Impact of pairing correlations on the orientation of the nuclear spin
NASA Astrophysics Data System (ADS)
Zhao, P. W.; Zhang, S. Q.; Meng, J.
2015-09-01
For the first time, the tilted axis cranking covariant density functional theory with pairing correlations has been formulated and implemented in a fully self-consistent and microscopic way to investigate the evolution of the spin axis and the pairing effects in rotating triaxial nuclei. The measured energy spectrum and transition probabilities for the 135Nd yrast band are reproduced well without any ad hoc renormalization factors when pairing effects are taken into account. A transition from collective to chiral rotation has been demonstrated. It is found that pairing correlations introduce additional admixtures in the single-particle orbitals, and, thus, influence the structure of tilted axis rotating nuclei by reducing the magnitude of the proton and neutron angular momenta while merging their direction.
NASA Astrophysics Data System (ADS)
Challoner, R.; Mcdowell, C. A.; Yoshifuji, M.; Toyota, K.; Tossell, J. A.
The present investigation concerns the solid-state nuclear magnetic resonance spectroscopy of the 31P spin pair in the novel three-membered heterocyclic compound 3-(dichloromethylene)- trans-1,2-bis( 2,4,6-tri- tert-butylphenyl)- 1,2-diphosphirane using the magic-angle-spinning (MAS) technique. The homogeneous 31P lineshapes are analyzed to extract the principal components of the shielding tensors using the Maricq and Waugh description of homonuclear spin-pair systems by average-Hamiltonian theory, modified to encompass the n = 0 rotational resonance situation. The experimental values of the shielding-tensor components are compared with those obtained from ab initio calculations performed on the model molecule P 2C 2H 4 to aid further the interpretation of the 31P MAS NMR spectrum of the chloromethylene-diphosphirane. The magnitudes and orientations of calculated shielding-tensor components of the model compound methylene-diphosphirane P 2C 2H 4 are compared with those for the phosphorus spin pair in the molecular environments of P 2, P 2H 2, and P 2H 4. The electronic structures and bonding in all of those molecular species are discussed.
Spin polarization transfer by the radical pair mechanism.
Zarea, Mehdi; Ratner, Mark A; Wasielewski, Michael R
2015-08-07
In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.
Spin polarization transfer by the radical pair mechanism
Zarea, Mehdi Ratner, Mark A.; Wasielewski, Michael R.
2015-08-07
In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.
Pairing Correlations at High Spins
NASA Astrophysics Data System (ADS)
Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.
The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.
NASA Astrophysics Data System (ADS)
Chang, Zhiwei; Halle, Bertil
2013-10-01
In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft
Dressed qubits in nuclear spin baths
Wu Lianao
2010-04-15
We present a method to encode a dressed qubit into the product state of an electron spin localized in a quantum dot and its surrounding nuclear spins via a dressing transformation. In this scheme, the hyperfine coupling and a portion of a nuclear dipole-dipole interaction become logic gates, while they are the sources of decoherence in electron-spin qubit proposals. We discuss errors and corrections for the dressed qubits. Interestingly, the effective Hamiltonian of nuclear spins is equivalent to a pairing Hamiltonian, which provides the microscopic mechanism to protect dressed qubits against decoherence.
Nuclear spin circular dichroism
Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia
2014-04-07
Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.
Pair entanglement in dimerized spin-s chains
NASA Astrophysics Data System (ADS)
Boette, A.; Rossignoli, R.; Canosa, N.; Matera, J. M.
2016-12-01
We examine the pair entanglement in the ground state of finite dimerized spin-s chains interacting through anisotropic X Y couplings immersed in a transverse magnetic field by means of a self-consistent pair mean-field approximation. The approach, which makes no a priori assumptions on the pair states, predicts, for sufficiently low coupling between pairs, 2 s distinct dimerized phases for increasing fields below the pair factorizing field, separated by spin-parity-breaking phases. The dimerized phases lead to approximate magnetization and pair entanglement plateaus, while the parity-breaking phases are characterized by weak pair entanglement but non-negligible entanglement of the pair with the rest of the system. These predictions are confirmed by the exact results obtained in finite s =1 and s =3 /2 chains. It is also shown that for increasing values of the spin s , the entanglement of an isolated pair, as measured by the negativity, rapidly saturates in the anisotropic X Y case but increases as s1 /2 in the X X case, reflecting a distinct single-spin entanglement spectrum.
Cooper pairs spintronics in triplet spin valves.
Romeo, F; Citro, R
2013-11-27
We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the relative orientations of the d vector, characterizing the superconducting order parameter, and the magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor, the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the superconducting spacer is easily recognized. Our findings open new perspectives in designing spintronics devices based on the cooperation of ferromagnetic and triplet correlations.
Pairing correlations in high-spin isomers
Odahara, A.; Gono, Y.; Fukuchi, T.; Wakabayashi, Y.; Sagawa, H.; Satula, W.; Nazarewicz, W.
2005-12-15
High-spin isomers with J{sup {pi}}=49/2{sup +} and 27{sup +} have been systematically observed in a number of N=83 isotones with 60{<=}Z{<=}67 at excitation energies {approx}9 MeV. Based on experimental excitation energies, an odd-even binding energy staggering has been extracted for the first time for these multi-quasiparticle states. Surprisingly, the magnitude of the odd-even effect in high-spin isomers turned out to be very close to that in ground states, thus challenging conventional wisdom that pairing correlations are reduced in highly excited states. Theoretical analysis based on mean-field theory explains the observed proton number dependence of the odd-even effect as a manifestation of strong pairing correlations in the highly excited states. Mean-field effects and the proton-neutron residual interaction on the odd-even staggering are also examined.
Pair correlation function for spin glasses
NASA Astrophysics Data System (ADS)
Fernández, Julio F.; Alonso, Juan J.
2012-10-01
We extract a pair correlation function (PCF) from probability distributions of the spin-overlap parameter q. The distributions come from Monte Carlo simulations. A measure, w, of the thermal fluctuations of magnetic patterns follows from the PCFs. We also obtain rms deviations (over different system samples) δp away from average probabilities for q. For the linear system sizes L that we have studied, w and δp are independent of L in the Edwards-Anderson model but scale as 1/L and L, respectively, in the Sherrington-Kirkpatrick model.
Nucleon-pair approximation to the nuclear shell model
NASA Astrophysics Data System (ADS)
Zhao, Y. M.; Arima, A.
2014-12-01
Atomic nuclei are complex systems of nucleons-protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton-proton and neutron-neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton-neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.
Measurements of nuclear spin dynamics by spin-noise spectroscopy
Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.
2015-06-15
We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.
Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors
NASA Astrophysics Data System (ADS)
Matsuzaki, Tomoaki; Shimahara, Hiroshi
2017-02-01
In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.
Decoupling a hole spin qubit from the nuclear spins
NASA Astrophysics Data System (ADS)
Prechtel, Jonathan H.; Kuhlmann, Andreas V.; Houel, Julien; Ludwig, Arne; Valentin, Sascha R.; Wieck, Andreas D.; Warburton, Richard J.
2016-09-01
A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform.
An asymmetric pair of vortices adjacent to a spinning cylinder
NASA Astrophysics Data System (ADS)
Iosilevskii, G.; Seginer, A.
The two-dimensional flow field over a spinning circular cylinder is analyzed using an extension of the Foeppl method. Equilibrium equations for two asymmetric point vortices in the wake of the cylinder are solved for a case when both vortices are equidistant from the cylinder. The two Foeppl solutions for the cylinder are presented. It is observed that the spin does not affect the angle between the two vortices; however, it displaces the vortex pair in the spin direction and the sinus of the displacement angle is proportional to the spin rate.
Nuclear spin noise in NMR revisited
Ferrand, Guillaume; Luong, Michel
2015-09-07
The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.
Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces
Feiguin, Adrian E.; Fisher, Matthew P. A.
2009-07-10
We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.
Optical nuclear spin polarization in quantum dots
NASA Astrophysics Data System (ADS)
Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei
2016-10-01
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip-flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time. Project partially supported by the National Natural Science Foundations of China (Grant Nos. 11374039 and 11174042) and the National Basic Research Program of China (Grant Nos. 2011CB922204 and 2013CB632805).
Quantum and classical correlations in electron-nuclear spin echo
Zobov, V. E.
2014-11-15
The quantum properties of dynamic correlations in a system of an electron spin surrounded by nuclear spins under the conditions of free induction decay and electron spin echo have been studied. Analytical results for the time evolution of mutual information, classical part of correlations, and quantum part characterized by quantum discord have been obtained within the central-spin model in the high-temperature approximation. The same formulas describe discord in both free induction decay and spin echo although the time and magnetic field dependences are different because of difference in the parameters entering into the formulas. Changes in discord in the presence of the nuclear polarization β{sub I} in addition to the electron polarization β{sub S} have been calculated. It has been shown that the method of reduction of the density matrix to a two-spin electron-nuclear system provides a qualitatively correct description of pair correlations playing the main role at β{sub S} ≈ β{sub I} and small times. At large times, such correlations decay and multispin correlations ensuring nonzero mutual information and zero quantum discord become dominant.
Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.
2014-07-28
We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene triad containing considerably more nuclear spins which has recently been used to establish a “proof of principle” for the operation of a chemical compass [K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature (London) 453, 387 (2008)]. We find in particular that the intriguing biphasic behaviour that has been observed in the effect of an Earth-strength magnetic field on the time-dependent survival probability of the photo-excited C{sup ·+}PF{sup ·−} radical pair arises from a delicate balance between its asymmetric recombination and the relaxation of the electron spin in the carotenoid radical.
NASA Astrophysics Data System (ADS)
Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.
2014-07-01
We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene triad containing considerably more nuclear spins which has recently been used to establish a "proof of principle" for the operation of a chemical compass [K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature (London) 453, 387 (2008)]. We find in particular that the intriguing biphasic behaviour that has been observed in the effect of an Earth-strength magnetic field on the time-dependent survival probability of the photo-excited C.+PF.- radical pair arises from a delicate balance between its asymmetric recombination and the relaxation of the electron spin in the carotenoid radical.
NASA Astrophysics Data System (ADS)
Flatté, Michael E.
Transport of carriers through disordered electronic energy landscapes occurs via hopping or tunneling through various sites, and can enhance the effects of carrier spin dynamics on the transport. When incoherent hopping preserves the spin orientation of carriers, the magnetic-field-dependent correlations between pairs of spins influence the charge conductivity of the material. Examples of these phenomena have been identified in hopping transport in organic semiconductors and colloidal quantum dots, as well as tunneling through oxide barriers in complex oxide devices, among other materials. The resulting room-temperature magnetic field effects on the conductivity or electroluminescence require external fields of only a few milliTesla. These magnetic field effects can be dramatically modified by changes in the local spin environment. Recent theoretical and experimental work has identified a regime for low-field magnetoresistance in organic semiconductors in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere1. The regime is studied experimentally by the controlled addition of localized electronic spins, through the addition of a stable free radical (galvinoxyl) to a material (MEH-PPV) that exhibits substantial room-temperature magnetoresistance (20 initially suppressed by the doping, as the localized electronic spin mixes one of the two spins whose correlation controls the transport. At intermediate doping, when one spin is fully decohered but the other is not, there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed as both spins that control the charge conductivity of the material are mixed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current. Generalizations to amorphous and other disordered crystalline semiconductors will also be described. This work was
Coherent manipulation of nuclear spins using spin injection from a half-metallic spin source
NASA Astrophysics Data System (ADS)
Uemura, Tetsuya; Akiho, Takafumi; Ebina, Yuya; Yamamoto, Masafumi
2016-10-01
We have developed a novel nuclear magnetic resonance (NMR) system that uses spin injection from a highly polarized spin source. Efficient spin injection into GaAs from a half-metallic spin source of Mn-rich Co2MnSi enabled an efficient dynamic nuclear polarization of Ga and As nuclei in GaAs and a sensitive detection of NMR signals. Moreover, coherent control of nuclear spins, or the Rabi oscillation between two quantum levels formed at Ga nuclei, induced by a pulsed NMR has been demonstrated at a relatively low magnetic field of ˜0.1 T. This provides a novel all-electrical solid-state NMR system with the high spatial resolution and high sensitivity needed to implement scalable nuclear-spin based qubits.
The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Wollan, D. S.
1974-01-01
A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.
Enhancement of high-spin collectivity in N = Z nuclei by the isoscalar neutron-proton pairing
NASA Astrophysics Data System (ADS)
Kaneko, K.; Sun, Y.; de Angelis, G.
2017-01-01
Pairing from different fermions, neutrons and protons, is unique in nuclear physics. The fingerprint for the isoscalar T = 0 neutron-proton (np) pairing has however remained a question. We study this exotic pairing mode in excited states of rotating N ≈ Z nuclei by applying the state-of-the-art shell-model calculations for 88Ru and the neighboring 90,92Ru isotopes. We show that the T = 0 np pairing is responsible for the distinct rotational behavior between the N = Z and N > Z nuclei. Our calculation suggests a gradual crossover from states with mixed T = 1 and T = 0 pairing near the ground state to those dominated by the T = 0 np pairing at high spins. It is found that the T = 0 np pairing plays an important role in enhancing the high-spin collectivity, thereby reducing shape variations along the N = Z line.
Robust conversion of singlet spin order in coupled spin-1/2 pairs by adiabatically ramped RF-fields.
Pravdivtsev, Andrey N; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2016-12-01
We propose a robust and highly efficient NMR technique to create singlet spin order from longitudinal spin magnetization in coupled spin-½ pairs and to perform backward conversion (singlet order)→magnetization. In this method we exploit adiabatic ramping of an RF-field in order to drive transitions between the singlet state and the T± triplet states of a spin pair under study. We demonstrate that the method works perfectly for both strongly and weakly coupled spin pairs, providing a conversion efficiency between the singlet spin order and magnetization, which is equal to the theoretical maximum. We anticipate that the proposed technique is useful for generating long-lived singlet order, for preserving spin hyperpolarization and for analyzing singlet spin order in nearly equivalent spin pairs in specially designed molecules and in low-field NMR studies.
Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs
NASA Astrophysics Data System (ADS)
Schonenberger, Christian
2011-03-01
In quantum mechanics the properties of two and more particles can be entangled. In basic science pairs of entangled particles, so called Einstein-Podolsky-Rosen (EPR) pairs, play a special role as toy objects for fundamental studies. They provide such things as ``spooky interaction at distance,'' but they also enable secure encoding and teleportation and are thus important for applications in quantum information technology. Whereas EPR pairs of photons can be generated by parametric down conversion (PDC) in a crystal, a similar source for EPR pairs of electrons does not exists yet. In several theory papers, it has been suggested to use a superconductor for this purpose. The superconducting ground state is formed by a condensate of Cooper-pairs which are electron pairs in a spin-singlet state. Since there are many Cooper pairs in a metallic superconductor like Al, the main tasks are to extract Cooper pairs one by one and to split them into different arms. A controlled and efficient splitting is possible if one makes use of Coulomb interaction. This has recently be demonstrated by two groups [2-4] using hybrid quantum-dot devices with both superconducting and normal metal contacts. In the present talk, I will discuss the Cooper-pair splitter results from the Basel-Budapest-Copenhagen team and compare with the other experiments. As an outlook we discuss approaches that aim at entanglement detection. The Cooper pair splitter holds great promises because very large splitting efficiencies approaching 100% and large pair current rates appear feasible. This work has been done by L. Hofstetter, S. Csonka, A. Geresdi, M. Aagesen, J. Nygard and C. Schönenberger
Optical switching of nuclear spin-spin couplings in semiconductors.
Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi
2011-07-05
Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear-spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings.
Nuclear spin effects in optical lattice clocks
Boyd, Martin M.; Zelevinsky, Tanya; Ludlow, Andrew D.; Blatt, Sebastian; Zanon-Willette, Thomas; Foreman, Seth M.; Ye Jun
2007-08-15
We present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe the origin of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition and the differential g factor between the two clock states for alkaline-earth-metal(-like) atoms, using {sup 87}Sr as an example. Clock frequency shifts due to magnetic and optical fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of the differential g factor in {sup 87}Sr is performed and is in good agreement with theory. The magnitude of the tensor light shift on the clock states is also explored experimentally. State specific measurements with controlled nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to below 10{sup -17} in lattice clocks.
Paramagnetic Enhancement of Nuclear Spin-Spin Coupling.
Cherry, Peter John; Rouf, Syed Awais; Vaara, Juha
2017-03-14
We present a derivation and computations of the paramagnetic enhancement of the nuclear magnetic resonance (NMR) spin-spin coupling, which may be expressed in terms of the hyperfine coupling (HFC) and (for systems with multiple unpaired electrons) zero-field splitting (ZFS) tensors. This enhancement is formally analogous to the hyperfine contributions to the NMR shielding tensor as formulated by Kurland and McGarvey. The significance of the spin-spin coupling enhancement is demonstrated by using a combination of density-functional theory and correlated ab initio calculations, to determine the HFC and ZFS tensors, respectively, for two paramagnetic 3d metallocenes, a Cr(II)(acac)2 complex, a Co(II) pyrazolylborate complex, and a lanthanide system, Gd-DOTA. Particular attention is paid to relativistic effects in HFC tensors, which are calculated using two methods: a nonrelativistic method supplemented by perturbational spin-orbit coupling corrections, and a fully relativistic, four-component matrix-Dirac-Kohn-Sham approach. The paramagnetic enhancement lacks a direct dependence on the distance between the coupled nuclei, and represents more the strength and orientation of the individual hyperfine couplings of the two nuclei to the spin density distribution. Therefore, the enhancement gains relative importance as compared to conventional coupling as the distance between the nuclei increases, or generally in the cases where the conventional coupling mechanisms result in a small value. With the development of the experimental techniques of paramagnetic NMR, the more significant enhancements, e.g., of the (13)C(13)C couplings in the Gd-DOTA complex (as large as 9.4 Hz), may eventually become important.
NASA Astrophysics Data System (ADS)
Sagawa, H.; Bai, C. L.; Colò, G.
2016-08-01
We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted by the
Nuclear spin squeezing via electric quadrupole interaction
NASA Astrophysics Data System (ADS)
Aksu Korkmaz, Yaǧmur; Bulutay, Ceyhun
2016-01-01
Control over nuclear-spin fluctuations is essential for processes that rely on preserving the quantum state of an embedded system. For this purpose, squeezing is a viable alternative, so far that has not been properly exploited for the nuclear spins. Of particular relevance in solids is the electric quadrupole interaction (QI), which operates on nuclei having spin higher than 1/2. In its general form, QI involves an electric-field gradient (EFG) biaxiality term. Here, we show that as this EFG biaxiality increases, it enables continuous tuning of single-particle squeezing from the one-axis twisting to the two-axis countertwisting limits. A detailed analysis of QI squeezing is provided, exhibiting the intricate consequences of EFG biaxiality. The initial states over the Bloch sphere are mapped out to identify those favorable for fast initial squeezing, or for prolonged squeezings. Furthermore, the evolution of squeezing in the presence of a phase-damping channel and an external magnetic field are investigated. We observe that dephasing drives toward an antisqueezed terminal state, the degree of which increases with the spin angular momentum. Finally, QI squeezing in the limiting case of a two-dimensional EFG with a perpendicular magnetic field is discussed, which is of importance for two-dimensional materials, and the associated beat patterns in squeezing are revealed.
Locking electron spins into resonance by electron-nuclear feedback
NASA Astrophysics Data System (ADS)
Nowack, Katja
2009-03-01
All basic building blocks for spin-based quantum information processing using electron spins in GaAs quantum dots have recently been realized. Recent experiments have shown single-shot read-out of an individual spin [1], the implementation of the SWAP gate [2] and (magnetically induced) coherent single electron spin rotations [3]. However, the main drawback of using electron spins in a GaAs environment is the short spin coherence time, which is measured to be in the nanosecond range [2,4]. The source of this fast decoherence is the hyperfine interaction of the localized electron spin with the randomly fluctuating nuclear spins of the host lattice. The fluctuations of the nuclear spins have to be reduced to extend the electron spin coherence time. We therefore study the electron-nuclear spin interaction and use magnetically driven spin resonance to control the electron spin and indirectly manipulate the nuclear spins. We apply continuous microwave excitation to the electron spin and observe strong electron-nuclear feedback. One experimental signature of this feedback is the locking of the electron spin system into resonance with the microwaves. Once the electron spin is locked into resonance, this resonance condition remains fullfilled even when the external magnetic field or the microwave frequency is changed. This is due to dynamically build up nuclear polarizations (up to 500 mT) which generally counteract the external magnetic field. Locking of the electron spin system into resonance might indicate that the nuclear polarization exhibits stable configurations where fluctuations of the nuclear distribution are reduced [5]. [4pt] References [0pt] [1] J. M. Elzerman et al. , Nature 430, 431 (2004) [0pt] [2]. J. R. Petta et al., Science 309, 2180 (2005). [0pt] [3] F. H. L. Koppens et al., Nature 442, 766 (2006). [0pt] [4] F. H. L. Koppens et al., Phys. Rev. Lett. 100, 236802 (2008). [0pt] [5] J. Danon and Yu. V. Nazarov, private communication.
A Macroscopic Analogue of the Nuclear Pairing Potential
ERIC Educational Resources Information Center
Dunlap, Richard A.
2013-01-01
A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…
High-spin nuclear structure studies with radioactive ion beams
Baktash, C.
1992-12-31
Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), the authors are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial octupole shapes, or to investigate the T = 0 pairing correlations. In this paper, they shall review, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, they shall present a list of the beam species, intensities and energies that are needed to fulfill these goals. The paper will conclude with a description of the experimental techniques and instrumentations that are required for these studies.
Dynamic Nuclear Spin Resonance in n-GaAs
NASA Astrophysics Data System (ADS)
Chen, Y. S.; Reuter, D.; Wieck, A. D.; Bacher, G.
2011-10-01
The dynamics of optically detected nuclear magnetic resonance is studied in n-GaAs via time-resolved Kerr rotation using an on-chip microcoil for rf field generation. Both optically allowed and optically forbidden NMR are observed with a dynamics controlled by the interplay between dynamic nuclear polarization via hyperfine interaction with optically generated spin-polarized electrons and nuclear spin depolarization due to magnetic resonance absorption. Comparing the characteristic nuclear spin relaxation rate obtained in experiment with master equation simulations, the underlying nuclear spin depolarization mechanism for each resonance is extracted.
Dynamical cooling of nuclear spins in double quantum dots.
Rudner, M S; Levitov, L S
2010-07-09
Electrons trapped in quantum dots can exhibit quantum-coherent spin dynamics over long timescales. These timescales are limited by the coupling of electron spins to the disordered nuclear spin background, which is a major source of noise and dephasing in such systems. We propose a scheme for controlling and suppressing fluctuations of nuclear spin polarization in double quantum dots, which uses nuclear spin pumping in the spin-blockade regime. We show that nuclear spin polarization fluctuations can be suppressed when electronic levels in the two dots are properly positioned near resonance. The proposed mechanism is analogous to that of optical Doppler cooling. The Overhauser shift due to fluctuations of nuclear polarization brings electron levels in and out of resonance, creating internal feedback to suppress fluctuations. Estimates indicate that a better than 10-fold reduction of fluctuations is possible.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.
2014-12-22
Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of ^{264}Fm and ^{240}Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of ^{264}Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for ^{240}Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...
2014-12-22
Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less
Radical-pair model of magnetoreception with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Lambert, Neill; De Liberato, Simone; Emary, Clive; Nori, Franco
2013-08-01
The mechanism used by migratory birds to orientate themselves using the geomagnetic field is still a mystery in many species. The radical pair mechanism, in which very weak magnetic fields can influence certain types of spin-dependent chemical reactions, leading to biologically observable signals, has recently imposed itself as one of the most promising candidates for certain species. This is thanks both to its extreme sensitivity and its capacity to reproduce results from behavioral studies. Still, in order to gain a directional sensitivity, an anisotropic mechanism is needed. Recent proposals have explored the possibility that such an anisotropy is due to the electron-nucleus hyperfine interaction. In this work we explore a different possibility, in which the anisotropy is due to spin-orbit coupling between the electron spin and its angular momentum. We will show how a spin-orbit coupling-based magnetic compass can have performances comparable with the usually studied nuclear hyperfine based mechanism. Our results could thus help researchers actively looking for candidate biological molecules which may host magnetoreceptive functions, both to describe magnetoreception in birds as well as to develop artificial chemical compass systems.
Zero Quantum Coherence in a Series of Covalent Spin-Correlated Radical Pairs.
Nelson, Jordan N; Krzyaniak, Matthew D; Horwitz, Noah E; Rugg, Brandon K; Phelan, Brian T; Wasielewski, Michael R
2017-03-14
Photoinitiated subnanosecond electron transfer within covalently linked electron donor-acceptor molecules can result in the formation of a spin-correlated radical pair (SCRP) with a well-defined initial singlet spin configuration. Subsequent coherent mixing between the SCRP singlet and triplet ms = 0 spin states, the so-called zero quantum coherence (ZQC), is of potential interest in quantum information processing applications because the ZQC can be probed using pulse electron paramagnetic resonance (pulse-EPR) techniques. Here, pulse-EPR spectroscopy is utilized to examine the ZQC oscillation frequencies and ZQC dephasing in three structurally well-defined D-A systems. While transitions between the singlet and triplet ms = 0 spin states are formally forbidden (Δms = 0), they can be addressed using specific microwave pulse turning angles to map information from the ZQC onto observable single quantum coherences. In addition, by using structural variations to tune the singlet-triplet energy gap, the ZQC frequencies determined for this series of molecules indicate a stronger dependence on the electronic g-factor than on electron-nuclear hyperfine interactions.
Colvin, Michael T; Carmieli, Raanan; Miura, Tomoaki; Richert, Sabine; Gardner, Daniel M; Smeigh, Amanda L; Dyar, Scott M; Conron, Sarah M; Ratner, Mark A; Wasielewski, Michael R
2013-06-27
A series of donor-chromophore-acceptor-stable radical (D-C-A-R(•)) molecules having well-defined molecular structures were synthesized to study the factors affecting electron spin polarization transfer from the photogenerated D(+•)-C-A(-•) spin-correlated radical pair (RP) to the stable radical R(•). Theory suggests that the magnitude of this transfer depends on the spin-spin exchange interaction (2JDA) of D(+•)-C-A(-•). Yet, the generality of this prediction has never been demonstrated. In the D-C-A-R(•) molecules described herein, D is 4-methoxyaniline (MeOAn), 2,3-dihydro-1,4-benzodioxin-6-amine (DioxAn), or benzobisdioxole aniline (BDXAn), C is 4-aminonaphthalene-1,8-dicarboximide, and A is naphthalene-1,8:4,5-bis(dicarboximide) (1A,B-3A,B) or pyromellitimide (4A,B-6A,B). The terminal imide of the acceptors is functionalized with either a hydrocarbon (1A-6A) or a 2,2,6,6-tetramethyl-1-piperidinyloxyl radical (R(•)) (1B-6B). Photoexcitation of C with 416-nm laser pulses results in two-step charge separation to yield D(+•)-C-A(-•)-(R(•)). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy using continuous-wave (CW) microwaves at both 295 and 85 K and pulsed microwaves at 85 K (electron spin-echo detection) was used to probe the initial formation of the spin-polarized RP and the subsequent polarization of the attached R(•) radical. The TREPR spectra show that |2JDA| for D(+•)-C-A(-•) decreases in the order MeOAn(+•) > DioxAn(+•) > BDXAn(+•) as a result of their spin density distributions, whereas the spin-spin dipolar interaction (dDA) remains nearly constant. Given this systematic variation in |2JDA|, electron spin-echo-detected EPR spectra of 1B-6B at 85 K show that the magnitude of the spin polarization transferred from the RP to R(•) depends on |2JDA|.
Park, Kisam; Light, John C
2007-12-14
The spin-modification probability (SMP) method, which provides fundamental and detailed quantitative information on the nuclear spin selection rules, is discussed more systematically and generalized for reactive collision systems involving more than one configuration of reactant and product molecules, explicitly taking account of the conservation of the overall nuclear spin symmetry as well as the conservation of the total nuclear spin angular momentum, under the assumption of no nuclear hyperfine interaction. The values of SMP once calculated can be used for any system of identical nuclei of any spin as long as the system has the corresponding nuclear spin symmetry. The values of SMP calculated for simple systems can also be used for more complex systems containing several kinds of identical nuclei or various isotopomers. The generalized formulation of statistical scattering theory which can easily represent various rearrangement mechanisms is also presented.
NASA Astrophysics Data System (ADS)
Oprea, Corneliu I.; Rinkevicius, Zilvinas; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth
2005-07-01
This work outlines the calculation of indirect nuclear spin-spin coupling constants with spin-orbit corrections using density functional response theory. The nonrelativistic indirect nuclear spin-spin couplings are evaluated using the linear response method, whereas the relativistic spin-orbit corrections are computed using quadratic response theory. The formalism is applied to the homologous systems H2X (X=O,S,Se,Te) and XH4 (X =C,Si,Ge,Sn,Pb) to calculate the indirect nuclear spin-spin coupling constants between the protons. The results confirm that spin-orbit corrections are important for compounds of the H2X series, for which the electronic structure allows for an efficient coupling between the nuclei mediated by the spin-orbit interaction, whereas in the case of the XH4 series the opposite situation is encountered and the spin-orbit corrections are negligible for all compounds of this series. In addition we analyze the performance of the density functional theory in the calculations of nonrelativistic indirect nuclear spin-spin coupling constants.
Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E
2015-04-01
We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.
Spin Modes in Nuclei and Nuclear Forces
Suzuki, Toshio; Otsuka, Takaharu
2011-05-06
Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in {sup 12}C and {sup 14}C and an anomalous M1 transition in {sup 17}C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by {Delta} excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.
Spin Correlations of Strongly Interacting Massive Fermion Pairs as a Test of Bell's Inequality
Sakai, H.; Saito, T.; Kuboki, H.; Sasano, M.; Yako, K.; Ikeda, T.; Itoh, K.; Kawabata, T.; Maeda, Y.; Suda, K.; Uesaka, T.; Matsui, N.; Satou, Y.; Rangacharyulu, C.; Sekiguchi, K.; Tamii, A.
2006-10-13
We report the results of the first-time test of the local hidden variable theories (Bell-Clauser-Horne-Shimony-Holt) involving strongly interacting pairs of massive spin 1/2 hadrons from the decay of short-lived ({tau}<10{sup -21}sec) {sup 2}He spin-singlet state, populated in the nuclear reaction {sup 2}H+{sup 1}H{yields}{sup 2}He+n. The novel features of this experiment are (a) the use of an 'event body' detector of nearly 100% efficiency to prepare an unbiased sample and (b) a focal-plane polarimeter of full 2{pi} sr acceptance with a random 'post selection' of the reference axes. The spin-correlation function is deduced to be S{sub exp}({pi}/4)=2.83{+-}0.24{sub stat}{+-}0.07{sub sys}. This result is in agreement with nonlocal quantum mechanical prediction and it violates the Bell-CHSH inequality of vertical bar S vertical bar{<=}2 at a confidence level of 99.3%.
Optically induced dynamic nuclear spin polarisation in diamond
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2016-01-01
The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.
Nuclear-Spin Measurements of Quantum Hall Systems
NASA Astrophysics Data System (ADS)
Hirayama, Yoshiro
Nuclear magnetic resonance (NMR) is widely used in the physical, chemical, and biological sciences. However, conventional NMR techniques based on induction-detection have drawbacks of low-sensitivity and the need of a relatively large sample. It is not suitable to investigate single or double layers (or their nanostructure), which is essential in studying quantum Hall (QH) effects. In this presentation, I discussed a resistively-detected technique to overcome the low-sensitivity limitation of conventional NMR and its application to QH systems. Resistively-detected nuclear-spin-based measurements rely on enhanced interactions between electron and nuclear spins at the degenerate point of different electron-spin states. For example, at the ν = 2/3 degenerate point in a AlGaAs/GaAs system,1-3 nuclear-spin polarization far beyond the thermal equilibrium is generated using current flow (dynamic nuclear-spin polarization). Moreover, nuclear-spin polarization can be detected as enhanced resistance, which is proportional to the magnetization, Mz, of nuclear spins.2 It should be stressed that the special states of ν = 2/3 are needed for dynamic nuclear-spin polarization and Mz detection, but we can apply NMR spectrum and nuclear-spin relaxation (T1 time) measurements for any state we want to estimate. These nuclear-spin-based measurements were successfully applied to characterize QH systems, especially their electron-spin features, using single and double layer systems where characteristics are controlled electrically by the gate biases. For a single layer, we could clarify skyrmion,2 spin-polarization of composite fermion,4 and enhanced spin-orbit interactions in a strongly asymmetric confinement.5 Exciting phases, like a canted antiferromagnetic phase, were studied in a double layer QH system with a total filling factor of 2 (Refs. 6, 7). The low-frequency mode was sensitively detected by monitoring T1, reflecting correlated electron spin features.7 The clear
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta
2004-01-01
Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.
Nuclear pairing reduction due to rotation and blocking
Wu, X.; Zhang, Z. H.; Zeng, J. Y.; Lei, Y. A.
2011-03-15
Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency {omega} dependence and seniority (number of unpaired particles) {nu} dependence of the pairing gap {Delta}-tilde are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that, in general, {Delta}-tilde decreases with increasing {omega}, but the {omega} dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority {nu}>2), the pairing gaps stay almost {omega} independent. As a function of the seniority {nu}, the bandhead pairing gaps {Delta}-tilde({nu},{omega}=0) decrease slowly with increasing {nu}. Even for the highest seniority {nu} bands identified so far, {Delta}-tilde({nu},{omega}=0) remains greater than 70% of {Delta}-tilde({nu}=0,{omega}=0).
Electron-Nuclear Spin Transfer in Triple Quantum Dot Networks
NASA Astrophysics Data System (ADS)
Prada, Marta; Toonen, Ryan; Harrison, Paul
2005-03-01
We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of delta- and y-junction networks and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalised to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in presence of nuclear spin relaxation. We find that the gradual depolarisation of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.
Electron nuclear spin transfer in quantum-dot networks
NASA Astrophysics Data System (ADS)
Prada, M.; Toonen, R. C.; Blick, R. H.; Harrison, P.
2005-05-01
We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of different geometries of a two-dimensional network of quantum dots and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalized to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in the presence of nuclear spin relaxation. We find that the gradual depolarization of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.
Protection of centre spin coherence by dynamic nuclear spin polarization in diamond.
Liu, Gang-Qin; Jiang, Qian-Qing; Chang, Yan-Chun; Liu, Dong-Qi; Li, Wu-Xia; Gu, Chang-Zhi; Po, Hoi Chun; Zhang, Wen-Xian; Zhao, Nan; Pan, Xin-Yu
2014-09-07
We experimentally investigate the protection of electron spin coherence of a nitrogen-vacancy (NV) centre in diamond by dynamic nuclear spin polarization (DNP). The electron spin decoherence of an NV centre is caused by the magnetic field fluctuation of the (13)C nuclear spin bath, which contributes large thermal fluctuation to the centre electron spin when it is in an equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under the Hartmann-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time (T). Optimal conditions for the DNP process, including the pumping pulse duration and repeat numbers, are proposed by numerical simulation and confirmed by experiment. We also studied the depolarization effect of laser pulses. Our results provide a new route for quantum information processing and quantum simulation using the polarized nuclear spin bath.
Nuclear and extended infrared emission in paired and isolated galaxies
NASA Technical Reports Server (NTRS)
Cutri, Roc M.
1990-01-01
The empirical connection between gravitational and collisional interactions among galaxies and enhanced activity has been well-documented. However, the physical mechanisms which are responsible for triggering the various forms of activity have not been determined. The author presents the preliminary results of a study of the nuclear and integrated infrared properties of galaxies chosen from the Catalog of Isolated Pairs of Galaxies in the Northern Hemisphere (Karachentsev 1972; hereafter CPG) and the Catalog of Isolated Galaxies (Karachentseva 1973; hereafter KI). Observations of these large, unbiased samples of paired and isolated galaxies are analyzed with the hope of identifying which aspects of galaxy encounters are most closely coupled to the presence of activity.
Optical manipulation of a multilevel nuclear spin in ZnO: Master equation and experiment
NASA Astrophysics Data System (ADS)
Buß, J. H.; Rudolph, J.; Wassner, T. A.; Eickhoff, M.; Hägele, D.
2016-04-01
We demonstrate the dynamics and optical control of a large quantum mechanical solid state spin system consisting of a donor electron spin strongly coupled to the 9/2 nuclear spin of 115In in the semiconductor ZnO. Comparison of electron spin dynamics observed by time-resolved pump-probe spectroscopy with density matrix theory reveals nuclear spin pumping via optically oriented electron spins, coherent spin-spin interaction, and quantization effects of the ten nuclear spin levels. Modulation of the optical electron spin orientation at frequencies above 1 MHz gives evidence for fast optical manipulation of the nuclear spin state.
Nuclear spin-induced Cotton-Mouton effect in molecules.
Fu, Li-juan; Vaara, Juha
2013-05-28
In nuclear magneto-optic spectroscopy, effects of nuclear magnetization are detected in light passing through a sample containing spin-polarized nuclei. An optical analogue of nuclear magnetic resonance (NMR) chemical shift has been predicted and observed in the nuclear spin optical rotation of linearly polarized light propagating parallel to the nuclear magnetization. A recently proposed magneto-optic analogue of the NMR spin-spin coupling, the nuclear spin-induced Cotton-Mouton (NSCM) effect entails an ellipticity induced to linearly polarized light when passing through a medium with the nuclear spins polarized in a direction perpendicular to the light beam. Here we present a first-principles electronic structure formulation of NSCM in terms of response theory as well as ab initio and density-functional theory calculations for small molecules. The roles of basis set (we use completeness-optimized sets), electron correlation, and relativistic effects are discussed. It is found that the explicitly temperature-dependent contribution to NSCM, arising from the partial orientation of the molecules due to the nuclear magnetization, typically dominates the effect. This part of NSCM is proportional to the tensor product of molecular polarizability and the NMR direct dipolar coupling tensor. Hence, NSCM provides a means of investigating the dipolar coupling and, thus, molecular structure in a formally isotropic medium. Overall ellipticities of the order of magnitude of 10(-8)...10(-7) rad/(M cm) are predicted for fully polarized nuclei. These should be detectable with modern instrumentation in the Voigt setup.
Thurber, Kent R; Tycko, Robert
2014-05-14
We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
Thurber, Kent R.; Tycko, Robert
2014-01-01
We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263
Thurber, Kent R. Tycko, Robert
2014-05-14
We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
Qubit protection in nuclear-spin quantum dot memories.
Kurucz, Z; Sørensen, M W; Taylor, J M; Lukin, M D; Fleischhauer, M
2009-07-03
We present a mechanism to protect quantum information stored in an ensemble of nuclear spins in a semiconductor quantum dot. When the dot is charged the nuclei interact with the spin of the excess electron through the hyperfine coupling. If this coupling is made off-resonant, it leads to an energy gap between the collective storage states and all other states. We show that the energy gap protects the quantum memory from local spin-flip and spin-dephasing noise. Effects of nonperfect initial spin polarization and inhomogeneous hyperfine coupling are discussed.
Unconventional Pairing in Excitonic Condensates under Spin-Orbit Coupling
Can, M. Ali; Hakioglu, T.
2009-08-21
It is shown that Rashba and Dresselhaus spin-orbit couplings enhance the conclusive power in the experiments on the excitonic condensate by at least three low temperature effects. First, spin-orbit coupling facilitates the photoluminescence measurements via enhancing the bright contribution in the otherwise dominantly dark ground state. The second is the presence of a low temperature power law dependence of the specific heat and weakening of the second order transition at the critical temperature. The third is the appearance of the nondiagonal elements in the static spin susceptibility.
Spin dynamics of polarons and polaron pairs in a random hyperfine field
NASA Astrophysics Data System (ADS)
Roundy, Robert C.
Spin-dependent recombination of polaron pairs and spin relaxation of a single polaron are the most fundamental processes are responsible for the performance of organic spintronics-based devices such as light-emitting diodes and organic spin valves. In organic materials, with no spin-orbit coupling, both processes are due to random hyperfine fields created by protons neighboring the polaron sites. The essence of spin-dependent recombination is that in order to recombine the pair must be in the singlet state. Hyperfine fields acting on the electron and hole govern the spin-dynamics of localized pairs during the waiting time for recombination. We demonstrate that for certain domain of trapping configurations of hyperfine fields, crossover to the singlet state is quenched. This leads to the blocking of current. The phenomenon of organic magnetoresistance (OMAR) is described by counting the weights of trapping configurations as a function of magnetic field. This explains the universality of the lineshapes of the OMAR curves. In finite samples incomplete averaging over the hyperfine fields gives rise to mesoscopic fluctuations of the current response. We also demonstrate that under the condition of magnetic resonance, new trapping configurations emerge. This leads to nontrivial evolution of current through the sample with microwave power. When discussing spin-relaxation two questions can be asked: (a) How does the local spin polarization decay as a function of distance from the spin-polarized injector? (b) How does the injected spin decay as a function of time after spatial averaging? With regard to (a), we demonstrate that, while decaying exponentially on average, local spin-polarization exhibits giant fluctuations from point to point. Concerning (b), we find that for a spin-carrier which moves diffusively in low dimensions the decay is faster than a simple exponent. The underlying physics for both findings is that in describing spin evolution it is necessary to add up
NASA Astrophysics Data System (ADS)
Yin, Jun-Jie; Hyde, James S.
Rate equations describing the time dependence of population differences of the five allowed transitions in an 14N 15N spin-label pair problem are set up. Included in the formulation are the three Heisenberg exchange rate constants and different nitrogen nuclear spin-lattice relaxation rates, electron spin-lattice relaxation rates, and populations for the 14N and 15N moieties. Using matrix algebra, stationary and time-dependent solutions are obtained in a unified theoretical framework. The calculations apply to stationary and pulse electron-electron double resonance and to saturation-recovery ESR. Particular emphasis is placed on short pulse initial excitation, where the transverse relaxation processes are sufficiently slow that only the population difference of the irradiated transition departs significantly from Boltzmann equilibrium during the excitation.
Quantum dot spin coherence governed by a strained nuclear environment
NASA Astrophysics Data System (ADS)
Stockill, R.; Le Gall, C.; Matthiesen, C.; Huthmacher, L.; Clarke, E.; Hugues, M.; Atatüre, M.
2016-09-01
The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin-photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity.
Nuclear magnetic resonance spectroscopy with single spin sensitivity
Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.
2014-01-01
Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503
Evidence for a spin-aligned neutron-proton paired phase from the level structure of (92)Pd.
