant moisture concentration and related degradation within the package. This condition is more likely to develop in packages with higher internal heat loads.

  19. DEVELOPMENT OF THE H1700 SHIPPING PACKAGE

    SciTech Connect

    Abramczyk, G.; Loftin, B.; Mann, P.

    2009-06-05

    The H1700 Package is based on the DOE-EM Certified 9977 Packaging. The H1700 will be certified by the Packaging Certification Division of the National Nuclear Security Administration for the shipment of plutonium by air by the United Stated Military both within the United States and internationally. The H1700 is designed to ship radioactive contents in assemblies of Radioisotope Thermoelectric Generators (RTGs) or arrangements of nested food-pack cans. The RTG containers are designed and tested to remain leaktight during transport, handling, and storage; however, their ability to remain leaktight during transport in the H1700 is not credited. This paper discusses the design and special operation of the H1700.

  20. 2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site

    SciTech Connect

    Gladden, J.B.

    2003-08-28

    Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is a United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay

  1. Aiken for armageddon: The Savannah River Site and Aiken, SC, 1950-1955. Master`s thesis

    SciTech Connect

    Turner, J.S.

    1998-01-30

    Constructed between November 1950 and March 1955, the Savannah River Site (SRS) nuclear production facility was a product of the Cold War and its accompanying arms race. The first Soviet atomic detonation in 1949 shook the foundations of American Cold War diplomacy. Although the diplomatic situation with the Soviets had never been amicable since the end of World War 2, the atomic bomb had provided a psychological edge for American policy makers. Worried about the military balance of power in the aftermath of the unanticipated Soviet test, President Harry S. Truman authorized research for construction of a hydrogen or fusion weapon. The program required a new nuclear weapons facility to produce the hydrogen isotope tritium in sufficient quantities to create a large stockpile of fusion weapons.

  2. Geochemical and physical properties of wetland soils at the Savannah River site

    SciTech Connect

    Dixon, K.L; Rogers, V.A.; Conner, S.P.; Cummings, C.L.; Gladden, J.B.; Weber, J.M.

    1996-05-01

    The Savannah River Site (SRS), located in Aiken, Allendale, and Barnwell Counties, South Carolina, is a nuclear production facility operated for the U.S. Department of Energy (DOE) by Westinghouse Savannah River Company (WSRC). To facilitate future human health and ecological risk assessments, treatability studies, remedial investigations, and feasibility studies for its wetland areas, SRS needs a database of background geochemical and physical properties of wetland soils. These data are needed for comparison to data collected from wetland soils that may have been affected by SRS operations. SRS contains 36,000 acres of wetlands and an additional 5,000 acres of bottom land soils subject to flooding. Recent studies of wetland soils near various waste units at SRS show that some wetlands have been impacted by releases of contaminants resulting from SRS operations (WSRC, 1992). Waste waters originating from the operations facilities typically have been discharged into seepage basins located in upland soils, direct discharge of waste water to wetland areas has been minimal. This suggests that impacted wetland areas have been affected indirectly as a result of transport mechanisms such as surface runoff, groundwater seeps, fluvial or sediment transport, and leaching. Looney et al. (1990) conducted a study to characterize the geochemical and physical properties of upland soils and shallow sediments on the SRS. A primary objective of the upland study was to collect the data needed to assess the qualitative and quantitative impacts of SRS operations on the environment. By comparing the upland soils data to data collected from waste units located in similar soils, SRS impacts could be assessed. The data were also intended to aid in selection of remediation alternatives. Because waste units at SRS have historically been located in upland areas, wetland soils were not sampled. (Abstract Truncated)

  3. Rheology of Savannah River site tank 42 and tank 51 HLW radioactive sludges

    SciTech Connect

    Ha, B.C.; Bibler, N.E.

    1996-01-19

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. The high activity radioactive wastes stored as caustic slurries at SRS result from the neutralization of acid waste generated from production of nuclear defense materials. During storage, the wastes separate into a supernate layer and a sludge layer. In the Defense Waste Processing Facility (DWPF) at SRS, the radionuclides from the sludge and supernate will be immobilized into borosilicate glass for long term storage and eventual disposal. Before transferring the waste from a storage tank to the DWPF, a portion of the aluminum in the waste sludge will be dissolved and the sludge will be extensively washed to remove sodium. Tank 51 and Tank 42 radioactive sludges represent the first batch of HLW sludge to be processed in the DWPF. This paper presents results of rheology measurements of Tank 51 and Tank 42 at various solids concentrations. The rheologies of Tank 51 and Tank 42 radioactive slurries were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco RV-12 with an M150 measuring drive unit and TI sensor system. Rheological properties of the Tank 51 and Tank 42 radioactive sludges were measured as a function of weight percent solids. The weight percent solids of Tank 42 sludge was 27, as received. Tank 51 sludge had already been washed. The weight percent solids were adjusted by dilution with water or by concentration through drying. At 12, 15, and 18 weight percent solids, the yield stresses of Tank 51 sludge were 5, 11, and 14 dynes/cm2, respectively. The apparent viscosities were 6, 10, and 12 centipoises at 300 sec-1 shear rate, respectively.

