Science.gov

Sample records for nuclear structure simulations

  1. Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Gargano, Angela

    2003-04-01

    An account of recent studies in the field of theoretical nuclear structure is reported. These studies concern essentially research activities performed under the Italian project "Fisica Teorica del Nucleo e dei Sistemi a Molti Corpi". Special attention is addressed to results obtained during the last two years as regards the development of new many-body techniques as well as the interpretation of new experimental aspects of nuclear structure.

  2. Structural mechanics simulations

    NASA Astrophysics Data System (ADS)

    Biffle, Johnny H.

    1992-05-01

    Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.

  3. Structural mechanics simulations

    NASA Technical Reports Server (NTRS)

    Biffle, Johnny H.

    1992-01-01

    Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.

  4. Nuclear Structure Aspects in Nuclear Astrophysics

    SciTech Connect

    Smith, Michael Scott

    2006-12-01

    Nuclear Astrophysics as a broad and diverse field of study can be viewed as a magnifier of the impact of microscopic processes on the evolution of macroscopic events. One of the primary goals in Nuclear Astrophysics is the understanding of the nucleosynthesis processes that take place in the cosmos and the simulation of the correlated stellar and explosive burning scenarios. These simulations are strongly dependent on the input from Nuclear Physics which sets the time scale for all stellar dynamic processes--from giga-years of stellar evolution to milliseconds of stellar explosions--and provides the basis for most of the signatures that we have for the interpretation of these events--from stellar luminosities, elemental and isotopic abundances to neutrino flux from distant supernovae. The Nuclear Physics input comes through nuclear structure, low energy reaction rates, nuclear masses, and decay rates. There is a common perception that low energy reaction rates are the most important component of the required nuclear physics input; however, in this article we take a broader approach and present an overview of the close correlation between various nuclear structure aspects and their impact on nuclear astrophysics. We discuss the interplay between the weak and the strong forces on stellar time scales due to the limitations they provide for the evolution of slow and rapid burning processes. The effects of shell structure in nuclei on stellar burning processes as well as the impact of clustering in nuclei is outlined. Furthermore we illustrate the effects of the various nuclear structure aspects on the major nucleosynthesis processes that have been identified in the last few decades. We summarize and provide a coherent overview of the impact of all aspects of nuclear structure on nuclear astrophysics.

  5. Frontiers of Nuclear Structure

    SciTech Connect

    Nazarewicz, Witold

    1997-12-31

    Current developments in nuclear structure at the `limits` are discussed. The studies of nuclear behavior at extreme conditions provide us with invaluable information about the nature of the nuclear interaction and nucleonic correlations at various energy-distance scales. In this talk frontiers of nuclear structure are briefly reviewed from a theoretical perspective, mainly concentrating on medium-mass and heavy nuclei.

  6. Structure of amorphous oxide ceramics by nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Diefenbacher, Jason Ross

    Molecular dynamics (MD) simulations have been used to study the structure and dynamics of sodium tetrasilicate (Na2Si4O9 ) liquid as a function of pressure, ranging from I atmosphere to 100 GPa, at a temperature of 6000 K. The calculated self-diffusivity of the ions increases with increasing pressure, up to a maximum of approximately 10--15 GPa. Above this pressure, the O2- diffusivity decreases slightly with increasing pressure. The results of the simulations allow the distinction of two different mechanisms for the pressure-induced coordination change of silicon. The first, occurring at lower pressures, involves the formation of V-coordinated silicon, via reaction with non-bridging oxygens. The high pressure mechanism involves a reaction of bridging oxygens, which results in the formation of III-coordinated oxygen. MD simulations were carried out in order to investigate the structure and transport properties of boron oxide melt, as a function of pressure. The simulations show a rapid initial increase in the diffusion coefficients of boron and oxygen ions to ˜5--7 GPa, followed by a slower increase from 7--14 GPa. The increase in ion diffusivities is correlated with an increase in the proportion of BO4 to BO3 units. These results can be used to help rationalize an increase in growth rate of boron suboxide (B6O) crystals, observed from B2O3-B 6O melts in the 0--4 GPa pressure range. Structural characterization has also been carried out on a decomposed alumina ceramic precursor material, which is synthesized via thermal decomposition of an aluminum nitrate, nanohydrate [Al(NO3)3·9H 2O] salt to yield an x-ray amorphous, water-soluble precursor. Characterization of the solid precursor is presented, along with an in-depth study on the aluminum speciation in solution. Although the solid precursor contains entirely VI-coordinated aluminum, the solution phase contains IV-, V-, and VI-coordinated aluminum, whose relative abundance does not change with increasing thermal

  7. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations

    SciTech Connect

    Dowdell, S; Paganetti, H; Schuemann, J; Greilich, S; Zimmerman, F; Evans, C

    2014-06-15

    Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed using TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.

  8. Solution-state structure and affinities of cyclodextrin: Fentanyl complexes by nuclear magnetic resonance spectroscopy and molecular dynamics simulation

    DOE PAGES

    Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; Valdez, Carlos A.

    2016-02-04

    Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less

  9. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  10. Dynamic Simulation Nuclear Power Plants

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  11. High energy nuclear structures

    SciTech Connect

    Boguta, J.; Kunz, J.

    1984-03-09

    In conventional nuclear physics the nucleus is described as a non-relativistic many-body system, which is governed by the Schroedinger equation. Nucleons interact in this framework via static two-body potentials, mesonic degrees of freedom are neglected. An alternative description of nuclear physics in terms of a relativistic field theory has been developed by Walecka. The model Lagrangian containing baryons, sigma-mesons and ..omega..-mesons was subsequently extended to include also ..pi..-mesons and rho-mesons. An essential feature of such a nuclear Lagrangian is its renormalizability. In addition to the description of known nuclear structure the field theoretical approach may reveal entirely new nuclear phenomena, based on the explicit treatment of mesonic degrees of freedom. The existence of such abnormal nuclear states was proposed by Lee and Wick employing the sigma-model Lagrangian. There the non-linearity of the meson field equations allows for soliton solutions in the presence of nucleons, in particular the sigma-field may exhibit a kink. Different types of soliton solutions occur in gauge theories with hidden symmetries. In the phenomenological Lagrangian the rho-meson is described by a non-abelian gauge field, that acquires its mass spontaneously due to the non-vanishing vacuum expectation value of a Higgs field. A general ansatz for soliton solutions of such a gauge theory was given by Dashen et al. A specific solution and its possible implications for nuclear physics like anomalous nuclear states were discussed by Boguta.

  12. Nuclear structure research

    NASA Astrophysics Data System (ADS)

    Brenner, D. S.

    1992-07-01

    The TRISTAN on-line isotope separator and the capture gamma ray facility at the HFBR are the experimental foci of the program which has four principal research themes, three involving nuclear structure physics and one directed towards astrophysics. These themes are: (1) the manifestation of the proton-neutron interaction in the evolution of nuclear structure and its relation to collectivity; (2) the appearance and the role of symmetries and supersymmetries in nuclei; (3) the study of new regions of magic nuclei; and (4) the characterization of nuclei important in r-process stellar nucleosynthesis.

  13. Special nuclear material simulation device

    DOEpatents

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  14. Non Nuclear NTR Environmental Simulator

    SciTech Connect

    Emrich, William J. Jr.

    2006-01-20

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today's best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Current planning calls for such a simulator to be constructed at the Marshall Space Flight Center over the coming year, and it is anticipated that it will be used in the future to evaluate a wide variety of fuel element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the NTR simulator with regard to reproducing the fuel degradation patterns previously observed during the NERVA testing.

  15. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  16. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation

    PubMed Central

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L.; Freund, Stefan M.; Menzel, Andreas; Fersht, Alan R.; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution. PMID:25946337

  17. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation.

    PubMed

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L; Freund, Stefan M; Menzel, Andreas; Fersht, Alan R; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.

  18. Challenges in nuclear structure theory

    NASA Astrophysics Data System (ADS)

    Nazarewicz, W.

    2016-08-01

    The goal of nuclear structure theory is to build a comprehensive microscopic framework in which properties of nuclei and extended nuclear matter, and nuclear reactions and decays can all be consistently described. Due to novel theoretical concepts, breakthroughs in the experimentation with rare isotopes, increased exchange of ideas across different research areas, and the progress in computer technologies and numerical algorithms, nuclear theorists have been quite successful in solving various bits and pieces of the nuclear many-body puzzle and the prospects are exciting. This article contains a brief, personal perspective on the status of the field.

  19. Evaluated nuclear structure data file

    NASA Astrophysics Data System (ADS)

    Tuli, J. K.

    The Evaluated Nuclear Structure Data File (ENSDF) contains the evaluated nuclear properties of all known nuclides. These properties are derived both from nuclear reaction and radioactive decay measurements. All experimental data are evaluated to create the adopted properties for each nuclide. ENSDF, together with other numeric and biographic files, can be accessed on-line through the INTERNET or modem. Some of the databases are also available on the World Wide Web. The structure and the scope of ENSDF are presented along with the on-line access system of the National Nuclear Data Center at Brookhaven National Laboratory.

  20. Evaluated nuclear structure data file

    NASA Astrophysics Data System (ADS)

    Tuli, J. K.

    1996-02-01

    The Evaluated Nuclear Structure Data File (ENSDF) contains the evaluated nuclear properties of all known nuclides, as derived both from nuclear reaction and radioactive decay measurements. All experimental data are evaluated to create the adopted properties for each nuclide. ENSDF, together with other numeric and bibliographic files, can be accessed on-line through the INTERNET or modem, and some of the databases are also available on the World Wide Web. The structure and the scope of ENSDF are presented along with the on-line access system of the National Nuclear Data Center at Brookhaven National Laboratory.

  1. Teaching About Nuclear Power: A Simulation.

    ERIC Educational Resources Information Center

    Maxey, Phyllis F.

    1980-01-01

    Recommends that simulation games be used to teach high school students in social studies courses about contemporary and controversial issues such as nuclear power. A simulation is described which involves students in deciding whether to build a nuclear power plant in the California desert. Teaching and debriefing tips are also provided. (DB)

  2. Simulation of phase structures

    SciTech Connect

    Lawson, J.

    1995-04-20

    This memo outlines a procedure developed by the author to extract information from phase measurements and produce a simulated phase structure for use in modeling optical systems, including characteristic optics for the Beamlet and NIF laser systems. The report includes an IDL program listing.

  3. Nuclear Structure at the Limits

    SciTech Connect

    Nazarewicz, Witold

    1997-12-31

    One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure at the limits are discussed from a theoretical perspective.

  4. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    SciTech Connect

    Adkins, Harold E.

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of

  5. Computational Challenges in Nuclear Weapons Simulation

    SciTech Connect

    McMillain, C F; Adams, T F; McCoy, M G; Christensen, R B; Pudliner, B S; Zika, M R; Brantley, P S; Vetter, J S; May, J M

    2003-08-29

    After a decade of experience, the Stockpile Stewardship Program continues to ensure the safety, security and reliability of the nation's nuclear weapons. The Advanced Simulation and Computing (ASCI) program was established to provide leading edge, high-end simulation capabilities needed to meet the program's assessment and certification requirements. The great challenge of this program lies in developing the tools and resources necessary for the complex, highly coupled, multi-physics calculations required to simulate nuclear weapons. This paper describes the hardware and software environment we have applied to fulfill our nuclear weapons responsibilities. It also presents the characteristics of our algorithms and codes, especially as they relate to supercomputing resource capabilities and requirements. It then addresses impediments to the development and application of nuclear weapon simulation software and hardware and concludes with a summary of observations and recommendations on an approach for working with industry and government agencies to address these impediments.

  6. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael

    2009-01-01

    A detailed description of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) is presented. The contents include: 1) Design Requirements; 2) NTREES Layout; 3) Data Acquisition and Control System Schematics; 4) NTREES System Schematic; and 5) NTREES Setup.