Cederwall, B; Moradi, F Ghazi; Bäck, T; Johnson, A; Blomqvist, J; Clément, E; de France, G; Wadsworth, R; Andgren, K; Lagergren, K; Dijon, A; Jaworski, G; Liotta, R; Qi, C; Nyakó, B M; Nyberg, J; Palacz, M; Al-Azri, H; Algora, A; de Angelis, G; Ataç, A; Bhattacharyya, S; Brock, T; Brown, J R; Davies, P; Di Nitto, A; Dombrádi, Zs; Gadea, A; Gál, J; Hadinia, B; Johnston-Theasby, F; Joshi, P; Juhász, K; Julin, R; Jungclaus, A; Kalinka, G; Kara, S O; Khaplanov, A; Kownacki, J; La Rana, G; Lenzi, S M; Molnár, J; Moro, R; Napoli, D R; Singh, B S Nara; Persson, A; Recchia, F; Sandzelius, M; Scheurer, J-N; Sletten, G; Sohler, D; Söderström, P-A; Taylor, M J; Timár, J; Valiente-Dobón, J J; Vardaci, E; Williams, S
2011-01-06
Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.
Nuclear pairing correlations within and beyond HFB-BCS models
NASA Astrophysics Data System (ADS)
Gambacurta, Danilo; Lacroix, Denis
2015-02-01
Pairing correlations in nuclear systems play a crucial role in several aspects, i.e. binding energies and odd-even effects, superfluid phenomena and pair transfer mechanisms, just to quote few of them. On the theoretical side, the standard description of these features is done by using BCS or HFB models which allow to describe in a simple way pairing effects. However, due to the explicit breaking of the particle number, these theories present some limitations which can be cured by using particle number projection techniques. In this paper, we will show the merits of these techniques and their accuracy in treating pairing correlations. First, a beyond BCS-HFB method is introduced where the effect of four quasi-particle states is included perturbatively and subsequently the particle number is restored. We will then show the need of restoring the good particle number also for excited states that are essential in the pair transfer process between superfluid systems. Applications to the Richardson model are shown and discussed.
NASA Astrophysics Data System (ADS)
Mizushima, Takeshi
2014-11-01
We here illustrate the relation between odd-frequency spin-triplet even-parity (OTE) Cooper pairs and anomalous surface magnetic response in time-reversal-invariant (TRI) spin-triplet superfluids and superconductors. The spin susceptibility generally consists of two contributions: even-frequency odd-parity pair amplitudes and odd-frequency even-parity pair amplitudes. The OTE pair amplitudes are absent in the bulk region, but ubiquitously exist in the surface and interface region as Andreev bound states. We here clarify that additional discrete symmetries, originating from the internal symmetry and point-group symmetry, impose strong constraint on the OTE pair amplitudes emergent in the surface of TRI superfluids and superconductors. As a result of the symmetry constraint, the magnetic response of the OTE pairs yields Ising-like anisotropy. For the topological phase of the 3He -B in a restricted geometry, the coupling of the OTE pair amplitudes to an applied field is prohibited by an additional discrete symmetry. Once the discrete symmetry is broken, however, the OTE pairs start to couple to the applied field, which anomalously enhances surface spin susceptibility. Furthermore, we extend this theory to TRI superconductors, where the corresponding discrete symmetry is the mirror reflection symmetry.
Hu, Huping; Wu, Maoxin
2004-01-01
A novel theory of consciousness is proposed in this paper. We postulate that consciousness is intrinsically connected to quantum spin since the latter is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. That is, spin is the "mind-pixel". The unity of mind is achieved by entanglement of the mind-pixels. Applying these ideas to the particular structures and dynamics of the brain, we theorize that human brain works as follows: through action potential modulated nuclear spin interactions and paramagnetic O2/NO driven activations, the nuclear spins inside neural membranes and proteins form various entangled quantum states some of which survive decoherence through quantum Zeno effects or in decoherence-free subspaces and then collapse contextually via irreversible and non-computable means producing consciousness and, in turn, the collective spin dynamics associated with said collapses have effects through spin chemistry on classical neural activities thus influencing the neural networks of the brain. Our proposal calls for extension of associative encoding of neural memories to the dynamical structures of neural membranes and proteins. Thus, according our theory, the nuclear spin ensembles are the "mind-screen" with nuclear spins as its pixels, the neural membranes and proteins are the mind-screen and memory matrices, and the biologically available paramagnetic species such as O2 and NO are pixel-activating agents. Together, they form the neural substrates of consciousness. We also present supporting evidence and make important predictions. We stress that our theory is experimentally verifiable with present technologies. Further, experimental realizations of intra-/inter-molecular nuclear spin coherence and entanglement, macroscopic entanglement of spin ensembles and NMR quantum computation, all in room temperatures, strongly suggest the possibility of a spin
Maeda, Kiminori; Liddell, Paul; Gust, Devens; Hore, P. J.
2013-12-21
Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.
Quantum dot spin coherence governed by a strained nuclear environment
Stockill, R.; Le Gall, C.; Matthiesen, C.; Huthmacher, L.; Clarke, E.; Hugues, M.; Atatüre, M.
2016-01-01
The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin–photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity. PMID:27615704
Flux noise in SQUIDs: Electron versus nuclear spins
NASA Astrophysics Data System (ADS)
de Sousa, Rogerio; Laforest, Stephanie
2015-03-01
Superconducting Quantum Interference Devices (SQUIDs) are limited by intrinsic flux noise whose origin is unknown. We develop a method to accurately calculate the flux produced by spin impurities in realistic superconducting thin film wires, and show that the flux produced by each spin is much larger than anticipated by former calculations. Remarkably, the total flux noise power due to electron spins at the thin side surface of the wires is found to be of similar magnitude as the one due to electrons at the wide top surface of the wires. In addition, flux noise due to lattice nuclear spins in the bulk of the wires is found to be a sizable fraction of the total noise for some SQUID geometries. We discuss the relative importance of electron and nuclear spin species in determining the total noise power, and propose strategies to design SQUIDs with lower flux noise. We acknowledge support from the Canadian agency NSERC through its Discovery and Engage programs.
Estimation of pairing correlations for nuclear mass table evaluation
NASA Astrophysics Data System (ADS)
Robledo, Luis; Bertsch, George
2010-11-01
Mean field models provide a well-justified theoretical approach to generate mass tables, but without some extension the energy misses the correlation energy associated with the restoration of broken symmetries such as angular momentum or particle number. The Lipkin-Nogami (LN) method is often used to treat the pairing correlation energy in mass table evaluations, mainly because of its simplicity. However, it has been found that in many nuclei pairing correlations are weak and the LN method, which is an approximation to the more sophisticated Particle Number Projection (PNP), fails. We propose an alternative to the LN method which can be safely applied in the regime of weak pairing correlations and is simpler than variation after projection (VAP) for the PNP. It is based on a Restricted VAP for PNP using the fluctuation on particle number as coordinate. We show that in the strong pairing correlation limit the LN method is recovered. The method is applied to the evaluation of the even-even nuclei mass table with the Gogny parametrization of the nuclear interaction.
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths
NASA Astrophysics Data System (ADS)
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Quantum cognition: The possibility of processing with nuclear spins in the brain
NASA Astrophysics Data System (ADS)
Fisher, Matthew P. A.
2015-11-01
The possibility that quantum processing with nuclear spins might be operative in the brain is explored. Phosphorus is identified as the unique biological element with a nuclear spin that can serve as a qubit for such putative quantum processing-a neural qubit-while the phosphate ion is the only possible qubit-transporter. We identify the "Posner molecule", Ca9(PO4)6, as the unique molecule that can protect the neural qubits on very long times and thereby serve as a (working) quantum-memory. A central requirement for quantum-processing is quantum entanglement. It is argued that the enzyme catalyzed chemical reaction which breaks a pyrophosphate ion into two phosphate ions can quantum entangle pairs of qubits. Posner molecules, formed by binding such phosphate pairs with extracellular calcium ions, will inherit the nuclear spin entanglement. A mechanism for transporting Posner molecules into presynaptic neurons during vesicle endocytosis is proposed. Quantum measurements can occur when a pair of Posner molecules chemically bind and subsequently melt, releasing a shower of intra-cellular calcium ions that can trigger further neurotransmitter release and enhance the probability of post-synaptic neuron firing. Multiple entangled Posner molecules, triggering non-local quantum correlations of neuron firing rates, would provide the key mechanism for neural quantum processing. Implications, both in vitro and in vivo, are briefly mentioned.
Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling
NASA Astrophysics Data System (ADS)
Garbacz, P.; Buckingham, A. D.
2016-11-01
It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.
Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling.
Garbacz, P; Buckingham, A D
2016-11-28
It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.
Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles
NASA Astrophysics Data System (ADS)
Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.
2015-11-01
Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.
Nuclear spin-induced Cotton-Mouton effect in molecules
NASA Astrophysics Data System (ADS)
Fu, Li-juan; Vaara, Juha
2013-05-01
In nuclear magneto-optic spectroscopy, effects of nuclear magnetization are detected in light passing through a sample containing spin-polarized nuclei. An optical analogue of nuclear magnetic resonance (NMR) chemical shift has been predicted and observed in the nuclear spin optical rotation of linearly polarized light propagating parallel to the nuclear magnetization. A recently proposed magneto-optic analogue of the NMR spin-spin coupling, the nuclear spin-induced Cotton-Mouton (NSCM) effect entails an ellipticity induced to linearly polarized light when passing through a medium with the nuclear spins polarized in a direction perpendicular to the light beam. Here we present a first-principles electronic structure formulation of NSCM in terms of response theory as well as ab initio and density-functional theory calculations for small molecules. The roles of basis set (we use completeness-optimized sets), electron correlation, and relativistic effects are discussed. It is found that the explicitly temperature-dependent contribution to NSCM, arising from the partial orientation of the molecules due to the nuclear magnetization, typically dominates the effect. This part of NSCM is proportional to the tensor product of molecular polarizability and the NMR direct dipolar coupling tensor. Hence, NSCM provides a means of investigating the dipolar coupling and, thus, molecular structure in a formally isotropic medium. Overall ellipticities of the order of magnitude of 10-8…10-7 rad/(M cm) are predicted for fully polarized nuclei. These should be detectable with modern instrumentation in the Voigt setup.
Origin of Light-Induced Spin-Correlated Radical Pairs in Cryptochrome
Weber, Stefan; Biskup, Till; Okafuji, Asako; Marino, Anthony R.; Berthold, Thomas; Link, Gerhard; Hitomi, Kenichi; Getzoff, Elizabeth D.; Schleicher, Erik; Norris, James R.
2012-01-01
Blue-light excitation of cryptochromes and homologs uniformly triggers electron transfer (ET) from the protein surface to the flavin-adenine dinucleotide (FAD) cofactor. A cascade of three conserved tryptophan residues has been considered to be critically involved in this photoreaction. If the FAD is initially in its fully oxidized (diamagnetic) redox state, light-induced ET via the tryptophan triad generates a series of short-lived spin-correlated radical pairs comprising an FAD radical and a tryptophan radical. Coupled doublet-pair species of this type have been proposed as the basis, e.g., of a biological magnetic compass in migratory birds, and were found critical for some cryptochrome functions in vivo. In this contribution, a cryptochrome-like protein (CRYD) derived from Xenopus laevis has been examined as a representative system. The terminal radical-pair state FAD•⋯W324• of X. laevis CRYD has been characterized in detail by time-resolved electron-paramagnetic resonance (TREPR) at X-band microwave frequency (9.68 GHz) and magnetic fields around 345 mT, and at Q-band (34.08 GHz) at around 1215 mT. Different precursor states – singlet versus triplet – of radical-pair formation have been considered in spectral simulations of the experimental electron-spin polarized TREPR signals. Conclusively, we present evidence for a singlet-state precursor of FAD•⋯W324• radical-pair generation because at both magnetic fields, where radical pairs were studied by TREPR, net-zero electron-spin polarization has been detected. Neither a spin-polarized triplet precursor nor a triplet at thermal equilibrium can explain such an electron-spin polarization. It turns out that a two-microwave-frequency TREPR approach is essential to draw conclusions on the nature of the precursor electronic states in light-induced spin-correlated radical pair formations. PMID:20684534
Nuclear spin-lattice relaxation in nitroxide spin-label EPR.
Marsh, Derek
2016-11-01
Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T1-exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for (14)N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised (14)N spin-lattice relaxation rate, b=Wn/(2We), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in (14)N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for (14)N-relaxation: T1n=1/Wn. Results are compared and contrasted with those for the two-level (15)N-nitroxide system.
Nuclear spin-lattice relaxation in nitroxide spin-label EPR
NASA Astrophysics Data System (ADS)
Marsh, Derek
2016-11-01
Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T1-exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1n = 1/Wn. Results are compared and contrasted with those for the two-level 15N-nitroxide system.
Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe
Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.
2015-10-26
We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore » can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less
Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe
Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.
2015-10-26
We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.
Notch filtering the nuclear environment of a spin qubit
NASA Astrophysics Data System (ADS)
Malinowski, Filip K.; Martins, Frederico; Nissen, Peter D.; Barnes, Edwin; Cywiński, Łukasz; Rudner, Mark S.; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand
2017-01-01
Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence. Low-frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing, can be removed by echo techniques. High-frequency nuclear noise, recently studied via echo revivals, occurs in narrow-frequency bands related to differences in Larmor precession of the three isotopes 69Ga, 71Ga and 75As (refs 15,16,17). Here, we show that both low- and high-frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T2) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots.
Notch filtering the nuclear environment of a spin qubit.
Malinowski, Filip K; Martins, Frederico; Nissen, Peter D; Barnes, Edwin; Cywiński, Łukasz; Rudner, Mark S; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand
2017-01-01
Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence. Low-frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing, can be removed by echo techniques. High-frequency nuclear noise, recently studied via echo revivals, occurs in narrow-frequency bands related to differences in Larmor precession of the three isotopes (69)Ga, (71)Ga and (75)As (refs 15,16,17). Here, we show that both low- and high-frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T2) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots.
Calculation of nuclear spin-spin coupling constants using frozen density embedding
NASA Astrophysics Data System (ADS)
Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas
2014-03-01
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules.
Calculation of nuclear spin-spin coupling constants using frozen density embedding
Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas
2014-03-14
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.
Vortex-Antivortex-Pair Lattices in Spin-Orbit Coupled Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Li, Ben; Sakaguchi, Hidetsugu
2014-04-01
We investigate theoretically the ground states of Bose-Einstein condensates with Rashba spin-orbit coupling in optical lattices within mean-field framework. We obtain numerically the Bloch states and energy spectrum for the single particle Hamiltonian, meanwhile the analytical solution of Bloch states is also presented. For a spin-orbit coupling Bose-Einstein condensates with a weak interaction, we show the existence of the vortex-antivortex-pair lattices state by simulating the Gross-Pitaevskii equation.
Nuclear inertia from the time dependent pairing equations
NASA Astrophysics Data System (ADS)
Mirea, M.
2016-10-01
In a dynamical system, the momenta of inertia and the effective masses are not adiabatic quantities, but are dynamical ones that depend on the dissipated energy accumulated during motion. However, these parameters are calculated for adiabatic nuclear systems, leaving no room for dissipated energy. In this work, a formalism is elaborated in order to derive simultaneously the nuclear momenta of inertia and the effective masses by taking into account the appearance of dissipated energy for large amplitude motion of the nuclear system. The expressions that define the inertia are obtained from the variational principle. The same principle manages the time dependent pairing equations, offering estimations of the averaged dissipation energy for large amplitude motions. The model is applied to 232Th fission. The fission barrier was calculated along the least action trajectory. The dissipation energy, effective mass and moment of inertia are determined for different values of the collective velocities. The dissipation increases with the internuclear velocity in binary disintegration processes and modifies the effective mass parameters. We observed that the inertia decreases as long as the collective velocity increases to some moderate values and begins to grow for larger collective velocities. So, a dependence between the cranking mass parameters and the intrinsic excitation energy is evidenced. In order to investigate the overall effect, the half-lives are predicted for adiabatic and dynamics simulations.
Filatov, Michael; Cremer, Dieter
2004-06-22
A new method for calculating the indirect nuclear spin-spin coupling constant within the regular approximation to the exact relativistic Hamiltonian is presented. The method is completely analytic in the sense that it does not employ numeric integration for the evaluation of relativistic corrections to the molecular Hamiltonian. It can be applied at the level of conventional wave function theory or density functional theory. In the latter case, both pure and hybrid density functionals can be used for the calculation of the quasirelativistic spin-spin coupling constants. The new method is used in connection with the infinite-order regular approximation with modified metric (IORAmm) to calculate the spin-spin coupling constants for molecules containing heavy elements. The importance of including exact exchange into the density functional calculations is demonstrated.
Amaha, S.; Hatano, T.; Tarucha, S.; Gupta, J. A.; Austing, D. G.
2015-04-27
We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.
Spin-charge separation and electron pairing instabilities in Hubbard nanoclusters
Kocharian, A.; Davenport, J.; Fernando, G.W.; Palandage, K.
2009-07-01
Electron charge and spin pairing instabilities in various cluster geometries for attractive and repulsive electrons are studied exactly under variation of interaction strength, electron doping and temperature. The exact diagonalization, level crossing degeneracies, spin-charge separation and separate condensation of paired electron charge and opposite spins yield intriguing insights into the origin of magnetism, ferroelectricity and superconductivity seen in inhomogeneous bulk nanomaterials and various phenomena in cold fermionic atoms in optical lattices. Phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases found recently in high-T{sub c} cuprates, manganites and multiferroic nanomaterials probed by scanning tunneling microscopy. Separate condensation of electron charge and spin degrees at various crossover temperatures offers a new route for superconductivity, different from the BCS scenario. The calculated phase diagrams resemble a number of inhomogeneous paired phases, superconductivity, ferromagnetism and ferroelectricity found in Nb and Co nanoparticles. The phase separation and electron pairing, monitored by electron doping and magnetic field surprisingly resemble incoherent electron pairing in the family of doped high-T{sub c} cuprates, ruthenocuprates, iron pnictides and spontaneous ferroelectricity in multiferroic materials.
Spin-charge separation and electron pairing instabilities in Hubbard nanoclusters.
Kocharian, A N; Fernando, G W; Palandage, K; Davenport, J W
2009-07-01
Electron charge and spin pairing instabilities in various cluster geometries for attractive and repulsive electrons are studied exactly under variation of interaction strength, electron doping and temperature. The exact diagonalization, level crossing degeneracies, spin-charge separation and separate condensation of paired electron charge and opposite spins yield intriguing insights into the origin of magnetism, ferroelectricity and superconductivity seen in inhomogeneous bulk nanomaterials and various phenomena in cold fermionic atoms in optical lattices. Phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases found recently in high-T(c) cuprates, manganites and multiferroic nanomaterials probed by scanning tunneling microscopy. Separate condensation of electron charge and spin degrees at various crossover temperatures offers a new route for superconductivity, different from the BCS scenario. The calculated phase diagrams resemble a number of inhomogeneous paired phases, superconductivity, ferromagnetism and ferroelectricity found in Nb and Co nanoparticles. The phase separation and electron pairing, monitored by electron doping and magnetic field surprisingly resemble incoherent electron pairing in the family of doped high-T(c) cuprates, ruthenocuprates, iron pnictides and spontaneous ferroelectricity in multiferroic materials.
Antiferromagnetic Ising spin glass competing with BCS pairing interaction in a transverse field
NASA Astrophysics Data System (ADS)
Magalhães, S. G.; Zimmer, F. M.; Kipper, C. J.; Calegari, E. J.
2006-07-01
The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising spin glass model with a local BCS pairing interaction in the presence of an applied magnetic transverse field Γ. In the present approach, spins in different sublattices interact with a Gaussian random coupling with an antiferromagnetic mean J0 and standard deviation J. The problem is formulated in the path integral formalism in which spin operators are represented by bilinear combinations of Grassmann variables. The saddle-point Grand Canonical potential is obtained within the static approximation and the replica symmetric ansatz. The results are analysed in phase diagrams in which the AF and the SG phases can occur for small g (g is the strength of the local superconductor coupling written in units of J), while the PAIR phase appears as unique solution for large g. However, there is a complex line transition separating the PAIR phase from the others. It is second order at high temperature that ends in a tricritical point. The quantum fluctuations affect deeply the transition lines and the tricritical point due to the presence of Γ.
Hole-Nuclear Spin Interaction in Quantum Dots
NASA Astrophysics Data System (ADS)
Eble, B.; Testelin, C.; Desfonds, P.; Bernardot, F.; Balocchi, A.; Amand, T.; Miard, A.; Lemaître, A.; Marie, X.; Chamarro, M.
2009-04-01
We have measured the carrier spin dynamics in p-doped InAs/GaAs quantum dots by pump-probe and time-resolved photoluminescence experiments. We obtained experimental evidence of the hyperfine interaction between hole and nuclear spins. In the absence of an external magnetic field, our calculations based on dipole-dipole coupling between the hole and the quantum dot nuclei lead to a hole-spin dephasing time for an ensemble of dots of 14 ns, in close agreement with experiments.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This
Quarteting and spin-aligned proton-neutron pairs in heavy N =Z nuclei
NASA Astrophysics Data System (ADS)
Sambataro, M.; Sandulescu, N.
2015-06-01
We analyze the role of maximally aligned isoscalar pairs in heavy N =Z nuclei by employing a formalism of quartets. Quartets are superpositions of two neutrons and two protons coupled to total isospin T =0 and given J . The study is focused on the contribution of spin-aligned pairs carrying the angular momentum J =9 to the structure of 96Cd and 92Pd . We show that the role played by the J =9 pairs is quite sensitive to the model space and, in particular, it decreases considerably by passing from the simple 0 g9 /2 space to the more complete 1 p1 /2,1 p3 /2,0 f5 /2,0 g9 /2 space. In the latter case the description of these nuclei in terms of only spin-aligned J =9 pairs turns out to be unsatisfactory while an important contribution, particularly in the ground state, is seen to arise from isovector J =0 and isoscalar J =1 pairs. Thus, contrary to previous studies, we find no compelling evidence of a spin-aligned pairing phase in 92Pd .
Wylie, Benjamin J; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.
2016-01-01
We demonstrate that dynamic nuclear polarization (DNP) of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of 6-fold for the dimeric protein. The enhancement affect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256
Popov, Alexander A; Lukina, Ekaterina A; Rapatskiy, Leonid; Kulik, Leonid V
2017-03-01
Temporal shape of electron spin echo (ESE) signal of photoinduced spin-correlated radical pairs (SCRP) in composite of conductive polymer P3HT and substituted fullerene PCBM is studied in details. ESE signals of radical pairs (RP) P3HT(+)/PCBM(-) are calculated in realistic model, taking into account finite microwave pulse length. Inhomogeneous broadening of resonant lines and interradical distance distribution are included. Experimentally observed ESE time-domain shape was found to contradict predictions of conventional SCRP theory, which would be valid in the case of very fast electron transfer. Thus, instantaneous formation of singlet SCRP is not the case for P3HT(+)/PCBM(-) pair, and spin system has enough time to evolve coherently during sequential electron transfer. While it is impossible to reproduce experimental data within simple singlet SCRP model, assumption of presence of additional - with respect to what is predicted by singlet SCRP theory - AE (absorption/emission) spin polarization gives convincing accordance with the experiment. Density matrix of RP P3HT(+)/PCBM(-) is a superposition of two contributions, namely the parts reflecting (i) antiphase polarization of original singlet-born SCRP and (ii) additional AE-polarization which is generated during initial stage of charge separation. AE-polarization affects experimental ESEEM (electron spin echo envelope modulation) traces, as well as ESE shape, making impossible their interpretation via simple singlet SCRP model. However, this effect can be eliminated by averaging of ESEEM traces over EPR spectral positions. Finally, choosing the optimal gate for ESE time-domain integration and proper microwave detection phase tuning are considered.
NASA Astrophysics Data System (ADS)
Popov, Alexander A.; Lukina, Ekaterina A.; Rapatskiy, Leonid; Kulik, Leonid V.
2017-03-01
Temporal shape of electron spin echo (ESE) signal of photoinduced spin-correlated radical pairs (SCRP) in composite of conductive polymer P3HT and substituted fullerene PCBM is studied in details. ESE signals of radical pairs (RP) P3HT+/PCBM- are calculated in realistic model, taking into account finite microwave pulse length. Inhomogeneous broadening of resonant lines and interradical distance distribution are included. Experimentally observed ESE time-domain shape was found to contradict predictions of conventional SCRP theory, which would be valid in the case of very fast electron transfer. Thus, instantaneous formation of singlet SCRP is not the case for P3HT+/PCBM- pair, and spin system has enough time to evolve coherently during sequential electron transfer. While it is impossible to reproduce experimental data within simple singlet SCRP model, assumption of presence of additional - with respect to what is predicted by singlet SCRP theory - AE (absorption/emission) spin polarization gives convincing accordance with the experiment. Density matrix of RP P3HT+/PCBM- is a superposition of two contributions, namely the parts reflecting (i) antiphase polarization of original singlet-born SCRP and (ii) additional AE-polarization which is generated during initial stage of charge separation. AE-polarization affects experimental ESEEM (electron spin echo envelope modulation) traces, as well as ESE shape, making impossible their interpretation via simple singlet SCRP model. However, this effect can be eliminated by averaging of ESEEM traces over EPR spectral positions. Finally, choosing the optimal gate for ESE time-domain integration and proper microwave detection phase tuning are considered.
Single Nuclear Spin Magnetic Resonance Force Microscopy
2010-05-02
Lab. In work not directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of...directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of submicron magnetic structures...our earlier NMR detection of 19F spins in CaF2 we have conducted 65Cu, 63Cu NMR stud- ies for studies of interface phenomena in multilayered magnetic
Tunable anomalous Andreev reflection and triplet pairings in spin-orbit-coupled graphene
NASA Astrophysics Data System (ADS)
Beiranvand, Razieh; Hamzehpour, Hossein; Alidoust, Mohammad
2016-09-01
We theoretically study scattering process and superconducting triplet correlations in a graphene junction comprised of ferromagnet-RSO-superconductor in which RSO stands for a region with Rashba spin-orbit interaction. Our results reveal spin-polarized subgap transport through the system due to an anomalous equal-spin Andreev reflection in addition to conventional backscatterings. We calculate equal- and opposite-spin pair correlations near the F-RSO interface and demonstrate direct link of the anomalous Andreev reflection and equal-spin pairings arisen due to the proximity effect in the presence of RSO interaction. Moreover, we show that the amplitude of anomalous Andreev reflection, and thus the triplet pairings, are experimentally controllable when incorporating the influences of both tunable strain and Fermi level in the nonsuperconducting region. Our findings can be confirmed by a conductance spectroscopy experiment and may provide more insights into the proximity-induced RSO coupling in graphene layers reported recently in experiments [A. Avsar et al., Nat. Commun. 5, 4875 (2014), 10.1038/ncomms5875; Z. Wang et al., Phys. Rev. Lett. 114, 016603 (2015), 10.1103/PhysRevLett.114.016603; J. B. S. Mendes et al., Phys. Rev. Lett. 115, 226601 (2015), 10.1103/PhysRevLett.115.226601; S. Dushenko et al., Phys. Rev. Lett. 116, 166102 (2016), 10.1103/PhysRevLett.116.166102].
Topology of spin meron pairs in coupled Ni/Fe/Co/Cu(001) disks
NASA Astrophysics Data System (ADS)
Tan, A.; Li, J.; Scholl, A.; Arenholz, E.; Young, A. T.; Li, Q.; Hwang, C.; Qiu, Z. Q.
2016-07-01
The meron is a special topological object that carries only one-half of the topological charge unit. In condensed matter physics, a spin meron corresponds to one-half of a spin skyrmion. As compared to the many fascinating topological properties of skyrmion materials, little is known of the properties of spin merons especially about their formation. It was confirmed only recently that hedgehog merons could exist in pairs with opposite helicities via a spin flux closure. However, it is unclear whether a single hedgehog meron could ever exist by pairing with another type of meron. Using element-resolved magnetic imaging measurements on epitaxial trilayer disks, we show that a spin meron with a full range of helicity, including the hedgehog meron, can be stabilized by pairing with another vortex meron with a fine tuning of the magnetic coupling between the two merons. Furthermore, the meron divergence is fully controlled by the polarity of the vortex meron, independent of the vortex helicity.
NASA Astrophysics Data System (ADS)
Dietl, Tomasz
2015-03-01
A physically transparent and mathematically simple semiclassical model is employed to examine dynamics in the central-spin problem. The results reproduce previous findings obtained by various quantum approaches and, at the same time, provide information on the electron spin dynamics and Berry's phase effects over a wider range of experimentally relevant parameters than available previously. This development is relevant to dynamics of bound magnetic polarons and spin dephasing of an electron trapped by an impurity or a quantum dot, and coupled by a contact interaction to neighboring localized magnetic impurities or nuclear spins. Furthermore, it substantiates the applicability of semiclassical models to simulate dynamic properties of spintronic nanostructures with a mesoscopic number of spins.
Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence.
Graham, Michael J; Yu, Chung-Jui; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E
2017-03-01
Nuclear-electronic interactions are a fundamental phenomenon which impacts fields from magnetic resonance imaging to quantum information processing (QIP). The realization of QIP would transform diverse areas of research including accurate simulation of quantum dynamics and cryptography. One promising candidate for the smallest unit of QIP, a qubit, is electronic spin. Electronic spins in molecules offer significant advantages with regard to QIP, and for the emerging field of quantum sensing. Yet relative to other qubit candidates, they possess shorter superposition lifetimes, known as coherence times or T2, due to interactions with nuclear spins in the local environment. Designing complexes with sufficiently long values of T2 requires an understanding of precisely how the position of nuclear spins relative to the electronic spin center affects decoherence. Herein, we report the first synthetic study of the relationship between nuclear spin-electron spin distance and decoherence. Through the synthesis of four vanadyl complexes, (Ph4P)2[VO(C3H6S2)2] (1), (Ph4P)2[VO(C5H6S4)2] (2), (Ph4P)2[VO(C7H6S6)2] (3), and (Ph4P)2[VO(C9H6S8)2] (4), we are able to synthetically place a spin-laden propyl moiety at well-defined distances from an electronic spin center by employing a spin-free carbon-sulfur scaffold. We interrogate this series of molecules with pulsed electron paramagnetic resonance (EPR) spectroscopy to determine their coherence times. Our studies demonstrate a sharp jump in T2 when the average V-H distance is decreased from 6.6(6) to 4.0(4) Å, indicating that spin-active nuclei sufficiently close to the electronic spin center do not contribute to decoherence. These results illustrate the power of synthetic chemistry in elucidating the fundamental mechanisms underlying electronic polarization transfer and provide vital principles for the rational design of long-coherence electronic qubits.
Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Enders, J.; Köhler, A.; Kozela, A.
2013-11-07
The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.
NASA Astrophysics Data System (ADS)
Bodek, K.; Caban, P.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.; Rembieliński, J.; Rozpedzik, D.; Włodarczyk, M.; Zejma, J.
2013-11-01
The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.
Spectral densities and nuclear spin relaxation in solids
NASA Astrophysics Data System (ADS)
Beckmann, Peter A.
1988-12-01
We investigate the properties of ten spectral densities relevant for nuclear spin relaxation studies in solids. This is preceded by a brief review of nuclear spin relaxation in solids which includes a discussion of the appropriate spin-dependent interactions and the various relaxation rates which can be measured. Also, the link between nuclear spin relaxation and dielectric relaxation is discussed. Where possible and/or appropriate each of the spectral densities is expressed as a continuous distribution of Bloembergen-Purcell-Pound (or Debye) spectral densities 2ξ /(1 + ξ 2 ω 2) for nuclear Larmor angular frequency ω and correlation time ξ. The spectral densities are named after their originators or the shape of the distributions of correlation times or both and are (1) Bloembergen-Purcell-Pound or δ-function, (2) Havriliak-Negami, (3) Cole-Cole, (4) Davidson-Cole, (5) Fang, (6) Fuoss-Kirkwood, (7) Bryn Mawr, (8) Wagner or log-Gaussian, (9) log-Lorentzian, and (10) Fröhlich or energy box. The Havriliak-Negami spectral density is related to the Dissado-Hill theory for dielectric relaxation. The spectral densities are expressed in a way which makes them easy to compare with each other and with experimental data. Many plots of the distributions of correlation times and of the spectral densities vs. various correlation times characterizing the distributions are given.
Creating nuclear spin entanglement using an optical degree of freedom
Schaffry, Marcus; Lovett, Brendon W.; Gauger, Erik M.
2011-09-15
Molecular nanostructures are promising building blocks for future quantum technologies, provided methods of harnessing their multiple degrees of freedom can be identified and implemented. Due to low decoherence rates, nuclear spins are considered ideal candidates for storing quantum information, while optical excitations can give rise to fast and controllable interactions for information processing. A recent paper [M. Schaffry et al., Phys. Rev. Lett. 104, 200501 (2010)] proposed a method for entangling two nuclear spins through their mutual coupling to a transient optically excited electron spin. Building on the same idea, we present here an extended and much more detailed theoretical framework, showing that this method is in fact applicable to a much wider class of molecular structures than previously discussed in the original proposal.
Nuclear Spin Gyroscope Based on an Atomic Comagnetometer
Kornack, T.W.; Ghosh, R.K.; Romalis, M.V.
2005-12-02
We describe a nuclear spin gyroscope based on an alkali-metal-noble-gas comagnetometer. Optically pumped alkali-metal vapor is used to polarize the noble-gas atoms and detect their gyroscopic precession. Spin precession due to magnetic fields as well as their gradients and transients can be cancelled in this arrangement. The sensitivity is enhanced by using a high-density alkali-metal vapor in a spin-exchange relaxation free regime. With a K-{sup 3}He comagnetometer we demonstrate rotation sensitivity of 5x10{sup -7} rad s{sup -1} Hz{sup -1/2}, equivalent to a magnetic field sensitivity of 2.5 fT/Hz{sup 1/2}. The rotation signal can be increased by a factor of 10 using {sup 21}Ne with a smaller magnetic moment. The comagnetometer is also a promising tool in searches for anomalous spin couplings beyond the standard model.
NASA Astrophysics Data System (ADS)
Corona, L. A.; Salgado-García, R.
2016-12-01
In this paper we study a class of one-dimensional spin chain having a highly degenerated set of ground-state configurations. The model consists of spin chain having infinite-range pair interactions with a given structure. We show that the set of ground-state configurations of such a model can be fully characterized by means of symbolic dynamics. Particularly we found that the set ground-state configurations define what in symbolic dynamics is called sofic shift space. Finally we prove that this system has a non-vanishing residual entropy (the topological entropy of the shift space), which can be exactly calculated.
Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment
NASA Technical Reports Server (NTRS)
Dent, William V., Jr.
1998-01-01
The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.
Equal-spin pairing state of superfluid {sup 3}He in aerogel
Aoyama, Kazushi; Ikeda, Ryusuke
2005-07-01
The equal-spin pairing state, the so-called A-like phase, of superfluid {sup 3}He in aerogels is studied theoretically in the Ginzburg-Landau region by examining thermodynamics, and the resulting equilibrium phase diagram is mapped out. We find that the ABM pairing state with presumably quasi-long-ranged superfluid order has a lower free energy than the planar and 'robust' states and is the best candidate of the A-like phase with a strange lowering of the polycritical point observed experimentally.
Interspecies singlet pairing in a mixture of two spin-1 Bose condensates
Zhang Jie; Li Tiantian; Zhang Yunbo
2011-02-15
We study the ground-state properties of a mixture formed by two spin-1 condensates in the absence of an external magnetic field. As the collisional symmetry between interspecies bosonic atoms is broken, the interspecies coupling interaction ({beta}) and interspecies singlet-pairing interaction ({gamma}) arise. The ground state can be calculated using the angular momentum theory analytically for {gamma}=0. The full quantum approach of exact diagonalization is adopted numerically to consider the more general case as {gamma}{ne}0. We illustrate the competition between the two interspecies interactions and find that as singlet-pairing interaction dominates (or the total spin vanishes), there are still different types of singlet formations which are well determined by {beta}.
Nuclear spin-lattice relaxation in nanofluids with paramagnetic impurities.
Furman, Gregory B; Goren, Shaul D; Meerovich, Victor M; Sokolovsky, Vladimir L
2015-12-01
We study the spin-lattice relaxation of the nuclear spins in a liquid or a gas entrapped in nanosized ellipsoidal cavities with paramagnetic impurities. Two cases are considered where the major axes of cavities are in orientational order and isotropically disordered. The evolution equation and analytical expression for spin lattice relaxation time are obtained which give the dependence of the relaxation time on the structural parameters of a nanocavity and the characteristics of a gas or a liquid confined in nanocavities. For the case of orientationally ordered cavities, the relaxation process is exponential. When the nanocavities are isotropically disordered, the time dependence of the magnetization is significantly non-exponential. As shown for this case, the relaxation process is characterized by two time constants. The measurements of the relaxation time, along with the information about the cavity size, allow determining the shape and orientation of the nanocavity and concentration of the paramagnetic impurities.
Room-temperature optical manipulation of nuclear spin polarization in GaAsN
NASA Astrophysics Data System (ADS)
Sandoval-Santana, C.; Balocchi, A.; Amand, T.; Harmand, J. C.; Kunold, A.; Marie, X.
2014-09-01
The effect of hyperfine interaction on the room-temperature defect-enabled spin filtering effect in GaAsN alloys is experimentally investigated and theoretically interpreted through a master equation approach based on the hyperfine and Zeeman interaction between electron and nuclear spin of the Gai2+ interstitial spin filtering defect. We show that the nuclear spin polarization of the gallium defect can be tuned through the optically induced spin polarization of conduction band electrons.
Phonon-mediated nuclear spin relaxation in H2O
NASA Astrophysics Data System (ADS)
Yamakawa, Koichiro; Azami, Shinya; Arakawa, Ichiro
2017-03-01
A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5-15 K. Temperature dependence of the rate is discussed in terms of the devised model.
Spin Density Matrices for Nuclear Density Functionals with Parity Violation
NASA Astrophysics Data System (ADS)
Barrett, Bruce; Giraud, Bertrand
2010-11-01
Within the context of the radial density functional [1], we apply the spin density matrix (SDM) used in atomic and molecular physics [2] to nuclear physics. The vector part of the SDM defines a ``hedgehog'' situation, which exists only if nuclear states contain some amount of parity violation. Thus, looking for the vector profile of the SDM could be used as a test for parity violation in nuclei. The difference between the scalar profile and the vector profile of the SDM will be illustrated by a toy model. [4pt] [1] B. G. Giraud, Phys. Rev. C 78, 014307 (2008).[0pt] [2] A. Goerling, Phys. Rev. A 47, 2783 (1993).
NASA Astrophysics Data System (ADS)
Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.
2016-08-01
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques
NASA Astrophysics Data System (ADS)
Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.
1998-05-01
A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.
Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D
2011-07-08
A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.
Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits.
Yu, Chung-Jui; Graham, Michael J; Zadrozny, Joseph M; Niklas, Jens; Krzyaniak, Matthew D; Wasielewski, Michael R; Poluektov, Oleg G; Freedman, Danna E
2016-11-09
Quantum information processing (QIP) offers the potential to create new frontiers in fields ranging from quantum biology to cryptography. Two key figures of merit for electronic spin qubits, the smallest units of QIP, are the coherence time (T2), the lifetime of the qubit, and the spin-lattice relaxation time (T1), the thermally defined upper limit of T2. To achieve QIP, processable qubits with long coherence times are required. Recent studies on (Ph4P-d20)2[V(C8S8)3], a vanadium-based qubit, demonstrate that millisecond T2 times are achievable in transition metal complexes with nuclear spin-free environments. Applying these principles to vanadyl complexes offers a route to combine the previously established surface compatibility of the flatter vanadyl structures with a long T2. Toward those ends, we investigated a series of four qubits, (Ph4P)2[VO(C8S8)2] (1), (Ph4P)2[VO(β-C3S5)2] (2), (Ph4P)2[VO(α-C3S5)2] (3), and (Ph4P)2[VO(C3S4O)2] (4), by pulsed electron paramagnetic resonance (EPR) spectroscopy and compared the performance of these species with our recently reported set of vanadium tris(dithiolene) complexes. Crucially we demonstrate that solutions of 1-4 in SO2, a uniquely polar nuclear spin-free solvent, reveal T2 values of up to 152(6) μs, comparable to the best molecular qubit candidates. Upon transitioning to vanadyl species from the tris(dithiolene) analogues, we observe a remarkable order of magnitude increase in T1, attributed to stronger solute-solvent interactions with the polar vanadium-oxo moiety. Simultaneously, we detect a small decrease in T2 for the vanadyl analogues relative to the tris(dithiolene) complexes. We attribute this decrease to the absence of one nuclear spin-free ligand, which served to shield the vanadium centers against solvent nuclear spins. Our results highlight new design principles for long T1 and T2 times by demonstrating the efficacy of ligand-based tuning of solute-solvent interactions.
Isolation of proximity-induced triplet pairing channel in a superconductor/ferromagnet spin valve
NASA Astrophysics Data System (ADS)
Leksin, P. V.; Garif'yanov, N. N.; Kamashev, A. A.; Validov, A. A.; Fominov, Ya. V.; Schumann, J.; Kataev, V.; Thomas, J.; Büchner, B.; Garifullin, I. A.
2016-03-01
We have studied the proximity-induced superconducting triplet pairing in CoOx/Py1/Cu/Py2/Cu/Pb spin-valve structure (where Py = Ni0.81Fe0.19 ). By optimizing the parameters of this structure we found a triplet channel assisted full switching between the normal and superconducting states. To observe an "isolated" triplet spin-valve effect we exploited the oscillatory feature of the magnitude of the ordinary spin-valve effect Δ Tc in the dependence of the Py2-layer thickness dP y 2. We determined the value of dP y 2 at which Δ Tc caused by the ordinary spin-valve effect (the difference in the superconducting transition temperature Tc between the antiparallel and parallel mutual orientation of magnetizations of the Py1 and Py2 layers) is suppressed. For such a sample a "pure" triplet spin-valve effect which causes the minimum in Tc at the orthogonal configuration of magnetizations has been observed.
Nematic versus ferromagnetic spin filtering of triplet Cooper pairs in superconducting spintronics
NASA Astrophysics Data System (ADS)
Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.
2015-11-01
We consider two types of magnetic Josephson junctions (JJ). They are formed by two singlet superconductors S and magnetic layers between them so that the JJ is a heterostructure of the Sm/n /Sm type, where Sm includes two magnetic layers with noncollinear magnetization vectors. One layer is represented by a weak ferromagnet and another one—the spin filter—is either conducting strong ferromagnet (nematic or N -type JJ) or magnetic tunnel barrier with spin-dependent transparency (magnetic or M -type JJ). Due to spin filtering only a fully polarized triplet component penetrates the normal n wire and provides the Josephson coupling between the superconductors S. Although both filters let to pass triplet Cooper pairs with total spin S parallel to the filter axes, the behavior of nematic and magnetic JJs is completely different. Whereas in the nematic case the charge and spin currents, IQ and Isp, do not depend on mutual orientation of the filter axes, both currents vanish in magnetic JJ in the case of antiparallel filter axes, and change sign with reversal of the filter direction. The obtained expressions for IQ and Isp clearly show a duality between the superconducting phase φ and the angle α between the exchange fields in the weak magnetic layers.
