Sample records for nuclear source term

  1. The long-term problems of contaminated land: Sources, impacts and countermeasures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baes, C.F. III

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').

  2. A novel integrated approach for the hazardous radioactive dust source terms estimation in future nuclear fusion power plants.

    PubMed

    Poggi, L A; Malizia, A; Ciparisse, J F; Gaudio, P

    2016-10-01

    An open issue still under investigation by several international entities working on the safety and security field for the foreseen nuclear fusion reactors is the estimation of source terms that are a hazard for the operators and public, and for the machine itself in terms of efficiency and integrity in case of severe accident scenarios. Source term estimation is a crucial key safety issue to be addressed in the future reactors safety assessments, and the estimates available at the time are not sufficiently satisfactory. The lack of neutronic data along with the insufficiently accurate methodologies used until now, calls for an integrated methodology for source term estimation that can provide predictions with an adequate accuracy. This work proposes a complete methodology to estimate dust source terms starting from a broad information gathering. The wide number of parameters that can influence dust source term production is reduced with statistical tools using a combination of screening, sensitivity analysis, and uncertainty analysis. Finally, a preliminary and simplified methodology for dust source term production prediction for future devices is presented.

  3. 77 FR 19740 - Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0249] Water Sources for Long-Term Recirculation Cooling... Regulatory Guide (RG) 1.82, ``Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant... regarding the sumps and suppression pools that provide water sources for emergency core cooling, containment...

  4. An Overview of the Energy Crisis

    ERIC Educational Resources Information Center

    Walters, Edward A.; Wewerka, Eugene M.

    1975-01-01

    Concludes that coal will be the major U.S. energy source in the near future despite the significant problems associated with an increase in coal consumption. Provides advantages and disadvantages for the four major long-term energy sources: nuclear fission, nuclear fusion, geothermal sources, and solar energy. (MLH)

  5. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2014-01-01 2014-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  6. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2012-01-01 2012-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  7. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2010-01-01 2010-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  8. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2013-01-01 2013-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  9. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... occupancy of the control room under accident conditions without personnel receiving radiation exposures in... 10 Energy 1 2011-01-01 2011-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The...

  10. Fission Product Appearance Rate Coefficients in Design Basis Source Term Determinations - Past and Present

    NASA Astrophysics Data System (ADS)

    Perez, Pedro B.; Hamawi, John N.

    2017-09-01

    Nuclear power plant radiation protection design features are based on radionuclide source terms derived from conservative assumptions that envelope expected operating experience. Two parameters that significantly affect the radionuclide concentrations in the source term are failed fuel fraction and effective fission product appearance rate coefficients. Failed fuel fraction may be a regulatory based assumption such as in the U.S. Appearance rate coefficients are not specified in regulatory requirements, but have been referenced to experimental data that is over 50 years old. No doubt the source terms are conservative as demonstrated by operating experience that has included failed fuel, but it may be too conservative leading to over-designed shielding for normal operations as an example. Design basis source term methodologies for normal operations had not advanced until EPRI published in 2015 an updated ANSI/ANS 18.1 source term basis document. Our paper revisits the fission product appearance rate coefficients as applied in the derivation source terms following the original U.S. NRC NUREG-0017 methodology. New coefficients have been calculated based on recent EPRI results which demonstrate the conservatism in nuclear power plant shielding design.

  11. Management of Ultimate Risk of Nuclear Power Plants by Source Terms - Lessons Learned from the Chernobyl Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genn Saji

    2006-07-01

    The term 'ultimate risk' is used here to describe the probabilities and radiological consequences that should be incorporated in siting, containment design and accident management of nuclear power plants for hypothetical accidents. It is closely related with the source terms specified in siting criteria which assures an adequate separation of radioactive inventories of the plants from the public, in the event of a hypothetical and severe accident situation. The author would like to point out that current source terms which are based on the information from the Windscale accident (1957) through TID-14844 are very outdated and do not incorporate lessonsmore » learned from either the Three Miles Island (TMI, 1979) nor Chernobyl accident (1986), two of the most severe accidents ever experienced. As a result of the observations of benign radionuclides released at TMI, the technical community in the US felt that a more realistic evaluation of severe reactor accident source terms was necessary. In this background, the 'source term research project' was organized in 1984 to respond to these challenges. Unfortunately, soon after the time of the final report from this project was released, the Chernobyl accident occurred. Due to the enormous consequences induced by then accident, the one time optimistic perspectives in establishing a more realistic source term were completely shattered. The Chernobyl accident, with its human death toll and dispersion of a large part of the fission fragments inventories into the environment, created a significant degradation in the public's acceptance of nuclear energy throughout the world. In spite of this, nuclear communities have been prudent in responding to the public's anxiety towards the ultimate safety of nuclear plants, since there still remained many unknown points revolving around the mechanism of the Chernobyl accident. In order to resolve some of these mysteries, the author has performed a scoping study of the dispersion and deposition mechanisms of fuel particles and fission fragments during the initial phase of the Chernobyl accident. Through this study, it is now possible to generally reconstruct the radiological consequences by using a dispersion calculation technique, combined with the meteorological data at the time of the accident and land contamination densities of {sup 137}Cs measured and reported around the Chernobyl area. Although it is challenging to incorporate lessons learned from the Chernobyl accident into the source term issues, the author has already developed an example of safety goals by incorporating the radiological consequences of the accident. The example provides safety goals by specifying source term releases in a graded approach in combination with probabilities, i.e. risks. The author believes that the future source term specification should be directly linked with safety goals. (author)« less

  12. Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Biegalski, S.; Bowyer, Ted W.

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from Marchmore » 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.« less

  13. 10 CFR 40.41 - Terms and conditions of licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Terms and conditions of licenses. 40.41 Section 40.41 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Licenses § 40.41 Terms and... the regulations in this part shall confine his possession and use of source or byproduct material to...

  14. Refinement of Regional Distance Seismic Moment Tensor and Uncertainty Analysis for Source-Type Identification

    DTIC Science & Technology

    2011-09-01

    a NSS that lies in this negative explosion positive CLVD quadrant due to the large degree of tectonic release in this event that reversed the phase...Mellman (1986) in their analysis of fundamental model Love and Rayleigh wave amplitude and phase for nuclear and tectonic release source terms, and...1986). Estimating explosion and tectonic release source parameters of underground nuclear explosions from Rayleigh and Love wave observations, Air

  15. Nuclear Powerplant Safety: Source Terms. Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    There has been increased public interest in the potential effects of nuclear powerplant accidents since the Soviet reactor accident at Chernobyl. People have begun to look for more information about the amount of radioactivity that might be released into the environment as a result of such an accident. When this issue is discussed by people…

  16. Evaluation of the Hydrologic Source Term from Underground Nuclear Tests on Pahute Mesa at the Nevada Test Site: The CHESHIRE Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawloski, G A; Tompson, A F B; Carle, S F

    The objectives of this report are to develop, summarize, and interpret a series of detailed unclassified simulations that forecast the nature and extent of radionuclide release and near-field migration in groundwater away from the CHESHIRE underground nuclear test at Pahute Mesa at the NTS over 1000 yrs. Collectively, these results are called the CHESHIRE Hydrologic Source Term (HST). The CHESHIRE underground nuclear test was one of 76 underground nuclear tests that were fired below or within 100 m of the water table between 1965 and 1992 in Areas 19 and 20 of the NTS. These areas now comprise the Pahutemore » Mesa Corrective Action Unit (CAU) for which a separate subregional scale flow and transport model is being developed by the UGTA Project to forecast the larger-scale migration of radionuclides from underground tests on Pahute Mesa. The current simulations are being developed, on one hand, to more fully understand the complex coupled processes involved in radionuclide migration, with a specific focus on the CHESHIRE test. While remaining unclassified, they are as site specific as possible and involve a level of modeling detail that is commensurate with the most fundamental processes, conservative assumptions, and representative data sets available. However, the simulation results are also being developed so that they may be simplified and interpreted for use as a source term boundary condition at the CHESHIRE location in the Pahute Mesa CAU model. In addition, the processes of simplification and interpretation will provide generalized insight as to how the source term behavior at other tests may be considered or otherwise represented in the Pahute Mesa CAU model.« less

  17. The History of Nuclear Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1995-01-31

    This is one in a series of publications on nuclear energy. The intent of the series is to present a public overview of various energy sources and it is not intended as an exhaustive treatment of the subject matter. The pamphlet traces the history of discoveries about atoms through more modern-day use of atoms a a valuable source of energy. Included is a detailed chronology and a glossary of terms.

  18. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The inversion method uses a Bayesian formulation considering uncertainties for the a priori source term and the observations (Eckhardt et al., 2008, Stohl et al., 2012). The a priori information on the source term is a first guess. The gamma dose rate observations are used to improve the first guess and to retrieve a reliable source term. The details of this method will be presented at the conference. This work is funded by the Bundesamt für Strahlenschutz BfS, Forschungsvorhaben 3612S60026. References Davoine, X. and Bocquet, M., Atmos. Chem. Phys., 7, 1549-1564, 2007. Devell, L., et al., OCDE/GD(96)12, 1995. Eckhardt, S., et al., Atmos. Chem. Phys., 8, 3881-3897, 2008. Saunier, O., et al., Atmos. Chem. Phys., 13, 11403-11421, 2013. Stohl, A., et al., Atmos. Environ., 32, 4245-4264, 1998. Stohl, A., et al., Atmos. Chem. Phys., 5, 2461-2474, 2005. Stohl, A., et al., Atmos. Chem. Phys., 12, 2313-2343, 2012.

  19. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne

    2014-01-01

    Inverse modelling techniques can be used to estimate the amount of radionuclides and the temporal profile of the source term released in the atmosphere during the accident of the Fukushima Daiichi nuclear power plant in March 2011. In Winiarek et al. (2012b), the lower bounds of the caesium-137 and iodine-131 source terms were estimated with such techniques, using activity concentration measurements. The importance of an objective assessment of prior errors (the observation errors and the background errors) was emphasised for a reliable inversion. In such critical context where the meteorological conditions can make the source term partly unobservable and where only a few observations are available, such prior estimation techniques are mandatory, the retrieved source term being very sensitive to this estimation. We propose to extend the use of these techniques to the estimation of prior errors when assimilating observations from several data sets. The aim is to compute an estimate of the caesium-137 source term jointly using all available data about this radionuclide, such as activity concentrations in the air, but also daily fallout measurements and total cumulated fallout measurements. It is crucial to properly and simultaneously estimate the background errors and the prior errors relative to each data set. A proper estimation of prior errors is also a necessary condition to reliably estimate the a posteriori uncertainty of the estimated source term. Using such techniques, we retrieve a total released quantity of caesium-137 in the interval 11.6-19.3 PBq with an estimated standard deviation range of 15-20% depending on the method and the data sets. The “blind” time intervals of the source term have also been strongly mitigated compared to the first estimations with only activity concentration data.

  20. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated.

    PubMed

    Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y

    2014-09-15

    Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Validation of Operational Multiscale Environment Model With Grid Adaptivity (OMEGA).

    DTIC Science & Technology

    1995-12-01

    Center for the period of the Chernobyl Nuclear Accident. The physics of the model is tested using National Weather Service Medium Range Forecast data by...Climatology Center for the first three days following the release at the Chernobyl Nuclear Plant. A user-defined source term was developed to simulate

  2. An investigation on nuclear energy policy in Turkey and public perception

    NASA Astrophysics Data System (ADS)

    Coskun, Mehmet Burhanettin; Tanriover, Banu

    2016-11-01

    Turkey, which meets nearly 70 per cent of its energy demands with import, is facing the problems of energy security and current account deficit as a result of its dependence on foreign sources in terms of energy input. It is also known that Turkey is having environmental problems due to the increases in CO2 emission. Considering these problems in Turkish economy, where energy input is commonly used, it is necessary to use energy sources efficiently and provide alternative energy sources. Due to the dependency of renewable sources on meteorological conditions (the absence of enough sun, wind, and water sources), the energy generation could not be provided efficiently and permanently from these sources. At this point, nuclear energy as analternative energy source maintains its importance as a sustainable energy source that providing energy in 7 days and 24 hours. The main purpose of this study is to evaluate the nuclear energy subject within the context of negative public perceptions emerged after Chernobyl (1986) and Fukushima (2011) disasters and to investigate in the economic framework.

  3. Managing nuclear power plant induced disasters.

    PubMed

    Kyne, Dean

    2015-01-01

    To understand the management process of nuclear power plant (NPP) induced disasters. The study shields light on phases and issues associated with the NPP induced disaster management. This study uses Palo Verde Nuclear Generation Station as study subject and Arizona State as study area. This study uses the Radiological Assessment System for Consequence Analysis (RASCAL) Source Term to Dose (STDose) of the Nuclear Regulatory Commission, a computer software to project and assess the source term dose and release pathway. This study also uses ArcGIS, a geographic information system to analyze geospatial data. A detailed case study of Palo Verde Nuclear Power Generation (PVNPG) Plant was conducted. The findings reveal that the NPP induced disaster management process is conducted by various stakeholders. To save lives and to minimize the impacts, it is vital to relate planning and process of the disaster management. Number of people who expose to the radioactive plume pathway and level of radioactivity could vary depending on the speed and direction of wind on the day the event takes place. This study findings show that there is a need to address the burning issue of different racial and ethnic groups' unequal exposure and unequal protection to potential risks associated with the NPPs.

  4. Comparison of Radionuclide Ratios in Atmospheric Nuclear Explosions and Nuclear Releases from Chernobyl and Fukushima seen in Gamma Ray Spectormetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friese, Judah I.; Kephart, Rosara F.; Lucas, Dawn D.

    2013-05-01

    The Comprehensive Nuclear Test Ban Treaty (CTBT) has remote radionuclide monitoring followed by an On Site Inspection (OSI) to clarify the nature of a suspect event. An important aspect of radionuclide measurements on site is the discrimination of other potential sources of similar radionuclides such as reactor accidents or medical isotope production. The Chernobyl and Fukushima nuclear reactor disasters offer two different reactor source term environmental inputs that can be compared against historical measurements of nuclear explosions. The comparison of whole-sample gamma spectrometry measurements from these three events and the analysis of similarities and differences are presented. This analysis ismore » a step toward confirming what is needed for measurements during an OSI under the auspices of the Comprehensive Test Ban Treaty.« less

  5. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates on the other hand are observed routinely on a much denser grid and higher temporal resolution. Gamma dose rate measurements contain no explicit information on the observed spectrum of radionuclides and have to be interpreted carefully. Nevertheless, they provide valuable information for the inverse evaluation of the source term due to their availability (Saunier et al., 2013). We present a new inversion approach combining an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The gamma dose rates are calculated from the modelled activity concentrations. The inversion method uses a Bayesian formulation considering uncertainties for the a priori source term and the observations (Eckhardt et al., 2008). The a priori information on the source term is a first guess. The gamma dose rate observations will be used with inverse modelling to improve this first guess and to retrieve a reliable source term. The details of this method will be presented at the conference. This work is funded by the Bundesamt für Strahlenschutz BfS, Forschungsvorhaben 3612S60026. References Davoine, X. and Bocquet, M., Atmos. Chem. Phys., 7, 1549-1564, 2007. Devell, L., et al., OCDE/GD(96)12, 1995. Eckhardt, S., et al., Atmos. Chem. Phys., 8, 3881-3897, 2008. Saunier, O., et al., Atmos. Chem. Phys., 13, 11403-11421, 2013. Stohl, A., et al., Atmos. Environ., 32, 4245-4264, 1998. Stohl, A., et al., Atmos. Chem. Phys., 5, 2461-2474, 2005. Stohl, A., et al., Atmos. Chem. Phys., 12, 2313-2343, 2012.

  6. Energy for Development: Third World Options. Worldwatch Paper 15.

    ERIC Educational Resources Information Center

    Hayes, Denis

    Focusing on the need for energy to sustain economic development on a long-term basis, the document examines energy options of the post-petroleum era in developing nations. Nuclear power and solar power are the most important among proposed alternative energy sources. Limited applicability of nuclear technology to the Third World is discussed.…

  7. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Short-term emergency response planning and risk assessment via an integrated modeling system for nuclear power plants in complex terrain

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Weng, Yu-Chi

    2013-03-01

    Short-term predictions of potential impacts from accidental release of various radionuclides at nuclear power plants are acutely needed, especially after the Fukushima accident in Japan. An integrated modeling system that provides expert services to assess the consequences of accidental or intentional releases of radioactive materials to the atmosphere has received wide attention. These scenarios can be initiated either by accident due to human, software, or mechanical failures, or from intentional acts such as sabotage and radiological dispersal devices. Stringent action might be required just minutes after the occurrence of accidental or intentional release. To fulfill the basic functions of emergency preparedness and response systems, previous studies seldom consider the suitability of air pollutant dispersion models or the connectivity between source term, dispersion, and exposure assessment models in a holistic context for decision support. Therefore, the Gaussian plume and puff models, which are only suitable for illustrating neutral air pollutants in flat terrain conditional to limited meteorological situations, are frequently used to predict the impact from accidental release of industrial sources. In situations with complex terrain or special meteorological conditions, the proposing emergency response actions might be questionable and even intractable to decisionmakers responsible for maintaining public health and environmental quality. This study is a preliminary effort to integrate the source term, dispersion, and exposure assessment models into a Spatial Decision Support System (SDSS) to tackle the complex issues for short-term emergency response planning and risk assessment at nuclear power plants. Through a series model screening procedures, we found that the diagnostic (objective) wind field model with the aid of sufficient on-site meteorological monitoring data was the most applicable model to promptly address the trend of local wind field patterns. However, most of the hazardous materials being released into the environment from nuclear power plants are not neutral pollutants, so the particle and multi-segment puff models can be regarded as the most suitable models to incorporate into the output of the diagnostic wind field model in a modern emergency preparedness and response system. The proposed SDSS illustrates the state-of-the-art system design based on the situation of complex terrain in South Taiwan. This system design of SDSS with 3-dimensional animation capability using a tailored source term model in connection with ArcView® Geographical Information System map layers and remote sensing images is useful for meeting the design goal of nuclear power plants located in complex terrain.

  9. Nuclear Power; Past, present and future

    NASA Astrophysics Data System (ADS)

    Elliott, David

    2017-04-01

    This book looks at the early history of nuclear power, at what happened next, and at its longer-term prospects. The main question is: can nuclear power overcome the problems that have emerged? It was once touted as the ultimate energy source, freeing mankind from reliance on dirty, expensive fossil energy. Sixty years on, nuclear only supplies around 11.5% of global energy and is being challenged by cheaper energy options. While the costs of renewable sources, like wind and solar, are falling rapidly, nuclear costs have remained stubbornly high. Its development has also been slowed by a range of other problems, including a spate of major accidents, security concerns and the as yet unresolved issue of what to do with the wastes that it produces. In response, a new generation of nuclear reactors is being developed, many of them actually revised versions of the ideas first looked at in the earlier phase. Will this new generation of reactors bring nuclear energy to the forefront of energy production in the future?

  10. Source-term characterisation and solid speciation of plutonium at the Semipalatinsk NTS, Kazakhstan.

    PubMed

    Nápoles, H Jiménez; León Vintró, L; Mitchell, P I; Omarova, A; Burkitbayev, M; Priest, N D; Artemyev, O; Lukashenko, S

    2004-01-01

    New data on the concentrations of key fission/activation products and transuranium nuclides in samples of soil and water from the Semipalatinsk Nuclear Test Site are presented and interpreted. Sampling was carried out at Ground Zero, Lake Balapan, the Tel'kem craters and reference locations within the test site boundary well removed from localised sources. Radionuclide ratios have been used to characterise the source term(s) at each of these sites. The geochemical partitioning of plutonium has also been examined and it is shown that the bulk of the plutonium contamination at most of the sites examined is in a highly refractory, non-labile form.

  11. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  12. Development of departmental standard for traceability of measured activity for I-131 therapy capsules used in nuclear medicine.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, Jp

    2011-01-01

    International Basic Safety Standards (International Atomic Energy Agency, IAEA) provide guidance levels for diagnostic procedures in nuclear medicine indicating the maximum usual activity for various diagnostic tests in terms of activities of injected radioactive formulations. An accuracy of ± 10% in the activities of administered radio-pharmaceuticals is being recommended, for expected outcome in diagnostic and therapeutic nuclear medicine procedures. It is recommended that the long-term stability of isotope calibrators used in nuclear medicine is to be checked periodically for their performance using a long-lived check source, such as Cs-137, of suitable activity. In view of the un-availability of such a radioactive source, we tried to develop methods to maintain traceability of these instruments, for certifying measured activities for human use. Two re-entrant chambers [(HDR 1000 and Selectron Source Dosimetry System (SSDS)] with I-125 and Ir-192 calibration factors in the Department of Radiotherapy were used to measure Iodine-131 (I-131) therapy capsules to establish traceability to Mark V isotope calibrator of the Department of Nuclear Medicine. Special nylon jigs were fabricated to keep I-131 capsule holder in position. Measured activities in all the chambers showed good agreement. The accuracy of SSDS chamber in measuring Ir-192 activities in the last 5 years was within 0.5%, validating its role as departmental standard for measuring activity. The above method is adopted because mean energies of I-131 and Ir-192 are comparable.

  13. Emergency Preparedness technology support to the Health and Safety Executive (HSE), Nuclear Installations Inspectorate (NII) of the United Kingdom. Appendix A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Kula, K.R.

    1994-03-01

    The Nuclear Installations Inspectorate (NII) of the United Kingdom (UK) suggested the use of an accident progression logic model method developed by Westinghouse Savannah River Company (WSRC) and Science Applications International Corporation (SAIC) for K Reactor to predict the magnitude and timing of radioactivity releases (the source term) based on an advanced logic model methodology. Predicted releases are output from the personal computer-based model in a level-of-confidence format. Additional technical discussions eventually led to a request from the NII to develop a proposal for assembling a similar technology to predict source terms for the UK`s advanced gas-cooled reactor (AGR) type.more » To respond to this request, WSRC is submitting a proposal to provide contractual assistance as specified in the Scope of Work. The work will produce, document, and transfer technology associated with a Decision-Oriented Source Term Estimator for Emergency Preparedness (DOSE-EP) for the NII to apply to AGRs in the United Kingdom. This document, Appendix A is a part of this proposal.« less

  14. Source term estimation of radioxenon released from the Fukushima Dai-ichi nuclear reactors using measured air concentrations and atmospheric transport modeling.

    PubMed

    Eslinger, P W; Biegalski, S R; Bowyer, T W; Cooper, M W; Haas, D A; Hayes, J C; Hoffman, I; Korpach, E; Yi, J; Miley, H S; Rishel, J P; Ungar, K; White, B; Woods, V T

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout across the northern hemisphere resulting from the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Sampling data from multiple International Modeling System locations are combined with atmospheric transport modeling to estimate the magnitude and time sequence of releases of (133)Xe. Modeled dilution factors at five different detection locations were combined with 57 atmospheric concentration measurements of (133)Xe taken from March 18 to March 23 to estimate the source term. This analysis suggests that 92% of the 1.24 × 10(19) Bq of (133)Xe present in the three operating reactors at the time of the earthquake was released to the atmosphere over a 3 d period. An uncertainty analysis bounds the release estimates to 54-129% of available (133)Xe inventory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Nuclear Medicine and Resources for Patients: How Complex are Online Patient Educational Materials?

    PubMed

    Hansberry, David R; Shah, Kush; Agarwal, Nitin; Kim, Sung M; Intenzo, Charles M

    2018-02-02

    The Internet is a major source of healthcare information for patients. The American Medical Association and National Institutes of Health recommend that consumer healthcare websites be written between a 3rd and 7th grade level. The purpose of this study is to evaluate the level of readability of patient education websites pertaining to nuclear medicine. Methods: Ten search terms were Googled and the top 10 links for each term were collected and analyzed for their level of readability using 10 well-established readability scales. Results: Collectively the 99 articles were written at an 11.8 grade level (standard deviation of 3.4). Only 5 of the 99 articles were written at the NIH and AMA recommended 3rd to 7th grade. Conclusion: There is a clear discordance between the readability level of nuclear medicine related imaging terms with the NIH and AMA guidelines. This disconnect may negatively impact patient understanding contributing to poor health outcomes. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Farewell TID-14844; hello SECY-92-127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahti, G.P.; Johnson, W.J.

    This year, 1992, marks the 50th anniversary of the first sustained nuclear reaction in the pile at the University of Chicago's Stagg Field. But it also marks the 30th anniversary of the publication of TID-14844, which has served as the design-basis source term for radiological assessments supporting the licensing of nuclear power plants in the United States since its inception. The conservative TID-14844 model assumes that 100% of the noble gases and 50% of the iodines are instantaneously released to the containment and are available for leakage to the environment. TID-14844 is formally embodied in the US Nuclear Regulatory Commission'smore » (NRC's) regulations in parts 10CFR100 (siting) and 10CFR50 (review of control room habitability, postaccident shielding and sampling systems). It is also embodied in a host of NRC Regulatory Guides and NUREG reports that address off-site consequences of releases of radioactivity, equipment qualification, and other postaccident radiological concerns. On April 20, 1992, the NRC staff presented to the NRC commissioners the draft Revised Accident Source Terms for Light-Water Nuclear Power Plants.' This effort is documented in SECY-92-127 and provides the first official position of the NRC in this matter.« less

  17. Optical detection of special nuclear materials: an alternative approach for standoff and remote sensing

    NASA Astrophysics Data System (ADS)

    Johnson, J. Bruce; Reeve, S. W.; Burns, W. A.; Allen, Susan D.

    2010-04-01

    Termed Special Nuclear Material (SNM) by the Atomic Energy Act of 1954, fissile materials, such as 235U and 239Pu, are the primary components used to construct modern nuclear weapons. Detecting the clandestine presence of SNM represents an important capability for Homeland Security. An ideal SNM sensor must be able to detect fissile materials present at ppb levels, be able to distinguish between the source of the detected fissile material, i.e., 235U, 239Pu, 233U or other fission source, and be able to perform the discrimination in near real time. A sensor with such capabilities would provide not only rapid identification of a threat but, ultimately, information on the potential source of the threat. For example, current detection schemes for monitoring clandestine nuclear testing and nuclear fuel reprocessing to provide weapons grade fissile material rely largely on passive air sampling combined with a subsequent instrumental analysis or some type of wet chemical analysis of the collected material. It would be highly useful to have a noncontact method of measuring isotopes capable of providing forensic information rapidly at ppb levels of detection. Here we compare the use of Kr, Xe and I as "canary" species for distinguishing between 235U and 239Pu fission sources by spectroscopic methods.

  18. Real time wide area radiation surveillance system (REWARD) based on 3d silicon and (CD,ZN)Te for neutron and gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Disch, C.

    2014-09-01

    Mobile surveillance systems are used to find lost radioactive sources and possible nuclear threats in urban areas. The REWARD collaboration [1] aims to develop such a complete radiation monitoring system that can be installed in mobile or stationary setups across a wide area. The scenarios include nuclear terrorism threats, lost radioactive sources, radioactive contamination and nuclear accidents. This paper will show the performance capabilities of the REWARD system in different scnarios. The results include both Monte Carlo simulations as well as neutron and gamma-ray detection performances in terms of efficiency and nuclide identification. The outcomes of several radiation mapping survey with the entire REWARD system will also be presented.

  19. Updating source term and atmospheric dispersion simulations for the dose reconstruction in Fukushima Daiichi Nuclear Power Station Accident

    NASA Astrophysics Data System (ADS)

    Nagai, Haruyasu; Terada, Hiroaki; Tsuduki, Katsunori; Katata, Genki; Ota, Masakazu; Furuno, Akiko; Akari, Shusaku

    2017-09-01

    In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in Japan, especially for the early phase of the accident when no measured data are available for that purpose, the spatial and temporal distribution of radioactive materials in the environment are reconstructed by computer simulations. In this study, by refining the source term of radioactive materials discharged into the atmosphere and modifying the atmospheric transport, dispersion and deposition model (ATDM), the atmospheric dispersion simulation of radioactive materials is improved. Then, a database of spatiotemporal distribution of radioactive materials in the air and on the ground surface is developed from the output of the simulation. This database is used in other studies for the dose assessment by coupling with the behavioral pattern of evacuees from the FDNPS accident. By the improvement of the ATDM simulation to use a new meteorological model and sophisticated deposition scheme, the ATDM simulations reproduced well the 137Cs and 131I deposition patterns. For the better reproducibility of dispersion processes, further refinement of the source term was carried out by optimizing it to the improved ATDM simulation by using new monitoring data.

  20. Navy Future Fleet Platform Architecture Study

    DTIC Science & Technology

    2016-07-01

    Aircraft Carriers Source: GAO Report GAO/NSIAD-98-1, Navy Aircraft Carriers: Cost - Effectiveness of Conventionally and Nuclear - Powered Carriers...and Russia. The analysis shows the U.S. Navy has a decisive advantage in terms of striking power from aircraft carriers, surface combatants, and...conventional power , but roughly the same displacement and an emphasis on containing costs now that some of the Nuclear Propulsion Program requirements no

  1. Interagency Nuclear Safety Review Panel: Biomedical and Environmental Effects Subpanel report for Galileo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anspaugh, L.R.; Blanton, J.O.; Bollinger, L.J.

    1989-10-01

    This report of the Biomedical and Environmental Effects Subpanel (BEES) of the Interagency Nuclear Safety Review Panel (INSRP), for the Galileo space mission addresses the possible radiological consequences of postulated accidents that release radioactivity into the environment. This report presents estimates of the consequences and uncertainties given that the source term is released into the environment. 10 refs., 6 tabs.

  2. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercialmore » spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.« less

  3. Methods for nuclear air-cleaning-system accident-consequence assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrae, R.W.; Bolstad, J.W.; Gregory, W.S.

    1982-01-01

    This paper describes a multilaboratory research program that is directed toward addressing many questions that analysts face when performing air cleaning accident consequence assessments. The program involves developing analytical tools and supportive experimental data that will be useful in making more realistic assessments of accident source terms within and up to the atmospheric boundaries of nuclear fuel cycle facilities. The types of accidents considered in this study includes fires, explosions, spills, tornadoes, criticalities, and equipment failures. The main focus of the program is developing an accident analysis handbook (AAH). We will describe the contents of the AAH, which include descriptionsmore » of selected nuclear fuel cycle facilities, process unit operations, source-term development, and accident consequence analyses. Three computer codes designed to predict gas and material propagation through facility air cleaning systems are described. These computer codes address accidents involving fires (FIRAC), explosions (EXPAC), and tornadoes (TORAC). The handbook relies on many illustrative examples to show the analyst how to approach accident consequence assessments. We will use the FIRAC code and a hypothetical fire scenario to illustrate the accident analysis capability.« less

  4. Multi-Detector Analysis System for Spent Nuclear Fuel Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald

    1999-09-01

    The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was frommore » a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.« less

  5. Public acceptance of nuclear power among Malaysian students

    NASA Astrophysics Data System (ADS)

    Muhamad Pauzi, Anas; Saad, Juniza Md; Arif Abu Bakar, Asyraf; Hannan Damahuri, Abdul; Syukri, Nur Syamim Mohd

    2018-01-01

    Malaysian government’s aim to include nuclear energy for electricity generation has triggered various reactions from all especially the public. The objective of this study is to have a better understanding on the knowledge, sources of information of nuclear power and sources of energy chosen by Malaysian in 20 years’ time. Besides that, we want to examine the level of acceptance and perception of Malaysian towards nuclear energy and we want to identify the correlation between public perceptions with the acceptance towards nuclear power in Malaysia, and also to study the differences between perception and acceptance of nuclear power with gender and educational level. For this research methodology, the research questions are given orally or through paper-pencil and also social networking site such as Facebook or through electronic media application such as WhatsApp and Google docs. The data were analysed using a SPSS version 22.0 (Statistical Package for the Social Sciences). Results showed that more than 50% of the respondents have the knowledge of nuclear energy. A part of from that, only 39 % are confident government can afford to build NPP in Malaysia and 41 % disagree nuclear energy is the best option for future energy. From analysis using SPSS 22 we estimate negative perception will give a negative acceptance in term of support towards the use of nuclear energy in power generation in Malaysia. There are also slight correlation that the higher the level of education of Malaysian, the more negative the perception of Malaysian in accepting nuclear energy as source of power in Malaysia. Therefore in shaping a positive acceptance of NPP in Malaysia, the authorities need to educate the people with the knowledge of nuclear in order to overcome the negative perception towards nuclear power.

  6. Nuclear criticality safety: 5-day training course

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples ofmore » computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.« less

  7. Electricity generation and health.

    PubMed

    Markandya, Anil; Wilkinson, Paul

    2007-09-15

    The provision of electricity has been a great benefit to society, particularly in health terms, but it also carries health costs. Comparison of different forms of commercial power generation by use of the fuel cycle methods developed in European studies shows the health burdens to be greatest for power stations that most pollute outdoor air (those based on lignite, coal, and oil). The health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power. This same ranking also applies in terms of greenhouse-gas emissions and thus, potentially, to long-term health, social, and economic effects arising from climate change. Nuclear power remains controversial, however, because of public concern about storage of nuclear waste, the potential for catastrophic accident or terrorist attack, and the diversion of fissionable material for weapons production. Health risks are smaller for nuclear fusion, but commercial exploitation will not be achieved in time to help the crucial near-term reduction in greenhouse-gas emissions. The negative effects on health of electricity generation from renewable sources have not been assessed as fully as those from conventional sources, but for solar, wind, and wave power, such effects seem to be small; those of biofuels depend on the type of fuel and the mode of combustion. Carbon dioxide (CO2) capture and storage is increasingly being considered for reduction of CO2 emissions from fossil fuel plants, but the health effects associated with this technology are largely unquantified and probably mixed: efficiency losses mean greater consumption of the primary fuel and accompanying increases in some waste products. This paper reviews the state of knowledge regarding the health effects of different methods of generating electricity.

  8. Expanding Science Knowledge: Enabled by Nuclear Power

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2011-01-01

    The availability of Radioisotope Power Sources (RPSs) power opens up new and exciting mission concepts (1) New trajectories available (2) Power for long term science and operations Astonishing science value associated with these previously non-viable missions

  9. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General license for custody and long-term care of uranium or thorium byproduct materials disposal sites. 40.28 Section 40.28 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL General Licenses § 40.28 General license for custody and...

  10. Decomposition of the Seismic Source Using Numerical Simulations and Observations of Nuclear Explosions

    DTIC Science & Technology

    2017-05-31

    SUBJECT TERMS nonlinear finite element calculations, nuclear explosion monitoring, topography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...3D North Korea calculations........ Figure 6. The CRAM 3D finite element outer grid (left) is rectangular......................... Figure 7. Stress...Figure 6. The CRAM 3D finite element outer grid (left) is rectangular. The inner grid (center) is shaped to match the shape of the explosion shock wave

  11. A long view of global plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, R.L. Jr.

    1995-10-01

    Dealing with the large and growing world inventories of fissile materials from all sources is a major part of the long term challenge of limiting the danger from nuclear weapons. Providing clean, safe nuclear power may also be needed to prevent conditions from arising which could lead to large scale nuclear weapon (re)armament. ADTT technologies might reconcile the seeming dilemma of providing nuclear power while maintaining a very low world inventory of nuclear materials which can be used in weapons. This vision for ADTT should be tested in a variety of ways, including comparisons with competing approaches and with othermore » objectives. Such testing is one part of constructing a path for a decades-long, worldwide implementation campaign for ADTT.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.C. Ryman

    This calculation is a revision of a previous calculation (Ref. 7.5) that bears the same title and has the document identifier BBAC00000-01717-0210-00006 REV 01. The purpose of this revision is to remove TBV (to-be-verified) -41 10 associated with the output files of the previous version (Ref. 7.30). The purpose of this and the previous calculation is to generate source terms for a representative boiling water reactor (BWR) spent nuclear fuel (SNF) assembly for the first one million years after the SNF is discharged from the reactors. This calculation includes an examination of several ways to represent BWR assemblies and operatingmore » conditions in SAS2H in order to quantify the effects these representations may have on source terms. These source terms provide information characterizing the neutron and gamma spectra in particles per second, the decay heat in watts, and radionuclide inventories in curies. Source terms are generated for a range of burnups and enrichments (see Table 2) that are representative of the waste stream and stainless steel (SS) clad assemblies. During this revision, it was determined that the burnups used for the computer runs of the previous revision were actually about 1.7% less than the stated, or nominal, burnups. See Section 6.6 for a discussion of how to account for this effect before using any source terms from this calculation. The source term due to the activation of corrosion products deposited on the surfaces of the assembly from the coolant is also calculated. The results of this calculation support many areas of the Monitored Geologic Repository (MGR), which include thermal evaluation, radiation dose determination, radiological safety analyses, surface and subsurface facility designs, and total system performance assessment. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Disposal Container (Ref. 7.27, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 7.28). The performance of the calculation and development of this document are carried out in accordance with AP-3.124, ''Design Calculation and Analyses'' (Ref. 7.29).« less

  13. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup usingmore » H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.« less

  14. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  15. America's Energy Potential: A Summary and Explanation; Committee on Interior and Insular Affairs, U.S. House of Representatives, Ninety-Third Congress, First Session. [Committee Print].

    ERIC Educational Resources Information Center

    Udall, Morris K.

    This report reviews America's current energy position. The energy sources studied include oil and gas, coal, nuclear energy, solar energy, and geothermal energy. Each source is analyzed in terms of current use, technology for extracting and developing the energy, research and development funding, and projections for future consumption and…

  16. The HELLAS2XMM survey. XI. Unveiling the nature of X-ray bright optically normal galaxies

    NASA Astrophysics Data System (ADS)

    Civano, F.; Mignoli, M.; Comastri, A.; Vignali, C.; Fiore, F.; Pozzetti, L.; Brusa, M.; La Franca, F.; Matt, G.; Puccetti, S.; Cocchia, F.

    2007-12-01

    Aims:X-ray bright optically normal galaxies (XBONGs) constitute a small but significant fraction of hard X-ray selected sources in recent Chandra and XMM-Newton surveys. Even though several possibilities were proposed to explain why a relatively luminous hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the nature of XBONGs is still subject of debate. We aim to better understand their nature by means of a multiwavelength and morphological analysis of a small sample of these sources. Methods: Good-quality photometric near-infrared data (ISAAC/VLT) of four low-redshift (z = 0.1{-}0.3) XBONGs, selected from the HELLAS2XMM survey, have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique through the least-squares fitting program GALFIT. Results: The surface brightness decomposition allows us to reveal a nuclear point-like source, likely to be responsible for the X-ray emission, in two out of the four sources. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4π) at the nuclear source, combined with the low nuclear activity, may explain the lack of optical emission lines. The third XBONG is associated with an X-ray extended source and no nuclear excess is detected in the near infrared at the limits of our observations. The last source is associated to a close (d≤ 1 arcsec) double system and the fitting procedure cannot achieve a firm conclusion. Based on observations made at the European Southern Observatory, Paranal, Chile (ESO Programme ID 69.A-0554).

  17. Challenges Ahead for Nuclear Facility Site-Specific Seismic Hazard Assessment in France: The Alternative Energies and the Atomic Energy Commission (CEA) Vision

    NASA Astrophysics Data System (ADS)

    Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.

    2017-09-01

    Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a probabilistic way. Assessment of seismic hazard in France in the framework of the safety of nuclear facilities should consider these recent advances. In this sense, the opening of discussions with all of the stakeholders in France to update the reference documents (i.e., RFS 2001-01; ASN/2/01 Guide) appears appropriate in the short term.

  18. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although lessmore » credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)« less

  19. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrada, J.J.

    This report compiles preliminary information that supports the premise that a repository is needed in Latin America and analyzes the nuclear situation (mainly in Argentina and Brazil) in terms of nuclear capabilities, inventories, and regional spent-fuel repositories. The report is based on several sources and summarizes (1) the nuclear capabilities in Latin America and establishes the framework for the need of a permanent repository, (2) the International Atomic Energy Agency (IAEA) approach for a regional spent-fuel repository and describes the support that international institutions are lending to this issue, (3) the current situation in Argentina in order to analyze themore » Argentinean willingness to find a location for a deep geological repository, and (4) the issues involved in selecting a location for the repository and identifies a potential location. This report then draws conclusions based on an analysis of this information. The focus of this report is mainly on spent fuel and does not elaborate on other radiological waste sources.« less

  1. Insights Gained from Forensic Analysis with MELCOR of the Fukushima-Daiichi Accidents.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Nathan C.; Gauntt, Randall O.