  4. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    SciTech Connect

    Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

    2011-07-08

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

  5. OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15’, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  6. Environmental information document: Savannah River Laboratory Seepage Basins

    SciTech Connect

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  7. Savannah River Site environmental report for 1993 summary pamphlet

    SciTech Connect

    Karapatakis, L.

    1994-05-01

    This pamphlet summarizes the impact of 1993 Savannah River Site operations on the environment and the off-site public. It includes an overview of site operations; the basis for radiological and nonradiological monitoring; 1993 radiological releases and the resulting dose to the off-site population; and results of the 1993 nonradiological program. The Savannah River Site Environmental Report for 1993 describes the findings of the environmental monitoring program for 1993. The report contains detailed information about site operations,the environmental monitoring and surveillance programs, monitoring and surveillance results, environmental compliance activities, and special programs. The report is distributed to government officials, members of the US Congress, universities, government facilities, environmental and civic groups, the news media, and interested individuals.

  8. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    SciTech Connect

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  9. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    SciTech Connect

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  10. Native American prehistory of the middle Savannah River Valley

    SciTech Connect

    Sassaman, K.E.; Brooks, M.J.; Hanson, G.T.; Anderson, D.G.

    1990-01-01

    Archaeological investigations on the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina span 17 years and continue today through a cooperative agreement between DOE and the South Carolina Institute of Archaeology and Anthropology (SCIAA), University of South Carolina. The Savannah River Archaeological Research Program (SRARP) of SCIAA has been and continues to be the sole archaeological consultant for DOE-SRS. This report documents technical aspects of all prehistoric archaeological research conducted by the SRARP between 1973 and 1987. Further, this report provides interpretative contexts for archaeological resources as a basis for an archaeological resource plan reported elsewhere (SRARP 1989), and as a comprehensive statement of our current understanding of Native American prehistory. 400 refs., 130 figs., 39 tabs.

  11. Bagless Transfer at the Savannah River Site (U)

    SciTech Connect

    Rogers, L.

    1996-11-01

    Traditional methods of removing plutonium from process gloveboxes in preparation for packaging involves the use of bagout procedures utilizing plastic bags, an organic material not allowed in storage containers per the new DOE 3013 long term storage criteria. Engineers at the Savannah River Site have developed a system for removing plutonium from a glovebox directly into an all metal, welded, leaktight container free of external contamination. The process, known as bagless transfer, utilizes a Tungsten Inert Gas (TIG) welding process to fuse and separate a transfer canister from the glovebox environment while maintaining glovebox and canister integrity. A semi-automated prototype system has been demonstrated at the Savannah River Site and engineers are making preparations to demonstrate the system in radioactive operation in the site`s FB Line Plutonium Facility.

  12. Tiger Team Assessment of the Savannah River Site: Appendices

    SciTech Connect

    Not Available

    1990-06-01

    This draft document contains findings identified during the Tiger Team Compliance Assessment of the US Department of Energy Savannah River Site (SRS), located in three countries (Aiken, Barnwell and Allendale), South Carolina. The Assessment was directed by the Department's Office of the Assistant Secretary for Environment, Safety, and Health (ES H) and was conducted from January 29 to March 23, 1990. The Savannah River Site Tiger Team Compliance Assessment was broad in scope covering the Environment, Safety and Health, and Management areas and was designed to determine the site's compliance with applicable Federal (including DOE), state, and local regulations and requirements. The scope of the Environmental assessment was sitewide while the Safety and Health assessments included site operating facilities (except reactors), and the sitewide elements of Aviation Safety, Emergency Preparedness, Medical Services, and Packaging and Transportation. This report contains the appendices to the assessment.