Solid effect in magic angle spinning dynamic nuclear polarization
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-01-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\omega _0 ^{ - 2}\\end{equation*} \\end{document}ω0−2 field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements
Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve
Forsberg, C.W.
2005-01-20
Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal
Single crystal nuclear magnetic resonance in spinning powders.
Pell, Andrew J; Pintacuda, Guido; Emsley, Lyndon
2011-10-14
We present a method for selectively exciting nuclear magnetic resonances (NMRs) from well-defined subsets of crystallites from a powdered sample under magic angle spinning. Magic angle spinning induces a time dependence in the anisotropic interactions, which results in a time variation of the resonance frequencies which is different for different crystallite orientations. The proposed method exploits this by applying selective pulses, which we refer to as XS (for crystallite-selective) pulses, that follow the resonance frequencies of nuclear species within particular crystallites, resulting in the induced flip angle being orientation dependent. By selecting the radiofrequency field to deliver a 180° pulse for the target orientation and employing a train of such pulses combined with cogwheel phase cycling, we obtain a high degree of orientational selectivity with the resulting spectrum containing only contributions from orientations close to the target. Typically, this leads to the selection of between 0.1% and 10% of the crystallites, and in extreme cases to the excitation of a single orientation resulting in single crystal spectra of spinning powders. Two formulations of this method are described and demonstrated with experimental examples on [1-(13)C]-alanine and the paramagnetic compound Sm(2)Sn(2)O(7).
Single crystal nuclear magnetic resonance in spinning powders
NASA Astrophysics Data System (ADS)
Pell, Andrew J.; Pintacuda, Guido; Emsley, Lyndon
2011-10-01
We present a method for selectively exciting nuclear magnetic resonances (NMRs) from well-defined subsets of crystallites from a powdered sample under magic angle spinning. Magic angle spinning induces a time dependence in the anisotropic interactions, which results in a time variation of the resonance frequencies which is different for different crystallite orientations. The proposed method exploits this by applying selective pulses, which we refer to as XS (for crystallite-selective) pulses, that follow the resonance frequencies of nuclear species within particular crystallites, resulting in the induced flip angle being orientation dependent. By selecting the radiofrequency field to deliver a 180 ○ pulse for the target orientation and employing a train of such pulses combined with cogwheel phase cycling, we obtain a high degree of orientational selectivity with the resulting spectrum containing only contributions from orientations close to the target. Typically, this leads to the selection of between 0.1% and 10% of the crystallites, and in extreme cases to the excitation of a single orientation resulting in single crystal spectra of spinning powders. Two formulations of this method are described and demonstrated with experimental examples on [1 - 13C]-alanine and the paramagnetic compound Sm2Sn2O7.
NASA Astrophysics Data System (ADS)
Cheng, Chi Y.; Ryley, Matthew S.; Peach, Michael J. G.; Tozer, David J.; Helgaker, Trygve; Teale, Andrew M.
2015-07-01
The Tamm-Dancoff approximation (TDA) can be applied to the computation of excitation energies using time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT). In addition to simplifying the resulting response equations, the TDA has been shown to significantly improve the calculation of triplet excitation energies in these theories, largely overcoming issues associated with triplet instabilities of the underlying reference wave functions. Here, we examine the application of the TDA to the calculation of another response property involving triplet perturbations, namely the indirect nuclear spin-spin coupling constant. Particular attention is paid to the accuracy of the triplet spin-dipole and Fermi-contact components. The application of the TDA in HF calculations leads to vastly improved results. For DFT calculations, the TDA delivers improved stability with respect to geometrical variations but does not deliver higher accuracy close to equilibrium geometries. These observations are rationalised in terms of the ground- and excited-state potential energy surfaces and, in particular, the severity of the triplet instabilities associated with each method. A notable feature of the DFT results within the TDA is their similarity across a wide range of different functionals. The uniformity of the TDA results suggests that some conventional evaluations may exploit error cancellations between approximations in the functional forms and those arising from triplet instabilities. The importance of an accurate treatment of correlation for evaluating spin-spin coupling constants is highlighted by this comparison.
NASA Astrophysics Data System (ADS)
Mamone, Salvatore; Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Lei, Xuegong; Li, Yongjun; Denning, Mark; Carravetta, Marina; Goh, Kelvin; Horsewill, Anthony J.; Whitby, Richard J.; Levitt, Malcolm H.
2014-05-01
The water-endofullerene H2O@C60 provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H2O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H2O molecules is catalysed by 13C nuclei present in the cages.
Mamone, Salvatore Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H.; Lei, Xuegong; Li, Yongjun; Goh, Kelvin; Horsewill, Anthony J.
2014-05-21
The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.
Persistent narrowing of nuclear-spin fluctuations in InAs quantum dots using laser excitation.
Sun, Bo; Chow, Colin Ming Earn; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J
2012-05-04
We demonstrate the suppression of nuclear-spin fluctuations in an InAs quantum dot and measure the timescales of the spin narrowing effect. By initializing for tens of milliseconds with two continuous wave diode lasers, fluctuations of the nuclear spins are suppressed via the hole-assisted dynamic nuclear polarization feedback mechanism. The fluctuation narrowed state persists in the dark (absent light illumination) for well over 1 s even in the presence of a varying electron charge and spin polarization. Enhancement of the electron spin coherence time (T2*) is directly measured using coherent dark state spectroscopy. By separating the calming of the nuclear spins in time from the spin qubit operations, this method is much simpler than the spin echo coherence recovery or dynamic decoupling schemes.
Ji, T. T.; Bu, N.; Chen, F. J.; Tao, Y. C.; Wang, J.
2016-01-01
For Entangled electron pairs superconducting spintronics, there exist two drawbacks in existing proposals of generating entangled electron pairs. One is that the two kinds of different spin entangled electron pairs mix with each other. And the other is a low efficiency of entanglement production. Herein, we report the spin entanglement state of the ferromagnetic insulator (FI)/s-wave superconductor/FI structure on a narrow quantum spin Hall insulator strip. It is shown that not only the high production of entangled electron pairs in wider energy range, but also the perfect spin filtering of entangled electron pairs in the context of no highly spin-polarized electrons, can be obtained. Moreover, the currents for the left and right leads in the antiferromagnetic alignment both can be zero, indicating 100% tunnelling magnetoresistance with highly magnetic storage efficiency. Therefore, the spin filtering for entangled electron pairs and magnetic storage with high efficiencies coexist in one setup. The results may be experimentally demonstrated by measuring the tunnelling conductance and the noise power. PMID:27074893
Optical Pulse Control of Electron and Nuclear Spins in Quantum Dots
2009-01-01
2 T. Kennedy,1 A. Bracker,1 and T. Reinecke1 1Electronics Science and Technology Division 2George Mason University Introduction: Quantum information...decryption of codes with long encryption keys. Electron spins in quantum dots (QDs) are being widely investigated as qubits for storage and processing...field quantum dot la se r pu ls es z x y nuclear spins electron spin + nuclear spin field Sx El lip tic ity ( ra d) Delay time (ps) tim e Sy
Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM
Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.
2009-08-04
A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.
Chekhovich, E A; Hopkinson, M; Skolnick, M S; Tartakovskii, A I
2015-02-23
Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging.
NASA Astrophysics Data System (ADS)
Leksin, P. V.; Kamashev, A. A.; Garif'yanov, N. N.; Validov, A. A.; Fominov, Ya. V.; Schumann, J.; Kataev, V. E.; Büchner, B.; Garifullin, I. A.
2016-11-01
An important role of the morphology of a superconducting layer in the superconducting spin-valve effect has been established. The triplet pairing induced by the superconductor/ferromagnet proximity effect has been experimentally investigated for samples CoO x /Py1/Cu/Py2/Cu/Pb (where Py = Ni0.81Fe0.19) with a smooth superconducting layer. The optimization of the parameters of this structure has demonstrated a complete switching between the normal and superconducting states with a change in the relative orientation of magnetizations of the ferromagnetic layers from the antiparallel to orthogonal orientation. A pure triplet contribution has been observed for the sample with a permalloy layer thickness at which the superconducting spin-valve effect vanishes. A direct comparison of the experimental data with the theoretical calculation of the temperature of the transition to the superconducting state has been performed for the first time.
Estimation of optical chemical shift in nuclear spin optical rotation
NASA Astrophysics Data System (ADS)
Chen, Fang; Yao, Guo-hua; He, Tian-jing; Chen, Dong-ming; Liu, Fan-chen
2014-05-01
A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed.
Quantum interface between light and nuclear spins in quantum dots
NASA Astrophysics Data System (ADS)
Schwager, Heike; Cirac, J. Ignacio; Giedke, Géza
2010-01-01
The coherent coupling of flying photonic qubits to stationary matter-based qubits is an essential building block for quantum-communication networks. We show how such a quantum interface can be realized between a traveling-wave optical field and the polarized nuclear spins in a singly charged quantum dot strongly coupled to a high-finesse optical cavity. By adiabatically eliminating the electron a direct effective coupling is achieved. Depending on the laser field applied, interactions that enable either write-in or read-out are obtained.
The η-Pairing Superconductivity in Spin-Density Wave Background
NASA Astrophysics Data System (ADS)
X, M. Qiu; Z, J. Wang
1993-10-01
In this letter, we propose a modified attractive Hubbard model at half filling that can exhibit superconductivity through η-pairing mechanism in spin-density wave representation and derive a concise relationship between the energy disparity and the single-particle energy spectrum. This relationship, in the two limits of U, clearly shows that the system does not display superconductivity for very low doping concentration. but demonstrates superconductivity when the doping concentration exceeds a certain critical value. This conclusion is in qualitative agreement with the familiar experiments on high-Tc superconductivity.
Electron-Nuclear Spin Dynamics in a Mesoscopic Solid-State Quantum Computer
Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Nagaev, K.E.
1998-12-07
We numerically simulate the process of nuclear spin measurement in Kane's quantum computer. For this purpose, we model the quantum dynamics of two coupled nuclear spins located on {sup 31}P donors implanted in Si. We estimate the minimum time of measurement necessary for the reliable transfer of quantum information from the nuclear spin subsystem to the electronic one and the probability of error for typical values of external noise.
Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor.
Puttisong, Y; Wang, X J; Buyanova, I A; Geelhaar, L; Riechert, H; Ptak, A J; Tu, C W; Chen, W M
2013-01-01
Nuclear spin hyperpolarization is essential to future solid-state quantum computation using nuclear spin qubits and in highly sensitive magnetic resonance imaging. Though efficient dynamic nuclear polarization in semiconductors has been demonstrated at low temperatures for decades, its realization at room temperature is largely lacking. Here we demonstrate that a combined effect of efficient spin-dependent recombination and hyperfine coupling can facilitate strong dynamic nuclear polarization of a defect atom in a semiconductor at room temperature. We provide direct evidence that a sizeable nuclear field (~150 Gauss) and nuclear spin polarization (~15%) sensed by conduction electrons in GaNAs originates from dynamic nuclear polarization of a Ga interstitial defect. We further show that the dynamic nuclear polarization process is remarkably fast and is completed in <5 μs at room temperature. The proposed new concept could pave a way to overcome a major obstacle in achieving strong dynamic nuclear polarization at room temperature, desirable for practical device applications.
Strong-field Breit-Wheeler pair production in short laser pulses: Relevance of spin effects
NASA Astrophysics Data System (ADS)
Jansen, M. J. A.; Kamiński, J. Z.; Krajewska, K.; Müller, C.
2016-07-01
Production of electron-positron pairs in the collision of a high-energy photon with a high-intensity few-cycle laser pulse is studied. By utilizing the frameworks of laser-dressed spinor and scalar quantum electrodynamics, a comparison between the production of pairs of Dirac and Klein-Gordon particles is drawn. Positron energy spectra and angular distributions are presented for various laser parameters. We identify conditions under which predictions from Klein-Gordon theory either closely resemble or largely differ from those of the proper Dirac theory. In particular, we address the question to which extent the relevance of spin effects is influenced by the short duration of the laser pulse.
Odd-Parity Pairing and Topological Superconductivity in a Strongly Spin-Orbit Coupled Semiconductor
NASA Astrophysics Data System (ADS)
Sasaki, Satoshi; Ren, Zhi; Taskin, A. A.; Segawa, Kouji; Fu, Liang; Ando, Yoichi
2012-11-01
The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation. Their first likely example, CuxBi2Se3, was discovered last year, but the search for new materials has so far been hindered by the lack of a guiding principle. Here, we report point-contact spectroscopy experiments suggesting that the low-carrier-density superconductor Sn1-xInxTe is accompanied by surface Andreev bound states which, with the help of theoretical analysis, would give evidence for odd-parity pairing and topological superconductivity. The present and previous finding of possible topological superconductivity in Sn1-xInxTe and CuxBi2Se3 suggests that odd-parity pairing favored by strong spin-orbit coupling is likely to be a common underlying mechanism for materializing topological superconductivity.
Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.
2015-01-01
Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639
Gräfenstein, Jürgen; Cremer, Dieter
2004-12-22
For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. (1)J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas (2)J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of (1)J(C,H) and (2)J(H,H), respectively, for hydrocarbons.
Quantum information processing with electronic and nuclear spins in semiconductors
NASA Astrophysics Data System (ADS)
Klimov, Paul Victor
Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet
Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.
2017-01-01
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means. PMID:28262758
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet
NASA Astrophysics Data System (ADS)
Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.
2017-03-01
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet.
Korkusinski, M; Hawrylak, P; Liu, H W; Hirayama, Y
2017-03-06
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.
Link between spin fluctuations and electron pairing in copper oxide superconductors.
Jin, K; Butch, N P; Kirshenbaum, K; Paglione, J; Greene, R L
2011-08-03
Although it is generally accepted that superconductivity is unconventional in the high-transition-temperature copper oxides, the relative importance of phenomena such as spin and charge (stripe) order, superconductivity fluctuations, proximity to a Mott insulator, a pseudogap phase and quantum criticality are still a matter of debate. In electron-doped copper oxides, the absence of an anomalous pseudogap phase in the underdoped region of the phase diagram and weaker electron correlations suggest that Mott physics and other unidentified competing orders are less relevant and that antiferromagnetic spin fluctuations are the dominant feature. Here we report a study of magnetotransport in thin films of the electron-doped copper oxide La(2 - x)Ce(x)CuO(4). We show that a scattering rate that is linearly dependent on temperature--a key feature of the anomalous normal state properties of the copper oxides--is correlated with the electron pairing. We also show that an envelope of such scattering surrounds the superconducting phase, surviving to zero temperature when superconductivity is suppressed by magnetic fields. Comparison with similar behaviour found in organic superconductors strongly suggests that the linear dependence on temperature of the resistivity in the electron-doped copper oxides is caused by spin-fluctuation scattering.
A critical evaluation of heteronuclear TOCSY (HEHAHA) experiments for 1H,6Li spin pairs.
Bergander, Klaus; Hüls, Dietmar; Glaser, Steffen J; Günther, Harald; Luy, Burkhard
2014-12-01
Heteronuclear TOCSY (HEHAHA) experiments for (1) H,(6) Li spin pairs in organolithium compounds with adjacent strongly coupled (1) H,(1) H spin systems showed unexpected cross peak behaviour: for n-butyllithium (1) H,(6) Li cross peaks were completely missing, whereas for the dimer of (Z)-2-lithio-1-(o-lithiophenyl)ethane, a cross peak for remote protons was observed even at very short mixing times. It was assumed that strong magnetization transfer within the proton spin systems was responsible for these results, which prevented unambiguous chemical shift assignments. Selective experiments with the (6) Li,(1) H-HET-PLUSH-TACSY sequence then showed the expected (6) Li,(1) H cross peaks for the transfer via the directly coupled (1) H and (6) Li nuclei. For n-butyllithium transfer to H(Cα) via an unresolved heteronuclear coupling constant below 0.1 Hz is unambiguously observed. Cross peaks in the 2D (6) Li,(1) H-HET-PLUSH-TACSY spectra for the dimer of (Z)-2-lithio-1-(o-lithiophenyl)ethane are readily explained by the measured coupling network and the corresponding active mixing conditions.
Linear-T scattering and pairing from spin fluctuations in organic superconductors
NASA Astrophysics Data System (ADS)
Doiron-Leyraud, Nicolas
2012-02-01
The (TMTSF)2X series of organic superconductors, with X=PF6 or ClO4, are clean single-band metals that exhibit unconventional superconductivity in the vicinity of a pressure-induced spin-density wave (SDW) quantum critical point. As such, they epitomize the interplay between magnetism and superconductivity observed in heavy fermion, cuprate, and iron-pnictide superconductors. We have recently examined the electrical resistivity ρ(T) of (TMTSF)2X materials as a function of temperature and pressure. At the SDW quantum critical point, we observed a strictly linear temperature dependence of the resistivity over two decades in temperature [1,2]. Moving away from SDW order with increasing pressure, this linear resistivity was found to decrease in parallel with the weakening superconductivity, such that A, the coefficient of the linear contribution to ρ(T), directly correlates with the superconducting Tc [1,2]. This shows that linear-T scattering and superconducting pairing share a common origin. A similar correlation was also found between A and the spin fluctuations seen by NMR experiments [2]. Owing to the quasi-1D nature of the (TMTSF)2X system, this connection between spin fluctuations, scattering, and superconductivity is well described theoretically by a model that considers the hitherto overlooked mutual reinforcement of SDW and pairing correlations [3]. In particular, the feedback of pairing correlations on SDW fluctuations appears to be decisive for the strength of the linear resistivity and its extent in temperature and pressure. The fact that the same empirical correlation between linear-T resistivity and Tc is observed in the hole-doped [4,5] and electron-doped [6] cuprates, as well as in iron-pnictides [1,4], shows that the same mechanism is at play in these materials. This points to a common, magnetic origin to the superconducting pairing. Work done in collaboration with S. Ren'e de Cotret, P. Auban-Senzier, D. J'erôme, C. Bourbonnais, K. Bechgaard, and
NASA Astrophysics Data System (ADS)
Sato, Kazuo; Nakazawa, Shigeki; Rahimi, Robabeh D.; Nishida, Shinsuke; Ise, Tomoaki; Shimoi, Daisuke; Toyota, Kazuo; Morita, Yasushi; Kitagawa, Masahiro; Carl, Parick; Höfner, Peter; Takui, Takeji
2009-06-01
Electrons with the spin quantum number 1/2, as physical qubits, have naturally been anticipated for implementing quantum computing and information processing (QC/QIP). Recently, electron spin-qubit systems in organic molecular frames have emerged as a hybrid spin-qubit system along with a nuclear spin-1/2 qubit. Among promising candidates for QC/QIP from the materials science side, the reasons for why electron spin-qubits such as molecular spin systems, i.e., unpaired electron spins in molecular frames, have potentialities for serving for QC/QIP will be given in the lecture (Chapter), emphasizing what their advantages or disadvantages are entertained and what technical and intrinsic issues should be dealt with for the implementation of molecular-spin quantum computers in terms of currently available spin manipulation technology such as pulse-based electron-nuclear double resonance (pulsed or pulse ENDOR) devoted to QC/QIP. Firstly, a general introduction and introductory remarks to pulsed ENDOR spectroscopy as electron-nuclear spin manipulation technology is given. Super dense coding (SDC) experiments by the use of pulsed ENDOR are also introduced to understand differentiating QC ENDOR from QC NMR based on modern nuclear spin technology. Direct observation of the spinor inherent in an electron spin, detected for the first time, will be shown in connection with the entanglement of an electron-nuclear hybrid system. Novel microwave spin manipulation technology enabling us to deal with genuine electron-electron spin-qubit systems in the molecular frame will be introduced, illustrating, from the synthetic strategy of matter spin-qubits, a key-role of the molecular design of g-tensor/hyperfine-(A-)tensor molecular engineering for QC/QIP. Finally, important technological achievements of recently-emerging CD ELDOR (Coherent-Dual ELectron-electron DOuble Resonance) spin technology enabling us to manipulate electron spin-qubits are described.
NASA Astrophysics Data System (ADS)
Bodek, K.; Kępka, D.; Rozpędzik, D.; Zejma, J.; Kozela, A.
2017-04-01
A self-calibrating double-Mott polarimeter is proposed for measurement of the spin correlation function of relativistic electron pairs produced in Møller scattering. The polarization of outgoing electrons (appearing when the beam is polarized) is utilized for calibration of effective analyzing powers in the secondary Mott scattering used for spin analysis. The experiment will measure the newly introduced relative spin correlation function. This new observable can be measured with a significantly better accuracy than the regular spin correlation function in a small scale experiment. It is shown that both the spin correlation function and the relative spin correlation function are theoretically equivalent. A specific experimental data analysis scenario is proposed, which effectively eliminates the systematic effects related to the imperfect geometry and detector efficiency.
NASA Astrophysics Data System (ADS)
Biéri, J. B.; Lederer, P.
1996-04-01
We calculate the nuclear spin relaxation rate of clean quasi-two-dimensional (2D) superconductors with s-wave pairing in high magnetic fields using the BCS model and the Brandt, Pesch and Tewordt approximation for the single-particle propagator. The calculation is valid in the vicinity of 0953-8984/8/15/011/img2. Thermal fluctuations of vortices are not taken into account. We evaluate numerically our results in the case of high-0953-8984/8/15/011/img3 materials and organic superconductors. In a perpendicular field the Hebel - Slichter coherence peak is suppressed depending on the variation of the quasi-particle lifetime below 0953-8984/8/15/011/img3. We also describe the magnetic field dependence of the nuclear spin relaxation rate. Using the experimentally determined value of the quasi-particle lifetime, the model reproduces the experimental initial variations of 0953-8984/8/15/011/img5 versus 0953-8984/8/15/011/img6 at different magnetic fields. However, the Hebel - Slichter peak is conserved in the low-field limit, or when the applied magnetic field is parallel to the superconducting planes.
Fast phase manipulation of the single nuclear spin in solids by rotating fields
NASA Astrophysics Data System (ADS)
Shimo-Oka, T.; Tokura, Y.; Suzuki, Y.; Mizuochi, N.
2017-03-01
We propose fast phase gates of single nuclear spins interacting with single electron spins. The gate operation utilizes geometric phase shifts of the electron spin induced by fast and slow rotating fields; the path difference depending on nuclear-spin states enables nuclear phase shifts. The gate time is inversely proportional to the frequency of the slow rotating field. As an example, we use nitrogen-vacancy centers in diamond, and show, in principle, the phase-gate time orders of magnitude to be shorter than previously reported. We also confirmed the robustness of the gate against decoherence and systematic errors.
Coherent manipulation of an NV center and one carbon nuclear spin
Scharfenberger, Burkhard; Nemoto, Kae; Munro, William J.
2014-12-04
We study a three-qubit system formed by the NV center’s electronic and nuclear spin plus an adjacent spin 1/2 carbon {sup 13}C. Specifically, we propose a manipulation scheme utilizing the hyperfine coupling of the effective S=1 degree of freedom of the vacancy electrons to the two adjacent nuclear spins to achieve accurate coherent control of all three qubits.
A 3D-printed high power nuclear spin polarizer.
Nikolaou, Panayiotis; Coffey, Aaron M; Walkup, Laura L; Gust, Brogan M; LaPierre, Cristen D; Koehnemann, Edward; Barlow, Michael J; Rosen, Matthew S; Goodson, Boyd M; Chekmenev, Eduard Y
2014-01-29
Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of (129)Xe and (1)H nuclear spins), (ii) <0.3 nm narrowed 200 W laser source, (iii) in situ high-resolution near-IR spectroscopy, (iv) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of "off-the-shelf" components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity (129)Xe polarization values in a 0.5 L optical pumping cell, including ∼74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the (129)Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10(-2) min(-1)] and in-cell (129)Xe spin-lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for (129)Xe and Rb (PRb ∼ 96%). Hyperpolarization-enhanced (129)Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications.
Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes
NASA Astrophysics Data System (ADS)
Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.
2006-05-01
Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.
All-electrical control of a singlet-triplet qubit coupled to a single nuclear spin
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Harvey-Collard, Patrick; Baczewski, Andrew; Gamble, John; Rudolph, Martin; Nielsen, Erik; Muller, Richard; Carroll, Malcolm
Donor nuclear spins in isotopically purified silicon have very long coherence times, suggesting that they may form high-quality quantum memories. We propose that coupling these nuclear spins to few-electron quantum dots could enable nuclear spin readout and two-qubit operations of the joint quantum dot and nuclear spin system without the need for electron spin resonance. As a step towards this goal, our group recently demonstrated coherent singlet/triplet electron spin rotations induced by the hyperfine interaction between electronic spin degrees of freedom and a single nuclear spin in isotopically purified silicon. In this talk, I will discuss the feasibility of universal all-electrical control of such a singlet/triplet electron spin qubit and explore the decoherence mechanisms that we expect to dominate. Finally, I will examine the relative merits of AC and pulsed DC gating schemes. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04- 94AL85000.
NASA Astrophysics Data System (ADS)
Onur, A. R.; de Jong, J. P.; O'Shea, D.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.
2016-04-01
We experimentally demonstrate how coherent population trapping (CPT) for donor-bound electron spins in GaAs results in autonomous feedback that prepares stabilized states for the spin polarization of nuclei around the electrons. CPT was realized by excitation with two lasers to a bound-exciton state. Transmission studies of the spectral CPT feature on an ensemble of electrons directly reveal the statistical distribution of prepared nuclear-spin states. Tuning the laser driving from blue to red detuned drives a transition from one to two stable states. Our results have importance for ongoing research on schemes for dynamic nuclear-spin polarization, the central spin problem, and control of spin coherence.
(Evolution of nuclear collectivity at high spins and temperatures)
Baktash, C.
1989-09-28
The traveler attended and presented an invited talk entitled Evolution of nuclear collectivity at high spins and temperatures'' at the XII Workshop on Nuclear Physics at Iguazu Falls, Argentina. Following the conference, the traveler visited the TANDAR Laboratory in Buenos Aires, Argentina, for two weeks. This trip was the first by one of the principal investigators of an ORNL-TANDAR exchange program that was recently approved and funded by the NSF. The results of the extensive consultations that the traveler had with his Argentine collaborators, A. J. Kreiner and G. Garcia-Bermudez, can be summarized as follows: (1) discussed the spectroscopy work on several nuclei of common interest that are being studied at the two laboratories, (2) agreed on the first joint experiments to be performed at the Holifield and TANDAR facilities, (3) developed a tentative timetable for the future visits by both groups, and (4) continued with the analysis of data on {sup 82}Sr taken earlier at ORNL in collaboration with Dr. Garcia-Bermudez.
Mitrikas, George; Sanakis, Yiannis; Papavassiliou, Georgios
2010-02-15
We demonstrate the control of the {alpha}-proton nuclear spin, I =1/2, coupled to the stable radical {center_dot}CH(COOH){sub 2}, S =1/2, in a {gamma}-irradiated malonic acid single crystal using only microwave pulses. We show that, depending on the state of the electron spin (m{sub S}={+-}1/2), the nuclear spin can be locked in a desired state or oscillate between m{sub I}=+1/2 and m{sub I}=-1/2 on the nanosecond time scale. This approach provides a fast way of controlling nuclear spin qubits and also enables the design of switchable spin-based quantum gates by addressing only the electron spin.
Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond
NASA Astrophysics Data System (ADS)
Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.
2015-01-01
Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.
Nuclear spin cooling using Overhauser-field selective coherent population trapping.
Issler, M; Kessler, E M; Giedke, G; Yelin, S; Cirac, I; Lukin, M D; Imamoglu, A
2010-12-31
We show that a quantum interference effect in optical absorption from two electronic spin states of a solid-state emitter can be used to prepare the surrounding environment of nuclear spins in well-defined states, thereby suppressing electronic spin dephasing. The coupled electron-nuclei system evolves into a coherent population trapping state by optical-excitation-induced nuclear-spin diffusion for a broad range of initial optical detunings. The spectroscopic signature of this evolution where the single-electron strongly modifies its environment is a drastic broadening of the dark resonance in optical absorption experiments. The large difference in electronic and nuclear time scales allows us to verify the preparation of nuclear spins in the desired state.
Nuclear spin coherence of neutral 31P donors in isotopically enriched 28Si
NASA Astrophysics Data System (ADS)
Petersen, E. S.; Tyryshkin, A. M.; Lyon, S. A.; Tojo, S.; Itoh, K. M.; Thewalt, M. L. W.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.
2014-03-01
In natural silicon the nuclear spin coherence of neutral 31P donors is limited to about 1 second by flip-flopping 29Si nuclear spins. Here we eliminate this process by using isotopically enriched 28Si with 50 ppm of 29Si. This allows us to examine other processes which may decohere the 31P nuclear spins. We use X-band pulsed ENDOR at 1.7 K to examine isotopically enriched Si crystals with donor concentrations from 1014 to 4x1015 P/cm3 and find a dependence of 31P nuclear spin coherence time on donor concentration. The measured nuclear spin echo decays are fit by a stretched exponential function, exp(-(t/T2)n) , with n ranging from 0.7 to 1. This differs from n of about 2 commonly seen for spectral diffusion due to indirect spin flip-flops. The measured T2 times decrease significantly when the donor concentration increases, changing from 8 s at 1014 to 0.2 s at 4x1015 P/cm3. From the observed donor concentration dependence at higher densities, we conclude that direct electron spin flip-flops are responsible for 31P donor nuclear spin decoherence. This work was supported in part by NSF through the Materials World Network program (DMR-1107606) and the Princeton MRSEC (DMR-0819860), and in part by the U.S. Army Research Office (W911NF-13-1-0179).
Nuclear quantum effect and temperature dependency on the hydrogen-bonded structure of base pairs.
Daido, Masashi; Kawashima, Yukio; Tachikawa, Masanori
2013-10-30
The structure of Watson-Crick-type adenine-thymine and guanine-cytosine pairs has been studied by hybrid Monte Carlo (HMC) and path integral hybrid Monte Carlo (PIHMC) simulations with the use of semiempirical PM6-DH+ method in the gas phase. We elucidated the nuclear quantum effect and temperature dependency on the hydrogen-bonded moiety of base pairs. It was shown that the contribution of nuclear quantum effect on the hydrogen-bonded structure is significant not only at low temperature 150 K but also at temperature as high as 450 K. The relative position of hydrogen-bonded proton between two heavy atoms and the nuclear quantum nature of the proton are also shown. Furthermore, we have applied principal component analysis to HMC and PIHMC simulations to analyze the nuclear quantum effect on intermolecular motions. We found that the ratio of Buckle mode (lowest vibrational mode from normal mode analysis) decreases due to the nuclear quantum effect, whereas that of Propeller mode (second lowest vibrational mode) increases. In addition, nonplanar structures of base pairs were found to become stable due to the nuclear quantum effect from two-dimensional free energy landscape along Buckle and Propeller modes.
Ivanov, Konstantin L. Lukzen, Nikita N.; Sadovsky, Vladimir M.
2015-08-28
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
NASA Astrophysics Data System (ADS)
Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.
2015-08-01
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields
Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.
2014-12-15
We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.
Room-temperature coupling between electrical current and nuclear spins in OLEDs
NASA Astrophysics Data System (ADS)
Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.
2014-09-01
The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.
Delayed entanglement echo for individual control of a large number of nuclear spins.
Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B
2017-03-03
Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR.
Delayed entanglement echo for individual control of a large number of nuclear spins
NASA Astrophysics Data System (ADS)
Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B.
2017-03-01
Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR.
Delayed entanglement echo for individual control of a large number of nuclear spins
Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B.
2017-01-01
Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR. PMID:28256508
A 3D-Printed High Power Nuclear Spin Polarizer
Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; LaPierre, Cristen D.; Koehnemann, Edward; Barlow, Michael J.; Rosen, Matthew S.; Goodson, Boyd M.; Chekmenev, Eduard Y.
2015-01-01
Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of 129Xe and 1H nuclear spins), (ii) <0.3 nm narrowed 200 W laser source, (iii) in situ high-resolution near-IR spectroscopy, (iv) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of “off-the-shelf” components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity 129Xe polarization values in a 0.5 L optical pumping cell, including ~74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the 129Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10−2 min−1] and in-cell 129Xe spin−lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for 129Xe and Rb (PRb ~ 96%). Hyperpolarization-enhanced 129Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications. PMID:24400919
NASA Astrophysics Data System (ADS)
Angilella, G. G.; March, N. H.; Pucci, R.
2002-03-01
Following earlier work on electron or hole liquids flowing through assemblies with magnetic fluctuations, we have recently exposed a marked correlation of the superconducting temperature Tc, for non-s-wave pairing materials, with coherence length ξ and effective mass m*. The very recent study of Abanov et al. [Europhys. Lett. 54, 488 (2001)] and the prior investigation of Monthoux and Lonzarich [Phys. Rev. B 59, 14 598 (1999)] have each focused on the concept of a spin-fluctuation temperature Tsf, which again is intimately related to Tc. For the d-wave pairing via antiferromagnetic spin fluctuations in the cuprates, these studies are brought into close contact with our own work, and the result is that kBTsf~ħ2/m*ξ2. This demonstrates that ξ is also determined by such antiferromagnetic spin-fluctuation mediated pair interaction. The coherence length in units of the lattice spacing is then essentially given in the cuprates as the square root of the ratio of two characteristic energies, namely, the kinetic energy of localization of a charge carrier of mass m* in a specified magnetic correlation length to the hopping energy. The quasi-two-dimensional ruthenate Sr2RuO4, with Tc~1.3 K, has p-wave spin-triplet pairing and so is also briefly discussed here.
NASA Astrophysics Data System (ADS)
Polishook, David
2014-01-01
Asteroid pairs are two asteroids found to share almost identical orbital elements. Studies have shown that each pair had a single progenitor that split in the last couple of million years due to rotational-fission of a "rubble-pile" structured body. Here we report the lightcurves and spins of eight primary members of asteroid pairs observed at the Wise Observatory in Israel. The lightcurves of two of the observed asteroids present light attenuation in addition to the standard periodicity; these are most probably the results of satellites causing mutual events of eclipse and occultation.
King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander
2015-12-07
Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal of the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.
King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; ...
2015-12-07
Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less
Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs.
Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Pernicka, M; Rabady, D; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Mohammadi, A; Reis, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ocampo Rios, A A; Ryckbosch, D; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Selvaggi, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Malek, M; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, D; Zhang, L; Zou, W; Avila, C; Carrillo Montoya, C A; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Tikvica, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Kuotb Awad, A M; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Murumaa, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Florent, A; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Brochet, S; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sgandurra, L; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Autermann, C; Beranek, S; Calpas, B; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Padeken, K; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Thüer, S; Weber, M; Bontenackels, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Castro, E; Costanza, F; Dammann, D; Diez Pardos, C; Dorland, T; Eckerlin, G; Eckstein, D; Flucke, G; Geiser, A; Glushkov, I; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Leonard, J; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Novgorodova, O; Nowak, F; Olzem, J; Perrey, H; Petrukhin, A; Pitzl, D; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Rosin, M; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Walsh, R; Wissing, C; Blobel, V; Enderle, H; Erfle, J; Gebbert, U; Görner, M; Gosselink, M; Haller, J; Hermanns, T; Höing, R S; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schröder, M; Schum, T; Seidel, M; Sibille, J; Sola, V; Stadie, H; Steinbrück, G; Thomsen, J; Vanelderen, L; Barth, C; Baus, C; Berger, J; Böser, C; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hackstein, C; Hartmann, F; Hauth, T; Heinrich, M; Held, H; Hoffmann, K H; Husemann, U; Katkov, I; Komaragiri, J R; Lobelle Pardo, P; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Oehler, A; Ott, J; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Röcker, S; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Zeise, M; Anagnostou, G; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Ntomari, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Saoulidou, N; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Kaur, M; Mehta, M Z; Mittal, M; Nishu, N; Saini, L K; Sharma, A; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Malhotra, S; Naimuddin, M; Ranjan, K; Saxena, P; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Chatterjee, R M; Ganguly, S; Guchait, M; Gurtu, A; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Verwilligen, P; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Tosi, S; Benaglia, A; De Guio, F; Di Matteo, L; Fiorendi, S; Gennai, S; Ghezzi, A; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Galanti, M; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Taroni, S; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Fanelli, C; Grassi, M; Longo, E; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Soffi, L; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Kim, T Y; Nam, S K; Chang, S; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Juodagalvis, A; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Martínez-Ortega, J; Sanchez-Hernandez, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Bell, A J; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Asghar, M I; Butt, J; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Wolszczak, W; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Seixas, J; Varela, J; Vischia, P; Belotelov, I; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Malakhov, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kossov, M; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Popov, A; Sarycheva, L; Savrin, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Piedra Gomez, J; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Jorda, C; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bendavid, J; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; d'Enterria, D; Dabrowski, A; De Roeck, A; De Visscher, S; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Frisch, B; Funk, W; Georgiou, G; Giffels, M; Gigi, D; Gill, K; Giordano, D; Girone, M; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Govoni, P; Gowdy, S; Guida, R; Hammer, J; Hansen, M; Harris, P; Hartl, C; Harvey, J; Hegner, B; Hinzmann, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Kousouris, K; Krajczar, K; Lecoq, P; Lee, Y-J; Lenzi, P; Lourenço, C; Magini, N; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mulders, M; Musella, P; Nesvold, E; Orsini, L; Palencia Cortezon, E; Perez, E; Perrozzi, L; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rovelli, C; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Segoni, I; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Freudenreich, K; Grab, C; Hits, D; Lecomte, P; Lustermann, W; Marini, A C; Martinez Ruiz Del Arbol, P; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Starodumov, A; Stieger, B; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Wehrli, L; Amsler, C; Chiochia, V; Favaro, C; Ivova Rikova, M; Kilminster, B; Millan Mejias, B; Otiougova, P; Robmann, P; Snoek, H; Tupputi, S; Verzetti, M; Cardaci, M; Chang, Y H; Chen, K H; Ferro, C; Kuo, C M; Li, S W; Lin, W; Lu, Y J; Singh, A P; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wan, X; Wang, M; Asavapibhop, B; Simili, E; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Karapinar, G; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Bahtiyar, H; Barlas, E; Cankocak, K; Günaydin, Y O; Vardarlı, F I; Yücel, M; Levchuk, L; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Williams, T; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Ball, G; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Sparrow, A; Stoye, M; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Whyntie, T; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Hatakeyama, K; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Alimena, J; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Ferapontov, A; Garabedian, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Caulfield, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Dolen, J; Erbacher, R; Gardner, M; Houtz, R; Ko, W; Kopecky, A; Lander, R; Mall, O; Miceli, T; Nelson, R; Pellett, D; Ricci-Tam, F; Rutherford, B; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Yohay, R; Andreev, V; Cline, D; Cousins, R; Duris, J; Erhan, S; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Rakness, G; Schlein, P; Traczyk, P; Valuev, V; Weber, M; Babb, J; Clare, R; Dinardo, M E; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Liu, H; Long, O R; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; Evans, D; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; George, C; Golf, F; Incandela, J; Justus, C; Kalavase, P; Kovalskyi, D; Krutelyov, V; Lowette, S; Magaña Villalba, R; McColl, N; Pavlunin, V; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Chen, Y; Di Marco, E; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Spiropulu, M; Timciuc, V; Veverka, J; Wilkinson, R; Xie, S; Yang, Y; Zhu, R Y; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Liu, Y F; Paulini, M; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Ford, W T; Gaz, A; Luiggi Lopez, E; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Green, D; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kunori, S; Kwan, S; Leonidopoulos, C; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Remington, R; Rinkevicius, A; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Yumiceva, F; Adams, M R; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Bucinskaite, I; Callner, J; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Lacroix, F; O'Brien, C; Silkworth, C; Strom, D; Turner, P; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Griffiths, S; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Ogul, H; Onel, Y; Ozok, F; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Tinti, G; Wood, J S; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Peterman, A; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Apyan, A; Bauer, G; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Gomez Ceballos, G; Goncharov, M; Kim, Y; Klute, M; Levin, A; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Wolf, R; Wyslouch, B; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Zhukova, V; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, L M; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kravchenko, I; Lazo-Flores, J; Malik, S; Snow, G R; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Rappoccio, S; Wan, Z; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Nash, D; Orimoto, T; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Hahn, K A; Kubik, A; Lusito, L; Mucia, N; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Berry, D; Brinkerhoff, A; Chan, K M; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Antonelli, L; Bylsma, B; Durkin, L S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Vuosalo, C; Williams, G; Winer, B L; Berry, E; Elmer, P; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Koay, S A; Lopes Pegna, D; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, J S; Zenz, S C; Zuranski, A; Brownson, E; Lopez, A; Mendez, H; Ramirez Vargas, J E; Alagoz, E; Barnes, V E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Vidal Marono, M; Yoo, H D; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A; Akgun, B; Boulahouache, C; Ecklund, K M; Geurts, F J M; Li, W; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Rose, K; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Walker, M; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Damgov, J; Dragoiu, C; Dudero, P R; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Florez, C; Greene, S; Gurrola, A; Johns, W; Kurt, P; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sakharov, A; Anderson, M; Belknap, D A; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Friis, E; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Loveless, R; Mohapatra, A; Mozer, M U; Ojalvo, I; Palmonari, F; Pierro, G A; Ross, I; Savin, A; Smith, W H; Swanson, J
2013-02-22
A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17.3 fb(-1), collected by the CMS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or μ pairs, is 126.2 ± 0.6(stat) ± 0.2(syst) GeV. The angular distributions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis.
Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble
Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.
2014-07-28
As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF{sub 6} sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.
Projective measurement of a single nuclear spin qubit by using two-mode cavity QED.
Eto, Yujiro; Noguchi, Atsushi; Zhang, Peng; Ueda, Masahito; Kozuma, Mikio
2011-04-22
We report the implementation of projective measurement on a single 1/2 nuclear spin of the (171)Yb atom by measuring the polarization of cavity-enhanced fluorescence. To obtain cavity-enhanced fluorescence having a nuclear-spin-dependent polarization, we construct a two-mode cavity QED system, in which two cyclic transitions are independently coupled to each of the orthogonally polarized cavity modes, by manipulating the energy level of (171)Yb. This system can associate the nuclear spin degrees of freedom with the polarization of photons, which will facilitate the development of hybrid quantum systems.
Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars
NASA Technical Reports Server (NTRS)
Ruderman, Malvin; Chen, Kaiyou
1997-01-01
Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.
Spin-Triplet Pairing State of Sr2RuO4 in the c-Axis Magnetic Field
NASA Astrophysics Data System (ADS)
Takamatsu, Shuhei; Yanase, Youichi
2013-06-01
We investigate the spin-triplet superconducting state of Sr2RuO4 in the magnetic field along the c-axis on the basis of the four-component Ginzburg--Landau (GL) model with a weak spin--orbit coupling. We consider superconducting states described by the d-vector parallel to the ab-plane (\\mbi{d}\\parallel ab), and find that three spin-triplet pairing states are stabilized in the magnetic field--temperature (H--T) phase diagram. Although a helical state is stable at low magnetic fields, a chiral II state is stabilized at high magnetic fields. A non-unitary spin-triplet pairing state appears near the transition temperature owing to the coupling of magnetic field and chirality. We elucidate synergistic and/or competing roles of the magnetic field, chirality, and spin--orbit coupling. It is shown that a fractional vortex lattice is stabilized in the chiral II phase owing to the spin--orbit coupling.