    Since the accidents at Fukushima-Daiichi, Sandia National Laboratories has been modeling these accident scenarios using the severe accident analysis code, MELCOR. MELCOR is a widely used computer code developed at Sandia National Laboratories since ~1982 for the U.S. Nuclear Regulatory Commission. Insights from the modeling of these accidents is being used to better inform future code development and potentially improved accident management. To date, our necessity to better capture in-vessel thermal-hydraulic and ex-vessel melt coolability and concrete interactions has led to the implementation of new models. The most recent analyses, presented in this paper, have been in support of themore » of the Organization for Economic Cooperation and Development Nuclear Energy Agency’s (OECD/NEA) Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) Project. The goal of this project is to accurately capture the source term from all three releases and then model the atmospheric dispersion. In order to do this, a forensic approach is being used in which available plant data and release timings is being used to inform the modeled MELCOR accident scenario. For example, containment failures, core slumping events and lower head failure timings are all enforced parameters in these analyses. This approach is fundamentally different from a blind code assessment analysis often used in standard problem exercises. The timings of these events are informed by representative spikes or decreases in plant data. The combination of improvements to the MELCOR source code resulting from analysis previous accident analysis and this forensic approach has allowed Sandia to generate representative and plausible source terms for all three accidents at Fukushima Daiichi out to three weeks after the accident to capture both early and late releases. In particular, using the source terms developed by MELCOR, the MACCS software code, which models atmospheric dispersion and deposition, we are able to reasonably capture the deposition of radionuclides to the northwest of the reactor site.« less

  2. The Ellipticity Filter-A Proposed Solution to the Mixed Event Problem in Nuclear Seismic Discrimination

    DTIC Science & Technology

    1974-09-07

    ellipticity filter. The source waveforms are recreated by an inverse transform of those complex ampli- tudes associated with the same azimuth...terms of the three complex data points and the ellipticity. Having solved the equations for all frequency bins, the inverse transform of...Transform of those complex amplitudes associated with Source 1, yielding the signal a (t). Similarly, take the inverse Transform of all

  3. Plutonium isotopes and 241Am in the atmosphere of Lithuania: A comparison of different source terms

    NASA Astrophysics Data System (ADS)

    Lujanienė, G.; Valiulis, D.; Byčenkienė, S.; Šakalys, J.; Povinec, P. P.

    2012-12-01

    137Cs, 241Am and Pu isotopes collected in aerosol samples during 1994-2011 were analyzed with special emphasis on better understanding of Pu and Am behavior in the atmosphere. The results from long-term measurements of 240Pu/239Pu atom ratios showed a bimodal frequency distribution with median values of 0.195 and 0.253, indicating two main sources contributing to the Pu activities at the Vilnius sampling station. The low Pu atom ratio of 0.141 could be attributed to the weapon-grade plutonium derived from the nuclear weapon test sites. The frequency of air masses arriving from the North-West and North-East correlated with the Pu atom ratio indicating the input from the sources located in these regions (the Novaya Zemlya test site, Siberian nuclear plants), while no correlation with the Chernobyl region was observed. Measurements carried out during the Fukushima accident showed a negligible impact of this source with Pu activities by four orders of magnitude lower as compared to the Chernobyl accident. The activity concentration of actinides measured in the integrated sample collected in March-April, 2011 showed a small contribution of Pu with unusual activity and atom ratios indicating the presence of the spent fuel of different origin than that of the Chernobyl accident.

  4. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieselquist, William A.; Thompson, Adam B.; Bowman, Stephen M.

    2016-04-01

    Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process datamore » to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.« less

  5. Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardall, Christian Y.

    In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less

  6. Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis

    DOE PAGES

    Cardall, Christian Y.

    2017-12-15

    In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less

  7. Yield Determination of Underground and Near Surface Explosions

    NASA Astrophysics Data System (ADS)

    Pasyanos, M.

    2015-12-01

    As seismic coverage of the earth's surface continues to improve, we are faced with signals from a wide variety of explosions from various sources ranging from oil train and ordnance explosions to military and terrorist attacks, as well as underground nuclear tests. We present on a method for determining the yield of underground and near surface explosions, which should be applicable for many of these. We first review the regional envelope method that was developed for underground explosions (Pasyanos et al., 2012) and more recently modified for near surface explosions (Pasyanos and Ford, 2015). The technique models the waveform envelope templates as a product of source, propagation (geometrical spreading and attenuation), and site terms, while near surface explosions include an additional surface effect. Yields and depths are determined by comparing the observed envelopes to the templates and minimizing the misfit. We then apply the method to nuclear and chemical explosions for a range of yields, depths, and distances. We will review some results from previous work, and show new examples from ordnance explosions in Scandinavia, nuclear explosions in Eurasia, and chemical explosions in Nevada associated with the Source Physics Experiments (SPE).

  8. Evaluation of Differences in Response of DOD Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component

    DTIC Science & Technology

    2014-03-01

    sources. 15. SUBJECT TERMS Operation Tomodachi, Radiation Dose, Department of Defense, Japan, Fukushima , Earthquake, Tsunami, Cosmic Radiation 16...were reported along with data collected after the releases from the Fukushima Daiichi Nuclear Power Station (FDNPS) began contributing to the...Araki, S.; Ohta, Y.; Ikeuchi, Y.; 2012. “Changes of Radionuclides in the Environment in Chiba, Japan, after the Fukushima Nuclear Power Plant Accident

  9. Shale: an overlooked option for US nuclear waste disposal

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  10. Fukushima Daiichi Radionuclide Inventories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoni, Jeffrey N.; Jankovsky, Zachary Kyle

    Radionuclide inventories are generated to permit detailed analyses of the Fukushima Daiichi meltdowns. This is necessary information for severe accident calculations, dose calculations, and source term and consequence analyses. Inventories are calculated using SCALE6 and compared to values predicted by international researchers supporting the OECD/NEA's Benchmark Study on the Accident at Fukushima Daiichi Nuclear Power Station (BSAF). Both sets of inventory information are acceptable for best-estimate analyses of the Fukushima reactors. Consistent nuclear information for severe accident codes, including radionuclide class masses and core decay powers, are also derived from the SCALE6 analyses. Key nuclide activity ratios are calculated asmore » functions of burnup and nuclear data in order to explore the utility for nuclear forensics and support future decommissioning efforts.« less

  11. Consensus nomenclature rules for radiopharmaceutical chemistry — Setting the record straight

    DOE PAGES

    Coenen, Heinz H.; Gee, Antony D.; Adam, Michael; ...

    2017-10-21

    Over recent years, within the community of radiopharmaceutical sciences, there has been an increased incidence of incorrect usage of established scientific terms and conventions, and even the emergence of ‘self-invented’ terms. Here, in order to address these concerns, an international Working Group on ‘Nomenclature in Radiopharmaceutical Chemistry and related areas’ was established in 2015 to achieve clarification of terms and to generate consensus on the utilisation of a standardised nomenclature pertinent to the field. Upon open consultation, the following consensus guidelines were agreed, which aim to: Provide a reference source for nomenclature good practice in the radiopharma-ceutical sciences; Clarify themore » use of terms and rules concerning exclusively radiopharmaceutical terminology, i.e. nuclear- and radiochemical terms, symbols and expressions; Address gaps and inconsistencies in existing radiochemistry nomenclature rules; Provide source literature for further harmonisation beyond our immediate peer group (publishers, editors, IUPAC, pharmacopoeias, etc.).« less

  12. Consensus nomenclature rules for radiopharmaceutical chemistry — Setting the record straight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coenen, Heinz H.; Gee, Antony D.; Adam, Michael

    Over recent years, within the community of radiopharmaceutical sciences, there has been an increased incidence of incorrect usage of established scientific terms and conventions, and even the emergence of ‘self-invented’ terms. Here, in order to address these concerns, an international Working Group on ‘Nomenclature in Radiopharmaceutical Chemistry and related areas’ was established in 2015 to achieve clarification of terms and to generate consensus on the utilisation of a standardised nomenclature pertinent to the field. Upon open consultation, the following consensus guidelines were agreed, which aim to: Provide a reference source for nomenclature good practice in the radiopharma-ceutical sciences; Clarify themore » use of terms and rules concerning exclusively radiopharmaceutical terminology, i.e. nuclear- and radiochemical terms, symbols and expressions; Address gaps and inconsistencies in existing radiochemistry nomenclature rules; Provide source literature for further harmonisation beyond our immediate peer group (publishers, editors, IUPAC, pharmacopoeias, etc.).« less

  13. Preliminary results of the U.S. Nuclear Regulatory Commission collaborative research program to assess tsunami hazard for nuclear power plants on the Atlantic and gulf coasts

    USGS Publications Warehouse

    Kammerer, A.M.; ten Brink, Uri S.; Twitchell, David C.; Geist, Eric L.; Chaytor, Jason D.; Locat, J.; Lee, H.J.; Buczkowski, Brian J.; Sansoucy, M.

    2008-01-01

    In response to the 2004 Indian Ocean Tsunami, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear facilities in the United States. For this effort, the US NRC organized a collaborative research program with the United States Geological Survey (USGS) and other key researchers for the purpose of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. The initial phase of this work consisted principally of collection, interpretation, and analysis of available offshore data and information. Necessarily, the US NRC research program includes both seismic- and landslide-based tsunamigenic sources in both the near and the far fields. The inclusion of tsunamigenic landslides, an important category of sources that impact tsunami hazard levels for the Atlantic and Gulf Coasts over the long time periods of interest to the US NRC is a key difference between this program and most other tsunami hazard assessment programs. Although only a few years old, this program is already producing results that both support current US NRC activities and look toward the long-term goal of probabilistic tsunami hazard assessment. This paper provides a summary of results from several areas of current research. An overview of the broader US NRC research program is provided in a companion paper in this conference.

  14. 10 CFR 40.71 - Modification and revocation of licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Modification and revocation of licenses. 40.71 Section 40.71 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Modification and Revocation of Licenses § 40.71 Modification and revocation of licenses. (a) The terms and conditions of each...

  15. Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, G G

    2001-03-28

    Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use ofmore » forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to not only produce environmentally friendly products, but also forms that are proliferation resistant. All of these waste forms as well as others, are designed to take advantage of the unique properties of the ceramic systems.« less

  16. Radionuclides in the Arctic seas from the former Soviet Union: Potential health and ecological risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, D W; Edson, R; Varela, M

    1999-11-15

    The primary goal of the assessment reported here is to evaluate the health and environmental threat to coastal Alaska posed by radioactive-waste dumping in the Arctic and Northwest Pacific Oceans by the FSU. In particular, the FSU discarded 16 nuclear reactors from submarines and an icebreaker in the Kara Sea near the island of Novaya Zemlya, of which 6 contained spent nuclear fuel (SNF); disposed of liquid and solid wastes in the Sea of Japan; lost a {sup 90}Sr-powered radioisotope thermoelectric generator at sea in the Sea of Okhotsk; and disposed of liquid wastes at several sites in the Pacificmore » Ocean, east of the Kamchatka Peninsula. In addition to these known sources in the oceans, the RAIG evaluated FSU waste-disposal practices at inland weapons-development sites that have contaminated major rivers flowing into the Arctic Ocean. The RAIG evaluated these sources for the potential for release to the environment, transport, and impact to Alaskan ecosystems and peoples through a variety of scenarios, including a worst-case total instantaneous and simultaneous release of the sources under investigation. The risk-assessment process described in this report is applicable to and can be used by other circumpolar countries, with the addition of information about specific ecosystems and human life-styles. They can use the ANWAP risk-assessment framework and approach used by ONR to establish potential doses for Alaska, but add their own specific data sets about human and ecological factors. The ANWAP risk assessment addresses the following Russian wastes, media, and receptors: dumped nuclear submarines and icebreaker in Kara Sea--marine pathways; solid reactor parts in Sea of Japan and Pacific Ocean--marine pathways; thermoelectric generator in Sea of Okhotsk--marine pathways; current known aqueous wastes in Mayak reservoirs and Asanov Marshes--riverine to marine pathways; and Alaska as receptor. For these waste and source terms addressed, other pathways, such as atmospheric transport, could be considered under future-funded research efforts for impacts to Alaska. The ANWAP risk assessment does not address the following wastes, media, and receptors: radioactive sources in Alaska (except to add perspective for Russian source term); radioactive wastes associated with Russian naval military operations and decommissioning; Russian production reactor and spent-fuel reprocessing facilities nonaqueous source terms; atmospheric, terrestrial and nonaqueous pathways; and dose calculations for any circumpolar locality other than Alaska. These other, potentially serious sources of radioactivity to the Arctic environment, while outside the scope of the current ANWAP mandate, should be considered for future funding research efforts.« less

  17. Simultaneous Thermal and Gamma Radiation Aging of Electrical Cable Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.

    The polymers used for insulation in nuclear power plant electrical cables are susceptible to aging during long term operation. Elevated temperature is the primary contributor to changes in polymer structure that result loss of mechanical and electrical properties, but gamma radiation is also a significant source of degradation for polymers used within relevant plant locations. Despite many years of polymer degradation research, the combined effects of simultaneous exposure to thermal and radiation stress are not well understood. As nuclear operators contemplate and prepare for extended operations beyond initial license periods, a predictive understanding of exposure-based cable material degradation is becomingmore » an increasingly important input to safety, licensing, operations and economic decisions. We are focusing on carefully-controlled simultaneous thermal and gamma radiation accelerating aging and characterization of the most common nuclear cable polymers to understand the relative contributions of temperature, time, dose and dose rate to changes in cable polymer material structure and properties. Improved understanding of cable performance in long term operation will help support continued sustainable nuclear power generation.« less

  18. Radiochemical data collected on events from which radioactivity escaped beyond the borders of the Nevada test range complex. [NONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.G.

    1981-02-12

    This report identifies all nuclear events in Nevada that are known to have sent radioactivity beyond the borders of the test range complex. There have been 177 such tests, representing seven different types: nuclear detonations in the atmosphere, nuclear excavation events, nuclear safety events, underground nuclear events that inadvertently seeped or vented to the atmosphere, dispersion of plutonium and/or uranium by chemical high explosives, nuclear rocket engine tests, and nuclear ramjet engine tests. The source term for each of these events is given, together with the data base from which it was derived (except where the data are classified). Themore » computer programs used for organizing and processing the data base and calculating radionuclide production are described and included, together with the input and output data and details of the calculations. This is the basic formation needed to make computer modeling studies of the fallout from any of these 177 events.« less

  19. Characterization of Xe-133 global atmospheric background: Implications for the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Achim, Pascal; Generoso, Sylvia; Morin, Mireille; Gross, Philippe; Le Petit, Gilbert; Moulin, Christophe

    2016-05-01

    Monitoring atmospheric concentrations of radioxenons is relevant to provide evidence of atmospheric or underground nuclear weapon tests. However, when the design of the International Monitoring Network (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was set up, the impact of industrial releases was not perceived. It is now well known that industrial radioxenon signature can interfere with that of nuclear tests. Therefore, there is a crucial need to characterize atmospheric distributions of radioxenons from industrial sources—the so-called atmospheric background—in the frame of the CTBT. Two years of Xe-133 atmospheric background have been simulated using 2013 and 2014 meteorological data together with the most comprehensive emission inventory of radiopharmaceutical facilities and nuclear power plants to date. Annual average simulated activity concentrations vary from 0.01 mBq/m3 up to above 5 mBq/m3 nearby major sources. Average measured and simulated concentrations agree on most of the IMS stations, which indicates that the main sources during the time frame are properly captured. Xe-133 atmospheric background simulated at IMS stations turn out to be a complex combination of sources. Stations most impacted are in Europe and North America and can potentially detect Xe-133 every day. Predicted occurrences of detections of atmospheric Xe-133 show seasonal variations, more accentuated in the Northern Hemisphere, where the maximum occurs in winter. To our knowledge, this study presents the first global maps of Xe-133 atmospheric background from industrial sources based on two years of simulation and is a first attempt to analyze its composition in terms of origin at IMS stations.

  20. Applicability of existing C3 (command, control and communications) vulnerability and hardness analyses to sentry system issues. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.C.

    1983-01-13

    This report is a compilation of abstracts resulting from a literature search of reports relevant to Sentry Ballistic missile system C3 vulnerability and hardness. Primary sources consulted were the DOD Nuclear Information Analysis Center (DASIAC) and the Defense Technical Information Center (DTIC). Approximately 175 reports were reviewed and abstracted, including several related to computer programs for estimating nuclear effects on electromagnetic propagation. The reports surveyed were ranked in terms of their importance for Sentry C3 VandH issues.

  1. Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil

    NASA Astrophysics Data System (ADS)

    de Almeida, Andréia Abreu Diniz; Assumpção, Marcelo; Bommer, Julian J.; Drouet, Stéphane; Riccomini, Claudio; Prates, Carlos L. M.

    2018-05-01

    A site-specific probabilistic seismic hazard analysis (PSHA) has been performed for the only nuclear power plant site in Brazil, located 130 km southwest of Rio de Janeiro at Angra dos Reis. Logic trees were developed for both the seismic source characterisation and ground-motion characterisation models, in both cases seeking to capture the appreciable ranges of epistemic uncertainty with relatively few branches. This logic-tree structure allowed the hazard calculations to be performed efficiently while obtaining results that reflect the inevitable uncertainty in long-term seismic hazard assessment in this tectonically stable region. An innovative feature of the study is an additional seismic source zone added to capture the potential contributions of characteristics earthquake associated with geological faults in the region surrounding the coastal site.

  2. Development of Northeast Asia Nuclear Power Plant Accident Simulator.

    PubMed

    Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff

    2017-06-15

    A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. 76 FR 53979 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal Hydraulics Phenomena; Notice of Meeting The ACRS Subcommittee on Thermal Hydraulics... Revision 4 to Regulatory Guide 1.82, ``Water Sources for Long-Term Recirculation Cooling Following a Loss...

  4. Antineutrino analysis for continuous monitoring of nuclear reactors: Sensitivity study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Christopher; Erickson, Anna

    This paper explores the various contributors to uncertainty on predictions of the antineutrino source term which is used for reactor antineutrino experiments and is proposed as a safeguard mechanism for future reactor installations. The errors introduced during simulation of the reactor burnup cycle from variation in nuclear reaction cross sections, operating power, and other factors are combined with those from experimental and predicted antineutrino yields, resulting from fissions, evaluated, and compared. The most significant contributor to uncertainty on the reactor antineutrino source term when the reactor was modeled in 3D fidelity with assembly-level heterogeneity was found to be the uncertaintymore » on the antineutrino yields. Using the reactor simulation uncertainty data, the dedicated observation of a rigorously modeled small, fast reactor by a few-ton near-field detector was estimated to offer reduction of uncertainty on antineutrino yields in the 3.0–6.5 MeV range to a few percent for the primary power-producing fuel isotopes, even with zero prior knowledge of the yields.« less

  5. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term – Trial Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-10-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is notmore » without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.« less

  6. The Fukushima releases: an inverse modelling approach to assess the source term by using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Saunier, Olivier; Mathieu, Anne; Didier, Damien; Tombette, Marilyne; Quélo, Denis; Winiarek, Victor; Bocquet, Marc

    2013-04-01

    The Chernobyl nuclear accident and more recently the Fukushima accident highlighted that the largest source of error on consequences assessment is the source term estimation including the time evolution of the release rate and its distribution between radioisotopes. Inverse modelling methods have proved to be efficient to assess the source term due to accidental situation (Gudiksen, 1989, Krysta and Bocquet, 2007, Stohl et al 2011, Winiarek et al 2012). These methods combine environmental measurements and atmospheric dispersion models. They have been recently applied to the Fukushima accident. Most existing approaches are designed to use air sampling measurements (Winiarek et al, 2012) and some of them use also deposition measurements (Stohl et al, 2012, Winiarek et al, 2013). During the Fukushima accident, such measurements are far less numerous and not as well distributed within Japan than the dose rate measurements. To efficiently document the evolution of the contamination, gamma dose rate measurements were numerous, well distributed within Japan and they offered a high temporal frequency. However, dose rate data are not as easy to use as air sampling measurements and until now they were not used in inverse modelling approach. Indeed, dose rate data results from all the gamma emitters present in the ground and in the atmosphere in the vicinity of the receptor. They do not allow one to determine the isotopic composition or to distinguish the plume contribution from wet deposition. The presented approach proposes a way to use dose rate measurement in inverse modeling approach without the need of a-priori information on emissions. The method proved to be efficient and reliable when applied on the Fukushima accident. The emissions for the 8 main isotopes Xe-133, Cs-134, Cs-136, Cs-137, Ba-137m, I-131, I-132 and Te-132 have been assessed. The Daiichi power plant events (such as ventings, explosions…) known to have caused atmospheric releases are well identified in the retrieved source term, except for unit 3 explosion where no measurement was available. The comparisons between the simulations of atmospheric dispersion and deposition of the retrieved source term show a good agreement with environmental observations. Moreover, an important outcome of this study is that the method proved to be perfectly suited to crisis management and should contribute to improve our response in case of a nuclear accident.

  7. Isotopic composition and neutronics of the Okelobondo natural reactor

    NASA Astrophysics Data System (ADS)

    Palenik, Christopher Samuel

    The Oklo-Okelobondo and Bangombe uranium deposits, in Gabon, Africa host Earth's only known natural nuclear fission reactors. These 2 billion year old reactors represent a unique opportunity to study used nuclear fuel over geologic periods of time. The reactors in these deposits have been studied as a means by which to constrain the source term of fission product concentrations produced during reactor operation. The source term depends on the neutronic parameters, which include reactor operation duration, neutron flux and the neutron energy spectrum. Reactor operation has been modeled using a point-source computer simulation (Oak Ridge Isotope Generation and Depletion, ORIGEN, code) for a light water reactor. Model results have been constrained using secondary ionization mass spectroscopy (SIMS) isotopic measurements of the fission products Nd and Te, as well as U in uraninite from samples collected in the Okelobondo reactor zone. Based upon the constraints on the operating conditions, the pre-reactor concentrations of Nd (150 ppm +/- 75 ppm) and Te (<1 ppm) in uraninite were estimated. Related to the burnup measured in Okelobondo samples (0.7 to 13.8 GWd/MTU), the final fission product inventories of Nd (90 to 1200 ppm) and Te (10 to 110 ppm) were calculated. By the same means, the ranges of all other fission products and actinides produced during reactor operation were calculated as a function of burnup. These results provide a source term against which the present elemental and decay abundances at the fission reactor can be compared. Furthermore, they provide new insights into the extent to which a "fossil" nuclear reactor can be characterized on the basis of its isotopic signatures. In addition, results from the study of two other natural systems related to the radionuclide and fission product transport are included. A detailed mineralogical characterization of the uranyl mineralogy at the Bangombe uranium deposit in Gabon, Africa was completed to improve geochemical models of the solubility-limiting phase. A study of the competing effects of radiation damage and annealing in a U-bearing crystal of zircon shows that low temperature annealing in actinide-bearing phases is significant in the annealing of radiation damage.

  8. Atmospheric transport of radioactive debris to Norway in case of a hypothetical accident related to the recovery of the Russian submarine K-27.

    PubMed

    Bartnicki, Jerzy; Amundsen, Ingar; Brown, Justin; Hosseini, Ali; Hov, Øystein; Haakenstad, Hilde; Klein, Heiko; Lind, Ole Christian; Salbu, Brit; Szacinski Wendel, Cato C; Ytre-Eide, Martin Album

    2016-01-01

    The Russian nuclear submarine K-27 suffered a loss of coolant accident in 1968 and with nuclear fuel in both reactors it was scuttled in 1981 in the outer part of Stepovogo Bay located on the eastern coast of Novaya Zemlya. The inventory of spent nuclear fuel on board the submarine is of concern because it represents a potential source of radioactive contamination of the Kara Sea and a criticality accident with potential for long-range atmospheric transport of radioactive particles cannot be ruled out. To address these concerns and to provide a better basis for evaluating possible radiological impacts of potential releases in case a salvage operation is initiated, we assessed the atmospheric transport of radionuclides and deposition in Norway from a hypothetical criticality accident on board the K-27. To achieve this, a long term (33 years) meteorological database has been prepared and used for selection of the worst case meteorological scenarios for each of three selected locations of the potential accident. Next, the dispersion model SNAP was run with the source term for the worst-case accident scenario and selected meteorological scenarios. The results showed predictions to be very sensitive to the estimation of the source term for the worst-case accident and especially to the sizes and densities of released radioactive particles. The results indicated that a large area of Norway could be affected, but that the deposition in Northern Norway would be considerably higher than in other areas of the country. The simulations showed that deposition from the worst-case scenario of a hypothetical K-27 accident would be at least two orders of magnitude lower than the deposition observed in Norway following the Chernobyl accident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. NDE of copper canisters for long-term storage of spent nuclear fuel from the Swedish nuclear power plants

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz

    2003-07-01

    Sweden has been intensively developing methods for long term storage of spent fuel from the nuclear power plants for twenty-five years. A dedicated research program has been initiated and conducted by the Swedish company SKB (Swedish Nuclear Fuels and Waste Management Co.). After the interim storage SKB plans to encapsulate spent nuclear fuel in copper canisters that will be placed at a deep repository located in bedrock. The canisters filled with fuel rods will be sealed by an electron beam weld. This paper presents three complementary NDE techniques used for assessing the sealing weld in copper canisters, radiography, ultrasound, and eddy current. A powerful X-ray source and a digital detector are used for the radiography. An ultrasonic array system consisting of a phased ultrasonic array and a multi-channel electronics is used for the ultrasonic examination. The array system enables electronic focusing and rapid electronic scanning eliminating the use of a complicated mechanical scanner. A specially designed eddy current probe capable of detecting small voids at the depth up to 4 mm in copper is used for the eddy current inspection. Presently, all the NDE techniques are verified in SKB's Canister Laboratory where full scale canisters are welded and examined.

  10. Documentation of volume 3 of the 1978 Energy Information Administration annual report to congress

    NASA Astrophysics Data System (ADS)

    1980-02-01

    In a preliminary overview of the projection process, the relationship between energy prices, supply, and demand is addressed. Topics treated in detail include a description of energy economic interactions, assumptions regarding world oil prices, and energy modeling in the long term beyond 1995. Subsequent sections present the general approach and methodology underlying the forecasts, and define and describe the alternative projection series and their associated assumptions. Short term forecasting, midterm forecasting, long term forecasting of petroleum, coal, and gas supplies are included. The role of nuclear power as an energy source is also discussed.

  11. The role of nuclear energy in mitigating greenhouse warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowski, R.A.

    1997-12-31

    A behavioral, top-down, forced-equilibrium market model of long-term ({approximately} 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhousemore » warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately.« less

  12. Nuclear Spin Dependent Parity Violation in Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Altuntas, Emine; Cahn, Sidney; Demille, David; Kozlov, Mikhail

    2016-05-01

    Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A 2 / 3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. The NSD-PV interaction matrix element is measured using a Stark-interference technique. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138 Ba19 F. We report our progress on measuring and cancelling systematic effects due to combination of non-reversing stray E-fields, Enr with B-field inhomogeneities. Short-term prospects for measuring the nuclear anapole moment of 137 Ba19 F are discussed. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.

  13. Nuclear Spin Dependent Parity Violation in Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Altuntas, Emine; Cahn, Sidney; Demille, David

    2016-09-01

    Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A2/3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20 . We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. The NSD-PV interaction matrix element is measured using a Stark-interference technique. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138Ba19F. We report our progress on measuring and cancelling systematic effects due to combination of non-reversing stray E-fields, Enr with B-field inhomogeneities. Short-term prospects for measuring the nuclear anapole moment of 137Ba19F are discussed. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.

  14. Nuclear Spin Dependent Parity Violation in Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Altuntas, Emine; Ammon, Jeffrey; Cahn, Sidney; Demille, David; Kozlov, Mikhail; Paolino, Richard

    2015-05-01

    Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A 2 / 3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. Using a Stark-interference technique we measure the NSD-PV interaction matrix element. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138Ba19F. We also discuss investigations of systematics due to non-reversing stray E-fields, Enr together with B-field inhomogeneities, and short-term prospects for measuring the nuclear anapole moment of 137Ba. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.

  15. Energy Conversion Chain Analysis of Sustainable Energy Systems: A Transportation Case Study

    ERIC Educational Resources Information Center

    Evans, Robert L.

    2008-01-01

    In general terms there are only three primary energy sources: fossil fuels, renewable energy, and nuclear fission. For fueling road transportation, there has been much speculation about the use of hydrogen as an energy carrier, which would usher in the "hydrogen economy." A parallel situation would use a simple battery to store electricity…

  16. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  17. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  18. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  19. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  20. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  1. Biokinetics of nuclear fuel compounds and biological effects of nonuniform radiation.

    PubMed Central

    Lang, S; Servomaa, K; Kosma, V M; Rytömaa, T

    1995-01-01

    Environmental releases of insoluble nuclear fuel compounds may occur at nuclear power plants during normal operation, after nuclear power plant accidents, and as a consequence of nuclear weapons testing. For example, the Chernobyl fallout contained extensive amounts of pulverized nuclear fuel composed of uranium and its nonvolatile fission products. The effects of these highly radioactive particles, also called hot particles, on humans are not well known due to lack of reliable data on the extent of the exposure. However, the biokinetics and biological effects of nuclear fuel compounds have been investigated in a number of experimental studies using various cellular systems and laboratory animals. In this article, we review the biokinetic properties and effects of insoluble nuclear fuel compounds, with special reference to UO2, PuO2, and nonvolatile, long-lived beta-emitters Zr, Nb, Ru, and Ce. First, the data on hot particles, including sources, dosimetry, and human exposure are discussed. Second, the biokinetics of insoluble nuclear fuel compounds in the gastrointestinal tract and respiratory tract are reviewed. Finally, short- and long-term biological effects of nonuniform alpha- and beta-irradiation on the gastrointestinal tract, lungs, and skin are discussed. Images p920-a Figure 1. PMID:8529589

  2. Performance Criteria of Nuclear Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  3. Lorentz-violating contributions to the nuclear Schiff moment and nuclear EDM

    NASA Astrophysics Data System (ADS)

    Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.

    2018-03-01

    In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects on the Schiff moment of C P T -even Lorentz-violating (LV) terms that modify the Coulomb potential. First, we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by means of a Coulomb potential altered only by the P -even LV components. Next, by supposing the existence of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the P -odd and P -even LV components. We then use known estimates and EDM measurements to discuss upper bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to LV effects.

  4. Flexible response and the INF (Intermediate-range Nuclear Force) Treaty: what next. Study project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, H.A.

    1988-03-14

    The prospect of the Intermediate-range Nuclear Force (INF) Treaty led the former Supreme Allied Commander, Europe, GEN Bernard Rogers, to claim that NATO would lose weapons vital to the Alliance's defense when Pershing II (PII) and Ground-Launched Cruise Missiles (GLCM) were withdrawn from Europe. Nuclear weapons and the NATO strategy of flexible response are inseparably dependent upon each other. GEN Rogers' comments focus directly on the capability which PII and GLCM provided NATO to strike Soviet territory in event of conflict and if such an escalatory step was deemed necessary. Various sources were researched to determine if the INF Treatymore » will cripple the flexible response strategy; while it should not, certain changes in NATO's approach to defense are suggested. Specifically, conventional and nuclear improvements, the latter within the terms of the INF Treaty, are suggested, as are conventional force reduction negotiations and the Europeanization of NATO.« less

  5. Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal. Part I: Assessment of the instant release fraction

    NASA Astrophysics Data System (ADS)

    Johnson, Lawrence; Ferry, Cécile; Poinssot, Christophe; Lovera, Patrick

    2005-11-01

    A source-term model for the short-term release of radionuclides from spent nuclear fuel (SNF) has been developed. It provides quantitative estimates of the fraction of various radionuclides that are expected to be released rapidly (the instant release fraction, or IRF) when water contacts the UO 2 or MOX fuel after container breaching in a geological repository. The estimates are based on correlation of leaching data for radionuclides with fuel burnup and fission gas release. Extrapolation of the data to higher fuel burnup values is based on examination of data on fuel restructuring, such as rim development, and on fission gas release data, which permits bounding IRF values to be estimated assuming that radionuclide releases will be less than fission gas release. The consideration of long-term solid-state changes influencing the IRF prior to canister breaching is addressed by evaluating alpha self-irradiation enhanced diffusion, which may gradually increase the accumulation of fission products at grain boundaries.

  6. Unveiling the physics of AGN through X-ray variability

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; González-Martín, O.; Masegosa, J.; Márquez, I.

    2017-03-01

    Although variability is a general property characterizing active galactic nuclei (AGN), it is not well established whether the changes occur in the same way in every nuclei. The main purpose of this work is to study the X-ray variability pattern(s) in AGN selected at optical wavelengths in a large sample, including low ionization nuclear emission line regions (LINERs) and type 1.8, 1.9, and 2 Seyferts, using the public archives in Chandra and/or XMM-Newton. Spectra of the same source gathered at different epochs were simultaneously fitted to study long term variations; the variability patterns were studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and long term UV flux variability were studied. Variations at X-rays in timescales of months/years are very common in all AGN families but short term variations are only found in type 1.8 and 1.9 Seyferts. The main driver of the long term X-ray variations seems to be related to changes in the nuclear power. Other variability patterns cannot be discarded in a few cases. We discuss the geometry and physics of AGN through the X-ray variability analysis.

  7. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  8. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  9. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  10. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  11. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  12. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  13. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.

    2015-07-01

    This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.

  14. Weighing the Risks of Nuclear Energy and Climate Change: Trust in Different Information Sources, Perceived Risks, and Willingness to Pay for Alternatives to Nuclear Power.

    PubMed

    Vainio, Annukka; Paloniemi, Riikka; Varho, Vilja

    2017-03-01

    We examined how individuals perceive nuclear energy in the context of climate change mitigation and how their perceptions are associated with trust in different risk information sources. We analyzed the interrelationships between trust, perceived risk of nuclear power, climate change concern, perception of nuclear energy as an acceptable way to mitigate climate change, and willingness to pay (WTP) for alternatives to nuclear power. A nationwide survey (N = 967) collected in Finland was analyzed with structural equation modeling. The associations between trust and perceived risk of nuclear power, climate change concern, and perception of nuclear power as a way to mitigate climate change varied by the type of information source. Political party support and other background variables were associated with trust in different information sources. The effect of trust in information sources on WTP was mediated by perceived risks and benefits. The results will increase our understanding of how individuals perceive nuclear energy as a way to cut CO 2 emissions and the role of trust in different information sources in shaping nuclear risk perceptions and energy choices. © 2016 Society for Risk Analysis.

  15. Rattling Nucleons: New Developments in Active Interrogation of Special Nuclear Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. Runkle; David L. Chichester; Scott J. Thompson

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important formore » nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.« less

  16. Rattling nucleons: New developments in active interrogation of special nuclear material

    NASA Astrophysics Data System (ADS)

    Runkle, Robert C.; Chichester, David L.; Thompson, Scott J.

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding—special nuclear material itself, incidental materials, or intentional shielding—and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.

  17. Radioactivity impacts of the Fukushima Nuclear Accident on the atmosphere

    NASA Astrophysics Data System (ADS)

    Lin, W.; Chen, L.; Yu, W.; Ma, H.; Zeng, Z.; Lin, J.; Zeng, S.

    2015-02-01

    The Fukushima Nuclear Accident (FNA) resulted in a large amount of radionuclides released into the atmosphere and dispersed globally, which has greatly raised public concerns. The state of the art for source terms of 19 kinds of radionuclides derived from the FNA was comprehensively collected and compared with levels of the global fallout and the Chernobyl Nuclear Accident (CNA). The atmospheric impacts of the FNA were evaluated from three aspects including radioactive baseline of the atmosphere, the concentration limits in standards and radiological protection. The FNA should not impose significant radiological risk on the public members in the countries excluding Japan. A conceptual scheme of Fukushima-derived radionuclides with physical and physicochemical insights on different temporal-spatial timescales was discussed and illustrated to understand their fates in the atmosphere.

  18. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  19. Morphological and functional effects of graphene on the synthesis of uranium carbide for isotopes production targets.

    PubMed

    Biasetto, L; Corradetti, S; Carturan, S; Eloirdi, R; Amador-Celdran, P; Staicu, D; Blanco, O Dieste; Andrighetto, A

    2018-05-29

    The development of tailored targets for the production of radioactive isotopes represents an active field in nuclear research. Radioactive beams find applications in nuclear medicine, in astrophysics, matter physics and materials science. In this work, we study the use of graphene both as carbon source for UO 2 carbothermal reduction to produce UC x targets, and also as functional properties booster. At fixed composition, the UC x target grain size, porosity and thermal conductivity represent the three main points that affect the target production efficiency. UC x was synthesized using both graphite and graphene as the source of carbon and the target properties in terms of composition, grain size, porosity, thermal diffusivity and thermal conductivity were studied. The main output of this work is related to the remarkable enhancement achieved in thermal conductivity, which can profitably improve thermal dissipation during operational stages of UC x targets.

  20. X-ray spectral variability of Seyfert 2 galaxies

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.

    2015-07-01

    Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims: This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods: We use the 26 Seyfert 2s in the Véron-Cetty and Véron catalog with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration. When transitions between Compton-thick and thin were obtained for different observations of the same source, we classified it as a changing-look candidate. Results: Short-term variability at X-rays was studied in ten cases, but variations are not found. From the 25 analyzed sources, 11 show long-term variations. Eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related to absorbers at hard X-rays are less common, and in many cases these variations are accompanied by variations in the nuclear continuum. At UV frequencies, only NGC 5194 (out of six sources) is variable, but the changes are not related to the nucleus. We report two changing-look candidates, MARK 273 and NGC 7319. Conclusions: A constant reflection component located far away from the nucleus plus a variable nuclear continuum are able to explain most of our results. Within this scenario, the Compton-thick candidates are dominated by reflection, which suppresses their continuum, making them seem fainter, and they do not show variations (except MARK 3), while the Compton-thin and changing-look candidates do. Appendices are available in electronic form at http://www.aanda.org

  1. 137Cs activities and 135Cs/137Cs isotopic ratios from soils at Idaho National Laboratory: a case study for contaminant source attribution in the vicinity of nuclear facilities.

    PubMed

    Snow, Mathew S; Snyder, Darin C; Clark, Sue B; Kelley, Morgan; Delmore, James E

    2015-03-03

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. (137)Cs distribution patterns, (135)Cs/(137)Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDA identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that (135)Cs/(137)Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest).

  2. 137 Cs Activities and 135 Cs/ 137 Cs Isotopic Ratios from Soils at Idaho National Laboratory: A Case Study for Contaminant Source Attribution in the Vicinity of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Mathew S.; Snyder, Darin C.; Clark, Sue B.

    2015-03-03

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. 137Cs distribution patterns, 135Cs/ 137Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDAmore » identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that 135Cs/ 137Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest).« less

  3. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    NASA Astrophysics Data System (ADS)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul

    2015-09-01

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.

  4. Low Energy Nuclear Reactions: 2007 Update

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  5. Sample Based Unit Liter Dose Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, L.

    The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new datamore » to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting {mu}Ci/g or {mu}Ci/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000).« less

  6. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id

    2015-09-30

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material aremore » simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.« less

  7. Overview of the U.S. Nuclear Regulatory Commission collaborative research program to assess tsunami hazard for nuclear power plants on the Atlantic and Gulf Coasts

    USGS Publications Warehouse

    Kammerer, A.M.; ten Brink, Uri S.; Titov, V.V.

    2017-01-01

    In response to the 2004 Indian Ocean Tsunami, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear facilities in the United States. For this effort, the US NRC organized a collaborative research program with the United States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) with a goal of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. Necessarily, the US NRC research program includes both seismic- and landslide-based tsunamigenic sources in both the near and the far fields. The inclusion of tsunamigenic landslides, an important category of sources that impact tsunami hazard levels for the Atlantic and Gulf Coasts is a key difference between this program and most other tsunami hazard assessment programs. The initial phase of this work consisted of collection, interpretation, and analysis of available offshore data, with significant effort focused on characterizing offshore near-field landslides and analyzing their tsunamigenic potential and properties. In the next phase of research, additional field investigations will be conducted in key locations of interest and additional analysis will be undertaken. Simultaneously, the MOST tsunami generation and propagation model used by NOAA will first be enhanced to include landslide-based initiation mechanisms and then will be used to investigate the impact of the tsunamigenic sources identified and characterized by the USGS. The potential for probabilistic tsunami hazard assessment will also be explore in the final phases of the program.