  7. Functional evolution of nuclear structure

    PubMed Central

    Dawson, Scott C.

    2011-01-01

    The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis. PMID:22006947

  8. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  9. Uniquely designed nuclear structures of lower eukaryotes.

    PubMed

    Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-06-01

    The nuclear structures of lower eukaryotes, specifically protists, often vary from those of yeasts and metazoans. Several studies have demonstrated the unique and fascinating features of these nuclear structures, such as a histone-independent condensed chromatin in dinoflagellates and two structurally distinct nuclear pore complexes in ciliates. Despite their unique molecular/structural features, functions required for formation of their cognate molecules/structures are highly conserved. This provides important information about the structure-function relationship of the nuclear structures. In this review, we highlight characteristic nuclear structures found in lower eukaryotes, and discuss their attractiveness as potential biological systems for studying nuclear structures.

  10. Nuclear Structure at the Limits

    SciTech Connect

    Nazarewicz, W.

    1998-01-12

    One of the frontiers of today�s nuclear science is the �journey to the limits� of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena, but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this series of lectures, current developments in nuclear structure at the limits are discussed from a theoretical perspective, mainly concentrating on medium-mass and heavy nuclei.

  11. Finite size effects in neutron star and nuclear matter simulations

    NASA Astrophysics Data System (ADS)

    Giménez Molinelli, P. A.; Dorso, C. O.

    2015-01-01

    In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called "finite size effects", unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the "nuclear pasta" phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations-for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities.

  12. Nuclear Structure Research at TRIUMF

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Chakrawarthy, R. S.; Cline, D.; Cooper, R. J.; Churchman, R.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Miosan, F.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Scraggs, H. C.; Strange, M. D.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.; Wu, C. Y.; Zganjar, E. F.

    2007-04-01

    The radioactive beam laboratory at TRIUMF is currently the highest power ISOL facility in the world. Taking advantage of the high-intensity beams, major programs in nuclear astrophysics, nuclear structure, and weak interaction studies have begun. The low-energy area, ISAC-I, is capable of delivering beams up to mass 30 at approx 1.7 MeV/u or 60 keV up to the mass of the primary target, whereas ISAC-II will ultimately provide beams up to mass 150 and approx 6.5 MeV/u. Major gamma -ray spectrometers for nuclear structure research consist of the 8pi spectrometer at ISAC-I, and the TIGRESS spectrometer now being constructed for ISAC-II. Results from recent experiments investigating the beta -decay of nuclei near N=90 and Coulomb excitation of 20,21Na are presented that highlight the capabilities of the spectrometers.

  13. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  14. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  15. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1990-09-30

    This report discusses the nuclear structure of the following isotopes as a result of radioactive decays: neutron-deficient iridium isotopes; neutron-deficient platinum isotopes; neutron-deficient gold isotopes; neutron-deficient mercury isotopes; neutron-deficient thallium isotopes; neutron-deficient lead isotopes; neutron-deficient promethium isotopes; and neutron-deficient samarium isotopes.

  16. Large Scale Quantum Simulations of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 < ρ < 0 . 10 fm-3, proton fractions 0 . 05 simulations, in particular, allow us to also study the role and impact of the nuclear symmetry energy on these pasta configurations. This work is supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  17. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ram; Van Brutzel, Laurent; Tikare, Veena; Bartel, Timothy; Besmann, Theodore M; Stan, Marius; Van Uffelen, Paul

    2010-01-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios and small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  18. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul

    2010-10-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  19. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    SciTech Connect

    Emrich, William J. Jr.

    2008-01-21

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  20. Experimental data confronts nuclear structure

    SciTech Connect

    Garrett, J.D.

    1988-01-01

    The physical content of experimental data for a variety of excitation energies and angular momenta is summarized. The specific nuclear structure questions which these data address are considered. The specific regions discussed are: low-spin data near the particle separation thresholds; low-spin data at intermediate excitation energies; high-spin, near-yrast data and high-spin data at larger excitation energies. 63 refs., 14 figs., 1 tab.

  1. From nuclear structure to nucleon structure

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei

    2014-08-01

    Similarities between nuclear structure study with many-body theory approach and nucleon structure calculations with lattice QCD are pointed out. We will give an example of how to obtain the connected sea partons from a combination of the experimental data, a global fit of parton distribution functions and a lattice calculation. We also present a complete calculation of the quark and glue decomposition of the proton momentum and angular momentum in the quenched approximation. It is found that the quark orbital angular momentum constitutes about 50% of the proton spin.

  2. Fully dynamical simulation of central nuclear collisions.

    PubMed

    van der Schee, Wilke; Romatschke, Paul; Pratt, Scott

    2013-11-27

    We present a fully dynamical simulation of central nuclear collisions around midrapidity at LHC energies. Unlike previous treatments, we simulate all phases of the collision, including the equilibration of the system. For the simulation, we use numerical relativity solutions to anti-de Sitter space/conformal field theory for the preequilibrium stage, viscous hydrodynamics for the plasma equilibrium stage, and kinetic theory for the low-density hadronic stage. Our preequilibrium stage provides initial conditions for hydrodynamics, resulting in sizable radial flow. The resulting light particle spectra reproduce the measurements from the ALICE experiment at all transverse momenta. PMID:24329444

  3. Classical Molecular Dynamics Simulation of Nuclear Fuel

    SciTech Connect

    Devanathan, Ram; Krack, Matthias; Bertolus, Marjorie

    2015-10-10

    Molecular dynamics simulation is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermo-mechanical properties. In these simulations, the forces on the ions are dictated by interaction potentials generated by fitting properties of interest to experimental data. The results obtained from the present generation of potentials are qualitatively similar, but quantitatively different. There is a need to refine existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, and to develop models that are equipped to handle deviations from stoichiometry. In addition to providing insights into fundamental mechanisms governing the behaviour of nuclear fuel, MD simulations can also provide parameters that can be used as inputs for mesoscale models.

  4. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  5. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Astrophysics Data System (ADS)

    Litchford, R. J.; Foote, J. P.; Clifton, W. B.; Hickman, R. R.; Wang, T.-S.; Dobson, C. C.

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilised constricted arc-heater to produce high-temperature pressurised hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of high-temperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterising candidate fuel/structural materials, improving associated processing/ fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead.

  6. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  7. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-08-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of x2 orbits. All roundish nuclear rings in our simulations settle in the range of x2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the x2 orbital family, i.e. round nuclear rings are allowed only in the radial range of x2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter f_ring measured from the rotation curve. We find an empirical relation between the bar parameters and f_ring, and apply it to measure bar pattern speed in a sample of barred galaxies with nuclear rings.

  8. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-06-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of {x}2 orbits. All roundish nuclear rings in our simulations settle in the range of {x}2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the {x}2 orbital family, i.e., round nuclear rings are allowed only in the radial range of {x}2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter {f}{ring} measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.

  9. Simulating Nuclear and Electronic Quantum Effects in Enzymes.

    PubMed

    Wang, L; Isborn, C M; Markland, T E

    2016-01-01

    An accurate treatment of the structures and dynamics that lead to enhanced chemical reactivity in enzymes requires explicit treatment of both electronic and nuclear quantum effects. The former can be captured in ab initio molecular dynamics (AIMD) simulations, while the latter can be included by performing ab initio path integral molecular dynamics (AI-PIMD) simulations. Both AIMD and AI-PIMD simulations have traditionally been computationally prohibitive for large enzymatic systems. Recent developments in streaming computer architectures and new algorithms to accelerate path integral simulations now make these simulations practical for biological systems, allowing elucidation of enzymatic reactions in unprecedented detail. In this chapter, we summarize these recent developments and discuss practical considerations for applying AIMD and AI-PIMD simulations to enzymes. PMID:27498646

  10. NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.

    SciTech Connect

    PRITYCHENKO, B.

    2006-06-05

    The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

  11. Simulation of a marine nuclear reactor

    SciTech Connect

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Kobayashi, Hideo; Ochiai, Masaaki

    1995-02-01

    A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan Atomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship`s motions because of the ship`s maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship`s motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship`s motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship`s motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship`s motions on the reactor behavior can be accurately simulated by NESSY.

  12. Dipole rescattering and the nuclear structure function

    SciTech Connect

    Carvalho, F.; Goncalves, V. P.; Navarra, F. S.; Oliveira, E. G.

    2013-03-25

    In the framework of the dipole model, we study the effects of the dipole multiple scatterings in a nuclear target and compute the nuclear structure function. We compare different unitarization schemes and confront our results with the E665 data.

  13. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  14. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  15. Nuclear Structure in China 2010

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2011-08-01

    Personal view on nuclear physics research / Jie Meng -- High-spin level structures in [symbol]Zr / X. P. Cao ... [et al.] -- Constraining the symmetry energy from the neutron skin thickness of tin isotopes / Lie-Wen Chen ... [et al.] -- Wobbling rotation in atomic nuclei / Y. S. Chen and Zao-Chun Gao -- The mixing of scalar mesons and the possible nonstrange dibaryons / L. R. Dai ... [et al.] -- Net baryon productions and gluon saturation in the SPS, RHIC and LHC energy regions / Sheng-Qin Feng -- Production of heavy isotopes with collisions between two actinide nuclides / Z. Q. Feng ... [et al.] -- The projected configuration interaction method / Zao-Chun Gao and Yong-Shou Chen -- Applications of Nilsson mean-field plus extended pairing model to rare-earth nuclei / Xin Guan ... [et al.] -- Complex scaling method and the resonant states / Jian-You Guo ... [et al.] -- Probing the equation of state by deep sub-barrier fusion reactions / Hong-Jun Hao and Jun-Long Tian -- Doublet structure study in A[symbol]105 mass region / C. Y. He ... [et al.] -- Rotational bands in transfermium nuclei / X. T. He -- Shape coexistence and shape evolution [symbol]Yb / H. Hua ... [et al.] -- Multistep shell model method in the complex energy plane / R. J. Liotta -- The evolution of protoneutron stars with kaon condensate / Ang Li -- High spin structures in the [symbol]Lu nucleus / Li Cong-Bo ... [et al.] -- Nuclear stopping and equation of state / QingFeng Li and Ying Yuan -- Covariant description of the low-lying states in neutron-deficient Kr isotopes / Z. X. Li ... [et al.] -- Isospin corrections for superallowed [symbol] transitions / HaoZhao Liang ... [et al.] -- The positive-parity band structures in [symbol]Ag / C. Liu ... [et al.] -- New band structures in odd-odd [symbol]I and [symbol]I / Liu GongYe ... [et al.] -- The sd-pair shell model and interacting boson model / Yan-An Luo ... [et al.] -- Cross-section distributions of fragments in the calcium isotopes projectile