Spin-induced mass loss from rubble piles and the formation of asteroid satellites and pairs
NASA Astrophysics Data System (ADS)
Tanga, P.; Campo Bagatin, A.; Thirouin, A.; Cellino, A.; Comito, C.; Ortiz, J.; Richardson, D.; Hestroffer, D.
2014-07-01
Non-gravitational effects may change the angular momentum of asteroids up to a few tens of km in size to the point that rotational stability is lost at high spin rates. Once instability is initiated, mass loss may happen and potentially create satellites or dynamically detached components (pairs). We have studied this problem by means of numerical simulations and investigated the production of secondary objects of different sizes by direct splitting of the parent body under the assumption of a low internal angle of friction. We focused our attention on the effect of progressive spin-up of objects as a consequence of the YORP effect. Since asteroids are clearly not fluid but rocky bodies, one can assume that equilibrium theories --- also describing bifurcations (e.g., [1]) --- do not directly apply [2]. The equilibrium shapes of non-fluid bodies have been studied in the recent past by several authors, assuming that rubble-pile asteroids can be modeled as cohesionless granular systems in the frame of continuum theories [2--5]. [6] shows that a small amount of tensile strength could be sufficient for the survival of some fast rotators, even if they are internally fragmented. More relevant to this work are the results obtained by [7,8] by the same N-body approach that we use, i.e., by simulating the dynamics and the collisions of mono-dispersed hard spheres utilizing the PKDGRAV code [9,10]. The YORP effect is modeled by increasing rigid rotation by small increments with enough time to relax between subsequent spin-ups. In this work, our approach is based again on the same simulation code; however, our new exploration of the parameter space is broader than the previous study in the near-fluid regime, which is achieved by randomizing the initial particle positions somewhat to break the otherwise crystalline structure of monodisperse particle packing. We find that the transformation of objects into prolate ellipsoids is an efficient process when the internal angle of
NASA Astrophysics Data System (ADS)
Marshall, Wallace F.; Fung, Jennifer C.
2016-04-01
The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.
Marshall, Wallace F.; Fung, Jennifer C.
2016-01-01
The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by un-attached chromosomes, but that randomly-directed active forces applied to the telomeres speeds up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions. PMID:27046097
Fast control of nuclear spin polarization in an optically pumped single quantum dot
NASA Astrophysics Data System (ADS)
Makhonin, M. N.; Kavokin, K. V.; Senellart, P.; Lemaître, A.; Ramsay, A. J.; Skolnick, M. S.; Tartakovskii, A. I.
2011-11-01
Highly polarized nuclear spins within a semiconductor quantum dot induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin, or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of quantum-dot-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond timescale of Overhauser fields on the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using coherent control of an ensemble of 105 optically polarized nuclear spins by sequences of short radiofrequency pulses. These results open the way to a new class of experiments using radiofrequency techniques to achieve highly correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-μK nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.
Influence of Pairing on the Nuclear Matrix Elements of the Neutrinoless {beta}{beta} Decays
Caurier, E.; Nowacki, F.
2008-02-08
We study in this Letter the neutrinoless double beta decay nuclear matrix elements (NME's) in the framework of the interacting shell model. We analyze them in terms of the total angular momentum of the decaying neutron pair and as a function of the seniority truncations in the nuclear wave functions. This point of view turns out to be very adequate to gauge the accuracy of the NME's predicted by different nuclear models. In addition, it gives back the protagonist role in this process to the pairing interaction, the one which is responsible for the very existence of double beta decay emitters. We show that low seniority approximations, comparable to those implicit in the quasiparticle RPA in a spherical basis, tend to overestimate the NME's in several decays.
Electron paramagnetic resonance study of the nuclear spin dynamics in an AlAs quantum well
NASA Astrophysics Data System (ADS)
Shchepetilnikov, A. V.; Frolov, D. D.; Nefyodov, Yu. A.; Kukushkin, I. V.; Tiemann, L.; Reichl, C.; Dietsche, W.; Wegscheider, W.
2016-12-01
The nuclear spin dynamics in an asymmetrically doped 16-nm AlAs quantum well grown along the [001] direction has been studied experimentally using the time decay of the Overhauser shift of paramagnetic resonance of conduction electrons. The nonzero spin polarization of nuclei causing the initial observed Overhauser shift is due the relaxation of the nonequilibrium spin polarization of electrons into the nuclear subsystem near electron paramagnetic resonance owing to the hyperfine interaction. The measured relaxation time of nuclear spins near the unity filling factor is (530 ± 30) min at the temperature T = 0.5 K. This value exceeds the characteristic spin relaxation times of nuclei in GaAs/AlGaAs heterostructures by more than an order of magnitude. This fact indicates the decrease in the strength of the hyperfine interaction in the AlAs quantum well in comparison with GaAs/AlGaAs heterostructures.
Positioning nuclear spins in interacting clusters for quantum technologies and bioimaging
NASA Astrophysics Data System (ADS)
Wang, Zhen-Yu; Haase, Jan F.; Casanova, Jorge; Plenio, Martin B.
2016-05-01
We propose a method to measure the hyperfine vectors between a nitrogen-vacancy (NV) center and an environment of interacting nuclear spins. Our protocol enables the generation of tunable electron-nuclear coupling Hamiltonians while suppressing unwanted internuclear interactions. In this manner, each nucleus can be addressed and controlled individually, thereby permitting the reconstruction of the individual hyperfine vectors. With this ability the three-dimensional (3D) structure of spin ensembles and spins in biomolecules can be identified without the necessity of varying the direction of applied magnetic fields. We demonstrate examples including the complete reconstruction of an interacting spin cluster in diamond and 3D imaging of all the nuclear spins in a biomolecule.
The use of the pairing-quadrupole connections in PQM for application in nuclear systems
NASA Astrophysics Data System (ADS)
Drumev, K. P.; Georgieva, A. I.
2016-03-01
Within the algebraic realization of the Pairing-plus-Quadrupole Model /PQM/ in the framework of the Elliott's SU(3) Model,we present some particular applications for realistic nuclear systems. The probability distribution of the SU(3) basis states within the isovector, isoscalar and total pairing eigenstates is obtained through a numerical diagonalization of the PQM Hamiltonian in each limit. This allows the investigation of the interplay between the pairing and quadrupole interactions in the Hamiltonian of the PQM, containing all of them as limiting cases. The relative strengths of the dynamically symmetric quadrupole-quadrupole interaction with the considered types of pairing interactions are investigated systematically for systems like the 20Ne.
NASA Astrophysics Data System (ADS)
Kulić, Miodrag L.; Kulić, Igor M.
2003-08-01
The antagonistic interplay of antiferromagnetism (AF) and superconductivity (SC), recently discovered in high-temperature superconductors, is studied in the framework of a microscopic theory. We explain the surprisingly large increase of the magnetic Bragg peak intensity IQ at Q∼( π, π) in the magnetic field H≪ Hc2 at low temperatures 0< T≪ Tc, TAF in La 2- xSr xCuO 4. Good agreement with experimental results is found. The theory predicts large anisotropy of the relative intensity RQ( H)=( IQ( H)- IQ(0))/ IQ(0), i.e. R Q( H∥c -axis)≫R Q( H⊥c -axis) . The quantum ( T=0) phase diagram at H=0 is constructed. The theory also predicts: (i) that the magnetic field can induce the AF order in the SC state; (ii) that the spin-fluctuation (SF) effective coupling constant g<0.1 eV is small, which gives small SC critical temperature Tc (≪40 K)--thus questioning the SF mechanism of pairing in HTS oxides.
Transport in Cuprate Sandwich Junctions: the Quest for Preformed Pairs and Spin-Charge Separation
NASA Astrophysics Data System (ADS)
Bozovic, Ivan
2003-03-01
Using molecular beam epitaxy (MBE), we have developed a technology for reproducible growth of thin films, multilayers and superlattices of high-Tc superconductors (HTS) with rms surface roughness in the range 0.2-0.5 nm. In films and devices that contain one-unit-cell (1UC) thick layers of either La2CuO4+d (LCO) or La1.85Sr0.15CuO4 (LSCO), we found virtual absence of proximity effects. In SIS structures, 1UC thick insulating LCO barrier completely blocks the supercurrent between HTS electrodes. Conversely, 1UC thick LSCO layer sandwiched between thicker insulating layers sustains HTS. The HTS/AFM interface is sharp on the length scale of 1 Å; the two phases do not mix, like oil and vinegar. They are not nearly degenerate in energy; the energy difference is about 1 eV. Upon doping, electronic states appear at or near the middle of the band gap, in variance with the conventional rigid-band picture. Direct photo-excitation of these states seems forbidden, perhaps by spin conservation. In contrast, in SS'S junctions, above Tc' of S' layer and below Tc of S electrodes, we see Josephson supercurrent through thick S' layers -- even hundred times thicker than the coherence length in S and the mean free path in S'. This 'Giant Proximity Effect' defies conventional description; it may indicate existence of preformed pairs above Tc' in S'.
Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer
NASA Technical Reports Server (NTRS)
Romalis, Michael; Komack, Tom; Ghost, Rajat
2008-01-01
An experimental nuclear-spin gyroscope is based on an alkali-metal/noblegas co-magnetometer, which automatically cancels the effects of magnetic fields. Whereas the performances of prior nuclear-spin gyroscopes are limited by sensitivity to magnetic fields, this gyroscope is insensitive to magnetic fields and to other external perturbations. In addition, relative to prior nuclear-spin gyroscopes, this one exhibits greater sensitivity to rotation. There is commercial interest in development of small, highly sensitive gyroscopes. The present experimental device could be a prototype for development of nuclear spin gyroscopes suitable for navigation. In comparison with fiber-optic gyroscopes, these gyroscopes would draw less power and would be smaller, lighter, more sensitive, and less costly.
On the calculations of the nuclear spin spin coupling constants in small water clusters
NASA Astrophysics Data System (ADS)
Cybulski, Hubert; Pecul, Magdalena; Sadlej, Joanna
2006-08-01
The calculations of the nuclear spin-spin coupling constants were carried out for small water clusters (H 2O) n, n = 2-6, 12, and 17, using density functional theory (DFT) and second-order polarization propagator method (SOPPA). A wide range of different standard and modified basis sets was tested to enable the choice of the possibly smallest and most flexible basis set. The changes in the oxygen-proton coupling constants upon the cluster formation between the nuclei involved in hydrogen bonding cover a range of ca. 13 Hz. The range of the calculated changes in intramolecular 1JOH couplings shows that the simple model of rigid water clusters seems to be sufficient to reproduce properly the sign and to estimate the magnitude of the gas-to-liquid shift. The sign of the complexation-induced changes in the intramolecular 2JHH coupling constant is different for molecules with a different coordination number. While the sign is positive for the molecules of the single donor-single acceptor (DA) and single donor-double acceptor (DAA) types, it is negative for the double donor-single acceptor (DDA) molecules. In the four-coordinated double donor-double acceptor (DDAA) molecules the sign of Δ 2JHH varies. The hydrogen-bond transmitted intermolecular coupling constants are substantial: 1hJOH spans the range from 2.8 to 8.4 Hz while 2hJOO varies from -0.6 to 7.5 Hz. The average intermolecular 1hJOH coupling constant decays slowly with the H⋯O distance in the cyclic clusters n = 2-6. The average 2hJOO coupling decreases exponentially with the O⋯O separation for the cyclic clusters n = 2-6.
Optically addressable nuclear spins in a solid with a six-hour coherence time
NASA Astrophysics Data System (ADS)
Zhong, Manjin; Hedges, Morgan P.; Ahlefeldt, Rose L.; Bartholomew, John G.; Beavan, Sarah E.; Wittig, Sven M.; Longdell, Jevon J.; Sellars, Matthew J.
2015-01-01
Space-like separation of entangled quantum states is a central concept in fundamental investigations of quantum mechanics and in quantum communication applications. Optical approaches are ubiquitous in the distribution of entanglement because entangled photons are easy to generate and transmit. However, extending this direct distribution beyond a range of a few hundred kilometres to a worldwide network is prohibited by losses associated with scattering, diffraction and absorption during transmission. A proposal to overcome this range limitation is the quantum repeater protocol, which involves the distribution of entangled pairs of optical modes among many quantum memories stationed along the transmission channel. To be effective, the memories must store the quantum information encoded on the optical modes for times that are long compared to the direct optical transmission time of the channel. Here we measure a decoherence rate of 8 × 10-5 per second over 100 milliseconds, which is the time required for light transmission on a global scale. The measurements were performed on a ground-state hyperfine transition of europium ion dopants in yttrium orthosilicate (151Eu3+:Y2SiO5) using optically detected nuclear magnetic resonance techniques. The observed decoherence rate is at least an order of magnitude lower than that of any other system suitable for an optical quantum memory. Furthermore, by employing dynamic decoupling, a coherence time of 370 +/- 60 minutes was achieved at 2 kelvin. It has been almost universally assumed that light is the best long-distance carrier for quantum information. However, the coherence time observed here is long enough that nuclear spins travelling at 9 kilometres per hour in a crystal would have a lower decoherence with distance than light in an optical fibre. This enables some very early approaches to entanglement distribution to be revisited, in particular those in which the spins are transported rather than the light.
The determination of the in situ structure by nuclear spin contrast variation
Stuhrmann, H.B.; Nierhaus, K.H.
1994-12-31
Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.
Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.
2016-06-14
A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.
Moore, John N; Hayakawa, Junichiro; Mano, Takaaki; Noda, Takeshi; Yusa, Go
2017-02-17
Using photoluminescence microscopy enhanced by magnetic resonance, we visualize in real space both electron and nuclear polarization occurring in nonequilibrium fraction quantum Hall (FQH) liquids. We observe stripelike domain regions comprising FQH excited states which discretely form when the FQH liquid is excited by a source-drain current. These regions are deformable and give rise to bidirectionally polarized nuclear spins as spin-resolved electrons flow across their boundaries.
NASA Astrophysics Data System (ADS)
Moore, John N.; Hayakawa, Junichiro; Mano, Takaaki; Noda, Takeshi; Yusa, Go
2017-02-01
Using photoluminescence microscopy enhanced by magnetic resonance, we visualize in real space both electron and nuclear polarization occurring in nonequilibrium fraction quantum Hall (FQH) liquids. We observe stripelike domain regions comprising FQH excited states which discretely form when the FQH liquid is excited by a source-drain current. These regions are deformable and give rise to bidirectionally polarized nuclear spins as spin-resolved electrons flow across their boundaries.
Comparing the F-Spin Mass Model to Other Nuclear Mass Models
NASA Astrophysics Data System (ADS)
Porter, William; Nystrom, Andrew; Aprahamian, Ani
2016-09-01
Nuclear masses and binding energies play an important role in nuclear science and the applications of nuclear science such as nuclear astrophysics. The reliable prediction of nuclear masses far from stability are particularly important for a better understanding of the rapid neutron capture process. We are exploring the implementation of a semi-empirical mass model based on the concept of F-spin in nuclei. This model incorporates the evolution of shape in various regions of the chart of nuclides. Here, with the intent of better predicting nuclear binding energies near the bounds of our experimental knowledge, the F-Spin mass model uses a 9 parameter quadratic equation dependent on the third projection of F-Spin and proton number to evaluate the microscopic portion of all nuclear binding energies. We divide the known 2317 isotopes into 14 different zones for fitting purposes, we are able to generate predictions for nuclear masses in the order of 324 keV. The F-Spin model implied shapes are then compared with a number of other mass models to determine the variations in nuclear structure. This work is supported by the National Science Foundation under Contract PHY-1205412.
Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.
ERIC Educational Resources Information Center
Venanzi, Thomas J.
1982-01-01
Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…
Spin coherence effects in the electron—nuclear polarization transfer process
NASA Astrophysics Data System (ADS)
Macho, V.; Stehlik, D.; Vieth, H.-M.
1991-05-01
The nuclear spin polarization resulting from optical pumping of molecular triplet states, ONP, has been studied in a time-resolving experiment by synchronized irradiation of light and rf pulses. After laser flash excitation of T 1 triplet states of acridine doped into a fluorene crystal, an rf pulse of variable intensity and duration is applied near the resonance of an electronic spin transition. It leads to partial transfer of optically generated electronic polarization to the nuclear spin reservoir (rf-ONP). For sufficiently high rf-intensity, the polarization transfer shows an oscillatory behaviour when varying the pulse length in the submicrosecond range, which reflects the initial coherence among the spins. Critical tests for the analysis are provided by experiments under different rf excitation conditions and for various isotopic compositions. The transfer process is shown to involve two steps on different time scales, the first of which is closely related to nutations of electron spins about the rotating B1 field.
Gauge invariance of the nuclear spin/electron orbit interaction and NMR spectral parameters.
Lazzeretti, Paolo
2012-08-21
A gauge transformation of the vector potential A(m(I)), associated to the magnetic dipole m(I) of nucleus I in a molecule, has been studied. The conditions for gauge invariance of nuclear magnetic shielding, nuclear spin/electron orbit contribution to spin-spin coupling between two nuclei, I and J, and electronic current density induced by m(I), have been expressed via quantum mechanical sum rules that are identically satisfied for exact and optimal variational wavefunctions. It is shown that separate diamagnetic and paramagnetic contributions to the properties transform into one another in the gauge transformation, whereas their sum is invariant. Therefore, only total response properties have a physical meaning. In particular, the disjoint diamagnetic and paramagnetic components of nuclear spin/electron orbit contributions to coupling constants are not uniquely defined. The diamagnetic contribution to the nuclear spin-spin coupling tensor, evaluated as an expectation value in the Ramsey theory, can alternatively be expressed as a sum-over-states formula, by rewriting the second-order Hamiltonian in commutator form à la Geertsen, as previously reported by Sauer. Other sum-over-states formulae are obtained via a gauge transformation, by a procedure formally allowing for a continuous translation of the origin of the m(I)-induced current density, analogous to those previously proposed for magnetizabilities and nuclear magnetic shielding.
Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins.
Casanova, J; Wang, Z-Y; Plenio, M B
2016-09-23
Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.
Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center
Wang, Ping; Liu, Bao; Yang, Wen
2015-01-01
Enhancing the polarization of nuclear spins surrounding the nitrogen-vacancy (NV) center in diamond has recently attracted widespread attention due to its various applications. Here we present an analytical formula that not only provides a clear physical picture for the recently observed polarization reversal of strongly coupled13C nuclei over a narrow range of magnetic field [H. J. Wang et al., Nat. Commun. 4, 1940 (2013)], but also demonstrates the possibility to strongly polarize weakly coupled13C nuclei. This allows sensitive magnetic field control of the 13C nuclear spin polarization for NMR applications and significant suppression of the 13C nuclear spin noise to prolong the NV spin coherence time. PMID:26521962
Testing for parity violation in nuclei using spin density matrices for nuclear density functionals
NASA Astrophysics Data System (ADS)
Barrett, B. R.; Giraud, B. G.
2015-06-01
The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a ‘hedgehog’ situation, which exists only if nuclear states contain some amount of parity violation. A toy model is given as an illustrative example.
Akiba, K; Kanasugi, S; Yuge, T; Nagase, K; Hirayama, Y
2015-07-10
We study nuclear spin polarization in the quantum Hall regime through the optically pumped electron spin polarization in the lowest Landau level. The nuclear spin polarization is measured as a nuclear magnetic field B(N) by means of the sensitive resistive detection. We find the dependence of B(N) on the filling factor nonmonotonic. The comprehensive measurements of B(N) with the help of the circularly polarized photoluminescence measurements indicate the participation of the photoexcited complexes, i.e., the exciton and trion (charged exciton), in nuclear spin polarization. On the basis of a novel estimation method of the equilibrium electron spin polarization, we analyze the experimental data and conclude that the filling factor dependence of B(N) is understood by the effect of electron spin polarization through excitons and trions.
Simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy
Allal, N.H.; Fellah, M. )
1993-10-01
The microscopic corrections to the liquid drop energy are determined by a method that takes simultaneously into account shell and pairing effects. For this purpose, a level density with explicit dependence on pairing correlations is defined from the particle number conservation condition in the BCS theory. This density is expressed in terms of the Dirac [delta]-generalized function and its derivatives. This enables one to deduce the expansion of this density as a series of Hermite polynomials. The microscopic corrections are then determined by a procedure which is analogous to that of Strutinsky. The method permits also to define an average pairing gap which depends both on the nucleon type (neutron or proton) and on the nuclear shape. When applied to the ground state energy calculations for the even-even actinide nuclei, with a deformed Woods-Saxon mean field, this method leads to a very good agreement between the calculated and the experimental values.
BRIEF REPORT: Pair production from nuclear collisions and cosmic ray transport
NASA Astrophysics Data System (ADS)
Norbury, John W.
2006-09-01
Modern cosmic ray transport codes, that are capable of use for a variety of applications, need to include all significant atomic, nuclear and particle reactions at a variety of energies. Lepton pair production from nucleus nucleus collisions has not been included in transport codes to date. Using the methods of Baur, Bertulani and Baron, the present report provides estimates of electron positron pair production cross sections for nuclei and energies relevant to cosmic ray transport. It is shown that the cross sections are large compared to other typical processes such as single neutron removal due to strong or electromagnetic interactions. Therefore, lepton pair production may need to be included in some transport code applications involving MeV electrons.
Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando
2015-05-07
We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.
Quadrupolar effects on nuclear spins of neutral arsenic donors in silicon
NASA Astrophysics Data System (ADS)
Franke, David P.; Pflüger, Moritz P. D.; Mortemousque, Pierre-André; Itoh, Kohei M.; Brandt, Martin S.
2016-04-01
We present electrically detected electron nuclear double resonance measurements of the nuclear spins of ionized and neutral arsenic donors in strained silicon. In addition to a reduction of the hyperfine coupling, we find significant quadrupole interactions of the nuclear spin of the neutral donors of the order of 10 kHz. By comparing these to the quadrupole shifts due to crystal fields measured for the ionized donors, we identify the effect of the additional electron on the electric field gradient at the nucleus. This extra component is expected to be caused by the coupling to electric field gradients created due to changes in the electron wave function under strain.
Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian
2016-09-28
We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.
NASA Astrophysics Data System (ADS)
Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.
2014-05-01
We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically defined double quantum dot in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.
Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.
Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A
2012-05-11
Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.
The Role of Three-Nucleon Forces and Many-Body Processes in Nuclear Pairing
Holt, Jason D.
2013-01-01
We present microscopic valence-shell calculations of pairing gaps in the calcium isotopes, focusing on the role of three-nucleon (3N) forces and manybody processes. In most cases, we find a reduction in pairing strength when the leading chiral 3N forces are included, compared to results with lowmomentum two-nucleon (NN) interactions only. This is in agreement with a recent energy density functional study. At the NN level, calculations that include particle particle and hole hole ladder contributions lead to smaller pairing gaps compared with experiment. When particle hole contributions as well as the normal-ordered one- and two-body parts of 3N forces are consistently included to third order, we find reasonable agreement with experimental three-point mass differences. This highlights the important role of 3N forces and manybody processes for pairing in nuclei. Finally, we relate pairing gaps to the evolution of nuclear structure in neutron-rich calcium isotopes and study the predictions for the 2+ excitation energies, in particular for 54Ca.
Coherent storage of microwave excitations in rare-earth nuclear spins.
Wolfowicz, Gary; Maier-Flaig, Hannes; Marino, Robert; Ferrier, Alban; Vezin, Hervé; Morton, John J L; Goldner, Philippe
2015-05-01
Interfacing between various elements of a computer--from memory to processors to long range communication--will be as critical for quantum computers as it is for classical computers today. Paramagnetic rare-earth doped crystals, such as Nd(3+):Y2SiO5(YSO), are excellent candidates for such a quantum interface: they are known to exhibit long optical coherence lifetimes (for communication via optical photons), possess a nuclear spin (memory), and have in addition an electron spin that can offer hybrid coupling with superconducting qubits (processing). Here we study two of these three elements, demonstrating coherent storage and retrieval between electron and (145)Nd nuclear spin states in Nd(3+):YSO. We find nuclear spin coherence times can reach 9 ms at ∼5 K, about 2 orders of magnitude longer than the electron spin coherence, while quantum state and process tomography of the storage or retrieval operation between the electron and nuclear spin reveal an average state fidelity of 0.86. The times and fidelities are expected to further improve at lower temperatures and with more homogeneous radio-frequency excitation.
Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond.
Abrams, Daniel; Trusheim, Matthew E; Englund, Dirk R; Shattuck, Mark D; Meriles, Carlos A
2014-05-14
Optical pumping of spin polarization can produce almost complete spin order but its application is restricted to select atomic gases and condensed matter systems. Here, we theoretically investigate a novel route to nuclear spin hyperpolarization in arbitrary fluids in which target molecules are exposed to polarized paramagnetic centers located near the surface of a host material. We find that adsorbed nuclear spins relax to positive or negative polarization depending on the average paramagnetic center depth and nanoscale surface topology. For the particular case of optically pumped nitrogen-vacancy centers in diamond, we calculate strong nuclear spin polarization at moderate magnetic fields provided the crystal surface is engineered with surface roughness in the few-nanometer range. The equilibrium nuclear spin temperature depends only weakly on the correlation time describing the molecular adsorption dynamics and is robust in the presence of other, unpolarized paramagnetic centers. These features could be exploited to polarize flowing liquids or gases, as we illustrate numerically for the model case of a fluid brought in contact with an optically pumped diamond nanostructure.
Hyperfine coupling of hole and nuclear spins in symmetric (111)-grown GaAs quantum dots
NASA Astrophysics Data System (ADS)
Vidal, M.; Durnev, M. V.; Bouet, L.; Amand, T.; Glazov, M. M.; Ivchenko, E. L.; Zhou, P.; Wang, G.; Mano, T.; Kuroda, T.; Marie, X.; Sakoda, K.; Urbaszek, B.
2016-09-01
In self-assembled III-V semiconductor quantum dots, valence holes have longer spin coherence times than the conduction electrons, due to their weaker coupling to nuclear spin bath fluctuations. Prolonging hole spin stability relies on a better understanding of the hole to nuclear spin hyperfine coupling which we address both in experiment and theory in the symmetric (111) GaAs/AlGaAs droplet dots. In magnetic fields applied along the growth axis, we create a strong nuclear spin polarization detected through the positively charged trion X+ Zeeman and Overhauser splittings. The observation of four clearly resolved photoluminescence lines—a unique property of the (111) nanosystems—allows us to measure separately the electron and hole contribution to the Overhauser shift. The hyperfine interaction for holes is found to be about five times weaker than that for electrons. Our theory shows that this ratio depends not only on intrinsic material properties but also on the dot shape and carrier confinement through the heavy-hole mixing, an opportunity for engineering the hole-nuclear spin interaction by tuning dot size and shape.
Liang, Junjun; Zhou, Xiaofan; Chui, Pak Hong; Zhang, Kuang; Gu, Shi-jian; Gong, Ming; Chen, Gang; Jia, Suotang
2015-01-01
Understanding novel pairings in attractive degenerate Fermi gases is crucial for exploring rich superfluid physics. In this report, we reveal unconventional pairings induced by spin-orbit coupling (SOC) in a one-dimensional optical lattice, using a state-of-the-art density-matrix renormalization group method. When both bands are partially occupied, we find a strong competition between the interband Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and intraband Bardeen-Cooper-Schrieffer (BCS) pairings. In particular, for the weak and moderate SOC strengths, these two pairings can coexist, giving rise to a new phase called the FFLO-BCS phase, which exhibits a unique three-peak structure in pairing momentum distribution. For the strong SOC strength, the intraband BCS pairing always dominates in the whole parameter regime, including the half filling. We figure out the whole phase diagrams as functions of filling factor, SOC strength, and Zeeman field. Our results are qualitatively different from recent mean-field predictions. Finally, we address that our predictions could be observed in a weaker trapped potential. PMID:26443006
Hoffmann, Stanislaw K; Lijewski, Stefan; Goslar, Janina; Ulanov, Volodia A
2010-01-01
EPR (X- and Q-band) and electron spin relaxation measured by electron spin echo method (X-band) were studied for Ti(2+)(S=1) and Ti(2+)-Ti(2+) pairs in SrF(2) crystal at room temperature and in the temperature range 4.2-115 K. EPR spectrum consists of a strong line from Ti(2+) and quartets 2:3:3:2 from titanium pairs (S=2). Spin-Hamiltonian parameters of the pairs are g( parallel)=1.883, g( perpendicular)=1.975 and D=0.036 cm(-1). Temperature behavior of the dimer spectrum indicates ferromagnetic coupling between Ti(2+). Spin-lattice relaxation of individuals Ti(2+) is dominated by the ordinary two-phonon Raman process involving the whole phonon spectrum up to the Debye temperature Theta(D)=380 K with spin-phonon coupling parameter equal to 215 cm(-1). Important contribution to the relaxation arises from local mode vibrations of energy 133 cm(-1). The pair relaxation is faster due to the exchange coupling modulation mechanism with the relaxation rate characteristic for ferromagnetic ground state of the pairs 1/T(1) is proportional to [exp(2J/kT)-1](-1) which allowed to estimate the exchange coupling J=36 cm(-1). The theories of electron-lattice relaxation governed by exchange interaction are outlined for extended spin systems, for clusters and for individual dimers. Electron spin echo decay is strongly modulated by coupling with surrounding (19)F nuclei. FT-spectrum of the modulations shows a dipolar splitting of the fluorine lines, which allows the evaluation of the off-center shift of Ti(2+) in pair as 0.132 nm. The electron spin echo dephasing is dominated by an instantaneous diffusion at low temperatures and by the spin-lattice relaxation processes above 18K.
Probing an NV Center's Nuclear Spin Environment with Coherent Population Trapping
NASA Astrophysics Data System (ADS)
Levonian, David; Goldman, Michael; Singh, Swati; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail
2016-05-01
Nitrogen-vacancy (NV) centers in diamond have emerged as a versatile atom-like system, finding diverse applications in metrology and quantum information science, but interaction between the NV center's electronic spin and its nuclear spin environment represent a major source of decoherence. We use optical techniques to monitor and control the nuclear bath surrounding an NV center. Specifically, we create an optical Λ-system using the | +/- 1 > components of the NV center's spin-triplet ground state. When the Zeeman splitting between the two states is equal to the two-photon detuning between the lasers, population is trapped in the resulting dark state. Measuring the rate at which the NV center escapes from the dark state therefore gives information on how spin bath dynamics change the effective magnetic field experienced by the NV center. By monitoring statistics of the emitted photons, we plan to probe non-equilibrium dynamics of the bath.
Coherent manipulation of an ensemble of nuclear spins in diamond for high precision rotation sensing
NASA Astrophysics Data System (ADS)
Jaskula, Jean-Christophe; Saha, Kasturi; Ajoy, Ashok; Cappellaro, Paola
2016-05-01
Gyroscopes find wide applications in everyday life from navigation and inertial sensing to rotation sensors in hand-held devices and automobiles. Current devices, based on either atomic or solid-state systems, impose a choice between long-time stability and high sensitivity in a miniaturized system. We are building a solid-state spin gyroscope associated with the Nitrogen-Vacancy (NV) centers in diamond take advantage of the efficient optical initialization and measurement offered by the NV electronic spin and the stability and long coherence time of the nuclear spin, which is preserved even at high defect density. In addition, we also investigate electro-magnetic noise monitoring and feedback schemes based on the coupling between the NV electronic and nuclear spin to achieve higher stability.
Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.
2015-06-21
We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.
Pöschko, Maria Theresia; Peat, David; Owers‐Bradley, John
2016-01-01
Abstract At ultralow temperatures, longitudinal nuclear magnetic relaxation times become exceedingly long and spectral lines are very broad. These facts pose particular challenges for the measurement of NMR spectra and spin relaxation phenomena. Nuclear spin noise spectroscopy is used to monitor proton spin polarization buildup to thermal equilibrium of a mixture of glycerol, water, and copper oxide nanoparticles at 17.5 mK in a static magnetic field of 2.5 T. Relaxation times determined in such a way are essentially free from perturbations caused by excitation radiofrequency pulses, radiation damping, and insufficient excitation bandwidth. The experimental spin‐lattice relaxation times determined on resonance by saturation recovery with spin noise detection are consistently longer than those determined by using pulse excitation. These longer values are in better accordance with the expected field dependence trend than those obtained by on‐resonance experiments with pulsed excitation. PMID:27305629
Solid effect in the electron spin dressed state: A new approach for dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Weis, V.; Bennati, M.; Rosay, M.; Griffin, R. G.
2000-10-01
We describe a new type of solid effect for dynamic nuclear polarization (DNP) that is based on simultaneous, near resonant microwave (mw) and radio frequency (rf) irradiation of a coupled electron nuclear spin system. The interaction of the electron spin with the mw field is treated as an electron spin dressed state. In contrast to the customary laboratory frame solid effect, it is possible to obtain nuclear polarization with the dressed state solid effect (DSSE) even in the absence of nonsecular hyperfine coupling. Efficient, selective excitation of dressed state transitions generates nuclear polarization in the nuclear laboratory frame on a time scale of tens of μs, depending on the strength of the electron-nuclear coupling, the mw and rf offset and field strength. The experiment employs both pulsed mw and rf irradiation at a repetition rate comparable to T1e-1, where T1e is the electronic spin lattice relaxation time. The DSSE is demonstrated on a perdeuterated BDPA radical in a protonated matrix of polystyrene.
NASA Astrophysics Data System (ADS)
Kuroda, S.; Shirakawa, H.
1991-03-01
Electron-nuclear double resonance (ENDOR) and electron-nuclear-nuclear triple resonance (TRIPLE) spectra of stretch-oriented cis-rich polyacetylene at low temperatures show clear spectral turning points when the external magnetic field is parallel to the stretch direction. The difference between ENDOR and TRIPLE spectra, depending on the pumping frequency of the latter, provide direct evidence that the turning points are associated with the negative spin sites of the soliton, arising from electron correlation effect, as predicted from our previous ENDOR analysis.
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Miller, Gerald A.
2017-01-01
Recently, the experimentalists in [Phys.Rev.Lett.116.042501(2016)] claimed seeing unexpected enhancement of the internal electron-positron pair (e+-e-) production in the large e+-e- relative angle region in the EM transition from the Beryllium-8 nucleus's second lowest 1+ state to its ground state. According to the experimentalists, the signal can be explained by a new neutral boson weighted around 17 MeV. This has stipulated significant interests in the particle physics community [e.g. Phys. Rev. Lett. 117, 071803 (2016)]. In this talk, I will present our latest study of the underlying nuclear physics, and emphasize several pieces of physics that haven't been well studied theoretically and not been included in the current experimental analysis, including the interferences between the dominant E1 and M1 transitions, two extra angular dependences, possible impact of E2 transition and its interferences with E1 and M1, and nuclear form factor. I will also point out that the previously measured on-shell photon production constrains the ratio between E1 and M1 contributions in the pair production, which however haven't been checked in the current experimental analysis. In the end, I will discuss the possibility of nuclear physics being the origin of the observed anomaly. The work is supported by the U.S. Department of Energy under Grant DE-FG02-97ER-41014.
Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale
NASA Astrophysics Data System (ADS)
Wagenaar, J. J. T.; den Haan, A. M. J.; de Voogd, J. M.; Bossoni, L.; de Jong, T. A.; de Wit, M.; Bastiaans, K. M.; Thoen, D. J.; Endo, A.; Klapwijk, T. M.; Zaanen, J.; Oosterkamp, T. H.
2016-07-01
Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators, and other strongly correlated electron systems such as high-Tc superconductors.
High-fidelity transfer and storage of photon states in a single nuclear spin
NASA Astrophysics Data System (ADS)
Yang, Sen; Wang, Ya; Rao, D. D. Bhaktavatsala; Hien Tran, Thai; Momenzadeh, Ali S.; Markham, M.; Twitchen, D. J.; Wang, Ping; Yang, Wen; Stöhr, Rainer; Neumann, Philipp; Kosaka, Hideo; Wrachtrup, Jörg
2016-08-01
Long-distance quantum communication requires photons and quantum nodes that comprise qubits for interaction with light and good memory capabilities, as well as processing qubits for the storage and manipulation of photons. Owing to the unavoidable photon losses, robust quantum communication over lossy transmission channels requires quantum repeater networks. A necessary and highly demanding prerequisite for these networks is the existence of quantum memories with long coherence times to reliably store the incident photon states. Here we demonstrate the high-fidelity (˜98%) coherent transfer of a photon polarization state to a single solid-state nuclear spin that has a coherence time of over 10 s. The storage process is achieved by coherently transferring the polarization state of a photon to an entangled electron-nuclear spin state of a nitrogen-vacancy centre in diamond. The nuclear spin-based optical quantum memory demonstrated here paves the way towards an absorption-based quantum repeater network.
Coherent manipulation of non-thermal spin order in optical nuclear polarization experiments
NASA Astrophysics Data System (ADS)
Buntkowsky, Gerd; Ivanov, Konstantin L.; Zimmermann, Herbert; Vieth, Hans-Martin
2017-03-01
Time resolved measurements of Optical Nuclear Polarization (ONP) have been performed on hyperpolarized triplet states in molecular crystals created by light excitation. Transfer of the initial electron polarization to nuclear spins has been studied in the presence of radiofrequency excitation; the experiments have been performed with different pulse sequences using different doped molecular systems. The experimental results clearly demonstrate the dominant role of coherent mechanisms of spin order transfer, which manifest themselves in well pronounced oscillations. These oscillations are of two types, precessions and nutations, having characteristic frequencies, which are the same for the different molecular systems and the pulse sequences applied. Hence, precessions and nutations constitute a general feature of polarization transfer in ONP experiments. In general, coherent manipulation of spin order transfer creates a powerful resource for improving the performance of the ONP method, which paves the way to strong signal enhancement in nuclear magnetic resonance.
Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors
NASA Astrophysics Data System (ADS)
Franke, David P.; Hrubesch, Florian M.; Künzl, Markus; Becker, Hans-Werner; Itoh, Kohei M.; Stutzmann, Martin; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.
2015-07-01
The nuclear spins of ionized donors in silicon have become an interesting quantum resource due to their very long coherence times. Their perfect isolation, however, comes at a price, since the absence of the donor electron makes the nuclear spin difficult to control. We demonstrate that the quadrupolar interaction allows us to effectively tune the nuclear magnetic resonance of ionized arsenic donors in silicon via strain and determine the two nonzero elements of the S tensor linking strain and electric field gradients in this material to S11=1.5 ×1022 V /m2 and S44=6 ×1022 V /m2 . We find a stronger benefit of dynamical decoupling on the coherence properties of transitions subject to first-order quadrupole shifts than on those subject to only second-order shifts and discuss applications of quadrupole physics including mechanical driving of magnetic resonance, cooling of mechanical resonators, and strain-mediated spin coupling.
Nuclear spin relaxation in n -GaAs: From insulating to metallic regime
NASA Astrophysics Data System (ADS)
Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Kotur, M.; Dzhioev, R. I.; Ryzhov, I. I.; Kozlov, G. G.; Zapasskii, V. S.; Lemaître, A.; Kavokin, K. V.
2017-03-01
Nuclear spin relaxation is studied in n -GaAs thick layers and microcavity samples with different electron densities. We reveal that both in metallic samples where electrons are free and mobile, and in insulating samples where electrons are localized, nuclear spin relaxation is strongly enhanced at low magnetic fields. The origin of this effect could reside in the quadrupole interaction between nuclei and fluctuating electron charges, that has been proposed to govern nuclear spin dynamics at low magnetic fields in the insulating samples. The characteristic values of these magnetic fields are given by dipole-dipole interaction between nuclei in bulk samples, and are greatly enhanced in microcavities, presumably due to additional strain, inherent to microstructures and nanostructures.
Nuclear-Spin-Induced Circular Dichroism in the Infrared Region for Liquids.
Chen, Fang; Yao, Guo-hua; Zhang, Zhen-lin; Liu, Fan-chen; Chen, Dong-ming
2015-06-22
Recently, the nuclear-spin-induced optical rotation (NSOR) and circular dichroism (NSCD) for liquids were discovered and extensively studied and developed. However, so far, nuclear-spin-induced magnetic circular dichroism in the IR region (IR-NSCD) has not been explored, even though all polyatomic molecules exhibit extensive IR spectra. Herein, IR-NSCD is proposed and discussed theoretically. The results indicate that in favorable conditions the IR-NSCD angle may be much larger than the NSOR angle in the UV/Vis region due to a vibrational resonance effect and can be measurable by using the NSOR experiment scheme. IR-NSCD can automatically combine and give NMR spectra and IRCD spectra of the nuclear spin prepolarized samples in liquids, which, in principle, could be developed to become a unique, novel analytical tool.
Coherent manipulation of non-thermal spin order in optical nuclear polarization experiments.
Buntkowsky, Gerd; Ivanov, Konstantin L; Zimmermann, Herbert; Vieth, Hans-Martin
2017-03-21
Time resolved measurements of Optical Nuclear Polarization (ONP) have been performed on hyperpolarized triplet states in molecular crystals created by light excitation. Transfer of the initial electron polarization to nuclear spins has been studied in the presence of radiofrequency excitation; the experiments have been performed with different pulse sequences using different doped molecular systems. The experimental results clearly demonstrate the dominant role of coherent mechanisms of spin order transfer, which manifest themselves in well pronounced oscillations. These oscillations are of two types, precessions and nutations, having characteristic frequencies, which are the same for the different molecular systems and the pulse sequences applied. Hence, precessions and nutations constitute a general feature of polarization transfer in ONP experiments. In general, coherent manipulation of spin order transfer creates a powerful resource for improving the performance of the ONP method, which paves the way to strong signal enhancement in nuclear magnetic resonance.
Universal long-time behavior of nuclear spin decays in a solid.
Morgan, S W; Fine, B V; Saam, B
2008-08-08
Magnetic resonance studies of nuclear spins in solids are exceptionally well suited to probe the limits of statistical physics. We report experimental results indicating that isolated macroscopic systems of interacting nuclear spins possess the following fundamental property: spin decays that start from different initial configurations quickly evolve towards the same long-time behavior. This long-time behavior is characterized by the shortest ballistic microscopic time scale of the system and therefore falls outside of the validity range for conventional approximations of statistical physics. We find that the nuclear free-induction decay and different solid echoes in hyperpolarized solid xenon all exhibit sinusoidally modulated exponential long-time behavior characterized by identical time constants. This universality was previously predicted on the basis of analogy with resonances in classical chaotic systems.
Spin supercurrent and phase-tunable triplet Cooper pairs via magnetic insulators
NASA Astrophysics Data System (ADS)
Gomperud, Ingvild; Linder, Jacob
2015-07-01
We demonstrate theoretically that a dissipationless spin current can flow a long distance through a diffusive normal metal by using superconductors interfaced with magnetic insulators. The magnitude of this spin supercurrent is controlled via the magnetization orientation of the magnetic insulators. The spin supercurrent obtained in this way is conserved in the normal metal just like the charge current and interestingly has a term that is independent of the superconducting phase difference. The quantum state of the system can be switched between 0 and π by reversing the insulators from a parallel to antiparallel configuration with an external field. We show that the spin current is carried through the normal metal by superconducting triplet (odd-frequency) correlations and that the superconducting phase difference can be used to enhance these, leaving clear spectroscopic fingerprints in the density of states.
Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2016-11-01
In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high- T c superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T-x phase diagram correlates well with the available experimental data for cuprate HTSCs.
NASA Astrophysics Data System (ADS)
Hansen, Andreas; Liakos, Dimitrios G.; Neese, Frank
2011-12-01
A production level implementation of the high-spin open-shell (spin unrestricted) single reference coupled pair, quadratic configuration interaction and coupled cluster methods with up to doubly excited determinants in the framework of the local pair natural orbital (LPNO) concept is reported. This work is an extension of the closed-shell LPNO methods developed earlier [F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009), 10.1063/1.3086717; F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The internal space is spanned by localized orbitals, while the external space for each electron pair is represented by a truncated PNO expansion. The laborious integral transformation associated with the large number of PNOs becomes feasible through the extensive use of density fitting (resolution of the identity (RI)) techniques. Technical complications arising for the open-shell case and the use of quasi-restricted orbitals for the construction of the reference determinant are discussed in detail. As in the closed-shell case, only three cutoff parameters control the average number of PNOs per electron pair, the size of the significant pair list, and the number of contributing auxiliary basis functions per PNO. The chosen threshold default values ensure robustness and the results of the parent canonical methods are reproduced to high accuracy. Comprehensive numerical tests on absolute and relative energies as well as timings consistently show that the outstanding performance of the LPNO methods carries over to the open-shell case with minor modifications. Finally, hyperfine couplings calculated with the variational LPNO-CEPA/1 method, for which a well-defined expectation value type density exists, indicate the great potential of the LPNO approach for the efficient calculation of molecular properties.
Nuclear inelastic scattering study of a dinuclear iron(II) complex showing a direct spin transition
NASA Astrophysics Data System (ADS)
Wolny, J. A.; Garcia, Y.; Faus, I.; Rackwitz, S.; Schlage, K.; Wille, H.-C.; Schünemann, V.
2016-12-01
The results of the nuclear inelastic scattering (NIS)/nuclear resonance vibrational spectroscopy (NRVS) for the powder spectra of dimeric [Fe 2 L 5(NCS) 4] (L = N-salicylidene-4-amino-1,2,4-triazole) complex are presented. This system is spin crossover (SCO) material tagged with a fluorophore that can sense or "feel" the SCO signal ripping through the molecular network and thereby providing an opportunity to register the SCO transition. The spectra have been measured for the low-spin and high-spin phases of the complex. The high-spin isomer reveals one broad band above 200 cm -1, while the low-spin one displays two intense bands in the range from 390 to 430 cm -1, accompanied by a number of weaker bands below this area and one at ca. 490 cm -1. A normal coordinate analysis based on density functional calculations yields the assignment of the spin marker bands to particular molecular modes. In addition the vibrational contribution to the spin transition has been estimated
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2013-01-07
Dynamic nuclear polarization is a method which allows for a dramatic increase of the NMR signals due to polarization transfer between electrons and their neighboring nuclei, via microwave irradiation. These experiments have become popular in recent years due to the ability to create hyper-polarized chemically and biologically relevant molecules, in frozen glass forming mixtures containing free radicals. Three mechanisms have been proposed for the polarization transfer between electrons and their surrounding nuclei in such non-conducting samples: the solid effect and cross effect mechanisms, which are based on quantum mechanics and relaxation on small spin systems, and thermal mixing, which originates from the thermodynamic macroscopic notion of spin temperature. We have recently introduced a spin model, which is based on the density matrix formalism and includes relaxation, and applied it to study the solid effect and cross effect mechanisms on small spin systems. In this publication we use the same model to describe the thermal mixing mechanism, and the creation of spin temperature. This is obtained without relying on the spin temperature formalism. Simulations of small model systems are used on systems with homogeneously and inhomogeneously broadened EPR lines. For the case of a homogeneously broadened line we show that the nuclear enhancement results from the thermal mixing and solid effect mechanisms, and that spin temperatures are created in the system. In the inhomogeneous case the enhancements are attributed to the solid effect and cross effect mechanisms, but not thermal mixing.
NASA Astrophysics Data System (ADS)
Mamin, H. J.; Budakian, R.; Chui, B. W.; Rugar, D.
2005-07-01
We have detected and manipulated the naturally occurring N statistical polarization in nuclear spin ensembles using magnetic resonance force microscopy. Using protocols previously developed for detecting single electron spins, we have measured signals from ensembles of nuclear spins in a volume of roughly (150nm)3 with a sensitivity of roughly 2000 net spins in a 2.5h averaging window. Three systems have been studied, F19 nuclei in CaF2 , and H1 nuclei (protons) in both polymethylmethacrylate and collagen, a naturally occurring protein. By detecting the statistical polarization, we not only can work with relatively small ensembles, but we eliminate any need to wait a longitudinal relaxation time T1 to polarize the spins. We have also made use of the fact that the statistical polarization, which can be considered a form of spin noise, has a finite correlation time. A method similar to one previously proposed by Carlson [Bull. Am. Phys. Soc. 44, 541 (1999)] has been used to suppress the effect of the statistical uncertainty and extract meaningful information from time-averaged measurements. By implementing this method, we have successfully made nutation and transverse spin relaxation time measurements in CaF2 at low temperatures.
Enol tautomers of Watson-Crick base pair models are metastable because of nuclear quantum effects.
Pérez, Alejandro; Tuckerman, Mark E; Hjalmarson, Harold P; von Lilienfeld, O Anatole
2010-08-25
Intermolecular enol tautomers of Watson-Crick base pairs could emerge spontaneously via interbase double proton transfer. It has been hypothesized that their formation could be facilitated by thermal fluctuations and proton tunneling, and possibly be relevant to DNA damage. Theoretical and computational studies, assuming classical nuclei, have confirmed the dynamic stability of these rare tautomers. However, by accounting for nuclear quantum effects explicitly through Car-Parrinello path integral molecular dynamics calculations, we find the tautomeric enol form to be dynamically metastable, with lifetimes too insignificant to be implicated in DNA damage.
Controlling the Excited-State Dynamics of Nuclear Spin Isomers Using the Dynamic Stark Effect.
Waldl, Maria; Oppel, Markus; González, Leticia
2016-07-14
Stark control of chemical reactions uses intense laser pulses to distort the potential energy surfaces of a molecule, thus opening new chemical pathways. We use the concept of Stark shifts to convert a local minimum into a local maximum of the potential energy surface, triggering constructive and destructive wave-packet interferences, which then induce different dynamics on nuclear spin isomers in the electronically excited state of a quinodimethane derivative. Model quantum-dynamical simulations on reduced dimensionality using optimized ultrashort laser pulses demonstrate a difference of the excited-state dynamics of two sets of nuclear spin isomers, which ultimately can be used to discriminate between these isomers.
Nuclear-spin-independent short-range three-body physics in ultracold atoms.
Gross, Noam; Shotan, Zav; Kokkelmans, Servaas; Khaykovich, Lev
2010-09-03
We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold 7Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross, Phys. Rev. Lett. 103, 163202 (2009)]. We extend the previously reported universality in three-body recombination loss across a Feshbach resonance to the absolute ground state. We show that the positions and widths of recombination minima and Efimov resonances are identical for both states which indicates that the short-range physics is nuclear-spin independent.
NASA Astrophysics Data System (ADS)
Haisch, Ulrich; Pani, Priscilla; Polesello, Giacomo
2017-02-01
In the framework of spin-0 s-channel simplified models, we explore the possibility of assessing the structure of dark matter interactions through the associate production of dark matter and toverline{t} pairs. To this purpose, final states with two leptons are considered and the kinematic properties of the dilepton system is studied. We develop a realistic analysis strategy and provide a detailed evaluation of the achievable sensitivity for the dark matter signal assuming integrated luminosities of 300 fb-1 and 3 ab-1 at the 14 TeV LHC. Furthermore, upper limits on the mediator masses for which the two different CP hypotheses can be distinguished are derived. The obtained limits on the signal strengths are finally translated into constraints on the parameter space of two spin-0 simplified models including a scenario with an extended Higgs sector.
Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance.
Siaw, Ting Ann; Fehr, Matthias; Lund, Alicia; Latimer, Allegra; Walker, Shamon A; Edwards, Devin T; Han, Song-I
2014-09-21
For the broadest dissemination of solid-state dynamic nuclear polarization (ssDNP) enhanced NMR as a material characterization tool, the ability to employ generic mono-nitroxide radicals as spin probes is critical. A better understanding of the factors contributing to ssDNP efficiency is needed to rationally optimize the experimental condition for the practically accessible spin probes at hand. This study seeks to advance the mechanistic understanding of ssDNP by examining the effect of electron spin dynamics on ssDNP performance at liquid helium temperatures (4-40 K). The key observation is that bi-radicals and mono-radicals can generate comparable nuclear spin polarization at 4 K and 7 T, which is in contrast to the observation for ssDNP at liquid nitrogen temperatures (80-150 K) that finds bi-radicals to clearly outperform mono-radicals. To rationalize this observation, we analyze the change in the DNP-induced nuclear spin polarization (Pn) and the characteristic ssDNP signal buildup time as a function of electron spin relaxation rates that are modulated by the mono- and bi-radical spin concentration. Changes in Pn are consistent with a systematic variation in the product of the electron spin-lattice relaxation time and the electron spin flip-flop rate that constitutes an integral saturation factor of an inhomogeneously broadened EPR spectrum. We show that the comparable Pn achieved with both radical species can be reconciled with a comparable integral EPR saturation factor. Surprisingly, the largest Pn is observed at an intermediate spin concentration for both mono- and bi-radicals. At the highest radical concentration, the stronger inter-electron spin dipolar coupling favors ssDNP, while oversaturation diminishes Pn, as experimentally verified by the observation of a maximum Pn at an intermediate, not the maximum, microwave (μw) power. At the maximum μw power, oversaturation reduces the electron spin population differential that must be upheld between
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2011-02-21
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP
Fujiwara, Naoki; Môri, Nobuo; Uwatoko, Yoshiya; Matsumoto, Takehiko; Motoyama, Naoki; Uchida, Shinichi
2003-04-04
Pressure-induced superconductivity in a spin-ladder cuprate Sr2Ca12Cu24O41 has not been studied on a microscopic level thus far although the superconductivity was already discovered in 1996. We have improved the high-pressure technique using a large high-quality crystal, and succeeded in studying the superconductivity using 63Cu nuclear magnetic resonance. We found that the anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses an s-wave-like character in the meaning that a finite gap exists in the quasiparticle excitation: At a pressure of 3.5 GPa, we observed two excitation modes in the normal state from the relaxation rate T-11. One gives rise to an activation-type component in T-11, and the other T-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.
Coupled nuclear spin relaxation and internal rotations in magnesium fluosilicate hexahydrate.
NASA Technical Reports Server (NTRS)
Utton, D. B.; Tsang, T.
1972-01-01
Both proton and fluorine nuclear spin-lattice relaxations have been studied by the 180- to 90-deg pulse method in magnesium fluosilicate hexahydrate at 25 and 13 MHz over the temperature range from 170 to 350 K. Observed nonexponential behavior of the nuclear magnetic relaxation is explained by internal rotations of the doubly charged negative fluosilicate ions and doubly charged positive magnesium hexahydrate ions.
The nuclear spin-isospin response to quasifree nucleon scattering
Taddeucci, T.N.
1995-12-31
The Neutron-Time-of-Flight (NTOF) facility at LAMPF has been used to measure complete sets of polarization-transfer coefficients for quasifree ({rvec p},{rvec n}) scattering from {sup 2}H, {sup 12}C, and {sup 40}Ca at 494 MeV and scattering angles of 12.5{degrees}, 18{degrees}, and 27{degrees} (q = 1.2, 1.7, 2.5 fm{sup {minus}1}). These measurements yield separated transverse ({sigma} {times} q) and longitudinal ({sigma}{center_dot}q) isovector spin responses. Comparison of the separated responses to calculations and to electron-scattering responses reveals a strong enhancement in the spin transverse channel. This excess transverse strength masks the effect of pionic correlations in the response ratio.
Li, Yan; Sinitsyn, N; Smith, D L; Reuter, D; Wieck, A D; Yakovlev, D R; Bayer, M; Crooker, S A
2012-05-04
The problem of how single central spins interact with a nuclear spin bath is essential for understanding decoherence and relaxation in many quantum systems, yet is highly nontrivial owing to the many-body couplings involved. Different models yield widely varying time scales and dynamical responses (exponential, power-law, gaussian, etc.). Here we detect the small random fluctuations of central spins in thermal equilibrium [holes in singly charged (In,Ga)As quantum dots] to reveal the time scales and functional form of bath-induced spin relaxation. This spin noise indicates long (400 ns) spin correlation times at a zero magnetic field that increase to ∼5 μs as dominant hole-nuclear relaxation channels are suppressed with small (100 G) applied fields. Concomitantly, the noise line shape evolves from Lorentzian to power law, indicating a crossover from exponential to slow [∼1/log(t)] dynamics.
Nuclear Spin Relaxation Characteristic of Submonolayer He Films in Nanochannels
NASA Astrophysics Data System (ADS)
Matsushita, Taku; Kawai, Ryosuke; Kuze, Atsushi; Hieda, Mitsunori; Wada, Nobuo
2014-04-01
In order to obtain information on dynamics of helium films in the nondegenerate fluid region, we have performed a pulsed-NMR experiment at 3.29 MHz on He films adsorbed in straight 2.4 nm channels of FSM silicates down to 0.54 K. In general, the spin-lattice and spin-spin relaxation times and were explained in terms of the two-dimensional Bloembergen-Purcell-Pound model for dipolar relaxation. Temperature dependences of in submonolayer He films show a minimum, indicating that the dipolar-field correlation time is about s. The temperature of the minimum monotonically lowers with increasing coverage, suggesting that He adatoms become more mobile at higher coverages. The low-dimensional property of He adatoms is observed as the separation of and above where . On the other hand, several features specific to films in the nanochannel geometry were also found. Especially, the temperature dependence of becomes very small just below and shows a shoulder at lower temperatures. This anomaly has not been observed in He adsorbed in wider pores or on flat surfaces, so that it is considered to be characteristic of He films confined in narrow channels with a diameter of a few nm.
Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars.
Chakrabarty, Deepto; Morgan, Edward H; Muno, Michael P; Galloway, Duncan K; Wijnands, Rudy; Van Der Klis, Michiel; Markwardt, Craig B
2003-07-03
Millisecond pulsars are neutron stars that are thought to have been spun-up by mass accretion from a stellar companion. It is not known whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many neutron stars that are accreting mass from a companion star exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond-period brightness oscillations during bursts from ten neutron stars (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting neutron stars, corroborating earlier evidence. The distribution of spin frequencies of the 11 nuclear-powered pulsars cuts off well below the breakup frequency for most neutron-star models, supporting theoretical predictions that gravitational radiation losses can limit accretion torques in spinning up millisecond pulsars.
NASA Astrophysics Data System (ADS)
Vincent, Sebastien J. F.; Zwahlen, Catherine; Post, Carol Beth; Burgner, John W.; Bodenhausen, Geoffrey
1997-04-01
We have reinvestigated the conformation of NAD+ bound to dogfish lactate dehydrogenase (LDH) by using an NMR experiment that allows one to exploit nuclear Overhauser effects to determine internuclear distances between pairs of protons, without perturbation of spin-diffusion effects from other protons belonging either to the cofactor or to the binding pocket of the enzyme. The analysis indicates that the structure of bound NAD+ is in accord with the conformation determined in the solid state by x-ray diffraction for the adenosine moiety, but deviates significantly from that of the nicotinamide. The NMR data indicate conformational averaging about the glycosidic bond of the nicotinamide nucleotide. In view of the strict stereospecificity of catalysis by LDH and the conformational averaging of bound NAD+ that we infer from solution-state NMR, we suggest that LDH binds the cofactor in both syn and anti conformations, but that binding interactions in the syn conformation are not catalytically productive.
NASA Astrophysics Data System (ADS)
Nilsson, T.; Kowalewski, J.
2000-10-01
The slow-motion theory of nuclear spin relaxation in paramagnetic low-symmetry complexes is generalized to comprise arbitrary values of S. We describe the effects of rhombic symmetry in the static zero-field splitting (ZFS) and allow the principal axis system of the static ZFS tensor to deviate from the molecule-fixed frame of the nuclear-electron dipole-dipole tensor. We show nuclear magnetic relaxation dispersion (NMRD) profiles for different illustrative cases, ranging from within the Redfield limit into the slow-motion regime with respect to the electron spin dynamics. We focus on S = 3/2 and compare the effects of symmetry-breaking properties on the paramagnetic relaxation enhancement (PRE) in this case with that of S = 1, which we have treated in a previous paper. We also discuss cases of S = 2, 5/2, 3, and 7/2. One of the main objectives of this investigation, together with the previous papers, is to provide a set of standard calculations using the general slow-motion theory, against which simplified models may be tested.
Nuclear spin polarization of solid deuterium-tritium
Souers, P.C.; Fearon, E.M.; Mapoles, E.R.; Gaines, J.R.; Sater, J.D.; Fedders, P.A.
1985-01-01
It appears that parallel alignment of deuteron and triton magnetic moments increases the cross section of the nuclear reaction T(d,n) He/sup 4/ by 50%, thereby promising a laser driver of perhaps half the original energy. Both ''brute-force'' and dynamic nuclear polarization are considered, and the many potential problems of the latter are considered. High nuclear polarization by the dynamic technique requires a small nucleus-to-unpaired electron ratio, a long longitudinal nuclear relaxation time and a short longitudinal electron relaxation time. Normal D-T is shown to be inadequate, and enriched and possibly very pure molecular DT will be required. The key variable is the nuclear relaxation time, which can either depend on the interaction with rotationally excited impurity molecules or on paramagnetic defects formed by the tritium radiation. Radiation-induced DT decomposition and rotational catalysis will combat one another to affect the DT purity. The expected atom density and fractionation effects are considered. There exists one frequency at which both D and T atoms can be pumped.
Nuclear spin polarization of solid deuterium-tritium. Revision 1
Souers, P.C.; Fearon, E.M.; Mapoles, E.R.; Gaines, J.R.; Sater, J.D.; Fedders, P.A.
1985-01-01
It appears that parallel alignment of deuteron and triton magnetic moments increases the cross section of the nuclear reaction T(d,n) He/sup 4/ by 50%, thereby promising a laser driver of perhaps half the original energy. Both ''brute-force'' and dynamic nuclear polarization are considered, and the many potential problems of the latter are considered. High nuclear polarization by the dynamic technique requires a small nucleus-to-unpaired electron ratio, a long longitudinal nuclear relaxation time and a short longitudinal electron relaxation time. Normal D-T is shown to be inadequate, and enriched and possibly very pure molecular DT will be required. The key variable is the nuclear relaxation time, which can either depend on the interaction with rotationally excited impurity molecules or on paramagnetic defects formed by the tritium radiation. Radiation-induced DT decomposition and rotational catalysis will combat one another to affect the DT purity. The expected atom density and fractionation effects are considered. There exists one frequency at which both D and T atoms can be pumped.
Relevance of electron spin dissipative processes to dynamic nuclear polarization via thermal mixing.
Serra, Sonia Colombo; Filibian, Marta; Carretta, Pietro; Rosso, Alberto; Tedoldi, Fabio
2014-01-14
The available theoretical approaches aiming at describing Dynamic Nuclear spin Polarization (DNP) in solutions containing molecules of biomedical interest and paramagnetic centers are not able to model the behaviour observed upon varying the concentration of trityl radicals or the polarization enhancement caused by moderate addition of gadolinium complexes. In this manuscript, we first show experimentally that the nuclear steady state polarization reached in solutions of pyruvic acid with 15 mM trityl radicals is substantially independent on the average internuclear distance. This evidences a leading role of electron (over nuclear) spin relaxation processes in determining the ultimate performances of DNP. Accordingly, we have devised a variant of the Thermal Mixing model for inhomogenously broadened electron resonance lines which includes a relaxation term describing the exchange of magnetic anisotropy energy of the electron spin system with the lattice. Thanks to this additional term, the dependence of the nuclear polarization on the electron concentration can be properly accounted for. Moreover, the model predicts a strong increase of the final polarization upon shortening the electron spin-lattice relaxation time, providing a possible explanation for the effect of gadolinium doping.
Compilation of directly measured nuclear spins of ground states and long-lived isomers
MacDonald, Allison; Karamy, Babak; Setoodehnia, Kiana; Singh, Balraj
2013-02-15
A compilation of the nuclear spins of ground and isomeric states measured by direct methods is presented. The first compilation of direct measurements of nuclear spins and moments was published in 1976 (G. H. Fuller, J. Phys. Chem. Ref. Data 5, 835, (1976)) with literature covered up to 1974. To our knowledge, the present work is the first such compilation since then. It is anticipated that the area of direct spin measurement will continue to expand using the state-of-the-art radioactive ion-beam and laser techniques. Literature cutoff date for the present compilation is February 2013. It is intended that the present compilation will be kept updated in a timely manner.
Nuclear Spin Dependent Chemistry of the Trihydrogen Cation in Diffuse Interstellar Clouds
NASA Astrophysics Data System (ADS)
Crabtree, Kyle
2015-05-01
The trihydrogen cation, H3+,long thought to be the species responsible for initiating ion-molecule chemistry in the interstellar medium, was first observed in interstellar clouds twenty years ago. Since its detection, this cation has been used to infer temperatures, densities, cloud sizes, and the local cosmic ray ionization rate. However, in diffuse molecular clouds the excitation temperature of its two nuclear spin modifications, ortho (I = 3 / 2) and para-H3+(I = 1 / 2) is found to differ markedly from the cloud kinetic temperature inferred from the spin modifications of molecular hydrogen (H2) in the same environment. A steady state analysis of the chemical kinetics of ortho and para-H3+suggests that the interplay of thermalizing collisions with H2 and nuclear spin dependent dissociative recombination with electrons may result in a nonthermal excitation temperature. Each of these processes is complex. Collisions between H3+and H2 must obey selection rules based on conservation of nuclear spin angular momentum, and the allowed spin conversion reactions, which proceed through the fluxional (H5+)* intermediate, each have different statistical weights and energetic requirements. Meanwhile, theoretical and experimental studies of H3+electron recombination carried out over the past 40 years have yielded rates that span 4 orders of magnitude in range. We will present experimental measurements of the nuclear spin dependence of the reactions of H3+with H2 and with electrons, as well as astronomical observations of H3+in diffuse molecular clouds and time-dependent chemical modeling of these environments. Astrochemical models incorporating the latest experimental data still do not satisfactorily explain the observed excitation temperature in diffuse molecular clouds, and point to the need for state-selective measurements of the H3+electron recombination rate.
Meng, Hao; Wu, Jiansheng; Wu, Xiuqiang; Ren, Mengyuan; Ren, Yajie
2016-01-01
The long-range spin-triplet supercurrent transport is an interesting phenomenon in the superconductor/ferromagnet () heterostructure containing noncollinear magnetic domains. Here we study the long-range superharmonic Josephson current in asymmetric junctions. It is demonstrated that this current is induced by spin-triplet pairs − or + in the thick layer. The magnetic rotation of the particularly thin layer will not only modulate the amplitude of the superharmonic current but also realise the conversion between − and + . Moreover, the critical current shows an oscillatory dependence on thickness and exchange field in the layer. These effect can be used for engineering cryoelectronic devices manipulating the superharmonic current. In contrast, the critical current declines monotonically with increasing exchange field of the layer, and if the layer is converted into half-metal, the long-range supercurrent is prohibited but still exists within the entire region. This phenomenon contradicts the conventional wisdom and indicates the occurrence of spin and charge separation in present junction, which could lead to useful spintronics devices. PMID:26892755
Direct Observation of a Nuclear Spin Excitation in Ho2Ti2O7
Ehlers, Georg; Mamontov, Eugene; Zamponi, Michaela M
2009-01-01
A single nondispersive excitation is observed by means of neutron backscattering, at E{sub 0} = 26.3 {micro}eV in the spin ice Ho{sub 2}Ti{sub 2}O{sub 7} but not in the isotopically enriched {sup 162}Dy{sub 2}Ti{sub 2}O{sub 7} analogue. The intensity of this excitation is rather small, {approx}< 0.2% of the elastic intensity. It is clearly observed below 80 K but resolution limited only below {approx}65 K. The application of a magnetic field up to {mu}{sub 0}H = 4.5 T, at 1.6 K, has no measurable effect on the energy or intensity. This nuclear excitation is believed to perturb the electronic, Ising spin system resulting in the persistent spin dynamics observed in spin ice compounds.
Nuclear orientation of radon isotopes by spin-exchange optical pumping
Kitano, M.; Calaprice, F.P.; Pitt, M.L.; Clayhold, J.; Happer, W.; Kadar-Kallen, M.; Musolf, M.; Ulm, G.; Wendt, K.; Chupp, T.
1988-05-23
This paper reports the first demonstration of nuclear orientation of radon atoms. The method employed was spin exchange with potassium atoms polarized by optical pumping. The radon isotopes were produced at the ISOLDE isotope separator of CERN. The nuclear alignment of /sup 209/Rn and /sup 223/Rn has been measured by observation of ..gamma..-ray anisotropies and the magnetic dipole moment for /sup 209/Rn has been measured by the nuclear-magnetic-resonance method to be chemically bond..mu..chemically bond = 0.838 81(39)..mu../sub N/.
Coherent transfer of nuclear spin polarization in field-cycling NMR experiments
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Vieth, Hans-Martin
2013-12-28
Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non-adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization.
Coherent transfer of nuclear spin polarization in field-cycling NMR experiments.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2013-12-28
Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non-adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization.
de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J; Jeschke, Gunnar; Eckert, Hellmut
2016-01-01
Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine
de Oliveira, Marcos; Knitsch, Robert; Sajid, Muhammad; Stute, Annika; Elmer, Lisa-Maria; Kehr, Gerald; Erker, Gerhard; Magon, Claudio J.; Jeschke, Gunnar; Eckert, Hellmut
2016-01-01
Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine
An algorithm to analyze PELDOR data of rigid spin label pairs.
Marko, Andriy; Prisner, Thomas F
2013-01-14
Pulsed Electron-electron Double Resonance (PELDOR) is a method frequently used to determine the distances between paramagnetic centers in biomacromolecules on the nanometer scale. A standard algorithm for determination of distances from the experimental data assumes that all possible mutual orientations of the spin labels are equally probable. However, in many applications the mobility of the spin labels attached to large molecules can be significantly restricted. In order to determine the total PELDOR signal in this case, the individual contributions of each rigid biradical should be explicitly calculated for the given frequencies of the probe and pump pulses. The solution of the inverse problem of determination of the ensemble of molecular structures that fit the experimental PELDOR data acquired at multiple microwave frequencies and magnetic fields has proven to be a non-trivial task, especially, when no information about the molecular structure under study is available. In this work we present a fitting algorithm that reconstructs experimental data by searching for an optimal combination of presimulated PELDOR time traces for nitroxide biradicals with all relative orientations and with inter-spin distances in the experimentally accessible range. The generated library of PELDOR time traces has been employed to excellently fit experimental data containing orientation selection effects gathered on model biradical systems.
Quantum dynamical simulations for nuclear spin selective laser control of ortho- and para-fulvene.
Belz, S; Grohmann, T; Leibscher, M
2009-07-21
In the present paper we explore the prospects for laser control of the photoinduced nonadiabatic dynamics of para- and ortho-fulvene with the help of quantum dynamical simulations. Previous investigations [Bearpark et al., J. Am. Chem. Soc. 118, 5253 (1996); Alfalah et al., J. Chem. Phys. 130, 124318 (2009)] show that photoisomerization of fulvene is hindered by ultrafast radiationless decay through a conical intersection at planar configuration. Here, we demonstrate that photoisomerization can nevertheless be initiated by damping unfavorable nuclear vibrations with properly designed laser pulses. Moreover, we show that the resulting intramolecular torsion is nuclear spin selective. The selectivity of the photoexcitation with respect to the nuclear spin isomers can be further enhanced by applying an optimized sequence of two laser pulses.
Extraction of nuclear spin response functions from spin observables of nucleon quasifree scattering
Ichimura, M. ); Kawahigashi, K. )
1992-04-01
Extraction of spin-longitudinal and -transverse response functions from polarization transfer measurements of nucleon-nucleus quasifree scatterings is discussed. The method proposed by Carey {ital et} {ital al}. is reconsidered and more general formulas are presented. Spin-longitudinal and -transverse interactions are well defined in the nucleon-nucleon scattering {ital t} matrix in the nucleon-nucleon center-of-mass frame. However, observed data are given in the nucleon-nucleus laboratory frame and theoretical analysis based on the distorted-wave and plane-wave impulse approximations is carried out in the nucleon-nucleus center-of-mass system, in which the {ital t} matrix in a certain optimum frame of the nucleon-nucleon system is used. Careful consideration is paid for transformations among these reference frames relativistically.
Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.
Kutateladze, Andrei G; Mukhina, Olga A
2015-11-06
Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".
Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs
2016-01-01
Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654
Time-dependent pairing equations for seniority-one nuclear systems
Mirea, M.
2008-10-15
When the time-dependent Hartree-Fock-Bogoliubov intrinsic equations of motion are solved in the case of seniority-one nuclear systems, the unpaired nucleon remains on the same orbital. The blocking effect hinders the possibility to skip from one orbital to another. This unpleasant feature is by-passed with a new set of pairing time-dependent equations that allows the possibility that the unpaired nucleon changes its single-particle level. These equations generalize the time-dependent Hartree-Fock-Bogoliubov equations of motion by including the Landau-Zener effect. The derivation of these new equations is presented in detail. These equations are applied to the case of a superasymmetric fission process, that is, to explain the fine structure the {sup 14}C emission from {sup 233}Ra. In this context, a new version of the Woods-Saxon model extended for two-center potentials is used.
Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs.
Fang, Wei; Chen, Ji; Rossi, Mariana; Feng, Yexin; Li, Xin-Zheng; Michaelides, Angelos
2016-06-02
Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general.
Nuclear structure and high-spin states of 137Pr
NASA Astrophysics Data System (ADS)
Dragulescu, E.; Ivascu, M.; Petrache, C.; Popescu, D.; Semenescu, G.; Gurgu, I.; Ionescu-Bujor, M.; Iordachescu, A.; Pascovici, G.; Meyer, R. A.; Lopac, V.; Brant, S.; Paar, V.; Vorkapić, D.; Vretenar, D.
1992-10-01
Levels in 137Pr were populated in the 126Te( 14N, 3n) and 122Sn( 19F, 4n) reactions and the subsequent radiation was studied using in-beam γ-ray spectroscopy methods including γ-ray excitation-function, angular-distribution, γγ( t) coincidence and γ( t) measurements. A level scheme with new states up to spin {35}/{2} belonging to 137Pr is given. The lifetime of the {11}/{21} state at 563.4 keV has been determined as T {1}/{2} = 2.66±0.07 μ s. The calculation of low-lying levels in 137Pr performed in IBFM has been compared to experimental data.
Natural reference for nuclear high-spin states
Rowley, Neil; Ollier, James; Simpson, John
2009-08-15
We suggest two new representations of the data on rotational nuclei. The first is reference-free and the second arises from a natural reference related to the variable moment of inertia model parameters of the ground-state band of the system. As such, neither representation contains any free parameters. By defining a 'configuration spin' we show how a new ground-state band reference can be applied. Its use allows a complete description of the changes associated with the first, and higher, band crossings. We apply these new representations to discuss the nature of the first band crossing along even-even isotopic chains in the erbium and osmium isotopes and to odd-even nuclei in the vicinity of {sup 158}Er.
Spin-orbit decomposition of ab initio nuclear wave functions
NASA Astrophysics Data System (ADS)
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
NASA Astrophysics Data System (ADS)
Waeber, A. M.; Hopkinson, M.; Farrer, I.; Ritchie, D. A.; Nilsson, J.; Stevenson, R. M.; Bennett, A. J.; Shields, A. J.; Burkard, G.; Tartakovskii, A. I.; Skolnick, M. S.; Chekhovich, E. A.
2016-07-01
One of the key challenges in spectroscopy is the inhomogeneous broadening that masks the homogeneous spectral lineshape and the underlying coherent dynamics. Techniques such as four-wave mixing and spectral hole-burning are used in optical spectroscopy, and spin-echo in nuclear magnetic resonance (NMR). However, the high-power pulses used in spin-echo and other sequences often create spurious dynamics obscuring the subtle spin correlations important for quantum technologies. Here we develop NMR techniques to probe the correlation times of the fluctuations in a nuclear spin bath of individual quantum dots, using frequency-comb excitation, allowing for the homogeneous NMR lineshapes to be measured without high-power pulses. We find nuclear spin correlation times exceeding one second in self-assembled InGaAs quantum dots--four orders of magnitude longer than in strain-free III-V semiconductors. This observed freezing of the nuclear spin fluctuations suggests ways of designing quantum dot spin qubits with a well-understood, highly stable nuclear spin bath.
Spin Noise Detection of Nuclear Hyperpolarization at 1.2 K
Pöschko, Maria Theresia; Vuichoud, Basile; Milani, Jonas; Bornet, Aurélien; Bechmann, Matthias; Bodenhausen, Geoffrey; Jannin, Sami; Müller, Norbert
2015-01-01
We report proton spin noise spectra of a hyperpolarized solid sample of commonly used “DNP (dynamic nuclear polarization) juice” containing TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxide) and irradiated by a microwave field at a temperature of 1.2 K in a magnetic field of 6.7 T. The line shapes of the spin noise power spectra are sensitive to the variation of the microwave irradiation frequency and change from dip to bump, when the electron Larmor frequency is crossed, which is shown to be in good accordance with theory by simulations. Small but significant deviations from these predictions are observed, which can be related to spin noise and radiation damping phenomena that have been reported in thermally polarized systems. The non-linear dependence of the spin noise integral on nuclear polarization provides a means to monitor hyperpolarization semi-quantitatively without any perturbation of the spin system by radio frequency irradiation. PMID:26477605
Advances and applications of dynamic-angle spinning nuclear magnetic resonance
Baltisberger, Jay Harvey
1993-06-01
This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.
Rabi and Larmor nuclear quadrupole double resonance of spin-1 nuclei
NASA Astrophysics Data System (ADS)
Prescott, D. W.; Malone, M. W.; Douglass, S. P.; Sauer, K. L.
2012-12-01
We demonstrate the creation of two novel double-resonance conditions between spin-1 and spin-1/2 nuclei in a crystalline solid. Using a magnetic field oscillating at the spin-1/2 Larmor frequency, the nuclear quadrupole resonance (NQR) frequency is matched to the Rabi or Rabi plus Larmor frequency, as opposed to the Larmor frequency as is conventionally done. We derive expressions for the cross-polarization rate for all three conditions in terms of the relevant secular dipolar Hamiltonian, and demonstrate with these expressions how to measure the strength of the heterogenous dipolar coupling using only low magnetic fields. In addition, the combination of different resonance conditions permits the measurement of the spin-1/2 angular momentum vector using spin-1 NQR, opening up an alternate modality for the monitoring of low-field nuclear magnetic resonance. We use ammonium nitrate to explore these resonance conditions, and furthermore use the oscillating field to increase the signal-to-noise ratio per time by a factor of 3.5 for NQR detection of this substance.
NASA Astrophysics Data System (ADS)
Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.
Locally dense basis sets (
Anisotropic indirect nuclear spin-spin coupling in InP: 31P CP NMR study under slow MAS condition
NASA Astrophysics Data System (ADS)
Iijima, Takahiro; Hashi, Kenjiro; Goto, Atsushi; Shimizu, Tadashi; Ohki, Shinobu
2006-02-01
The indirect nuclear spin-spin interaction tensor between neighboring 113,115In- 31P spins in Fe-doped InP semiconductor has been studied by 31P NMR spectra measured using CP of 113In → 31P and 115In → 31P under slow MAS condition. The isotropic ( Jiso) and anisotropic ( Janiso = 2/3[ J∥ - J⊥]) parts of the indirect interaction tensor are obtained from the spectral simulation. The acceptable combinations of these values are found to be as follows: ( Jiso, Janiso) = (224 ± 5, 500 ± 100 Hz) or (-224 ± 5, 2100 ± 100 Hz). Although, the coupling constants estimated in this study are slightly different from previously reported values of ∣ Jiso∣ = 350 Hz, Janiso = 1298 Hz [M. Engelsberg, R.E. Norberg, Phys. Rev. B 5 (1972) 3395] and of ∣ Jiso∣ = 225 ± 10, Janiso = (813 ± 50) or (1733 ± 50) Hz [M. Tomaselli et al., Phys. Rev. B 58 (1998) 8627], all of these has the trend that Janiso is rather larger than Jiso.
Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond
NASA Astrophysics Data System (ADS)
Ajoy, Ashok; Bissbort, Ulf; Liu, Yixiang; Marseglia, Luca; Saha, Kasturi; Cappellaro, Paola
2015-05-01
Recent developments in materials fabrication and coherent control have brought quantum magnetometers based on electronic spin defects in diamond close to single nuclear spin sensitivity. These quantum sensors have the potential to be a revolutionary tool in proteomics, thus helping drug discovery: They can overcome some of the challenges plaguing other experimental techniques (x-ray and NMR) and allow single protein reconstruction in their natural conditions. While the sensitivity of diamond-based magnetometers approaches the single nuclear spin level, the outstanding challenge is to resolve contributions arising from distinct nuclear spins in a dense sample and use the acquired signal to reconstruct their positions. This talk describes a strategy to boost the spatial resolution of NV-based magnetic resonance imaging, by combining the use of a quantum memory intrinsic to the NV system with Hamiltonian engineering by coherent quantum control. The proposed strategy promises to make diamond-based quantum sensors an invaluable technology for bioimaging, as they could achieve the reconstruction of biomolecules local structure without the need to crystallize them, to synthesize large ensembles or to alter their natural environment.
Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid
Allen, Jesse J; Schneider, Yanika; Kail, Brian W; Luebke, David R; Nulwala, Hunaid; Damodaran, Krishnan
2013-04-11
Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.
NASA Astrophysics Data System (ADS)
Ma, Wen-Long; Liu, Ren-Bao
2016-08-01
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.
NASA Technical Reports Server (NTRS)
1974-01-01
The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.
Confinement Effects on the Nuclear Spin Isomer Conversion of H2O.
Turgeon, Pierre-Alexandre; Vermette, Jonathan; Alexandrowicz, Gil; Peperstraete, Yoann; Philippe, Laurent; Bertin, Mathieu; Fillion, Jean-Hugues; Michaut, Xavier; Ayotte, Patrick
2017-03-02
The mechanism for interconversion between the nuclear spin isomers (NSI) of H2O remains shrouded in uncertainties. The temperature dependence displayed by NSI interconversion rates for H2O isolated in an argon matrix provides evidence that confinement effects are responsible for the dramatic increase in their kinetics with respect to the gas phase, providing new pathways for o-H2O↔p-H2O conversion in endohedral compounds. This reveals intramolecular aspects of the interconversion mechanism which may improve methodologies for the separation and storage of NSI en route to applications ranging from magnetic resonance spectroscopy and imaging to interpretations of spin temperatures in the interstellar medium.
Magnetic equivalence of terminal nuclei in the azide anion broken by nuclear spin relaxation
NASA Astrophysics Data System (ADS)
Bernatowicz, P.; Szymański, S.
NMR spectra of water solution of sodium azide selectively 15N labelled in the central position were studied using an iterative least-squares method. In agreement with predictions based on Bloch-Wangsness-Redfield nuclear spin relaxation theory, it is demonstrated that quadrupolar relaxation of the magnetically equivalent terminal 14N (spin-1) nuclei in the azide anion renders the J coupling between these nuclei an observable quantity. In isotropic fluids, this seems to be the first experimental evidence of relaxation-broken magnetic equivalence symmetry.
Quantum teleportation in the spin-orbit variables of photon pairs
Khoury, A. Z.; Milman, P.
2011-06-15
We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down-conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2017-01-01
Using a quantum simulation approach, we investigate in the present work the spontaneous magnetic properties of two pairs of double-walled cylindrical nanotubes consisting of different spins. Our simulated magnetic and thermodynamic properties for each pair of them are precisely identical, exhibiting a fascinating property of the nature world and demonstrating the correctness of our simulation approach. The second pair of nanotubes are frustrated, two magnetic phases of distinct spin configurations appear in the low temperature region, but only the inner layer consisting of small spins is frustrated evidently, its magnetization is considerably suppressed in the high temperature phase. Moreover, the nanosystems exhibit typical Ising-like behavior due to the uniaxial anisotropy along the z-direction, and evident finite-size effects as well.
Spin-dependent structure functions in nuclear matter and the polarized EMC effect
I.C. Cloet; W. Bentz; A.W. Thomas
2005-04-01
An excellent description of both spin-independent and spin-dependent quark distributions and structure functions has been obtained with a modified Nambu-Jona-Lasinio model, which is free of unphysical thresholds for nucleon decay into quarks--hence incorporating an important aspect of confinement. We utilize this model to investigate nuclear medium modifications to structure functions, and find that we are readily able to reproduce both nuclear matter saturation and the experimental F{sub 2N}{sup A}/F{sub 2N} ratio, that is, the EMC effect. Applying this framework to determine g{sub 1p}{sup A}, we find that the ratio g{sub 1p}{sup A}/g{sub 1p} differs significantly from 1, with the quenching caused by the nuclear medium being about twice that of the spin-independent case. This represents an exciting result, which if confirmed experimentally, will reveal much about the quark structure of nuclear matter.
NASA Technical Reports Server (NTRS)
Derrickson, J. H.; Eby, P. B.; Moon, K. H.; Parnell, T. A.; King, D. T.; Gregory, J. C.; Takahashi, Y.; Ogata, T.
1995-01-01
Measurements of direct Coulomb electron-positron pair production have been made on the tracks of relativistic heavy ions in nuclear track emulsion. Tracks of 0(16) and S(32) at 200 GeV/nucleon were studied. The measured total cross sections and energy and emission angle distributions for the pair members are compared to theoretical predictions. The data are consistent with some recent calculations when knock-on electron contamination is accounted for.
Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex.
Fataftah, Majed S; Zadrozny, Joseph M; Coste, Scott C; Graham, Michael J; Rogers, Dylan M; Freedman, Danna E
2016-02-03
The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules.
High-pressure magic angle spinning nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi
2011-10-01
A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.
High-pressure magic angle spinning nuclear magnetic resonance.
Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi
2011-10-01
A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide.
High-pressure magic angle spinning nuclear magnetic resonance
Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi
2011-10-01
A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ^{13}C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg_{2}SiO_{4}) reacted with supercritical CO_{2} and H_{2}O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.