  8. Bremsstrahlung versus Monoenergetic Photon Dose and Photonuclear Stimulation Comparisons at Long Standoff Distances

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Sterbentz, J. W.; Yoon, W. Y.; Norman, D. R.

    2009-12-01

    Energetic photon sources with energies greater than 6 MeV continue to be recognized as viable source for various types of inspection applications, especially those related to nuclear and/or explosive material detection. These energetic photons can be produced as a continuum of energies (i.e., bremsstrahlung) or as a set of one or more discrete photon energies (i.e., monoenergetic). This paper will provide a follow-on extension of the photon dose comparison presented at the 9th International Conference on Applications of Nuclear Techniques (June 2008). Our previous paper showed the comparative advantages and disadvantages of the photon doses provided by these two energetic interrogation sources and highlighted the higher energy advantage of the bremsstrahlung source, especially at long standoff distances (i.e., distance from source to the inspected object). This paper will pursue higher energy photon inspection advantage (up to 100 MeV) by providing dose and stimulated photonuclear interaction predictions in air and for an infinitely dilute interrogated material (used for comparative interaction rate assessments since it excludes material self-shielding) as the interrogation object positioned forward on the inspection beam axis at increasing standoff distances. In addition to the direct energetic photon-induced stimulation, the predictions will identify the importance of secondary downscattered/attenuated source-term effects arising from the photon transport in the intervening air environment.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Kenneth

    The Nuclear Energy Institute (NEI) Small Modular Reactor (SMR) Licensing Task Force (TF) has been evaluating licensing issues unique and important to iPWRs, ranking these issues, and developing NEI position papers for submittal to the U.S. Nuclear Regulatory Commission (NRC) during the past three years. Papers have been developed and submitted to the NRC in a range of areas including: Price-Anderson Act, NRC annual fees, security, modularity, and staffing. In December, 2012, NEI completed a draft position paper on SMR source terms and participated in an NRC public meeting presenting a summary of this paper, which was subsequently submitted tomore » the NRC. One important conclusion of the source term paper was the evaluation and selection of high importance areas where additional research would have a significant impact on source terms. The highest ranked research area was iPWR containment aerosol natural deposition. The NRC accepts the use of existing aerosol deposition correlations in Regulatory Guide 1.183, but these were developed for large light water reactor (LWR) containments. Application of these correlations to an iPWR design has resulted in greater than a ten-fold reduction of containment airborne aerosol inventory as compared to large LWRs. Development and experimental justification of containment aerosol natural deposition correlations specifically for the unique iPWR containments is expected to result in a large reduction of design basis and beyond-design-basis accident source terms with concomitantly smaller dose to workers and the public. Therefore, NRC acceptance of iPWR containment aerosol natural deposition correlations will directly support the industry’s goal of reducing the Emergency Planning Zone (EPZ) for SMRs. Based on the results in this work, it is clear that thermophoresis is relatively unimportant for iPWRs. Gravitational settling is well understood, and may be the dominant process for a dry environment. Diffusiophoresis and enhanced settling by particle growth are the dominant processes for determining DFs for expected conditions in an iPWR containment. These processes are dependent on the areato-volume (A/V) ratio, which should benefit iPWR designs because these reactors have higher A/Vs compared to existing LWRs.« less

  10. Numerical simulations of relativistic heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Daffin, Frank Cecil

    Bulk quantities of nuclear matter exist only in the compact bodies of the universe. There the crushing gravitational forces overcome the Coulomb repulsion in massive stellar collapses. Nuclear matter is subjected to high pressures and temperatures as shock waves propagate and burn their way through stellar cores. The bulk properties of nuclear matter are important parameters in the evolution of these collapses, some of which lead to nucleosynthesis. The nucleus is rich in physical phenomena. Above the Coulomb barrier, complex interactions lead to the distortion of, and as collision energies increase, the destruction of the nuclear volume. Of critical importance to the understanding of these events is an understanding of the aggregate microscopic processes which govern them. In an effort to understand relativistic heavy-ion reactions, the Boltzmann-Uehling-Uhlenbeck (Ueh33) (BUU) transport equation is used as the framework for a numerical model. In the years since its introduction, the numerical model has been instrumental in providing a coherent, microscopic, physical description of these complex, highly non-linear events. This treatise describes the background leading to the creation of our numerical model of the BUU transport equation, details of its numerical implementation, its application to the study of relativistic heavy-ion collisions, and some of the experimental observables used to compare calculated results to empirical results. The formalism evolves the one-body Wigner phase-space distribution of nucleons in time under the influence of a single-particle nuclear mean field interaction and a collision source term. This is essentially the familiar Boltzmann transport equation whose source term has been modified to address the Pauli exclusion principle. Two elements of the model allow extrapolation from the study of nuclear collisions to bulk quantities of nuclear matter: the modification of nucleon scattering cross sections in nuclear matter, and the compressibility of nuclear matter. Both are primarily subject to the short- range portion of the inter-nucleon potential, and do not show strong finite-size effects. To that end, several useful observables are introduced and their behavior, as BUU model parameters are changed, explored. The average, directed, in-plane, transverse momentum distribution in rapidity is the oldest of the observables presented in this work. Its slope at mid- rapidity is called the flow of the event, and well characterizes the interplay of repulsive and attractive elements of the dynamics of the events. The BUU model has been quite successful in its role of illuminating the physics of intermediate energy heavy-ion collisions. Though current numerical implementations suffer from some shortcomings they have nonetheless served the community well.

  11. Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations

    NASA Astrophysics Data System (ADS)

    Dalguer, Luis A.; Fukushima, Yoshimitsu; Irikura, Kojiro; Wu, Changjiang

    2017-09-01

    Inspired by the first workshop on Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI) conducted by the International Atomic Energy Agency (IAEA) on 18-20 November, 2015 in Vienna (http://www-pub.iaea.org/iaeameetings/50896/BestPSHANI), this PAGEOPH topical volume collects several extended articles from this workshop as well as several new contributions. A total of 17 papers have been selected on topics ranging from the seismological aspects of earthquake cycle simulations for source-scaling evaluation, seismic source characterization, source inversion and ground motion modeling (based on finite fault rupture using dynamic, kinematic, stochastic and empirical Green's functions approaches) to the engineering application of simulated ground motion for the analysis of seismic response of structures. These contributions include applications to real earthquakes and description of current practice to assess seismic hazard in terms of nuclear safety in low seismicity areas, as well as proposals for physics-based hazard assessment for critical structures near large earthquakes. Collectively, the papers of this volume highlight the usefulness of physics-based models to evaluate and understand the physical causes of observed and empirical data, as well as to predict ground motion beyond the range of recorded data. Relevant importance is given on the validation and verification of the models by comparing synthetic results with observed data and empirical models.

  12. Analysis of nuclear resonance fluorescence excitation measured with LaBr3(Ce) detectors near 2 MeV

    NASA Astrophysics Data System (ADS)

    Omer, Mohamed; Negm, Hani; Ohgaki, Hideaki; Daito, Izuru; Hayakawa, Takehito; Bakr, Mahmoud; Zen, Heishun; Hori, Toshitada; Kii, Toshiteru; Masuda, Kai; Hajima, Ryoichi; Shizuma, Toshiyuki; Toyokawa, Hiroyuki; Kikuzawa, Nobuhiro

    2013-11-01

    The performance of LaBr3(Ce) to measure nuclear resonance fluorescence (NRF) excitations is discussed in terms of limits of detection and in comparison with high-purity germanium (HPGe) detectors near the 2 MeV region where many NRF excitation levels from special nuclear materials are located. The NRF experiment was performed at the High Intensity γ-ray Source (HIγS) facility. The incident γ-rays, of 2.12 MeV energy, hit a B4C target to excite the 11B nuclei to the first excitation level. The statistical-sensitive non-linear peak clipping (SNIP) algorithm was implemented to eliminate the background and enhance the limits of detection for the spectra measured with LaBr3(Ce). Both detection and determination limits were deduced from the experimental data.

  13. Deposition of RuO 4 on various surfaces in a nuclear reactor containment

    NASA Astrophysics Data System (ADS)

    Holm, Joachim; Glänneskog, Henrik; Ekberg, Christian

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  14. 135Cs/ 137Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications

    DOE PAGES

    Snow, Mathew S.; Snyder, Darin C.

    2015-11-02

    135Cs/ 137Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the 135Cs/ 137Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product 135Cs/ 137Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated 135Cs/ 137Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data aremore » in quantitative agreement with values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show 135Cs/ 137Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. Furthermore, the differences in 135Cs/ 137Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that 135Cs/ 137Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.« less

  15. Nucleology, nuclear medicine, molecular nuclear medicine and subspecialties.

    PubMed

    Grammaticos, Philip C

    2005-01-01

    Henry N. Wagner Jr started the presentation of the highlights of the 39th Annual Meeting of the Society of Nuclear Medicine by quoting: "The economist JM Keynes said: "the difficult lies not in new ideas but in escaping from the old ones". Many changes have taken place in the actual term describing our specialty during the last 15 years. Cardiologists have adopted an important chapter of nuclear medicine and to describe that they use the term of "nuclear cardiology". Radiologists have proposed the term "radionuclide radiology". "Nuclear endocrinology", "nuclear oncology", "nuclear nephrology" may be considered as terms describing chapters of nuclear medicine related to other specialties. Will that indicate that our specialty will be divided into smaller chapters and be offered to colleagues working in other specialties leaving to us the role of the supervisor or perhaps the radioprotection officer for in vivo studies? Of course this role is now being exercised by our colleagues in medical physics. It is suggested to use the word " nucleology", instead of "nuclear medicine" where "nuclear" is used as an adjective. Thus, we will avoid being part of another specialty and cardiologists would use the term cardiac nucleology where "cardiac" is the adjective. The proposed term "nucleology" as compared to the existing term "nuclear medicine" has the advantage of being simpler, correct from the grammar point of view and not related to combined terms that may seem to offer part of our specialty to other specialties. At present our specialty faces many problems. The term "nucleology" supports our specialty from the point of view of terminology. During the 3rd International Meeting of Nuclear Medicine of N. Greece which was held in Thessaloniki, Macedonia, Greece on 4-6 November 2005, a discussion arose among participants as to whether the name of "nucleology" could replace the existing name of "nuclear medicine". Finally, a vote (between "yes" and "no") for the new proposed term showed that the "yes" votes were 72 and the "no" votes were 49.

  16. Uncertainty quantification in (α,n) neutron source calculations for an oxide matrix

    DOE PAGES

    Pigni, M. T.; Croft, S.; Gauld, I. C.

    2016-04-25

    Here we present a methodology to propagate nuclear data covariance information in neutron source calculations from (α,n) reactions. The approach is applied to estimate the uncertainty in the neutron generation rates for uranium oxide fuel types due to uncertainties on 1) 17,18O( α,n) reaction cross sections and 2) uranium and oxygen stopping power cross sections. The procedure to generate reaction cross section covariance information is based on the Bayesian fitting method implemented in the R-matrix SAMMY code. The evaluation methodology uses the Reich-Moore approximation to fit the 17,18O(α,n) reaction cross-sections in order to derive a set of resonance parameters andmore » a related covariance matrix that is then used to calculate the energydependent cross section covariance matrix. The stopping power cross sections and related covariance information for uranium and oxygen were obtained by the fit of stopping power data in the -energy range of 1 keV up to 12 MeV. Cross section perturbation factors based on the covariance information relative to the evaluated 17,18O( α,n) reaction cross sections, as well as uranium and oxygen stopping power cross sections, were used to generate a varied set of nuclear data libraries used in SOURCES4C and ORIGEN for inventory and source term calculations. The set of randomly perturbed output (α,n) source responses, provide the mean values and standard deviations of the calculated responses reflecting the uncertainties in nuclear data used in the calculations. Lastly, the results and related uncertainties are compared with experiment thick target (α,n) yields for uranium oxide.« less

  17. Dynamic power balance analysis in JET

    NASA Astrophysics Data System (ADS)

    Matthews, G. F.; Silburn, S. A.; Challis, C. D.; Eich, T.; Iglesias, D.; King, D.; Sieglin, B.; Contributors, JET

    2017-12-01

    The full scale realisation of nuclear fusion as an energy source requires a detailed understanding of power and energy balance in current experimental devices. In this we explore whether a global power balance model in which some of the calibration factors applied to the source or sink terms are fitted to the data can provide insight into possible causes of any discrepancies in power and energy balance seen in the JET tokamak. We show that the dynamics in the power balance can only be properly reproduced by including the changes in the thermal stored energy which therefore provides an additional opportunity to cross calibrate other terms in the power balance equation. Although the results are inconclusive with respect to the original goal of identifying the source of the discrepancies in the energy balance, we do find that with optimised parameters an extremely good prediction of the total power measured at the outer divertor target can be obtained over a wide range of pulses with time resolution up to ∼25 ms.

  18. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples

    DOE PAGES

    Snow, Mathew S.; Snyder, Darin C.; Delmore, James E.

    2016-01-18

    Source term attribution of environmental contamination following the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster is complicated by a large number of possible similar emission source terms (e.g. FDNPP reactor cores 1–3 and spent fuel ponds 1–4). Cesium isotopic analyses can be utilized to discriminate between environmental contamination from different FDNPP source terms and, if samples are sufficiently temporally resolved, potentially provide insights into the extent of reactor core damage at a given time. Rice, soil, mushroom, and soybean samples taken 100–250 km from the FDNPP site were dissolved using microwave digestion. Radiocesium was extracted and purified using two sequentialmore » ammonium molybdophosphate-polyacrylonitrile columns, following which 135Cs/ 137Cs isotope ratios were measured using thermal ionization mass spectrometry (TIMS). Results were compared with data reported previously from locations to the northwest of FDNPP and 30 km to the south of FDNPP. 135Cs/ 137Cs isotope ratios from samples 100–250 km to the southwest of the FDNPP site show a consistent value of 0.376 ± 0.008. 135Cs/ 137Cs versus 134Cs/ 137Cs correlation plots suggest that radiocesium to the southwest is derived from a mixture of FDNPP reactor cores 1, 2, and 3. Conclusions from the cesium isotopic data are in agreement with those derived independently based upon the event chronology combined with meteorological conditions at the time of the disaster. In conclusion, cesium isotopic analyses provide a powerful tool for source term discrimination of environmental radiocesium contamination at the FDNPP site. For higher precision source term attribution and forensic determination of the FDNPP core conditions based upon cesium, analyses of a larger number of samples from locations to the north and south of the FDNPP site (particularly time-resolved air filter samples) are needed. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  19. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Mathew S.; Snyder, Darin C.; Delmore, James E.

    Source term attribution of environmental contamination following the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster is complicated by a large number of possible similar emission source terms (e.g. FDNPP reactor cores 1–3 and spent fuel ponds 1–4). Cesium isotopic analyses can be utilized to discriminate between environmental contamination from different FDNPP source terms and, if samples are sufficiently temporally resolved, potentially provide insights into the extent of reactor core damage at a given time. Rice, soil, mushroom, and soybean samples taken 100–250 km from the FDNPP site were dissolved using microwave digestion. Radiocesium was extracted and purified using two sequentialmore » ammonium molybdophosphate-polyacrylonitrile columns, following which 135Cs/ 137Cs isotope ratios were measured using thermal ionization mass spectrometry (TIMS). Results were compared with data reported previously from locations to the northwest of FDNPP and 30 km to the south of FDNPP. 135Cs/ 137Cs isotope ratios from samples 100–250 km to the southwest of the FDNPP site show a consistent value of 0.376 ± 0.008. 135Cs/ 137Cs versus 134Cs/ 137Cs correlation plots suggest that radiocesium to the southwest is derived from a mixture of FDNPP reactor cores 1, 2, and 3. Conclusions from the cesium isotopic data are in agreement with those derived independently based upon the event chronology combined with meteorological conditions at the time of the disaster. In conclusion, cesium isotopic analyses provide a powerful tool for source term discrimination of environmental radiocesium contamination at the FDNPP site. For higher precision source term attribution and forensic determination of the FDNPP core conditions based upon cesium, analyses of a larger number of samples from locations to the north and south of the FDNPP site (particularly time-resolved air filter samples) are needed. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  20. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples.

    PubMed

    Snow, Mathew S; Snyder, Darin C; Delmore, James E

    2016-02-28

    Source term attribution of environmental contamination following the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster is complicated by a large number of possible similar emission source terms (e.g. FDNPP reactor cores 1-3 and spent fuel ponds 1-4). Cesium isotopic analyses can be utilized to discriminate between environmental contamination from different FDNPP source terms and, if samples are sufficiently temporally resolved, potentially provide insights into the extent of reactor core damage at a given time. Rice, soil, mushroom, and soybean samples taken 100-250 km from the FDNPP site were dissolved using microwave digestion. Radiocesium was extracted and purified using two sequential ammonium molybdophosphate-polyacrylonitrile columns, following which (135)Cs/(137) Cs isotope ratios were measured using thermal ionization mass spectrometry (TIMS). Results were compared with data reported previously from locations to the northwest of FDNPP and 30 km to the south of FDNPP. (135)Cs/(137)Cs isotope ratios from samples 100-250 km to the southwest of the FDNPP site show a consistent value of 0.376 ± 0.008. (135)Cs/(137)Cs versus (134)Cs/(137)Cs correlation plots suggest that radiocesium to the southwest is derived from a mixture of FDNPP reactor cores 1, 2, and 3. Conclusions from the cesium isotopic data are in agreement with those derived independently based upon the event chronology combined with meteorological conditions at the time of the disaster. Cesium isotopic analyses provide a powerful tool for source term discrimination of environmental radiocesium contamination at the FDNPP site. For higher precision source term attribution and forensic determination of the FDNPP core conditions based upon cesium, analyses of a larger number of samples from locations to the north and south of the FDNPP site (particularly time-resolved air filter samples) are needed. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. On-line measurement of gaseous iodine species during a PWR severe accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haykal, I.; Doizi, D.; Perrin, A.

    A long-range remote sensing of severe accidents in nuclear power plants can be obtained by monitoring the online emission of volatile fission products such as xenon, krypton, caesium and iodine. The nuclear accident in Fukushima was ranked at level 7 of the International Nuclear Event Scale by the NISA (Nuclear and Industrial Safety Agency) according to the importance of the radionuclide release and the off-site impact. Among volatile fission products, iodine species are of high concern, since they can be released under aerosols as well as gaseous forms. Four years after the Fukushima accident, the aerosol/gaseous partition is still notmore » clear. Since the iodine gaseous forms are less efficiently trapped by the Filtered Containment Venting Systems than aerosol forms, it is of crucial importance to monitor them on-line during a nuclear accident, in order to improve the source term assessment in such a situation. Therefore, we propose to detect and quantify these iodine gaseous forms by the use of highly sensitive optical methods. (authors)« less

  2. The covalent interaction between dihydrogen and gold: A rotational spectroscopic study of H2-AuCl

    NASA Astrophysics Data System (ADS)

    Obenchain, Daniel A.; Frank, Derek S.; Grubbs, G. S.; Pickett, Herbert M.; Novick, Stewart E.

    2017-05-01

    The pure rotational transitions of H2-AuCl have been measured using a pulsed-jet cavity Fourier transform microwave spectrometer equipped with a laser ablation source. The structure was found to be T-shaped, with the H-H bond interacting with the gold atom. Both 35Cl and 37Cl isotopologues have been measured for both ortho and para states of H2. Rotational constants, quartic centrifugal distortion constants, and nuclear quadrupole coupling constants for gold and chlorine have been determined. The use of the nuclear spin-nuclear spin interaction terms Daa, Dbb, and Dcc for H2 were required to fit the ortho state of hydrogen, as well as a nuclear-spin rotation constant Caa. The values of the nuclear quadrupole coupling constant of gold are χa a=-817.9929 (35 ) MHz, χb b=504.0 (27 ) MHz, and χc c=314.0 (27 ) . This is large compared to the eQq of AuCl, 9.63 312(13) MHz, which indicates a strong, covalent interaction between gold and dihydrogen.

  3. Coarse Grid CFD for underresolved simulation

    NASA Astrophysics Data System (ADS)

    Class, Andreas G.; Viellieber, Mathias O.; Himmel, Steffen R.

    2010-11-01

    CFD simulation of the complete reactor core of a nuclear power plant requires exceedingly huge computational resources so that this crude power approach has not been pursued yet. The traditional approach is 1D subchannel analysis employing calibrated transport models. Coarse grid CFD is an attractive alternative technique based on strongly under-resolved CFD and the inviscid Euler equations. Obviously, using inviscid equations and coarse grids does not resolve all the physics requiring additional volumetric source terms modelling viscosity and other sub-grid effects. The source terms are implemented via correlations derived from fully resolved representative simulations which can be tabulated or computed on the fly. The technique is demonstrated for a Carnot diffusor and a wire-wrap fuel assembly [1]. [4pt] [1] Himmel, S.R. phd thesis, Stuttgart University, Germany 2009, http://bibliothek.fzk.de/zb/berichte/FZKA7468.pdf

  4. Livermore Accelerator Source for Radionuclide Science (LASRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Bleuel, Darren; Johnson, Micah

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  5. Hydrogen use projections and supply options

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1976-01-01

    Two projections of future hydrogen demand, based on the Ford technical fix and the Westinghouse nuclear electric economy energy supply and demand scenarios, are analyzed. It is suggested that hydrogen use will increase during the remainder of this century by at least a factor of five, and perhaps by a factor of twenty. Primary energy sources for producing hydrogen are discussed in terms of the transition from low to high demand for hydrogen.

  6. How Big Was It? Getting at Yield

    NASA Astrophysics Data System (ADS)

    Pasyanos, M.; Walter, W. R.; Ford, S. R.

    2013-12-01

    One of the most coveted pieces of information in the wake of a nuclear test is the explosive yield. Determining the yield from remote observations, however, is not necessarily a trivial thing. For instance, recorded observations of seismic amplitudes, used to estimate the yield, are significantly modified by the intervening media, which varies widely, and needs to be properly accounted for. Even after correcting for propagation effects such as geometrical spreading, attenuation, and station site terms, getting from the resulting source term to a yield depends on the specifics of the explosion source model, including material properties, and depth. Some formulas are based on assumptions of the explosion having a standard depth-of-burial and observed amplitudes can vary if the actual test is either significantly overburied or underburied. We will consider the complications and challenges of making these determinations using a number of standard, more traditional methods and a more recent method that we have developed using regional waveform envelopes. We will do this comparison for recent declared nuclear tests from the DPRK. We will also compare the methods using older explosions at the Nevada Test Site with announced yields, material and depths, so that actual performance can be measured. In all cases, we also strive to quantify realistic uncertainties on the yield estimation.

  7. MELCOR computer code manuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less

  8. Site environmental report for Calendar Year 1994 on radiological and nonradiological parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-30

    Battelle Memorial Institute`s nuclear research facilities are currently being maintained in a surveillance and maintenance (S&M) mode with continual decontamination and decommissioning (D&D) activities being conducted under Department of Energy (DOE) Contract W-7405-ENG-92. These activities are referred to under the Contract as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations referenced in this report are performed in support of S&M and D&D activities. Battelle`s King Avenue facility is not considered in this report to the extent that the West Jefferson facility is. The source term at the King Avenue site is a small fraction of the source term at themore » West Jefferson site. Off site levels of radionuclides that could be attributed to the west Jefferson and King Avenue nuclear operations wereindistinguishable from background levels at specific locations where air, water, and direct radiation measurements were performed. Environmental monitoring continued to demonstrate compliance by Battelle with federal, state and local regulations. Routine, nonradiological activities performed include monitoring liquid effluents and monitoring the ground water system for the West Jefferson North site. Samples of various environmental media including air, water, grass, fish, field and garden crops, sediment and soil were collected from the region surrounding the two sites and analyzed.« less

  9. BCLDP site environmental report for calendar year 1997 on radiological and nonradiological parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fry, J.

    1998-09-30

    Battelle Memorial Institute currently maintains its retired nuclear research facilities in a surveillance and maintenance (S and M) mode and continues decontamination and decommissioning (D and D) activities. The activities are referred to as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations reference in this report are performed in support of S and M and D and D activities. The majority of this report is devoted to discussion of the West Jefferson facility, because the source term at this facility is larger than the source term at Battelle`s King Avenue site. The contamination found at the King Avenue site consistsmore » of small amounts of residual radioactive material in solid form, which has become embedded or captured in nearby surfaces such as walls, floors, ceilings, drains, laboratory equipment, and soils. By the end of calendar year (CY) 1997, most remediation activities were completed at the King Avenue site. The contamination found at the West Jefferson site is the result of research and development activities with irradiated materials. During CY 1997, multiple tests at the West Jefferson Nuclear Sciences Area found no isotopes present above the minimum detectable activity (MDA) for air releases or for liquid discharges to Big Darby Creek. Data obtained from downstream sampling locations were statistically indistinguishable from background levels.« less

  10. RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, S.L.; Miller, L.A.; Monroe, D.K.

    1998-04-01

    This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in themore » quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.« less

  11. Active Neutron-Based Interrogation System with D-D Neutron Source for Detection of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.

    2015-10-01

    The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.

  12. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-12-31

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  13. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  14. Derivation of risk indices and analysis of variablility for the management of incidents involving the transport of nuclear materials in the Northern Seas.

    PubMed

    Brown, J; Hosseini, A; Karcher, M; Kauker, F; Dowdall, M; Schnur, R; Strand, P

    2016-04-15

    The transport of nuclear or radioactive materials and the presence of nuclear powered vessels pose risks to the Northern Seas in terms of potential impacts to man and environment as well socio-economic impacts. Management of incidents involving actual or potential releases to the marine environment are potentially difficult due to the complexity of the environment into which the release may occur and difficulties in quantifying risk to both man and environment. In order to address this, a state of the art oceanographic model was used to characterize the underlying variability for a specific radionuclide release scenario. The resultant probabilistic data were used as inputs to transfer and dose models providing an indication of potential impacts for man and environment This characterization was then employed to facilitate a rapid means of quantifying risk to man and the environment that included and addressed this variability. The radionuclide specific risk indices derived can be applied by simply multiplying the reported values by the magnitude of the source term and thereafter summing over all radionuclides to provide an indication of total risk. Copyright © 2016. Published by Elsevier Ltd.

  15. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  16. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichmentmore » plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.« less

  17. Nuclear Winter: Uncertainties Surround the Long-Term Effects of Nuclear War. Report to the Congress.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    Nuclear winter, a term used to describe potential long-term climate and environmental effects of nuclear war, has been a subject of debate and controversy. This report examines and presents scientific and policy implications of nuclear winter. Contents include: (1) an executive summary (highlighting previous and current studies on the topic); (2)…

  18. Multisource geological data mining and its utilization of uranium resources exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-lin

    2009-10-01

    Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.

  19. SU-E-T-507: Internal Dosimetry in Nuclear Medicine Using GATE and XCAT Phantom: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallahpoor, M; Abbasi, M; Sen, A

    Purpose Monte Carlo simulations are routinely used for internal dosimetry studies. These studies are conducted with humanoid phantoms such as the XCAT phantom. In this abstract we present the absorbed doses for various pairs of source and target organs using three common radiotracers in nuclear medicine. Methods The GATE software package is used for the Monte Carlo simulations. A typical female XCAT phantom is used as the input. Three radiotracers 153Sm, 131I and 99mTc are studied. The Specific Absorbed Fraction (SAF) for gamma rays (99mTc, 153Sm and 131I) and Specific Fraction (SF) for beta particles (153Sm and 131I) are calculatedmore » for all 100 pairs of source target organs including brain, liver, lung, pancreas, kidney, adrenal, spleen, rib bone, bladder and ovaries. Results The source organs themselves gain the highest absorbed dose as compared to other organs. The dose is found to be inversely proportional to distance from the source organ. In SAF results of 153Sm, when the source organ is lung, the rib bone, gain 0.0730 (Kg-1) that is more than lung itself. Conclusion The absorbed dose for various organs was studied in terms of SAF and SF. Such studies hold importance for future therapeutic procedures and optimization of induced radiotracer.« less

  20. The benefits of an advanced fast reactor fuel cycle for plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less

  1. X-ray Properties of the Central kpc of AGN and Starbursts: The Latest News from Chandra

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The X-ray properties of 15 nearby (v less than 3,000 km/s) galaxies that possess AGN (active galactic nuclei) and/or starbursts are discussed. Two-thirds have nuclear extended emission on scales from approx. 0.5 to approx. 1.5 kpc that is either clearly associated with a nuclear outflow or morphologically resembles an outflow. Galaxies that are AGN-dominated tend to have linear structures while starburst-dominated galaxies tend to have plume-like structures. Significant X-ray absorption is present in the starburst regions, indicating that a circumnuclear starburst is sufficient to block an AGN at optical wavelengths. Galaxies with starburst activity possess more X-ray point sources within their central kpc than non-starbursts. Many of these sources are more luminous than typical X-ray binaries. The Chandra results are discussed in terms of the starburst-AGN connection, a revised unified model for AGN, and possible evolutionary scenarios.

  2. The history and perspective of Romania-USA cooperation in the field of technologic transfer of TRIGA reactor concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciocaanescu, M.; Ionescu, M.

    1996-08-01

    The cooperation between Romania and the USA in the field of technologic transfer of nuclear research reactor technology began with the steady state 14 MW{sub t} TRIGA reactor, installed at INR Pitesti, Romania. It is the first in the range of TRIGA reactors proposed as a materials testing reactor. The first criticality was reached in November 19, 1979 and first operation at 14 MW{sub t} level was in February 1980. The paper will present the short history of this cooperation and the perspective for a new cooperation for building a Nuclear Heating Plant using the TRIGA reactor concept for demonstrationmore » purpose. The energy crisis is a world-wide problem which affects each country in different ways because the resources and the consumption are unfairly distributed. World-wide research points out that the fossil fuel sources are not to be considered the main energy sources for the long term as they are limited.« less

  3. State of Fukushima nuclear fuel debris tracked by Cs137 in cooling water.

    PubMed

    Grambow, B; Mostafavi, M

    2014-11-01

    It is still difficult to assess the risk originating from the radioactivity inventory remaining in the damaged Fukushima nuclear reactors. Here we show that cooling water analyses provide a means to assess source terms for potential future releases. Until now already about 34% of the inventories of (137)Cs of three reactors has been released into water. We found that the release rate of (137)Cs has been constant for 2 years at about 1.8% of the inventory per year indicating ongoing dissolution of the fuel debris. Compared to laboratory studies on spent nuclear fuel behavior in water, (137)Cs release rates are on the higher end, caused by the strong radiation field and oxidant production by water radiolysis and by impacts of accessible grain boundaries. It is concluded that radionuclide analyses in cooling water allow tracking of the conditions of the damaged fuel and the associated risks.

  4. Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera

    NASA Technical Reports Server (NTRS)

    Stanojev, B. J.; Houts, M.

    2004-01-01

    Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.

  5. Scale models: A proven cost-effective tool for outage planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.; Segroves, R.

    1995-03-01

    As generation costs for operating nuclear stations have risen, more nuclear utilities have initiated efforts to improve cost effectiveness. Nuclear plant owners are also being challenged with lower radiation exposure limits and new revised radiation protection related regulations (10 CFR 20), which places further stress on their budgets. As source term reduction activities continue to lower radiation fields, reducing the amount of time spent in radiation fields becomes one of the most cost-effective ways of reducing radiation exposure. An effective approach for minimizing time spent in radiation areas is to use a physical scale model for worker orientation planning andmore » monitoring maintenance, modifications, and outage activities. To meet the challenge of continued reduction in the annual cumulative radiation exposures, new cost-effective tools are required. One field-tested and proven tool is the physical scale model.« less

  6. Final Technical Report - Nuclear Studies with Intermediate Energy Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norum, Blaine

    During the almost 20 year period of this grant research was carried out on atomic nuclei and their constituents using both photons and electrons. Research was carried out at the electron accelerator facility of the Netherlands Institute for Nuclear and High Energy Physics (NIKHEFK, Amsterdam) until the electron accelerator facility was closed in 1998. Subsequently, research was carried out at the Laser-Electron Gamma Source (LEGS) of the National Synchrotron Light Source (NSLS) located at the Brookhaven National Laboratory (BNL) until the LEGS was closed at the end of 2006. During the next several years research was carried out at bothmore » the Thomas Jefferson National Accelerator Facility (JLAB) and the High Intensity Gamma Source (HIGS) of the Tri-Universities Nuclear Laboratory (TUNL) located on the campus of Duke University. Since approximately 2010 the principal focus was on research at TUNL, although analysis of data from previous research at other facilities continued. The principal early focus of the research was on the role of pions in nuclei. This was studied by studying the production of pions using both photons (at LEGS) and electrons (at NIKHEF-K and JLAB). Measurements of charged pion photoproduction from deuterium at LEGS resulted in the most interesting result of these two decades of work. By measuring the production of a charged pion (p + ) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of long-lived states not explicable by standard nuclear theory; they suggest a set of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued.« less

  7. Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Hadgu, T.; Park, H.

    2016-12-01

    Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7510 A

  8. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurementsmore » have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.« less

  9. An Evaluation of the Hazard Prediction and Assessment Capability (HPAC) Software’s Ability to Model the Chornobyl Accident

    DTIC Science & Technology

    2002-03-01

    source term. Several publications provided a thorough accounting of the accident, including “ Chernobyl Record” [Mould], and the NRC technical report...Report on the Accident at the Chernobyl Nuclear Power Station” [NUREG-1250]. The most comprehensive study of transport models to predict the...from the Chernobyl Accident: The ATMES Report” [Klug, et al.]. The Atmospheric Transport 5 Model Evaluation Study (ATMES) report used data

  10. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.

    PubMed

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-07-07

    The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.

  11. Observational artifacts of Nuclear Spectroscopic Telescope Array: ghost rays and stray light

    NASA Astrophysics Data System (ADS)

    Madsen, Kristin K.; Christensen, Finn E.; Craig, William W.; Forster, Karl W.; Grefenstette, Brian W.; Harrison, Fiona A.; Miyasaka, Hiromasa; Rana, Vikram

    2017-10-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) launched in June 2012, flies two conical approximation Wolter-I mirrors at the end of a 10.15-m mast. The optics are coated with multilayers of Pt/C and W/Si that operate from 3 to 80 keV. Since the optical path is not shrouded, aperture stops are used to limit the field of view (FoV) from background and sources outside the FoV. However, there is still a sliver of sky (˜1.0 deg to 4.0 deg) where photons may bypass the optics altogether and fall directly on the detector array. We term these photons stray light. Additionally, there are also photons that do not undergo the focused double reflections in the optics, and we term these ghost rays. We present detailed analysis and characterization of these two components and discuss how they impact observations. Finally, we discuss how they could have been prevented and should be in future observatories.

  12. Data Base Analysis for Perceptions of Emergency Programs.

    DTIC Science & Technology

    1984-02-01

    greater anxiety re the nuclear issue is possible long term. Concern About Nuclear War The possibility of nuclear war is a salient issue for the general...role for nuclear plants more long term (into the next century). Apparently, the public hopes for improvements in technology to mitigate nuclear hazards...ticular. More than half (54%) of government officials currently believe that management of decommissioned plants is the most important long -term

  13. Fission products and nuclear fuel behaviour under severe accident conditions part 2: Fuel behaviour in the VERDON-1 sample

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Le Gall, C.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.

    2017-11-01

    Within the framework of the International Source Term Programme (ISTP), the VERDON programme aims at quantifying the source term of radioactive materials in case of a hypothetical severe accident in a light water reactor (LWR). Tests were performed in a new experimental laboratory (VERDON) built in the LECA-STAR facility (CEA Cadarache). The VERDON-1 test was devoted to the study of a high burn-up UO2 fuel and FP releases at very high temperature (≈2873 K) in a reducing atmosphere. Post-test qualitative and quantitative characterisations of the VERDON-1 sample led to the proposal of a scenario explaining the phenomena occurring during the experimental sequence. Hence, the fuel and the cladding may have interacted which led to the melting of UO2-ZrO2 alloy. Although no relocation was observed during the test, it may have been imminent.

  14. Quantifying sediment source contributions in coastal catchments impacted by the Fukushima nuclear accident with carbon and nitrogen elemental concentrations and stable isotope ratios

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Huon Huon, Sylvain; Onda, Yuichi; Evrard, Olivier

    2016-04-01

    The Fukushima Dai-ichi Nuclear Power Plant accidental release of radioactive contaminants resulted in the significant fallout of radiocesium over several coastal catchments in the Fukushima Prefecture. Radiocesium, considered to be the greatest risk to the short and long term health of the local community, is rapidly bound to fine soil particles and thus is mobilized and transported during soil erosion and runoff processes. As there has been a broad-scale decontamination of rice paddy fields and rural residential areas in the contaminated region, one important long term question is whether there is, or may be, a downstream transfer of radiocesium from forests that covered over 65% of the most contaminated region. Accordingly, carbon and nitrogen elemental concentrations and stable isotope ratios are used to determine the relative contributions of forests and rice paddies to transported sediment in three contaminated coastal catchments. Samples were taken from the three main identified sources: cultivated soils (rice paddies and fields, n=30), forest soils (n=45), and subsoils (channel bank and decontaminated soils, n = 25). Lag deposit sediment samples were obtained from five sampling campaigns that targeted the main hydrological events from October 2011 to October 2014. In total, 86 samples of deposited sediment were analyzed for particulate organic matter elemental concentrations and isotope ratios, 24 from the Mano catchment, 44 from the Niida catchment, and 18 from the Ota catchment. Mann-Whitney U-tests were used to examine the source discrimination potential of this tracing suite and select the appropriate tracers for modelling. The discriminant tracers were modelled with a concentration-dependent distribution mixing model. Preliminary results indicate that cultivated sources (predominantly rice paddies) contribute disproportionately more sediment per unit area than forested regions in these contaminated catchments. Future research will examine if there are areas in particular where forest sources have elevated concentrations and may require some attention in the decontamination and monitoring of potential radiocesium downstream transfers.

  15. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  16. Estimation of the time-dependent radioactive source-term from the Fukushima nuclear power plant accident using atmospheric transport modelling

    NASA Astrophysics Data System (ADS)

    Schoeppner, M.; Plastino, W.; Budano, A.; De Vincenzi, M.; Ruggieri, F.

    2012-04-01

    Several nuclear reactors at the Fukushima Dai-ichi power plant have been severely damaged from the Tōhoku earthquake and the subsequent tsunami in March 2011. Due to the extremely difficult on-site situation it has been not been possible to directly determine the emissions of radioactive material. However, during the following days and weeks radionuclides of 137-Caesium and 131-Iodine (amongst others) were detected at monitoring stations throughout the world. Atmospheric transport models are able to simulate the worldwide dispersion of particles accordant to location, time and meteorological conditions following the release. The Lagrangian atmospheric transport model Flexpart is used by many authorities and has been proven to make valid predictions in this regard. The Flexpart software has first has been ported to a local cluster computer at the Grid Lab of INFN and Department of Physics of University of Roma Tre (Rome, Italy) and subsequently also to the European Mediterranean Grid (EUMEDGRID). Due to this computing power being available it has been possible to simulate the transport of particles originating from the Fukushima Dai-ichi plant site. Using the time series of the sampled concentration data and the assumption that the Fukushima accident was the only source of these radionuclides, it has been possible to estimate the time-dependent source-term for fourteen days following the accident using the atmospheric transport model. A reasonable agreement has been obtained between the modelling results and the estimated radionuclide release rates from the Fukushima accident.