  13. Tiger Team Assessment of the Savannah River Site

    SciTech Connect

    Not Available

    1990-06-01

    This draft document contains findings identified during the Tiger Team Compliance Assessment of the US Department of Energy Savannah River Site (SRS), located in three counties (Aiken, Barnwell and Allendale), South Carolina. The Assessment was directed by the Department's Office of the Assistant Secretary for Environment, Safety, and Health (ES H) and was conducted from January 29 to March 23, 1990. The Savannah River Site Tiger Team Compliance Assessment was broad in scope covering the Environment, Safety and Health, and Management areas and was designed to determine the site's compliance with applicable Federal (including DOE), state, and local regulations and requirements. The scope of the Environmental assessment was sitewide while the Safety and Health assessments included site operating facilities (except reactors), and the sitewide elements of Aviation Safety, Emergency Preparedness, Medical Services, and Packaging and Transportation.

  14. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    SciTech Connect

    Not Available

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

  15. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    SciTech Connect

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  16. Water resource management planning guide for Savannah River Plant

    SciTech Connect

    Hubbard, J.E.; Stephenson, D.E.; Steele, J.L. and Co., Aiken, SC . Savannah River Lab.); Gordon, D.E. and Co., Aiken, SC . Savannah River Plant)

    1988-10-01

    The Water Resource Management Planning Guide provides an outline for the development of a Savannah River Plant Water Resource Management Plan (WRMP) to protect, manage, and monitor the site's water resources. The management plan is based on three principle elements: (1) protection of the water quality, (2) management of the water quantity, and (3) monitoring of the water quality and quantity. The plan will assure that changes in water quality and quantity are identified and that corrective action is implemented as needed. In addition, water management activities within and between Savannah River Plant (SRP) organizations and departments will be coordinated to ensure the proper management of water resources. This document is intended as a guide to suggest goals and objectives that will provide a basis for the development of a water resource plan for SRP. Planning should be flexible rather than rigid, and the plan outlines in this document was prepared to be modified or updated as conditions necessitate. 16 refs., 12 figs.

  17. Assessment of Noble Gases in the Savannah River Site Environment

    SciTech Connect

    Carlton, W.H.; Murphy, C.E. Jr.

    1995-04-01

    A series of documents has been published that assesses the impact of various radionuclides released to the environment by Savannah River Site operations. The quantity released, the disposition of the radionuclides in the environment, and the dose to offsite individuals has been presented for carbon, cesium, iodine, plutonium, strontium, technetium, tritium, and uranium. An assessment of the impact of non-radioactive mercury also has been published.

  18. Savannah River Site environmental restoration lessons learned program

    SciTech Connect

    Plunkett, R.A.; Leibfarth, E.C.; Treger, T.M.; Blackmon, A.M.

    1993-10-01

    For the past three years environmental restoration has been formally consolidated at Savannah River Site. Accomplishments include waste site investigations to closure activities. Positive, as well as negatively impacting, events have occurred. Until recently, lessons learned were captured on a less than formal basis. Now, a program based upon critiques, evaluations and corrective actions is being used. This presentation reviews the development, implementation and use of that program.

  19. Ethnic differences in risk from mercury among Savannah River fishermen.

    PubMed

    Burger, J; Gaines, K F; Gochfeld, M

    2001-06-01

    Fishing plays an important role in people's lives and contaminant levels in fish are a public health concern. Many states have issued consumption advisories; South Carolina and Georgia have issued them for the Savannah River based on mercury and radionuclide levels. This study examined ethnic differences in risk from mercury exposure among people consuming fish from the Savannah River, based on site-specific consumption patterns and analysis of mercury in fish. Among fish, there were significant interspecies differences in mercury levels, and there were ethnic differences in consumption patterns. Two methods of examining risk are presented: (1) Hazard Index (HI), and (2) estimates of how much and how often people of different body mass can consume different species of fish. Blacks consumed more fish and had higher HIs than Whites. Even at the median consumption, the HI for Blacks exceeded 1.0 for bass and bowfin, and, at the 75th percentile of consumption, the HI exceeded 1.0 for almost all species. At the White male median consumption, noHI exceeded 1, but for the 95th percentile consumer, the HI exceeded 1.0 almost regardless of which species were eaten. Although females consumed about two thirds the quantity of males, HIs exceeded 1 for most Black females and for White females at or above the 75th percentile of consumption. Thus, close to half of the Black fishermen were eating enough Savannah River fish to exceed HI = 1. Caution must be used in evaluating an HI because the RfDs were developed to protect the most vulnerable individuals. The percentage of each fish species tested that exceeded the maximum permitted limits of mercury in fish was also examined. Over 80% of bowfin, 38% of bass, and 21% of pickerel sampled exceeded 0.5 ppm. The risk methodology is applicable anywhere that comparable data can be obtained. The risk estimates are representative for fishermen along the Savannah River, and are not necessarily for the general populations.