  16. Nuclear Structure in China 2010

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2011-08-01

    Personal view on nuclear physics research / Jie Meng -- High-spin level structures in [symbol]Zr / X. P. Cao ... [et al.] -- Constraining the symmetry energy from the neutron skin thickness of tin isotopes / Lie-Wen Chen ... [et al.] -- Wobbling rotation in atomic nuclei / Y. S. Chen and Zao-Chun Gao -- The mixing of scalar mesons and the possible nonstrange dibaryons / L. R. Dai ... [et al.] -- Net baryon productions and gluon saturation in the SPS, RHIC and LHC energy regions / Sheng-Qin Feng -- Production of heavy isotopes with collisions between two actinide nuclides / Z. Q. Feng ... [et al.] -- The projected configuration interaction method / Zao-Chun Gao and Yong-Shou Chen -- Applications of Nilsson mean-field plus extended pairing model to rare-earth nuclei / Xin Guan ... [et al.] -- Complex scaling method and the resonant states / Jian-You Guo ... [et al.] -- Probing the equation of state by deep sub-barrier fusion reactions / Hong-Jun Hao and Jun-Long Tian -- Doublet structure study in A[symbol]105 mass region / C. Y. He ... [et al.] -- Rotational bands in transfermium nuclei / X. T. He -- Shape coexistence and shape evolution [symbol]Yb / H. Hua ... [et al.] -- Multistep shell model method in the complex energy plane / R. J. Liotta -- The evolution of protoneutron stars with kaon condensate / Ang Li -- High spin structures in the [symbol]Lu nucleus / Li Cong-Bo ... [et al.] -- Nuclear stopping and equation of state / QingFeng Li and Ying Yuan -- Covariant description of the low-lying states in neutron-deficient Kr isotopes / Z. X. Li ... [et al.] -- Isospin corrections for superallowed [symbol] transitions / HaoZhao Liang ... [et al.] -- The positive-parity band structures in [symbol]Ag / C. Liu ... [et al.] -- New band structures in odd-odd [symbol]I and [symbol]I / Liu GongYe ... [et al.] -- The sd-pair shell model and interacting boson model / Yan-An Luo ... [et al.] -- Cross-section distributions of fragments in the calcium isotopes projectile

  17. Soundtracks to Accompany Visualizations of Nuclear Pasta Simulations

    NASA Astrophysics Data System (ADS)

    Clark, Emily

    2014-09-01

    Nuclear pasta is a substance found in neutron stars and core-collapse supernovae, arising at the extreme densities near nuclear saturation, when the attractive nuclear and repulsive coulomb forces mold the dense sea of protons and neutrons into shapes such as spheres, tubes, and slabs, which somewhat resemble different types of pasta. The structures are analyzed using molecular dynamical simulations for different proton fractions, temperatures, densities, and number of nucleons. The system is stressed by stretching it, squeezing it, or subjecting it to some outside force. In order to obtain a more complete representation of how the nuclear pasta responds, sound tracks were produced to accompany videos of stretching simulations. The audio tracks were made by assuming sound waves are produced from changes in the nucleon density. This density was calculated within a small region at frequent time intervals during the run. The resulting sound track was then synced with a video of the run in order to emphasize the development of the system as the pasta moves and breaks. Nuclear pasta is a substance found in neutron stars and core-collapse supernovae, arising at the extreme densities near nuclear saturation, when the attractive nuclear and repulsive coulomb forces mold the dense sea of protons and neutrons into shapes such as spheres, tubes, and slabs, which somewhat resemble different types of pasta. The structures are analyzed using molecular dynamical simulations for different proton fractions, temperatures, densities, and number of nucleons. The system is stressed by stretching it, squeezing it, or subjecting it to some outside force. In order to obtain a more complete representation of how the nuclear pasta responds, sound tracks were produced to accompany videos of stretching simulations. The audio tracks were made by assuming sound waves are produced from changes in the nucleon density. This density was calculated within a small region at frequent time intervals

  18. Nuclear Structure Data for the Present Age

    NASA Astrophysics Data System (ADS)

    Baglin, Coral M.

    2005-05-01

    The US Nuclear Data Program maintains and provides easy and free access to several comprehensive databases that assist scientists to sift through and assess the vast quantity of published nuclear structure and decay data. These databases are an invaluable asset for nuclear-science experimentalists and theorists alike, and the recommended values provided for nuclear properties such as decay modes, level energies and lifetimes, and radiation properties can also be of great importance to specialists in other fields such as medicine, geophysics, and reactor design. The Evaluated Nuclear Structure Data File (ENSDF) contains experimental nuclear structure data for all known nuclides, evaluated by the US nuclear data program evaluators in collaboration with a number of international data groups; the Nuclear Science Reference (NSR) database provides complementary bibliographic information; the Experimental Unevaluated Nuclear Data Listing (XUNDL) exists to enable rapid access to experimental nuclear-structure data compiled from the most recent publications (primarily in high-spin physics). This paper presents an overview of the nuclear structure and decay data available through these databases, with emphasis on recent and forthcoming additions to and presentations of the available material.

  19. Modeling and Simulation of a Nuclear Fuel Element Test Section

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  20. Probabilistic structural analysis for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    1993-01-01

    Viewgraphs of probabilistic structural analysis for nuclear thermal propulsion are presented. The objective of the study was to develop a methodology to certify Space Nuclear Propulsion System (SNPS) Nozzle with assured reliability. Topics covered include: advantage of probabilistic structural analysis; space nuclear propulsion system nozzle uncertainties in the random variables; SNPS nozzle natural frequency; and sensitivity of primitive variable uncertainties SNPS nozzle natural frequency and shell stress.

  1. Nuclear structure studies with intermediate energy probes

    SciTech Connect

    Lee, T.S.H.

    1993-10-01

    Nuclear structure studies with pions are reviewed. Results from a recent study of 1 p-shell nuclei using (e,e{prime}), ({pi}, {pi}{prime}), and ({gamma},{pi}) reactions are reported. Future nuclear structure studies with GeV electrons at CEBAF are also briefly discussed.

  2. Electric heater for nuclear fuel rod simulators

    SciTech Connect

    Dial, R.E.; Mcculloch, R.W.; Morgan, C.S.

    1982-04-20

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  3. Electric heater for nuclear fuel rod simulators

    DOEpatents

    McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.

    1982-01-01

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  4. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  5. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  6. Multi-physics nuclear reactor simulator for advanced nuclear engineering education

    SciTech Connect

    Yamamoto, A.

    2012-07-01

    Multi-physics nuclear reactor simulator, which aims to utilize for advanced nuclear engineering education, is being introduced to Nagoya Univ.. The simulator consists of the 'macroscopic' physics simulator and the 'microscopic' physics simulator. The former performs real time simulation of a whole nuclear power plant. The latter is responsible to more detail numerical simulations based on the sophisticated and precise numerical models, while taking into account the plant conditions obtained in the macroscopic physics simulator. Steady-state and kinetics core analyses, fuel mechanical analysis, fluid dynamics analysis, and sub-channel analysis can be carried out in the microscopic physics simulator. Simulation calculations are carried out through dedicated graphical user interface and the simulation results, i.e., spatial and temporal behaviors of major plant parameters are graphically shown. The simulator will provide a bridge between the 'theories' studied with textbooks and the 'physical behaviors' of actual nuclear power plants. (authors)

  7. Global nuclear-structure calculations

    SciTech Connect

    Moeller, P.; Nix, J.R.

    1990-04-20

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to {epsilon}{sub 2} and {epsilon}{sub 4} used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and {Beta}-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential.

  8. Adaptive Sampling Algorithms for Probabilistic Risk Assessment of Nuclear Simulations

    SciTech Connect

    Diego Mandelli; Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer

    2013-09-01

    Nuclear simulations are often computationally expensive, time-consuming, and high-dimensional with respect to the number of input parameters. Thus exploring the space of all possible simulation outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk analysis, it is important to discover the relationship between a potentially large number of input parameters and the output of a simulation using as few simulation trials as possible. This is a typical context for performing adaptive sampling where a few observations are obtained from the simulation, a surrogate model is built to represent the simulation space, and new samples are selected based on the model constructed. The surrogate model is then updated based on the simulation results of the sampled points. In this way, we attempt to gain the most information possible with a small number of carefully selected sampled points, limiting the number of expensive trials needed to understand features of the simulation space. We analyze the specific use case of identifying the limit surface, i.e., the boundaries in the simulation space between system failure and system success. In this study, we explore several techniques for adaptively sampling the parameter space in order to reconstruct the limit surface. We focus on several adaptive sampling schemes. First, we seek to learn a global model of the entire simulation space using prediction models or neighborhood graphs and extract the limit surface as an iso-surface of the global model. Second, we estimate the limit surface by sampling in the neighborhood of the current estimate based on topological segmentations obtained locally. Our techniques draw inspirations from topological structure known as the Morse-Smale complex. We highlight the advantages and disadvantages of using a global prediction model versus local topological view of the simulation space, comparing several different strategies for adaptive sampling in both

  9. Solution structure of a DNA octamer containing the Pribnow box via restrained molecular dynamics simulation with distance and torsion angle constraints derived from two-dimensional nuclear magnetic resonance spectral fitting.

    PubMed

    Schmitz, U; Sethson, I; Egan, W M; James, T L

    1992-09-20

    The DNA octamer [d(GTATAATG].[(CATATTAC)], containing the prokaryotic upstream consensus recognition sequence, has been examined via proton homonuclear two-dimensional nuclear Overhauser effect (2D NOE) and double-quantum-filtered correlation (2QF-COSY) spectra. All proton resonances, except those of H5' and H5" protons, were assigned. A temperature dependence study of one-dimensional nuclear magnetic resonance (NMR) spectra, rotating frame 2D NOE spectroscopy (ROESY), and T1 rho measurements revealed an exchange process that apparently is global in scope. Work at lower temperatures enabled a determination of structural constraints that could be employed in determination of a time-averaged structure. Simulations of the 2QF-COSY cross-peaks were compared with experimental data, establishing scalar coupling constant ranges of the individual sugar ring protons and hence pucker parameters for individual deoxyribose rings. The rings exhibit a dynamic equilibrium of N and S-type conformers with 80 to 100% populations of the latter. A program for iterative complete relaxation matrix analysis of 2D NOE spectral intensities, MARDIGRAS, was employed to give interproton distances for each mixing time. According to the accuracy of the distance determination, upper and lower distance bounds were chosen. The distance bounds define the size of a flat-well potential function term, incorporated into the AMBER force-field, which was employed for restrained molecular dynamics calculations. Torsion angle constraints in the form of a flat-well potential were also constructed from the analysis of the sugar pucker data. Several restrained molecular dynamics runs of 25 picoseconds were performed, utilizing 184 experimental distance constraints and 80 torsion angle constraints; three different starting structures were used: energy minimized A-DNA, B-DNA, and wrinkled D-DNA, another member of the B-DNA family. Convergence to similar structures obtained with root-mean-square deviations

  10. Multidimensional multiphysics simulation of nuclear fuel behavior

    NASA Astrophysics Data System (ADS)

    Williamson, R. L.; Hales, J. D.; Novascone, S. R.; Tonks, M. R.; Gaston, D. R.; Permann, C. J.; Andrs, D.; Martineau, R. C.

    2012-04-01

    Nuclear fuel operates in an environment that induces complex multiphysics phenomena, occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. This multiphysics behavior is often tightly coupled and many important aspects are inherently multidimensional. Most current fuel modeling codes employ loose multiphysics coupling and are restricted to 2D axisymmetric or 1.5D approximations. This paper describes a new modeling tool able to simulate coupled multiphysics and multiscale fuel behavior, for either 2D axisymmetric or 3D geometries. Specific fuel analysis capabilities currently implemented in this tool are described, followed by a set of demonstration problems which include a 10-pellet light water reactor fuel rodlet, three-dimensional analysis of pellet clad mechanical interaction in the vicinity of a defective fuel pellet, coupled heat transfer and fission product diffusion in a TRISO-coated fuel particle, a demonstration of the ability to couple to lower-length scale models to account for material property variation with microstructural evolution, and a demonstration of the tool's ability to efficiently solve very large and complex problems using massively-parallel computing. A final section describes an early validation exercise, comparing simulation results to a light water reactor fuel rod experiment.

  11. The AMEDEE Nuclear Structure Database

    SciTech Connect

    Hilaire, S.; Girod, M.

    2008-05-12

    The increasing need for nuclear data far from the valley of stability requires information on nuclei which cannot be accessed experimentally or for which almost no experimental data is known. Consequently, the use of microscopic approaches to predict properties of such poorly known nuclei is necessary as a first step to improve our understanding of nuclear reaction on exotic nuclei. Within this context, large scale axial mean field calculations from proton to neutron drip-lines have been performed using the Hartree-Fock-Bogoliubov method based on the DIS Gogny nucleon-nucleon effective interaction. Nearly 7000 nuclei have been studied under the axial symmetry hypothesis and several properties are now available for the nuclear scientific community on an Internet web site for every individual nucleus.