  17. Nuclear Security Education Program at the Pennsylvania State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less

  18. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  19. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  20. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  1. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  2. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  3. Inverse modeling of April 2013 radioxenon detections

    NASA Astrophysics Data System (ADS)

    Hofman, Radek; Seibert, Petra; Philipp, Anne

    2014-05-01

    Significant concentrations of radioactive xenon isotopes (radioxenon) were detected by the International Monitoring System (IMS) for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in April 2013 in Japan. Particularly, three detections of Xe-133 made between 2013-04-07 18:00 UTC and 2013-04-09 06:00 UTC at the station JPX38 are quite notable with respect to the measurement history of the station. Our goal is to analyze the data and perform inverse modeling under different assumptions. This work is useful with respect to nuclear test monitoring as well as for the analysis of and response to nuclear emergencies. Two main scenarios will be pursued: (i) Source location is assumed to be known (DPRK test site). (ii) Source location is considered unknown. We attempt to estimate the source strength and the source strength along with its plausible location compatible with the data in scenario (i) and (ii), respectively. We are considering also the possibility of a vertically distributed source. Calculations of source-receptor sensitivity (SRS) fields and the subsequent inversion are aimed at going beyond routine calculations performed by the CTBTO. For SRS calculations, we employ the Lagrangian particle dispersion model FLEXPART with high resolution ECMWF meteorological data (grid cell sizes of 0.5, 0.25 and ca. 0.125 deg). This is important in situations where receptors or sources are located in complex terrain which is the case of the likely source of detections-the DPRK test site. SRS will be calculated with convection enabled in FLEXPART which will also increase model accuracy. In the variational inversion procedure attention will be paid not only to all significant detections and their uncertainties but also to non-detections which can have a large impact on inversion quality. We try to develop and implement an objective algorithm for inclusion of relevant data where samples from temporal and spatial vicinity of significant detections are added in an iterative manner and the inversion is recalculated in each iteration. This procedure should gradually narrow down the set of hypotheses on the source term, where the source term is here understood as an emission in both spatial and temporal domains. Especially in scenario (ii) we expect a strong impact of non-detections for the reduction of possible solutions. For these and also other purposes like statistical quantification of typical background values, measurements from all IMS noble gas stations north of 30 deg S for a period from January to June 2013 were extracted from vDEC platform. We would like to acknowledge the Preparatory Commission for the CTBTO for kindly providing limited access to the IMS data. This work contains only opinions of the authors, which can not in any case establish legal engagement of the Provisional Technical Secretariat of the CTBTO. This work is partially financed through the project "PREPARE: Innovative integrated tools and platforms for radiological emergency preparedness and post-accident response in Europe" (FP7, Grant 323287).

  4. Hanford Environmental Dose Reconstruction Project monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact onmore » humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.« less

  5. Characterization of the radiation environment for a large-area interim spent-nuclear-fuel storage facility

    NASA Astrophysics Data System (ADS)

    Fortkamp, Jonathan C.

    Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.

  6. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  7. Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less

  8. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  9. On the formation of black holes

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    The paper explores the consequences of the existence of a burning process beyond ordinary nuclear processes (which stop at iron), involving the 'strange' particles. In effect, this idea has already had considerable discussion within the high energy physics community in terms of 'quark' matter. A possible consequence is that neutron stars may explode rather than collapse to black holes. It should be evident that such a possibility suggests radically new scenarios for activity in galactic nuclei and gamma ray burst sources.

  10. Flow Instability Tests for a Particle Bed Reactor Nuclear Thermal Rocket Fuel Element

    DTIC Science & Technology

    1993-05-01

    2.0 with GWBASIC or higher (DOS 5.0 was installed on the machine). Since the source code was written in BASIC, it was easy to make modifications...8217 AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for Public Release IAW 190-1 Distribution Unlimited MICHAEL M. BRICKER, SMSgt, USAF Chief...Administration 13. ABSTRACT (Maximum 200 words) i.14. SUBJECT TERMS 15. NUMBER OF PAGES 339 16. PRICE CODE 󈧕. SECURITY CLASSIFICATION 18. SECURITY

  11. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts.

    PubMed

    Steinhauser, Georg; Brandl, Alexander; Johnson, Thomas E

    2014-02-01

    The environmental impacts of the nuclear accidents of Chernobyl and Fukushima are compared. In almost every respect, the consequences of the Chernobyl accident clearly exceeded those of the Fukushima accident. In both accidents, most of the radioactivity released was due to volatile radionuclides (noble gases, iodine, cesium, tellurium). However, the amount of refractory elements (including actinides) emitted in the course of the Chernobyl accident was approximately four orders of magnitude higher than during the Fukushima accident. For Chernobyl, a total release of 5,300 PBq (excluding noble gases) has been established as the most cited source term. For Fukushima, we estimated a total source term of 520 (340-800) PBq. In the course of the Fukushima accident, the majority of the radionuclides (more than 80%) was transported offshore and deposited in the Pacific Ocean. Monitoring campaigns after both accidents reveal that the environmental impact of the Chernobyl accident was much greater than of the Fukushima accident. Both the highly contaminated areas and the evacuated areas are smaller around Fukushima and the projected health effects in Japan are significantly lower than after the Chernobyl accident. This is mainly due to the fact that food safety campaigns and evacuations worked quickly and efficiently after the Fukushima accident. In contrast to Chernobyl, no fatalities due to acute radiation effects occurred in Fukushima. © 2013.

  12. MELCOR computer code manuals: Primer and user`s guides, Version 1.8.3 September 1994. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the US Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users` Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less

  13. The Mighty Atom? The Development of Nuclear Power Technology

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  14. Beyond detection: nuclear physics with a webcam in an educational setting

    NASA Astrophysics Data System (ADS)

    Pallone, Arthur

    2015-03-01

    Nuclear physics affects our daily lives in such diverse fields from medicine to art. I believe three obstacles - limited time, lack of subject familiarity and thus comfort on the part of educators, and equipment expense - must be overcome to produce a nuclear-educated populace. Educators regularly use webcams to actively engage students in scientific discovery as evidenced by a literature search for the term webcam paired with topics such as astronomy, biology, and physics. Inspired by YouTube videos that demonstrate alpha particle detection by modified webcams, I searched for examples that go beyond simple detection with only one education-oriented result - the determination of the in-air range of alphas using a modified CCD camera. Custom-built, radiation-hardened CMOS detectors exist in high energy physics and for soft x-ray detection. Commercial CMOS cameras are used for direct imaging in electron microscopy. I demonstrate charged-particle spectrometry with a slightly modified CMOS-based webcam. When used with inexpensive sources of radiation and free software, the webcam charged-particle spectrometer presents educators with a simple, low-cost technique to include nuclear physics in science education.

  15. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  16. SCALE Code System 6.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  17. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Patrick

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energymore » advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.« less

  18. Electromagnetic energy and food processing.

    PubMed

    Mudgett, R

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plants products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy.

  19. Effect of geometrical configuration of radioactive sources on radiation intensity in beta-voltaic nuclear battery system: A preliminary result

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id

    2014-01-01

    It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.

  20. Do forests represent a long-term source of contaminated particulate matter in the Fukushima Prefecture?

    PubMed

    Laceby, J Patrick; Huon, Sylvain; Onda, Yuichi; Vaury, Veronique; Evrard, Olivier

    2016-12-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in radiocesium fallout contaminating coastal catchments of the Fukushima Prefecture. As the decontamination effort progresses, the potential downstream migration of radiocesium contaminated particulate matter from forests, which cover over 65% of the most contaminated region, requires investigation. Carbon and nitrogen elemental concentrations and stable isotope ratios are thus used to model the relative contributions of forest, cultivated and subsoil sources to deposited particulate matter in three contaminated coastal catchments. Samples were taken from the main identified sources: cultivated (n = 28), forest (n = 46), and subsoils (n = 25). Deposited particulate matter (n = 82) was sampled during four fieldwork campaigns from November 2012 to November 2014. A distribution modelling approach quantified relative source contributions with multiple combinations of element parameters (carbon only, nitrogen only, and four parameters) for two particle size fractions (<63 μm and <2 mm). Although there was significant particle size enrichment for the particulate matter parameters, these differences only resulted in a 6% (SD 3%) mean difference in relative source contributions. Further, the three different modelling approaches only resulted in a 4% (SD 3%) difference between relative source contributions. For each particulate matter sample, six models (i.e. <63 μm and <2 mm from the three modelling approaches) were used to incorporate a broader definition of potential uncertainty into model results. Forest sources were modelled to contribute 17% (SD 10%) of particulate matter indicating they present a long term potential source of radiocesium contaminated material in fallout impacted catchments. Subsoils contributed 45% (SD 26%) of particulate matter and cultivated sources contributed 38% (SD 19%). The reservoir of radiocesium in forested landscapes in the Fukushima region represents a potential long-term source of particulate contaminated matter that will require diligent management for the foreseeable future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mathematical Modeling Of A Nuclear/Thermionic Power Source

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Ewell, Richard C.

    1992-01-01

    Report discusses mathematical modeling to predict performance and lifetime of spacecraft power source that is integrated combination of nuclear-fission reactor and thermionic converters. Details of nuclear reaction, thermal conditions in core, and thermionic performance combined with model of swelling of fuel.

  2. Compact Gamma-Beam Source for Nuclear Security Technologies

    NASA Astrophysics Data System (ADS)

    Gladkikh, P.; Urakawa, J.

    2015-10-01

    A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.

  3. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    NASA Astrophysics Data System (ADS)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  4. Bayesian Model Development for Analysis of Open Source Information to Support the Assessment of Nuclear Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastelum, Zoe N.; Whitney, Paul D.; White, Amanda M.

    2013-07-15

    Pacific Northwest National Laboratory has spent several years researching, developing, and validating large Bayesian network models to support integration of open source data sets for nuclear proliferation research. Our current work focuses on generating a set of interrelated models for multi-source assessment of nuclear programs, as opposed to a single comprehensive model. By using this approach, we can break down the models to cover logical sub-problems that can utilize different expertise and data sources. This approach allows researchers to utilize the models individually or in combination to detect and characterize a nuclear program and identify data gaps. The models operatemore » at various levels of granularity, covering a combination of state-level assessments with more detailed models of site or facility characteristics. This paper will describe the current open source-driven, nuclear nonproliferation models under development, the pros and cons of the analytical approach, and areas for additional research.« less

  5. Integration and Utilization of Nuclear Systems on the Moon and Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon

    2006-01-20

    Over the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for planetary surface exploration missions. This includes both radioisotope and fission sources for providing both heat and electricity. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Very small nuclear energy sources were used to provide heat on the Mars Pathfinder, Spirit, and Opportunity rovers. Research has been performed at NASA MSFC to help assess potential issues associated with surface nuclear energy sources, and to generate data that couldmore » be useful to a future program. Research areas include System Integration, use of Regolith as Radiation Shielding, Waste Heat Rejection, Surface Environmental Effects on the Integrated System, Thermal Simulators, Surface System Integration / Interface / Interaction Testing, End-to-End Breadboard Development, Advanced Materials Development, Surface Energy Source Coolants, and Planetary Surface System Thermal Management and Control. This paper provides a status update on several of these research areas.« less

  6. The Lifecycle of Bayesian Network Models Developed for Multi-Source Signature Assessment of Nuclear Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastelum, Zoe N.; White, Amanda M.; Whitney, Paul D.

    2013-06-04

    The Multi-Source Signatures for Nuclear Programs project, part of Pacific Northwest National Laboratory’s (PNNL) Signature Discovery Initiative, seeks to computationally capture expert assessment of multi-type information such as text, sensor output, imagery, or audio/video files, to assess nuclear activities through a series of Bayesian network (BN) models. These models incorporate knowledge from a diverse range of information sources in order to help assess a country’s nuclear activities. The models span engineering topic areas, state-level indicators, and facility-specific characteristics. To illustrate the development, calibration, and use of BN models for multi-source assessment, we present a model that predicts a country’s likelihoodmore » to participate in the international nuclear nonproliferation regime. We validate this model by examining the extent to which the model assists non-experts arrive at conclusions similar to those provided by nuclear proliferation experts. We also describe the PNNL-developed software used throughout the lifecycle of the Bayesian network model development.« less

  7. Possible Nuclear Safeguards Applications: Workshop on Next-Generation Laser Compton Gamma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, J. Matthew

    2016-11-17

    These are a set of slides for the development of a next-generation photon source white paper. The following topics are covered in these slides: Nuclear Safeguards; The Nuclear Fuel Cycle; Precise isotopic determination via NRF; UF 6 Enrichment Assay; and Non-Destructive Assay of Spent Nuclear Fuel. In summary: A way to non-destructively measure precise isotopics of ~kg and larger samples has multiple uses in nuclear safeguards; Ideally this is a compact, fieldable device that can be used by international inspectors. Must be rugged and reliable; A next-generation source can be used as a testing ground for these techniques as technologymore » develops.« less

  8. Status of Iran's nuclear program and negotiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, David

    2014-05-09

    Iran's nuclear program poses immense challenges to international security. Its gas centrifuge program has grown dramatically in the last several years, bringing Iran close to a point where it could produce highly enriched uranium in secret or declared gas centrifuge plants before its breakout would be discovered and stopped. To reduce the risk posed by Iran's nuclear program, the P5+1 have negotiated with Iran short term limits on the most dangerous aspects of its nuclear programs and is negotiating long-term arrangements that can provide assurance that Iran will not build nuclear weapons. These long-term arrangements need to include a farmore » more limited and transparent Iranian nuclear program. In advance of arriving at a long-term arrangement, the IAEA will need to resolve its concerns about the alleged past and possibly on-going military dimensions of Iran's nuclear program.« less

  9. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Lance Kyungwoo

    Long-term planning for nuclear energy systems has been an area of interest for policy planners and systems designers to assess and manage the complexity of the system and the long-term, wide-ranging societal impacts of decisions. However, traditional planning tools are often poorly equipped to cope with the deep parametric, structural, and value uncertainties in long-term planning. A more robust, multiobjective decision-making method is applied to a model of the nuclear fuel cycle to address the many sources of complexity, uncertainty, and ambiguity inherent to long-term planning. Unlike prior studies that rely on assessing the outcomes of a limited set of deployment strategies, solutions in this study arise from optimizing behavior against multiple incommensurable objectives, utilizing goal-seeking multiobjective evolutionary algorithms to identify minimax regret solutions across various demand scenarios. By excluding inferior and infeasible solutions, the choice between the Pareto optimal solutions depends on a decision-maker's preferences for the defined outcomes---limiting analyst bias and increasing transparency. Though simplified by the necessity of reducing computational burdens, the nuclear fuel cycle model captures important phenomena governing the behavior of the nuclear energy system relevant to the decision to close the fuel cycle---incorporating reactor population dynamics, material stocks and flows, constraints on material flows, and outcomes of interest to decision-makers. Technology neutral performance criteria are defined consistent with the Generation IV International Forum goals of improved security and proliferation resistance based on structural features of the nuclear fuel cycle, natural resource sustainability, and waste production. A review of safety risks and the economic history of the development of nuclear technology suggests that safety and economic criteria may not be decisive criteria as the safety risks posed by alternative fuel cycles may be comparable in aggregate and economic performance is uncertain and path dependent. Technology strategies impacting reactor lifetimes and advanced reactor introduction dates are evaluated against a high, medium, and phaseout scenarios of nuclear energy demand. Non-dominated, minimax regret solutions are found with the NSGA-II multiobjective evolutionary algorithm. Results suggest that more aggressive technology strategies featuring the early introduction of breeder and burner reactors, possibly combined with lifetime extension of once-through systems, tend to dominate less aggressive strategies under more demanding growth scenarios over the next century. Less aggressive technology strategies that delay burning and breeding tend to be clustered in the minimax regret space, suggesting greater sensitivity to shifts in preferences. Lifetime extension strategies can unexpectedly result in fewer deployments of once-through systems, permitting the growth of advanced systems to meet demand. Both breeders and burners are important for controlling plutonium inventories with breeders achieving lower inventories in storage by locking material in reactor cores while burners can reduce the total inventory in the system. Other observations include the indirect impacts of some performance measures, the relatively small impact of technology strategies on the waste properties of all material in the system, and the difficulty of phasing out nuclear energy while meeting all objectives with the specified technology options.

  10. A Physical Basis for M s-Yield Scaling in Hard Rock and Implications for Late-Time Damage of the Source Medium

    DOE PAGES

    Patton, Howard John

    2016-04-11

    Surface wave magnitude M s for a compilation of 72 nuclear tests detonated in hard rock media for which yields and burial depths have been reported in the literature is shown to scale with yield W as a + b × log[W], where a = 2.50 ± 0.08 and b = 0.80 ± 0.05. While the exponent b is consistent with an M s scaling model for fully coupled, normal containment-depth explosions, the intercept a is offset 0.45 magnitude units lower than the model. The cause of offset is important to understand in terms of the explosion source. Hard rockmore » explosions conducted in extensional and compressional stress regimes show similar offsets, an indication that the tectonic setting in which an explosion occurs plays no role causing the offset. The scaling model accounts for the effects of source medium material properties on the generation of 20-s period Rayleigh wave amplitudes. Aided by thorough characterizations of the explosion and tectonic release sources, an extensive analysis of the 1963 October 26 Shoal nuclear test detonated in granite 27 miles southeast of Fallon NV shows that the offset is consistent with the predictions of a material damage source model related to non-linear stress wave interactions with the free surface. This source emits Rayleigh waves with polarity opposite to waves emitted by the explosion. The Shoal results were extended to analyse surface waves from the 1962 February 15 Hardhat nuclear test, the 1988 September 14 Soviet Joint Verification Experiment, and the anomalous 1979 August 18 northeast Balapan explosion which exhibits opposite polarity, azimuth-independent source component U1 compared to an explosion. Modelling these tests shows that Rayleigh wave amplitudes generated by the damage source are nearly as large as or larger than amplitudes from the explosion. As such, destructive interference can be drastic, introducing metastable conditions due to the sensitivity of reduced amplitudes to Rayleigh wave initial phase angles of the explosion and damage sources. This meta-stability is a likely source of scatter in M s-yield scaling observations. The agreement of observed scaling exponent b with the model suggests that the damage source strength does not vary much with yield, in contrast to explosions conducted in weak media where Ms scaling rates are greater than the model predicts, and the yield dependence of the damage source strength is significant. This difference in scaling behaviour is a consequence of source medium material properties.« less

  11. A Physical Basis for M s-Yield Scaling in Hard Rock and Implications for Late-Time Damage of the Source Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Howard John

    Surface wave magnitude M s for a compilation of 72 nuclear tests detonated in hard rock media for which yields and burial depths have been reported in the literature is shown to scale with yield W as a + b × log[W], where a = 2.50 ± 0.08 and b = 0.80 ± 0.05. While the exponent b is consistent with an M s scaling model for fully coupled, normal containment-depth explosions, the intercept a is offset 0.45 magnitude units lower than the model. The cause of offset is important to understand in terms of the explosion source. Hard rockmore » explosions conducted in extensional and compressional stress regimes show similar offsets, an indication that the tectonic setting in which an explosion occurs plays no role causing the offset. The scaling model accounts for the effects of source medium material properties on the generation of 20-s period Rayleigh wave amplitudes. Aided by thorough characterizations of the explosion and tectonic release sources, an extensive analysis of the 1963 October 26 Shoal nuclear test detonated in granite 27 miles southeast of Fallon NV shows that the offset is consistent with the predictions of a material damage source model related to non-linear stress wave interactions with the free surface. This source emits Rayleigh waves with polarity opposite to waves emitted by the explosion. The Shoal results were extended to analyse surface waves from the 1962 February 15 Hardhat nuclear test, the 1988 September 14 Soviet Joint Verification Experiment, and the anomalous 1979 August 18 northeast Balapan explosion which exhibits opposite polarity, azimuth-independent source component U1 compared to an explosion. Modelling these tests shows that Rayleigh wave amplitudes generated by the damage source are nearly as large as or larger than amplitudes from the explosion. As such, destructive interference can be drastic, introducing metastable conditions due to the sensitivity of reduced amplitudes to Rayleigh wave initial phase angles of the explosion and damage sources. This meta-stability is a likely source of scatter in M s-yield scaling observations. The agreement of observed scaling exponent b with the model suggests that the damage source strength does not vary much with yield, in contrast to explosions conducted in weak media where Ms scaling rates are greater than the model predicts, and the yield dependence of the damage source strength is significant. This difference in scaling behaviour is a consequence of source medium material properties.« less

  12. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    NASA Astrophysics Data System (ADS)

    Grogan, Brandon R.; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-12-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system.

  13. Energy Education: Responding to the Nuclear Power Controversy.

    ERIC Educational Resources Information Center

    Fry-Miller, Kathleen M.

    1982-01-01

    Discusses problems associated with the use of nuclear power as a source of energy. Sources of exposure to radiation, the effects of exposure to radiation on children's health, and safe alternatives to nuclear power that can be taught to children are among the topics addressed. (Author/RH)

  14. Studies of the use of heat from high temperature nuclear sources for hydrogen production processes

    NASA Technical Reports Server (NTRS)

    Farbman, G. H.

    1976-01-01

    Future uses of hydrogen and hydrogen production processes that can meet the demand for hydrogen in the coming decades were considered. To do this, a projection was made of the market for hydrogen through the year 2000. Four hydrogen production processes were selected, from among water electrolysis, fossil based and thermochemical water decomposition systems, and evaluated, using a consistent set of ground rules, in terms of relative performance, economics, resource requirements, and technology status.

  15. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  16. Orbital Debris Quarterly News. Volume 13; No. 1

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  17. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  18. Methodology for the nuclear design validation of an Alternate Emergency Management Centre (CAGE)

    NASA Astrophysics Data System (ADS)

    Hueso, César; Fabbri, Marco; de la Fuente, Cristina; Janés, Albert; Massuet, Joan; Zamora, Imanol; Gasca, Cristina; Hernández, Héctor; Vega, J. Ángel

    2017-09-01

    The methodology is devised by coupling different codes. The study of weather conditions as part of the data of the site will determine the relative concentrations of radionuclides in the air using ARCON96. The activity in the air is characterized depending on the source and release sequence specified in NUREG-1465 by RADTRAD code, which provides results of the inner cloud source term contribution. Known activities, energy spectra are inferred using ORIGEN-S, which are used as input for the models of the outer cloud, filters and containment generated with MCNP5. The sum of the different contributions must meet the conditions of habitability specified by the CSN (Spanish Nuclear Regulatory Body) (TEDE <50 mSv and equivalent dose to the thyroid <500 mSv within 30 days following the accident doses) so that the dose is optimized by varying parameters such as CAGE location, flow filtering need for recirculation, thicknesses and compositions of the walls, etc. The results for the most penalizing area meet the established criteria, and therefore the CAGE building design based on the methodology presented is radiologically validated.

  19. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  20. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  1. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  2. A study of electric transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.

    1994-01-01

    The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.

  3. Long Term Hydrological (Radiological) Site Monitoring Data

    EPA Pesticide Factsheets

    Quality Data Asset includes all current and historical data on the quality of water with regard to the presence of water pollutants of all kinds regulated by the Clean Water Act. Under the new Interagency Agreement with the Department of Energy (DOE), the Radiation & Indoor Environments National Laboratory (R&IE), Office of Radiation and Indoor Air (ORIA), EPA, located in Las Vegas, NV, conducts a Long-Term Hydrological Monitoring Program (LTHMP) providing laboratory sampling/analysis and Quality Assurance and Control to measure radioactivity concentrations in the water sources near the sites of former underground nuclear explosions. The results of the LTHMP provide assurance that radioactive material from the tests have not migrated into water supplies.

  4. An integral nuclear power and propulsion system concept

    NASA Astrophysics Data System (ADS)

    Choong, Phillip T.; Teofilo, Vincent L.; Begg, Lester L.; Dunn, Charles; Otting, William

    An integral space power concept provides both the electrical power and propulsion from a common heat source and offers superior performance capabilities over conventional orbital insertion using chemical propulsion systems. This paper describes a hybrid (bimodal) system concept based on a proven, inherently safe solid fuel form for the high temperature reactor core operation and rugged planar thermionic energy converter for long-life steady state electric power production combined with NERVA-based rocket technology for propulsion. The integral system is capable of long-life power operation and multiple propulsion operations. At an optimal thrust level, the integral system can maintain the minimal delta-V requirement while minimizing the orbital transfer time. A trade study comparing the overall benefits in placing large payloads to GEO with the nuclear electric propulsion option shows superiority of nuclear thermal propulsion. The resulting savings in orbital transfer time and the substantial reduction of overall lift requirement enables the use of low-cost launchers for several near-term military satellite missions.

  5. Evaluation of radiological dispersion/consequence codes supporting DOE nuclear facility SARs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Kula, K.R.; Paik, I.K.; Chung, D.Y.

    1996-12-31

    Since the early 1990s, the authorization basis documentation of many U.S. Department of Energy (DOE) nuclear facilities has been upgraded to comply with DOE orders and standards. In this process, many safety analyses have been revised. Unfortunately, there has been nonuniform application of software, and the most appropriate computer and engineering methodologies often are not applied. A DOE Accident Phenomenology and Consequence (APAC) Methodology Evaluation Program was originated at the request of DOE Defense Programs to evaluate the safety analysis methodologies used in nuclear facility authorization basis documentation and to define future cost-effective support and development initiatives. Six areas, includingmore » source term development (fire, spills, and explosion analysis), in-facility transport, and dispersion/ consequence analysis (chemical and radiological) are contained in the APAC program. The evaluation process, codes considered, key results, and recommendations for future model and software development of the Radiological Dispersion/Consequence Working Group are summarized in this paper.« less

  6. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 2: Accident Model Document (AMD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Accident Model Document is one of three documents of the Preliminary Safety Analysis Report (PSAR) - Reactor System as applied to a Space Base Program. Potential terrestrial nuclear hazards involving the zirconium hydride reactor-Brayton power module are identified for all phases of the Space Base program. The accidents/events that give rise to the hazards are defined and abort sequence trees are developed to determine the sequence of events leading to the hazard and the associated probabilities of occurence. Source terms are calculated to determine the magnitude of the hazards. The above data is used in the mission accident analysis to determine the most probable and significant accidents/events in each mission phase. The only significant hazards during the prelaunch and launch ascent phases of the mission are those which arise form criticality accidents. Fission product inventories during this time period were found to be very low due to very limited low power acceptance testing.

  7. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    DOE PAGES

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less

  8. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianwei; Gauld, Ian C.

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less

  9. 76 FR 76327 - Installation of Radiation Alarms for Rooms Housing Neutron Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 73 [Docket Nos. PRM-73-15; NRC-2011-0251] Installation of Radiation Alarms for Rooms Housing Neutron Sources AGENCY: Nuclear Regulatory Commission. ACTION: Petition for rulemaking; request for comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the...

  10. 77 FR 66647 - License Amendment Request to Byproduct Material License 06-31445-01 for Light Sources, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 03038458; NRC-2012-0267] License Amendment Request to Byproduct Material License 06-31445- 01 for Light Sources, Inc., Orange, CT AGENCY: Nuclear Regulatory... Nuclear Materials Safety, Region I, 2100 Renaissance Blvd., King of Prussia, Pennsylvania 19406-2713...

  11. 76 FR 44865 - Domestic Licensing of Source Material-Amendments/Integrated Safety Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 40 RIN 3150-AI50 [NRC-2009-0079 and NRC-2011-0080] Domestic Licensing of Source Material--Amendments/Integrated Safety Analysis AGENCY: Nuclear Regulatory Commission. ACTION: Extension of public comment period and public meeting. SUMMARY: The U.S. Nuclear...

  12. 10 CFR 150.15 - Persons not exempt.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons not exempt. 150.15 Section 150.15 Energy NUCLEAR.... (2) The export from or import into the United States of byproduct, source, or special nuclear..., source, or special nuclear waste materials, as defined in regulations or orders of the Commission. For...

  13. Systems for the Intermodal Routing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Steven K; Liu, Cheng

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable systemmore » for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.« less

  14. An Ultradeep Chandra Catalog of X-Ray Point Sources in the Galactic Center Star Cluster

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenlin; Li, Zhiyuan; Morris, Mark R.

    2018-04-01

    We present an updated catalog of X-ray point sources in the inner 500″ (∼20 pc) of the Galactic center (GC), where the nuclear star cluster (NSC) stands, based on a total of ∼4.5 Ms of Chandra observations taken from 1999 September to 2013 April. This ultradeep data set offers unprecedented sensitivity for detecting X-ray sources in the GC, down to an intrinsic 2–10 keV luminosity of 1.0 × 1031 erg s‑1. A total of 3619 sources are detected in the 2–8 keV band, among which ∼3500 are probable GC sources and ∼1300 are new identifications. The GC sources collectively account for ∼20% of the total 2–8 keV flux from the inner 250″ region where detection sensitivity is the greatest. Taking advantage of this unprecedented sample of faint X-ray sources that primarily traces the old stellar populations in the NSC, we revisit global source properties, including long-term variability, cumulative spectra, luminosity function, and spatial distribution. Based on the equivalent width and relative strength of the iron lines, we suggest that in addition to the arguably predominant population of magnetic cataclysmic variables (CVs), nonmagnetic CVs contribute substantially to the detected sources, especially in the lower-luminosity group. On the other hand, the X-ray sources have a radial distribution closely following the stellar mass distribution in the NSC, but much flatter than that of the known X-ray transients, which are presumably low-mass X-ray binaries (LMXBs) caught in outburst. This, together with the very modest long-term variability of the detected sources, strongly suggests that quiescent LMXBs are a minor (less than a few percent) population.

  15. Seismic Methods of Identifying Explosions and Estimating Their Yield

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Myers, S. C.; Mellors, R. J.; Pitarka, A.; Rodgers, A. J.; Hauk, T. F.

    2014-12-01

    Seismology plays a key national security role in detecting, locating, identifying and determining the yield of explosions from a variety of causes, including accidents, terrorist attacks and nuclear testing treaty violations (e.g. Koper et al., 2003, 1999; Walter et al. 1995). A collection of mainly empirical forensic techniques has been successfully developed over many years to obtain source information on explosions from their seismic signatures (e.g. Bowers and Selby, 2009). However a lesson from the three DPRK declared nuclear explosions since 2006, is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, and accurately estimate their yield, we need to put our empirical methods on a firmer physical footing. Goals of current research are to improve our physical understanding of the mechanisms of explosion generation of S- and surface-waves, and to advance our ability to numerically model and predict them. As part of that process we are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative location and amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Finally we are also exploring the value of combining seismic information with other technologies including acoustic and InSAR techniques to better understand the source characteristics. Our goal is to improve our explosion models and our ability to understand and predict where methods of identifying explosions and estimating their yield work well, and any circumstances where they may not.

  16. Study to develop educational products about the fear of new energy technologies. Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuPont, R.L.

    1985-01-31

    Fear of nuclear power was found in the study sample to be widespread and far more intense than fear of any other energy source. Fears were greatest of waste disposal and accidents, with fear of what is not known being especially common. Many fears appeared to be based on lack of information. Both general and specific fears of nuclear power were significantly reduced by reading an educational booklet. After reading this booklet study subjects reported less extreme views of nuclear power, seeing it to be more similar to other energy sources. This decline in fear of nuclear power did notmore » produce a proportionate increase in support for nuclear power as a source of electricity.« less

  17. The progress about measurements of the proton beam characteristics of the JUNA 400 kV accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Li, Kuoang

    2018-04-01

    China JinPing underground Laboratory (CJPL) was established inside the tunnels piercing Jinping Mountain in Sichuan Province, China, which can provide an ideal environment for low background experiment. Jinping Underground laboratory for Nuclear Astrophysics (JUNA) is one of the major research programs in CJPL. A new 400 kV accelerator, with high current based on an ECR source, will be installed into CJPL for the study of key nuclear reactions in astrophysics. The beam characteristics of the accelerator, like absolute energy, energy spread, and long-term energy stability, will be determined by several well-known resonance and non-resonance reactions. Due to the new accelerator still being under construction, the resonance reaction of 27Al(p, γ)28Si and non-resonance 12C(p, γ)13N were studied at the 320 kV high-voltage platform of Institute of Modern Physics in Lanzhou, China. The energy spread of proton beam is about 1.0 keV and the long-term energy stability of proton beam is better than ±200eV during 4 hours measurement.

  18. The influence of 14CO2 releases from regional nuclear facilities at the Heidelberg 14CO2 sampling site (1986-2014)

    NASA Astrophysics Data System (ADS)

    Kuderer, Matthias; Hammer, Samuel; Levin, Ingeborg

    2018-06-01

    Atmospheric Δ14CO2 measurements are a well-established tool to estimate the regional fossil-fuel-derived CO2 component. However, emissions from nuclear facilities can significantly alter the regional Δ14CO2 level. In order to accurately quantify the signal originating from fossil CO2 emissions, a correction term for anthropogenic 14CO2 sources has to be determined. In this study, the HYSPLIT atmospheric dispersion model has been applied to calculate this correction for the long-term Δ14CO2 monitoring site in Heidelberg. Wind fields with a spatial resolution of 2.5° × 2.5°, 1° × 1°, and 0.5° × 0.5° show systematic deviations, with coarser resolved wind fields leading to higher mean values for the correction. The finally applied mean Δ14CO2 correction for the period from 1986-2014 is 2.3 ‰ with a standard deviation of 2.1 ‰ and maximum values up to 15.2 ‰. These results are based on the 0.5° × 0.5° wind field simulations in years when these fields were available (2009, 2011-2014), and for the other years they are based on 2.5° × 2.5° wind field simulations, corrected with a factor of 0.43. After operations at the Philippsburg boiling water reactor ceased in 2011, the monthly nuclear correction terms decreased to less than 2 ‰, with a mean value of 0.44 ± 0.32 ‰ from 2012 to 2014.

  19. Californium-252: a remarkable versatile radioisotope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne-Lee, I.W.; Alexander, C.W.

    A product of the nuclear age, Californium-252 ({sup 252}Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, {sup 252}Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready formore » further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of {sup 252}Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the {sup 252}Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, {sup 252}Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of {sup 252}Cf from ORNL is summarized herein.« less

  20. Neutron radiation characteristics of the IVth generation reactor spent fuel

    NASA Astrophysics Data System (ADS)

    Bedenko, Sergey; Shamanin, Igor; Grachev, Victor; Knyshev, Vladimir; Ukrainets, Olesya; Zorkin, Andrey

    2018-03-01

    Exploitation of nuclear power plants as well as construction of new generation reactors lead to great accumulation of spent fuel in interim storage facilities at nuclear power plants, and in spent fuel «wet» and «dry» long-term storages. Consequently, handling the fuel needs more attention. The paper is focused on the creation of an efficient computational model used for developing the procedures and regulations of spent nuclear fuel handling in nuclear fuel cycle of the new generation reactor. A Thorium High-temperature Gas-Cooled Reactor Unit (HGTRU, Russia) was used as an object for numerical research. Fuel isotopic composition of HGTRU was calculated using the verified code of the MCU-5 program. The analysis of alpha emitters and neutron radiation sources was made. The neutron yield resulting from (α,n)-reactions and at spontaneous fission was calculated. In this work it has been shown that contribution of (α,n)-neutrons is insignificant in case of such (Th,Pu)-fuel composition and HGTRU operation mode, and integral neutron yield can be approximated by the Watt spectral function. Spectral and standardized neutron distributions were achieved by approximation of the list of high-precision nuclear data. The distribution functions were prepared in group and continuous form for further use in calculations according to MNCP, MCU, and SCALE.

  1. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface

    PubMed Central

    Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele

    2017-01-01

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source. PMID:28961198

  2. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface.

    PubMed

    Aleotti, Jacopo; Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele; Zappettini, Andrea

    2017-09-29

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

  3. Design and implementation of wireless dose logger network for radiological emergency decision support system.

    PubMed

    Gopalakrishnan, V; Baskaran, R; Venkatraman, B

    2016-08-01

    A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee-Pro wireless modules and PSoC controller for wireless interfacing, and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.

  4. Possible consequences of severe accidents at the Lubiatowo site, Poland

    NASA Astrophysics Data System (ADS)

    Seibert, Petra; Philipp, Anne; Hofman, Radek; Gufler, Klaus; Sholly, Steven

    2014-05-01

    The construction of a nuclear power plant is under consideration in Poland. One of the sites under discussion is near Lubiatowo, located on the cost of the Baltic Sea northwest of Gdansk. An assessment of possible environmental consequences is carried out for 88 real meteorological cases with the Lagrangian particle dispersion model FLEXPART. Based on literature research, three reactor designs (ABWR, EPR, AP 1000) were identified as being under discussion in Poland. For each of the designs, a set of accident scenarios was evaluated and two source terms per reactor design were selected for analysis. One of the selected source terms was a relatively large release while the second one was a severe accident with an intact containment. Considered endpoints of the calculations are ground contamination with Cs-137 and time-integrated concentrations of I-131 in air as well as committed doses. They are evaluated on a grid of ca. 3 km mesh size covering eastern Central Europe.

  5. Design and implementation of wireless dose logger network for radiological emergency decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalakrishnan, V.; Baskaran, R.; Venkatraman, B.

    A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee–Pro wireless modules and PSoC controller for wireless interfacing,more » and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.« less

  6. 78 FR 51753 - AUC, LLC Reno Creek, In Situ Project, New Source Material License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 040-09092; [NRC-2013-0164] AUC, LLC Reno Creek, In Situ Project, New Source Material License Application AGENCY: Nuclear Regulatory Commission. ACTION: Notice of..., AUC, LLC (AUC) submitted to the U.S. Nuclear Regulatory Commission (NRC) an application for a new...

  7. Sources of Nuclear Fuel, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Singleton, Arthur L., Jr.

    A brief outline of the historical landmarks in nuclear physics leading to the use of nuclear energy for peaceful purposes introduces this illustrated booklet. The distribution of known sources of uranium ores is mapped and some details about the geology of each geographical area given. Methods of prospective, mining, milling, refining, and fuel…

  8. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd

    2005-01-01

    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  9. On the effect of the 3-D regional geology on the seismic design of critical structures: the case of the Kashiwazaki-Kariwa Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Gatti, F.; Lopez-Caballero, F.; Clouteau, D.; Paolucci, R.

    2018-05-01

    In this study, numerical investigation is performed on a realistic source-to-site earthquake scenario, with the aim to assess the role of complex 3-D geological structures on the predicted wavefield. With this respect, the paper pointedly targets the seismic response of nuclear power plants in near-field conditions and the verification of some simplified assumptions commonly adopted for earthquake ground motion prediction and site effects analysis. To this purpose, the Kashiwazaki-Kariwa Nuclear Power Plant (Japan) is assumed as reference case-study. In 2007, the nuclear site and its surroundings were struck by the Niigata-Ken Chūetsu-Oki seismic sequence, which caused some of the peak ground motion design limits to be largely overpassed. The dense observation network deployed at the site recorded a highly incoherent and impulsive earthquake ground motion. Many studies argued that the intricate syncline-anticline geology lying underneath the nuclear facility was highly responsible of the observed seismic response. Therefore, a physics-based numerical model of the epicentral area is built-up (≈60 km wide) and tested for small aftershocks, so to discount the effect of extended source on the synthetic site-response. The numerical model (based on the Spectral Element Method) reproduces the source-to-site wave propagation by embracing the effects of the surface topography along with the presence of the Japan Sea (i.e. the bathymetry, the coastline and the fluid-solid interaction). Broad-band (0-5 Hz) synthetic waveforms are obtained for two different aftershocks, located at the two opposite sides of the nuclear facility, aiming to assess the influence of the incidence angle the radiated wave field impinges the foldings beneath it. The effect of the folding presence is assessed by comparing it to a subhorizontally layered geology, in terms of numerical outcome, and by highlighting the differences with respect to the observations. The presence of an intricate geology effectively unveils the reason behind the observed ground motion spatial variability within a relatively small area, stressing its crucial role to properly reproduce the modification the wavefield undergoes during its propagation path towards the surface. The accuracy of the numerical exercise is discussed along with its results, to show the high-fidelity of these deterministic earthquake ground motion predictions.

  10. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political opposition specific to sodium. In conclusion, research and technology breakthroughs in nuclear power are needed for shaping a sustainable low carbon future. International cooperation is key for sharing costs of research and development of the required novel technologies and cost of first experimental reactors needed to demonstrate enabling technologies. At the same time technology breakthroughs are developed, pre-normative research is required to support codification work and harmonized regulations that will ultimately apply to safety and security features of resulting innovative reactor types and fuel cycles.

  11. Deuteron nuclear data for the design of accelerator-based neutron sources: Measurement, model analysis, evaluation, and application

    NASA Astrophysics Data System (ADS)

    Watanabe, Yukinobu; Kin, Tadahiro; Araki, Shouhei; Nakayama, Shinsuke; Iwamoto, Osamu

    2017-09-01

    A comprehensive research program on deuteron nuclear data motivated by development of accelerator-based neutron sources is being executed. It is composed of measurements of neutron and gamma-ray yields and production cross sections, modelling of deuteron-induced reactions and code development, nuclear data evaluation and benchmark test, and its application to medical radioisotopes production. The goal of this program is to develop a state-of-the-art deuteron nuclear data library up to 200 MeV which will be useful for the design of future (d,xn) neutron sources. The current status and future plan are reviewed.