  20. Savannah River Technology Center monthly report, March 1995

    SciTech Connect

    1995-03-01

    Short summaries are given on the status of projects within the Savannah River Technology Center covering the following broad topical areas: Tritium; Separations; Environmental studies; Waste management; and General. Studies listed under this last area include: Reactor support; Site robotics support; Robotics for D and D; Robotics for mixed waste operation; Integrated demonstration of an underground storage tank; and Alliance for the Advancement of Robotic Technology (AART).

  1. 46 CFR 4.05-35 - Incidents involving nuclear vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Incidents involving nuclear vessels. 4.05-35 Section 4... involving nuclear vessels. The master of any nuclear vessel shall immediately inform the Commandant in the event of any accident or casualty to the nuclear vessel which may lead to an environmental hazard....

  2. 46 CFR 4.05-35 - Incidents involving nuclear vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Incidents involving nuclear vessels. 4.05-35 Section 4... involving nuclear vessels. The master of any nuclear vessel shall immediately inform the Commandant in the event of any accident or casualty to the nuclear vessel which may lead to an environmental hazard....

  3. 46 CFR 4.05-35 - Incidents involving nuclear vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Incidents involving nuclear vessels. 4.05-35 Section 4... involving nuclear vessels. The master of any nuclear vessel shall immediately inform the Commandant in the event of any accident or casualty to the nuclear vessel which may lead to an environmental hazard....

  4. 46 CFR 4.05-35 - Incidents involving nuclear vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Incidents involving nuclear vessels. 4.05-35 Section 4... involving nuclear vessels. The master of any nuclear vessel shall immediately inform the Commandant in the event of any accident or casualty to the nuclear vessel which may lead to an environmental hazard....

  5. 46 CFR 4.05-35 - Incidents involving nuclear vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Incidents involving nuclear vessels. 4.05-35 Section 4... involving nuclear vessels. The master of any nuclear vessel shall immediately inform the Commandant in the event of any accident or casualty to the nuclear vessel which may lead to an environmental hazard....

  6. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  7. The Savannah River Technology Center environmental monitoring field test platform

    SciTech Connect

    Rossabi, J.

    1993-03-05

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy`s Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques.

  8. 1996 Savannah River Site annual epidemiologic surveillance report

    SciTech Connect

    2000-03-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996.

  9. 1997 Savannah River Site annual epidemiologic surveillance report

    SciTech Connect

    2000-06-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997.

  10. Assessment of Savannah River borosilicate glass in the repository environment

    SciTech Connect

    Plodinec, M.J.; Wicks, G.G.; Bibler, N.E.

    1982-04-01

    Since 1973, borosilicate glass has been studied as a matrix for the immobilization of high-level radioactive waste generated at the Savannah River Plant (SRP). In 1977, efforts began to develop and test the large-scale equipment necessary to convert the alkaline waste slurries at SRP into a durable borosilicate glass. A process has now been developed for the proposed Defense Waste Processing Facility (DWPF) which will annually produce approximately 500 canisters of SRP waste glass which will be stored on an interim basis on the Savannah River site. Current national policy calls for the permanent disposal of high-level waste in deep geologic repositories. In the repository environment, SRP waste glass will eventually be exposed to such stresses as lithostatic or hydrostatic pressures, radiation fields, and self-heating due to radioactive decay. In addition, producing and handling each canister of glass will also expose the glass to thermal and mechanical stresses. An important objective of the extensive glass characterization and testing programs of the Savannah River Laboratory (SRL) has been to determine how these stresses affect the performance of SRP waste glass. The results of these programs indicate that: these stresses will not significantly affect the performance of borosilicate glass containing SRP waste; and SRP waste glass will effectively immobilize hazardous radionuclides in the repository environment.

  11. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms...

  12. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms...

  13. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms...

  14. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms...

  15. Japanese wind ship proves successful

    SciTech Connect

    Robb, D.