  12. Electromagnetic studies of nuclear structure and reactions

    SciTech Connect

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  13. NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures

    NASA Technical Reports Server (NTRS)

    Wheless, T. K.

    1985-01-01

    This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.

  14. Regularity of nuclear structure under random interactions

    SciTech Connect

    Zhao, Y. M.

    2011-05-06

    In this contribution I present a brief introduction to simplicity out of complexity in nuclear structure, specifically, the regularity of nuclear structure under random interactions. I exemplify such simplicity by two examples: spin-zero ground state dominance and positive parity ground state dominance in even-even nuclei. Then I discuss two recent results of nuclear structure in the presence of random interactions, in collaboration with Prof. Arima. Firstly I discuss sd bosons under random interactions, with the focus on excited states in the yrast band. We find a few regular patterns in these excited levels. Secondly I discuss our recent efforts towards obtaining eigenvalues without diagonalizing the full matrices of the nuclear shell model Hamiltonian.

  15. Nuclear Structure of the Noble Gas

    NASA Astrophysics Data System (ADS)

    Seong, Nakyeong

    Modern physics usually pictures the nuclear structure as about sphere and treats various detailed situation as perturbative, which may be obscured. In addition, the explanation why 235U undergoes nuclear fission and 238U does not is too difficult and unclear for the people to understand. However, in this paper, we introduce a new approach on the nuclear structure of the noble gas, which simultaneously can explain several phenomena that is obscurely elucidated by modern physics. We consider a 1:1 ratio between protons and neutrons and need the concept of the symmetry of the nuclear structure, because the electron's shell of the noble gas is fully occupied. From these, we can predict the number of neutrons of each noble gas exactly

  16. Clustering aspects in nuclear structure functions

    SciTech Connect

    Hirai, M.; Saito, K.; Watanabe, T.; Kumano, S.

    2011-03-15

    For understanding an anomalous nuclear effect experimentally observed for the beryllium-9 nucleus at the Thomas Jefferson National Accelerator Facility, clustering aspects are studied in structure functions of deep inelastic lepton-nucleus scattering by using momentum distributions calculated in antisymmetrized (or fermionic) molecular dynamics (AMD) and also in a simple shell model for comparison. According to AMD, the {sup 9}Be nucleus consists of two {alpha}-like clusters with a surrounding neutron. The clustering produces high-momentum components in nuclear wave functions, which affects nuclear modifications of the structure functions. We investigated whether clustering features could appear in the structure function F{sub 2} of {sup 9}Be along with studies for other light nuclei. We found that nuclear modifications of F{sub 2} are similar in both AMD and shell models within our simple convolution description although there are slight differences in {sup 9}Be. It indicates that the anomalous {sup 9}Be result should be explained by a different mechanism from the nuclear binding and Fermi motion. If nuclear-modification slopes d(F{sub 2}{sup A}/F{sub 2}{sup D})/dx are shown by the maximum local densities, the {sup 9}Be anomaly can be explained by the AMD picture, namely by the clustering structure, whereas it certainly cannot be described in the simple shell model. This fact suggests that the large nuclear modification in {sup 9}Be should be explained by large densities in the clusters. For example, internal nucleon structure could be modified in the high-density clusters. The clustering aspect of nuclear structure functions is an unexplored topic which is interesting for future investigations.

  17. Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing

    SciTech Connect

    Driscoll, P.C.; Gronenborn, A.M.; Beress, L.; Clore, G.M. )

    1989-03-07

    The three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata has been determined on the basis of 489 interproton and 24 hydrogen-bonding distance restraints supplemented by 23 {phi} backbone and 21 {sub {chi}1} side-chain torsion angle restraints derived from nuclear magnetic resonance (NMR) measurements. A total of 42 structures is calculated by a hybrid metric matrix distance geometry-dynamical simulated annealing approach. Both the backbone and side-chain atom positions are well defined. The average atomic rms difference between the 42 individual SA structures and the mean structure obtained by averaging their coordinates is 0.67 {plus minus} 0.12 {angstrom} for the backbone atoms and 0.90 {plus minus} 0.17 {angstrom} for all atoms. The core of the protein is formed by a triple-stranded antiparallel {beta}-sheet composed of residues 14-16 (strand 1), 30-34 (strand 2), and 37-41 (strand 3) with an additional mini-antiparallel {beta}-sheet at the N-terminus (residues 6-9). The first and second strands of the triple-stranded antiparallel {beta}-sheet are connected by a long exposed loop. A number of side-chain interactions are discussed in light of the structure.

  18. Nuclear plant license renewal; Structural issues

    SciTech Connect

    Gazda, P.A.; Bhatt, P.C. )

    1991-01-01

    During the next 10 years, nuclear plant license renewal is expected to become a significant issue. Recent Electric Power Research Institute (EPRI) studies have shown license renewal to be technically and economically feasible. Filing an application for license renewal with the Nuclear Regulatory Commission (NRC) entails verifying that the systems, structures, and components essential for safety will continue to perform their safety functions throughout the license renewal period. This paper discusses the current proposed requirements for this verification and the current industry knowledge regarding age-related degradation of structures. Elements of a license renewal program incorporating NRC requirements and industry knowledge including a schedule are presented. Degradation mechanisms for structural components, their significance to nuclear plant structures, and industry-suggested age-related degradation management options are also reviewed.

  19. NTP system simulation and detailed nuclear engine modeling

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear thermal propulsion (NTP) & detailed nuclear engine modeling; modeling and engineering simulation of nuclear thermal rocket systems; nuclear thermal rocket simulation system; INSPI-NTVR core axial flow profiles; INSPI-NTRV core axial flow profiles; specific impulse vs. chamber pressure; turbine pressure ratio vs. chamber pressure; NERVA core axial flow profiles; P&W XNR2000 core axial flow profiles; pump pressure rise vs. chamber pressure; streamline of jet-induced flow in cylindrical chamber; flow pattern of a jet-induced flow in a chamber; and radiative heat transfer models.

  20. Theoretical nuclear structure. Progress report for 1997

    SciTech Connect

    Nazarewicz, W.; Strayer, M.R.

    1997-12-31

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops.

  1. Creep of Structural Nuclear Composites

    SciTech Connect

    Will Windes; R.W. Lloyd

    2005-09-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor (VHTR) design. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. One of the primary degradation mechanisms anticipated for these core components is high temperature thermal and irradiation enhanced creep. As a consequence, high temperature test equipment, testing methodologies, and test samples for very high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Actual testing of both tubular and flat, "dog-bone"-shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures are currently being established from these high temperature mechanical tests.

  2. Nuclear structure at intermediate energies

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  3. Rotation and shape changes in {sup 151}Tb and {sup 196}Pb: Probes of nuclear structure and tunneling process in warm nuclei. II. Microscopic Monte Carlo simulation

    SciTech Connect

    Leoni, S.; Bracco, A.; Camera, F.; Corsi, A.; Crespi, F. C. L.; Montanari, D.; Pignanelli, M.; Benzoni, G.; Blasi, N.; Million, B.; Vigezzi, E.; Wieland, O.; Mason, P.; Matsuo, M.; Shimizu, Y. R.; Curien, D.; Duchene, G.; Robin, J.; Bednarczyk, P.; Kmiecik, M.

    2009-06-15

    A Monte Carlo simulation of the {gamma} decay of superdeformed nuclei has been developed. It is based on microscopic calculations for the energy levels, E2 decay probabilities, collective mass parameters, and potential energy barriers. The use of microscopically calculated quantities largely reduces the parameters of the simulation, allowing one to focus on the basic ingredients of the physical processes. Calculations are performed for the warm rotating superdeformed nuclei {sup 151}Tb and {sup 196}Pb, for which high statistics Euroball IV data are available. The dependence on the simulation parameters is investigated, together with the basic features of the microscopic calculations.

  4. Nuclear Structure Research at Richmond

    SciTech Connect

    Beausang, Cornelius W.

    2015-04-30

    The goals for the final year were; (1) to continue ongoing efforts to develop and enhance GRETINA and work towards GRETA; (2) to investigate the structure of non-yrast states in shape transitional Sm and Gd nuclei; (3) to investigate the structure of selected light Cd nuclei; (4) to exploit the surrogate reaction technique to extract (n,f) cross sections for actinide nuclei, particularly the first measurement of the 236Pu and 237Pu(n,f) cross sections.

  5. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  6. A Study on Structured Simulation Framework for Design and Evaluation of Human-Machine Interface System -Application for On-line Risk Monitoring for PWR Nuclear Power Plant-

    SciTech Connect

    Zhan, J.; Yang, M.; Li, S.C.; Peng, M.J.; Yan, S.Y.; Zhang, Z.J.

    2006-07-01

    The operators in the main control room of Nuclear Power Plant (NPP) need to monitor plant condition through operation panels and understand the system problems by their experiences and skills. It is a very hard work because even a single fault will cause a large number of plant parameters abnormal and operators are required to perform trouble-shooting actions in a short time interval. It will bring potential risks if operators misunderstand the system problems or make a commission error to manipulate an irrelevant switch with their current operation. This study aims at developing an on-line risk monitoring technique based on Multilevel Flow Models (MFM) for monitoring and predicting potential risks in current plant condition by calculating plant reliability. The proposed technique can be also used for navigating operators by estimating the influence of their operations on plant condition before they take an action that will be necessary in plant operation, and therefore, can reduce human errors. This paper describes the risk monitoring technique and illustrates its application by a Steam Generator Tube Rupture (SGTR) accident in a 2-loop Pressurized Water Reactor (PWR) Marine Nuclear Power Plant (MNPP). (authors)

  7. Probing Nuclear Structure by Cold Emission Processes

    SciTech Connect

    Delion, D. S.

    2008-01-24

    Cold emission processes (one and two-proton emission, alpha-decay, heavy cluster emission and cold binary or ternary fission) are presently among important tools to investigate the structure of rare nuclei far from the stability line. We analyze the coupling between collective excitations of the emitted fragments and the relative motion, in terms of the coupled channels technique. It turns out that partial decay widths to excited states of emitted fragments are very sensitive to the nuclear structure details.

  8. Nuclear structure and depletion of nuclear isomers using electron linacs

    SciTech Connect

    Carroll, J. J.; Litz, M. S.; Henriquez, S. L.; Burns, D. A.; Netherton, K. A.; Pereira, N. R.; Karamian, S. A.

    2013-04-19

    Long-lived nuclear excited states (isomers) have proven important to understanding nuclear structure. With some isomers having half-lives of decades or longer, and intrinsic energy densities reaching 10{sup 12} J/kg, they have also been suggested for a wide range of applications. The ability to effectively transfer a population of nuclei from an isomer to shorter-lived levels will determine the feasibility of any applications. Here is described a first demonstration of the induced depletion of a population of the 438 year isomer of {sup 108}Ag to its 2.38 min ground state, using 6 MeV bremsstrahlung from a modified medical electron linac. The experiment suggests refinements to be implemented in the future and how a similar approach might be applied to study induced depletion of the 1200 year isomer of {sup 166}Ho.

  9. VISION - Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics

    SciTech Connect

    Steven J. Piet; A. M. Yacout; J. J. Jacobson; C. Laws; G. E. Matthern; D. E. Shropshire

    2006-02-01

    The U.S. DOE Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that - if implemented - would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential "exit" or "off ramp" approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool "DYMOND-US" functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies.

  10. Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2015-06-01

    Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  11. Nuclear structures in Tribolium castaneum oocytes.