  12. The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight ice-breakers and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: ice-breaker 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear ice-breakers 'Arktika' and 'Sibir' are berthing. The ice-breakers carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices ofmore » the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of icebreakers the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear ice-breakers, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear icebreaker decommissioning and dismantling projects. (authors)« less

  13. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  14. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Scoping Study of Machine Learning Techniques for Visualization and Analysis of Multi-source Data in Nuclear Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yonggang

    In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integratedmore » analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.« less

  16. Cretaceous extinctions - Evidence for wildfires and search for meteoritic material

    NASA Technical Reports Server (NTRS)

    Wolbach, W. S.; Lewis, R. S.; Anders, E.

    1985-01-01

    The results of analyses of the contents of deposits in the Cretaceous-Ternary (K-T) transition at three sites worldwide are discussed. The study was undertaken to examine the composition of the object which may have struck the earth, causing widespread biotic extinction. The data indicate that most of the parent body was destroyed on impact, a condition which would also hold true for comets, suggesting that comets were not a source of prebiotic life. A four-orders-of-magnitude excess of carbon in the K-T layer is considered in terms of its source, which is suspected to be deposits from wildfires. The consequent extinctions of species are regarded as possibly making the current nuclear winter scenarios too optimistic.

  17. Hydrogen Production from Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  18. Cosmic ray and neutrino emission from gamma-ray bursts with a nuclear cascade

    NASA Astrophysics Data System (ADS)

    Biehl, D.; Boncioli, D.; Fedynitch, A.; Winter, W.

    2018-04-01

    Aim. We discuss neutrino and cosmic ray emission from gamma-ray bursts (GRBs) with the injection of nuclei, where we take into account that a nuclear cascade from photodisintegration can fully develop in the source. Our main objective is to test whether recent results from the IceCube and the Pierre Auger Observatory can be accommodated within the paradigm that GRBs are the sources of ultra-high-energy cosmic rays (UHECRs). Methods: We simulate this scenario in a combined source-propagation model. While our key results are obtained using an internal shock model of the source, we discuss how the secondary emission from a GRB shell can be interpreted in terms of other astrophysical models. Results: We demonstrate that the expected neutrino flux from GRBs weakly depends on the injection composition for the same injection spectra and luminosities, which implies that prompt neutrinos from GRBs can efficiently test the GRB-UHECR paradigm even if the UHECRs are nuclei. We show that the UHECR spectrum and composition, as measured by the Pierre Auger Observatory, can be self-consistently reproduced. In an attempt to describe the energy range including the ankle, we find tension with the IceCube bounds from the GRB stacking analyses. In an alternative scenario, where only the UHECRs beyond the ankle originate from GRBs, the requirement for a joint description of cosmic ray and neutrino observations favors lower luminosities, which does not correspond to the typical expectation from γ-ray observations.

  19. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2012-08-01

    An accurate and efficient method to predict infrasound amplitudes from large explosions in the atmosphere is required for diverse source types, including bolides, volcanic eruptions, and nuclear and chemical explosions. A finite-difference, time-domain approach is developed to solve a set of nonlinear fluid dynamic equations for total pressure, temperature, and density fields rather than acoustic perturbations. Three key features for the purpose of synthesizing nonlinear infrasound propagation in realistic media are that it includes gravitational terms, it allows for acoustic absorption, including molecular vibration losses at frequencies well below the molecular vibration frequencies, and the environmental models are constrained to have axial symmetry, allowing a three-dimensional simulation to be reduced to two dimensions. Numerical experiments are performed to assess the algorithm's accuracy and the effect of source amplitudes and atmospheric variability on infrasound waveforms and shock formation. Results show that infrasound waveforms steepen and their associated spectra are shifted to higher frequencies for nonlinear sources, leading to enhanced infrasound attenuation. Results also indicate that nonlinear infrasound amplitudes depend strongly on atmospheric temperature and pressure variations. The solution for total field variables and insertion of gravitational terms also allows for the computation of other disturbances generated by explosions, including gravity waves.

  20. Calculation of the nuclear material inventory in a sealed vault by 3D radiation mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adsley, Ian; Klepikov, Alexander; Tur, Yevgeniy

    2013-07-01

    The paper relates to the determination of the amount of nuclear material contained in a closed, concrete lined vault at the Aktau fast breeder reactor in Kazakhstan. This material had been disposed into the vault after examination in an experimental hot cell directly above the vault. In order to comply with IAEA Safeguards requirements it was necessary to determine the total quantities of nuclear materials - enriched uranium and plutonium - that were held with Kazakhstan. Although it was possible to determine the inventory of all of the accessible nuclear material - the quantity remaining in the vault was unknown.more » As part of the Global Threat Reduction Programme the UK Government funded a project to determine the inventory of these nuclear materials in this vault. This involved drilling three penetrations through the concrete lined roof of the vault; this enabled the placement of lights and a camera into the vault through two penetrations; while the third penetration enabled a lightweight manipulator arm to be introduced into the vault. This was used to provide a detailed 3D mapping of the dose rate within the vault and it also enabled the collection of samples for radionuclide analysis. The deconvolution of the 3D dose rate profile within the vault enabled the determination of the gamma emitting source distribution on the floor and walls of the vault. The samples were analysed to determine the fingerprint of those radionuclides producing the gamma dose - namely {sup 137}Cs and {sup 60}Co - to the nuclear materials. The combination of the dose rate source terms on the surfaces of the vault and the fingerprint then enabled the quantities of nuclear materials to be determined. The project was a major success and enabled the Kazakhstan Government to comply with IAEA Safeguards requirements. It also enabled the UK DECC Ministry to develop a technology of national (and international) use. Finally the technology was well received by IAEA Safeguards as an acceptable methodology for future studies. (authors)« less

  1. Developments and Tendencies in Fission Reactor Concepts

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.

  2. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. What views and uses of radiation sources in the 21st century?

    PubMed

    Blix, H

    2001-04-01

    Considering that in 1899 neither biotechnology nor the electronic revolution were foreseen, some humility might be advisable when one looks into the crystal ball for the future role of radiation sources. In the past 50 years, nuclear medicine, nuclear weapons, and nuclear power have had a huge impact in the world. In the next 50 years, nuclear weapons may be phased out, nuclear power revived, and nuclear medicine may continue, especially for diagnostic purposes. Conflicts between great powers and blocks will no longer be about territorial or ideological domination but about trade, finance, information, and the environment and the weapons used will not be bombs but investments, credits, and control of information. Nuclear power-still based on fission-will be relaunched and get more uses, e.g., to propel ships, to produce heat for industry and for space heating, and perhaps to desalinate water. The public will be more at ease with radiation as it is better educated, as nuclear safety continuously improves and new types of nuclear power plants emerge, as waste sites fail to cause any problems, and as no other energy source is found to deliver so much energy at reasonable cost with negligible impact on climate and environment. One kilogram of oil corresponds to 4 kWh of electricity. One kilogram of uranium fuel corresponds to 50,000 kWh, and 1 kg of plutonium 6,000,000 kWh! In nuclear medicine, radiation may give way to other treatments as the understanding of cancer advances. On the other hand, the extreme ease with which sources of radiation can be identified is unmatched and likely to make them useful tools as tracers and markers in medicine-and other fields-for a long time. For certain uses--perhaps food irradiation--radiation sources, such as cobalt, may be replaced by accelerators which may be switched on and off at will. As more sources are used, registration and control of them must be made very effective around the whole world. Very high natural emissions of radon will continue to call for cautionary measures, but many other nonradiating substances will be identified as hazardous to health and call for vigorous intervention.

  5. Glass corrosion in natural environments

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were carried out on these glasses in order to characterize their magnetic properties. Results of these studies are described.

  6. Space exploration and colonization - Towards a space faring society

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  7. ALARA implementation throughout project life cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, M.J.

    1995-03-01

    A strength of radiation protection programs generally has been endorsement and application of the ALARA principle. In Ontario Hydro, which currently operates 20 commercial size nuclear units, great strides have been made in the last three decades in reducing occupational radiation exposure per unit of electricity generated. This paper will discuss specific applications of elements of the overall ALARA program which have most contributed to dose reduction as the nuclear program has expanded. This includes such things as management commitment, ALARA application in the design phase and major rehabilitation work, the benefits of the self protection concept, a specific examplemore » of elimination (or reduction) of the source term and the importance of dose targets. Finally, it is concluded that the major opportunities for further improvements may lie in the area of information management.« less

  8. Commercial nuclear power 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Miningmore » and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.« less

  9. A Monte Carlo simulation study for the gamma-ray/neutron dual-particle imager using rotational modulation collimator (RMC).

    PubMed

    Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun

    2018-03-01

    The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.

  10. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Saunier, Olivier; Mathieu, Anne

    2012-03-01

    A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativity of the measurements, those that are instrumental, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. We propose to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We apply the method to the estimation of the Fukushima Daiichi source term using activity concentrations in the air. The results are compared to an L-curve estimation technique and to Desroziers's scheme. The total reconstructed activities significantly depend on the chosen method. Because of the poor observability of the Fukushima Daiichi emissions, these methods provide lower bounds for cesium-137 and iodine-131 reconstructed activities. These lower bound estimates, 1.2 × 1016 Bq for cesium-137, with an estimated standard deviation range of 15%-20%, and 1.9 - 3.8 × 1017 Bq for iodine-131, with an estimated standard deviation range of 5%-10%, are of the same order of magnitude as those provided by the Japanese Nuclear and Industrial Safety Agency and about 5 to 10 times less than the Chernobyl atmospheric releases.

  11. Historical overview of the US use of space nuclear power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1989-01-01

    Since 1961, the United States has successfully flown 35 space nuclear power sources on 20 space systems. These space systems have included the Apollo, Pioneer, Viking and Voyager spacecraft launched by the National Aeronautics and Space Administration and navigation and communications satellites launched by the Department of Defense. These power sources performed as planned and i8n many cases exceeded their power requirements and/or lifetimes. All of the power sources met their safety requirements. This paper surveys past uses of space nuclear power in the US and thus serves as a historical framework for other papers in this Conference dealing with future US applications of space nuclear power.

  12. 10 CFR 40.56 - Restrictions on the use of Australian-obligated source material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Restrictions on the use of Australian-obligated source material. 40.56 Section 40.56 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL... United States of America Concerning Peaceful Uses of Nuclear Energy, dated 2010, Australian-obligated...

  13. 10 CFR 40.56 - Restrictions on the use of Australian-obligated source material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Restrictions on the use of Australian-obligated source material. 40.56 Section 40.56 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL... United States of America Concerning Peaceful Uses of Nuclear Energy, dated 2010, Australian-obligated...

  14. 10 CFR 40.56 - Restrictions on the use of Australian-obligated source material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Restrictions on the use of Australian-obligated source material. 40.56 Section 40.56 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL... United States of America Concerning Peaceful Uses of Nuclear Energy, dated 2010, Australian-obligated...

  15. Real-time detection and characterization of nuclear explosion using broadband analyses of regional seismic stations

    NASA Astrophysics Data System (ADS)

    Prastowo, T.; Madlazim

    2018-01-01

    This preliminary study aims to propose a new method of real-time detection and characterization of nuclear explosions by analyzing broadband seismic waveforms acquired from a network of regional seismic stations. Signal identification generated by a nuclear test was differentiated from natural sources of either earthquakes or other natural seismo-tectonic events by verifying crucial parameters, namely source depth, type of first motion, and P-wave domination of the broadband seismic wavesunder consideration. We examined and analyzed a recently hypothetical nuclear test performed by the North Koreangovernment that occurred on September 3, 2017 as a vital point to study. From spectral analyses, we found that the source of corresponding signals associated with detonations of the latest underground nuclear test was at a much shallower depth below the surface relatively compared with that of natural earthquakes, the suspected nuclear explosions produced compressional waves with radially directed outward from the source for their first motions, and the waves were only dominated by P-components. The results are then discussed in the context of potential uses of the proposed methodology for human-induced disaster early warning system and/or the need of rapid response purposes for minimizing the disaster risks.

  16. Review of high-sensitivity Radon studies

    NASA Astrophysics Data System (ADS)

    Wojcik, M.; Zuzel, G.; Simgen, H.

    2017-10-01

    A challenge in many present cutting-edge particle physics experiments is the stringent requirements in terms of radioactive background. In peculiar, the prevention of Radon, a radioactive noble gas, which occurs from ambient air and it is also released by emanation from the omnipresent progenitor Radium. In this paper we review various high-sensitivity Radon detection techniques and approaches, applied in the experiments looking for rare nuclear processes happening at low energies. They allow to identify, quantitatively measure and finally suppress the numerous sources of Radon in the detectors’ components and plants.

  17. Nuclear Forensics and Attribution: A National Laboratory Perspective

    NASA Astrophysics Data System (ADS)

    Hall, Howard L.

    2008-04-01

    Current capabilities in technical nuclear forensics - the extraction of information from nuclear and/or radiological materials to support the attribution of a nuclear incident to material sources, transit routes, and ultimately perpetrator identity - derive largely from three sources: nuclear weapons testing and surveillance programs of the Cold War, advances in analytical chemistry and materials characterization techniques, and abilities to perform ``conventional'' forensics (e.g., fingerprints) on radiologically contaminated items. Leveraging that scientific infrastructure has provided a baseline capability to the nation, but we are only beginning to explore the scientific challenges that stand between today's capabilities and tomorrow's requirements. These scientific challenges include radically rethinking radioanalytical chemistry approaches, developing rapidly deployable sampling and analysis systems for field applications, and improving analytical instrumentation. Coupled with the ability to measure a signature faster or more exquisitely, we must also develop the ability to interpret those signatures for meaning. This requires understanding of the physics and chemistry of nuclear materials processes well beyond our current level - especially since we are unlikely to ever have direct access to all potential sources of nuclear threat materials.

  18. Detailed source term estimation of atmospheric release during the Fukushima Dai-ichi nuclear power plant accident by coupling atmospheric and oceanic dispersion models

    NASA Astrophysics Data System (ADS)

    Katata, Genki; Chino, Masamichi; Terada, Hiroaki; Kobayashi, Takuya; Ota, Masakazu; Nagai, Haruyasu; Kajino, Mizuo

    2014-05-01

    Temporal variations of release amounts of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident and their dispersion process are essential to evaluate the environmental impacts and resultant radiological doses to the public. Here, we estimated a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data and coupling atmospheric and oceanic dispersion simulations by WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN developed by the authors. New schemes for wet, dry, and fog depositions of radioactive iodine gas (I2 and CH3I) and other particles (I-131, Te-132, Cs-137, and Cs-134) were incorporated into WSPEEDI-II. The deposition calculated by WSPEEDI-II was used as input data of ocean dispersion calculations by SEA-GEARN. The reverse estimation method based on the simulation by both models assuming unit release rate (1 Bq h-1) was adopted to estimate the source term at the FNPP1 using air dose rate, and air sea surface concentrations. The results suggested that the major release of radionuclides from the FNPP1 occurred in the following periods during March 2011: afternoon on the 12th when the venting and hydrogen explosion occurred at Unit 1, morning on the 13th after the venting event at Unit 3, midnight on the 14th when several openings of SRV (steam relief valve) were conducted at Unit 2, morning and night on the 15th, and morning on the 16th. The modified WSPEEDI-II using the newly estimated source term well reproduced local and regional patterns of air dose rate and surface deposition of I-131 and Cs-137 obtained by airborne observations. Our dispersion simulations also revealed that the highest radioactive contamination areas around FNPP1 were created from 15th to 16th March by complicated interactions among rainfall (wet deposition), plume movements, and phase properties (gas or particle) of I-131 and release rates associated with reactor pressure variations in Units 2 and 3.

  19. (135)Cs/(137)Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident.

    PubMed

    Zheng, Jian; Tagami, Keiko; Bu, Wenting; Uchida, Shigeo; Watanabe, Yoshito; Kubota, Yoshihisa; Fuma, Shoichi; Ihara, Sadao

    2014-05-20

    Since the Fukushima Daiichi nuclear power plant (FDNPP) accident in 2011, intensive studies of the distribution of released fission products, in particular (134)Cs and (137)Cs, in the environment have been conducted. However, the release sources, that is, the damaged reactors or the spent fuel pools, have not been identified, which resulted in great variation in the estimated amounts of (137)Cs released. Here, we investigated heavily contaminated environmental samples (litter, lichen, and soil) collected from Fukushima forests for the long-lived (135)Cs (half-life of 2 × 10(6) years), which is usually difficult to measure using decay-counting techniques. Using a newly developed triple-quadrupole inductively coupled plasma tandem mass spectrometry method, we analyzed the (135)Cs/(137)Cs isotopic ratio of the FDNPP-released radiocesium in environmental samples. We demonstrated that radiocesium was mainly released from the Unit 2 reactor. Considering the fact that the widely used tracer for the released Fukushima accident-sourced radiocesium in the environment, the (134)Cs/(137)Cs activity ratio, will become unavailable in the near future because of the short half-life of (134)Cs (2.06 years), the (135)Cs/(137)Cs isotopic ratio can be considered as a new tracer for source identification and long-term estimation of the mobility of released radiocesium in the environment.

  20. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    NASA Astrophysics Data System (ADS)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately generic to remain relevantly independent of technological progress, of national organisational setups and of space mission types. Implementing its guidance therefore leaves room for interpretation and adaptation. Relying on reported practices, we analyse the guidance particularly relevant to engineers and space mission designers.

  1. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  2. Parameter Study of the LIFE Engine Nuclear Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, K J; Meier, W R; Latkowski, J F

    2009-07-10

    LLNL is developing the nuclear fusion based Laser Inertial Fusion Energy (LIFE) power plant concept. The baseline design uses a depleted uranium (DU) fission fuel blanket with a flowing molten salt coolant (flibe) that also breeds the tritium needed to sustain the fusion energy source. Indirect drive targets, similar to those that will be demonstrated on the National Ignition Facility (NIF), are ignited at {approx}13 Hz providing a 500 MW fusion source. The DU is in the form of a uranium oxycarbide kernel in modified TRISO-like fuel particles distributed in a carbon matrix forming 2-cm-diameter pebbles. The thermal power ismore » held at 2000 MW by continuously varying the 6Li enrichment in the coolants. There are many options to be considered in the engine design including target yield, U-to-C ratio in the fuel, fission blanket thickness, etc. Here we report results of design variations and compare them in terms of various figures of merit such as time to reach a desired burnup, full-power years of operation, time and maximum burnup at power ramp down and the overall balance of plant utilization.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Douglas S.; Ford, Sean R.; Walter, William R.

    Research was carried out investigating the feasibility of using a regional distance seismic waveform moment tensor inverse procedure to estimate source parameters of nuclear explosions and to use the source inversion results to develop a source-type discrimination capability. The results of the research indicate that it is possible to robustly determine the seismic moment tensor of nuclear explosions, and when compared to natural seismicity in the context of the a Hudson et al. (1989) source-type diagram they are found to separate from populations of earthquakes and underground cavity collapse seismic sources.

  4. Solid state laser media driven by remote nuclear powered fluorescence

    DOEpatents

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  5. Knowledge Sources and Opinions of Prospective Social Studies Teachers about Possible Risk and Benefit Analysis: Nuclear Energy and Power Stations

    ERIC Educational Resources Information Center

    Yazici, Hakki; Bulut, Ramazan; Yazici, Sibel

    2016-01-01

    In this study, it was aimed to determine the trust status of prospective social studies teachers regarding various knowledge sources related to nuclear energy and power stations regarded as a controversial socio-scientific issue and their perceptions on the possible risks and benefits of nuclear energy and power stations. Target population of the…

  6. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  7. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    PubMed

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  8. Energy situations in Japan before and after the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Muraoka, K.

    2015-08-01

    This article describes the various effects on the public conception on nuclear energy and more generally on energy policies in Japan due to the nuclear accident that occurred on 11th March 2011 at the Fukushima Dai-ichi nuclear power station, which is owned and operated by Tokyo Electric Power Company (TEPCO). Before the accident, nuclear energy had been conceived as the main energy source of electricity in Japan for reducing CO2 emission beyond 2020. However, public opinion has turned almost completely against nuclear energy after observing how vulnerable the nuclear system had been. The present Japanese government is now trying to buy time before taking a decision. After explaining these circumstances, the author tries to chart his personal projection of energy sources for Japan to 2050.

  9. Advanced Compton scattering light source R&D at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F; Anderson, S G; Anderson, G

    2010-02-16

    We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less

  10. Primary energy: Present status and future perspectives

    NASA Astrophysics Data System (ADS)

    Thielheim, K. O.

    A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO2-greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.

  11. Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013.

    PubMed

    Ringbom, A; Axelsson, A; Aldener, M; Auer, M; Bowyer, T W; Fritioff, T; Hoffman, I; Khrustalev, K; Nikkinen, M; Popov, V; Popov, Y; Ungar, K; Wotawa, G

    2014-02-01

    Observations made in April 2013 of the radioxenon isotopes (133)Xe and (131m)Xe at measurement stations in Japan and Russia, belonging to the International Monitoring System for verification of the Comprehensive Nuclear-Test-Ban Treaty, are unique with respect to the measurement history of these stations. Comparison of measured data with calculated isotopic ratios as well as analysis using atmospheric transport modeling indicate that it is likely that the xenon measured was created in the underground nuclear test conducted by North Korea on February 12, 2013, and released 7-8 weeks later. More than one release is required to explain all observations. The (131m)Xe source terms for each release were calculated to 0.7 TBq, corresponding to about 1-10% of the total xenon inventory for a 10 kt explosion, depending on fractionation and release scenario. The observed ratios could not be used to obtain any information regarding the fissile material that was used in the test. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Fatal attraction: Explaining Russia's sensitive nuclear transfers to Iran

    NASA Astrophysics Data System (ADS)

    Kuchinsky, Leah R.

    This paper explores Russia's sensitive nuclear assistance to Iran in an effort to determine why a supplier state might proliferate against its own apparent security interests. The goal is to help readers understand the supply-side dynamics of nuclear proliferation. Through careful reconstruction of the historical narrative, using open source data, this study tests the plausibility of a "fatalistic calculus" explanation, identified by Stephen Sestanovich as a possible driver for Russia's behavior. According to the hypothesis, Russia has cooperated with Iran as a way both to stay in the good graces of a neighbor that is suspected of developing nuclear weapons and to win short-term influence and profits. The paper also examines the role of other factors advanced in the existing supply-side literature, such as economic motives identified by physicist and nonproliferation scholar David Albright. The findings show that bureaucratic, economic and fatalistic factors have each played a role in motivating Russia's cooperation with Iran, with their relative importance shifting over time. Fatalism begets a strategy of Russian "minimaxing," in the lexicon of Russia scholar Robert Freedman, wherein Russia attempts to minimize damage to its relationship with the U.S. while maximizing influence in Iran via nuclear cooperation. Fatalism, as actualized by minimaxing, best explains Russia's behavior after former Russian president Vladmir Putin came to power, when the bureaucratic and economic arguments become less cogent.

  13. Stochastic approach for radionuclides quantification

    NASA Astrophysics Data System (ADS)

    Clement, A.; Saurel, N.; Perrin, G.

    2018-01-01

    Gamma spectrometry is a passive non-destructive assay used to quantify radionuclides present in more or less complex objects. Basic methods using empirical calibration with a standard in order to quantify the activity of nuclear materials by determining the calibration coefficient are useless on non-reproducible, complex and single nuclear objects such as waste packages. Package specifications as composition or geometry change from one package to another and involve a high variability of objects. Current quantification process uses numerical modelling of the measured scene with few available data such as geometry or composition. These data are density, material, screen, geometric shape, matrix composition, matrix and source distribution. Some of them are strongly dependent on package data knowledge and operator backgrounds. The French Commissariat à l'Energie Atomique (CEA) is developing a new methodology to quantify nuclear materials in waste packages and waste drums without operator adjustment and internal package configuration knowledge. This method suggests combining a global stochastic approach which uses, among others, surrogate models available to simulate the gamma attenuation behaviour, a Bayesian approach which considers conditional probability densities of problem inputs, and Markov Chains Monte Carlo algorithms (MCMC) which solve inverse problems, with gamma ray emission radionuclide spectrum, and outside dimensions of interest objects. The methodology is testing to quantify actinide activity in different kind of matrix, composition, and configuration of sources standard in terms of actinide masses, locations and distributions. Activity uncertainties are taken into account by this adjustment methodology.

  14. Nuclear Targeting Terms for Engineers and Scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Ledger, John W.

    The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physicalmore » vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.« less

  15. Towards a practical Johnson noise thermometer for long-term measurements in harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenen, Adam; Pearce, Jonathan; Cruickshank, David

    The impact of mechanical and chemical changes in conventional sensors such as thermocouples and resistance thermometers can be avoided by instead using temperature sensors based on fundamental thermometry. A prime example of this is Johnson noise thermometry, which is based on measurement of the fluctuations in the voltage of a resistor arising from thermal motion of charge carriers - i.e. the 'Johnson noise'. A Johnson noise thermometer never needs calibration and is insensitive to the condition of the sensor material. It is therefore ideally suited to long-term temperature measurements in harsh environments, such as nuclear reactor coolant circuits, in-pile measurements,more » nuclear waste management and storage, and severe accident monitoring. There have been a number of previous attempts to develop a Johnson noise thermometer for the nuclear industry, but none have reached commercial exploitation because of technical problems in practical implementation. The main challenge is to extract the tiny Johnson noise signal from ambient electrical noise influences, both from the internal amplification electronics, and from external electrical noise sources. Recent advances in electronics technology and digital signal processing techniques have opened up new possibilities for developing a viable, practical Johnson noise thermometer. We describe a project funded by the UK Technology Strategy Board (now Innovate UK) 'Developing the nuclear supply chain' call, currently underway, to develop a practical Johnson noise thermometer that makes use of innovative electronics for ultralow noise amplification and signal processing. The new electronics technology has the potential to help overcome the problems encountered with previous attempts at constructing a practical Johnson noise thermometer. An outline of the new developments is presented, together with an overview of the current status of the project. (authors)« less

  16. Small modular reactor modeling using modelica for nuclear-renewable hybrid energy systems applications

    DOE PAGES

    Mikkelson, Daniel; Chang, Chih -Wei; Cetiner, Sacit M.; ...

    2015-10-01

    Here, the U.S. Department of Energy (DOE) supports research and development (R&D) that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet grid demand and industrial thermal energy needs [1]. One hybridization approach being investigated by the DOE Offices of Nuclear Energy (NE) and the DOE Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources to better manage overall energy use for the combined electricity, industrial manufacturing, and transportation sectors.

  17. The Future of Energy from Nuclear Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Son H.; Taiwo, Temitope

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of thesemore » five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.« less

  18. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors

    PubMed Central

    Hawk, Joshua D.; Bookout, Angie L.; Poplawski, Shane G.; Bridi, Morgan; Rao, Allison J.; Sulewski, Michael E.; Kroener, Brian T.; Manglesdorf, David J.; Abel, Ted

    2012-01-01

    The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent “orphan” nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function. PMID:22996661

  19. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans tomore » immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).« less

  20. Theory of the n = 2 levels in muonic helium-3 ions

    NASA Astrophysics Data System (ADS)

    Franke, Beatrice; Krauth, Julian J.; Antognini, Aldo; Diepold, Marc; Kottmann, Franz; Pohl, Randolf

    2017-12-01

    The present knowledge of Lamb shift, fine-, and hyperfine structure of the 2S and 2P states in muonic helium-3 ions is reviewed in anticipation of the results of a first measurement of several 2S → 2P transition frequencies in the muonic helium-3 ion, μ3He+. This ion is the bound state of a single negative muon μ- and a bare helium-3 nucleus (helion), 3He++. A term-by-term comparison of all available sources, including new, updated, and so far unpublished calculations, reveals reliable values and uncertainties of the QED and nuclear structure-dependent contributions to the Lamb shift and the hyperfine splitting. These values are essential for the determination of the helion rms charge radius and the nuclear structure effects to the hyperfine splitting in μ3He+. With this review we continue our series of theory summaries in light muonic atoms [see A. Antognini et al., Ann. Phys. 331, 127 (2013); J.J. Krauth et al., Ann. Phys. 366, 168 (2016); and M. Diepold et al. arXiv:1606.05231 (2016)].

  1. Controlled Nuclear Fusion: Status and Outlook

    ERIC Educational Resources Information Center

    Rose, David J.

    1971-01-01

    Presents the history, current concerns and potential developments of nuclear fusion as a major energy source. Controlled fusion research is summarized, technological feasibility is discussed and environmental factors are examined. Relationships of alternative energy sources as well as energy utilization are considered. (JM)

  2. Information Sources as Explanatory Variables for the Belgian Health-Related Risk Perception of the Fukushima Nuclear Accident.

    PubMed

    Vyncke, Bart; Perko, Tanja; Van Gorp, Baldwin

    2017-03-01

    The media play an important role in risk communication, providing information about accidents, both nearby and far away. Each media source has its own presentation style, which could influence how the audience perceives the presented risk. This study investigates the explanatory power of 12 information sources (traditional media, new media, social media, and interpersonal communication) for the perceived risk posed by radiation released from the damaged Fukushima nuclear power plant on respondents' own health and that of the population in general. The analysis controlled for attitude toward nuclear energy, gender, education, satisfaction with the media coverage, and duration of attention paid to the coverage. The study uses a large empirical data set from a public opinion survey, which is representative for the Belgian population with respect to six sociodemographic variables. Results show that three information sources are significant regressors of perceived health-related risk of the nuclear accident: television, interpersonal communication, and the category of miscellaneous online sources. More favorable attitudes toward nuclear power, longer attention to the coverage, and higher satisfaction with the provided information lead to lower risk perception. Taken together, the results suggest that the media can indeed have a modest influence on how the audience perceives a risk. © 2016 Society for Risk Analysis.

  3. Scoping Calculations of Power Sources for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1994-01-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to make scoping calculations for mission analysis.

  4. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  5. Hanford Environmental Dose Reconstruction Project. Monthly report, December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  6. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  7. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    NASA Astrophysics Data System (ADS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-03-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  8. Evaluation of severe accident risks: Quantification of major input parameters: MAACS (MELCOR Accident Consequence Code System) input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprung, J.L.; Jow, H-N; Rollstin, J.A.

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric andmore » biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.« less

  9. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  10. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. 2. Reentrainment and discharge of radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W Jr

    1981-07-01

    This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperlymore » sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.« less

  11. ANI/MAELU engineering inspection criteria 8.3 ALARA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, L.

    1995-03-01

    The purpose of this criteria section is to provide guidelines for programs whose intent is to achieve occupational doses and doses to members of the public that are as low as is reasonably achievable (ALARA). The success that has been achieved by applying ALARA concepts at nuclear power plants is clearly illustrated by the major reductions in the annual cumulative dose to workers at many sites over the last few years. This success is the combined result of the general maturity of the nuclear industry, the intensive study of dose reduction practices by industry groups, and the successful sharing ofmore » experience and practices among plants. Source term reduction should be used as a primary ALARA mechanism. Methods which should be considered include: satellite and cobalt reduction, chemistry control, decontamination, submicron filters, zinc addition, hot spot reduction and permanent or temporary shielding.« less

  12. Experiments and Monte Carlo modeling of a higher resolution Cadmium Zinc Telluride detector for safeguards applications

    NASA Astrophysics Data System (ADS)

    Borella, Alessandro

    2016-09-01

    The Belgian Nuclear Research Centre is engaged in R&D activity in the field of Non Destructive Analysis on nuclear materials, with focus on spent fuel characterization. A 500 mm3 Cadmium Zinc Telluride (CZT) with enhanced resolution was recently purchased. With a full width at half maximum of 1.3% at 662 keV, the detector is very promising in view of its use for applications such as determination of uranium enrichment and plutonium isotopic composition, as well as measurement on spent fuel. In this paper, I report about the work done with such a detector in terms of its characterization. The detector energy calibration, peak shape and efficiency were determined from experimental data. The data included measurements with calibrated sources, both in a bare and in a shielded environment. In addition, Monte Carlo calculations with the MCNPX code were carried out and benchmarked with experiments.

  13. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  14. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.

    2016-05-01

    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  15. Negative ion source development at the cooler synchrotron COSY/Jülich

    NASA Astrophysics Data System (ADS)

    Felden, O.; Gebel, R.; Maier, R.; Prasuhn, D.

    2013-02-01

    The Nuclear Physics Institute at the Forschungszentrum Jülich, a member of the Helmholtz Association, conducts experimental and theoretical basic research in the field of hadron, particle, and nuclear physics. It operates the cooler synchrotron COSY, an accelerator and storage ring, which provides unpolarized and polarized proton and deuteron beams with beam momenta of up to 3.7 GeV/c. Main activities of the accelerator division are the design and construction of the high energy storage ring HESR, a synchrotron and part of the international FAIR project, and the operation and development of COSY with injector cyclotron and ion sources. Filament driven volume sources and a charge exchange colliding beams source, based on a nuclear polarized atomic beam source, provide unpolarized and polarized H- or D- routinely for more than 6500 hours/year. Within the Helmholtz Association's initiative Accelerator Research and Development, ARD, the existing sources at COSY, as well as new sources for future programs, are investigated and developed. The paper reports about these plans, improved pulsed beams from the volume sources and the preparation of a source for the ELENA project at CERN.

  16. Spent sealed radium sources conditioning in Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourao, R.P.

    1999-06-01

    The management of spent sealed sources is considered by the International Atomic Energy Agency (IAEA) one of the greatest challenges faced by nuclear authorities today, especially in developing countries. One of the Agency`s initiatives to tackle this problem is the Spent Radium Sources Conditioning Project, a worldwide project relying on the regional co-operation between countries. A team from the Brazilian nuclear research institute Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) was chosen as the expert team to carry out the operations in Latin America; since December 1996 radium sources have been safely conditioned in Uruguay, Nicaragua, Guatemala, Ecuador and Paraguay.more » A Quality Assurance Program was established, encompassing the qualification of the capsule welding process, written operational procedures referring to all major steps of the operation, calibration of monitors and information retrievability. A 200L carbon steel drum-based packaging concept was used to condition the sources, its cavity being designed to receive the lead shield device containing stainless steel capsules with the radium sources. As a result of these operations, a total amount of 2,897 mg of needles, tubes, medical applicators, standard sources for calibration, lightning rods, secondary wastes and contaminated objects were stored in proper conditions and are now under control of the nuclear authorities of the visited countries.« less

  17. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    NASA Astrophysics Data System (ADS)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial confinement. The Frozen Rock Experiment in 2006 found only minor differences in seismic coupling for explosions in frozen and unfrozen rock. The seismo-acoustic source function was the focus of the above- and below-ground Humble Redwood explosions (2007, 2009 ) in New Mexico and detonations of rocket motor explosions in Utah. Acoustic travel time calibration for the IMS was accomplished with the 2009 and 2011 100-ton surface explosions in southern Israel. The New England Damage Experiment in 2009 correlated increased shear wave generation with increased rock damage from explosions. Damage from explosions continues to be an important research topic at Nevada's National Center for Nuclear Security with the ongoing Source Physics Experiment. A number of exciting experiments are already planned for the future and thus continue the effort to improve global detection, location, and identification of nuclear explosions.

  18. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based onmore » current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.« less

  19. Multicriteria relocation analysis of an off-site radioactive monitoring network for a nuclear power plant.

    PubMed

    Chang, Ni-Bin; Ning, Shu-Kuang; Chen, Jen-Chang

    2006-08-01

    Due to increasing environmental consciousness in most countries, every utility that owns a commercial nuclear power plant has been required to have both an on-site and off-site emergency response plan since the 1980s. A radiation monitoring network, viewed as part of the emergency response plan, can provide information regarding the radiation dosage emitted from a nuclear power plant in a regular operational period and/or abnormal measurements in an emergency event. Such monitoring information might help field operators and decision-makers to provide accurate responses or make decisions to protect the public health and safety. This study aims to conduct an integrated simulation and optimization analysis looking for the relocation strategy of a long-term regular off-site monitoring network at a nuclear power plant. The planning goal is to downsize the current monitoring network but maintain its monitoring capacity as much as possible. The monitoring sensors considered in this study include the thermoluminescence dosimetry (TLD) and air sampling system (AP) simultaneously. It is designed for detecting the radionuclide accumulative concentration, the frequency of violation, and the possible population affected by a long-term impact in the surrounding area regularly while it can also be used in an accidental release event. With the aid of the calibrated Industrial Source Complex-Plume Rise Model Enhancements (ISC-PRIME) simulation model to track down the possible radionuclide diffusion, dispersion, transport, and transformation process in the atmospheric environment, a multiobjective evaluation process can be applied to achieve the screening of monitoring stations for the nuclear power plant located at Hengchun Peninsula, South Taiwan. To account for multiple objectives, this study calculated preference weights to linearly combine objective functions leading to decision-making with exposure assessment in an optimization context. Final suggestions should be useful for narrowing the set of scenarios that decision-makers need to consider in this relocation process.

  20. Illicit Trafficking in Radiological and Nuclear Materials. Lack of Regulations and Attainable Disposal for Radioactive Materials Make Them More Vulnerable than Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balatsky, G.I.; Severe, W.R.; Leonard, L.

    2007-07-01

    Illicit trafficking in nuclear and radioactive materials is far from a new issue. Reports of nuclear materials offered for sale as well as mythical materials such as red mercury date back to the 1960's. While such reports were primarily scams, it illustrates the fact that from an early date there were criminal elements willing to sell nuclear materials, albeit mythical ones, to turn a quick profit. In that same time frame, information related to lost and abandoned radioactive sources began to be reported. Unlike reports on nuclear material of that era, these reports on abandoned sources were based in factmore » - occasionally associated with resulting injury and death. With the collapse of the Former Soviet Union, illicit trafficking turned from a relatively unnoticed issue to one of global concern. Reports of unsecured nuclear and radiological material in the states of the Former Soviet Union, along with actual seizures of such material in transit, gave the clear message that illicit trafficking was now a real and urgent problem. In 1995, the IAEA established an Illicit Trafficking Data Base to keep track of confirmed instances. Illicit Trafficking is deemed to include not only radioactive materials that have been offered for sale or crossed international boarders, but also such materials that are no longer under appropriate regulatory control. As an outcome of 9/11, the United States took a closer look at illicit nuclear trafficking as well as a reassessment of the safety and security of nuclear and other radioactive materials both in the United States and Globally. This reassessment launched heightened controls and security domestically and increased our efforts internationally to prevent illicit nuclear trafficking. This reassessment also brought about the Global Threat Reduction Initiative which aims to further reduce the threats of weapons usable nuclear materials as well those of radioactive sealed sources. This paper will focus on the issues related to a subset of the materials involved in illicit trafficking in nuclear and radioactive materials, that of radioactive sealed sources. The focus on radioactive sealed sources is based on our belief that insufficient attention has been paid to trafficking incidents involving such sources which constitute the majority of trafficking cases. According to the IAEA's Illicit Trafficking Data Base, as of December 31 2005 there were 827 confirmed cases reporting by the participating states, including 250 incidents (or 30%) involved nuclear and other radioactive materials and 566 (or 68%) involved other radioactive materials, mostly radioactive sources, and radioactively contaminated materials. Experts in the Lugar Survey on Proliferation Threat and Response (June 2005) agreed that an attack with a Radiological Dispersion Device (RDD) was the most probable form of nuclear terrorism the world could expect over the next decade. At the same time radiological materials are used in wide a variety of applications, located in virtually every country and in general, radiological materials are far easier to access than nuclear materials. It has become increasingly obvious that the lack of a cradle-to-grave approach for sealed radioactive sources that have reached the end of their useful life is the main reason that sources are abandoned. It appears that the questions will ultimately become whether industry will impose additional regulations upon itself and become self-regulating with respect to repatriating radioactive material at the end of service life, or whether national authorities at some point will take actions and regulate the industry. Argentina, which is one of the most advanced countries regarding control of radiological sources adopted additional measures to safeguard its radiological materials to a level comparable to that proscribed for nuclear materials. This approach, while highly successful, has led to some minor unforeseen consequences, namely insufficient funds to implement all regulations in full and a lack of inspectors and appropriate equipment to assure compliance This is not an unusual outcome. Regulations imposed by a national regulatory authority may be technically excellent, but their implementation may provide a funding challenge. A more practical approach may be to have the industry to impose regulations upon itself, which could be accomplished within the economics of the industries involved. (authors)« less

  1. The standardization methods of radioactive sources (125I, 131I, 99mTc, and 18F) for calibrating nuclear medicine equipment in Indonesia

    NASA Astrophysics Data System (ADS)

    Wurdiyanto, G.; Candra, H.