    1982-04-01

    A new sail-equipped cargo ship (699 gross ton, 66 x 10.6 meter) is described with emphasis on fuel conservation and innovative features. With the rigid sails in use, fuel consumption is reduced by 10%. Making use of other fuel conservation techniques, total fuel consumption is reported to be one half of that of a similar size ship. Computer control of the two rigid sails (which are automatically folded when they would not benefit locomotion) is described as well as test procedures used. Research is mentioned which led to other fuel conservation measures (waste heat utilization, ship operation and design features, propeller modifications, engine design, bottom paint, etc.). Plans are discussed for the production of other energy efficient, sail-equipped vessels. (MJJ)

  16. Application of the SQUG-GIP to the seismic upgrade program of the Savannah River reactors

    SciTech Connect

    Antaki, G.A.

    1991-12-31

    In August 1991, the Savannah River Site (SRS) seismic evaluation program using the Generic Implementation Procedure (GIP) celebrated its third anniversary -- a respectable age for such a new methodology. During these three years, the GIP, developed for the commercial nuclear industry`s Seismic Qualification Utility Group (SQUG), had evolved through Revision 0, Revision 1, Revision 2 and a Revision 2 ``update`` which is currently in the works. This evolution is not surprising for such an important, and in many ways pioneering, document. The various revisions were anticipated at SRS, and the program adjusted accordingly. The verification of seismic adequacy of equipment at the SRS nuclear reactors has been outlined in previous publications. The purpose of this paper is to relate the more practical and managerial aspects of our relatively mature SQUG-GIP implementation program, which will hopefully prove useful to future users of the GIP. This report is divided into four sections, which follow the normal flow of work under GIP: (1) Program Prerequisites (2) Definition of Scope (3) Equipment Evaluations, and (4) Resolution of Outliers.

  17. Application of the SQUG-GIP to the seismic upgrade program of the Savannah River reactors

    SciTech Connect

    Antaki, G.A.

    1991-01-01

    In August 1991, the Savannah River Site (SRS) seismic evaluation program using the Generic Implementation Procedure (GIP) celebrated its third anniversary -- a respectable age for such a new methodology. During these three years, the GIP, developed for the commercial nuclear industry's Seismic Qualification Utility Group (SQUG), had evolved through Revision 0, Revision 1, Revision 2 and a Revision 2 update'' which is currently in the works. This evolution is not surprising for such an important, and in many ways pioneering, document. The various revisions were anticipated at SRS, and the program adjusted accordingly. The verification of seismic adequacy of equipment at the SRS nuclear reactors has been outlined in previous publications. The purpose of this paper is to relate the more practical and managerial aspects of our relatively mature SQUG-GIP implementation program, which will hopefully prove useful to future users of the GIP. This report is divided into four sections, which follow the normal flow of work under GIP: (1) Program Prerequisites (2) Definition of Scope (3) Equipment Evaluations, and (4) Resolution of Outliers.

  18. What can nuclear energy do for society.

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1971-01-01

    Nuclear fuel is a compact and abundant source of energy. Its cost per unit of energy is less than that of fossil fuel. Disadvantages of nuclear fuel are connected with the high cost of capital equipment required for releasing nuclear energy and the heavy weight of the necessary shielding. In the case of commercial electric power production and marine propulsion the advantages have outweighed the disadvantages. It is pointed out that nuclear commercial submarines have certain advantages compared to surface ships. Nuclear powerplants might make air-cushion vehicles for transoceanic ranges feasible. The problems and advantages of a nuclear aircraft are discussed together with nuclear propulsion for interplanetary space voyages.

  19. Close out report for archaeological investigations on the Savannah River Site, South Carolina

    SciTech Connect

    Not Available

    1989-12-01

    The Savannah River Archaeological Research Program (SRARP), South Carolina Institute of Archaeology and Anthropology, University of South Carolina conducted archaeological investigations under contract AC09-81SR10749 entitled Archaeological Investigations at the Department of Energy's Savannah River Plant from July 1981 through September 1987. The major emphasis was upon the completion of a 40% stratified sample of the Savannah River Site (SRS) in order to identify and preserve archaeological resources. The investigations were conducted to bring the Savannah River Operations Office into compliance with specific laws and regulations pertaining to the identification and preservation of archaeological and historical resources on federally owned and controlled properties. 15 refs., 3 figs., 12 tabs.

  20. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  1. DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-03431

    SciTech Connect

    Daugherty, W.