    PubMed

    Bogolyubov, Dmitry S; Batalova, Florina M; Kiselyov, Artyom M; Stepanova, Irina S

    2013-10-01

    The first ultrastructural and immunomorphological characteristics of the karyosphere (karyosome) and extrachromosomal nuclear bodies in the red flour beetle, Tribolium castaneum, are presented. The karyosphere forms early in the diplotene stage of meiotic prophase by the gathering of all oocyte chromosomes in a limited nuclear volume. Using the BrUTP assay, T. castaneum oocyte chromosomes united in the karyosphere maintain their transcriptional activity until the end of oocyte growth. Hyperphosphorylated RNA polymerase II and basal transcription factors (TFIID and TFIIH) were detected in the perichromatin region of the karyosphere. The T. castaneum karyosphere has an extrachromosomal capsule that separates chromosomes from the rest of the nucleoplasm. Certain structural proteins (F-actin, lamin B) were found in the capsule. Unexpectedly, the karyosphere capsule in T. castaneum oocytes was found to be enriched in TMG-capped snRNAs, which suggests that the capsule is not only a structural support for the karyosphere, but may be involved in biogenesis of snRNPs. We also identified the counterparts of 'universal' extrachromosomal nuclear domains, Cajal bodies (CBs) and interchromatin granule clusters (IGCs). Nuclear bodies containing IGC marker protein SC35 display some features unusual for typical IGCs. SC35 domains in T. castaneum oocytes are predominantly fibrillar complex bodies that do not contain trimethyl guanosine (TMG)-capped small nuclear (sn) RNAs. Microinjections of 2'-O-methyl (U)22 probes into the oocytes allowed revealing poly(A)+ RNAs in these nuclear domains. Several proteins related to mRNA export (heterogeneous ribonucleoprotein core protein A1, export adapters Y14 and Aly and export receptor NXF1) were also detected there. We believe that unusual SC35 nuclear domains of T. castaneum oocytes are possibly involved in mRNP but not snRNP biogenesis.

  12. Seismic analysis of nuclear power plant structures

    NASA Technical Reports Server (NTRS)

    Go, J. C.

    1973-01-01

    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  13. Dynamical symmetries in contemporary nuclear structure applications

    NASA Astrophysics Data System (ADS)

    Georgieva, A. I.; Ivanov, M. I.; Drenska, S. L.; Sviratcheva, K. D.; Draayer, J. P.

    2010-12-01

    In terms of group theory—the language of symmetries, the concept of spontaneous symmetry breaking is represented in terms of chains of group-subgroup structures that define the dynamical symmetry of the system under consideration. This framework enables exact analytic solutions of the associated eigenvalue problems. We review two types of applications of dynamical symmetries in contemporary theoretical nuclear structure physics: first for a classification of the many-body systems under consideration, with respect to an important characteristic of their behavior; and second for the creation of exactly solvable algebraic models that describe specific aspects of this behavior. This is illustrated with the boson and fermion realizations of symplectic structures. In the first case with an application of the sp(4, R) classification scheme of even-even nuclei within the major nuclear shells and next with of the sp(4) microscopic model for the description of isovector pairing correlations.

  14. NEW WEB-BASED ACCESS TO NUCLEAR STRUCTURE DATASETS.

    SciTech Connect

    WINCHELL,D.F.

    2004-09-26

    As part of an effort to migrate the National Nuclear Data Center (NNDC) databases to a relational platform, a new web interface has been developed for the dissemination of the nuclear structure datasets stored in the Evaluated Nuclear Structure Data File and Experimental Unevaluated Nuclear Data List.

  15. Simulations of nuclear resonance fluorescence in GEANT4

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Manu N.; Harrawood, Brian P.; Rusev, Gencho; Agasthya, Greeshma A.; Kapadia, Anuj J.

    2014-11-01

    The nuclear resonance fluorescence (NRF) technique has been used effectively to identify isotopes based on their nuclear energy levels. Specific examples of its modern-day applications include detecting spent nuclear waste and cargo scanning for homeland security. The experimental designs for these NRF applications can be more efficiently optimized using Monte Carlo simulations before the experiment is implemented. One of the most widely used Monte Carlo physics simulations is the open-source toolkit GEANT4. However, NRF physics has not been incorporated into the GEANT4 simulation toolkit in publicly available software. Here we describe the development and testing of an NRF simulation in GEANT4. We describe in depth the development and architecture of this software for the simulation of NRF in any isotope in GEANT4; as well as verification and validation testing of the simulation for NRF in boron. In the verification testing, the simulation showed agreement with the analytical model to be within 0.6% difference for boron and iron. In the validation testing, the simulation showed agreement to be within 20.5% difference with the experimental measurements for boron, with the percent difference likely due to small uncertainties in beam polarization, energy distribution, and detector composition.

  16. Nuclear structure and sub-barrier fusion

    SciTech Connect

    Esbensen, H. . Cyclotron Lab. Argonne National Lab., IL )

    1990-01-01

    The influence of nuclear structure on heavy-ion fusion and elastic scattering, at energies near and below the Coulomb barrier, is discussed within the coupled channels formalism. The coupled channels approach provides a consistent description of the enhancement of sub-barrier fusion and the energy dependence of the effective potential for elastic scattering. This is illustrated by comparison to the data for several systems. 48 refs., 4 figs.

  17. Nuclear structure models: Applications and development

    SciTech Connect

    Semmes, P.B.

    1992-07-01

    This report discusses the following topics: Studies of superdeformed States; Signature Inversion in Odd-Odd Nuclei: A fingerprint of Triaxiality; Signature Inversion in {sup 120}Cs - Evidence for a Residual p-n Interaction; Signatures of {gamma} Deformation in Nuclei and an Application to {sup 125}Xe; Nuclear Spins and Moments: Fundamental Structural Information; and Electromagnetic Properties of {sup 181}Ir: Evidence of {beta} Stretching.

  18. Meeting report: mitosis and nuclear structure.

    PubMed

    Meadows, John C; Graumann, Katja; Platani, Melpi; Schweizer, Nina; Shimi, Takeshi; Vagnarelli, Paola; Gatlin, Jesse C

    2013-11-15

    The Company of Biologists Workshop entitled 'Mitosis and Nuclear Structure' was held at Wiston House, West Sussex in June 2013. It provided a unique and timely opportunity for leading experts from different fields to discuss not only their own work but also its broader context. Here we present the proceedings of this meeting and several major themes that emerged from the crosstalk between the two, as it turns out, not so disparate fields of mitosis and nuclear structure. Co-chaired by Katherine Wilson (Johns Hopkins School of Medicine, Baltimore, MD), Timothy Mitchison (Harvard University, Cambridge, MA) and Michael Rout (Rockefeller University, New York, NY), this workshop brought together a small group of scientists from a range of disciplines to discuss recent advances and connections between the areas of mitosis and nuclear structure research. Several early-career researchers (students, postdoctoral researchers, junior faculty) participated along with 20 senior scientists, including the venerable and affable Nobel Laureate Tim Hunt. Participants were encouraged to embrace unconventional thinking in the 'scientific sandbox' created by this unusual combination of researchers in the inspiring, isolated setting of the 16th-century Wiston House.

  19. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  20. Electromagnetic studies of nucleon and nuclear structure

    SciTech Connect

    Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.

    1993-06-01

    Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.

  1. Proton-neutron interaction and nuclear structure

    SciTech Connect

    Casten, R.F.

    1986-01-01

    The pervasive role of the proton-neutron interaction in nuclear structure is discussed. Particular emphasis is given to its influence on the onset of collectivity and deformation, on intruder states, and on the evolution of subshell structure. The N/sub p/N/sub n/ scheme is outlined and some applications of it to collective model calculations and to nuclei far off stability are described. The concept of N/sub p/N/sub n/ multiplets is introduced. 32 refs., 20 figs.

  2. Forging the link between nuclear reactions and nuclear structure

    NASA Astrophysics Data System (ADS)

    Dickhoff, W. H.

    2016-06-01

    A review of the recent applications of the dispersive optical model (DOM) is presented. Emphasis is on the nonlocal implementation of the DOM that is capable of describing ground-state properties accurately when data like the nuclear charge density are available. The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied mostly on data from the (e, e' p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The DOM, conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. We have recently introduced a nonlocal dispersive optical potential for both the real and imaginary part. Nonlocal absorptive potentials yield equivalent elastic differential cross sections for 40Ca as compared to local ones but change the l-dependent absorption profile suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e' p) and (p, 2p) reactions are correctly described, including the energy distribution of about 10% high-momentum protons obtained at Jefferson Lab. The nonlocal DOM allows a complete description of experimental data both above (up to 200 MeV) and below the Fermi energy in 40Ca. It is further demonstrated that elastic nucleon-nucleus scattering data constrain the spectral strength in the continuum of orbits that are nominally bound in the independent-particle model. Extension of this analysis to 48Ca allows a prediction of the neutron skin of this nucleus that is larger than most predictions made so far.

  3. Opportunities in nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Nunes, Filomena

    2015-10-01

    The last decade has seen important advances in the area of low energy nuclear physics. New measurements have provided crucial insight into the behavior of nuclei at the limits of stability, including the mapping of the neutron dripline up to Oxygen, investigations of unbound nuclear states, and the discovery of new super-heavy elements. In parallel we have seen a revolution in low-energy nuclear theory, moving toward quantified predictability, rooted in the underlying inter-nucleon forces. But the next decade offers even more opportunities with a new generation factory of rare isotopes, and the anticipated developments in high performance computing. The Facility for Rare Isotope Beams coupled with new state-of-the-art detectors will allow us to access a large fraction of the necessary information for the r-process responsible for making at least half of the heavy elements in our universe. FRIB will provide the needed intensities to study global nuclear properties, shell structure, and collective phenomena far from stability. Key measurements are anticipated, at various facilities, which will inform symmetry tests with rare isotopes. We expect to put strict constraints on the equation of state. These and many other opportunities will be highlighted in this overview talk.

  4. Structured building model reduction toward parallel simulation

    SciTech Connect

    Dobbs, Justin R.; Hencey, Brondon M.

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  5. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  6. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  7. Nuclear structure of {sup 102}Mo

    SciTech Connect

    Rahman, M.A.; Chowdhury, M.S.

    2006-05-15

    Nuclear structure of the {sup 102}Mo nucleus has been studied using the {sup 100}Mo(t,p){sup 102}Mo reaction with the triton beam energy of 12 MeV obtained from the tandem Van de Graaff accelerator and a multichannel magnetic spectrograph. Proton spectra are obtained at 12 different angles from 5 deg. to 87.5 deg., at an interval of 7.5 deg. and are detected in nuclear emulsion plates. Thirty-five levels in the energy range from 0.000 to 3.248 MeV have been observed. The results yield a number of new levels with spin assignments. Absolute differential cross sections for the levels have been measured. The experimental angular distributions are compared with the theoretical distorted-wave Born approximation calculations to determine L and J{sup {pi}} values. The present results are compared with the previous results.

  8. Gogny HFB prediction of nuclear structure properties

    SciTech Connect

    Goriely, S.; Hilaire, S.; Girod, M.

    2011-10-28

    Large scale mean field calculations from proton to neutron drip lines have been performed using the Hartree-Fock-Bogoliubov method based on the Gogny nucleon-nucleon effective interaction. This extensive study has shown the ability of the method to reproduce bulk nuclear structure data available experimentally. This includes nuclear masses, radii, matter densities, deformations, moment of inertia as well as collective mode (low energy and giant resonances). In particular, the first mass table based on a Gogny-Hartree-Fock-Bogolyubov calculation including an explicit and coherent account of all the quadrupole correlation energies is presented. The rms deviation with respect to essentially all the available mass data is 798 keV. Nearly 8000 nuclei have been studied under the axial symmetry hypothesis and going beyond the mean-field approach.

  9. Parallelization and automatic data distribution for nuclear reactor simulations

    SciTech Connect

    Liebrock, L.M.

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.