Zhivonitko, Vladimir V; Sorochkina, Kristina; Chernichenko, Konstantin; Kótai, Bianka; Földes, Tamás; Pápai, Imre; Telkki, Ville-Veikko; Repo, Timo; Koptyug, Igor
2016-10-12
The parahydrogen-induced polarization (PHIP) phenomenon, observed when parahydrogen is used in H2 addition processes, provides a means for substantial NMR signal enhancements and mechanistic studies of chemical reactions. Commonly, noble metal complexes are used for parahydrogen activation, whereas metal-free activation is rare. Herein, we report a series of unimolecular metal-free frustrated Lewis pairs based on an ansa-aminoborane (AAB) moiety in the context of PHIP. These molecules, which have a "molecular tweezers" structure, differ in their substituents at the boryl site (-H, -Ph, -o-iPr-Ph, and -Mes). PHIP effects were observed for all the AABs after exposing their solutions to parahydrogen in a wide temperature range, and experimental measurements of their kinetic and thermodynamic parameters were performed. A theoretical analysis of their nuclear spin polarization effects is presented, and the roles of chemical exchange, chemical equilibrium and spin dynamics are discussed in terms of the key dimensionless parameters. The analysis allowed us to formulate the prerequisites for achieving strong polarization effects with AAB molecules, which can be applied for further design of efficient metal-free tweezers-like molecules for PHIP. Mechanistic (chemical and physical) aspects of the observed effects are discussed in detail. In addition, we performed quantum chemical calculations, which confirmed that the J-coupling between the parahydrogen-originated protons in AAB-H2 molecules is mediated through dihydrogen bonding.
Lawler, Keith V; Parkhill, John A; Head-Gordon, Martin
2009-05-14
The use of spin-unrestriction with high-quality correlation theory, such as coupled-cluster (CC) methods, is a common practice necessary to obtain high-quality potential energy surfaces. While this typically is a useful approach, we find that in the unrestricted limit of ROHF fragments (the unrestricted in active pair orbitals) the CC equations are singular if only the strongly correlated electrons are considered. Unstable amplitudes which do not represent the physics of the problem are easily found and could be unwittingly accepted without inspection. We use stability analysis and the condition number of the CC doubles Jacobian matrix to examine the problem, and present results for several molecular systems with a variety of unrestricted cluster models. Finally a regularization of the CC equations is proposed, using a dynamic penalty function, which allows us to apply CC, and Lagrangian gradient formulas even in the singular limit.
NASA Astrophysics Data System (ADS)
Fasano, Y.; Maggio-Aprile, I.; Zhigadlo, N. D.; Katrych, S.; Karpinski, J.; Fischer, Ø.
2010-10-01
We probe the local quasiparticles density of states in micron-sized SmFeAsO1-xFx single crystals by means of scanning tunnelling spectroscopy. Spectral features resemble those of cuprates, particularly a dip-hump-like structure developed at energies larger than the gap that can be ascribed to the coupling of quasiparticles to a collective mode, quite likely a resonant spin mode. The energy of the collective mode revealed in our study decreases when the pairing strength increases. Our findings support spin-fluctuation-mediated pairing in pnictides.
Xue, Hai-Bin; Nie, Yi-Hang; Chen, Jingzhe; Ren, Wei
2015-03-15
We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot. - Highlights: • The effective nuclear-spin magnetic field gives rise to the off-diagonal elements of the reduced density matrix of single QD. • The off-diagonal elements of reduced density matrix of the QD have a significant impact on the high-order current cumulants. • The high-order current cumulants are sensitive to the orientation and magnitude of the effective nuclear-spin magnetic field. • The FCS can be used to detect the orientation and magnitude of the effective nuclear-spin magnetic field in a single QD.
Determination of the magnetic spin direction from the nuclear forward-scattering line intensities.
Callens, R; L'abbé, C; Meersschaut, J; Serdons, I; Sturhahn, W; Toellner, T S
2007-07-01
An expression is derived for the line intensities in a nuclear forward-scattering energy spectrum that is obtained via a Fourier transformation of the time dependence of the wavefield. The calculation takes into account the coherent properties of the nuclear forward-scattering process and the experimental limitations on the observable time window. It is shown that, for magnetic samples, the spin direction can be determined from the ratios between the different lines in the energy spectrum. The theory is complemented with experimental results on alpha-iron.
Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia
2014-10-28
Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.
Obaid, Rana; Kinzel, Daniel; Oppel, Markus; González, Leticia
2014-10-28
Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.
Corzilius, Björn
2016-10-21
Dynamic nuclear polarization (DNP) is a powerful method to enhance sensitivity especially of solid-state magic-angle spinning (MAS) NMR by up to several orders of magnitude. The increased interest both from a practical as well as theoretical viewpoint has spawned several fields of active research such as the development of new polarizing agents with improved or unique properties and description of the underlying DNP mechanisms such as solid effect (SE) and cross effect (CE). Even though a novel class of unique polarizing agents based on high-spin metal ions such as Gd(iii) and Mn(ii) has already been utilized for MAS DNP a theoretical description of the involved DNP mechanism is still incomplete. Here, we review several aspects of DNP-relevant electron-paramagnetic resonance (EPR) properties of the general class of these half-integer high-spin metal ions with isotropic Zeeman interaction but significant zero-field splitting (ZFS). While the SE can be relatively easily described similar to that of a S = 1/2 system and is assumed to be effective only for polarizing agents featuring a narrow central EPR transitions (i.e., mS = -1/2 → +1/2) with respect to the nuclear Larmor frequency, the CE between two high-spin ions requires a more detailed theoretical investigation due to a multitude of possible transitions and matching conditions. This is especially interesting in light of recent understanding of CE being induced by MAS-driven level anti-crossings (LACs) between dipolar-coupled electron spins. We discuss the requirements of such CE-enabling LACs to occur due to anisotropy of ZFS, the expected adiabaticity, and the resulting possibilities of high-spin metal ion pairs to act as polarizing agents for DNP. This theoretical description serves as a framework for a detailed experimental study published directly following this work.
Su, Yongchao; Andreas, Loren; Griffin, Robert G
2015-01-01
Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.
Diffusion-mediated nuclear spin phase decoherence in cylindrically porous materials
NASA Astrophysics Data System (ADS)
Knight, Michael J.; Kauppinen, Risto A.
2016-08-01
In NMR or MRI of complex materials, including biological tissues and porous materials, magnetic susceptibility differences within the material result in local magnetic field inhomogeneities, even if the applied magnetic field is homogeneous. Mobile nuclear spins move though the inhomogeneous field, by translational diffusion and other mechanisms, resulting in decoherence of nuclear spin phase more rapidly than transverse relaxation alone. The objective of this paper is to simulate this diffusion-mediated decoherence and demonstrate that it may substantially reduce coherence lifetimes of nuclear spin phase, in an anisotropic fashion. We do so using a model of cylindrical pores within an otherwise homogeneous material, and calculate the resulting magnetic field inhomogeneities. Our simulations show that diffusion-mediated decoherence in a system of parallel cylindrical pores is anisotropic, with coherence lifetime minimised when the array of cylindrical pores is perpendicular to B0. We also show that this anisotropy of coherence lifetime is reduced if the orientations of cylindrical pores are disordered within the system. In addition we characterise the dependence on B0, the magnetic susceptibility of the cylindrical pores relative to the surroundings, the diffusion coefficient and cylinder wall thickness. Our findings may aid in the interpretation of NMR and MRI relaxation data.
Nuclear spin singlet states as a contrast mechanism for NMR spectroscopy.
Devience, Stephen J; Walsworth, Ronald L; Rosen, Matthew S
2013-10-01
Nuclear magnetic resonance (NMR) spectra of complex chemical mixtures often contain unresolved or hidden spectral components, especially when strong background signals overlap weaker peaks. In this article we demonstrate a quantum filter utilizing nuclear spin singlet states, which allows undesired NMR spectral background to be removed and target spectral peaks to be uncovered. The quantum filter is implemented by creating a nuclear spin singlet state with spin quantum numbers j = 0, mz = 0 in a target molecule, applying a continuous RF field to both preserve the singlet state and saturate the magnetization of undesired molecules and then mapping the target molecule singlet state back into an NMR observable state so that its spectrum can be read out unambiguously. The preparation of the target singlet state can be carefully controlled with pulse sequence parameters, so that spectral contrast can be achieved between molecules with very similar structures. We name this NMR contrast mechanism 'Suppression of Undesired Chemicals using Contrast-Enhancing Singlet States' (SUCCESS) and we demonstrate it in vitro for three target molecules relevant to neuroscience: aspartate, threonine and glutamine.
A close nuclear black-hole pair in the spiral galaxy NGC 3393.
Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G
2011-08-31
The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution.
Electron spin-flip correlations due to nuclear dynamics in driven GaAs double dots
NASA Astrophysics Data System (ADS)
Pal, Arijeet; Nichol, John M.; Shulman, Michael D.; Harvey, Shannon P.; Umansky, Vladimir; Rashba, Emmanuel I.; Yacoby, Amir; Halperin, Bertrand I.
2017-01-01
We present experimental data and associated theory for correlations in a series of experiments involving repeated Landau-Zener sweeps through the crossing point of a singlet state and a spin-aligned triplet state in a GaAs double quantum dot containing two conduction electrons, which are loaded in the singlet state before each sweep, and the final spin is recorded after each sweep. The experiments reported here measure correlations on time scales from 4 μ s to 2 ms. When the magnetic field is aligned in a direction such that spin-orbit coupling cannot cause spin flips, the correlation spectrum has prominent peaks centered at zero frequency and at the differences of the Larmor frequencies of the nuclei, on top of a frequency-independent background. When the spin-orbit field is relevant, there are additional peaks, centered at the frequencies of the individual species. A theoretical model which neglects the effects of high-frequency charge noise correctly predicts the positions of the observed peaks, and gives a reasonably accurate prediction of the size of the frequency-independent background, but gives peak areas that are larger than the observed areas by a factor of 2 or more. The observed peak widths are roughly consistent with predictions based on nuclear dephasing times of the order of 60 μ s . However, there is extra weight at the lowest observed frequencies, which suggests the existence of residual correlations on the scale of 2 ms. We speculate on the source of these discrepancies.
Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Aucar, Gustavo A
2016-12-15
The broadly accepted procedure to obtain the experimental absolute scale of NMR magnetic shieldings, σ, is well-known for nonheavy atom-containing molecules. It was uncovered more than 40 years ago by the works of Ramsey and Flygare. They found a quite accurate relationship among σ and the nuclear spin-rotation constants. Its relativistic extension was very recently proposed, although it has an intrinsic weakness because a new SO-S two-component term needs to be considered. We show how to overcome this problem. We found that (νY(S) - νY(atom,S)) generalizes the SO-S term, where νY(S) = ⟨⟨[((r - rY) × α)/(|r - rY|(3))]; S((4))⟩⟩, r - rY is the electron position with respect to the position of nucleus Y, and S((4)) is the four-component total electron spin. When including this new term, one finds that the best of our relativistic Flygare-like models fits quite well with the results of the most accurate method available at the moment. We also show that the difference among the parallel component of σ(Xe) in XeF2 and σ(Xe) of the free atom is almost completely described by that new term.
Calculation of nuclear spin-spin couplings. VIII. Vicinal proton-proton coupling constants in ethane
NASA Astrophysics Data System (ADS)
Fukui, H.; Inomata, H.; Baba, T.; Miura, K.; Matsuda, H.
1995-10-01
Ab initio self-consistent-field (SCF) and electron correlation calculations have been carried out for the dihedral angle dependence of the vicinal proton-proton coupling constants, 3JHH, in ethane molecule. The four contributions to 3JHH, (JFC, JSD, JOP, and JOD) have been computed with the three different basis sets, [5s2p1d/2s1p], [5s3p1d/3s1p], and [7s4p2d/5s2p]. The Fermi contact (FC) contribution was largest and the spin-dipole (SD) contribution was smallest. The FC and orbital paramagnetic (OP) contributions showed large basis set dependence, but the SD and orbital diamagnetic (OD) contributions presented little basis set dependence. The calculated total SCF contribution to 3JHH was higher than the experimental coupling. Using the Møller-Plesset perturbation theory we have introduced electron correlation effects on the FC and OP terms. The correlation effects on the OP term was shown to be negligible. The second-order correlation in the FC term was very large and amounted to half of its SCF value in magnitude with opposite sign. However, the third-order correlation in the FC contribution was small. Unfortunately, the calculated 3JHH value including correlation corrections through third order was too small compared to the experimental one. The poor agreement between calculation and experiment is claimed to be due to higher than third-order correlations in the FC term.
Nuclear spin coherence properties of 151Eu3+ and 153Eu3+ in a Y2O3 transparent ceramic
NASA Astrophysics Data System (ADS)
Karlsson, J.; Kunkel, N.; Ikesue, A.; Ferrier, A.; Goldner, P.
2017-03-01
We have measured inhomogeneous linewidths and coherence times (T 2) of nuclear spin transitions in a Eu3+ :Y2O3 transparent ceramic by an all-optical spin echo technique. The nuclear spin echo decay curves showed a strong modulation which was attributed to interaction with Y nuclei in the host. The coherence time of the 29 MHz spin transition in 151Eu3+ was 16 ms in a small applied magnetic field. Temperature dependent measurements showed that the coherence time was constant up to 18 K and was limited by spin-lattice relaxation for higher temperatures. Nuclear spin echoes in 153Eu3+ gave much weaker signals than for the case of 151Eu3+ . The spin coherence time for the 73 MHz spin transition in 153Eu3+ was estimated to 14 ms in a small magnetic field. The study shows that the spin transitions of ceramic Eu3+ :Y2O3 have coherence properties comparable to the best rare-earth-doped materials available.
Speck, N A; Baltimore, D
1987-01-01
Binding sites for six distinct nuclear factors on the 75-base-pair repeat of the Moloney murine leukemia virus enhancer have been identified by an electrophoretic mobility shift assay combined with methylation interference. Three of these factors, found in WEHI 231 nuclear extracts, which we have named LVa, LVb, and LVc (for leukemia virus factors a, b, and c) have not been previously identified. Nuclear factors that bind to the conserved simian virus 40 corelike motif, the NF-1 motif, and the glucocorticoid response element were also detected. Testing of multiple cell lines showed that most factors appeared ubiquitous, except that the NF-1 binding factor was found neither in nuclear extracts from MEL cells nor in the embryonal carcinoma cell lines PCC4 and F9, and core-binding factor was relatively depleted from MEL and F9 nuclear extracts. Images PMID:3561410
NASA Astrophysics Data System (ADS)
Levin, P. P.; Kuzmin, V. A.
1990-01-01
The geminate recombination kinetics of the radical pairs produced by quenching of triplet benzophenone or 4-bromobenzophenone by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium dodecyl sulfate has been examined using the laser flash technique. Application of an external magnetic field results in the retardation of geminate recombination up to 20 times. The magnetic field dependences are considered in terms of a simple kinetic scheme, which includes the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms as well as intersystem recombination process due to the spin-orbit coupling in the contact states of a pair.
NASA Astrophysics Data System (ADS)
Böttger, Lars H.; Chumakov, Aleksandr I.; Matthias Grunert, C.; Gütlich, Philipp; Kusz, Joachim; Paulsen, Hauke; Ponkratz, Ulrich; Rusanov, Ventzislav; Trautwein, Alfred X.; Wolny, Juliusz A.
2006-09-01
Nuclear inelastic scattering (NIS) spectra of [Fe(ptz) 6](BF 4) 2 (ptz = 1- n-propyl-tetrazole) have been measured for five phases differing in spin state and crystallographic structure. Different spectral patterns have been found for the low-spin and high-spin phases and are described in terms of normal coordinate analysis of the complex molecule. For both low-spin and high-spin phases the conversion from ordered to disordered phase results in splitting of the observed NIS bands. Packing becomes visible in the NIS spectra via coupling of the Fe-N stretching vibrations with those of the terminal n-propyl groups. The DFT-based normal coordinate analysis also reveals the character of Raman markers.
Magliozzo, R S; Peisach, J
1993-08-24
Electron spin echo envelope modulation (ESEEM) spectroscopy and computer simulation of spectra has been used to evaluate the nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole nitrogen directly coordinated to iron in three low-spin heme complexes, myoglobin-azide, -cyanide, and -mercaptoethanol (MbN3, MbCN, and MbRS). The variability in the weak electron-nuclear coupling parameters reveals the electronic flexibility within the heme group that depends on properties of the exogenous ligands. For example, the isotropic component of the nitrogen nuclear hyperfine coupling ranges from 4.4 MHz for MbN3 to 2.2 MHz for both MbCN and MbRS. The weaker coupling in MbCN and MbRS is taken as evidence for delocalization of unpaired electron spin from iron into the exogenous anionic ligands. The value of e2Qq, the nuclear quadrupole coupling constant for the axial imidazole nitrogen in MbCN and MbRS, was 2.5 MHz but was significantly larger, 3.2 MHz, in MbN3. This large value is considered evidence for a weakened sigma bond between the proximal imidazole and ferric iron in this form, and for a feature contributing to the origin of the high spin-low spin equilibrium exhibited by MbN3 [Beetlestone, J., & George, P. (1964) Biochemistry 5, 707-714]. The ESEEM results have allowed a correlation to be made between the orientation of the g tensor axes, the orientation of the p-pi orbital of the proximal imidazole nitrogen, and sigma- and pi-bonding features of the axial ligands. Furthermore, the proximal imidazole is suggested to act as a pi-acceptor in low-spin heme complexes in order to support strong sigma electron donation from the lone pair orbital to iron. An evaluation of the nitrogen nuclear hyperfine coupling parameters for the porphyrin pyrrole sites in MbRS reveals a large inequivalence in isotropic components consistent with an orientation of rhombic axes (and g tensor axes) that eclipses the Fe-Npyrrole vector directions.
Kozlov, G. G.
2007-10-15
The model used to describe the spin dynamics in quantum dots after optical excitation is considered. Problems of the electron-spin polarization decay and the dependence of the steady-state polarization on magnetic field are solved on the basis of exact diagonalization of the model Hamiltonian. An important role of the nuclear state is shown and methods of its calculation for different regimes of optical excitation are proposed. The effect of spin echo generation after application of a {pi} pulse of a magnetic field is predicted for the system under consideration.
A NEW METHOD FOR EXTRACTING SPIN-DEPENDENT NEUTRON STRUCTURE FUNCTIONS FROM NUCLEAR DATA
Kahn, Y.F.; Melnitchouk, W.
2009-01-01
High-energy electrons are currently the best probes of the internal structure of nucleons (protons and neutrons). By collecting data on electrons scattering off light nuclei, such as deuterium and helium, one can extract structure functions (SFs), which encode information about the quarks that make up the nucleon. Spin-dependent SFs, which depend on the relative polarization of the electron beam and the target nucleus, encode quark spins. Proton SFs can be measured directly from electron-proton scattering, but those of the neutron must be extracted from proton data and deuterium or helium-3 data because free neutron targets do not exist. At present, there is no reliable method for accurately determining spin-dependent neutron SFs in the low-momentum-transfer regime, where nucleon resonances are prominent and the functions are not smooth. The focus of this study was to develop a new method for extracting spin-dependent neutron SFs from nuclear data. An approximate convolution formula for nuclear SFs reduces the problem to an integral equation, for which a recursive solution method was designed. The method was then applied to recent data from proton and deuterium scattering experiments to perform a preliminary extraction of spin-dependent neutron SFs in the resonance region. The extraction method was found to reliably converge for arbitrary test functions, and the validity of the extraction from data was verifi ed using a Bjorken integral, which relates integrals of SFs to a known quantity. This new information on neutron structure could be used to assess quark-hadron duality for the neutron, which requires detailed knowledge of SFs in all kinematic regimes.
NASA Astrophysics Data System (ADS)
Lee, Sanghyuk; Patyal, Baldev R.; Freed, Jack H.
1993-03-01
Nuclear modulation in electron-spin-echo spectroscopy is conventionally studied by one-dimensional electron-spin-echo envelope modulation (1D-ESEEM). Two-dimensional Fourier transform electron-spin resonance (2D-FTESR) studies of nuclear modulation have the promise of enhancing the spectral resolution and clarifying the key details of the relaxation processes. We present a 2D-FTESR study on single proton nuclear modulation from γ-irradiated malonic acid single crystals to test the validity of the Gamliel-Freed theory and to assess the value of the new methods. The two pulse spin-echo correlation spectroscopy (SECSY) spectra as a function of orientation of the single crystal show very good agreement with the Gamliel-Freed theory extended to the general case of nonaxially symmetric hyperfine interaction. It is very simply affected by spin relaxation, such that relative intensities are essentially unaffected. Thus SECSY-ESR can most reliably be utilized for studying nuclear modulation. Stimulated SECSY provides the simplest nuclear modulation patterns, which, however, do exhibit the suppression effect well known in three-pulse ESEEM studies. Two-dimensional electron-electron double resonance (2D-ELDOR) provides nuclear modulation patterns similar to that of SECSY-ESR, so the suppression effect is absent. Both three-pulse methods exhibit complex relaxation behavior which can affect relative intensities. This is a feature characteristic of three-pulse ESEEM, but is not well understood. It is shown how the 2D-FTESR methods enable one to obtain the details of the complex spin relaxation, and in the process, obtain very good agreement between experiment and theory. 2D-ELDOR exhibits exchange cross peaks as well as coherence peaks from the nuclear modulation. It is shown how experiments, as a function of mixing time, enable one to separate the effects of the two. It is pointed out that such experiments are in the spirit of 3D spectroscopy. A new observation of the
Nuclear Magnetic Spin-Noise and Unusual Relaxation of Oxygen-17 in Water
NASA Astrophysics Data System (ADS)
Bendet-Taicher, Eli
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have evolved into widely used techniques, providing diagnostic power in medicine and material sciences due to their high precision and non-invasive nature. Due to the small population differences between spin energy states, a significant sensitivity problem for NMR arises. The low sensitivity of NMR is probably its greatest limitation for applications to biological systems. An alternative probe tuning strategy based on the spin-noise response for application in standard one-dimensional and common high-resolution multidimensional standard biomolecular NMR experiments has shown an increase of up to 50% signal-to-noise (SNR) in one-dimensional NMR experiments and an increase of up to 22% in multi-dimensional ones. The method requires the adjustment of the optimal tuning condition, which may be offset by several hundreds kHz from the conventional tuning settings using the noise response of the water protons as an indicator. This work is described in the first part of the thesis (chapters 2--3). The second part (Chapter 4) of the thesis deals with anomalous oxygen-17 NMR relaxation behavior in water. Oxygen-17 (17O), which has spin of 5/2 and a natural abundance of 0.0373% possesses an electric quadrupole moment. Spin-lattice and spin-spin relaxation occur by the quadrupole interaction, while the J-coupling to 1H spins and exchange are deciding factors. T1 and T2 of 17O in water have been previously measured over a large range of temperatures. The spin-spin relaxation times of 17O as a function of temperature show an anomalous behaviour, expressed by a local maximum at the temperature of maximum density (TMD) of water. It is shown that the same anomalous behaviour shifts to the respective temperatures of maximum density for H2O/D2O solutions with different compositions and salt concentrations. This phenomenon can be correlated to the pH dependency of T2 of 17O in water, and water proton exchange rates
Rotor design for high pressure magic angle spinning nuclear magnetic resonance.
Turcu, Romulus V F; Hoyt, David W; Rosso, Kevin M; Sears, Jesse A; Loring, John S; Felmy, Andrew R; Hu, Jian Zhi
2013-01-01
High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low (1)H and (13)C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe(2+))(3)Si(2)O(5)(OH)(4)), in contact with liquid water in water-saturated supercritical CO(2) (scCO(2)) at 150 bar and 50°C. This mineral is relevant to the deep geologic disposal of CO(2), but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.
Rotor design for high pressure magic angle spinning nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Turcu, Romulus V. F.; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Zhi
2013-01-01
High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 °C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.
Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance
Turcu, Romulus V.F.; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Z.
2013-01-01
High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.
NASA Astrophysics Data System (ADS)
Tsampourakis, K.; Kominis, I. K.
2015-11-01
Chemically induced dynamic nuclear polarization is a ubiquitous phenomenon in photosynthetic reaction centers. The relevant nuclear spin observables are a direct manifestation of the radical-pair mechanism. We here use quantum trajectories to describe the time evolution of radical-pairs, and compare their prediction of nuclear spin observables to the one derived from the radical-pair master equation. While our approach provides a consistent description, we unravel a major inconsistency within the conventional theory, thus challenging the theoretical interpretation of numerous CIDNP experiments sensitive to radical-pair reaction kinetics.
Model for optically-induced nuclear spin polarization in gallium arsenide
NASA Astrophysics Data System (ADS)
Coles, Patrick Joseph
New technologies and corresponding research fields have recently emerged that aim to develop solid-state devices based on large polarizations of electron and/or nuclear spins. These include spin-based strategies for parallel information processing through quantum entanglement ("quantum computing") and semi-classical electronic devices controlled via the spin degree of freedom ("spintronics"). A new rule of thumb - polarization has application - makes the optically pumped semiconductor an interesting system, as it exhibits both large electron and nuclear polarizations. However, several aspects of the process by which nuclear polarization is generated through optical pumping were not understood prior to this thesis, even for the most well studied semiconductor, GaAs. These include the dependence of the nuclear polarization on laser power, irradiation time, and especially on photon energy, which exhibits a dramatic peak near 1.5 eV. This thesis presents a quantitative model for optical nuclear polarization in GaAs. The model makes predictions for all quantities observable in a hulk optically pumped NMR (OPNMR) spectrum: the OPNMR signal magnitude, the hyperfine shift of the NMR frequency, and the nuclear spin temperature. The model may help researchers to optimize experimental conditions for maximizing nuclear polarization in spintronics or quantum computing architectures. A clear correlation is shown between the OPNMR signal and the photoconductivity. A photoconductivity model is developed herein that accounts for the varying penetration depth of the light with photon energy and for the presence of band-to-band and band-to-defect recombination of charge carriers. The model's predictions agree well with the photoconductivity data. The photoconductivity model is then combined with a nuclear polarization model. The resulting picture for near-band-gap (1.495 eV ≲ by ≲ 1.6 eV) optical nuclear polarization is as follows. Optical absorption generates free, non
Universal Long-Time Behavior of Nuclear Spin Decays in Solid Hyperpolarized Xenon
NASA Astrophysics Data System (ADS)
Saam, Brian; Morgan, Steven W.; Fine, Boris V.
2009-05-01
We have observed a universal long-time behavior of ^129Xe FIDs and solid echoes in polycrystalline hyperpolarized xenon at 77 K. In all cases, a decay of the form F(t) = Ae^-γt(φt + φ) sets in after just a few times T2; the behavior is universal in the sense that the decay constant γ and the beat frequency φ, which together characterize the long-time decay are the same for the FID and for solid echoes having different interpulse delay times τ. These findings reveal a fundamental property of nuclear spin dynamics and are thus relevant to theoretical efforts that have been ongoing for decades to understand NMR lineshapes in solids. Moreover, the functional form and universality of this behavior were previously predicted on the basis of analogy with resonances in classical chaotic systems [2]. While we expect this behavior to be characteristic of nuclear-spin solids in general, ^129Xe is an ideal system to examine it with high precision because of the relatively long T2 1 ms and because spin-exchange optical pumping can be used to achieve greatly enhanced magnetization, allowing precise examination of the decay over 3-4 orders of magnitude. [1] S.W. Morgan, et al., PRL 101, 067601 (2008). [2] B.V. Fine, PRL 94, 247601 (2005).
Wu, Gang
2016-08-01
The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations.
Progress of the 129Xe EDM search using active feedback nuclear spin maser
NASA Astrophysics Data System (ADS)
Sato, Tomoya; Ichikawa, Yuichi; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Funayama, Chikako; Suzuki, Takahiro; Chikamori, Masatoshi; Hikota, Eri; Tsuchiya, Masato; Furukawa, Takeshi; Yoshimi, Akihiro; Bidinosti, Christopher; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro
2014-09-01
A permanent electric dipole moment (EDM) of a particle is an extremely sensitive probe for physics beyond the Standard Model. The objective of the present study is to search for the 129Xe EDM at a level of 10-28 ecm, beyond the current upper limit. In this experiment, an active-feedback nuclear spin maser is employed to achieve a precision measurement. Systematic instability sets a limit on the precision in our study. Co-magnetometry using 3He spin maser was incorporated into the maser system to eliminate the frequency drift caused by magnetic field fluctuations. Moreover, a double-cell geometry with linearly polarized laser was introduced to reduce frequency drifts arising from contact interactions with polarized Rb atoms. Having integrated these improvements, the 3He/129Xe dual spin maser was successfully operated. In the presentation, recent progress will be reported, including an analysis of spin maser frequencies, a study of electrode designs, and an estimation of possible systematic uncertainties.
Ohya, S.; Ohtsubo, T.; Komatsuzaki, K.; Cho, D.J.; Muto, S.
1996-09-01
Nuclear magnetic resonance on oriented nuclei (NMR-ON) measurements were performed on the successive decays of {sup 89}Zr-{sup 89}Y{sup {ital m}} and {sup 191}Os-{sup 191}Ir{sup {ital m}} in Fe. The NMR-ON spectra of {sup 89}Zr{ital Fe} and {sup 191}Os{ital Fe} were obtained by detecting {gamma} rays from the decay of the isomers, {sup 89}Y{sup m} and {sup 191}Ir{sup m}, respectively. For {sup 89}Zr{ital Fe}, the anisotropy of the {gamma} ray increased at the resonance. On the other hand, for {sup 191}Os{ital Fe} the anisotropy of the {gamma} ray decreased at the resonance. These phenomena were explained using the spin inversion and spin noninversion processes including the lifetimes of the isomers and spin lattice relaxation times. NMR-ON measurements for such spin inversion and noninversion processes were reported. The resonance spectra were also observed by detecting {beta} rays from {sup 89}Zr and {sup 191}Os. In these experiments the magnetic moments of {sup 89}Zr and {sup 191}Os were determined to be {minus}1.08 (2) {mu}{sub N} and 0.962 (28) {mu}{sub N}, respectively. The signs of the magnetic moments of {sup 89}Y{sup m} and {sup 191}Ir{sup m} were also determined to be positive. {copyright} {ital 1996 The American Physical Society.}
Sensing of single nuclear spins in random thermal motion with proximate nitrogen-vacancy centers
NASA Astrophysics Data System (ADS)
Bruderer, M.; Fernández-Acebal, P.; Aurich, R.; Plenio, M. B.
2016-03-01
Nitrogen-vacancy (NV) centers in diamond have emerged as valuable tools for sensing and polarizing spins. Motivated by potential applications in chemistry, biology, and medicine, we show that NV-based sensors are capable of detecting single spin targets even if they undergo diffusive motion in an ambient thermal environment. Focusing on experimentally relevant diffusion regimes, we derive an effective model for the NV-target interaction, where parameters entering the model are obtained from numerical simulations of the target motion. The practicality of our approach is demonstrated by analyzing two realistic experimental scenarios: (i) time-resolved sensing of a fluorine nuclear spin bound to an N-heterocyclic carbene-ruthenium (NHC-Ru) catalyst that is immobilized on the diamond surface and (ii) detection of an electron spin label by an NV center in a nanodiamond, both attached to a vibrating chemokine receptor in thermal motion. We find in particular that the detachment of a fluorine target from the NHC-Ru carrier molecule can be monitored with a time resolution of a few seconds.
NASA Astrophysics Data System (ADS)
Chamel, N.; Fantina, A. F.; Pearson, J. M.; Goriely, S.
2017-03-01
The role of the nuclear spin-orbit coupling on the equilibrium composition and on the equation of state of the outer crust of a nonaccreting neutron star is studied by employing a series of three different nuclear mass models based on the self-consistent Hartree-Fock-Bogoliubov method.
NASA Astrophysics Data System (ADS)
Konig, Seymour H.
A novel derivation of the equations that describe the spin-lattice magnetic relaxation of nuclear spin moments, in liquids, resulting from magnetic dipolar interactions with neighboring paramagnetic ions, the Solomon-Bloembergen-Morgan equations was previously presented (S. H. Koenig, J. Magn. Reson.31, 1 (1978)). The derivation involves a computation of the dissipative energy flow from the nuclear spins to the lattice rather than a computation of the lattice-produced fluctuations of the local field at the nuclear spins. Two advantages accrue: (1) the spectral densities that enter into the relaxation expressions can be directly related to well-defined absorption transitions and relaxation processes of the paramagnetic ions, clarifying the physical processes that produce relaxation, and (2) the derivation can be readily generalized to paramagnetic ions with arbitrary spin Hamiltonian, and to deviations of their susceptibility from Curie law behavior. The derivation is extended to include relaxation in liquids in the rotating frame: the on resonance T1 ϱ which reduces to T2 for small amplitude radiofrequency fields; and the off resonance T1 ϱoff, which reduces to T1. The results, which are given for contact as well as dipolar interactions, also describe relaxation of 13C and 15N nuclei by protons under conditions of proton-decoupling, a situation becoming increasingly important in the study of biological macromolecules by high-resolution NMR spectroscopy.
NASA Astrophysics Data System (ADS)
Sweeney, Timothy M.; Phelps, Carey; Wang, Hailin
2011-08-01
We demonstrated optical spin control of a two-dimensional electron gas in a modulation-doped CdTe quantum well by driving a spin-flip Raman transition with a pair of phase-locked laser pulses. In contrast to single-pulse optical spin control, which features a fixed spin-rotation axis, manipulation of the initial relative phase of the pulse pair enables us to control the axis of the optical spin rotation. We show that the Raman pulse pair acts like an effective microwave field, mapping the relative optical phase onto the phase of the electron spin polarization and making possible ultrafast, all-optical, and full quantum control of the electron spins.
Magic radio-frequency dressing of nuclear spins in high-accuracy optical clocks.
Zanon-Willette, Thomas; de Clercq, Emeric; Arimondo, Ennio
2012-11-30
A Zeeman-insensitive optical clock atomic transition is engineered when nuclear spins are dressed by a nonresonant radio-frequency field. For fermionic species as (87)Sr, (171)Yb, and (199)Hg, particular ratios between the radio-frequency driving amplitude and frequency lead to "magic" magnetic values where a net cancelation of the Zeeman clock shift and a complete reduction of first-order magnetic variations are produced within a relative uncertainty below the 10(-18) level. An Autler-Townes continued fraction describing a semiclassical radio-frequency dressed spin is numerically computed and compared to an analytical quantum description including higher-order magnetic field corrections to the dressed energies.
Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.; Schlage, Kai; Wetterskog, Erik; Bergstrom, Lennart; Hermann, Raphael P.
2016-05-11
The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.
Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.; ...
2016-05-11
The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization tomore » 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.« less
Sukstanskii, A.L.; Ackerman, J.J.H.; Yablonskiy, D.A.
2007-01-01
The spatial distribution of the transverse nuclear spin magnetization, appearing in a single compartment with impermeable boundaries in a Stejskal-Tanner gradient pulse MR experiment, is analyzed in detail. At short diffusion times the presence of diffusion-restrictive barriers (membranes) reduces effective diffusivity near the membranes and leads to an inhomogeneous spin magnetization distribution (the edge-enhancement effect). In this case, the signal reveals a quasi-two-compartment behavior and can be empirically modeled remarkably well by a biexponential function. The current results provide a framework for interpreting experimental MR data on various phenoma, including water diffusion in giant axons, metabolite diffusion in the brain, and hyperpolarized gas diffusion in lung airways. PMID:14523959
Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds
NASA Astrophysics Data System (ADS)
Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.
2015-02-01
Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.
Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds.
Panich, A M; Sergeev, N A; Shames, A I; Osipov, V Yu; Boudou, J-P; Goren, S D
2015-02-25
Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and (13)C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of (13)C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.
Das, Tanmoy; Balatsky, Alexander V.; Zhang, Chenglin; Li, Haifeng; Su, Yiki; Nethertom, Tucker; Redding, Caleb; Carr, Scott; Schneidewind, Astrid; Faulhaber, Enrico; Li, Shiliang; Yao, Daoxin; Bruckel, Thomas; Dai, Pengchen; Sobolev, Oleg
2012-06-05
A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the s{sup {+-}}-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E {le} 2{Delta}). Although the resonances have been observed for various iron pnictide superconductors, they are broad in energy and can also be interpreted as arising from the s{sup ++}-pairing symmetry with E {ge} 2{Delta}. Here we use inelastic neutron scattering to reveal a sharp resonance at E = 7 meV in the SC NaFe{sub 0.935}Co{sub 0.045}As (T{sub c} = 18 K). By comparing our experiments with calculated spin-excitations spectra within the s{sup {+-}} and s{sup ++}-pairing symmetries, we conclude that the resonance in NaFe{sub 0.935}Co{sub 0.045}As is consistent with the s{sup {+-}}-pairing symmetry, thus eliminating s{sup ++}-pairing symmetry as a candidate for superconductivity.
Dynamic nuclear polarization of carbonyl and methyl 13C spins in acetate using trityl OX063
NASA Astrophysics Data System (ADS)
Niedbalski, Peter; Parish, Christopher; Lumata, Lloyd
2015-03-01
Hyperpolarization via dissolution dynamic nuclear polarization (DNP) is a physics technique that amplifies the magnetic resonance signals by several thousand-fold for biomedical NMR spectroscopy and imaging (MRI). Herein we have investigated the effect of carbon-13 isotopic location on the DNP of acetate (one of the biomolecules commonly used for hyperpolarization) at 3.35 T and 1.4 K using a narrow ESR linewidth free radical trityl OX063. We have found that the carbonyl 13C spins yielded about twice the polarization produced in methyl 13C spins. Deuteration of the methyl group, beneficial in the liquid-state, did not produce an improvement in the polarization level at cryogenic conditions. Concurrently, the solid-state nuclear relaxation of these samples correlate with the polarization levels achieved. These results suggest that the location of the 13C isotopic labeling in acetate has a direct impact on the solid-state polarization achieved and is mainly governed by the nuclear relaxation leakage factor.
Resonance-inclined optical nuclear spin polarization of liquids in diamond structures
NASA Astrophysics Data System (ADS)
Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.
2016-02-01
Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.
NASA Astrophysics Data System (ADS)
Su, Sunyu
The spin dynamics of PrCl_3 and PrBr_3 have been studied in the temperature range from 124mK to 297K using Nuclear Quadrupole Resonance (NQR) techniques. In the low temperature regime, the Pr ions are in the ground state, and the dynamical properties of PrX_3 (X = Cl,Br) are well described by a 1D XY model. The data have been shown to be in agreement with the predictions of a relaxation theory for a magnetic interaction based on a rigorous treatment of the longitudinal dynamical correlation function < S_sp{z}{m}(t)S_sp {z}{n}(t)> of the electronic pseudo-spins S^{m} associated with the crystalline electric field ground state. The fits to the data have yielded reasonable values for the hyperfine interaction parameters A and exchange integrals J/k_{B}. The dynamical properties of the PrX_3 compounds depart from the 1D model as the temperature increases. The spin lattice relaxation rates display unusual temperature dependences in the high temperature regime. These temperature dependences have been qualitatively accounted for by considering the effect of populating the excited states of the crystal electric field. The theory of NQR mixed spin echoes in solids has been established using the interaction representation formalism. The NQR mixed spin echoes theory has been applied to the study of the spin interactions in PrBr_3 . It has been shown that the second moments due to quadrupole interaction M_sp{2} {q}, magnetic dipole-dipole interactions between like spins M_sp{2}{II } and magnetic dipole-dipole interactions between unlike spins M_sp{2}{IS}(Br,Pr ^{3+}),M_sp{2}{IS }(^{79}Br,^{81}Br ) can be simultaneously determined. NQR spectra have been obtained for both praseodymium trihalides. The low temperature spectrum of PrCl _3 has provided strong support to the earlier results. In addition, the present investigation of the NQR spectrum has resulted in a better estimate of the magnitude of dimerization in PrCl_3. The PrBr_3 low temperature NQR spectrum has revealed
Feldman, Rebecca E; Islam, Haisam M; Xu, Junqian; Balchandani, Priti
2016-01-01
Purpose Simultaneous multi-slice (SMS) imaging is a powerful technique that can reduce image acquisition time for anatomical, functional, and diffusion weighted magnetic resonance imaging. At higher magnetic fields, such as 7 Tesla, increased radiofrequency (RF) field inhomogeneity, power deposition, and changes in relaxation parameters make SMS spin echo imaging challenging. We designed an adiabatic 180° Power Independent of Number of Slices (PINS) pulse and a matched-phase 90° PINS pulse to generate a SEmi-Adiabatic Matched-phase Spin echo (SEAMS) PINS sequence to address these issues. Methods We used the adiabatic Shinnar Le-Roux (SLR) algorithm to generate a 180° pulse. The SLR polynomials for the 180° pulse were then used to create a matched-phase 90° pulse. The pulses were sub-sampled to produce a SEAMS PINS pulse-pair and the performance of this pulse-pair was validated in phantoms and in vivo. Results Simulations as well as phantom and in vivo results, demonstrate multi-slice capability and improved B1-insensitivity of the SEAMS PINS pulse-pair when operating at RF amplitudes of up to 40% above adiabatic threshold. Conclusion The SEAMS PINS approach presented here achieves multi-slice spin echo profiles with improved B1-insensitivity when compared to a conventional spin echo. PMID:25753055
Multi-scales nuclear spin relaxation of liquids in porous media
NASA Astrophysics Data System (ADS)
Korb, Jean-Pierre
2010-03-01
The magnetic field dependence of the nuclear spin-lattice relaxation rate 1/T(ω) is a rich source of dynamical information for characterizing the molecular dynamics of liquids in confined environments. Varying the magnetic field changes the Larmor frequency ω, and thus the fluctuations to which the nuclear spin relaxation is sensitive. Moreover, this method permits a more complete characterization of the dynamics than the usual measurements as a function of temperature at fixed magnetic field strength, because many common solvent liquids have phase transitions that may alter significantly the character of the dynamics over the temperature range usually studied. Further, the magnetic field dependence of the spin-lattice relaxation rate, 1/T(ω), provides a good test of the theories that relate the measurement to the microdynamical behavior of the liquid. This is especially true in spatially confined systems where the effects of reduced dimensionality may force more frequent reencounters of the studied proton spin-bearing molecules with paramagnetic impurities at the pore surfaces that may alter the correlation functions that enter the relaxation equations in a fundamental way. We show by low field NMR relaxation that changing the amount of surface paramagnetic impurities leads to striking different pore-size dependences of the relaxation times T and T of liquids in pores. Here, we focus mainly on high surface area porous materials including calibrated porous silica glasses, granular packings, heterogeneous catalytic materials, cement-based materials and natural porous materials such as clay minerals and rocks. Recent highlights NMR relaxation works are reviewed for these porous materials, like continuous characterization of the evolving microstructure of various cementitious materials and measurement of wettability in reservoir carbonate rocks. Although, the recent applications of 2-dimensional T-T and T-z-store-T correlation experiments for characterization of
Electron-Mediated Nuclear-Spin Interactions between Distant Nitrogen-Vacancy Centers
NASA Astrophysics Data System (ADS)
Bermudez, A.; Jelezko, F.; Plenio, M. B.; Retzker, A.