    2012-05-30

    Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-03431. For those attributes that were also measured during the field surveillance, no significant changes were observed. All observations and test results met identified criteria, or were collected for information and trending purposes. Except for modest corrosion of the lead shield (which is typical of these packages following several years service), no evidence of a degraded condition was found in this package. The Savannah River Site (SRS) stores packages containing plutonium (Pu) materials in the KArea Complex (KAC). The Pu materials are packaged per the DOE 3013 Standard and stored within Model 9975 shipping packages in KAC. The KAC facility DSA (Document Safety Analysis) credits the Model 9975 package to perform several safety functions, including criticality prevention, impact resistance, containment, and fire resistance to ensure the plutonium materials remain in a safe configuration during normal and accident conditions. The Model 9975 package is expected to perform its safety function for at least 12 years from initial packaging. The DSA recognizes the degradation potential for the materials of package construction over time in the KAC storage environment and requires an assessment of materials performance to validate the assumptions of the analysis and ultimately predict service life. As part of the comprehensive Model 9975 package surveillance program, destructive examination of package 9975-03431 was performed following field surveillance in accordance with Reference. Field surveillance of the Model 9975 package in KAC included nondestructive examination of the drum, fiberboard, lead shield and containment vessels. Results of the field surveillance are provided in Attachment 1.

  2. DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-02028

    SciTech Connect

    Daugherty, W.; Stefek, T.

    2009-12-30

    Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-02028. For those attributes that were also measured during the field surveillance, no significant changes were observed. Four conditions were identified that do not meet inspection criteria. These conditions are subject to additional investigation and disposition by the Surveillance Program Authority. The conditions include: (1) The lead shield was covered with a white corrosion layer; (2) The lead shield height exceeds drawing requirements; (3) Mold was observed on the lower fiberboard subassembly; and (4) Fiberboard thermal conductivity in the axial direction exceeded the specified range. The Surveillance Program Authority was notified of these conditions and will document the disposition by surveillance report. All other observations and test results met identified criteria, or were collected for information and trending purposes. The Savannah River Site (SRS) stores packages containing plutonium (Pu) materials in the K-Area Complex (KAC). The Pu materials are packaged per the DOE 3013 Standard and stored within Model 9975 shipping packages in KAC. The KAC facility DSA (Document Safety Analysis) credits the Model 9975 package to perform several safety functions, including criticality prevention, impact resistance, containment, and fire resistance to ensure the plutonium materials remain in a safe configuration during normal and accident conditions. The Model 9975 package is expected to perform its safety function for at least 12 years from initial packaging. The DSA recognizes the degradation potential for the materials of package construction over time in the KAC storage environment and requires an assessment of materials performance to validate the assumptions of the analysis and ultimately predict service life. As part of the comprehensive Model 9975 package surveillance program, destructive examination of package 9975-02028 was performed

  3. DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-02168

    SciTech Connect

    Daugherty, W.

    2010-11-18

    The Savannah River Site (SRS) stores packages containing plutonium (Pu) materials in the K-Area Complex (KAC). The Pu materials are packaged per the DOE 3013 Standard and stored within Model 9975 shipping packages in KAC. The KAC facility DSA (Document Safety Analysis) credits the Model 9975 package to perform several safety functions, including criticality prevention, impact resistance, containment, and fire resistance to ensure the plutonium materials remain in a safe configuration during normal and accident conditions. The Model 9975 package is expected to perform its safety function for at least 12 years from initial packaging. The DSA recognizes the degradation potential for the materials of package construction over time in the KAC storage environment and requires an assessment of materials performance to validate the assumptions of the analysis and ultimately predict service life. As part of the comprehensive Model 9975 package surveillance program, destructive examination of package 9975-02028 was performed following field surveillance in accordance with Reference. Field surveillance of the Model 9975 package in KAC included nondestructive examination of the drum, fiberboard, lead shield and containment vessels. Results of the field surveillance are provided in Attachment 1. Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-02168. For those attributes that were also measured during the field surveillance, no significant changes were observed. Two conditions were identified that do not meet inspection criteria. These conditions are subject to additional investigation and disposition by the Surveillance Program Authority. The conditions include: (1) The lead shield was covered with a white corrosion layer, and (2) Fiberboard thermal conductivity in the axial direction exceeded the specified range. The Surveillance Program Authority was notified of these conditions and will document the findings

  4. Trace Analytical Techniques for Nuclear Forensics

    SciTech Connect

    Halverson, J.E.