    2016-03-01

    The standardization of radioactive sources (125I, 131I, 99mTc and 18F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125I, 131I, 99mTc and 18F respectively, by about 5 to 6% of the expanded uncertainties.

  2. Lingering radioactivity at the Bikini and Enewetak Atolls.

    PubMed

    Buesseler, Ken O; Charette, Matthew A; Pike, Steven M; Henderson, Paul B; Kipp, Lauren E

    2018-04-15

    We made an assessment of the levels of radionuclides in the ocean waters, seafloor and groundwater at Bikini and Enewetak Atolls where the US conducted nuclear weapons tests in the 1940's and 50's. This included the first estimates of submarine groundwater discharge (SGD) derived from radium isotopes that can be used here to calculate radionuclide fluxes in to the lagoon waters. While there is significant variability between sites and sample types, levels of plutonium ( 239,240 Pu) remain several orders of magnitude higher in lagoon seawater and sediments than what is found in rest of the world's oceans. In contrast, levels of cesium-137 ( 137 Cs) while relatively elevated in brackish groundwater are only slightly higher in the lagoon water relative to North Pacific surface waters. Of special interest was the Runit dome, a nuclear waste repository created in the 1970's within the Enewetak Atoll. Low seawater ratios of 240 Pu/ 239 Pu suggest that this area is the source of about half of the Pu in the Enewetak lagoon water column, yet radium isotopes suggest that SGD from below the dome is not a significant Pu source. SGD fluxes of Pu and Cs at Bikini were also relatively low. Thus radioactivity associated with seafloor sediments remains the largest source and long term repository for radioactive contamination. Overall, Bikini and Enewetak Atolls are an ongoing source of Pu and Cs to the North Pacific, but at annual rates that are orders of magnitude smaller than delivered via close-in fallout to the same area. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Instrumentation and Control Needs for Reliable Operation of Lunar Base Surface Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Turso, James; Chicatelli, Amy; Bajwa, Anupa

    2005-01-01

    As one of the near-term goals of the President's Vision for Space Exploration, establishment of a multi-person lunar base will require high-endurance power systems which are independent of the sun, and can operate without replenishment for several years. These requirements may be obtained using nuclear power systems specifically designed for use on the lunar surface. While it is envisioned that such a system will generally be supervised by humans, some of the evolutions required maybe semi or fully autonomous. The entire base complement for near-term missions may be less than 10 individuals, most or all of which may not be qualified nuclear plant operators and may be off-base for extended periods thus, the need for power system autonomous operation. Startup, shutdown, and load following operations will require the application of advanced control and health management strategies with an emphasis on robust, supervisory, coordinated control of, for example, the nuclear heat source, energy conversion plant (e.g., Brayton Energy Conversion units), and power management system. Autonomous operation implies that, in addition to being capable of automatic response to disturbance input or load changes, the system is also capable of assessing the status of the integrated plant, determining the risk associated with the possible actions, and making a decision as to the action that optimizes system performance while minimizing risk to the mission. Adapting the control to deviations from design conditions and degradation due to component failures will be essential to ensure base inhabitant safety and mission success. Intelligent decisions will have to be made to choose the right set of sensors to provide the data needed to do condition monitoring and fault detection and isolation because of liftoff weight and space limitations, it will not be possible to have an extensive set of instruments as used for earth-based systems. Advanced instrumentation and control technologies will be needed to enable this critical functionality of autonomous operation. It will be imperative to consider instrumentation and control requirements in parallel to system configuration development so as to identify control-related, as well as integrated system-related, problem areas early to avoid potentially expensive work-arounds . This paper presents an overview of the enabling technologies necessary for the development of reliable, autonomous lunar base nuclear power systems with an emphasis on system architectures and off-the-shelf algorithms rather than hardware. Autonomy needs are presented in the context of a hypothetical lunar base nuclear power system. The scenarios and applications presented are hypothetical in nature, based on information from open-literature sources, and only intended to provoke thought and provide motivation for the use of autonomous, intelligent control and diagnostics.

  4. Strategic perspective: Nuclear issues in the New Zealand media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridriksson, L.N.

    New Zealand's anti-nuclear policy drew international attention and threw the nation into a foreign policy crisis with the United States over the trilateral mutual security pact ANZUS. After more than a year of diminished intelligence and military cooperation, New Zealand was expelled from the alliance. This study involved a content analysis of coverage of these events and other nuclear issues in selected newspapers of New Zealand and the United States. Research points to the roles of the media as a critical one in the overall relations among countries. Through their frequent use of official government sources, the media tend tomore » uphold the government line or status quo with regard to foreign affairs. This study sought to identify the nuclear issues covered in the New Zealand and US media, the characteristics of that coverage, the sources of that coverage and how coverage varied during changing US-New Zealand relations. The official frame prevailed in coverage of nuclear issues. In the New Zealand and US newspapers under study, most sources of nuclear issue news were government officials. This research also found that most coverage of nuclear issues in the New Zealand media was related to some aspect of US interests, and that coverage of New Zealand's policy in the US media was covered most often when related to the United States. Nuclear issue coverage was most often not crisis-oriented in New Zealand and US newspapers, but coverage of all nuclear issues increased dramatically during the period of the ANZUS policy crisis. This study found a number of changes in nuclear issue coverage in the New Zealand media after the policy crisis was resolved. Among those changes were a tendency to focus less on economic and trade effects of the anti-nuclear policy, a tendency to focus more on ties with other South Pacific nations, use more sources from those countries, and a tendency to focus less on the moral and ethical position of the country.« less

  5. Ancient Glass: A Literature Search and its Role in Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strachan, Denis M.; Pierce, Eric M.

    2010-07-01

    When developing a performance assessment model for the long-term disposal of immobilized low-activity waste (ILAW) glass, it is desirable to determine the durability of glass forms over very long periods of time. However, testing is limited to short time spans, so experiments are performed under conditions that accelerate the key geochemical processes that control weathering. Verification that models currently being used can reliably calculate the long term behavior ILAW glass is a key component of the overall PA strategy. Therefore, Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to evaluate alternative strategies that can be usedmore » for PA source term model validation. One viable alternative strategy is the use of independent experimental data from archaeological studies of ancient or natural glass contained in the literature. These results represent a potential independent experiment that date back to approximately 3600 years ago or 1600 before the current era (bce) in the case of ancient glass and 106 years or older in the case of natural glass. The results of this literature review suggest that additional experimental data may be needed before the result from archaeological studies can be used as a tool for model validation of glass weathering and more specifically disposal facility performance. This is largely because none of the existing data set contains all of the information required to conduct PA source term calculations. For example, in many cases the sediments surrounding the glass was not collected and analyzed; therefore having the data required to compare computer simulations of concentration flux is not possible. This type of information is important to understanding the element release profile from the glass to the surrounding environment and provides a metric that can be used to calibrate source term models. Although useful, the available literature sources do not contain the required information needed to simulate the long-term performance of nuclear waste glasses in a near-surface or deep geologic repositories. The information that will be required include 1) experimental measurements to quantify the model parameters, 2) detailed analyses of altered glass samples, and 3) detailed analyses of the sediment surrounding the ancient glass samples.« less

  6. Risk reporting in the Chinese news media in response to radiation threat from the Fukushima nuclear reactor crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen Wang

    On March 11, 2011, the northeastern coast of Japan was struck by 9.0-magnitude earthquake that triggered a devastating tsunami. Aside from the huge toll in people's lives and severe damages to property, the tremor sent the Fukushima Daiichi Nuclear Power Plant on a tailspin, causing hydrogen explosions in three reactors, and sending radioactive materials into the air and bodies of water. Declared the largest nuclear disaster since Chernobyl, the crisis threatened neighboring countries, including China (International Business Times, 2011). On March 28, low levels of iodine-131, cesium-137 and strontium, believed to have drifted from Japan, were detected in the airmore » over Heilongjiang province in the northeast part of China and in seawater samples collected in the eastern coastal areas (Qianjiang Eve News, 2011). Because these chemicals can enter the food chain and adversely affect human health (Ifeng.com, 2011), people became understandably anxious and the government had to avert panic. This study asks: How did the Chinese media report the risks attendant to this event? A content analysis of 45 straight news reports published by the Chinese press from March 16, 2011 to April 25, 2011 was conducted. The analysis focused on how the media explained the risk, portrayed potential harm, reported on government actions to safeguard public health, and provided suggestions to reduce public fear. The sources of information cited in the reports were also identified. The articles examined were collected from People.com, a comprehensive online archive of news reports, using 'Fukushima' and 'nuclear radiation' as search terms. The results indicated journalistic practices that left much to be desired in terms of risk reporting. First, the articles explained little about the technical aspects of the radiation leaks and failed to give audiences a general indication of levels of risk. Second, the media over-emphasized the government's position that the environment was safe despite the more rampant word-of-mouth reports to the contrary, a slant that may have done nothing to allay public fear. Third, there was a dearth of information about what the government intends to do to alleviate the situation and suggestions about what people can do to protect themselves. The themes of news reports may be attributed to experts from research institutions and government officials who were the most frequently cited sources of facts, analyses, interpretations, and opinions. Scientists and nuclear experts were cited the most in the news reports. (authors)« less

  7. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  8. An analysis of international nuclear fuel supply options

    NASA Astrophysics Data System (ADS)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet. The material movement module is the largest of the three, and the two other modules that assess nonproliferation and economics of the options are dependent on its output. Proliferation resistance measures from literature are modified and incorporated in MEPAT. The module to assess the nonproliferation of the supply options allows the user to specify defining attributes for the fuel cycle processes, and determines significant quantities of materials as well as measures of proliferation resistance. The measure is dependent on user-input and material information. The economics module allows the user to specify costs associated with different processes and other aspects of the fuel cycle. The simulation tool then calculates economic measures that relate the cost of the fuel cycle to electricity production. The second part of this dissertation consists of an examination of four scenarios of fuel supply option using MEPAT. The first is a simple scenario illustrating the modules and basic functions of MEPAT. The second scenario recreates a fuel supply study reported earlier in literature, and compares MEPAT results with those reported earlier for validation. The third, and a rather realistic, scenario includes four nuclear programs with one program entering the nuclear energy market. The fourth scenario assesses the reactor options available to the Hashemite Kingdom of Jordan, which is currently assessing available options to introduce nuclear power in the country. The methodology developed and implemented in MEPAT to analyze the material, proliferation and economics of nuclear fuel supply options is expected to help simplify and assess different reactor and fuel options available to utilities, government agencies and international organizations.

  9. Nuclear power sources in outer space. [spacecraft propulsion legal aspects

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1978-01-01

    Legal problems associated with nuclear power sources in space are discussed with particular reference to the Cosmos 954 incident. Deliberations of the Legal and Scientific and Technical Subcommittees on the Peaceful Uses of Outer Space on this subject are discussed.

  10. Reflection processing of the large-N seismic data from the Source Physics Experiment (SPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paschall, Olivia C.

    2016-07-18

    The purpose of the SPE is to develop a more physics-based model for nuclear explosion identification to understand the development of S-waves from explosion sources in order to enhance nuclear test ban treaty monitoring.

  11. Photocounting distributions for exponentially decaying sources.

    PubMed

    Teich, M C; Card, H C

    1979-05-01

    Exact photocounting distributions are obtained for a pulse of light whose intensity is exponentially decaying in time, when the underlying photon statistics are Poisson. It is assumed that the starting time for the sampling interval (which is of arbitrary duration) is uniformly distributed. The probability of registering n counts in the fixed time T is given in terms of the incomplete gamma function for n >/= 1 and in terms of the exponential integral for n = 0. Simple closed-form expressions are obtained for the count mean and variance. The results are expected to be of interest in certain studies involving spontaneous emission, radiation damage in solids, and nuclear counting. They will also be useful in neurobiology and psychophysics, since habituation and sensitization processes may sometimes be characterized by the same stochastic model.

  12. SCALE Code System 6.2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlomore » radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.« less

  13. Safety and Security of Radioactive Sealed and Disused/Orphan Sources in Ukraine - German Contribution - 13359

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasser, Thomas; Hertes, Uwe; Meyer, Thorsten

    2013-07-01

    Within the scope of 'Nuclear Security of Radioactive Sources', the German government implemented the modernization of Ukrainian State Production Company's transport and storage facility for radioactive sources (TSF) in Kiev. The overall management of optimizing the physical protection of the storage facility (including the construction of a hot cell for handling the radioactive sources) is currently carried out by the German Federal Foreign Office (AA). AA jointly have assigned Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Germany's leading expert institution in the area of nuclear safety and waste management, to implement the project and to ensure transparency by financial andmore » technical monitoring. Sealed radioactive sources are widely used in industry, medicine and research. Their life cycle starts with the production and finally ends with the interim/long-term storage of the disused sources. In Ukraine, IZOTOP is responsible for all radioactive sources throughout their life cycle. IZOTOP's transport and storage facility (TSF) is the only Ukrainian storage facility for factory-fresh radioactive sources up to an activity of about 1 million Ci (3.7 1016 Bq). The TSF is specially designed for the storage and handling of radioactive sources. Storage began in 1968, and is licensed by the Ukrainian state authorities. Beside the outdated state of TSF's physical protection and the vulnerability of the facility linked with it, the lack of a hot cell for handling and repacking radioactive sources on the site itself represents an additional potential hazard. The project, financed by the German Federal Foreign Office, aims to significantly improve the security of radioactive sources during their storage and handling at the TSF site. Main tasks of the project are a) the modernization of the physical protection of the TSF itself in order to prevent any unauthorized access to radioactive sources as well as b) the construction of a hot cell to reduce the number of transports of radioactive sources within the city of Kiev. In future, the new established hot cell at IZOTOP's transport and storage facility will be useful for identification and characterization of orphan/disused radioactive sources. The projects implemented are performed in accordance with international recommendations (e. g. IAEA) and national normative documents and will make a crucial contribution towards an improved safety and security management of radioactive sources in Ukraine. (authors)« less

  14. NSRD-15:Computational Capability to Substantiate DOE-HDBK-3010 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, David; Bignell, John; Dingreville, Remi Philippe Michel

    Safety basis analysts throughout the U.S. Department of Energy (DOE) complex rely heavily on the information provided in the DOE Handbook, DOE-HDBK-3010, Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities, to determine radionuclide source terms from postulated accident scenarios. In calculating source terms, analysts tend to use the DOE Handbook’s bounding values on airborne release fractions (ARFs) and respirable fractions (RFs) for various categories of insults (representing potential accident release categories). This is typically due to both time constraints and the avoidance of regulatory critique. Unfortunately, these bounding ARFs/RFs represent extremely conservative values. Moreover, they were derived frommore » very limited small-scale bench/laboratory experiments and/or from engineered judgment. Thus, the basis for the data may not be representative of the actual unique accident conditions and configurations being evaluated. The goal of this research is to develop a more accurate and defensible method to determine bounding values for the DOE Handbook using state-of-art multi-physics-based computer codes.« less

  15. Experimental investigation of the influence of Mo contained in stainless steel on Cs chemisorption behavior

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Nakajima, K.; Yamashita, S.; Osaka, M.

    2017-02-01

    Chemisorption phenomena can affect fission products (FP) retention in a nuclear reactor vessel during a severe accident (SA). Detailed information on the FP chemisorbed deposits, especially for Cs, are important for a rational decommissioning of the reactor following a SA, as for the Fukushima Daiichi Power Station. Moreover the retention of Cs will influence the source term assessment and thus improved models for this phenomenon are needed in SA codes. This paper describes the influence on Cs chemisorption of molybdenum contained in stainless steel (SS) type 316. In our experiments it was observed that Cs-Mo deposits (CsFe(MoO4)3, Cs2MoO4) were formed together with CsFeSiO4, which is the predominant compound formed by chemisorption. The Cs-Mo deposits were found to revaporize from the SS sample at 1000 °C, and thus could contribute to the source term. On the other hand, CsFeSiO4 will be probably retained in the reactor during a SA due to its stability.

  16. Modeling and Implementing a Digitally Embedded Maximum Power Point Tracking Algorithm and a Series-Loaded Resonant DC-DC Converter to Integrate a Photovoltaic Array with a Micro-Grid

    DTIC Science & Technology

    2014-09-01

    These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources, photovoltaic (PV) arrays...renewable energy source [1]. These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources...26, May 2011. [6] H. G. Xu, J. P. He, Y. Qin, and Y. H. Li, “Energy management and control strategy for DC micro-grid in data center,” China

  17. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-06-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D 25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s-1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ~ 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 × 1038 erg s-1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  18. Depth determination and source characteristics of the North Korean Nuclear Tests (2006, 2009, 2013 and 2016) using local and teleseismic arrays

    NASA Astrophysics Data System (ADS)

    Kim, S. G.

    2016-12-01

    Depth determination and source characteristics of the North Korea Nuclear tests (2006, 2009, 2013 and 2016) using seismic arrays with azimuthal optium coverage So Gu Kim1,*, Yefim Gitterman2, Václav Vavryčuk3 and Seoung-kyu Lee1 1Korea Seismological Institute, Goyang 10332, Republic of Korea 2Seismology Division, Geophysical Institute of Israel, P.O.B. 182, Lod 71100, Israel 3Institute of Geophysics, Academy of Sciences, Prague 14100, Czech Republic Abstract The source depths for the North Korean nuclear tests (2006, 2009, 2013 and 2016) were determined using depth phases (pP, sP, pPn and sPn) and Rayleigh wave spectra from local and global arrays. The emplacement depths were estimated at 2.21, 2.10, 2.10 and 2.08 km for the 2006, 2009. 2013 and 2016 nuclear tests respectively. It was also found that the mechanism of the 2006 test generated roughly a reverse faulting accompanying mostly Rayleigh waves, whereas the 2009 and 2013 tests were an oblique-reverse faulting generating SH and Love waves as well as Rayleigh waves. The generation of SH and Love waves for the 2009 and 2013 nuclear tests was attributed to not only release of tectonic stress but also other factors such as relaxation of cavity fractures, source configuration and source mechanism. We infer that the 2009, 2013 and 2016 tests must have well contained nuclear debris through long winding horizontal drifts in the light of the absence of radioisotopes to the atmosphere compared with 2006 test which may have been conducted in the vertical shift as a vertically distributed source. ______________________________________________ *Corresponding author: So Gu Kim (sogukim@hanmail.net)

  19. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  20. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  1. Certified Training for Nuclear and Radioactive Source Security Management.

    PubMed

    Johnson, Daniel

    2017-04-01

    Radioactive sources are used by hospitals, research facilities and industry for such purposes as diagnosing and treating illnesses, sterilising equipment and inspecting welds. Unfortunately, many States, regulatory authorities and licensees may not appreciate how people with malevolent intentions could use radioactive sources, and statistics confirm that a number of security incidents happen around the globe. The adversary could be common thieves, activists, insiders, terrorists and organised crime groups. Mitigating this risk requires well trained and competent staff who have developed the knowledge, attributes and skills necessary to successfully discharge their security responsibilities. The International Atomic Energy Agency and the World Institute for Nuclear Security are leading international training efforts. The target audience is a multi-disciplinary group of professionals with management responsibilities for security at facilities with radioactive sources. These efforts to promote training and competence amongst practitioners have been recognised at the 2014 and 2016 Nuclear Security and Nuclear Industry Summits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    NASA Astrophysics Data System (ADS)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2014-06-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates associated with reactor pressure changes in Units 2 and 3. The modified WSPEEDI-II simulation using the new source term reproduced local and regional patterns of cumulative surface deposition of total 131I and 137Cs and air dose rate obtained by airborne surveys. The new source term was also tested using three atmospheric dispersion models (MLDP0, HYSPLIT, and NAME) for regional and global calculations and showed good agreement between calculated and observed air concentration and surface deposition of 137Cs in East Japan. Moreover, HYSPLIT model using the new source term also reproduced the plume arrivals at several countries abroad showing a good correlation with measured air concentration data. A large part of deposition pattern of total 131I and 137Cs in East Japan was explained by in-cloud particulate scavenging. However, for the regional scale contaminated areas, there were large uncertainties due to the overestimation of rainfall amounts and the underestimation of fogwater and drizzle depositions. The computations showed that approximately 27% of 137Cs discharged from FNPS1 deposited to the land in East Japan, mostly in forest areas.

  3. Electrical detection of nuclear spin-echo signals in an electron spin injection system

    NASA Astrophysics Data System (ADS)

    Lin, Zhichao; Rasly, Mahmoud; Uemura, Tetsuya

    2017-06-01

    We demonstrated spin echoes of nuclear spins in a spin injection device with a highly polarized spin source by nuclear magnetic resonance (NMR). Efficient spin injection into GaAs from a half-metallic spin source of Co2MnSi enabled efficient dynamic nuclear polarization (DNP) and sensitive detection of NMR signals even at a low magnetic field of ˜0.1 T and a relatively high temperature of 4.2 K. The intrinsic coherence time T2 of 69Ga nuclear spins was evaluated from the spin-echo signals. The relation between T2 and the decay time of the Rabi oscillation suggests that the inhomogeneous effects in our system are not obvious. This study provides an all-electrical NMR system for nuclear-spin-based qubits.

  4. Analysis of key safety metrics of thorium utilization in LWRs

    DOE PAGES

    Ade, Brian J.; Bowman, Stephen M.; Worrall, Andrew; ...

    2016-04-08

    Here, thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the 232Th isotope into a fissile fuel ( 233U). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based onmore » concepts that mix thorium with uranium (UO 2 + ThO 2) or that add fertile thorium (ThO 2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO 2 + ThO 2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO 2, alone or mixed with UO 2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety–related issues have been studied at Oak Ridge National Laboratory and documented in “Safety and Regulatory Issues of the Thorium Fuel Cycle” (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO 2 + UO 2 and ThO 2 + PuO 2 against those of UO 2 and typical UO 2 + PuO 2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO 2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of knowledge gaps that require additional analysis or research to develop a technical basis for the licensing of thorium fuel are identified.« less

  5. a Study of the Interferences with the On-Line Radioiodine Measurement Under Nuclear Accident Conditions

    NASA Astrophysics Data System (ADS)

    Tseng, Tung-Tse

    In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a significant fraction ((TURN)40%) of these particles became deposited on silver zeolite iodine filters inside the counting chamber. Finally, the Penn State Monitor proved itself to be a powerful research tool for the on-line source term studies since it can easily produce near noble-gas-free spectra during the real time studies occurring under simulated nuclear accident conditions.

  6. Short-Term Medical Consequences of the Chernobyl Nuclear Accident: Lessons for the Future

    PubMed Central

    Gale, Robert Peter

    1988-01-01

    The author of this article discusses the world's most serious nuclear accident to date: the Chernobyl nuclear accident of April 1986. His major focus is on the short-term medical consequences of the accident, including reduction of exposure to persons at risk, evaluation of persons potentially affected, dosimetry, and specific medical interventions. PMID:21253129

  7. Nuclear Power as a Basis for Future Electricity Generation

    NASA Astrophysics Data System (ADS)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy, moreover, the energy source, which does not emit carbon dioxide into atmosphere, are considered as the energy source for basic loads in an electrical grid. Currently, the vast majority of NPPs are used only for electricity generation. However, there are possibilities to use NPPs also for district heating or for desalination of water. In spite of all current advances in nuclear power, NPPs have the following deficiencies: 1) Generate radioactive wastes; 2) Have relatively low thermal efficiencies, especially, watercooled NPPs; 3) Risk of radiation release during severe accidents; and 4) Production of nuclear fuel is not an environment-friendly process. Therefore, all these deficiencies should be addressed in the next generation or Generation-IV reactors. Generation-IV reactors will be hightemperature reactors and multipurpose ones, which include electricity generation, hydrogen cogeneration, process heat, district heating, desalination, etc.

  8. Nuclear electric power sources

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Measurements on radioactive commercial p-n junction silicon cells show that these units are capable of delivering several hundred microwatts per curie of Am-241 alpha source, indicating their usefulness in such electronic devices as hearing aids, heart pacemakers, electronic watches, delay timers and nuclear dosimeter chargers. It is concluded that the Am-241 sources are superior to the beta sources used previously, because of higher alpha specific ionization and simultaneous production of low energy photons which are easily converted into photoelectrons for additional power.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiefelbein, C.; Ho, T.

    Changes in the physical properties (measured in terms of vitrinite reflectance, elemental analysis, and C-13 nuclear magnetic resonance) of an immature coal (0.46% R{sub o}) from Craig County, Colorado, that was thermally altered using hydrous pyrolysis were used to establish a correspondence between hydrous pyrolysis time/temperature reaction conditions and relative maturity (expressed in terms of vitrinite reflectance). This correspondence was used to determine the oil generation maturity limits for an immature hydrogen-rich (Type I fluorescing amorphous oil-prone kerogen) source rock from an offshore Congo well that was thermally altered using the same reaction conditions as applied to the immature coal.more » The resulting changes in the physical properties of the altered source rock, measured in terms of decreasing reactive carbon content (from Rock-Eval pyrolysis), were used to construct a hydrocarbon yield curve from which the relative maturity associated with the onset, main phase, and peak of oil generation was determined. Results, substantiated by anhydrous pyrolysis techniques, indicate that the source rock from Congo has a late onset of appreciable ({gt}10% transformation) oil generation (0.9% R{sub o} {plus minus} 0.1%), generates maximum quantities of oil from about 1.1 to 1.3% R{sub o}, and reaches the end (or peak) of the primary oil generating window at approximately 1.4% R{sub o} ({plus minus}0.1%) when secondary cracking reactions become important. However, the bottom of the oil window can be extended to about 1.6% R{sub o} because the heavy molecular weight degradation by-products (asphaltenes) that are not efficiently expelled from source rocks continue to degrade into progressively lower molecular weight hydrocarbons.« less

  10. Nuclear astrophysics lessons from INTEGRAL.

    PubMed

    Diehl, Roland

    2013-02-01

    Measurements of high-energy photons from cosmic sources of nuclear radiation through ESA's INTEGRAL mission have advanced our knowledge: new data with high spectral resolution showed that characteristic gamma-ray lines from radioactive decays occur throughout the Galaxy in its interstellar medium. Although the number of detected sources and often the significance of the astrophysical results remain modest, conclusions derived from this unique astronomical window of radiation originating from nuclear processes are important, complementing the widely-employed atomic-line based spectroscopy. We review the results and insights obtained in the past decade from gamma-ray line measurements of cosmic sources in the context of their astrophysical questions.

  11. 77 FR 41670 - Definition of Terms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... cryptography'', 2. On page 642, add the term ``Explosives'', 3. On page 650, add the term ``Nuclear reactor... ``Commerce Control List''. * * * * * Nuclear reactor. (Cat 0 and 2) includes the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the...

  12. Can captive populations function as sources of genetic variation for reintroductions into the wild? A case study of the Arabian oryx from the Phoenix Zoo and the Shaumari Wildlife Reserve, Jordan

    USGS Publications Warehouse

    Ochoa, Alexander; Wells, Stuart A.; West, Gary; Al-Smadi, Ma’en; Redondo, Sergio A.; Sexton, Sydnee R.; Culver, Melanie

    2016-01-01

    The Arabian oryx (Oryx leucoryx) historically ranged across the Arabian Peninsula and neighboring countries until its extirpation in 1972. In 1963–1964 a captive breeding program for this species was started at the Phoenix Zoo (PHX); it ultimately consisted of 11 animals that became known as the ‘World Herd’. In 1978–1979 a wild population was established at the Shaumari Wildlife Reserve (SWR), Jordan, with eight descendants from the World Herd and three individuals from Qatar. We described the mtDNA and nuclear genetic diversity and structure of PHX and SWR. We also determined the long-term demographic and genetic viability of these populations under different reciprocal translocation scenarios. PHX displayed a greater number of mtDNA haplotypes (n = 4) than SWR (n = 2). Additionally, PHX and SWR presented nuclear genetic diversities of N¯AN¯A = 2.88 vs. 2.75, H¯OH¯O = 0.469 vs. 0.387, and H¯EH¯E = 0.501 vs. 0.421, respectively. Although these populations showed no signs of inbreeding (F¯ISF¯IS ≈ 0), they were highly differentiated (G′′STGST′′ = 0.580; P < 0.001). Migration between PHX and SWR (Nm = 1, 4, and 8 individuals/generation) increased their genetic diversity in the short-term and substantially reduced the probability of extinction in PHX during 25 generations. Under such scenarios, maximum genetic diversities were achieved in the first generations before the effects of genetic drift became predominant. Although captive populations can function as sources of genetic variation for reintroduction programs, we recommend promoting mutual and continuous gene flow with wild populations to ensure the long-term survival of this species.

  13. A model to evaluate 100-year energy mix scenarios to facilitate deep decarbonization in the southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkisson, Mary A.; Qualls, A. L.

    The Southeast United States consumes approximately one billion megawatt-hours of electricity annually; roughly two-thirds from carbon dioxide (CO 2) emitting sources. The balance is produced by non-CO 2 emitting sources: nuclear power, hydroelectric power, and other renewables. Approximately 40% of the total CO 2 emissions come from the electric grid. The CO 2 emitting sources, coal, natural gas, and petroleum, produce approximately 372 million metric tons of CO 2 annually. The rest is divided between the transportation sector (36%), the industrial sector (20%), the residential sector (3%), and the commercial sector (2%). An Energy Mix Modeling Analysis (EMMA) tool wasmore » developed to evaluate 100-year energy mix strategies to reduce CO 2 emissions in the southeast. Current energy sector data was gathered and used to establish a 2016 reference baseline. The spreadsheet-based calculation runs 100-year scenarios based on current nuclear plant expiration dates, assumed electrical demand changes from the grid, assumed renewable power increases and efficiency gains, and assumed rates of reducing coal generation and deployment of new nuclear reactors. Within the model, natural gas electrical generation is calculated to meet any demand not met by other sources. Thus, natural gas is viewed as a transitional energy source that produces less CO 2 than coal until non-CO 2 emitting sources can be brought online. The annual production of CO 2 and spent nuclear fuel and the natural gas consumed are calculated and summed. A progression of eight preliminary scenarios show that nuclear power can substantially reduce or eliminate demand for natural gas within 100 years if it is added at a rate of only 1000 MWe per year. Any increases in renewable energy or efficiency gains can offset the need for nuclear power. However, using nuclear power to reduce CO 2 will result in significantly more spent fuel. More efficient advanced reactors can only marginally reduce the amount of spent fuel generated in the next 100 years if they are assumed to be available beginning around 2040. Thus closing the nuclear fuel cycle to reduce nuclear spent fuel inventories should be considered. Future work includes the incorporation of economic features into the model and the extension of the evaluation to the industrial sector. It will also be necessary to identify suitable sites for additional reactors.« less

  14. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLuchi, M.A.

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  15. Use of IMS data and its potential for research through global noble gases concentration maps

    NASA Astrophysics Data System (ADS)

    Terzi, Lucrezia; Kalinowski, Martin; Gueibe, Christophe; Camps, Johan; Gheddou, Abdelhakim; Kusmierczyk-Michulec, Jolanta; Schoeppner, Michael

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) established for verification purposes a global monitoring system for atmospheric radioisotopes and noble gas radioactivity. Daily activity concentrations have been collected worldwide for over 15 years providing unique data sets with long term time series that can be used for atmospheric circulation dynamics analysis. In this study, we want to emphasize the value of worldwide noble gas data by reconstructing global xenon concentration maps and comparing these observations with ATM simulations. By creating a residual plot, we can improve our understanding of our source estimation level for each region.

  16. Investigating source processes of isotropic events

    NASA Astrophysics Data System (ADS)

    Chiang, Andrea

    This dissertation demonstrates the utility of the complete waveform regional moment tensor inversion for nuclear event discrimination. I explore the source processes and associated uncertainties for explosions and earthquakes under the effects of limited station coverage, compound seismic sources, assumptions in velocity models and the corresponding Green's functions, and the effects of shallow source depth and free-surface conditions. The motivation to develop better techniques to obtain reliable source mechanism and assess uncertainties is not limited to nuclear monitoring, but they also provide quantitative information about the characteristics of seismic hazards, local and regional tectonics and in-situ stress fields of the region . This dissertation begins with the analysis of three sparsely recorded events: the 14 September 1988 US-Soviet Joint Verification Experiment (JVE) nuclear test at the Semipalatinsk test site in Eastern Kazakhstan, and two nuclear explosions at the Chinese Lop Nor test site. We utilize a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long period waveforms and first motion observations provides unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We examine the effects of the free surface on the moment tensor via synthetic testing, and apply the moment tensor based discrimination method to well-recorded chemical explosions. These shallow chemical explosions represent rather severe source-station geometry in terms of the vanishing traction issues. We show that the combined waveform and first motion method enables the unique discrimination of these events, even though the data include unmodeled single force components resulting from the collapse and blowout of the quarry face immediately following the initial explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve the fit to the data. When we apply the 3D model to real data, at long periods (20-50 seconds), we see good agreement in the solutions between the 1D and 3D models and slight improvement in waveform fits when using the 3D velocity model Green's functions. (Abstract shortened by ProQuest.).

  17. Use of Advanced Tsunami Hazard Assessment Techniques and Tsunami Source Characterizations in U.S. and International Nuclear Regulatory Activities

    NASA Astrophysics Data System (ADS)

    Kammerer, A. M.; Godoy, A. R.

    2009-12-01

    In response to the 2004 Indian Ocean Tsunami, as well as the anticipation of the submission of license applications for new nuclear facilities, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear power plants and other coastal facilities in the United States. To undertake this effort, the US NRC organized a collaborative research program jointly undertaken with researchers at the United States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) for the purpose of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. This study identified and modeled both seismic and landslide tsunamigenic sources in the near- and far-field. The results from this work are now being used directly as the basis for the review of tsunami hazard at potential nuclear plant sites. This application once again shows the importance that the earth sciences can play in addressing issues of importance to society. Because the Indian Ocean Tsunami was a global event, a number of cooperative international activities have also been initiated within the nuclear community. The results of US efforts are being incorporated into updated regulatory guidance for both the U.S. Nuclear Regulatory Commission and the United Nation’s International Atomic Energy Agency (IAEA). Coordinated efforts are underway to integrate state-of-the art tsunami warning tools developed by NOAA into NRC and IAEA activities. The goal of the warning systems project is to develop automated protocols that allow scientists at these agencies to have up-to-the minute user-specific information in hand shortly after a potential tsunami has been identified by the US Tsunami Warning System. Lastly, USGS and NOAA scientists are assisting the NRC and IAEA in a special Extra-Budgetary Program (IAEA EBP) on tsunami being coordinated by the IAEA’s International Seismic Safety Center. This IAEA EBP is focused on sharing lessons learned, tsunami hazard assessment techniques, and numerical tools among UN Member States. The complete body of basic and applied research undertaken in these many projects represents the combined effort of a diverse group of marine geologists, geophysicists, geotechnical engineers, seismologists and hydrodynamic modelers at multiple organizations.

  18. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  19. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  20. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  1. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  2. Alloying of steel and graphite by hydrogen in nuclear reactor

    NASA Astrophysics Data System (ADS)

    Krasikov, E.

    2017-02-01

    In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.

  3. Stars and Nuclei. Part II

    ERIC Educational Resources Information Center

    Ames, Oakes

    1972-01-01

    A brief review of the evidence that nuclear reactions are the main source of stellar energy, how nuclear reactions synthesize the elements, and how nuclear reactions determine the course of stellar evolution. (Author/CP)

  4. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.

    PubMed

    Aydarous, A Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 microm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 microm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed.

  5. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    As the debate over nuclear safety continues, the job market remains healthy for nuclear engineers. The average salary offered to new nuclear engineers with bachelor's degrees is $27,400. Salary averages and increases compare favorably with other engineering disciplines. Various job sources in the field are noted. (JN)

  6. Nuclear Gauges Used in Road Construction | RadTown USA ...

    EPA Pesticide Factsheets

    2017-08-07

    Nuclear gauges use radioactive sources to measure the thickness, density or make-up of a wide variety of materials and surfaces. When properly used, nuclear gauges will not expose the public to radiation. Nuclear gauges must be used safely and disposed of properly.

  7. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  8. Discovery of the Candidate Off-nuclear Ultrasoft Hyper-luminous X-Ray Source 3XMM J141711.1+522541

    NASA Astrophysics Data System (ADS)

    Lin, Dacheng; Carrasco, Eleazar R.; Webb, Natalie A.; Irwin, Jimmy A.; Dupke, Renato; Romanowsky, Aaron J.; Ramirez-Ruiz, Enrico; Strader, Jay; Homan, Jeroen; Barret, Didier; Godet, Olivier

    2016-04-01

    We report the discovery of an off-nuclear ultrasoft hyper-luminous X-ray source candidate 3XMM J141711.1+522541 in the inactive S0 galaxy SDSS J141711.07+522540.8 (z = 0.41827, dL = 2.3 Gpc) in the Extended Groth Strip. It is located at a projected offset of ˜1.″0 (5.2 kpc) from the nucleus of the galaxy and was serendipitously detected in five XMM-Newton observations in 2000 July. Two observations have enough counts and can be fitted with a standard thermal disk with an apparent inner disk temperature {{kT}}{MCD}˜ 0.13 {{keV}} and a 0.28-14.2 keV unabsorbed luminosity LX ˜ 4 × 1043 erg s-1 in the source rest frame. The source was still detected in three Chandra observations in 2002 August, with similarly ultrasoft but fainter spectra (kTMCD ˜ 0.17 keV, LX ˜ 0.5 × 1043 erg s-1). It was not detected in later observations, including two by Chandra in 2005 October, one by XMM-Newton in 2014 January, and two by Chandra in 2014 September-October, implying a long-term flux variation factor of >14. Therefore the source could be a transient with an outburst in 2000-2002. It has a faint optical counterpart candidate, with apparent magnitudes of mF606W = 26.3 AB mag and mF814W = 25.5 AB mag in 2004 December (implying an absolute V-band magnitude of ˜-15.9 AB mag). We discuss various explanations for the source and find that it is best explained as a massive black hole (BH) embedded in the nucleus of a possibly stripped satellite galaxy, with the X-ray outburst due to tidal disruption of a surrounding star by the BH. The BH mass is ˜105 M⊙, assuming the peak X-ray luminosity at around the Eddington limit.

  9. Uncertainties for seismic moment tensors and applications to nuclear explosions, volcanic events, and earthquakes

    NASA Astrophysics Data System (ADS)

    Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.

    2017-12-01

    When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).

  10. The Soviet program for peaceful uses of nuclear explosions. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordyke, M.D.

    1996-10-01

    An extensive review is given of the US and Russian efforts on peaceful uses of nuclear explosions (PNE). The Soviet PNE program was many times larger than the US Plowshare program in terms of both the number of applications explored with field experiments and the extent to which they were introduced into industrial use. Several PNE applications, such as deep seismic sounding and oil stimulation, have been explored in depth and appear to have had a positive cost benefit at minimal public risk. Closure of runaway gas wells is another possible application where all other techniques fail. However, the fundamentalmore » problem with PNEs is the fact that, if they are to be economically significant, there must be widespread use of the technology, involving large numbers of sites, each of which presents a potential source of radioactivity to the environment and nearby communities. Russia now has more than 100 sites where significant high-level radioactivity has been buried. Experience over the last 20 years in US and in today`s Russia shows that it is virtually impossible to gain public acceptance of such applications of nuclear energy. In addition, PNEs also pose a difficult problem in the arms control area. Under a comprehensive test ban, any country conducting PNEs would, in appearance if not in fact, receive information useful for designing new nuclear weapons or maintaining an existing nuclear stockpile, information denied to the other parties to the treaty. 6 tabs, 10 figs.« less

  11. French Nuclear Strategy in an Age of Terrorism

    DTIC Science & Technology

    2006-12-01

    PAGES 115 14. SUBJECT TERMS French Nuclear Strategy, Deterrence, Nuclear Doctrine, France , European Nuclear Deterrence, Franco-American Relations...Certain Idea of France (Princeton, NJ: Princeton University Press, 1993); Wilfrid L Kohl, French Nuclear Diplomacy (Princeton, NJ: Princeton University...nuclear program. 1. A Nuclear France : Inception of the force de frappe The French nuclear program started during the Fourth Republic, immediately

  12. Short- and long-term responses to molybdenum-99 shortages in nuclear medicine.

    PubMed

    Ballinger, J R

    2010-11-01

    Most nuclear medicine studies use (99)Tc(m), which is the decay product of (99)Mo. The world supply of (99)Mo comes from only five nuclear research reactors and availability has been much reduced in recent times owing to problems at the largest reactors. In the short-term there are limited actions that can be taken owing to capacity issues on alternative imaging modalities. In the long-term, stability of (99)Mo supply will rely on a combination of replacing conventional reactors and developing new technologies.