  10. Nuclear structure studies far from the line of beta stability

    SciTech Connect

    Avignone, F.T. III

    1986-04-15

    This report includes research activities concerning nuclear structure research of neutron rich and neutron deficient isotopes. Individual sections deal with Coulomb interactions; lifetime measurements of nuclei; calculations and Monte Carlo simulations for predicting responses of Ge and NaI(Tl) detectors to gamma radiation; and beta decay, energy levels, and mass measurements of selected isotopes. The research program features the discovery of new isotopes via their delayed proton decay and the detailed investigation of the beta-delayed, proton spectra. This report covers activities through the contract period from 1979 through 1985. 10 refs. (DWL)

  11. Pasta Elasticity: Molecular dynamics simulations of nuclear pasta deformations

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Horowitz, C. J.; Berry, D. K.

    2015-04-01

    Nuclear pasta is expected in the inner crust of neutron stars at densities near the nuclear saturation density. In this work, the elastic properties of pasta are calculated from large scale molecular dynamics simulations by deforming the simulation volume. Our model uses a semi-classical two-nucleon potential that reproduces nuclear saturation. We report the shear modulus and breaking strain of a variety of pasta phases for different temperatures, densities, and proton fractions. The presence of pasta in neutron stars could have significant effects on crustal oscillations and could be inferred from observations of soft-gamma repeaters. Additionally, these elastic parameters will enable us to improve estimates of the maximum size and lifetime of ``mountains'' on the crust, which could efficiently radiate gravitational waves.

  12. Chiral nucleon-nucleon forces in nuclear structure calculations

    NASA Astrophysics Data System (ADS)

    Coraggio, L.; Gargano, A.; Holt, J. W.; Itaco, N.; Machleidt, R.; Marcucci, L. E.; Sammarruca, F.

    2016-05-01

    Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  13. Superheavy Element Synthesis And Nuclear Structure

    SciTech Connect

    Ackermann, D.; Block, M.; Burkhard, H.-G.; Heinz, S.; Hessberger, F. P.; Khuyagbaatar, J.; Kojouharov, I.; Mann, R.; Maurer, J.; Antalic, S.; Saro, S.; Venhart, M.; Hofmann, S.; Leino, M.; Uusitalo, J.; Nishio, K.; Popeko, A. G.; Yeremin, A. V.

    2009-08-26

    After the successful progress in experiments to synthesize superheavy elements (SHE) throughout the last decades, advanced nuclear structure studies in that region have become feasible in recent years thanks to improved accelerator, separation and detection technology. The means are evaporation residue(ER)-alpha-alpha and ER-alpha-gamma coincidence techniques complemented by conversion electron (CE) studies, applied after a separator. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the studies of K-isomers observed in {sup 252,254}No and in {sup 270}Ds.

  14. Tungsten - Yttrium Based Nuclear Structural Materials

    NASA Astrophysics Data System (ADS)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  15. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  16. Microscopic Approaches to Nuclear Structure: Configuration Interaction

    SciTech Connect

    Ormand, W E

    2007-09-21

    The configuration interaction (CI) approach to solving the nuclear many-body problem, also known as the interacting shell model, has proven to be powerful tool in understanding the structure of nuclei. The principal criticism of past applications of the shell model is the reliance on empirical tuning to interaction matrix elements. If an accurate description of nuclei far from the valley of stability, where little or no data is available, a more fundamental approach is needed. This starts with recent ab initio approaches with effective interactions in the no-core shell model (NCSM). Using effective-field theory for guidance, fully ab initio descriptions of nuclei up to {sup 16}O with QCD based NN, NNN, and NNNN interactions will be possible within the next five years. An important task is then to determine how to use these NCSM results to develop effective interactions to describe heavier nuclei without the need to resort to an empirical retuning with every model space. Thus, it is likely that more traditional CI applications utilizing direct diagonalization and more fundamental interactions will be applicable to nuclei with perhaps up to one hundred constituents. But, these direct diagonalization CI applications will always be computationally limited due to the rapid increase in the number of configurations with particle number. Very recently, the shifted-contour method has been applied to the Auxiliary-field Monte Carlo approach to the Shell Model (AFMCSM), and preliminary applications exhibit a remarkable taming of the notorious sign problem. If the mitigation of the sign problem holds true, the AFMCSM will offer a method to compute quantum correlations to mean-field applications for just about all nuclei; giving exact results for CI model spaces that can approach 10{sup 20-25}. In these lectures, I will discuss modern applications of CI to the nuclear many-body problem that have the potential to guide nuclear structure theory into the next decade.

  17. Structural Reliability and Monte Carlo Simulation.

    ERIC Educational Resources Information Center

    Laumakis, P. J.; Harlow, G.

    2002-01-01

    Analyzes a simple boom structure and assesses its reliability using elementary engineering mechanics. Demonstrates the power and utility of Monte-Carlo simulation by showing that such a simulation can be implemented more readily with results that compare favorably to the theoretical calculations. (Author/MM)

  18. Analysing Deep Structure in Games and Simulations.

    ERIC Educational Resources Information Center

    Gredler, Margaret Bell

    1990-01-01

    Discussion of the design of games and simulations focuses on the fundamental defining features called deep structure. The two main levels of interaction in games and simulations are described; generalized reinforcers are discussed; types of defective contingencies are explained, including escape or avoidance behaviors; and the concept of negative…

  19. Elements of Regolith Simulant's Cost Structure

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2009-01-01

    The cost of lunar regolith simulants is much higher than many users anticipate. After all, it is nothing more than broken rock. This class will discuss the elements which make up the cost structure for simulants. It will also consider which elements can be avoided under certain circumstances and which elements might be altered by the application of additional research and development.

  20. Nuclear Reaction and Structure Databases of the National Nuclear Data Center

    SciTech Connect

    Pritychenko, B.; Arcilla, R.; Herman, M. W.; Oblozinsky, P.; Rochman, D.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2006-03-13

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. In 2004, the NNDC migrated all databases into modern relational database software, installed new generation of Linux servers and developed new Java-based Web service. This nuclear database development means much faster, more flexible and more convenient service to all users in the United States. These nuclear reaction and structure database developments as well as related Web services are briefly described.

  1. Effective Interactions for Nuclear Structure Calculations

    NASA Astrophysics Data System (ADS)

    Signoracci, Angelo

    Experimental interest in nuclei far from stability, especially due to proposed advancements in rare isotope facilities, has stimulated improvements in theoretical predictions of exotic isotopes. However, standard techniques developed for nuclear structure calculations, Configuration Interaction theory and Energy Density Functional methods, lack either the generality or the accuracy necessary for reliable calculations away from stability. Hybrid methods, which combine Configuration Interaction theory and Energy Density Functional methods in order to exploit their beneficial properties, are currently under investigation for improved theoretical capabilities. A new technique to produce nuclear Hamiltonians has been developed, implementing renormalization group methods, many-body perturbative techniques, and Energy Density Functional methods. Connection to the underlying physics is a primary focus, limiting the number of free parameters necessary in the procedure. The main benefit of this approach is the improvement in the quality of effective interactions outside of standard model spaces. In the Hybrid Renormalization Procedure developed in this dissertation, Skyrme energy density functionals provide a realistic single particle basis that accounts for the long tail of loosely bound orbits, especially significant for valence orbits of exotic isotopes. A microscopic nucleon-nucleon potential is softened with renormalization group techniques to eliminate the hard core of the nuclear interaction. Many-body perturbative techniques, in the form of Rayleigh-Schrodinger theory, implement the realistic basis to convert the low-momentum interaction into a model space of interest. The basis is an important ingredient in the renormalization and greatly affects the results obtained with the Hybrid Renormalization Procedure, specifically through the single particle energies derived from Skyrme functionals. A comparison of the standard harmonic oscillator basis and the realistic

  2. Interactive Simulation of Nuclear Materials Safeguards and Security

    SciTech Connect

    Stanbro, William D.

    1994-03-14

    THIEF is an interactive computer simulation or computer game of the safeguards and security (S&S) systems of a nuclear facility. The user is placed in the role of a non-violent insider attempting to remove special nuclear material from the facility. All portions of the S&S system that are relevant to the non-violent insider threat are included. The computer operates the S&S systems and attempts to detect the loss of the nuclear material. Both the physical protection system and the materials control and accounting system are modeled. The description of the facility and its S&S systems are defined by the user with the aid of an input module. All aspects of the facility description are provided by the user. The program has a custom graphical user interface to facilitate its use by people with limited computer experience. The custom interface also allows it to run on relatively small computer systems.

  3. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  4. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    SciTech Connect

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  5. Material flow simulation in a nuclear chemical process

    SciTech Connect

    Mahgerefteh, M.

    1984-01-01

    At a nuclear fuel reprocessing plant the special nuclear materials (SNM) are received as constituents of spent fuel assemblies, are converted to liquid form, and undergo a series of chemical processes. Uncertainties in measurements of SNM at each stage of reprocessing limit the accuracy of simple material balance accounting as a safeguards method. To be effective, a formal safeguards program must take into account all sources of measurement error yet detect any diversion of SNM. An analytical method for assessing the accountability of selected constituent SNM is demonstrated. A combined discrete-continuous, time-dependent model using the GASP IV simulation language is developed to simulate mass flow, material accountability and measurement error at each stage of the reprocessing plant.

  6. The TRIUMF nuclear structure program and TIGRESS

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chakrawarthy, R. S.; Churchman, R.; Cline, D.; Cooper, R. J.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T.; Finlay, P.; Gagnon, K.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Maharaj, R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Ruiz, C.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Strange, M. D.; Subramanian, M.; Svensson, C. E.; Waddington, J. C.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wood, J. L.; Wong, J. C.; Wu, C. Y.; Zganjar, E. F.

    2007-08-01

    The isotope separator and accelerator (ISAC) facility located at the TRIUMF laboratory in Vancouver, Canada, is one of the world's most advanced isotope separator on-line-type radioactive ion beam facilities. An extensive γ-ray spectroscopy programme at ISAC is centred around two major research facilities: (i) the 8π γ-ray spectrometer for β-delayed γ-ray spectroscopy experiments with the low-energy beams from ISAC-I, and (ii) the next generation TRIUMF-ISAC gamma-ray escape suppressed spectrometer (TIGRESS) for in-beam experiments with the accelerated radioactive-ion beams. An overview of these facilities and recent results from the diverse programme of nuclear structure and fundamental interaction studies they support is presented.

  7. The TRIUMF nuclear structure program and TIGRESS

    SciTech Connect

    Garrett, P E; Andreyev, A; E.Austin, R A; Ball, G C; Bandyopadhyay, D; Becker, J A; Boston, A; Boston, H; Charkrawarthy, R S; Churchman, R; Cline, D; Cooper, R J; Cross, D; Dashdorj, D; Demand, G A; Dimmock, M R; Drake, T; Finlay, P; Gagnon, K; Gallant, A T; Green, K L; Grint, A N; Grinyer, G F; Hackman, G; Harkness, L J; Hayes, A B; Kanungo, R; Kulp, W D; Leach, K G; Lee, G; Leslie, J R; Maharaj, R; Martin, J P; Mattoon, C; Mills, W J; Morton, A C; Nelson, L; Newman, O; Nolan, P J; Padilla-Rodal, E; Pearson, C J; Phillips, A A; Porter-Peden, M; Ressler, J J; Ruiz, C; Sarazin, F; Schumaker, M A; Scraggs, D P; Strange, M T; Subramanian, M; Svensson, C E; Waddington, J C; Wan, J; Whitebeck, A; Williams, S J; Wood, J L; Wong, J C; Wu, C Y; Zganjar, E F

    2006-08-30

    The Isotope Separator and Accelerator (ISAC) facility located at the TRIUMF laboratory in Vancouver, Canada, is one of the world's most advanced ISOL-type radioactive ion beam facilities. An extensive {gamma}-ray spectroscopy program at ISAC is centered around two major research facilities: (1) the 8{pi} {gamma}-ray spectrometer for {beta}-delayed {gamma}-ray spectroscopy experiments with the low-energy beams from ISAC-I, and (2) the next-generation TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS) for in-beam experiments with the accelerated radioactive ion beams. An overview of these facilities and recent results from the diverse program of nuclear structure and fundamental interaction studies they support is presented.