    1999-04-28

    Over the history of the Savannah River Site, the Savannah River Technology Center (SRTC) has developed high sensitivity analytical capabilities in support of the Site's Environmental Monitoring Program and nuclear material protection process. Many of these techniques are applicable to the developing need for nuclear forensic analysis capabilities. Radiological and critically control procedures are in place at the SRTC, as well as clean room practices, to minimize the potential for a radiological evidentiary sample to contaminate personnel and the facility, as well as to minimize contaminating the sample thus rendering it useless by law enforcement agencies. Some of the trace analytical techniques available at the SRTC include ultra-low-level gamma and alpha spectrometry, high-sensitivity thermal ionization mass spectrometry, time-of-flight secondary ion mass spectrometry and trace organic analyses. These techniques have been tested during a planned domestic smuggling exercise and in the analysis of an unknown sample.In the event of an interdiction involving the illegal use or movement of radioactive material by U.S. law enforcement agencies (local, state or federal) forensic analyses will be used in developing and building a legal case against the perpetrators. The Savannah River Technology Center (SRTC) at the U.S. Department of Energy's Savannah River Site, a former nuclear production site currently conducting nuclear material stabilization missions, located in Aiken South Carolina, has a long history of performing trace analytical analyses for environmental monitoring. Many of these techniques are also applicable to nuclear forensic analyses. A summary of the trace analytical techniques used at the SRTC, which are applicable to Nuclear Forensics, is presented in this paper.Contamination control, of facilities and personnel involved in the analytical analyses, as well as preventing contamination of the sample, is a unique challenge for nuclear forensic analyses

  5. Effective citizen advocacy of beneficial nuclear technologies

    SciTech Connect

    Wood, S.; McKibben, Ph.D.

    2007-07-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  6. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    SciTech Connect

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K.; Adams, Karen M.

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal

  7. Norovirus transmission on cruise ship.

    PubMed

    Isakbaeva, Elmira T; Widdowson, Marc-Alain; Beard, R Suzanne; Bulens, Sandra N; Mullins, James; Monroe, Stephan S; Bresee, Joseph; Sassano, Patricia; Cramer, Elaine H; Glass, Roger I

    2005-01-01

    An outbreak of norovirus gastroenteritis affected passengers on two consecutive cruises of ship X and continued on 4 subsequent cruises despite a 1-week sanitization. We documented transmission by food and person-to-person contact; persistence of virus despite sanitization onboard, including introductions of new strains; and seeding of an outbreak on land.

  8. Cruise-ship astronomy lecturing

    NASA Astrophysics Data System (ADS)

    Telford, Garry

    2005-06-01

    In December 2004 I was invited to present a series of lectures in Astronomy aboard "Discovery", a cruise-ship operated by World Discovery Cruises Ltd of London. Discovery left Tahiti on 15th of February 2005, and arrived in Auckland on 2nd of March 2005.

  9. Siting GNEP at the Savannah River Site: Using Legacy and Infrastructure in a Commercial Energy Park Concept

    SciTech Connect

    Wyatt, D.; Hoffman, D.

    2008-07-01

    The Savannah River Site (SRS) was proposed as one of eleven potential sites to be included in the U.S. Department of Energy Programmatic Environmental Impact Statement (PEIS) for the Global Nuclear Energy Partnership (GNEP) program. The approach to meet siting and infrastructure requirements for possible GNEP facilities at the SRS focused on available infrastructure including land, cooling water systems, high voltage power supplies, existing heavy haul roadways, existing analytical capabilities, and existing waste handling capabilities. Additional siting criteria and existing SRS capabilities and conditions were developed to locate the GNEP within a commercial Energy Park contained within, but separate from, the SRS. Included as part of, or corollary to, existing infrastructure at the SRS was the availability of a nuclear trained workforce living within the area. The SRS consists of approximately 803 square kilometers (310 square miles) in the Upper Atlantic Coastal Plain of South Carolina bordering along the Savannah River. Historic production reactors, processing, and laboratory facilities are currently being decommissioned and destroyed while new facilities such as the MOX facility are being built. Existing legacy infrastructure, beneficial to the potential GNEP facilities, continues to exist and operate. The SRS has a long history of processing, reprocessing and in the disposition of nuclear fuels and byproducts continuing through today with HCanyon as the only DOE facility currently capable of uranium reprocessing. Because of ongoing operations and maintenance of historic systems, SRS has existing infrastructure immediately available for GNEP facilities in or near the proposed Energy Park. The Energy Park location was chosen to achieve maximum use of this legacy infrastructure. In summary: Requirements for potential or conceivable GNEP facilities can be met using the existing facilities and infrastructure of the SRS. A potential commercially operated Energy

  10. How To Improve You Shipping and Receiving.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2001-01-01

    Discusses how two universities improved their shipping and receiving operations and cut costs. Examples from the University of Texas at Dallas and John Hopkins University, Baltimore, Maryland, illustrate how they established greater shipping and receiving department efficiencies. (GR)

  11. Facts about Noroviruses on Cruise Ships

    MedlinePlus

    ... a Cruise Tips for Healthy Cruising Related Resources Cruise Ship Inspection Scores & Information Inspection Scores Cruise Line Directory ... 100 Variances About Inspections Facts About Noroviruses on Cruise Ships Recommend on Facebook Tweet Share Compartir Noroviruses Norovirus ...