2011-10-01
We propose a scheme enabling controlled quantum coherent interactions between separated nitrogen-vacancy centers in diamond in the presence of strong magnetic fluctuations. The proposed scheme couples nuclear qubits employing the magnetic dipole-dipole interaction between the electron spins and, crucially, benefits from the suppression of the effect of environmental magnetic field fluctuations thanks to a strong microwave driving. This scheme provides a basic building block for a full-scale quantum-information processor or quantum simulator based on solid-state technology.
Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR.
Rosay, Melanie; Blank, Monica; Engelke, Frank
2016-03-01
Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.
Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR
NASA Astrophysics Data System (ADS)
Rosay, Melanie; Blank, Monica; Engelke, Frank
2016-03-01
Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.
Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Burger, A.; Gorgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.
2014-09-03
Here, the proton spectrum from the ^{57}Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.
Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; ...
2014-09-03
Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.
NASA Astrophysics Data System (ADS)
Ulhaq, A.; Duan, Q.; Zallo, E.; Ding, F.; Schmidt, O. G.; Tartakovskii, A. I.; Skolnick, M. S.; Chekhovich, E. A.
2016-04-01
GaAs/AlGaAs quantum dots grown by in situ droplet etching and nanohole in-filling offer a combination of strong charge confinement, optical efficiency, and high spatial symmetry advantageous for polarization entanglement and spin-photon interface. Here, we study experimentally electron and nuclear spin properties of such dots. We find nearly vanishing electron g factors (ge<0.05 ), providing a potential route for electrically driven spin control schemes. Optical manipulation of the nuclear spin environment is demonstrated with nuclear spin polarization up to 65 % achieved. Nuclear magnetic resonance spectroscopy reveals two distinct types of quantum dots: with tensile and with compressive strain along the growth axis. In both types of dots, the magnitude of strain ɛb<0.02 % is nearly three orders of magnitude smaller than in self-assembled dots: On the one hand, this provides a route for eliminating a major source of electron spin decoherence arising from nuclear quadrupolar interactions, and on the other hand such strain is sufficient to suppress nuclear spin diffusion leading to a stable nuclear spin bath with nuclear spin lifetimes exceeding 500 s. The spin properties revealed in this work make this new type of quantum dot an attractive alternative to self-assembled dots for the applications in quantum information technologies.
Quantum-state tomography of a single nuclear spin qubit of an optically manipulated ytterbium atom
Noguchi, Atsushi; Kozuma, Mikio; Eto, Yujiro; Ueda, Masahito
2011-09-15
A single Yb atom is loaded into a high-finesse optical cavity with a moving lattice, and its nuclear spin state is manipulated using a nuclear magnetic resonance technique. A highly reliable quantum state control with fidelity and purity greater than 0.98 and 0.96, respectively, is confirmed by the full quantum state tomography; a projective measurement with high speed (500 {mu}s) and high efficiency (0.98) is accomplished using the cavity QED technique. Because a hyperfine coupling is induced only when the projective measurement is operational, the long coherence times (T{sub 1}=0.49 s and T{sub 2}=0.10 s) are maintained.
NASA Astrophysics Data System (ADS)
Hikino, S.; Yunoki, S.
2015-07-01
We theoretically study the magnetization inside a normal metal induced in an s -wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s -wave superconductor (S /F 1 /N /F 2 /S ) Josephson junction. Using the quasiclassical Green's function method, we show that the magnetization becomes finite inside the N . The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by the proximity effect in the S /F 1 /N /F 2 /S junction. We find that the magnetization M (d ,θ ) in the N can be decomposed into two parts, M (d ,θ ) =MI(d ) +MII(d ,θ ) , where θ is the superconducting phase difference between the two S s and d is the thickness of N . The θ -independent magnetization MI(d ) exists generally in S /F junctions, while MII(d ,θ ) carries all θ dependence and represents the fingerprint of the phase coherence between the two S s in Josephson junctions. The θ dependence thus allows us to control the magnetization in the N by tuning θ for a fixed d . We show that the θ -independent magnetization MI(d ) weakly decreases with increasing d , while the θ -dependent magnetization MII(d ,θ ) rapidly decays with d . Moreover, we find that the time-averaged magnetization
NASA Astrophysics Data System (ADS)
Lisboa, R.; Malheiro, M.; Carlson, B. V.
2016-02-01
Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the
Fast all-optical nuclear spin echo technique based on EIT
NASA Astrophysics Data System (ADS)
Walther, Andreas; Nilsson, Adam N.; Li, Qian; Rippe, Lars; Kröll, Stefan
2016-08-01
We demonstrate an all-optical Raman spin echo technique, using electromagnetically induced transparency (EIT) to create the pulses required for a spin echo sequence: initialization, pi-rotation, and readout. The first pulse of the sequence induces coherence directly from a mixed state, and the technique is used to measure the nuclear spin coherence of an inhomogeneously broadened ensemble of rare-earth ions (Pr3 +) in a crystal. The rephasing pi-rotation is shown to offer an advantage of combining the rephasing action with the operation of a phase gate, particularly useful in e.g. dynamic decoupling sequences. In contrast to many previous experiments the sequence does not require any preparatory hole burning, which greatly shortens the total duration of the sequence. The effect of the different pulses is characterized by quantum state tomography and compared with simulations. We demonstrate two applications of the technique: compensating the magnetic field across our sample by monitoring T 2 reductions from stray magnetic fields, and measuring coherence times at temperatures up to 11 K, where standard preparation techniques are difficult to implement. We explore the potential of the technique, in particular for systems with much shorter T 2, and other possible applications.
Radiative Lifetime for Nuclear Spin Conversion of Water-Ion H_2O^+
NASA Astrophysics Data System (ADS)
Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi
2013-06-01
Nuclear spin conversion interaction of the water ion, H_2O^+, has been studied to derive the spontaneous emission lifetime between the ortho- and para-levels. The H_2O^+ ion is a radical with ^2 B _1 electronic ground state and the off-diagonal electron spin-nuclear spin interaction term, T_{ab} (S_aΔ I_b + S_bΔ I_a), connects para and ortho levels, because Δ {I} = {I}_1 - {I}_2 has nonvanishing matrix elements between I = 0 and 1. The T_{ab} coupling constant, derived by an ab initio calculation in MRD-CI/Bk level to be 72 MHz, is larger than that of H_2O by 4 orders of magnitude, makes the ortho to para conversion of H_2O^+ faster than that of H_2O by 8 orders of magnitude and possibly competitive with other astrophysical processes. Last year we reported ortho and para coupling channels below 900 cm^{-1} caused by accidental near degeneracy of rotational levels. For example, hyperfine components of the 4_{2,2}(o) and 3_{3,0}(p) levels mix each other by 1.2 x 10^{-3} due to the near degeneracy (Δ E = 0.417 cm^{-1}), but the lower lying 1_{0,1}(p) and 1_{1,1}(o) levels mix only by 8.9 x 10^{-5} because of their large separation (Δ E = 16.27 cm^{-1}). In the present study, we solved the radiative rate equations including all the rotational levels below 900 cm^{-1} to give the o-p conversion lifetime to be 0.451, 3.27, 398 and 910 years for the equilibrium o/p ratio of 3.00, 3.00, 4.52, and 406 when the radiation temperature T_r is 100, 60, 20 and 5 K. These results qualitatively help to understand the observed high o/p ratio of 4.8 ± 0.5 (corresponding to the nuclear spin temperature of 21 K) toward Sgr B2, but they are too slow to compete with the reaction by collision unless the number of density of H_2 in the region is very low (n˜1 cm^{-3}) or the radiative temperature is very high (T_r > 50K). K. Tanaka, K. Harada, and T. Oka, the 67th OSU Symposium MG06, 2012. P. Schilke, et al., A&A 521, L11 (2010). K. Tanaka, K. Harada, and T. Oka, J. Phys. Chem. A
NASA Astrophysics Data System (ADS)
He, Lianyi
2016-10-01
We present a standard field theoretical derivation of the dynamic density and spin linear response functions of a dilute superfluid Fermi gas in the BCS-BEC crossover in both three and two dimensions. The derivation of the response functions is based on the elegant functional path integral approach which allows us to calculate the density-density and spin-spin correlation functions by introducing the external sources for the density and the spin density. Since the generating functional cannot be evaluated exactly, we consider two gapless approximations which ensure a gapless collective mode (Goldstone mode) in the superfluid state: the BCS-Leggett mean-field theory and the Gaussian-pair-fluctuation (GPF) theory. In the mean-field theory, our results of the response functions agree with the known results from the random phase approximation. We further consider the pair fluctuation effects and establish a theoretical framework for the dynamic responses within the GPF theory. We show that the GPF response theory naturally recovers three kinds of famous diagrammatic contributions: the Self-Energy contribution, the Aslamazov-Lakin contribution, and the Maki-Thompson contribution. We also show that unlike the equilibrium state, in evaluating the response functions, the linear (first-order) terms in the external sources as well as the induced order parameter perturbations should be treated carefully. In the superfluid state, there is an additional order parameter contribution which ensures that in the static and long wavelength limit, the density response function recovers the result of the compressibility (compressibility sum rule). We expect that the f-sum rule is manifested by the full number equation which includes the contribution from the Gaussian pair fluctuations. The dynamic density and spin response functions in the normal phase (above the superfluid critical temperature) are also derived within the Nozières-Schmitt-Rink (NSR) theory.
Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2012-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592
Negoro, M; Nakayama, K; Tateishi, K; Kagawa, A; Takeda, K; Kitagawa, M
2010-10-21
In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high (1)H spin polarization, an efficient buildup of (1)H polarization is attained by partially deuterating the material of interest with an appropriate (1)H concentration. In such a dilute (1)H spin system, it is shown that the (1)H spin diffusion rate and thereby the buildup efficiency of (1)H polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those (1)H spins, which are in the vicinity of the electron spins, and (1)H spin diffusion transports the localized (1)H polarization over the whole sample volume. The (1)H spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of (1)H polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without (2)H decoupling.
Turro, Nicholas J; Chen, Judy Y-C; Sartori, Elena; Ruzzi, Marco; Marti, Angel; Lawler, Ronald; Jockusch, Steffen; López-Gejo, Juan; Komatsu, Koichi; Murata, Yasujiro
2010-02-16
One of the early triumphs of quantum mechanics was Heisenberg's prediction, based on the Pauli principle and wave function symmetry arguments, that the simplest molecule, H(2), should exist as two distinct species-allotropes of elemental hydrogen. One allotrope, termed para-H(2) (pH(2)), was predicted to be a lower energy species that could be visualized as rotating like a sphere and possessing antiparallel ( upward arrow downward arrow) nuclear spins; the other allotrope, termed ortho-H(2) (oH(2)), was predicted to be a higher energy state that could be visualized as rotating like a cartwheel and possessing parallel ( upward arrow upward arrow) nuclear spins. This remarkable prediction was confirmed by the early 1930s, and pH(2) and oH(2) were not only separated and characterized but were also found to be stable almost indefinitely in the absence of paramagnetic "spin catalysts", such as molecular oxygen, or traces of paramagnetic impurities, such as metal ions. The two allotropes of elemental hydrogen, pH(2) and oH(2), may be quantitatively incarcerated in C(60) to form endofullerene guest@host complexes, symbolized as pH(2)@C(60) and oH(2)@C(60), respectively. How does the subtle difference in nuclear spin manifest itself when hydrogen allotropes are incarcerated in a buckyball? Can the incarcerated "guests" communicate with the outside world and vice versa? Can a paramagnetic spin catalyst in the outside world cause the interconversion of the allotropes and thereby effect a chemical transformation inside a buckyball? How close are the measurable properties of H(2)@C(60) to those computed for the "quantum particle in a spherical box"? Are there any potential practical applications of this fascinating marriage of the simplest molecule, H(2), with one of the most beautiful of all molecules, C(60)? How can one address such questions theoretically and experimentally? A goal of our studies is to produce an understanding of how the H(2) guest molecules incarcerated in
NASA Astrophysics Data System (ADS)
Nisson, David Mark
Nuclear magnetic resonance (NMR) studies were performed on large single crystals of the topological insulator materials Bi2Se 3 and Bi2Te2Se, as well as the doped topological superconductor candidate CuxBi2Se3. Samples were grown using the facilities of the Department of Physics at the University of California, Davis. Bi2Se3 crystals were grown under different conditions to control the intrinsic concentration of carrier electrons, which arises from an inherent tendency for Se vacancies to form during growth. The electrical properties, including carrier concentration of each sample, were then characterized by electrical transport measurements. Frequency swept 209Bi spectra for these samples reveal a relatively weak electric field gradient producing a splitting of about 160 kHz, and a shift that depends on the carrier concentration. The correlation between shift and intrinsic carrier concentration determines the hyperfine coupling strength between the Bi nuclei and the bulk carrier electrons. The spin-lattice relaxation rate T1--1 was also measured as a function of temperature. It is mostly temperature-independent, indicating that in samples of Bi2Se3 grown by the Bridgman method, relaxation may occur by spin diffusion to impurities rather than by previously reported mechanisms. Nuclear magnetic resonance measurements were also performed on single crystals of Bi2Se3 as a function of the angle between the field and the c-axis of the crystal lattice. These frequency-swept measurements revealed anomalous behavior that deviated significantly from what would be expected of the angular dependence of the resonance spectrum. Powder samples reveal spectra that differ still from the expectations from the single-crystal data. These phenomena are explained in part by the fact that the nutation time tpi/2) depends on the angle as a result of overlap between the central and satellite transitions, but may in addition be the result of screening of the radiofrequency field by the
NASA Astrophysics Data System (ADS)
Harter, William; Mitchell, Justin
2009-06-01
At several points in his defining works on molecular spectroscopy, Herzberg notes that ``because nuclear moments ldots are so very slight ldots transitions between species ldots are very strictly forbiddenldots '' Herzberg's most recent statement of such selection rules pertained to spherical top spin-species. It has since been shown that spherical top species (as well as those of lower symmetry molecules) converge exponentially with momentum quanta J and K to degenerate level clusters wherein even ``very slight'' nuclear fields and moments cause pervasive resonance and total spin species mixing. Ultra-high resolution spectra of Borde, et .al and Pfister et .al shows how SF_6 and SiF_4 Fluorine nuclear spin levels rearrange from total-spin multiplets to NMR-like patterns as their superfine structure converges. Similar super-hyperfine effects are anticipated for lower symmetry molecules exhibiting converging superfine level-clusters. Examples include PH_3 molecules and asymmetric tops. Following this we consider models that treat nuclear spins as coupled rotors undergoing generalized Hund-case transitions from spin-lab-momentum coupling to various spin-rotor correlations. G. A. Herzberg, Electronic Spectra of Polyatomic Molecules, (Von Norstrand Rheinhold 1966) p. 246. W G. Harter and C. W Patterson, Phys. Rev. A 19, 2277 (1979) W. G. Harter, Phys. Rev. A 24, 192 (1981). Ch. J. Borde, J. Borde, Ch. Breant, Ch. Chardonnet, A. Van Lerberghe, and Ch. Salomon, in Laser Spectroscopy VII, T. W Hensch and Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985). O. Pfister, F. Guernet, G. Charton, Ch. Chardonnet, F. Herlemont, and J. Legrand, J. Opt. Soc. Am. B 10, 1521 (1993). O. Pfister, Ch. Chardonnet, and Ch. J. Bordè, Phys. Rev. Lett. 76, 4516 (1996) S. N. Yurchenko, W. Thiel, S. Patchkovskii, and P. Jensen, Phys. Chem. Chem. Phys.7, 573 (2005)
Křístková, Anežka; Malkin, Vladimir G.; Komorovsky, Stanislav; Repisky, Michal; Malkina, Olga L.
2015-03-21
In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.
NASA Astrophysics Data System (ADS)
Křístková, Anežka; Komorovsky, Stanislav; Repisky, Michal; Malkin, Vladimir G.; Malkina, Olga L.
2015-03-01
In this work, we report on the development and implementation of a new scheme for efficient calculation of indirect nuclear spin-spin couplings in the framework of four-component matrix Dirac-Kohn-Sham approach termed matrix Dirac-Kohn-Sham restricted magnetic balance resolution of identity for J and K, which takes advantage of the previous restricted magnetic balance formalism and the density fitting approach for the rapid evaluation of density functional theory exchange-correlation response kernels. The new approach is aimed to speedup the bottleneck in the solution of the coupled perturbed equations: evaluation of the matrix elements of the kernel of the exchange-correlation potential. The performance of the new scheme has been tested on a representative set of indirect nuclear spin-spin couplings. The obtained results have been compared with the corresponding results of the reference method with traditional evaluation of the exchange-correlation kernel, i.e., without employing the fitted electron densities. Overall good agreement between both methods was observed, though the new approach tends to give values by about 4%-5% higher than the reference method. On the average, the solution of the coupled perturbed equations with the new scheme is about 8.5 times faster compared to the reference method.
NASA Astrophysics Data System (ADS)
Isaev, N. P.; Dzuba, S. A.
2011-09-01
The pulsed electron-electron double resonance (ELDOR) technique was employed to study nitroxide spin probes of three different sizes dissolved in glassy o-terphenyl. A microwave pulse applied to the central hyperfine structure (hfs) component of the nitroxide electron paramagnetic resonance spectrum was followed by two echo-detecting pulses of different microwave frequency to probe the magnetization transfer (MT) to the low-field hfs component. The MT between hfs components is readily related to flips in the nitrogen nuclear spin, which in turn are induced by molecular motion. The MT on the time scale of tens of microseconds was observed over a wide temperature range, including temperatures near and well below the glass transition. For a bulky nitroxide, it was found that MT rates approach dielectric α (primary) relaxation frequencies reported for o-terphenyl in the literature. For small nitroxides, MT rates were found to match the frequencies of dielectric β (secondary) Johari-Goldstein relaxation. The most probable motional mechanism inducing the nitrogen nuclear spin flips is large-angle angular jumps, between some orientations of unequal occupation probabilities. The pulsed ELDOR of nitroxide spin probes may provide additional insight into the nature of Johari-Goldstein relaxation in glassy media and may serve as a tool for studying this relaxation in substances consisting of non-rigid molecules (such as branched polymers) and in heterogeneous and non-polar systems (such as a core of biological membranes).
Korringa-Like Nuclear Spin-Lattice Relaxation in a 2DES at ν= 1/2
NASA Astrophysics Data System (ADS)
Tracy, L. A.; Pfeiffer, L. N.
2005-03-01
Via a resistively-detected NMR technique, the nuclear spin lattice relaxation time T1 of ^71Ga at low temperatures has been measured in a GaAs/AlGaAs heterostructure containing two weakly-coupled 2D electron systems (2DES), each at Landau level filling ν= 1/2. Incomplete electronic spin polarization, which has been reported previously [1,2] for low density 2DESs at ν= 1/2, should facilitate hyperfine- coupled nuclear spin relaxation owing to the presence of both electron spin states at the Fermi level. Within composite fermion theory, a Korringa law temperature dependence: T1T = constant, is expected for temperatures T<1 K. Our measurements made at temperatures in the range 35 mK
Nuclear spin-lattice relaxation of 205TI in TIMo 6Se 8
NASA Astrophysics Data System (ADS)
Nishihara, H.; Ohtani, T.; Sano, Y.; Nakamura, Y.
1991-12-01
Temperature dependence of the nuclear spin-lattice relaxation rate of 205TI has been studied in a superconducting Chevrel compound TIMo 6Se 8. The rate follows the Korringa relation in the normal state with (T 1T) -1=3.4×10 2 (sK) -1. It follows a power law with T 1-1=2.64×10 -3T 6.9 in the superconducting state. An enhancement of the relaxation rate just below T c was not observed. These suggest that TIMo 6Se 8 is a new example of gapless superconductors. The relaxation behaviors in this Chevrel compound, which has low T c but has high H C2 is discussed in comparison with those in high-Tc oxides.
Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions
NASA Astrophysics Data System (ADS)
Ejiri, H.; Frekers, D.
2016-11-01
Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He, t) charge-exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) {M}α ({{SD}}) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental α = GT (Gamow-Teller) and α = F (Fermi) strengths. They are consistent with the empirical NMEs M({{SD}}) based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.
Ortho-para mixing hyperfine interaction in the H2O+ ion and nuclear spin equilibration.
Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi
2013-10-03
The ortho to para conversion of water ion, H2O(+), due to the interaction between the magnetic moments of the unpaired electron and protons has been theoretically studied to calculate the spontaneous emission lifetime between the ortho- and para-levels. The electron spin-nuclear spin interaction term, Tab(SaΔIb + SbΔIa) mixes ortho (I = 1) and para (I = 0) levels to cause the "forbidden" ortho to para |ΔI| = 1 transition. The mixing term with Tab = 72.0 MHz is 4 orders of magnitude higher for H2O(+) than for its neutral counterpart H2O where the magnetic field interacting with proton spins is by molecular rotation rather than the free electron. The resultant 10(8) increase of ortho to para conversion rate possibly makes the effect of conversion in H2O(+) measurable in laboratories and possibly explains the anomalous ortho to para ratio recently reported by Herschel heterodyne instrument for the far-infrared (HIFI) observation. Results of our calculations show that the ortho ↔ para mixings involving near-degenerate ortho and para levels are high (∼10(-3)), but they tend to occur at high energy levels, ∼300 K. Because of the rapid spontaneous emission, such high levels are not populated in diffuse clouds unless the radiative temperature of the environment is very high. The low-lying 101 (para) and 111 (ortho) levels of H2O(+) are mixed by ∼10(-4) making the spontaneous emission lifetime for the para 101 → ortho 000 transition 520 years and 5200 years depending on the F value of the hyperfine structure. Thus the ortho ↔ para conversion due to the unpaired electron is not likely to seriously affect thermalization of interstellar H2O(+) unless either the radiative temperature is very high or number density of the cloud is very low.
Nuclear spin imaging with hyperpolarized nuclei created by brute force method
NASA Astrophysics Data System (ADS)
Tanaka, Masayoshi; Kunimatsu, Takayuki; Fujiwara, Mamoru; Kohri, Hideki; Ohta, Takeshi; Utsuro, Masahiko; Yosoi, Masaru; Ono, Satoshi; Fukuda, Kohji; Takamatsu, Kunihiko; Ueda, Kunihiro; Didelez, Jean-P.; Prossati, Giorgio; de Waard, Arlette
2011-05-01
We have been developing a polarized HD target for particle physics at the SPring-8 under the leadership of the RCNP, Osaka University for the past 5 years. Nuclear polarizaton is created by means of the brute force method which uses a high magnetic field (~17 T) and a low temperature (~ 10 mK). As one of the promising applications of the brute force method to life sciences we started a new project, "NSI" (Nuclear Spin Imaging), where hyperpolarized nuclei are used for the MRI (Magnetic Resonance Imaging). The candidate nuclei with spin ½hslash are 3He, 13C, 15N, 19F, 29Si, and 31P, which are important elements for the composition of the biomolecules. Since the NMR signals from these isotopes are enhanced by orders of magnitudes, the spacial resolution in the imaging would be much more improved compared to the practical MRI used so far. Another advantage of hyperpolarized MRI is that the MRI is basically free from the radiation, while the problems of radiation exposure caused by the X-ray CT or PET (Positron Emission Tomography) cannot be neglected. In fact, the risk of cancer for Japanese due to the radiation exposure through these diagnoses is exceptionally high among the advanced countries. As the first step of the NSI project, we are developing a system to produce hyperpolarized 3He gas for the diagnosis of serious lung diseases, for example, COPD (Chronic Obstructive Pulmonary Disease). The system employs the same 3He/4He dilution refrigerator and superconducting solenoidal coil as those used for the polarized HD target with some modification allowing the 3He Pomeranchuk cooling and the following rapid melting of the polarized solid 3He to avoid the depolarization. In this report, the present and future steps of our project will be outlined with some latest experimental results.
NASA Astrophysics Data System (ADS)
Coish, William A.; Chesi, Stefano
2012-02-01
We study a quantum-dot spin-valve setup with a uniform hyperfine coupling of the electron spin to the nuclear bath. We propose Ge/Si core/shell nanowire quantum dots as a promising platform in which, through engineering of the nuclear spin positions and of the radial and longitudinal electron confinement, a nearly uniform hyperfine interaction can be realized. The dynamics of this coupled system are exactly soluble in terms of collective nuclear states with fixed total angular momentum. We theoretically show that the quantum-mechanical properties of such collective states of the nuclear spins can be probed through electron transport in this spin-valve setup. The associated transport current shows an enhancement due to coupling to collective modes in the nuclear-spin system directly analogous to the problem of superradiance in quantum optics. This effect is robust to dephasing of the nuclear spins and would provide a demonstration of large-scale collective quantum effects in a nuclear-spin system.
Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume
NASA Astrophysics Data System (ADS)
Das, R.; Odom, A. L.
2007-12-01
.3, and thus more than one mass-independent isotope effect is inferred. MIF of mercury can be caused by the nuclear volume effect. Schauble, 2007 has calculated nuclear volume fractionation scaling factors for a number of common mercury chemical species in equilibrium with Hg° vapor. From his calculations the nuclear field shift effect is larger in Δ199Hg than in Δ201Hg by approximately a factor of two. The predominant mercury chemical species in fish is methylmercury cysteine. From the experimental studies of Buchachenko and others (2004) on the reaction of methylmercury chloride with creatine kinase it seems reasonable to predicted that the thiol functional groups of cysteine gets enriched in 199Hg and 201Hg. Here the magnetic isotope effect (MIE) produces a kinetic partial separation of isotopes with non-zero nuclear spin quantum numbers from the even-N isotopes. The ratio of enrichment of Δ201Hg /Δ199Hg is predicted from theory to be 1.11, which is the ratio of the magnetic moments of 199Hg and 201Hg. Because mercury possesses two odd-N isotopes, it is possible to detect and evaluate the effects of two distinct, mass-independent isotope fractionating processes. From the data obtained on fish samples, we can deconvolute the contributions of the isotope effects of nuclear mass, spin and volume. For these samples the role of spin or the magnetic isotope effect is the most dominant.
NASA Technical Reports Server (NTRS)
Yeh, N. C.; Samoilov, A. V.; Veasquez, R. P.; Li, Y.
1998-01-01
The effect of spin-polarized currents on the critical current densities of cuprate superconductors is investigated in perovskite ferromagnet-insulator-superconductor heterostructures with a pulsed current technique.
Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan
2016-08-21
In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.
NASA Astrophysics Data System (ADS)
Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan
2016-08-01
In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.
Field-induced spin reorientation in [Fe/Cr ] n multilayers studied by nuclear resonance reflectivity
NASA Astrophysics Data System (ADS)
Andreeva, M.; Gupta, A.; Sharma, G.; Kamali, S.; Okada, K.; Yoda, Y.
2015-10-01
We present depth-resolved nuclear resonance reflectivity studies of the magnetization evolution in [57Fe(3nm ) /Cr (1.2 nm ) ] 10 multilayer under applied external field. The measurements have been performed at the station BL09XU of SPring-8 at different values of the external field (0-1500 Oe). We apply the joint fit of the delayed reflectivity curves and the time spectra of the nuclear resonance reflectivity measured at different grazing angles for enhancement of the depth resolution and reliability of results. We show that the azimuth angle, which is used in all papers devoted to the magnetization profile determination, has a more complicated physical sense due to the partially coherent averaging of the scattering amplitudes from magnetic lateral domains. We describe how to select the true azimuth angle from the determined "effective azimuth angle." Finally we obtain the noncollinear twisted magnetization depth profiles where the spin-flop state appears sequentially in different 57Fe layers at increasing applied field.
NASA Astrophysics Data System (ADS)
Robin, Caroline; Litvinova, Elena
2016-07-01
A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.
Double Transverse-Spin Asymmetries for Small-Q{sub T} Drell-Yan Pair Production in pp-bar Collisions
Kawamura, Hiroyuki; Tanaka, Kazuhiro
2009-08-04
We discuss the double-spin asymmetries in transversely polarized Drell-Yan process, calculating all-order gluon resummation corrections up to the next-to-leading logarithmic accuracy. This resummation is relevant when the transverse-momentum Q{sub T} of the produced lepton pair is small, and reproduces the (fixed-order) next-to-leading QCD corrections upon integrating over Q{sub T}. The resummation corrections in pp-bar-collision behave differently compared with pp-collision cases, and are small at the kinematics in the proposed GSI experiments. This fact allows us to predict large value of the double-spin asymmetries at GSI, using recent empirical information on the transversity.
Spin identification of the Randall-Sundrum resonance in lepton-pair production at the CERN LHC
Osland, P.; Pankov, A. A.; Tsytrinov, A. V.; Paver, N.
2008-08-01
The determination of the spin of the quantum states exchanged in the various nonstandard interactions is a relevant aspect in the identification of the corresponding scenarios. We discuss the identification reach at the CERN LHC on the spin-2 of the lowest-lying Randall-Sundrum (RS) resonance, predicted by gravity with one warped extra dimension, against spin-1 and spin-0 nonstandard exchanges with the same mass and producing the same number of events in the cross section. We focus on the angular distributions of leptons produced in the Drell-Yan process at the LHC; in particular, we use as a basic observable a 'normalized' integrated angular asymmetry A{sub CE}. Our finding is that the 95% C.L. identification reach on the spin-2 of the RS resonance (equivalently, the exclusion reach on both the spin-1 and spin-0 hypotheses for the peak) is up to a resonance mass scale of the order of 1.0 or 1.6 TeV in the case of weak coupling between graviton excitations and SM particles (k/M{sub Pl}=0.01) and 2.4 or 3.2 TeV for a larger coupling constant (k/M{sub Pl}=0.1) for a time-integrated LHC luminosity of 10 or 100 fb{sup -1}, respectively. Also, some comments are given on the complementary roles of the angular analysis and the eventual discovery of the predicted second graviton excitation in the identification of the RS scenario.
Karimata, Ayumu; Suzuki, Shuichi; Kozaki, Masatoshi; Kimoto, Kenshi; Nozaki, Koichi; Matsushita, Hironori; Ikeda, Noriaki; Akiyama, Kimio; Kosumi, Daisuke; Hashimoto, Hideki; Okada, Keiji
2014-11-26
Photoinduced intramolecular electron transfer of dyad PTZ3-PTZ2-PTZ1-B-AQ consisting of phenothiazine trimer (PTZ3-PTZ2-PTZ1), bicyclo[2.2.2]octane (B), and anthraquinone (AQ) was investigated. After excitation (∼20 ps) of the AQ moiety in THF, a metastable radical ion pair (RIP) PTZ3-PTZ2-PTZ1(+)-B-AQ(-) appeared at ∼620 nm. From 500 ps to 6 ns the spectrum changed to a new absorption (∼950 nm), which was assigned to the hole-shifted stable RIP state PTZ3-PTZ2(+)-PTZ1-B-AQ(-). The time constant of the hole-shift process was determined to be 6.0 ns. The hole-shifted RIP state had a lifetime (τ) of 250 ns and was characterized by spin-polarized signals as a spin-correlated radical pair (SCRP) by means of time-resolved ESR. These results were compared with those for the phenothiazine monomer analog PTZ-B-AQ, which also produced the RIP state PTZ(+)-B-AQ(-) with τ = 1.9 μs. Time-resolved ESR showed an all emission signal pattern showing the triplet mechanism of PTZ-B-(3)AQ* → (3)[PTZ(+)-B-AQ(-)]. The origin of the difference in the lifetimes between the trimer and the monomer RIP states was discussed from various points of view, including free energy difference in the RIP states, reorganization energy difference in the charge recombination process, and the spin-state difference. Of these, the spin-state difference effect provided the most reasonable explanation.
Nuclear energy surfaces at high-spin in the A{approximately}180 mass region
Chasman, R.R.; Egido, J.L.; Robledo, L.M.
1995-08-01
We are studying nuclear energy surfaces at high spin, with an emphasis on very deformed shapes using two complementary methods: (1) the Strutinsky method for making surveys of mass regions and (2) Hartree-Fock calculations using a Gogny interaction to study specific nuclei that appear to be particularly interesting from the Strutinsky method calculations. The great advantage of the Strutinsky method is that one can study the energy surfaces of many nuclides ({approximately}300) with a single set of calculations. Although the Hartree-Fock calculations are quite time-consuming relative to the Strutinsky calculations, they determine the shape at a minimum without being limited to a few deformation modes. We completed a study of {sup 182}Os using both approaches. In our cranked Strutinsky calculations, which incorporate a necking mode deformation in addition to quadrupole and hexadecapole deformations, we found three well-separated, deep, strongly deformed minima. The first is characterized by nuclear shapes with axis ratios of 1.5:1; the second by axis ratios of 2.2:1 and the third by axis ratios of 2.9:1. We also studied this nuclide with the density-dependent Gogny interaction at I = 60 using the Hartree-Fock method and found minima characterized by shapes with axis ratios of 1.5:1 and 2.2:1. A comparison of the shapes at these minima, generated in the two calculations, shows that the necking mode of deformation is extremely useful for generating nuclear shapes at large deformation that minimize the energy. The Hartree-Fock calculations are being extended to larger deformations in order to further explore the energy surface in the region of the 2.9:1 minimum.
Effect of nuclear spin on chemical reactions and internal molecular rotation
Sterna, L.L.
1980-12-01
Part I of this dissertation is a study of the magnetic isotope effect, and results are presented for the separation of /sup 13/C and /sup 12/C isotopes. Two models are included in the theoretical treatment of the effect. In the first model the spin states evolve quantum mechanically, and geminate recombination is calculated by numerically integrating the collision probability times the probability the radical pair is in a singlet state. In the second model the intersystem crossing is treated via first-order rate constants which are average values of the hyperfine couplings. Using these rate constants and hydrodynamic diffusion equations, an analytical solution, which accounts for all collisions, is obtained for the geminate recombination. The two reactions studied are photolysis of benzophenone and toluene and the photolytic decomposition of dibenzylketone (1,3-diphenyl-2-propanone). No magnetic isotope effect was observed in the benzophenone reaction. /sup 13/C enrichment was observed for the dibenzylketone reaction, and this enrichment was substantially enhanced at intermediate viscosities and low temperatures. Part II of this dissertation is a presentation of theory and results for the use of Zeeman spin-lattice relaxation as a probe of methyl group rotation in the solid state. Experimental results are presented for the time and angular dependences of rotational polarization, the methyl group magnetic moment, and methyl-methyl steric interactions. The compounds studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8-tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5-tetramethylbenzene, and 2,3-dimethylmaleicanhydride.
Pourfathi, M; Kuzma, N N; Kara, H; Ghosh, R K; Shaghaghi, H; Kadlecek, S J; Rizi, R R
2013-10-01
Earlier Dynamic Nuclear Polarization (DNP) experiments with frozen xenon/1-propanol/trityl mixtures have demonstrated spontaneous formation of pure xenon clusters above 120 K, enabling spectrally-resolved real-time measurements of (129)Xe nuclear magnetization in the clusters and in the surrounding radical-rich matrix. A spin-diffusion bottleneck was postulated to explain the peculiar time evolution of (129)Xe signals in the clusters as well as the apparent discontinuity of (129)Xe polarization across the cluster boundaries. A self-contained ab initio model of nuclear spin diffusion in heterogeneous systems is developed here, incorporating the intrinsic T1 relaxation towards the temperature-dependent equilibrium polarization and the spin-diffusion coefficients based on the measured NMR line widths and the known atomic densities in each compartment. This simple model provides the physical basis for the observed spin-diffusion bottleneck and is in a good quantitative agreement with the earlier measurements. A simultaneous fit of the model to the time-dependent NMR data at two different DNP frequencies provides excellent estimates of the cluster size, the intrinsic sample temperature, and (129)Xe T1 constants. The model was also applied to the NMR data acquired during relaxation towards the thermal equilibrium after the microwaves were turned off, to estimate T1 relaxation time constants inside and outside the clusters. Fitting the model to the data during and after DNP provides consistent estimates of the cluster size.
Pourfathi, M.; Kuzma, N. N.; Kara, H.; Ghosh, R. K.; Shaghaghi, H.; Kadlecek, S. J.; Rizi, R. R.
2013-01-01
Earlier dynamic nuclear polarization (DNP) experiments with frozen xenon/1-propanol/trityl mixtures have demonstrated spontaneous formation of pure xenon clusters above 120 K, enabling spectrally-resolved real-time measurements of 129Xe nuclear magnetization in the clusters and in the surrounding radical-rich matrix. A spin-diffusion bottleneck was postulated to explain the peculiar time evolution of 129Xe signals in the clusters as well as the apparent discontinuity of 129Xe polarization across the cluster boundaries. A self-contained ab initio model of nuclear spin diffusion in heterogeneous systems is developed here, incorporating the intrinsic T1 relaxation towards the temperature-dependent equilibrium along with the spin-diffusion coefficients based on the measured NMR line widths and the known atomic densities in each compartment. This simple model provides the physical basis for the observed spin-diffusion bottleneck and is in a good quantitative agreement with the earlier measurements. A simultaneous fit of the model to the time-dependent NMR data at two different DNP frequencies provides excellent estimates of the cluster size, the intrinsic sample temperature, and 129Xe T1 constants. The model was also applied to the NMR data acquired during relaxation towards thermal equilibrium after microwaves were turned off to estimate T1 relaxation time constants inside and outside the clusters. Fitting the model to data during and after DNP provides estimates of cluster size that are in complete agreement. PMID:23981341
Moissette, Alain; Marquis, Séverine; Cornu, David; Vezin, Hervé; Brémard, Claude
2005-11-09
Long-lived spin-correlated pairs were generated by laser irradiation of naphthalene (NAP) occluded as intact molecule within non-Brønsted acidic MnZSM-5 zeolites with MnSiO(2))(96-n)(AlO(2)n formula per unit cell. The laser UV photoionization generates primary NAP.+-electron pair as a fast phenomenon. These charge carriers exhibit lifetimes that extend over less than 1 h at room temperature and disappear according to two parallel competitive ways: direct charge recombination and electron transfer. This subsequent electron transfer takes place between the electron-deficient radical cation (NAP.+) and the electron-donor oxygen atom of zeolite framework. The aluminum rich MnZSM-5 zeolites (n = 3.4, 6.6) hinder efficiently the charge recombination and promote the electron transfer to generate a very long electron-hole pair which exceeds several weeks at room temperature in NAP@Li(6.6)ZSM-5. The electron-hole pair exhibits broad visible absorption bands at 482 and 525 nm. The electron-hole distance, 1.3 nm, was deduced from the dipolar interaction term (D) value. The spin density of trapped electron appears spread over (27)Al, (29)Si, (7)Li, and (1)H nuclei as deduced by two-dimensional approach of hyperfine sublevel correlation (HYSCORE). The very low recombination rate by tunneling effect was found to be in agreement with the very low value (J approximately 0) of the magnetic exchange. The combined effects of tight fit between NAP size and straight-channel dimension, the high aluminum content of the framework, and the highly polarizing cation Li(+) trapped efficiently the ejected electron in the conduction band and the hole in the valence band of the porous materials.
NASA Astrophysics Data System (ADS)
Inotani, Daisuke; Hanai, Ryo; Ohashi, Yoji
2016-10-01
We extend our recent work [Y. Endo et al., Phys. Rev. A 92, 023610 (2015)], 10.1103/PhysRevA.92.023610 for a parity-mixing effect in a model of two-dimensional lattice fermions to a realistic three-dimensional ultracold Fermi gas. Including effects of broken local spatial inversion symmetry by a trap potential within the framework of the real-space Bogoliubov-de Gennes theory at T =0 , we point out that an odd-parity p -wave Cooper-pair amplitude is expected to have already been realized in previous experiments on an (even-parity) s -wave superfluid Fermi gas with spin imbalance. This indicates that when one suddenly changes the s -wave pairing interaction to an appropriate p -wave one by using a Feshbach technique in this case, a nonvanishing p -wave superfluid order parameter is immediately obtained, which is given by the product of the p -wave interaction and the p -wave pair amplitude that has already been induced in the spin-imbalanced s -wave superfluid Fermi gas. Thus, by definition, the system is in the p -wave superfluid state, at least just after this manipulation. Since the achievement of a p -wave superfluid state is one of the most exciting challenges in cold Fermi gas physics, our results may provide an alternative approach to this unconventional pairing state. In addition, since the parity-mixing effect cannot be explained as far as one deals with a trap potential in the local density approximation (LDA), it is considered as a crucial example which requires us to go beyond the LDA.
Yachmenev, Andrey; Yurchenko, Sergei N; Paidarová, Ivana; Jensen, Per; Thiel, Walter; Sauer, Stephan P A
2010-03-21
Analytic internal-coordinate representations are reported for two accurate ab initio spin-spin coupling surfaces of the ammonia molecule, (1)J ((15)N,H) and (2)J(H,H). Calculations were carried out at the level of the second-order polarization propagator approximation involving coupled-cluster singles and doubles amplitudes (CCSD) and using a large specialized basis set, for a total of 841 different geometries corresponding to 2523 distinct points on the (1)J ((15)N,H) and (2)J(H,H) surfaces. The results were fitted to power series expansions truncated after the fourth-order terms. While the one-bond nitrogen-hydrogen coupling depends more on the internuclear distance, the geminal hydrogen-hydrogen coupling exhibits a pronounced dependence on the bond angle. The spin-spin parameters are first vibrationally averaged, using vibrational wave functions obtained variationally from the TROVE computer program with a CCSD(T) based potential energy surface, for ammonia and its various deuterated isotopologues. The vibrationally averaged quantities are then thermally averaged to give values of the couplings at absolute temperatures of 300 and 600 K. We find that the nuclear-motion corrections are rather small. The computed one-bond couplings and their minute isotope effects are in excellent agreement with the experimental values.
Soubies, B.; Henry, J.Y.; Le Meur, M.
1995-04-01
1300 MWe pressurised water reactors (PWRs), like the 1400 MWe reactors, operate with microprocessor-based safety systems. This is particularly the case for the Digital Integrated Protection System (SPIN), which trips the reactor in an emergency and sets in action the safeguard functions. The softwares used in these systems must therefore be highly dependable in the execution of their functions. In the case of SPIN, three players are working at different levels to achieve this goal: the protection system manufacturer, Merlin Gerin; the designer of the nuclear steam supply system, Framatome; the operator of the nuclear power plants, Electricite de France (EDF), which is also responsible for the safety of its installations. Regulatory licenses are issued by the French safety authority, the Nuclear Installations Safety Directorate (French abbreviation DSIN), subsequent to a successful examination of the technical provisions adopted by the operator. This examination is carried out by the IPSN and the standing group on nuclear reactors. This communication sets out: the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs (N4 series); the approach adopted by the IPSN to evaluate the safety software of the protection system for the N4 series of reactors.
NASA Astrophysics Data System (ADS)
Drobyshev, A.; Aldiyarov, A.; Sokolov, D.; Shinbayeva, A.