  8. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  9. Track-Structure Simulations for Charged Particles

    PubMed Central

    Dingfelder, Michael

    2013-01-01

    Monte-Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as surrogate for soft tissue and is used in most Monte-Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest. PMID:23032889

  10. Structural model uncertainty in stochastic simulation

    SciTech Connect

    McKay, M.D.; Morrison, J.D.

    1997-09-01

    Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.

  11. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGES

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-04-01

    Here we evaluate the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product was developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK andmore » Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Finally, both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  12. An assessment of coupling algorithms for nuclear reactor core physics simulations

    NASA Astrophysics Data System (ADS)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss-Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton-Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.

  13. [Oligoglycine surface structures: molecular dynamics simulation].

    PubMed

    Gus'kova, O A; Khalatur, P G; Khokhlov, A R; Chinarev, A A; Tsygankova, S V; Bovin, N V

    2010-01-01

    The full-atomic molecular dynamics (MD) simulation of adsorption mode for diantennary oligoglycines [H-Gly4-NH(CH2)5]2 onto graphite and mica surface is described. The resulting structure of adsorption layers is analyzed. The peptide second structure motives have been studied by both STRIDE (structural identification) and DSSP (dictionary of secondary structure of proteins) methods. The obtained results confirm the possibility of polyglycine II (PGII) structure formation in diantennary oligoglycine (DAOG) monolayers deposited onto graphite surface, which was earlier estimated based on atomic-force microscopy measurements.

  14. Quantum simulations of nuclei and nuclear pasta with the multiresolution adaptive numerical environment for scientific simulations

    NASA Astrophysics Data System (ADS)

    Sagert, I.; Fann, G. I.; Fattoyev, F. J.; Postnikov, S.; Horowitz, C. J.

    2016-05-01

    Background: Neutron star and supernova matter at densities just below the nuclear matter saturation density is expected to form a lattice of exotic shapes. These so-called nuclear pasta phases are caused by Coulomb frustration. Their elastic and transport properties are believed to play an important role for thermal and magnetic field evolution, rotation, and oscillation of neutron stars. Furthermore, they can impact neutrino opacities in core-collapse supernovae. Purpose: In this work, we present proof-of-principle three-dimensional (3D) Skyrme Hartree-Fock (SHF) simulations of nuclear pasta with the Multi-resolution ADaptive Numerical Environment for Scientific Simulations (MADNESS). Methods: We perform benchmark studies of 16O, 208Pb, and 238U nuclear ground states and calculate binding energies via 3D SHF simulations. Results are compared with experimentally measured binding energies as well as with theoretically predicted values from an established SHF code. The nuclear pasta simulation is initialized in the so-called waffle geometry as obtained by the Indiana University Molecular Dynamics (IUMD) code. The size of the unit cell is 24 fm with an average density of about ρ =0.05 fm-3 , proton fraction of Yp=0.3 , and temperature of T =0 MeV. Results: Our calculations reproduce the binding energies and shapes of light and heavy nuclei with different geometries. For the pasta simulation, we find that the final geometry is very similar to the initial waffle state. We compare calculations with and without spin-orbit forces. We find that while subtle differences are present, the pasta phase remains in the waffle geometry. Conclusions: Within the MADNESS framework, we can successfully perform calculations of inhomogeneous nuclear matter. By using pasta configurations from IUMD it is possible to explore different geometries and test the impact of self-consistent calculations on the latter.

  15. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  16. When Lamins Go Bad: Nuclear Structure and Disease

    PubMed Central

    Schreiber, Katherine H.; Kennedy, Brian K.

    2013-01-01

    When mutations in nuclear lamins were first identified in skeletal and cardiac muscle diseases, the molecular events underlying pathogenesis were mere points of speculation. As more and more unrelated diseases were linked to lamins and other nuclear envelope proteins, nuclear structure and disease became an increasingly prominent research focus. Today, the disease mechanisms remain unresolved, but incredible progress has occurred. Nuclear envelope dysfunction is not only associated with altered nuclear activity, but also impaired structural dynamics and aberrant cell signaling. Building on these findings, small molecules are being discovered in animal models that may become effective therapeutic agents. PMID:23498943

  17. Nuclear structure in the dinuclear model with rotating clusters

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Jolos, R. V.; Palchikov, Yu. V.; Shneidman, T. M.; Scheid, W.

    2007-08-15

    The dinuclear-system model can be applied to nuclear structure. Here, we study deformed clusters which rotate with respect to the internuclear distance and exchange nucleons. The model can be used to explain the band structure of nuclear spectra, especially the parity splitting observed in actinides, e.g., in {sup 238}U.

  18. Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.

    2007-01-01

    In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.

  19. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2013-01-01

    A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.

  20. Nuclear Structure: Going Beyond Standard Methods

    NASA Astrophysics Data System (ADS)

    Glick, Jennifer; Zelevinsky, Vladimir

    2013-04-01

    Many features of nuclear structure in medium and heavy nuclei are traditionally described by methods borrowed from macroscopic many-body physics, such as random phase approximation (RPA), or pairing theory according to BCS and HFB. These methods are routinely used when the exact large-scale diagonalization of the Hamiltonian matrix is impossible. The approximations inherently present in such methods, being appropriate in macroscopic physics, may introduce substantial errors for mesoscopic systems, such as atomic nuclei or cold atoms in traps. We develop the theory of collective motion based on exact particle number conservation. The first applications to the ground state physics (collaboration with A. Volya) demonstrated that such an approach avoids well known deficiencies of the standard treatment. Now we apply the method to low-lying collective excitations which are even more sensitive to conservation laws. The new RPA version is reduced to the set of recurrence relations for neighboring nuclei. We show that it is especially important for the cases of strong anharmonicity and in the vicinity of the instability point. Other examples are discussed where the advance beyond standard approaches gives new physical results.

  1. Nuclear structure research. Annual progress report

    SciTech Connect

    Wood, J.L.

    1995-07-31

    The most significant development this year has been the realization of a method for estimating EO transition strength in nuclei and the prediction that the de-excitation (draining) of superdeformed bands must take place, at least in some cases, by strong EO transitions. A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A significant effort has been devoted to HRIBF target development. This is a critical component of the HRIBF project. Exhaustive literature searches have been made for a variety of target materials with emphasis on thermodynamic properties. Vapor pressure measurements have been carried out. Experimental data sets for radioactive decays in the very neutron-deficient Pr-Eu and Ir-Tl regions have been under analysis. These decay schemes constitute parts of student Ph.D. theses. These studies are aimed at elucidating the onset of deformation in the Pr-Sm region and the characteristics of shape coexistence in the Ir-Bi region. Further experiments on shape coexistence in the neutron-deficient Ir-Bi region are planned using {alpha} decay studies at the FMA at ATLAS. The first experiment is scheduled for later this year.

  2. Structural integrity of nuclear reactor pressure vessels

    NASA Astrophysics Data System (ADS)

    Knott, John F.

    2013-09-01

    The paper starts from concerns expressed by Sir Alan Cottrell, in the early 1970s, related to the safety of the pressurized water reactor (PWR) proposed at that time for the next phase of electrical power generation. It proceeds to describe the design and operation of nuclear generation plant and gives details of the manufacture of PWR reactor pressure vessels (RPVs). Attention is paid to stress-relief cracking and under-clad cracking, experienced with early RPVs, explaining the mechanisms for these forms of cracking and the means taken to avoid them. Particular note is made of the contribution of non-destructive inspection to structural integrity. Factors affecting brittle fracture in RPV steels are described: in particular, effects of neutron irradiation. The use of fracture mechanics to assess defect tolerance is explained, together with the failure assessment diagram embodied in the R6 procedure. There is discussion of the Master Curve and how it incorporates effects of irradiation on fracture toughness. Dangers associated with extrapolation of data to low probabilities are illustrated. The treatment of fatigue-crack growth is described, in the context of transients that may be experienced in the operation of PWR plant. Detailed attention is paid to the thermal shock associated with a large loss-of-coolant accident. The final section reviews the arguments advanced to justify 'Incredibility of Failure' and how these are incorporated in assessments of the integrity of existing plant and proposed 'new build' PWR pressure vessels.

  3. Used nuclear fuel separations process simulation and testing

    SciTech Connect

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D.

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  4. Hierarchical Simulation of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.

    1993-01-01

    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) Behavior of HT-MMC's from micromechanics to laminate via Metal Matrix Composite Analyzer (METCAN), (2) tailoring of HT-MMC behavior for optimum specific performance via Metal Matrix Laminate Tailoring (MMLT), and (3) HT-MMC structural response for hot structural components via High Temperature Composite Analyzer (HITCAN). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures. The sample case results show that METCAN can be used to simulate material behavior such as strength, stress-strain response, and cyclic life in HTMMC's; MMLT can be used to tailor the fabrication process for optimum performance such as that for in-service load carrying capacity of HT-MMC's; and HITCAN can be used to evaluate static fracture and fatigue life of hot pressurized metal matrix composite rings.

  5. Simulating the formation of cosmic structure.

    PubMed

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge.

  6. Proline puckering parameters for collagen structure simulations

    SciTech Connect

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  7. Simulating the formation of cosmic structure.

    PubMed

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge. PMID:12804279

  8. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2005-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  9. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2004-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  10. Structured Debriefing in Simulation-Based Education.

    PubMed

    Palaganas, Janice C; Fey, Mary; Simon, Robert

    2016-02-01

    Debriefing following a simulation event is a conversational period for reflection and feedback aimed at sustaining or improving future performance. It is considered by many simulation educators to be a critical activity for learning in simulation-based education. Deep learning can be achieved during debriefing and often depends on the facilitation skills of the debriefer as well as the learner's perceptions of a safe and supportive learning environment as created by the debriefer. On the other hand, poorly facilitated debriefings may create adverse learning, generate bad feelings, and may lead to a degradation of clinical performance, self-reflection, or harm to the educator-learner relationship. The use of a structure that recognizes logical and sequential phases during debriefing can assist simulation educators to achieve a deep level of learning. PMID:26909457

  11. Nudat: Nuclear Structure and Decay Data from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    NuDat allows users to search and plot nuclear structure and decay data interactively. NuDat was developed by the National Nuclear Data Center (NNDC)but utilizes contributions from physicists around the world. It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Users can search for nuclear level properties (energy, half-life, spinparity), gamma-ray information (energy, intensity, multipolarity, coincidences), radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by NuDat 2 can be viewed in tables, level schemes and an interactive chart of nuclides.

  12. Nuclear power plant simulators: their use in operator training and requalification

    SciTech Connect

    Jones, D.W.; Baer, D.K.; Francis, C.C.

    1980-07-01

    This report presents the results of a study performed for the Nuclear Regulatory Commission to evaluate the capabilities and use of nuclear power plant simulators either built or being built by the US nuclear power industry; to determine the adequacy of existing standards for simulator design and for the training of power plant operators on simulators; and to assess the issues about simulator training programs raised by the March 28, 1979, accident at Three Mile Island Unit 2.