  13. Short- and long-term responses to molybdenum-99 shortages in nuclear medicine

    PubMed Central

    Ballinger, J R

    2010-01-01

    Most nuclear medicine studies use 99Tcm, which is the decay product of 99Mo. The world supply of 99Mo comes from only five nuclear research reactors and availability has been much reduced in recent times owing to problems at the largest reactors. In the short-term there are limited actions that can be taken owing to capacity issues on alternative imaging modalities. In the long-term, stability of 99Mo supply will rely on a combination of replacing conventional reactors and developing new technologies. PMID:20965898

  14. The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation

    DTIC Science & Technology

    2009-10-28

    global efforts to prevent nuclear proliferation” and, “the establishment of reliable sources of nuclear fuel for future civilian light water reactors ...nuclear reactor or on handling spent reactor fuel. (...continued) May 4, 2008; and, Chris...related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power Ltd. signed two consulting and

  15. The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation

    DTIC Science & Technology

    2009-07-17

    global efforts to prevent nuclear proliferation” and, “the establishment of reliable sources of nuclear fuel for future civilian light water reactors ...planned nuclear reactor or on handling spent reactor fuel. (...continued) May 4, 2008...contracting between U.S. firms and the UAE related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power

  16. 75 FR 43945 - Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... emitted by any source of radiation inside a nuclear installation, provided that such application does not... facilities, equipment, fuel, services, technology, or transport of nuclear materials related to any step... DEPARTMENT OF ENERGY Convention on Supplementary Compensation for Nuclear Damage Contingent Cost...

  17. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  18. A Spitzer Spectroscopic Survey of Low-Ionization Nuclear Emission-Line Regions: Characterization of the Central Source

    DTIC Science & Technology

    2009-02-01

    All Sky Survey ( 2MASS ) coordinates of the nucleus were used to verify the coordinates of each observation. The SH and LH staring observations include...isolate the nuclear region in the mapping obser- vations, fluxes were extracted from a single slit coinciding with the radio or 2MASS nuclear...presence of a hard X-ray point source coin- cident with either the radio or 2MASS nucleus and log(LX) 38 erg s−1. The resulting subsample consists of

  19. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  20. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A; Patterson, Eileen F

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, asmore » well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  1. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is tomore » provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  2. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  3. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  4. Chornobyl 30 years later: Radiation, pregnancies, and developmental anomalies in Rivne, Ukraine.

    PubMed

    Wertelecki, Wladimir; Chambers, Christina D; Yevtushok, Lyubov; Zymak-Zakutnya, Natalya; Sosyniuk, Zoriana; Lapchenko, Serhiy; Ievtushok, Bogdana; Akhmedzhanova, Diana; Komov, Oleksandr

    2017-01-01

    In the 30 years since the Chornobyl nuclear power plant disaster, there is evidence of persistent levels of incorporated ionizing radiation in adults, children and pregnant women in the surrounding area. Measured levels of Cesium-137 vary by region, and may be influenced by dietary and water sources as well as proximity to nuclear power plants. Since 2000, comprehensive, population-based birth defects monitoring has been performed in selected regions of Ukraine to evaluate trends and to generate hypotheses regarding potential causes of unexplained variations in defect rates. Significantly higher rates of microcephaly, neural tube defects, and microphthalmia have been identified in selected regions of Ukraine collectively known as Polissia compared to adjacent regions collectively termed non-Polissia, and these significantly higher rates were evident particularly in the years 2000-2009. The Polissia regions have also demonstrated higher mean whole body counts of Cesium-137 compared to values in individuals residing in other non-Polissia regions. The potential causal relationship between persistent ionizing radiation pollution and selected congenital anomaly rates supports the need for a more thorough, targeted investigation of the sources of persistent ionizing radiation and the biological plausibility of a potential teratogenic effect. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. The NASA space power technology program

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1992-01-01

    NASA has a broad technology program in the field of space power. This paper describes that program, including the roles and responsibilities of the various NASA field centers and major contractors. In the power source area, the paper discusses the SP-100 Space Nuclear Power Project, which has been under way for about seven years and is making substantial progress toward development of components for a 100-kilowatt power system that can be scaled to other sizes. This system is a candidate power source for nuclear electric propulsion, as well as for a power plant for a lunar base. In the energy storage area, the paper describes NASA's battery- and fuel-cell development programs. NASA is actively working on NiCd, NiH2, and lithium batteries. A status update is also given on a U.S. Air Force-sponsored program to develop a large (150 ampere-hour) lithium-thionyl chloride battery for the Centaur upper-stage launch vehicle. Finally, the area of power management and distribution (PMAD) is addressed, including power system components such as solid-state switches and power integrated circuits. Automated load management and other computer-controlled functions offer considerable payoffs. The state of the art in space power is described, along with NASA's medium- and long-term goals in the area.

  6. The Effect of Gestational and Lactational Age on the Human Milk Metabolome

    PubMed Central

    Sundekilde, Ulrik K.; Downey, Eimear; O’Mahony, James A.; O’Shea, Carol-Anne; Ryan, C. Anthony; Kelly, Alan L.; Bertram, Hanne C.

    2016-01-01

    Human milk is the ideal nutrition source for healthy infants during the first six months of life and a detailed characterisation of the composition of milk from mothers that deliver prematurely (<37 weeks gestation), and of how human milk changes during lactation, would benefit our understanding of the nutritional requirements of premature infants. Individual milk samples from mothers delivering prematurely and at term were collected. The human milk metabolome, established by nuclear magnetic resonance (NMR) spectroscopy, was influenced by gestational and lactation age. Metabolite profiling identified that levels of valine, leucine, betaine, and creatinine were increased in colostrum from term mothers compared with mature milk, while those of glutamate, caprylate, and caprate were increased in mature term milk compared with colostrum. Levels of oligosaccharides, citrate, and creatinine were increased in pre-term colostrum, while those of caprylate, caprate, valine, leucine, glutamate, and pantothenate increased with time postpartum. There were differences between pre-term and full-term milk in the levels of carnitine, caprylate, caprate, pantothenate, urea, lactose, oligosaccharides, citrate, phosphocholine, choline, and formate. These findings suggest that the metabolome of pre-term milk changes within 5–7 weeks postpartum to resemble that of term milk, independent of time of gestation at pre-mature delivery. PMID:27213440

  7. The Effect of Gestational and Lactational Age on the Human Milk Metabolome.

    PubMed

    Sundekilde, Ulrik K; Downey, Eimear; O'Mahony, James A; O'Shea, Carol-Anne; Ryan, C Anthony; Kelly, Alan L; Bertram, Hanne C

    2016-05-19

    Human milk is the ideal nutrition source for healthy infants during the first six months of life and a detailed characterisation of the composition of milk from mothers that deliver prematurely (<37 weeks gestation), and of how human milk changes during lactation, would benefit our understanding of the nutritional requirements of premature infants. Individual milk samples from mothers delivering prematurely and at term were collected. The human milk metabolome, established by nuclear magnetic resonance (NMR) spectroscopy, was influenced by gestational and lactation age. Metabolite profiling identified that levels of valine, leucine, betaine, and creatinine were increased in colostrum from term mothers compared with mature milk, while those of glutamate, caprylate, and caprate were increased in mature term milk compared with colostrum. Levels of oligosaccharides, citrate, and creatinine were increased in pre-term colostrum, while those of caprylate, caprate, valine, leucine, glutamate, and pantothenate increased with time postpartum. There were differences between pre-term and full-term milk in the levels of carnitine, caprylate, caprate, pantothenate, urea, lactose, oligosaccharides, citrate, phosphocholine, choline, and formate. These findings suggest that the metabolome of pre-term milk changes within 5-7 weeks postpartum to resemble that of term milk, independent of time of gestation at pre-mature delivery.

  8. Evaluation for relationship among source parameters of underground nuclear tests in Northern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, G.; Che, I. Y.

    2017-12-01

    We evaluated relationship among source parameters of underground nuclear tests in northern Korean Peninsula using regional seismic data. Dense global and regional seismic networks are incorporated to measure locations and origin times precisely. Location analyses show that distance among the locations is tiny on a regional scale. The tiny location-differences validate a linear model assumption. We estimated source spectral ratios by excluding path effects based spectral ratios of the observed seismograms. We estimated empirical relationship among depth of burials and yields based on theoretical source models.

  9. A laser-induced repetitive fast neutron source applied for gold activation analysis

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.

  10. A laser-induced repetitive fast neutron source applied for gold activation analysis.

    PubMed

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3).

  11. The large area high resolution gamma ray astrophysics facility - HR-GRAF

    NASA Astrophysics Data System (ADS)

    Fenyves, E. J.; Chaney, R. C.; Hoffman, J. H.; Cline, D. B.; Atac, M.; Park, J.; White, S. R.; Zych, A. D.; Tumer, Q. T.; Hughes, E. B.

    1990-03-01

    The long-term program is described in terms of its equipment, scientific objectives, and long-range scientific studies. A prototype of a space-based large-area high-resolution gamma-ray facility (HR-GRAF) is being developed to examine pointlike and diffuse gamma-ray sources in the range 1 MeV-100 GeV. The instrument for the facility is proposed to have high angular and energy resolution and very high sensitivity to permit the study of the proposed objects. The primary research targets include the mapping of galactic gamma radiation, observing the angular variations of diffuse gamma rays, and studying the Galactic center with particular emphasis on the hypothetical black hole. Also included in the research plans are obtaining data on gamma-ray bursters, investigating the transmission of gamma rays from cold dark matter, and studying nuclear gamma-ray lines.

  12. 77 FR 69449 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    .... Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power...., Constellation Power Source Generation, Inc., Cow Branch Wind Power, L.L.C., CR Clearing, LLC, Criterion Power...

  13. Nuclear Energy for Water Desalting, A Bibliography.

    ERIC Educational Resources Information Center

    Kuhns, Helen F., Comp.; And Others

    This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…

  14. Binary supersoft X-ray sources and the supernova Ia progenitor problem

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas John

    In this thesis I present a study of several binary supersoft X-ray sources in order to assess their properties and to determine whether they may be supernova Ia (SN Ia) progenitors. The first chapter is an introduction to the problem and the sources of interest. In the second and third chapters I present an X-ray spectroscopic study of the recurrent nova RS Ophiuchi (RS Oph) during and after its 2006 outburst, carried out with Chandra and XMM-Newton. I discuss the physical origins of the X-ray emission at each stage of the outburst and place the first direct constraints on the mass of the white dwarf, which is very close to the Chandrasekhar limit. I also show that the surface composition of the white dwarf during the supersoft phase is consistent with nuclear processed material, indicating that RS Oph retains mass after each outburst and is likely growing in mass with time, and is therefore a potential SN Ia progenitor. I discuss the lack of accretion signatures in the quiescent emission from RS Oph, which are at odds with the high frequency of nova outbursts, and explore the possibility that an alternative accretion model may account for the quiescent X-ray properties in the system. Finally, in the fourth chapter, I examine the supersoft X-ray source (SSS) population in the nearby galaxy M31 at X-ray, ultraviolet (UV) and optical wavelengths. I explore the long-term behavior of these objects, and find that a much smaller fraction are persistent or recurrent X-ray sources than in the Magellanic Clouds. I carry out a search for counterparts of the SSS using the Galactic Evolution Explorer (GALEX) satellite and the WIYN 3.5m telescope, and find that the majority of sources do not have any UV counterparts. For those that do, I find that the UV sources have properties consistent with young, massive stars in M31. I find indications that some SSS may be in high mass binaries. If these sources are nuclear burning white dwarfs, then they may be the progenitors of the SNe Ia that appear to be associated with recent star formation.

  15. Cloning of non-human primates: the road “less traveled by”

    PubMed Central

    SPARMAN, MICHELLE L.; TACHIBANA, MASAHITO; MITALIPOV, SHOUKHRAT M.

    2011-01-01

    Early studies on cloning of non-human primates by nuclear transfer utilized embryonic blastomeres from preimplantation embryos which resulted in the reproducible birth of live offspring. Soon after, the focus shifted to employing somatic cells as a source of donor nuclei (somatic cell nuclear transfer, SCNT). However, initial efforts were plagued with inefficient nuclear reprogramming and poor embryonic development when standard SCNT methods were utilized. Implementation of several key SCNT modifications was critical to overcome these problems. In particular, a non-invasive method of visualizing the metaphase chromosomes during enucleation was developed to preserve the reprogramming capacity of monkey oocytes. These modifications dramatically improved the efficiency of SCNT, yielding high blastocyst development in vitro. To date, SCNT has been successfully used to derive pluripotent embryonic stem cells (ESCs) from adult monkey skin fibroblasts. These remarkable advances have the potential for development of human autologous ESCs and cures for many human diseases. Reproductive cloning of nonhuman primates by SCNT has not been achieved yet. We have been able to establish several pregnancies with SCNT embryos which, so far, did not progress to term. In this review, we summarize the approaches, obstacles and accomplishments of SCNT in a non-human primate model. PMID:21404187

  16. Cloning of non-human primates: the road "less traveled by".

    PubMed

    Sparman, Michelle L; Tachibana, Masahito; Mitalipov, Shoukhrat M

    2010-01-01

    Early studies on cloning of non-human primates by nuclear transfer utilized embryonic blastomeres from preimplantation embryos which resulted in the reproducible birth of live offspring. Soon after, the focus shifted to employing somatic cells as a source of donor nuclei (somatic cell nuclear transfer, SCNT). However, initial efforts were plagued with inefficient nuclear reprogramming and poor embryonic development when standard SCNT methods were utilized. Implementation of several key SCNT modifications was critical to overcome these problems. In particular, a non-invasive method of visualizing the metaphase chromosomes during enucleation was developed to preserve the reprogramming capacity of monkey oocytes. These modifications dramatically improved the efficiency of SCNT, yielding high blastocyst development in vitro. To date, SCNT has been successfully used to derive pluripotent embryonic stem cells (ESCs) from adult monkey skin fibroblasts. These remarkable advances have the potential for development of human autologous ESCs and cures for many human diseases. Reproductive cloning of nonhuman primates by SCNT has not been achieved yet. We have been able to establish several pregnancies with SCNT embryos which, so far, did not progress to term. In this review, we summarize the approaches, obstacles and accomplishments of SCNT in a non-human primate model.

  17. Irans Nuclear Program: Tehrans Compliance with International Obligations

    DTIC Science & Technology

    2016-04-07

    ratified the nuclear Nonproliferation Treaty (NPT) in 1970. Article III of the treaty requires non-nuclear- weapon states-parties 1 to accept...concern that Tehran is pursuing nuclear weapons . Tehran’s construction of gas centrifuge uranium enrichment facilities is currently the main source...uranium (HEU), which is one of the two types of fissile material used in nuclear weapons . HEU can also be used as fuel in certain types of nuclear

  18. Irans Nuclear Program: Tehrans Compliance with International Obligations

    DTIC Science & Technology

    2016-03-03

    ratified the nuclear Nonproliferation Treaty (NPT) in 1970. Article III of the treaty requires non-nuclear- weapon states-parties 1 to accept...concern that Tehran is pursuing nuclear weapons . Tehran’s construction of gas centrifuge uranium enrichment facilities is currently the main source...uranium (HEU), which is one of the two types of fissile material used in nuclear weapons . HEU can also be used as fuel in certain types of nuclear

  19. Nuclear War. The moral dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Child, J.W.

    1985-01-01

    U.S. nuclear policy has become the target of increasing criticism during the past decade. Critics often argue that the use of nuclear weapons would be irrational, would destroy humankind, and thus could not serve any rational policy goal. Other critics point to the immortality of the use of nuclear weapons. Both groups condemn U.S. military policy. In Nuclear War, James Child considers and rejects both these lines of criticism. He argues that a policy of deterrence can be both rational and moral; that U.S. nuclear policy is, on balance, based on rational and moral foundations. Child examines near-term consequences ofmore » a nuclear war and finds them ghastly but not unthinkable or incomparable to the havoc produced by previous wars. He also analyzes long-term consequences, such as those proposed by the ''nuclear winter'' theory, and finds the fear of total annihilation of humankind to be unfounded.« less

  20. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  1. Spallation processes and nuclear interaction products of cosmic rays.

    PubMed

    Silberberg, R; Tsao, C H

    1990-08-01

    Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.

  2. Improvements and limitations on understanding of atmospheric processes of Fukushima Daiichi NPS radioactivity

    NASA Astrophysics Data System (ADS)

    Yamazawa, Hiromi; Terasaka, Yuta; Mizutani, Kenta; Sugiura, Hiroki; Hirao, Shigekazu

    2017-04-01

    Understanding on the release of radioactivity into the atmosphere from the accidental units of Fukushima Daiichi Nuclear Power Station have been improved owing to recent analyses of atmospheric concentrations of radionuclide. Our analysis of gamma-ray spectra from monitoring posts located about 100 km to the south of the site revealed temporal changes of atmospheric concentrations of several key nuclides including noble gas Xe-133 in addition to radio-iodine and cesium nuclides, including I-131 and Cs-137, at a 10 minute interval. By using the atmospheric concentration data, in combination with an inverse atmospheric transport modelling with a Bayesian statistical method, a modification was proposed for the widely used Katata's source term. A source term for Xe-133 was also proposed. Although the atmospheric concentration data and the source terms help us understand the atmospheric transport processes of radionuclides, they still have significant uncertainty due to limitations in availability of the concentration data. There still remain limitations in the atmospheric transport modeling. The largest uncertainty in the model is in the deposition processes. It had been pointed out that, in the 100 km range from the accidental site, there were locations at which the ambient dose rate significantly increased a few hours before precipitation detectors recorded the start of rain. According to our analysis, the dose rate increase was not directly caused by the air-borne radioactivity but by deposition. This phenomenon can be attributed to a deposition process in which evaporating precipitation enhances efficiency of deposition even in a case where no precipitation is observed at ground level.

  3. NSRD-10: Leak Path Factor Guidance Using MELCOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, David; Humphries, Larry L.

    Estimates of the source term from a U.S. Department of Energy (DOE) nuclear facility requires that the analysts know how to apply the simulation tools used, such as the MELCOR code, particularly for a complicated facility that may include an air ventilation system and other active systems that can influence the environmental pathway of the materials released. DOE has designated MELCOR 1.8.5, an unsupported version, as a DOE ToolBox code in its Central Registry, which includes a leak-path-factor guidance report written in 2004 that did not include experimental validation data. To continue to use this MELCOR version requires additional verificationmore » and validations, which may not be feasible from a project cost standpoint. Instead, the recent MELCOR should be used. Without any developer support and lack of experimental data validation, it is difficult to convince regulators that the calculated source term from the DOE facility is accurate and defensible. This research replaces the obsolete version in the 2004 DOE leak path factor guidance report by using MELCOR 2.1 (the latest version of MELCOR with continuing modeling development and user support) and by including applicable experimental data from the reactor safety arena and from applicable experimental data used in the DOE-HDBK-3010. This research provides best practice values used in MELCOR 2.1 specifically for the leak path determination. With these enhancements, the revised leak-path-guidance report should provide confidence to the DOE safety analyst who would be using MELCOR as a source-term determination tool for mitigated accident evaluations.« less

  4. U.S. and Russian Collaboration in the Area of Nuclear Forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristo, M J

    2007-10-22

    Nuclear forensics has become increasingly important in the fight against illicit trafficking in nuclear and other radioactive materials. The illicit trafficking of nuclear materials is, of course, an international problem; nuclear materials may be mined and milled in one country, manufactured in a second country, diverted at a third location, and detected at a fourth. There have been a number of articles in public policy journals in the past year that call for greater interaction between the U. S. and the rest of the world on the topic of nuclear forensics. Some believe that such international cooperation would help providemore » a more certain capability to identify the source of the nuclear material used in a terrorist event. An improved international nuclear forensics capability would also be important as part of the IAEA verification toolkit, particularly linked to increased access provided by the additional protocol. A recent study has found that, although international progress has been made in securing weapons-usable HEU and Pu, the effort is still insufficient. They found that nuclear material, located in 40 countries, could be obtained by terrorists and criminals and used for a crude nuclear weapon. Through 2006, the IAEA Illicit Trafficking Database had recorded a total of 607 confirmed events involving illegal possession, theft, or loss of nuclear and other radioactive materials. Although it is difficult to predict the future course of such illicit trafficking, increasingly such activities are viewed as significant threats that merit the development of special capabilities. As early as April, 1996, nuclear forensics was recognized at the G-8 Summit in Moscow as an important element of an illicit nuclear trafficking program. Given international events over the past several years, the value and need for nuclear forensics seems greater than ever. Determining how and where legitimate control of nuclear material was lost and tracing the route of the material from diversion through interdiction are important goals for nuclear forensics and attribution. It is equally important to determine whether additional devices or materials that pose a threat to public safety are also available. Finding the answer to these questions depends on determining the source of the material and its method of production. Nuclear forensics analysis and interpretation provide essential insights into methods of production and sources of illicit radioactive materials. However, they are most powerful when combined with other sources of information, including intelligence and traditional detective work. The certainty of detection and punishment for those who remove nuclear materials from legitimate control provides the ultimate deterrent for such diversion and, ultimately, for the intended goal of such diversion, including nuclear terrorism or proliferation. Consequently, nuclear forensics is an integral part of 'nuclear deterrence' in the 21st century. Nuclear forensics will always be limited by the diagnostic information inherent in the interdicted material. Important markers for traditional forensics (fingerprints, stray material, etc.) can be eliminated or obscured, but many nuclear materials have inherent isotopic or chemical characteristics that serve as unequivocal markers of specific sources, production processes, or transit routes. The information needed for nuclear forensics goes beyond that collected for most commercial and international verification activities. Fortunately, the international nuclear engineering enterprise has a restricted number of conspicuous process steps that makes the interpretation process easier. Ultimately, though, it will always be difficult to distinguish between materials that reflect similar source or production histories, but are derived from disparate sites. Due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. There are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Therefore, a knowledge management system that utilizes information resources relevant to nuclear forensic and attribution signatures, processes, origins, and pathways, allowing subject matter experts to access the right information in order to interpret forensics data and draw appropriate conclusions, is essential. In order to determine the origin, point of diversion of the nuclear material, and those responsible for the unauthorized transfer, close relationships are required between governments who maintain inventories and data of fissile or other radioactive materials. Numerous databases exist in many countries and organizations that could be valuable for the future development and application of nuclear forensics.« less

  5. Long-term retrievability and safeguards for immobilized weapons plutonium in geologic storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, P.F.

    1996-05-01

    If plutonium is not ultimately used as an energy source, the quantity of excess weapons plutonium (w-Pu) that would go into a US repository will be small compared to the quantity of plutonium contained in the commercial spent fuel in the repository, and the US repository(ies) will likely be only one (or two) locations out of many around the world where commercial spent fuel will be stored. Therefore excess weapons plutonium creates a small perturbation to the long-term (over 200,000 yr) global safeguard requirements for spent fuel. There are details in the differences between spent fuel and immobilized w-Pu wastemore » forms (i.e. chemical separation methods, utility for weapons, nuclear testing requirements), but these are sufficiently small to be unlikely to play a significant role in any US political decision to rebuild weapons inventories, or to change the long-term risks of theft by subnational groups.« less

  6. Uncertainty analysis of atmospheric deposition simulation of radiocesium and radioiodine from Fukushima Daiichi Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Morino, Yu; Ohara, Toshimasa; Yumimoto, Keiya

    2014-05-01

    Chemical transport models (CTM) played key roles in understanding the atmospheric behaviors and deposition patterns of radioactive materials emitted from the Fukushima Daiichi nuclear power plant (FDNPP) after the nuclear accident that accompanied the great Tohoku earthquake and tsunami on 11 March 2011. In this study, we assessed uncertainties of atmospheric simulation by comparing observed and simulated deposition of radiocesium (137Cs) and radioiodine (131I). Airborne monitoring survey data were used to assess the model performance of 137Cs deposition patterns. We found that simulation using emissions estimated with a regional-scale (~500 km) CTM better reproduced the observed 137Cs deposition pattern in eastern Japan than simulation using emissions estimated with local-scale (~50 km) or global-scale CTM. In addition, we estimated the emission amount of 137Cs from FDNPP by combining a CTM, a priori source term, and observed deposition data. This is the first use of airborne survey data of 137Cs deposition (more than 16,000 data points) as the observational constraints in inverse modeling. The model simulation driven by a posteriori source term achieved better agreements with 137Cs depositions measured by aircraft survey and at in-situ stations over eastern Japan. Wet deposition module was also evaluated. Simulation using a process-based wet deposition module reproduced the observations well, whereas simulation using scavenging coefficients showed large uncertainties associated with empirical parameters. The best-available simulation reproduced the observed 137Cs deposition rates in high-deposition areas (≥10 kBq m-2) within one order of magnitude. Recently, 131I deposition map was released and helped to evaluate model performance of 131I deposition patterns. Observed 131I/137Cs deposition ratio is higher in areas southwest of FDNPP than northwest of FDNPP, and this behavior was roughly reproduced by a CTM if we assume that released 131I is more in gas phase than particles. Analysis of 131I deposition gives us better constraint for the atmospheric simulation of 131I, which is important in assessing public radiation exposure.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowla, Farid U.

    Subsurface sensors that employ radioisotopes, such 241Am-Be and 137Cs, for reservoir characterization must be tracked for safety and security reasons. Other radiological sources are also widely used in medicine. The radiological source containers, in both applications, are small, mobile and used widely worldwide. The nuclear sources pose radiological dispersal device (RDD) security risks. Security concerns with the industrial use of radionuclide sources is in fact quite high as it is estimated that each year hundreds of sealed sources go missing, either lost or stolen. Risk mitigation efforts include enhanced regulations, source-use guidelines, research and development on electronic tracking of sources.more » This report summarizes the major elements of the requirements and operational concepts of nuclear sources with the goal of developing automated electronic tagging and locating systems.« less

  8. Neutral hydrogen in elliptical galaxies with nuclear radio sources and optical emission lines

    NASA Technical Reports Server (NTRS)

    Dressel, L. L.; Bania, T. M.; Oconnell, R. W.

    1982-01-01

    An H I detection survey of eleven elliptical galaxies with powerful nuclear radio sources was conducted, using the 305 m antenna of Arecibo Observatory, to test the hypothesis that large H I mass is conductive to the formation of nuclear radio sources in elliptical galaxies. The H I was detected in emission in UGC 09114 and was possibly detected in absorption in UGC 06671. Observations of the remaining galaxies were not sensitive enough to support or refute the hypothesis. Data was combined from other H I surveys and spectroscopic surveys to search for correlations of H I mass with other galactic properties and environmental conditions. Strong correlations of (O II) lambda 3727 emission with H I content and with nuclear radio power were found. The latter two properties may simply indicate, respectively, whether a significant amount of gas is available to be ionized and whether energy is provided by nuclear activity for ionization. No dependence of H I content on optical luminosity or on degree of isolation from other galaxies was found.

  9. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, N. Jill

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the precedingmore » year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  10. Nustar and Chandra Insight into the Nature of the 3-40 Kev Nuclear Emission in Ngc 253

    NASA Technical Reports Server (NTRS)

    Lehmer, Bret D.; Wik, Daniel R.; Hornschemeier, Ann E.; Ptak, Andrew; Antoniu, V.; Argo, M.K.; Bechtol, K.; Boggs, S.; Christensen, F.E.; Craig, W.W.; hide

    2013-01-01

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 kiloelectron volt intensity of the inner approximately 20 arcsec (approximately 400 parsec) nuclear region, as measured by NuSTAR, varied by a factor of approximately 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L (sub 2-10 kiloelectron volt) approximately few × 10 (exp 39) erg per s) point source located approximately 1 arcsec from the dynamical center of the galaxy (within the sigma 3 positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies greater than or approximately equal to 3 kiloelectron volts. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (power-law model spectral fit value, N(sub H), approximately equal to 1.6 x 10 (exp 23) per square centimeter) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (Phi is approximately equal to 0.4 arcsec); however, this source was offset from the 2012 source position by approximately 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is much greater than 99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 kiloelectron volts) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum indicate that the 2003 source is a better AGN candidate than any of the sources detected in our 2012 campaign; however, we were unable to rule out a ULX nature for this source. Future NuSTAR and Chandra monitoring would be well equipped to break the degeneracy between the AGN and ULX nature of the 2003 source, if again caught in a high state.

  11. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    NASA Astrophysics Data System (ADS)

    Winslow, Anne

    2011-06-01

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels—particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a "nuclear renaissance", this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

  12. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winslow, Anne

    2011-06-28

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittencymore » of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.« less

  13. Manned space flight nuclear system safety. Volume 1: base nuclear system safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The mission and terrestrial nuclear safety aspects of future long duration manned space missions in low earth orbit are discussed. Nuclear hazards of a typical low earth orbit Space Base mission (from natural sources and on-board nuclear hardware) have been identified and evaluated. Some of the principal nuclear safety design and procedural considerations involved in launch, orbital, and end of mission operations are presented. Areas of investigation include radiation interactions with the crew, subsystems, facilities, experiments, film, interfacing vehicles, nuclear hardware and the terrestrial populace. Results of the analysis indicate: (1) the natural space environment can be the dominant radiation source in a low earth orbit where reactors are effectively shielded, (2) with implementation of safety guidelines the reactor can present a low risk to the crew, support personnel, the terrestrial populace, flight hardware and the mission, (3) ten year missions are feasible without exceeding integrated radiation limits assigned to flight hardware, and (4) crew stay-times up to one year are feasible without storm shelter provisions.

  14. Nuclear Safety for Space Systems

    NASA Astrophysics Data System (ADS)

    Offiong, Etim

    2010-09-01

    It is trite, albeit a truism, to say that nuclear power can provide propulsion thrust needed to launch space vehicles and also, to provide electricity for powering on-board systems, especially for missions to the Moon, Mars and other deep space missions. Nuclear Power Sources(NPSs) are known to provide more capabilities than solar power, fuel cells and conventional chemical means. The worry has always been that of safety. The earliest superpowers(US and former Soviet Union) have designed and launched several nuclear-powered systems, with some failures. Nuclear failures and accidents, however little the number, could be far-reaching geographically, and are catastrophic to humans and the environment. Building on the numerous research works on nuclear power on Earth and in space, this paper seeks to bring to bear, issues relating to safety of space systems - spacecrafts, astronauts, Earth environment and extra terrestrial habitats - in the use and application of nuclear power sources. It also introduces a new formal training course in Space Systems Safety.

  15. Moment Tensor Analysis of Shallow Sources

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.; Yoo, S. H.

    2015-12-01

    A potential issue for moment tensor inversion of shallow seismic sources is that some moment tensor components have vanishing amplitudes at the free surface, which can result in bias in the moment tensor solution. The effects of the free-surface on the stability of the moment tensor method becomes important as we continue to investigate and improve the capabilities of regional full moment tensor inversion for source-type identification and discrimination. It is important to understand these free surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have shallow seismicity such as volcanoes and geothermal systems. In this study, we apply the moment tensor based discrimination method to the HUMMING ALBATROSS quarry blasts. These shallow chemical explosions at approximately 10 m depth and recorded up to several kilometers distance represent rather severe source-station geometry in terms of vanishing traction issues. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first motion method enables the unique discrimination of these events. Recovering the correct yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique.

  16. On the future of civilian plutonium: An assessment of technological impediments to nuclear terrorism and proliferation

    NASA Astrophysics Data System (ADS)

    Avedon, Roger Edmond

    This dissertation addresses the value of developing diversion- and theft-resistant nuclear power technology, given uncertain future demand for nuclear power, and uncertain risks of nuclear terrorism and of proliferation from the reprocessing of civilian plutonium. The methodology comprises four elements: Economics. An economic growth model coupled with market penetration effects for plutonium and for the hypothetical new technology provides a range of estimates for future nuclear demand. A flow model accounts for the longevity of capital assets (nuclear plants) over time. Terrorism. The commercial nuclear fuel cycle may provide a source of fissile material for terrorists seeking to construct a crude nuclear device. An option value model is used to estimate the effects of the hypothetical new technology on reducing the probability of theft. A game theoretic model is used to explore the deterrence value of physical security and then to draw conclusions about how learning on the part of terrorists or security forces might affect the theft estimate. The principal uncertainties in the theft model can be updated using Bayesian techniques as new data emerge. Proliferation. Access to fissile material is the principal technical impediment to a state's acquisition of nuclear weapons. A game theoretic model is used to determine the circumstances under which a state may proliferate via diversion. The model shows that the hypothetical new technology will have little value for counter-proliferation if diversion is not a preferred proliferation method. A technology policy analysis of the choice of proliferation method establishes that diversion is unlikely to be used because it has no constituency among the important parties to the decision, namely the political leadership, the scientific establishment, and the military. Value. The decision whether to develop a diversion- and theft-resistant fuel cycle depends on the perceived value of avoiding nuclear terrorism and proliferation. The opportunity cost of such events is prohibitively difficult to assess. Instead, recent nonproliferation efforts and long term funding of organizations with nonproliferation objectives suggest a willingness-to-pay to avoid breaches in nuclear security. The cancellation of the Integral Fast Reactor in 1994 is analyzed using the methodology developed in the dissertation.

  17. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less

  18. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-01-01

    This Policy Paper recommends the actions deemed necessary to assure that future U.S. and non-Communist countries' nuclear fuels supply will be adequate, considering the following: estimates of modest growth in overall energy demand, electrical energy demand, and nuclear electrical energy demand in the U.S. and abroad, predicated upon the continuing trends involving conservation of energy, increased use of electricity, and moderate economic growth (Chap. I); possibilities for the development and use of all domestic resources providing energy alternatives to imported oil and gas, consonant with current environmental, health, and safety concerns (Chap. II); assessment of the traditional energy sources whichmore » provide current alternatives to nuclear energy (Chap. II); evaluation of realistic expectations for additional future energy supplies from prospective technologies: enhanced recovery from traditional sources and development and use of oil shales and synthetic fuels from coal, fusion and solar energy (Chap. II); an accounting of established nuclear technology in use today, in particular the light water reactor, used for generating electricity (Chap. III); an estimate of future nuclear technology, in particular the prospective fast breeder (Chap. IV); current and projected nuclear fuel demand and supply in the U.S. and abroad (Chaps. V and VI); the constraints encountered today in meeting nuclear fuels demand (Chap. VII); and the major unresolved issues and options in nuclear fuels supply and use (Chap. VIII). The principal conclusions and recommendations (Chap. IX) are that the U.S. and other industrialized countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends on the secure supply of energy resources and the ability to substitute one form of fuel for another.« less

  19. An ideal sealed source life-cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tompkins, Joseph Andrew

    2009-01-01

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources domore » not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.« less

  20. Qualification tests for {sup 192}Ir sealed sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iancso, Georgeta, E-mail: georgetaiancso@yahoo.com; Iliescu, Elena, E-mail: georgetaiancso@yahoo.com; Iancu, Rodica, E-mail: georgetaiancso@yahoo.com

    This paper describes the results of qualification tests for {sup 192}Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering 'Horia Hulubei' (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m;more » tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the {sup 192}Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.« less

  1. Perception of Radiation Risk as a Predictor of Mid-Term Mental Health after a Nuclear Disaster: The Fukushima Health Management Survey

    PubMed Central

    Miura, Itaru; Nagai, Masato; Maeda, Masaharu; Harigane, Mayumi; Fujii, Senta; Takahashi, Hideto; Ohira, Tetsuya; Yasumura, Seiji; Abe, Masafumi

    2017-01-01

    Predictive factors including risk perception for mid-term mental health after a nuclear disaster remain unknown. The purpose of this study was to examine the association between perceived radiation risk and other factors at baseline and mid-term mental health after the Fukushima Daiichi nuclear disaster of 2011 in Japan. A mail-based questionnaire survey was conducted in January 2012 and January 2013. Mental health status was assessed using the K6 scale. Psychological distress over the 2-year period was categorized into the following four groups: chronic, recovered, resistant, or worsened. Most participants (80.3%) were resistant to the disaster. A positive association was found between the radiation risk perception regarding immediate effects and the worsened group in women. Baseline post-traumatic stress disorder (PTSD) or a history of psychiatric disease predicted being in the chronic or worsened group in mid-term course. These results suggest that evacuees who believed that their health was substantially affected by the nuclear disaster were at an increased risk of having poor mid-term mental health in women. Careful assessment of risk perception after a nuclear disaster, including the presence of PTSD or a history of psychiatric disease, is needed for appropriate interventions. PMID:28914809

  2. Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling

    NASA Astrophysics Data System (ADS)

    Zalewski, Daniel; Jodoin, Vincent

    2001-04-01

    Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.

  3. Perception of Radiation Risk as a Predictor of Mid-Term Mental Health after a Nuclear Disaster: The Fukushima Health Management Survey.

    PubMed

    Miura, Itaru; Nagai, Masato; Maeda, Masaharu; Harigane, Mayumi; Fujii, Senta; Oe, Misari; Yabe, Hirooki; Suzuki, Yuriko; Takahashi, Hideto; Ohira, Tetsuya; Yasumura, Seiji; Abe, Masafumi

    2017-09-15

    Predictive factors including risk perception for mid-term mental health after a nuclear disaster remain unknown. The purpose of this study was to examine the association between perceived radiation risk and other factors at baseline and mid-term mental health after the Fukushima Daiichi nuclear disaster of 2011 in Japan. A mail-based questionnaire survey was conducted in January 2012 and January 2013. Mental health status was assessed using the K6 scale. Psychological distress over the 2-year period was categorized into the following four groups: chronic, recovered, resistant, or worsened. Most participants (80.3%) were resistant to the disaster. A positive association was found between the radiation risk perception regarding immediate effects and the worsened group in women. Baseline post-traumatic stress disorder (PTSD) or a history of psychiatric disease predicted being in the chronic or worsened group in mid-term course. These results suggest that evacuees who believed that their health was substantially affected by the nuclear disaster were at an increased risk of having poor mid-term mental health in women. Careful assessment of risk perception after a nuclear disaster, including the presence of PTSD or a history of psychiatric disease, is needed for appropriate interventions.

  4. Nuclear Data Sheets page at the NNDC

    Science.gov Websites

    Data Sheets is a journal primarily devoted to the publication of evaluated nuclear structure and decay ; neutron, proton, alpha, cluster and cluster emission; fission. Nuclear structure and decay data are basis. The ENSDF database is the source for the nuclear structure and decay articles, which deal with a

  5. Citizen Education on Nuclear Technology (CENT). Teacher's Guide.

    ERIC Educational Resources Information Center

    Intermountain Science Experience Center, ID Falls, ID.

    Using an interdisciplinary approach, this curriculum focuses on understanding: (1) the fundamental principles of operating a nuclear power plant; (2) the place of nuclear energy in the overall energy supply/demand situation; (3) risk-benefit balance of the major energy sources; and (4) the role of political action in developing nuclear energy…

  6. Nuclear power: renaissance or relapse? Global climate change and long-term Three Mile Island activists' narratives.

    PubMed

    Culley, Marci R; Angelique, Holly

    2010-06-01

    Community narratives are increasingly important as people move towards an ecologically sustainable society. Global climate change is a multi-faceted problem with multiple stakeholders. The voices of affected communities must be heard as we make decisions of global significance. We document the narratives of long-term anti-nuclear activists near the Three Mile Island (TMI) nuclear power plant who speak out in the dawn of a nuclear renaissance/relapse. While nuclear power is marketed as a "green" solution to global warming, their narratives reveal three areas for consideration; (1) significant problems with nuclear technology, (2) lessons "not" learned from the TMI disaster, and (3) hopes for a sustainable future. Nuclear waste, untrustworthy officials and economic issues were among the problems cited. Deceptive shaping of public opinion, nuclear illiteracy, and an aging anti-nuclear movement were reasons cited for the lessons not learned. However, many remain optimistic and envision increased participation to create an ecologically-balanced world.