  12. 7 CFR 91.20 - Shipping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice... for providing shipping containers and paying shipping costs for fee basis tests. (f) A courier...

  13. 7 CFR 91.20 - Shipping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice... for providing shipping containers and paying shipping costs for fee basis tests. (f) A courier...

  14. A study of post-thermal recovery of the macroinvertebrate community of Four Mile Creek, June 1985--September 1987. [Savannah River Plant

    SciTech Connect

    Lauritsen, D.; Starkel, W.; Specht, W.

    1989-11-01

    Four Mile Creek is one of several streams at the Savannah River Site which has received thermal effluents ({le}70{degrees}C water) from nuclear production operations. From 1955--mid-1985, Four Mile Creek received thermal effluent from C-Reactor as well as non-thermal discharges from F and H Separation Areas. Total discharges from all of these facilities was about ten times higher than the natural flow of the creek (Firth et al. 1986). All water being discharged into Four Mile Creek was originally pumped from the Savannah River. This study reports the results of the artificial substrate sampling of macroinvertebrate communities of Four Mile Creek from June 1985 through September 1987, when sampling was terminated. Macroinvertebrate taxa richness, densities, and biomass data from this study are compared to Four Mile data collected prior to the shutdown of C-Reactor (Kondratieff and Kondratieff 1985 and Firth et al. 1986), and to comparable macroinvertebrate data from other Savannah River Site streams. 29 refs., 11 figs., 4 tabs.

  15. 49 CFR 176.24 - Shipping papers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Shipping papers. 176.24 Section 176.24... Requirements § 176.24 Shipping papers. (a) A person may not accept a hazardous material for transportation or transport a hazardous material by vessel unless that person has received a shipping paper prepared...

  16. 49 CFR 177.817 - Shipping papers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Shipping papers. 177.817 Section 177.817... Information and Regulations § 177.817 Shipping papers. (a) General requirements. A person may not accept a... received a shipping paper prepared in accordance with part 172 of this subchapter or the material...

  17. 49 CFR 174.24 - Shipping papers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Shipping papers. 174.24 Section 174.24... Requirements § 174.24 Shipping papers. (a) A person may not accept a hazardous material for transportation or transport a hazardous material by rail unless that person receives a shipping paper prepared in...

  18. Underwater radiated noise from modern commercial ships.

    PubMed

    McKenna, Megan F; Ross, Donald; Wiggins, Sean M; Hildebrand, John A

    2012-01-01

    Underwater radiated noise measurements for seven types of modern commercial ships during normal operating conditions are presented. Calibrated acoustic data (<1000 Hz) from an autonomous seafloor-mounted acoustic recorder were combined with ship passage information from the Automatic Identification System. This approach allowed for detailed measurements (i.e., source level, sound exposure level, and transmission range) on ships of opportunity. A key result was different acoustic levels and spectral shapes observed from different ship-types. A 54 kGT container ship had the highest broadband source level at 188 dB re 1 μPa@1m; a 26 kGT chemical tanker had the lowest at 177 dB re 1 μPa@1m. Bulk carriers had higher source levels near 100 Hz, while container ship and tanker noise was predominantly below 40 Hz. Simple models to predict source levels of modern merchant ships as a group from particular ship characteristics (e.g., length, gross tonnage, and speed) were not possible given individual ship-type differences. Furthermore, ship noise was observed to radiate asymmetrically. Stern aspect noise levels are 5 to 10 dB higher than bow aspect noise levels. Collectively, these results emphasize the importance of including modern ship-types in quantifying shipping noise for predictive models of global, regional, and local marine environments.

  19. 49 CFR 176.24 - Shipping papers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Shipping papers. 176.24 Section 176.24... Requirements § 176.24 Shipping papers. (a) A person may not accept a hazardous material for transportation or transport a hazardous material by vessel unless that person has received a shipping paper prepared...

  20. 49 CFR 174.24 - Shipping papers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Shipping papers. 174.24 Section 174.24... Requirements § 174.24 Shipping papers. (a) A person may not accept a hazardous material for transportation or transport a hazardous material by rail unless that person receives a shipping paper prepared in...