2017-02-01
Solid methane belongs to a group of crystals containing hydrogen atoms, whose macroscopic properties are greatly influenced by the spin interaction of hydrogen nuclei. In particular, the methane molecule, which has four protons with spin I=1/2, has three total spin modifications: para-, ortho- and meta-states with three values of the total spin moments of 0, 1 and 2, respectively. Equilibrium concentrations of these modifications and relaxation times are dependent on the temperature, affecting the observed thermal properties of solid methane, such as thermal conductivity, specific heat, thermal expansion. In this paper, we attempt to explain the peculiarities of thin film growth of methane at cryogenic temperatures from the viewpoint of spin-nuclear transformations. Our observations of absorption intensity at a frequency corresponding to 1/2 of the absorption band amplitude of deformation vibrations record a step-like change in the position of the absorption band during the sample deposition process. The observed phenomenon, in our opinion, is the demonstration of spin transformations during deposition.
Bankay, M.; Mali, M.; Roos, J.; Brinkmann, D. )
1994-09-01
We present results of [sup 17]O and [sup 63,65]Cu nuclear magnetic resonance (NMR) and nuclear quadrupolar resonance (NQR) studies in the normal and superconducting state of the 82-K superconductor YBa[sub 2]Cu[sub 4]O[sub 8]. The various components of the Cu and O Knight-shift tensors show strong but similar temperature dependences over the temperature range from 8.5 to 300 K in both the CuO[sub 2] planes and the chains, supporting the picture that there is only one spin component in the planes and the chains, although with different susceptibilities. The oxygen data obey the Korringa relation. This may be interpreted as Fermi-liquid behavior of the electronic system far away from the antiferromagnetic wave vector. The temperature dependence of both the planar Cu and O shift tensors and the planar Cu spin-lattice relaxation rate suggest the opening of a pseudo-spin-gap well above [ital T][sub [ital c
NASA Astrophysics Data System (ADS)
Tsuda, Shibun; Nguyen, Minh-Hai; Terasawa, Daiju; Fukuda, Akira; Sawada, Anju
2016-03-01
We investigate the huge longitudinal resistance (HLR) at which the magnetoresistance of the ν =2/3 fractional quantum Hall state (QHS) is increased with dynamic nuclear spin polarization. We measure the magnetoresistance temperature dependence in the resistively saturated HLR by increasing the temperature of the sample rapidly in order to prevent relaxation of the nuclear spin polarization. The obtained results indicate that the magnetoresistance decreases as the temperature increases. The Hall resistance in the HLR is also measured and found to exhibit a plateau close to a quantized value. We discuss the negative magnetoresistance temperature dependence with a stripe-shaped domain state deformed by the nuclear spin polarization.
NASA Astrophysics Data System (ADS)
Liu, Xia-Ji; Hu, Hui; Pu, Han
2015-05-01
We theoretically investigate a three-dimensional Fermi gas with Rashba spin-orbit coupling in the presence of both out-of-plane and in-plane Zeeman fields. We show that, driven by a sufficiently large Zeeman field, either out-of-plane or in-plane, the superfluid phase of this system exhibits a number of interesting features, including inhomogeneous Fulde-Ferrell pairing, gapped or gapless topological order, and exotic quasi-particle excitations known as Weyl fermions that have linear energy dispersions in momentum space (i.e., massless Dirac fermions). The topological superfluid phase can have either four or two topologically protected Weyl nodes. We present the phase diagrams at both zero and finite temperatures and discuss the possibility of their observation in an atomic Fermi gas with synthetic spin-orbit coupling. In this context, topological superfluid phase with an imperfect Rashba spin-orbit coupling is also studied. Project supported by the ARC Discovery Projects (Grant Nos. FT140100003, FT130100815, DP140103231, and DP140100637), the National Basic Research Program of China (Grant No. 2011CB921502), the US National Science Foundation, and the Welch Foundation (Grant No. C-1669).
NASA Astrophysics Data System (ADS)
Yang, Albion
The linewidths of optical transitions associated with shallow impurities have been shown in recent studies to be much narrower in isotopically enriched 28Si as compared to natural Si. This is true of the no-phonon P donor bound exciton transition in 28Si, and using photoluminescence excitation spectroscopy, fine structure previously not seen in natural Si is revealed. Under a small external magnetic field, the P bound exciton transition shows a complicated structure consisting of six sets of doublets, with the doublet splitting being due to the splitting of the donor ground state by the hyperfine interaction between the spin of the donor electron and that of the 31P nucleus. The electron spin populations and the 31P nuclear spin populations can be determined by measuring the relative intensities of the hyperfine components in the photoluminescence excitation spectrum. Additionally, the predominant Auger recombination channel of these bound excitons is used to observe the same resolved hyperfine components in the photocurrent spectrum. By selectively ionizing donors in a specific hyperfine state via optical pumping of a specific hyperfine component, large polarizations of the electron and nuclear spins of 31P donors can be achieved at low field. Electron and nuclear polarizations of 90% and 76%, respectively, are obtained in less than a second, providing an initialization mechanism for qubits based on these spins, and enabling further ESR and NMR studies on dilute 31P in 28Si. A measurement of the homogeneous linewidth of the transitions associated with the 31P bound exciton, determined by spectral hole burning, is also presented. The observed 10 neV linewidth is only four times the limit set by the bound exciton lifetime.
NASA Astrophysics Data System (ADS)
Xu, Su-Yang
2014-03-01
Superconductivity in Dirac systems is one of the central theoretical themes in modern physics. In particular, a helical superconductor is a theoretically predicted exotic topological phase of matter, which can be experimentally realized if superconductivity can be induced in an odd number of spin-helical Dirac electronic states. By spectroscopically momentum-resolving the superconducting proximity effect at the boundary of a topological insulator ultra-thin film, we experimentally present direct experimental evidence for a helical topological superconductor via the observation of superconductivity in an odd number of spin-momentum locked topological surface states. Observation of helical superconductivity opens the door to a number of novel topological phenomena such as supersymmetry and Abelian Majorana modes in a condensed matter context. This work is primarily supported by U.S. DOE and Princeton University
Spin-mapping of coal structures with ESE and ENDOR (Electron-Nuclear Double Resonance)
Belford, R.L.; Clarkson, R.B.
1989-03-01
Our Laboratory is presently engaged in developing a method to model sulfur-containing compounds in whole coal. It has been established that most of the organic sulfur in coal exists in the form of aromatic groups known as thiophenes. Sulfur-containing aromatic compounds such as thiophene, tetraphenylthiophene and thianthrene were adsorbed onto silica-alumina catalyst surfaces were used as models to emulate coal's anisotropic nature and abundance of unpaired electron spin density. The spectroscopic techniques used were Electron Paramagnetic Resonance (EPR), Electron-Nuclear Double Resonance (ENDOR). EPR spectroscopy is a well established method to characterize g-matrix anisotropy in transition metal compounds. With increased resolution, EPR has become very useful for characterizing the small but still detectable g-matrix anisotropy in organic systems such as coal and the model systems for coal. ENDOR spectroscopy involves the inducement of NMR transitions of the nearby protons while detecting them with an EPR detection scheme which is several orders of magnitude more sensitive than using a NMR detection scheme. Analysis of the ENDOR spectra produced hyperfine information which is characteristic of these sulfur-containing systems. This information will be needed to resolve anisotropic hyperfine spectral features attributable to sulfur content in the analysis of coal macerals. 2 refs., 3 figs.
Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization
Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.
2009-01-01
We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957
Infrared spectroscopic investigation of nuclear spin conversion in solid CH{sub 4}
Sugimoto, Takeru; Yamakawa, Koichiro Arakawa, Ichiro
2015-12-14
Infrared spectra of solid CH{sub 4} were studied in the ν{sub 3} and ν{sub 4} vibrational regions. The phase I crystal around 30 K showed broad absorption bands, whereas the phase II crystal at 6.9–10.3 K exhibited splitting of these bands after annealing above 20 K. The split peaks were assigned to the librating and almost freely rotating molecules in phase II on the basis of the peak spacings and time evolution of the peak intensities. From the quantitative analysis of the temporal changes of the R(0) and R(1) peak intensities, the relaxation rates of the numbers of molecules with J = 0 (I = 2) and J = 1 (I = 1) were determined in the temperature range of 6.9–10.3 K. We fitted the function resulting from a combination of direct and indirect relaxation processes mediated by phonons to the temperature dependence of these rates and obtained the activation energies of the indirect process: C ≃ 36 K. Since this value is higher than the energies of perturbed J = 2 states relative to the J = 1 state, we argue that the nuclear spin conversion through the J = 3 state also takes place.
Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization.
Barnes, Alexander B; Mak-Jurkauskas, Melody L; Matsuki, Yoh; Bajaj, Vikram S; van der Wel, Patrick C A; Derocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R; Temkin, Richard J; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G
2009-06-01
We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here-which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole-circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100K which shows 30 Hz linewidths.
Infrared spectroscopic investigation of nuclear spin conversion in solid CH4
NASA Astrophysics Data System (ADS)
Sugimoto, Takeru; Yamakawa, Koichiro; Arakawa, Ichiro
2015-12-01
Infrared spectra of solid CH4 were studied in the ν3 and ν4 vibrational regions. The phase I crystal around 30 K showed broad absorption bands, whereas the phase II crystal at 6.9-10.3 K exhibited splitting of these bands after annealing above 20 K. The split peaks were assigned to the librating and almost freely rotating molecules in phase II on the basis of the peak spacings and time evolution of the peak intensities. From the quantitative analysis of the temporal changes of the R(0) and R(1) peak intensities, the relaxation rates of the numbers of molecules with J = 0 (I = 2) and J = 1 (I = 1) were determined in the temperature range of 6.9-10.3 K. We fitted the function resulting from a combination of direct and indirect relaxation processes mediated by phonons to the temperature dependence of these rates and obtained the activation energies of the indirect process: C ≃ 36 K. Since this value is higher than the energies of perturbed J = 2 states relative to the J = 1 state, we argue that the nuclear spin conversion through the J = 3 state also takes place.
NASA Astrophysics Data System (ADS)
Clevenson, Hannah; Chen, Edward; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle
2016-05-01
We report on detailed studies of electronic and nuclear spin states in the diamond nitrogen vacancy (NV) center under moderate transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV ground state hyperfine anti-crossing occurring at magnetic bias fields as low as tens of Gauss - two orders of magnitude lower than previously reported hyperfine anti-crossings at ~ 510 G and ~ 1000 G axial magnetic fields. We then discuss how this regime can be optimized for magnetometry and other sensing applications and propose a method for how the nitrogen-vacancy ground state Hamiltonian can be manipulated by small transverse magnetic fields to polarize the nuclear spin state. Acknowlegement: The Lincoln Laboratory portion of this work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
NASA Astrophysics Data System (ADS)
Mananga, Eugene Stephane; Charpentier, Thibault
2015-04-01
In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.
NASA Astrophysics Data System (ADS)
Ayabe, Kazuki; Sato, Kazunobu; Nakazawa, Shigeaki; Nishida, Shinsuke; Sugisaki, Kenji; Ise, Tomoaki; Morita, Yasushi; Toyota, Kazuo; Shiomi, Daisuke; Kitagawa, Masahiro; Suzuki, Shuichi; Okada, Keiji; Takui, Takeji
2013-10-01
Weakly exchange-coupled biradicals have attracted much attention in terms of their dynamic nuclear polarisation application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits in quantum information processing/quantum-computing technology. Analogues multi-partite molecular systems are important in entering a new phase of the relevant fields. Many stable organic biradicals known so far have nitrogen nuclei at their electron spin sites, where singly occupied molecular orbitals are dominating and large hyperfine couplings occur. A salient feature of such weakly exchange-coupled molecular systems in terms of electronic spin structures is underlain by small zero-field splitting (ZFS) parameters comparable with nuclear hyperfine and/or exchange interactions. Pulse-based electron spin nutation (ESN) spectroscopy of weakly exchange-coupled biradicals, applicable to oriented or non-oriented media, has proven to be a useful and facile approach to the determination of ZFS parameters, which reflect relatively short distances between unpaired electron spins. In the present study, we first treat two-dimensional single-crystal ESN spectroscopy (Q-band) of a 15N-labelled weakly exchange-coupled biradical, showing the nuclear hyperfine effects on the ESN phenomena from both the experimental and theoretical side. ESN spectroscopy is transition moment spectroscopy, in which the nutation frequency as a function of the microwave irradiation strength ω1 (angular frequency) for any cases of weakly exchange-coupled systems can be treated. The results provide a testing ground for the simplified but general approach to the ESN analysis. In this study, we have invoked single-crystal electron-electron double resonance measurements on a typical biradical well incorporated in a diamagnetic host lattice and checked the accuracy of our ESN analysis for the spin dipolar tensor and exchange interaction. Next, we extend the general approach to analogues multi
NASA Astrophysics Data System (ADS)
Levin, P. P.; Kuzmin, V. A.
1992-05-01
The geminate recombination kinetics of the radical pairs produced by quenching of the triplet aromatic ketones or quinones by 4-phenylphenol and 4-phenylaniline in aqueous micellar solutions of sodium alkyl sulfates in the presence of additives (ethanol, NaCl, bromo- and iodobenzenes, paramagnetic species) has been examined using the laser flash technique. The recombination rates increase as the micellar size in decreased. Application of an external magnetic field (0.45 T) results in the retardation of geminate recombination up to 25 times. The magnetic field effect is quenched by internal or even external heavy atoms as well as by paramagnetic species, including 3O 2. The magnetic field dependences and attendant regularities are considered in terms of a simple kinetic scheme, in which the singlet-triplet evolution in the separated states of a pair due to hyperfine coupling and relaxation mechanisms, as well as intersystem recombination due to the spin-orbit coupling in the contact states of a pair, are included as first-order processes. The corresponding kinetic parameters of the different pathways involved are also discussed.
Dual origin of pairing in nuclei
NASA Astrophysics Data System (ADS)
Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.
2016-11-01
The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.
Cu nuclear magnetic resonance study of charge and spin stripe order in La1.875Ba0.125CuO4
NASA Astrophysics Data System (ADS)
Pelc, D.; Grafe, H.-J.; Gu, G. D.; Požek, M.
2017-02-01
We present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved ("wiped-out") signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide information on the nature and suppression of spin fluctuations associated with charge order. We find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.
Nozirov, Farhod E-mail: farhod.nozirov@gmail.com; Stachów, Michał; Kupka, Teobald E-mail: farhod.nozirov@gmail.com
2014-04-14
A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd) with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)
Nuclear Spin-Lattice Relaxation Times from Continuous Wave NMR Spectroscopy.
ERIC Educational Resources Information Center
Wooten, Jan B.; And Others
1979-01-01
The experiment described, suitable for undergraduate physical chemistry laboratories, illustrates the general principles of relaxation and introduces the nmr concepts of saturation and spin-inversion. (BB)
Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.
2014-05-28
Coupled electron-nuclear dynamics has been studied, using the Ehrenfest method, for four conformations of the glycine molecule and a single conformation of Gly-Gly-NH-CH{sub 3}. The initial electronic wavepacket was a superposition of eigenstates corresponding to ionization from the σ lone pairs associated with the carbonyl oxygens and the amine nitrogen. For glycine, oscillating charge migration (when the nuclei were frozen) was observed for the 4 conformers studied with periods ranging from 2 to 5 fs, depending on the energy gap between the lone pair cationic states. When coupled nuclear motion was allowed (which was mainly NH{sub 2} partial inversion), the oscillations hardly changed. For Gly-Gly-NH-CH{sub 3}, charge migration between the carbonyl oxygens and the NH{sub 2} lone pair can be observed with a period similar to glycine itself, also without interaction with nuclear motion. These simulations suggest that charge migration between lone pairs can occur independently of the nuclear motion.
Search for a narrow, spin-2 resonance decaying to a pair of Z bosons in the qqbarℓ+ℓ- final state
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Scheurer, A.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Mazza, G.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; CMS Collaboration
2013-01-01
Results are presented from a search for a narrow, spin-2 resonance decaying into a pair of Z bosons, with one Z-boson decaying into leptons (e+e- or μ+μ-) and the other into jets. An example of such a resonance is the Kaluza-Klein graviton, GKK, predicted in Randall-Sundrum models. The analysis is based on a 4.9 fb-1 sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. Kinematic and topological properties including decay angular distributions are used to discriminate between signal and background. No evidence for a resonance is observed, and upper limits on the production cross sections times branching fractions are set. In two models that predict Z-boson spin correlations in graviton decays, graviton masses are excluded lower than a value which varies between 610 and 945 GeV, depending on the model and the strength of the graviton couplings.
Morello, A; Millán, A; de Jongh, L J
2014-03-21
A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.
Stern, R.; Mali, M.; Roos, J.; Brinkmann, D.
1995-06-01
We report measurements of the Gaussian contribution {ital T}{sub 2{ital G}} to the plane {sup 63}Cu nuclear spin-spin relaxation time in the YBa{sub 2}Cu{sub 3}O{sub 7} and YBa{sub 2}Cu{sub 4}O{sub 8} blocks of normal and superconducting Y{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15}. The data confirm our previous results that adjacent CuO{sub 2} planes have different doping levels and that these planes are strongly coupled. The static spin susceptibility at the antiferromagnetic wave vector exhibits a Curie-Weiss-like temperature dependence in the normal state. The Y{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15} data are incompatible with a phase diagram based on a single CuO{sub 2} plane theory but point to the importance of the interplane coupling in the spin-gap formation. Additional data for YBa{sub 2}Cu{sub 4}O{sub 8} and YBa{sub 2}Cu{sub 3}O{sub 6.982} are in acord with the single-plane theory. The temperature dependence of {ital T}{sub 2{ital G},ind} below {ital T}{sub {ital c}} excludes isotropic {ital s}-wave superconductivity in all three compounds.
Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation.
Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T; Roy, Soumya Singha; Brown, Richard C D; Pileio, Giuseppe; Levitt, Malcolm H
2015-01-28
Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in (13)CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.
Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation
Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.
2015-01-28
Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T{sub 1}. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in {sup 13}CH{sub 3} groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.
Dependence on Spin and Isospin of Short-Range Nuclear Forces in Modified OPEG
NASA Astrophysics Data System (ADS)
Tamagaki, R.; Takatsuka, T.
2001-06-01
Dependence on spin and isospin of nucleon-nucleon potentials at small inernucleon distances is studied by observing the operator forms deduced from two modified versions of OPEG potentials with the OPEP-tail and Gaussian core terms. A significant difference between their spin- and isospin-dependent features in the core region is noted.
Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems
NASA Astrophysics Data System (ADS)
Chang, Zhiwei; Halle, Bertil
2016-07-01
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with a single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued ("imaginary") part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue.
SivaRanjan, Uppala; Ramachandran, Ramesh
2014-02-07
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.
NASA Astrophysics Data System (ADS)
Zhang, Qiang
Molecular beam epitaxy (MBE) is an extremely versatile thin film technique, which can produce single-crystal layers with atomic dimensional controls and thus permit the preparation of novel structures and devices tailored to meet specific needs. Spin relaxation time ts is one of the key features in spin-related phenomena and thus of great importance for spintronics. In this work, we prepare high quality samples, mainly of CdTe epilayers, by MBE, characterize their spin relaxation dynamics, and discuss the results theoretically. First, with the goal of understanding the mechanisms of electron relaxation dynamics and nuclear spin enhancement, we focus on the growth and characterization of CdTe epilayers. By changing the shutter sequences and inserting ZnSe buffer layer, we have reproducibly grown (111) and (100) CdTe epilayers of high crystalline qualities by MBE, despite the large lattice mismatch between CdTe and GaAs substrate. Then we investigate ts for the (111) and (100) CdTe epilayers. It is found that for the (111) CdTe, spin relaxation rate t-1s is significantly enhanced and shows no temperature dependence through 130K to 300K, while t-1s for the (100) CdTe is strongly affected by the temperature. It is also found that t-1s is dependent on material quality for both (111) and (100) CdTe. We theoretically discuss the effect of strain and defect on spin relaxation time of CdTe. It is the first experimental observation of the effect of strain on t-1s in a II-VI semiconductor material. Second, the growth and characterization of ZnTe/ZnSe related type II quantum structures, or quantum dots (QDs), are also presented in this work. The PL of Zn-Se-Te related type II quantum structures show blue shifts with higher intensities of exciting laser, an indication of type II QDs. Besides being an attractive method to p-type dope wide bandgap materials, the resulting material may be a promising structure for spin enhancement properties. Third, we present the study of the
NASA Astrophysics Data System (ADS)
Carter, Samuel; Soykal, Oney; Economou, Sophia; Glaser, Evan
2015-03-01
The silicon vacancy in silicon carbide is currently being considered for applications in quantum information and sensing, with several studies showing room temperature spin polarization and manipulation. We perform room temperature optically-detected magnetic resonance and spin echo measurements on an ensemble of silicon vacancies to better characterize the nature of this system and determine the spin coherence properties. The spin coherence time is shown to be dependent on magnetic field, varying from a few μs at low fields to longer than 30 μs at 50 mT. Strong spin echo modulation that varies with magnetic field is also observed. The modulation is attributed to the interaction with nearby nuclear spins and is well-described by a theoretical model.
Anomalous nuclear spin-lattice relaxation of 3He in contact with ordered Al2O3 aerogel
NASA Astrophysics Data System (ADS)
Alakshin, E. M.; Zakharov, M. Yu.; Klochkov, A. V.; Kuzmin, V. V.; Safiullin, K. R.; Stanislavovas, A. A.; Tagirov, M. S.
2016-09-01
Spin-lattice relaxation of 3He in contact with the ordered Al2O3 fiber aerogel has been studied at the temperature of 1.6 K in fields of 0.1-0.5 T by the pulsed nuclear magnetic resonance (NMR) method. An additional mechanism of the relaxation of 3He in aerogels is found and it is shown that this relaxation mechanism is not associated with the adsorbed layer. A hypothesis about the influence of intrinsic paramagnetic centers on the relaxation of gaseous 3He is proposed.
Wind, Robert A.; Hu, Jian Zhi
2005-01-01
Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896.
Effects of orbital and spin current interference in E1 and M2 nuclear excitations
Goncharova, N. G.
2015-12-15
The interference of contributions from the orbital and spin currents to the E1 and M2 resonances is investigated. The results of the current interference analysis within the shell model are compared with the experimental data.
Nuclear Spin Relaxation in Glass States of 3He-A in Stretched Aerogel
NASA Astrophysics Data System (ADS)
Dmitriev, V. V.; Krasnikhin, D. A.; Mulders, N.; Senin, A. A.; Yudin, A. N.
2011-02-01
We present results of pulse NMR investigations of superfluid A-like phase of 3He in stretched aerogel. In this case we have anisotropic orbital glass (OG) with two possible types of ordering in spin space—ordered spin nematic (OG-SN) or disordered spin glass (OG-SG) states. It was found that longitudinal relaxation of magnetization is non-exponential in both states and depends on temperature and on inhomogeneity of external steady magnetic field. At the same conditions the relaxation in OG-SG state is more rapid than in OG-SN state. For transverse orientation of the magnetic field relative to anisotropy axis the duration of free induction decay signal was longer than in normal phase. It may be explained by formation of coherently precessing spin state.
NASA Technical Reports Server (NTRS)
Derrickson, J. H.; Eby, P. B.; Fountain, W. F.; Parnell, T. A.; Dong, B. L.; Gregory, J. C.; Takahashi, Y.; King, D. T.
1988-01-01
Measurements and theoretical predictions of the Coulomb cross section for the production of direct electron pairs by heavy ions in emulsion have been performed. Nuclear track emulsions were exposed to the 1.8 GeV/amu Fe-56 beam at the Lawrence Berkeley Laboratory bevalac and to the 60 and 200 GeV/amu O-16 and the 200 GeV/amu S-32 beam at the European Center for Nuclear Research Super Proton Synchrotron modified to accelerate heavy ions. The calculations combine the Weizsacker-Williams virtual quanta method applicable to the low-energy transfers and the Kelner-Kotov relativistic treatment for the high-energy transfers. Comparison of the measured total electron pair yield, the energy transfer distribution, and the emission angle distribution with theoretical predictions revealed a discrepancy in the frequency of occurrence of the low-energy pairs (less than or = 10 MeV). The microscope scanning criteria used to identify the direct electron pairs is described and efforts to improve the calculation of the cross section for pair production are also discussed.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
NASA Astrophysics Data System (ADS)
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.
2015-09-01
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H12C-12CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
NASA Astrophysics Data System (ADS)
Inoue, Takeshi; Furukawa, Takeshi; Yoshimi, Akihiro; Nanao, Tsubasa; Chikamori, Masatoshi; Suzuki, Kunifumi; Hayashi, Hironori; Miyatake, Hirokazu; Ichikawa, Yuichi; Tsuchiya, Masato; Hatakeyama, Naoto; Kagami, Sota; Uchida, Makoto; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro
2016-06-01
A 129Xe nuclear spin oscillator with an artificial feedback was constructed, and detailed studies were conducted on its performance, focusing on the frequency stability. As a result, the major sources of drift of the precession frequency in the present spin oscillator setup were identified to be drifts of a solenoid current and an environmental magnetic field. By introducing stabilization systems for the current and the environmental field, which yielded improvements by one order of magnitude on the solenoid current and by a factor of three on the environmental field, a frequency precision of 7.9 nHz was obtained for a one-shot measurement of 3 × 104 s duration. We found, however, that the Allan deviation leveled off at around 30 μHz, indicating a strong need for the precision monitor of the experimental conditions represented by magnetometry. The frequency stability of the spin oscillator is discussed in relation to an experimental search for an electric dipole moment of the 129Xe atom.
Erezyilmaz, Deniz F.; Kelstrup, Hans C.; Riddiford, Lynn M.
2009-01-01
Genetic studies of the fruit fly Drosophila have revealed a hierarchy of segmentation genes (maternal, gap, pair-rule and HOX) that subdivide the syncytial blastoderm into sequentially finer scale coordinates. Within this hierarchy, the pair-rule genes translate gradients of information into periodic stripes of expression. How pair-rule genes function during the progressive mode of segmentation seen in short and intermediate-germ insects is an ongoing question. Here we report that the nuclear receptor Of’E75A is expressed with double segment periodicity in the head and thorax. In the abdomen, Of’E75A is expressed in a unique pattern during posterior elongation, and briefly resembles a sequence that is typical of pair-rule genes. Depletion of Of’E75A mRNA caused loss of a subset of odd-numbered parasegments, as well as parasegment 6. Because these parasegments straddle segment boundaries, we observe fusions between adjacent segments. Finally, expression of Of’E75A in the blastoderm requires even-skipped, which is a gap gene in Oncopeltus. These data show that the function of Of’E75A during embryogenesis shares many properties with canonical pair-rule genes in other insects. They further suggest that parasegment specification may occur through irregular and episodic pair-rule-like activity. PMID:19580803
Erezyilmaz, Deniz F; Kelstrup, Hans C; Riddiford, Lynn M
2009-10-01
Genetic studies of the fruit fly Drosophila have revealed a hierarchy of segmentation genes (maternal, gap, pair-rule and HOX) that subdivide the syncytial blastoderm into sequentially finer-scale coordinates. Within this hierarchy, the pair-rule genes translate gradients of information into periodic stripes of expression. How pair-rule genes function during the progressive mode of segmentation seen in short and intermediate-germ insects is an ongoing question. Here we report that the nuclear receptor Of'E75A is expressed with double segment periodicity in the head and thorax. In the abdomen, Of'E75A is expressed in a unique pattern during posterior elongation, and briefly resembles a sequence that is typical of pair-rule genes. Depletion of Of'E75A mRNA caused loss of a subset of odd-numbered parasegments, as well as parasegment 6. Because these parasegments straddle segment boundaries, we observe fusions between adjacent segments. Finally, expression of Of'E75A in the blastoderm requires even-skipped, which is a gap gene in Oncopeltus. These data show that the function of Of'E75A during embryogenesis shares many properties with canonical pair-rule genes in other insects. They further suggest that parasegment specification may occur through irregular and episodic pair-rule-like activity.
Thurber, Kent; Tycko, Robert
2016-03-01
We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.
Taguchi, Jocelyn E.; Heyes, Stephen J.; Barford, David; Johnson, Louise N.; Dobson, Christopher M.
1993-01-01
31P cross-polarization/magic angle sample spinning nuclear magnetic resonance spectra have been obtained for pyridoxal 5′-phosphate (PLP) bound to glycogen phosphorylase b (GPb) in two different crystalline forms, monoclinic and tetragonal. Analysis of the intensities of the spinning sidebands in the nuclear magnetic resonance spectra has enabled estimates of the principal values of the 31P chemical shift tensors to be obtained. Differences between the two sets of values suggest differences in the environment of the phosphate moiety of the pyridoxal phosphate in the two crystalline forms. The tensor for the tetragonal crystalline form, T state GPb, is fully consistent with those found for dianionic phosphate groups in model compounds. The spectrum for the monoclinic crystalline form, R state GPb, although closer to that of dianionic than monoanionic model phosphate compounds, deviates significantly from that expected for a simple dianion or monoanion. This is likely to result from specific interactions between the PLP phosphate group and residues in its binding site in the protein. A possible explanation for the spectrum of the monoclinic crystals is that the shift tensor is averaged by a proton exchange process between different ionization states of the PLP associated with the presence of a sulfate ion bound in the vicinity of the PLP. PMID:8457673
Non-rigid Group Theory, Tunneling Splittings and Nuclear Spin Statistics of Water Pentamer: (H2O5)
Balasubramanian, K
2004-02-02
The character table of the fully non-rigid water pentamer, (H{sub 2}O){sub 5} is derived for the first time. The group of all feasible permutations is the wreath product group S{sub 5}[S{sub 2}] and it consists of 3840 operations divided into 36 conjugacy classes and irreducible representations. We have shown that the full character table can be constructed using elegant matrix type generator algebra. The character table has been applied to the water pentamer by obtaining the nuclear spin statistical weights of the rovibronic levels and tunneling splittings of the fully non-rigid pentamer. We have also obtained the statistical weights and tunneling splittings of a semi-rigid deuterated pentamer that exhibits pseudo rotation with an averaged C{sub 5h}(G{sub 10}) symmetry used in the assignment of vibration-rotation-tunneling spectra . The correlation tables have been constructed for the semirigid (G{sub 10}) to non-rigid (G{sub 3840}) groups for the rotational levels and tunneling levels. The nuclear spin statistical weights have also been derived for both the limits.
NASA Astrophysics Data System (ADS)
Krebs, Olivier; Eble, Benoît; Lemaître, Aristide; Voisin, Paul; Urbaszek, Bernhard; Amand, Thierry; Marie, Xavier
2008-10-01
We report on the influence of the hyperfine interaction on the optical orientation of singly charged excitons X in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50 kHz modulated excitation polarization, which becomes, however, strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ˜4 T) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Finally, we emphasize the similarities and differences between X and X trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description. To cite this article: O. Krebs et al., C. R. Physique 9 (2008).
Dracínský, Martin; Kaminský, Jakub; Bour, Petr
2009-03-07
Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in
Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neu, C; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S
2015-04-17
Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value JP=0+. Both collaborations analyzed approximately 10 fb(-) of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with JP=0- and JP=2+ are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from those predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the JP=0- hypothesis and the JP=2+ hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the JP=0- and JP=2+ hypotheses, respectively.
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Borysova, M.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brucken, E.; Bu, X. B.; Budagov, J.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Butti, P.; Buzatu, A.; Calamba, A.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Cihangir, S.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M.-C.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; Cutts, D.; Das, A.; d'Ascenzo, N.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; D'Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Ebina, K.; Edgar, R.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Erbacher, R.; Errede, S.; Esham, B.; Evans, H.; Evdokimov, V. N.; Farrington, S.; Fauré, A.; Feng, L.; Ferbel, T.; Fernández Ramos, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Franklin, M.; Freeman, J. C.; Frisch, H.; Fuess, S.; Funakoshi, Y.; Galloni, C.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gogota, O.; Gold, M.; Goldin, D.; Golossanov, A.; Golovanov, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hahn, S. R.; Haley, J.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, M.; Harel, A.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Hong, Z.; Hopkins, W.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kajfasz, E.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kato, Y.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kiselevich, I.; Knoepfel, K.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Laasanen, A. T.; Lammel, S.; Lammers, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lebrun, P.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Leo, S.; Leone, S.; Lewis, J. D.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Limosani, A.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Liu, H.; Liu, H.; Liu, Q.; Liu, T.; Liu, Y.; Lobodenko, A.; Lockwitz, S.; Loginov, A.; Lokajicek, M.; Lopes de Sa, R.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lys, J.; Lysak, R.; Maciel, A. K. A.; Madar, R.; Madrak, R.; Maestro, P.; Magaña-Villalba, R.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Mansour, J.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez-Ortega, J.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McCarthy, R.; McGivern, C. L.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Miconi, F.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neu, C.; Neustroev, P.; Nguyen, H. T.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nunnemann, T.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Orduna, J.; Ortolan, L.; Osman, N.; Osta, J.; Pagliarone, C.; Pal, A.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parashar, N.; Parihar, V.; Park, S. K.; Parker, W.; Partridge, R.; Parua, N.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pleier, M.-A.; Podstavkov, V. M.; Pondrom, L.; Popov, A. V.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prewitt, M.; Price, D.; Prokopenko, N.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robson, A.; Rodriguez, T.; Rolli, S.; Rominsky, M.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sajot, G.; Sakumoto, W. K.; Sakurai, Y.; Sánchez-Hernández, A.; Sanders, M. P.; Santi, L.; Santos, A. S.; Sato, K.; Savage, G.; Saveliev, V.; Savitskyi, M.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schmidt, E. E.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sforza, F.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simak, V.; Simonenko, A.; Skubic, P.; Slattery, P.; Sliwa, K.; Smirnov, D.; Smith, J. R.; Snider, F. D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, H.; Sonnenschein, L.; Sorin, V.; Soustruznik, K.; St. Denis, R.; Stancari, M.; Stark, J.; Stentz, D.; Stoyanova, D. A.; Strauss, M.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Suter, L.; Svoisky, P.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Titov, M.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Ukegawa, F.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Vázquez, F.; Velev, G.; Vellidis, C.; Verkheev, A. Y.; Vernieri, C.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vilanova, D.; Vilar, R.; Vizán, J.; Vogel, M.; Vokac, P.; Volpi, G.; Wagner, P.; Wahl, H. D.; Wallny, R.; Wang, M. H. L. S.; Wang, S. M.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfe, H.; Wood, D. R.; Wright, T.; Wu, X.; Wu, Z.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yamamoto, K.; Yamato, D.; Yang, S.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yip, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J. M.; Zanetti, A. M.; Zeng, Y.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhou, C.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.; CDF Collaboration^{}
2015-04-01
Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value JP=0+. Both collaborations analyzed approximately 10 fb-1 of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with JP=0- and JP=2+ are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from those predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the JP=0- hypothesis and the JP=2+ hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the JP=0- and JP=2+ hypotheses, respectively.
NASA Astrophysics Data System (ADS)
Hayashida, H.; Oku, T.; Kira, H.; Sakai, K.; Hiroi, K.; Ino, T.; Shinohara, T.; Imagawa, T.; Ohkawara, M.; Ohoyama, K.; Kakurai, K.; Takeda, M.; Yamazaki, D.; Oikawa, K.; Harada, M.; Miyata, N.; Akutsu, K.; Mizusawa, M.; Parker, J. D.; Matsumoto, Y.; Zhang, S.; Suzuki, J.; Soyama, K.; Aizawa, K.; Arai, M.
2016-04-01
We have been developing a 3He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3He polarization reached 70% and was stable over one week. A demonstration of the 3He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively.
Chazin, W J; Rance, M; Wright, P E
1988-08-05
The identification of the spin systems that comprise the 1H nuclear magnetic resonance spectrum of French bean Cu(I) plastocyanin (Mr 10,600) has been made using an approach that integrates a wide range of two-dimensional nuclear magnetic resonance experiments. A very large percentage of these assignments has been obtained in spectra acquired from 1H2O solution using a backbone amide-based strategy. The spin systems of 91 of the 99 residues have been assigned to the appropriate amino acid, thereby providing an ample basis for obtaining sequence-specific assignments, as described in the accompanying paper.
Devices and process for high-pressure magic angle spinning nuclear magnetic resonance
Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi
2014-04-08
A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.
Williams, G V M; Jurkutat, M; Rybicki, D; Haase, J
2011-02-23
We report the results from a (63)Cu nuclear magnetic resonance (NMR) study of the electron-doped high temperature superconducting cuprate (HTSC) Pr(1.85)Ce(0.15)Cu(1-x)Ni(x)O(4). We find that Ni induces a magnetic broadening of the (63)Cu NMR spectra that can be interpreted in terms of an induced spin density oscillation about the Ni site, similar to that reported from (63)Cu NMR measurements on the hole-doped HTSCs when Zn is partially substituted for Cu. There is also an additional temperature-dependent contribution to the (63)Cu spin-lattice relaxation rate that can be interpreted in terms of an Ni-induced modification of the low energy spin fluctuations. Furthermore, the spin fluctuations are intrinsically spatially inhomogeneous and additional inhomogeneities are induced by Ni.
Mananga, Eugene Stephane
2013-01-01
The purpose of this article is to present an historical overview of theoretical approaches used for describing spin dynamics under static or rotating experiments in solid state nuclear magnetic resonance. The article gives a brief historical overview for major theories in nuclear magnetic resonance and the promising theories. We present the first application of Floquet-Magnus expansion to chemical shift anisotropy when irradiated by BABA pulse sequence.
Mananga, Eugene Stephane
2013-01-01
The purpose of this article is to present an historical overview of theoretical approaches used for describing spin dynamics under static or rotating experiments in solid state nuclear magnetic resonance. The article gives a brief historical overview for major theories in nuclear magnetic resonance and the promising theories. We present the first application of Floquet-Magnus expansion to chemical shift anisotropy when irradiated by BABA pulse sequence. PMID:23711337
A novel application of nuclear spin-echo double-resonance to aluminophosphates and aluminosilicates
NASA Astrophysics Data System (ADS)
van Eck, E. R. H.; Janssen, R.; Maas, W. E. J. R.; Veeman, W. S.
1990-11-01
It is shown that by applying a spin-echo double-resonance technique to 31P and 27Al in AlPO 4-5, one can detect that 31P is coupled to 27Al. Although the pulse sequence used resembles that of the SEDOR experiment, it actually differs and also the mechanism of the phenomena we observe seems to differ from the mechanism of the original SEDOR experiment. The experiment described in this paper is also tried on 29Si and 27Al in the zeolites NaA and NaY. For NaA, there is a small but definite effect of aluminum irradiation on the 29Si spin-echo intensity. For NaY, the signal-to-noise ratio is too small to observe an effect.
QCD Nuclear g-factor and the Spin-Statistics Theorem
NASA Astrophysics Data System (ADS)
Ward, Thomas
2015-04-01
Consideration of the composite three-quark nucleon spin structure and its Pauli spin-statistics follows a new QCD g-factor with implications for the magnetic dipole moments of nucleons and their form factors. The reformulation of the nucleon magnetic moments using the new QCD nucleon g-factor is shown to be in striking agreement with global polarized and unpolarized e-p scattering data using the Sachs electric and magnetic form factors, thus reconciling long standing discrepancies between measurements. Additionally, the introduction of QCD isospin symmetry breaking (ISB) strange quarks terms contained within the meson-baryon exchange currents allow the partially conserved EM axial currents to be restored as well as providing a precise measure of the strange quark probabilities of the nucleons. Work performed under the auspices of US Department of Energy.
Dipolar nuclear spin relaxation in liquids and plane fluids undergoing chemical reactions
NASA Astrophysics Data System (ADS)
Fries, P. H.
We describe the correlated translational and rotational relative brownian motions of two reacting groups of atoms, alternatively bound and free, by the normalized solutions of a set of coupled diffusion equations. Under equilibrium conditions we calculate the spectral densities j(ω) characteristic of the fluctuations of the intermolecular dipolar coupling between spins of these diffusing groups of atoms. When ωτ << 1, where τ is the translational correlation time, the form of the spectral density j2(ω) in three-dimensional liquids is j2(0) - α3ω1/2. The coefficient α3 is independent of the molecular local order, of the diffusional rotation speed of the spin-carrying groups of atoms and of their association and dissociation rates. In plane fluids, when ωτ << 1, the spectral density j(0)(ω) may be written as -a2 ln (ωτ) where the dependence of a2 on the average relative distribution of the interacting spins varies with the rate of the chemical reactions. In both three- and two-dimensional fluids spectral densities show an ω-3/2 or ω-2 behaviour for ωτ >> 1 according to the magnitude of the association rate of the reacting groups of atoms. In liquid glycerol we analyse the low- and high-frequency limits of the experimental proton relaxation rate 1/T1 and 1/T1ρ measured by Harmon, Harmon and Burnett, and Lenk. We also discuss the proton spin-lattice relaxation times measured by Kleinberg and Silbernagel in layered intercalation compounds TiS2-NH3 and TaS2-NH3.
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.
Gawrisch, Klaus; Gaede, Holly C
2007-01-01
Membrane organization, including the presence of domains, can be characterized by measuring lateral diffusion rates of lipids and membrane-bound substances. Magic angle spinning (MAS) yields well-resolved proton nuclear magnetic resonance (NMR) of lipids in biomembranes. When combined with pulsed-field gradient NMR (rendering what is called "pulsed magnetic field gradients-MAS-NMR"), it permits precise diffusion measurements on the micrometer lengths scale for any substance with reasonably well-resolved proton MAS-NMR resonances, without the need of preparing oriented samples. Sample preparation procedures, the technical requirements for the NMR equipment, and spectrometer settings are described. Additionally, equations for analysis of diffusion data obtained from unoriented samples, and a method for correcting the data for liposome curvature are provided.
Mizuno, Takashi; Hioka, Katsuya; Fujioka, Koji; Takegoshi, K
2008-04-01
A novel nuclear magnetic resonance (NMR) probe for high-resolution solid-state NMR has been developed. In this probe, temperature of the detection coil is kept at cryogenic temperature (approximately 12 K) for sensitivity enhancement, which is achieved not only by suppression of thermal noise but also by increment of a Q factor of the coil. A marked feature of this probe is that a sample rotating at magic angle is thermally isolated from the cryogenic system in order to realize high-resolution solid-state NMR measurement at various sample temperatures. We call this system as cryocoil magic-angle spinning (cryocoil MAS). (1)H MAS NMR with the coil temperature of approximately 20 K was successfully observed for solid adamantane rotating at room temperature, and signal-to-noise increment due to this cryocoil approach was confirmed.
Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.
2014-10-13
We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.
Epand, Richard M; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen
2002-01-01
The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). At these molar fractions of cholesterol with POPS, resonances of the C-18 of cholesterol appear at the same chemical shifts as in pure cholesterol monohydrate crystals. These resonances do not appear in samples of POPS with 0.2 mol fraction cholesterol or with POPC up to 0.5 mol fraction cholesterol. In addition, there is another resonance from the cholesterol C18 that appears in all of the mixtures of phospholipid and cholesterol but not in pure cholesterol monohydrate crystals. Using direct polarization, the fraction of cholesterol present as crystallites in POPS with 0.5 mol fraction cholesterol is found to be 80%, whereas with the same mol fraction of cholesterol and POPC none of the cholesterol is crystalline. After many hours of incubation, cholesterol monohydrate crystals in POPS undergo a change that results in an increase in the intensity of certain resonances of cholesterol