  7. Atmospheric Transport Modelling confining potential source location of East-Asian radionuclide detections in May 2010

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.

  8. Nuclear Resonance Fluorescence for Materials Assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less

  9. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.

  10. Nuclear power--key to man's extraterrestrial civilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, J.A.; Buden, D.

    1982-08-01

    The start of the Third Millennium will be highlighted by the establishment of man's extraterrestrial civilization with three technical cornerstones leading to the off-planet expansion of the human resource base. These are the availability of compact energy sources for power and propulsion, the creation of permanent manned habitats in space, and the ability to process materials anywhere in the Solar System. In the 1990s and beyond, nuclear reactors could represent the prime source of both space power and propulsion. The manned and unmanned space missions of tomorrow will demand first kilowatt and then megawatt levels of power. Various nuclear powermore » plant technologies are discussed, with emphasis on derivatives from the nuclear rocket technology.« less

  11. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOEpatents

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  12. Nuclear worries of Canadian youth: Replication and extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, C.; Goldberg, S.; Parker, K.R.

    1989-10-01

    A national survey of Canadian adolescents assessed concern, anxiety, and sources of information about the threat of nuclear war. Results indicated few geographical or gender differences in overall levels of concern, although females were more likely to admit fear and anxiety, and students with activist parents showed more concern. Family ranked below all media as a source of information.

  13. Nuclear organization during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes.

    PubMed

    Stachecka, Joanna; Walczak, Agnieszka; Kociucka, Beata; Ruszczycki, Błażej; Wilczyński, Grzegorz; Szczerbal, Izabela

    2018-02-01

    Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization. The aim of this study was to determine the number and distribution of selected components of nuclear architecture during porcine in vitro adipogenesis. The pig is an important animal model sharing many similarities to humans at the anatomical, physiological, and genetic levels and has been recognized as a good model for human obesity. Thus, understanding how cellular structures important for fundamental nuclear processes may be altered during adipocyte differentiation is of great importance. Mesenchymal stem cells (MSCs) were derived from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) and were cultured for 7 days in the adipogenic medium. A variable differentiation potential of these cell populations towards adipogenic lineage was observed, and for further study, a comparative characteristic of the nuclear organization in BM-MSCs and AD-MSCs was performed. Nuclear substructures were visualized by indirect immunofluorescence (nucleoli, nuclear speckles, PML bodies, lamins, and HP1α) or fluorescence in situ hybridization (telomeres) on fixed cells at 0, 3, 5, and 7 days of differentiation. Comprehensive characterization of these structures, in terms of their number, size, dynamics, and arrangement in three-dimensional space of the nucleus, was performed. It was found that during differentiation of porcine MSCs into adipocytes, changes of nuclear organization occurred and concerned: (1) the nuclear size and shape; (2) reduced lamin A/C expression; and (3) reorganization of chromocenters. Other elements of nuclear architecture such as nucleoli, SC-35 nuclear speckles, and telomeres showed no significant changes when compared to undifferentiated and mature fat cells. In addition, the presence of a low number of PML bodies was characteristic of the studied porcine mesenchymal stem cell adipogenesis system. It has been shown that the arrangement of selected components of nuclear architecture was very similar in MSCs derived from different sources, whereas adipocyte differentiation involves nuclear reorganization. This study adds new data on nuclear organization during adipogenesis using the pig as a model organism.

  14. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    DTIC Science & Technology

    2013-03-14

    submarines, which are powered by energy sources such as diesel engines. A submarine’s use of nuclear or non-nuclear power as its energy source is not an...current force of 14 Ohio-class SSBNs, all of which are armed with D-5 SLBMs. Eight of the 14 Ohio-class SSBNs are homeported at Bangor, WA, in Puget ...nuclear-related issues that is carried out under the 1958 Agreement for Cooperation on the Uses of Atomic Energy for Mutual Defense Purposes (also known as

  15. Path to Market for Compact Modular Fusion Power Cores

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Baerny, Jennifer K.; Mattor, Nathan; Stoulil, Don; Miller, Ronald; Marston, Theodore

    2012-08-01

    The benefits of an energy source whose reactants are plentiful and whose products are benign is hard to measure, but at no time in history has this energy source been more needed. Nuclear fusion continues to promise to be this energy source. However, the path to market for fusion systems is still regularly a matter for long-term (20 + year) plans. This white paper is intended to stimulate discussion of faster commercialization paths, distilling guidance from investors, utilities, and the wider energy research community (including from ARPA-E). There is great interest in a small modular fusion system that can be developed quickly and inexpensively. A simple model shows how compact modular fusion can produce a low cost development path by optimizing traditional systems that burn deuterium and tritium, operating not only at high magnetic field strength, but also by omitting some components that allow for the core to become more compact and easier to maintain. The dominant hurdles to the development of low cost, practical fusion systems are discussed, primarily in terms of the constraints placed on the cost of development stages in the private sector. The main finding presented here is that the bridge from DOE Office of Science to the energy market can come at the Proof of Principle development stage, providing the concept is sufficiently compact and inexpensive that its development allows for a normal technology commercialization path.

  16. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  17. Characterization of strong (241)Am sources.

    PubMed

    Vesterlund, Anna; Chernikova, Dina; Cartemo, Petty; Axell, Kåre; Nordlund, Anders; Skarnemark, Gunnar; Ekberg, Christian; Ramebäck, Henrik

    2015-05-01

    Gamma ray spectra of strong (241)Am sources may reveal information about the source composition as there may be other radioactive nuclides such as progeny and radioactive impurities present. In this work the possibility to use gamma spectrometry to identify inherent signatures in (241)Am sources in order to differentiate sources from each other, is investigated. The studied signatures are age, i.e. time passed since last chemical separation, and presence of impurities. The spectra of some sources show a number of Doppler broadened peaks in the spectrum which indicate the presence of nuclear reactions on light elements within the sources. The results show that the investigated sources can be differentiated between by age and/or presence of impurities. These spectral features would be useful information in a national nuclear forensics library (NNFL) in cases when the visual information on the source, e.g. the source number, is unavailable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eich, F. G.; Agostini, Federica, E-mail: agostini@mpi-halle.mpg.de

    We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numericallymore » on a model of proton-coupled electron transfer in different non-adiabatic regimes.« less

  19. Small plasma focus as neutron pulsed source for nuclides identification

    NASA Astrophysics Data System (ADS)

    Milanese, M.; Niedbalski, J.; Moroso, R.; Barbaglia, M.; Mayer, R.; Castillo, F.; Guichón, S.

    2013-10-01

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  20. Small plasma focus as neutron pulsed source for nuclides identification.

    PubMed

    Milanese, M; Niedbalski, J; Moroso, R; Barbaglia, M; Mayer, R; Castillo, F; Guichón, S

    2013-10-01

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  1. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.SCALE 6.2 provides many new capabilities and significant improvements of existing features.New capabilities include:• ENDF/B-VII.1 nuclear data libraries CE and MG with enhanced group structures,• Neutron covariance data based on ENDF/B-VII.1 and supplemented with ORNL data,• Covariance data for fission product yields and decay constants,• Stochastic uncertainty and correlation quantification for any SCALE sequence with Sampler,• Parallel calculations with KENO,• Problem-dependent temperature corrections for CE calculations,• CE shielding and criticality accident alarm system analysis with MAVRIC,• CE depletion with TRITON (T5-DEPL/T6-DEPL),• CE sensitivity/uncertainty analysis with TSUNAMI-3D,• Simplified and efficient LWR lattice physics with Polaris,• Large scale detailed spent fuel characterization with ORIGAMI and ORIGAMI Automator,• Advanced fission source convergence acceleration capabilities with Sourcerer,• Nuclear data library generation with AMPX, and• Integrated user interface with Fulcrum.Enhanced capabilities include:• Accurate and efficient CE Monte Carlo methods for eigenvalue and fixed source calculations,• Improved MG resonance self-shielding methodologies and data,• Resonance self-shielding with modernized and efficient XSProc integrated into most sequences,• Accelerated calculations with TRITON/NEWT (generally 4x faster than SCALE 6.1),• Spent fuel characterization with 1470 new reactor-specific libraries for ORIGEN,• Modernization of ORIGEN (Chebyshev Rational Approximation Method [CRAM] solver, API for high-performance depletion, new keyword input format)• Extension of the maximum mixture number to values well beyond the previous limit of 2147 to ~2 billion,• Nuclear data formats enabling the use of more than 999 energy groups,• Updated standard composition library to provide more accurate use of natural abundances, andvi• Numerous other enhancements for improved usability and stability.« less

  2. An Assessment of Fission Product Scrubbing in Sodium Pools Following a Core Damage Event in a Sodium Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, M.; Farmer, M.; Grabaskas, D.

    The U.S. Nuclear Regulatory Commission has stated that mechanistic source term (MST) calculations are expected to be required as part of the advanced reactor licensing process. A recent study by Argonne National Laboratory has concluded that fission product scrubbing in sodium pools is an important aspect of an MST calculation for a sodium-cooled fast reactor (SFR). To model the phenomena associated with sodium pool scrubbing, a computational tool, developed as part of the Integral Fast Reactor (IFR) program, was utilized in an MST trial calculation. This tool was developed by applying classical theories of aerosol scrubbing to the decontamination ofmore » gases produced as a result of postulated fuel pin failures during an SFR accident scenario. The model currently considers aerosol capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The effects of sodium vapour condensation on aerosol scrubbing are also treated. This paper provides details of the individual scrubbing mechanisms utilized in the IFR code as well as results from a trial mechanistic source term assessment led by Argonne National Laboratory in 2016.« less

  3. Nuclear Winter Source-Term Studies. Volume 2. The Classification of U.S. Cities

    DTIC Science & Technology

    1987-08-14

    SELECTEH MAY 05 1988 ■ ■ 88 5 u4 008 I^KWNWA^V.V/^^^^^^Ä’ÄJV^TT.Vl.’VL-V.V’ -^. nr -Tr JWiru^Tiv w «rv« wv ir-^r-j B-W« DESTRUCTION NOTICE FOR...shake 1 000 000 X E -8 second Is) ’lu« 1 459 390 X E 4l kilogram II«) torr (mm Ht, o* n 1 333 12 X E -1 kilo pascal (k-Pa) •the...significant regional differences in all land use categories. Land use distinctions between the regions, but 12 VTJKW.^-1 V

  4. Social Institutions and Nuclear Energy

    ERIC Educational Resources Information Center

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  5. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor [Novel Methodology and Software for Spent Fuel Gross Defect Detection at the Atucha-I Reactor

    DOE PAGES

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek; ...

    2017-03-27

    Here, fuel assemblies in the spent fuel pool are stored by suspending them in two vertically stacked layers at the Atucha Unit 1 nuclear power plant (Atucha-I). This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 wt% 235U and has been in operation since 1974, a wide range of burnups and cooling times can exist in any given pool. A gross defect detection tool, the spent fuel neutron counter (SFNC), has been used at themore » site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups, the existing signal processing software of the tool was found to fail due to nonlinearity of the source term with burnup.« less

  6. Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MATTHEW,; KOZAK, W.

    1994-02-09

    Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simplemore » ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less

  7. Radioecological studies at the Kraton-3 underground nuclear explosion site in 1978-2007: a review.

    PubMed

    Ramzaev, V; Mishin, A; Golikov, V; Argunova, T; Ushnitski, V; Zhuravskaya, A; Sobakin, P; Brown, J; Strand, P

    2009-12-01

    Within this paper, radioecological data concerning the "peaceful" underground nuclear explosion Kraton-3, conducted at a remote Arctic location (65.9 degrees N, 112.3 degrees E) within the former USSR in 1978, are reviewed. The data and estimates published in the available literature sources before September 2008 could be grouped as following: (a) characterisation of the current radioactive contamination (gamma-, beta- and alpha-emitters) of environmental compartments in terms of radionuclides composition, activity concentration, area contamination density; (b) determination of current gamma dose rates in air, including mapping using GPS; (c) evaluation of cumulative gamma doses in air (with calculations and thermoluminiscence measurements in ceramic objects); (d) description of the visually distinguishable changes in the terrestrial ecosystem; (e) description and quantitative evaluation of morphological abnormalities in the organs of adult plants as well as in seeds and seedlings of some herbs and shrubs, and in small mammals; (f) application of countermeasures. Knowledge gaps and possible further studies are indicated.

  8. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor [Novel Methodology and Software for Spent Fuel Gross Defect Detection at the Atucha-I Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek

    Here, fuel assemblies in the spent fuel pool are stored by suspending them in two vertically stacked layers at the Atucha Unit 1 nuclear power plant (Atucha-I). This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 wt% 235U and has been in operation since 1974, a wide range of burnups and cooling times can exist in any given pool. A gross defect detection tool, the spent fuel neutron counter (SFNC), has been used at themore » site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups, the existing signal processing software of the tool was found to fail due to nonlinearity of the source term with burnup.« less

  9. Determination of 241Pu in low-level radioactive wastes from reactors.

    PubMed

    Martin, J E

    1986-11-01

    Plutonium-241 is unique in low-level radioactive wastes (LLW) from nuclear power plants because it is the only significant beta-emitting transuranic nuclide in LLW, has a relatively short half-life of 14.4 y, and has a fairly high allowable concentration for shallow land burial. Radiochemical separation of Pu followed by liquid scintillation analysis was used to quantitate 241Pu in a wide range of solid, semi-solid, and liquid LLW samples from two nuclear plants in Michigan. The 241Pu concentrations varied considerably by sample type and reactor operational period as did their correlation with 137Cs, 144Ce, 239Pu and 240Pu concentrations in the same sample. These patterns were also found in reported data for 241Pu in LLW from other reactors, raising the difficulty of accurately determining the inventory (or source term) in a LLW shallow land burial site and its implications for predicting and controlling the future environmental and public health impacts of such disposal.

  10. High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  11. Ultrafast X-Ray Spectroscopy of Conical Intersections

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  12. Advanced Small Modular Reactor Economics Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic andmore » nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.« less

  13. Chandra Observations of the M31

    NASA Technical Reports Server (NTRS)

    Garcia, Michael; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We report on Chandra observations of the nearest Spiral Galaxy, M3l, The nuclear source seen with previous X-ray observatories is resolved into five point sources. One of these sources is within 1 arc-sec of the M31 central super-massive black hole. As compared to the other point sources in M3l. this nuclear source has an unusually soft spectrum. Based on the spatial coincidence and the unusual spectrum. we identify this source with the central black hole. A bright transient is detected 26 arc-sec to the west of the nucleus, which may be associated with a stellar mass black hole. We will report on a comparison of the x-ray spectrum of the diffuse emission and point sources seen in the central few arcmin

  14. Disposal methods

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan

    1991-01-01

    A number of disposal options for space nuclear reactors and the associated risks, mostly in the long term, based on probabilities of Earth reentry are discussed. The results are based on a five year study that was conducted between 1978 and 1983 on the space disposal of high level nuclear waste. The study provided assessment of disposal options, stability of disposal or storage orbits, and assessment of the long term risks of Earth reentry of the nuclear waste.

  15. Nuclear mtDNA pseudogenes as a source of new variants of mitochondrial genes: A case study of Siberian rubythroat Luscinia calliope (muscicapidae, aves).

    PubMed

    Spiridonova, L N; Red'kin, Ya A; Valchuk, O P

    2016-01-01

    First evidence for the presence of copies of mitochondrial cytochrome b gene of the subspecies group Luscinia calliope anadyrensis-L. c. camtschatkensis in the nuclear genome of nominative L. c. calliope was obtained, which indirectly indicates the nuclear origin of the subspecies-specific mitochondrial haplotypes in Siberian rubythroat. This fact clarifies the appearance of mitochondrial haplotypes of eastern subspecies by exchange between the homologous regions of the nuclear and mitochondrial genomes followed by fixation by the founder effect. This is the first study to propose a mechanism of DNA fragment exchange between the nucleus and mitochondria (intergenomic recombination) and to show the role of nuclear copies of mtDNA as a source of new taxon-specific mitochondrial haplotypes, which implies their involvement in the microevolutionary processes and morphogenesis.

  16. International Data on Radiological Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. Themore » database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.« less

  17. Optimum rocket propulsion for energy-limited transfer

    NASA Technical Reports Server (NTRS)

    Zuppero, Anthony; Landis, Geoffrey A.

    1991-01-01

    In order to effect large-scale return of extraterrestrial resources to Earth orbit, it is desirable to optimize the propulsion system to maximize the mass of payload returned per unit energy expended. This optimization problem is different from the conventional rocket propulsion optimization. A rocket propulsion system consists of an energy source plus reaction mass. In a conventional chemical rocket, the energy source and the reaction mass are the same. For the transportation system required, however, the best system performance is achieved if the reaction mass used is from a locally available source. In general, the energy source and the reaction mass will be separate. One such rocket system is the nuclear thermal rocket, in which the energy source is a reactor and the reaction mass a fluid which is heated by the reactor and exhausted. Another energy-limited rocket system is the hydrogen/oxygen rocket where H2/O2 fuel is produced by electrolysis of water using a solar array or a nuclear reactor. The problem is to choose the optimum specific impulse (or equivalently exhaust velocity) to minimize the amount of energy required to produce a given mission delta-v in the payload. The somewhat surprising result is that the optimum specific impulse is not the maximum possible value, but is proportional to the mission delta-v. In general terms, at the beginning of the mission it is optimum to use a very low specific impulse and expend a lot of reaction mass, since this is the most energy efficient way to transfer momentum. However, as the mission progresses, it becomes important to minimize the amount of reaction mass expelled, since energy is wasted moving the reaction mass. Thus, the optimum specific impulse will increase with the mission delta-v. Optimum I(sub sp) is derived for maximum payload return per energy expended for both the case of fixed and variable I(sub sp) engines. Sample missions analyzed include return of water payloads from the moons of Mars and of Saturn.

  18. Worldwide measurements of radioxenon background near isotope production facilities, a nuclear power plant and at remote sites: the ‘‘EU/JA-II’’ Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saey, P. R.J.; Ringbom, Anders; Bowyer, Ted W.

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) specifies that radioxenon measurements should be performed at 40 or more stations worldwide within the International Monitoring System (IMS). Measuring radioxenon is one of the principle techniques to detect underground nuclear explosions. Specifically, presence and ratios of different radioxenon isotopes allows determining whether a detection event under consideration originated from a nuclear explosion or a civilian source. However, radioxenon monitoring on a global scale is a novel technology and the global civil background must be characterized sufficiently. This paper lays out a study, based on several unique measurement campaigns, of the worldwide concentrations and sourcesmore » of verification relevant xenon isotopes. It complements the experience already gathered with radioxenon measurements within the CTBT IMS programme and focuses on locations in Belgium, Germany, Kuwait, Thailand and South Africa where very little information was available on ambient xenon levels or interesting sites offered opportunities to learn more about emissions from known sources. The findings corroborate the hypothesis that a few major radioxenon sources contribute in great part to the global radioxenon background. Additionally, the existence of independent sources of 131mXe (the daughter of 131I) has been demonstrated, which has some potential to bias the isotopic signature of signals from nuclear explosions.« less

  19. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  20. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James; Wright, Judith

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all aboutmore » the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific community. (authors)« less

  1. 75 FR 44072 - Export and Import of Nuclear Equipment and Material; Updates and Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Energy Act. Retransfers of special nuclear material produced through the use of U.S.-obligated material... the Atomic Energy Act that apply to imports of special nuclear, source or byproduct material are... NUCLEAR REGULATORY COMMISSION 10 CFR Part 110 [NRC-2008-0567] RIN 3150-AI16 Export and Import of...

  2. Intercorrelation of P and Pn Recordings for the North Korean Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Lay, T.; Voytan, D.; Ohman, J.

    2017-12-01

    The relative waveform analysis procedure called Intercorrelation is applied to Pn and P waveforms at regional and teleseismic distances, respectively, for the 5 underground nuclear tests at the North Korean nuclear test site. Intercorrelation is a waveform equalization procedure that parameterizes the effective source function for a given explosion, including the reduced velocity potential convolved with a simplified Green's function that accounts for the free surface reflections (pPn and pP), and possibly additional arrivals such as spall. The source function for one event is convolved with the signal at a given station for a second event, and the recording at the same station for the first event is convolved with the source function for the second event. This procedure eliminates the need to predict the complex receiver function effects at the station, which are typically not well-known for short-period response. The parameters of the source function representation are yield and burial depth, and an explosion source model is required. Here we use the Mueller-Murphy representation of the explosion reduced velocity potential, which explicitly depends on yield and burial depth. We then search over yield and burial depth ranges for both events, constrained by a priori information about reasonable ranges of parameters, to optimize the simultaneous match of multiple station signals for the two events. This procedure, applied to the apparently overburied North Korean nuclear tests (no indications of spall complexity), assuming simple free surface interactions (elastic reflection from a flat surface), provides excellent waveform equalization for all combinations of 5 nuclear tests.

  3. Doing the impossible: Recycling nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-01-01

    A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear power—the most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenoy, G. K.; Rohlsberger, R.; X-Ray Science Division

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, tomore » a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.« less

  5. Management of a High Hazard, Low Risk Environmental Issue at Dounreay, Scotland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, F.; Morgan, G.; Henderson, F.

    2006-07-01

    Dounreay hot particles (Particles) are small fragments of irradiated nuclear fuel that are present in littoral and marine environments adjacent to the Dounreay nuclear establishment in northern Scotland. The first Particle was identified by UKAEA, the site operator, and recovered from the Dounreay foreshore, in 1983 and a single Particle was recovered from the adjacent, publicly accessible Sandside Beach the following year. It was not until 1996, however, that significant numbers of Particles were identified and recovered. Since that time an extensive research and development programme (described herein) has been undertaken to identify the source of Particles, their movement andmore » lifetimes in the marine environment and their effects on human and environmental health. Particles were released to the North Atlantic Ocean in the mid to late 1960's and early 1970's. There is no evidence of an on-going source of Particles from the Dounreay site. The source of Particles recovered from the Dounreay foreshore and from local beaches is the cache currently residing in marine sediments adjacent to Dounreay. Sediment modelling studies indicate that the Dounreay Particles are generally transported sub-parallel to the coast in a north easterly direction. Studies to define contact frequencies and risks to human health suggest that the health risks associated with Particles are insignificant. There is, however, a significant perception of risk. UKAEA hopes to define a long term Particle management programme via the development of a best practical environmental option (BPEO) facilitated through consultation with all stakeholders. (authors)« less

  6. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  7. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2009-10-15

    and technical measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage ...Talks On Nuclear Security,” The Boston Globe, May 5, 2009. 79 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or...a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 80 Martellini, 2008. 81 For more information

  8. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2012-05-10

    2009. 143 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in...Program.” Some analysts argue that spent nuclear fuel is more vulnerable when being transported . 144 Martellini, 2008. Pakistan’s Nuclear Weapons...urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment technology, which it

  9. Analysis of fission and activation radionuclides produced by a uranium-fueled nuclear detonation and identification of the top dose-producing radionuclides.

    PubMed

    Kraus, Terry; Foster, Kevin

    2014-08-01

    The radiological assessment of the nuclear fallout (i.e., fission and neutron-activation radionuclides) from a nuclear detonation is complicated by the large number of fallout radionuclides. This paper provides the initial isotopic source term inventory of the fallout from a uranium-fueled nuclear detonation and identifies the significant and insignificant radiological dose producing radionuclides over 11 dose integration time periods (time phases) of interest. A primary goal of this work is to produce a set of consistent, time phase-dependent lists of the top dose-producing radionuclides that can be used to prepare radiological assessment calculations and data products (e.g., maps of areas that exceed protective action guidelines) in support of public and worker protection decisions. The ranked lists of top dose-producing radionuclides enable assessors to perform atmospheric dispersion modeling and radiological dose assessment modeling more quickly by using relatively short lists of radionuclides without significantly compromising the accuracy of the modeling and the dose projections. This paper also provides a superset-list of the top dose-producing fallout radionuclides from a uranium-fueled nuclear detonation that can be used to perform radiological assessments over any desired time phase. Furthermore, this paper provides information that may be useful to monitoring and sampling and laboratory analysis personnel to help understand which radionuclides are of primary concern. Finally, this paper may be useful to public protection decision makers because it shows the importance of quickly initiating public protection actions to minimize the radiological dose from fallout.

  10. Managing terrorism or accidental nuclear errors, preparing for iodine-131 emergencies: a comprehensive review.

    PubMed

    Braverman, Eric R; Blum, Kenneth; Loeffke, Bernard; Baker, Robert; Kreuk, Florian; Yang, Samantha Peiling; Hurley, James R

    2014-04-15

    Chernobyl demonstrated that iodine-131 (131I) released in a nuclear accident can cause malignant thyroid nodules to develop in children within a 300 mile radius of the incident. Timely potassium iodide (KI) administration can prevent the development of thyroid cancer and the American Thyroid Association (ATA) and a number of United States governmental agencies recommend KI prophylaxis. Current pre-distribution of KI by the United States government and other governments with nuclear reactors is probably ineffective. Thus we undertook a thorough scientific review, regarding emergency response to 131I exposures. We propose: (1) pre-distribution of KI to at risk populations; (2) prompt administration, within 2 hours of the incident; (3) utilization of a lowest effective KI dose; (4) distribution extension to at least 300 miles from the epicenter of a potential nuclear incident; (5) education of the public about dietary iodide sources; (6) continued post-hoc analysis of the long-term impact of nuclear accidents; and (7) support for global iodine sufficiency programs. Approximately two billion people are at risk for iodine deficiency disorder (IDD), the world's leading cause of preventable brain damage. Iodide deficient individuals are at greater risk of developing thyroid cancer after 131I exposure. There are virtually no studies of KI prophylaxis in infants, children and adolescents, our target population. Because of their sensitivity to these side effects, we have suggested that we should extrapolate from the lowest effective adult dose, 15-30 mg or 1-2 mg per 10 pounds for children. We encourage global health agencies (private and governmental) to consider these critical recommendations.

  11. In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells.

    PubMed

    Opiela, J; Samiec, M; Romanek, J

    2017-07-15

    Artificial epigenomic modulation of in vitro cultured mesenchymal stem cells (MSCs) by applying a non-selective HDAC inhibitor, termed TSA, can facilitate more epigenetic reprogramming of transcriptional activity of the somatic cell-descended nuclear genome in NT pig embryos. The results of the present investigation showed that TSA-dependent epigenomic modulation of nuclear donor MSCs highly affects both the in vitro developmental capability and the cytological quality of inter-species (porcine→bovine) cloned embryos. The developmental competences to reach the blastocyst stage among hybrid (porcine→bovine) nuclear-transferred embryos that had been reconstructed with bovine ooplasts and epigenetically modulated porcine MSCs were maintained at a relatively high level. These competences were higher than those noted in studies by other authors, but they were still decreased compared to those of intra-species (porcine) cloned embryos that had been reconstituted with porcine ooplasts and either the cell nuclei of epigenetically transformed MSCs or the cell nuclei of epigenetically non-transformed MSCs. In conclusion, MSCs undergoing TSA-dependent epigenetic transformation were used for the first time as a source of nuclear donor cells not only for inter-species somatic cell cloning in pigs but also for inter-species somatic cell cloning in other livestock species. Moreover, as a result of the current research, efficient sequential physicochemical activation of inter-species nuclear-transferred clonal cybrids derived from bovine ooplasm and porcine MSC nuclei was developed. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    PubMed

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  13. Letter Report: Looking Ahead at Nuclear Fuel Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Stephen Herring

    2013-09-01

    The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energymore » community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.« less

  14. Conceptual Design of Low-Temperature Hydrogen Production and High-Efficiency Nuclear Reactor Technology

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Ogawa, Takashi

    Hydrogen, a potential alternative energy source, is produced commercially by methane (or LPG) steam reforming, a process that requires high temperatures, which are produced by burning fossil fuels. However, as this process generates large amounts of CO2, replacement of the combustion heat source with a nuclear heat source for 773-1173K processes has been proposed in order to eliminate these CO2 emissions. In this paper, a novel method of nuclear hydrogen production by reforming dimethyl ether (DME) with steam at about 573K is proposed. From a thermodynamic equilibrium analysis of DME steam reforming, the authors identified conditions that provide high hydrogen production fraction at low pressure and temperatures of about 523-573K. By setting this low-temperature hydrogen production process upstream from a turbine and nuclear reactor at about 573K, the total energy utilization efficiency according to equilibrium mass and heat balance analysis is about 50%, and it is 75%for a fast breeder reactor (FBR), where turbine is upstream of the reformer.

  15. Accident Source Terms for Pressurized Water Reactors with High-Burnup Cores Calculated using MELCOR 1.8.5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauntt, Randall O.; Goldmann, Andrew; Kalinich, Donald A.

    2016-12-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in thismore » study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs 2 MoO 4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU analyses. Additionally, current analyses suggest that the NUREG-1465 release fractions are conservative by about a factor of 2 in terms of release fractions and that release durations for in-vessel and late in-vessel release periods are in fact longer than the NUREG-1465 durations. It is currently planned that a subsequent report will further characterize these results using more refined statistical methods, permitting a more precise reformulation of the NUREG-1465 alternative source term for both LBU and HBU fuels, with the most important finding being that the NUREG-1465 formula appears to embody significant conservatism compared to current best-estimate analyses. ACKNOWLEDGEMENTS This work was supported by the United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The authors would like to thank Dr. Ian Gauld and Dr. Germina Ilas, of Oak Ridge National Laboratory, for their contributions to this work. In addition to development of core fission product inventory and decay heat information for use in MELCOR models, their insights related to fuel management practices and resulting effects on spatial distribution of fission products in the core was instrumental in completion of our work.« less

  16. Sources of Information on Atomic Energy, International Series of Monographs in Library and Information Science, Volume 2.

    ERIC Educational Resources Information Center

    Anthony, L. J.

    This book provides a comprehensive survey of the principal national and international organizations which are sources of information on atomic and nuclear energy and of the published literature in this field. Organizations in all the major nuclear countries such as the United States, Britain, the Soviet Union, France, and Japan are described, and…

  17. Estimation of the Cesium-137 Source Term from the Fukushima Daiichi Power Plant Using Air Concentration and Deposition Data

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne

    2013-04-01

    A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativeness of the measurements, the instrumental errors, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, and specially in a situation of sparse observability, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. In Winiarek et al. (2012), we proposed to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We applied the method to the estimation of the Fukushima Daiichi cesium-137 and iodine-131 source terms using activity concentrations in the air. The results were compared to an L-curve estimation technique, and to Desroziers's scheme. Additionally to the estimations of released activities, we provided related uncertainties (12 PBq with a std. of 15 - 20 % for cesium-137 and 190 - 380 PBq with a std. of 5 - 10 % for iodine-131). We also enlightened that, because of the low number of available observations (few hundreds) and even if orders of magnitude were consistent, the reconstructed activities significantly depended on the method used to estimate the prior errors. In order to use more data, we propose to extend the methods to the use of several data types, such as activity concentrations in the air and fallout measurements. The idea is to simultaneously estimate the prior errors related to each dataset, in order to fully exploit the information content of each one. Using the activity concentration measurements, but also daily fallout data from prefectures and cumulated deposition data over a region lying approximately 150 km around the nuclear power plant, we can use a few thousands of data in our inverse modeling algorithm to reconstruct the Cesium-137 source term. To improve the parameterization of removal processes, rainfall fields have also been corrected using outputs from the mesoscale meteorological model WRF and ground station rainfall data. As expected, the different methods yield closer results as the number of data increases. Reference : Winiarek, V., M. Bocquet, O. Saunier, A. Mathieu (2012), Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant : Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant, J. Geophys. Res., 117, D05122, doi:10.1029/2011JD016932.

  18. Long-Term Biological Consequences of Nuclear War.

    ERIC Educational Resources Information Center

    Ehrlich, Paul R.; And Others

    1983-01-01

    Presents evidence suggesting that the longer-term biological effects resulting from climactic changes may be at least as serious as the immediate ones. Primarily considers results of a nuclear war in which sufficient dust/soot are injected into the atmosphere to attenuate most incident solar radiation. (JN)

  19. INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART.

    PubMed

    Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.

    1974-01-01

    The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.

  20. Developing radiation tolerant polymer nanocomposites using C 60 as an additive

    DOE PAGES

    Christian, Jonathan H.; Wilson, Jason; Nicholson, James C.; ...

    2016-04-13

    In nuclear facilities utilizing plutonium, polymeric materials are subjected to long-term, close-contact, and continuous α radiation exposure, which can lead to compounding material degradation and eventual failure. Herein we model the attenuation of α particles by linear-low-density polyethylene (LLDPE), polyvinyl alcohol (PVA) thin films, and C 60 using Monte Carlo N-Particle Extended (MCNPX) software. The degradation of these materials was investigated experimentally by irradiating them with a beam of α particles of 5.8 MeV energy at a tandem Van de Graaff accelerator delivering a dose rate of 2.95 × 10 6 rad s –1 over a 7.1 mm 2 samplemore » area. Our development of a method to test α particle-induced material degradation using a tandem accelerator is significant as degradation from naturally occurring α sources (i.e. Pu, Am) occurs too slowly for these sources to be used in practical experiments. Our results show that PVA nanocomposites containing 5 wt% C 60 were found to withstand about 7 times the α dose of undoped PVA films before a puncture in the film was detected. When these films were adhered to a LLDPE sheet the dual layer polymer was capable of withstanding about 13 times the dose of LLDPE and nearly twice the dose of the doped PVA thin film alone. Doping polymers with C 60 is an attractive way to generate more durable, radiation tolerant materials without increasing the thickness of the material which would lead to greater waste for disposal. Furthermore, the results herein help to resolve a prevalent technical challenge faced in nuclear facilities that utilize polymeric materials for nuclear processing and disposal.« less

  1. PANDORA, a new facility for interdisciplinary in-plasma physics

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  2. Nuclear Resonance Fluorescence for Materials Assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiter, Brian J.; Ludewigt, Bernhard; Mozin, Vladimir

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX?s photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less

  3. The acoustic field in the ionosphere caused by an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.

    2005-07-01

    The problem of describing the generation and propagation of an infrasonic wave emitted by a finite extended source in the inhomogeneous absorbing atmosphere is the focus of this paper. It is of interest since the role of infrasonic waves in the energy balance of the upper atmosphere remains largely unknown. We present an algorithm, which allows adaptation of a point source model for calculating the infrasonic field from an underground nuclear explosion at ionospheric altitudes. Our calculations appear to agree remarkably well with HF Doppler sounding data measured for underground nuclear explosions at the Semipalatinsk Test Site. We show that the temperature and ionospheric electron density perturbation caused by an acoustic wave from underground nuclear explosion can reach 10% of background levels.

  4. Assessment on security system of radioactive sources used in hospitals of Thailand

    NASA Astrophysics Data System (ADS)

    Jitbanjong, Petchara; Wongsawaeng, Doonyapong

    2016-01-01

    Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources used in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources.

  5. Status of a standard for neutron skyshine calculation and measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, R.M.; Wright, R.Q.; Greenborg, J.

    1990-01-01

    An effort has been under way for several years to prepare a draft standard, ANS-6.6.2, Calculation and Measurement of Direct and Scattered Neutron Radiation from Contained Sources Due to Nuclear Power Operations. At the outset, the work group adopted a three-phase study involving one-dimensional analyses, a measurements program, and multi-dimensional analyses. Of particular interest are the neutron radiation levels associated with dry-fuel storage at reactor sites. The need for dry storage has been investigated for various scenarios of repository and monitored retrievable storage (MRS) facilities availability with the waste stream analysis model. The concern is with long-term integrated, low-level dosesmore » at long distances from a multiplicity of sources. To evaluate the conservatism associated with one-dimensional analyses, the work group has specified a series of simple problems. Sources as a function of fuel exposure were determined for a Westinghouse 17 x 17 pressurized water reactor assembly with the ORIGEN-S module of the SCALE system. The energy degradation of the 35 GWd/ton U sources was determined for two generic designs of dry-fuel storage casks.« less

  6. Source Book of Educational Materials for Nuclear Medicine.

    ERIC Educational Resources Information Center

    Pijar, Mary Lou, Comp.; Lewis, Jeannine T., Comp.

    The contents of this sourcebook of educational materials are divided into the following sections: Anatomy and Physiology; Medical Terminology; Medical Ethics and Department Management; Patient Care and Medical Decision-Making; Basic Nuclear Medicine; Diagnostic in Vivo; Diagnostic in Vitro; Pediatric Nuclear Medicine; Radiation Detection and…

  7. A theological view of nuclear energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, W.G.

    The author presents a theological perspective on nuclear power based on Israel's history, as revealed in the Hebrew Bible and the Alexandrian Greek Septuagint. Nuclear energy is described as God's energy choice for the whole of creation, which can be made as safe as traditional sources.

  8. Neutron Scattering Facilities

    Science.gov Websites

    Low Energy Neutron Source (LENS), Indiana University Cyclotron Facility, USA McMaster Nuclear Reactor Research, Gaithersburg, Maryland, USA Peruvian Institute of Nuclear Energy (IPEN), Lima, Peru Spallation Nuclear Science and Technology Organisation, Lucas Heights, Australia High-flux Advanced Neutron

  9. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  10. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  11. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Francesca C.; Mendius, E. Louise

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as wellmore » as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  12. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Francesca C; Benson, Jody; Hanson, Stephanie

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users,more » an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  13. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2012-10-01 2012-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  14. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2013-10-01 2013-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  15. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2014-10-01 2014-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  16. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2010-10-01 2010-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  17. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2011-10-01 2011-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  18. A Programmable Liquid Collimator for Both Coded Aperture Adaptive Imaging and Multiplexed Compton Scatter Tomography

    DTIC Science & Technology

    2012-03-01

    environments where a source is either weak or shielded. A vehicle of this type could survey large areas after a nuclear attack or a nuclear reactor accident...to prevent its detection by γ-rays. The best application for unmanned vehicles is the detection of radioactive material after a nuclear reactor ...accident or a nuclear weapon detonation [70]. Whether by a nuclear detonation or a nuclear reactor accident, highly radioactive substances could be dis

  19. Yield and depth Estimation of Selected NTS Nuclear and SPE Chemical Explosions Using Source Equalization by modeling Local and Regional Seismograms (Invited)

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Roman-nieves, J. I.; Woods, M. T.

    2013-12-01

    Source parameters of nuclear and chemical explosions are often estimated by matching either the corner frequency and spectral level of a single event or the spectral ratio when spectra from two events are available with known source parameters for one. In this study, we propose an alternative method in which waveforms from two or more events can be simultaneously equalized by setting the differential of the processed seismograms at one station from any two individual events to zero. The method involves convolving the equivalent Mueller-Murphy displacement source time function (MMDSTF) of one event with the seismogram of the second event and vice-versa, and then computing their difference seismogram. MMDSTF is computed at the elastic radius including both near and far-field terms. For this method to yield accurate source parameters, an inherent assumption is that green's functions for the any paired events from the source to a receiver are same. In the frequency limit of the seismic data, this is a reasonable assumption and is concluded based on the comparison of green's functions computed for flat-earth models at various source depths ranging from 100m to 1Km. Frequency domain analysis of the initial P wave is, however, sensitive to the depth phase interaction, and if tracked meticulously can help estimating the event depth. We applied this method to the local waveforms recorded from the three SPE shots and precisely determined their yields. These high-frequency seismograms exhibit significant lateral path effects in spectrogram analysis and 3D numerical computations, but the source equalization technique is independent of any variation as long as their instrument characteristics are well preserved. We are currently estimating the uncertainty in the derived source parameters assuming the yields of the SPE shots as unknown. We also collected regional waveforms from 95 NTS explosions at regional stations ALQ, ANMO, CMB, COR, JAS LON, PAS, PFO and RSSD. We are currently employing a station based analysis using the equalization technique to estimate depth and yields of many relative to those of the announced explosions; and to develop their relationship with the Mw and Mo for the NTS explosions.

  20. Sources and magnitude of occupational and public exposures from nuclear medicine procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This Report addresses the sources of exposures incurred in the practice of nuclear medicine and provides the necessary data to evaluate the magnitude of exposures to those directly associated with that practice and to those who provide nursing care to the patients containing radiopharmaceuticals. Exposure to members of the public are also addressed. The primary emphasis of this Report is on these individuals and not on the patient, since the patient receives the direct benefit from the nuclear medicine procedure. It is recognized that the patient also receives the bulk of any potential radiation decrement.

Top