  13. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    SciTech Connect

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  14. Simulation modeling of nuclear steam generator water level process--a case study

    PubMed

    Zhao; Ou; Du

    2000-01-01

    Simulation modeling of the nuclear steam generator (SG) water level process in Qinshan Nuclear Power Plant (QNPP) is described in this paper. A practical methodology was adopted so that the model is both simple and accurate for control engineering implementation. The structure of the model is in the form of a transfer function, which was determined based on first-principles analysis and expert experience. The parameters of the model were obtained by taking advantage of the recorded historical response curves under the existing closed-loop control system. The results of process dimensional data verification and experimental tests demonstrate that the simulation model depicts the main dynamic characteristics of the SG water level process and is in accordance with the field recorded response curves. The model has been successfully applied to the design and test of an advanced digital feedwater control system in QNPP. PMID:10871210

  15. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    SciTech Connect

    Clarno, Kevin T; Hamilton, Steven P; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Pugmire, Dave; Dilts, Gary; Banfield, James E

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  16. Stochastic Simulation Tool for Aerospace Structural Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.; Moore, David F.

    2006-01-01

    Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.

  17. Simulations of Large Scale Structures in Cosmology

    NASA Astrophysics Data System (ADS)

    Liao, Shihong

    Large-scale structures are powerful probes for cosmology. Due to the long range and non-linear nature of gravity, the formation of cosmological structures is a very complicated problem. The only known viable solution is cosmological N-body simulations. In this thesis, we use cosmological N-body simulations to study structure formation, particularly dark matter haloes' angular momenta and dark matter velocity field. The origin and evolution of angular momenta is an important ingredient for the formation and evolution of haloes and galaxies. We study the time evolution of the empirical angular momentum - mass relation for haloes to offer a more complete picture about its origin, dependences on cosmological models and nonlinear evolutions. We also show that haloes follow a simple universal specific angular momentum profile, which is useful in modelling haloes' angular momenta. The dark matter velocity field will become a powerful cosmological probe in the coming decades. However, theoretical predictions of the velocity field rely on N-body simulations and thus may be affected by numerical artefacts (e.g. finite box size, softening length and initial conditions). We study how such numerical effects affect the predicted pairwise velocities, and we propose a theoretical framework to understand and correct them. Our results will be useful for accurately comparing N-body simulations to observational data of pairwise velocities.

  18. Forging the link between nuclear reactions and nuclear structure.

    PubMed

    Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J

    2014-04-25

    A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64  MeV/A.

  19. Interactive Simulation of Nuclear Materials Safeguards and Security

    1994-03-14

    THIEF is an interactive computer simulation or computer game of the safeguards and security (S&S) systems of a nuclear facility. The user is placed in the role of a non-violent insider attempting to remove special nuclear material from the facility. All portions of the S&S system that are relevant to the non-violent insider threat are included. The computer operates the S&S systems and attempts to detect the loss of the nuclear material. Both the physicalmore » protection system and the materials control and accounting system are modeled. The description of the facility and its S&S systems are defined by the user with the aid of an input module. All aspects of the facility description are provided by the user. The program has a custom graphical user interface to facilitate its use by people with limited computer experience. The custom interface also allows it to run on relatively small computer systems.« less

  20. THIEF: An interactive simulation of nuclear materials safeguards

    SciTech Connect

    Stanbro, W. D.

    1990-01-01

    The safeguards community is facing an era in which it will be called upon to tighten protection of nuclear material. At the same time, it is probable that safeguards will face more competition for available resources from other activities such as environmental cleanup. To exist in this era, it will be necessary to understand and coordinate all aspects of the safeguards system. Because of the complexity of the interactions involved, this process puts a severe burden on designers and operators of safeguards systems. This paper presents a simulation tool developed at the Los Alamos National Laboratory to allow users to examine the interactions among safeguards elements as they apply to combating the insider threat. The tool consists of a microcomputer-based simulation in which the user takes the role of the insider trying to remove nuclear material from a facility. The safeguards system is run by the computer and consists of both physical protection and MC A computer elements. All data elements describing a scenario can be altered by the user. The program can aid in training, as well as in developing threat scenarios. 4 refs.

  1. Mechanical regulation of nuclear structure and function.

    PubMed

    Martins, Rui P; Finan, John D; Guilak, Farshid; Lee, David A

    2012-01-01

    Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate. PMID:22655599

  2. PREFACE: Open Problems in Nuclear Structure Theory: Introduction Open Problems in Nuclear Structure Theory: Introduction

    NASA Astrophysics Data System (ADS)

    Dobaczewski, Jacek

    2010-06-01

    Nuclear structure theory is a domain of physics faced at present with great challenges and opportunities. A larger and larger body of high-precision experimental data has been and continues to be accumulated. Experiments on very exotic short-lived isotopes are the backbone of activity at numerous large-scale facilities. Over the years, tremendous progress has been made in understanding the basic features of nuclei. However, the theoretical description of nuclear systems is still far from being complete and is often not very precise. Many questions, both basic and practical, remain unanswered. The goal of publishing this special focus issue of Journal of Physics G: Nuclear and Particle Physics on Open Problems in Nuclear Structure Theory (OPeNST) is to construct a fundamental inventory thereof, so that the tasks and available options become more clearly exposed and that this will help to stimulate a boost in theoretical activity, commensurate with the experimental progress. The requested format and scope of the articles on OPeNST was quite flexible. The journal simply offered the possibility to provide a forum for the material, which is very often discussed at conferences during the coffee breaks but does not normally have sufficient substance to form regular publications. Nonetheless, very often formulating a problem provides a major step towards its solution, and it may constitute a scientific achievement on its own. Prospective authors were therefore invited to find their own balance between the two extremes of very general problems on the one hand (for example, to solve exactly the many-body equations for a hundred particles) and very specific problems on the other hand (for example, those that one could put in one's own grant proposal). The authors were also asked not to cover results already obtained, nor to limit their presentations to giving a review of the subject, although some elements of those could be included to properly introduce the subject matter

  3. Aging management of containment structures in nuclear power plants

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-12-31

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants.

  4. Nuclear shell structures in terms of classical periodic orbits

    NASA Astrophysics Data System (ADS)

    Arita, Ken-ichiro

    2016-06-01

    Semiclassical periodic-orbit theory (POT) theory is applied to the physics of nuclear structures, with the use of a realistic nuclear mean-field model given by the radial power-law potential. Evolution of deformed shell structures, which are responsible for various nuclear deformations, are clearly understood from the contribution of short classical periodic orbits (POs). Bifurcations of short POs, which imply underlying local dynamical symmetry, play significant role there. The effect of the spin degree of freedom is also investigated in relevance to the pseudospin symmetry in spherical nuclei and the prolate–oblate asymmetry in shell structures of nuclei with quadrupole-type deformations.

  5. Nuclear shell structures in terms of classical periodic orbits

    NASA Astrophysics Data System (ADS)

    Arita, Ken-ichiro

    2016-06-01

    Semiclassical periodic-orbit theory (POT) theory is applied to the physics of nuclear structures, with the use of a realistic nuclear mean-field model given by the radial power-law potential. Evolution of deformed shell structures, which are responsible for various nuclear deformations, are clearly understood from the contribution of short classical periodic orbits (POs). Bifurcations of short POs, which imply underlying local dynamical symmetry, play significant role there. The effect of the spin degree of freedom is also investigated in relevance to the pseudospin symmetry in spherical nuclei and the prolate-oblate asymmetry in shell structures of nuclei with quadrupole-type deformations.

  6. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs.

    PubMed

    Matsuura, Yoshiyuki

    2016-05-22

    Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza.

  7. Simulations of Globular Clusters Merging in Galactic Nuclear Regions

    NASA Astrophysics Data System (ADS)

    Miocchi, P.; Dolcetta, R. Capuzzo; Matteo, P. Di

    We present the results of detailed N-body simulations regarding the interaction of four massive globular clusters in the central region of a triaxial galaxy. The systems undergo a full merging event, producing a sort of `Super Star Cluster' (SSC) whose features are close to those of a superposition of the individual initial mergers. In contrast with other similar simulations, the resulting SSC structural parameters are located along the observed scaling relations of globular clusters. These findings seem to support the idea that a massive SSC may have formed in early phases of the mother galaxy evolution and contributed to the growth of a massive nucleus.

  8. Three Dimensional Simulation of the Baneberry Nuclear Event

    SciTech Connect

    Lomov, I

    2003-07-16

    Baneberry, a 10-kiloton nuclear event, was detonated at a depth of 278 m at the Nevada Test Site on December 18, 1970. Shortly after detonation, radioactive gases emanating from the cavity were released into the atmosphere through a shock-induced fissure near surface ground zero. Extensive geophysical investigations, coupled with a series of 1D and 2D computational studies were used to reconstruct the sequence of events that led to the catastrophic failure. However, the geological profile of the Baneberry site is complex and inherently three-dimensional, which meant that some geological features had to be simplified or ignored in the 2D simulations. This left open the possibility that features unaccounted for in the 2D simulations could have had an important influence on the eventual containment failure of the Baneberry event. This paper presents results from a high-fidelity 3D Baneberry simulation based on the most accurate geologic and geophysical data available. The results are compared with available data, and contrasted against the results of the previous 2D computational studies.

  9. Nuclear effects in the deuteron structure function

    NASA Astrophysics Data System (ADS)

    Epele, L. N.; Fanchiotti, H.; Canal, C. A. García; Sassot, R.

    1992-08-01

    An analysis of nuclear effects in the deuteron quark distributions is carried out in connection with the Gottfried sum rule (GSR), the Drell-Yan proton-neutron asymmetry and the Bjorken sum rule (BSR). It is shown that the small amount of nuclear effects necessary to saturate the GSR experimental data modifies the Drell-Yan asymmetry in an entirely different way as an asymmetric sea does. These effects are of little consequence in the convergence of the BSR to the expected value.

  10. EVALUATED NUCLEAR STRUCTURE DATA FILE AND RELATED PRODUCTS.

    SciTech Connect

    TULI,J.K.

    2004-09-26

    The Evaluated Nuclear Structure Data File (ENSDF) is a leading resource for the experimental nuclear data. It is maintained and distributed by the National Nuclear Data Center, Brookhaven National Laboratory. The file is mainly contributed to by an international network of evaluators under the auspice of the International Atomic Energy Agency. The ENSDF is updated, generally by mass number, i.e., evaluating together all isobars for a given mass number. If, however, experimental activity in an isobaric chain is limited to a particular nuclide then only that nuclide is updated. The evaluations are published in the journal Nuclear Data Sheets, Academic Press, a division of Elsevier.

  11. Nuclear structure notes on element 115 decay chains

    SciTech Connect

    Rudolph, D. Sarmiento, L. G.; Forsberg, U.

    2015-10-15

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory.

  12. Chavir: Virtual reality simulation for interventions in nuclear installations

    SciTech Connect

    Thevenon, J. B.; Tirel, O.; Lopez, L.; Chodorge, L.; Desbats, P.

    2006-07-01

    Companies involved in the nuclear industry have to prepare for interventions by precisely analyzing the radiological risks and rapidly evaluating the consequences of their operational choices. They also need to consolidate the experiences gained in the field with greater responsiveness and lower costs. This paper brings out the advantages of using virtual reality technology to meet the demands in the industry. The CHAVIR software allows the operators to prepare (and repeat) all the operations they would have to do in a safe virtual world, before performing the actual work inside the facilities. Since the decommissioning or maintenance work is carried out in an environment where there is radiation, the amount of radiation that the operator would be exposed to is calculated and integrated into the simulator. (authors)

  13. Chemical durability of simulated nuclear glasses containing water

    SciTech Connect

    Li, H.; Tomozawa, M.

    1995-04-01

    The chemical durability of simulated nuclear waste glasses having different water contents was studied. Results from the product consistency test (PCT) showed that glass dissolution increased with water content in the glass. This trend was not observed during MCC-1 testing. This difference was attributed to the differences in reactions between glass and water. In the PCT, the glass network dissolution controlled the elemental releases, and water in the glass accelerated the reaction rate. On the other hand, alkali ion exchange with hydronium played an important role in the MCC-1. For the latter, the amount of water introduced into a leached layer from ion-exchange was found to be much greater than that of initially incorporated water in the glass. Hence, the initial water content has no effect on glass dissolution as measured by the MCC-1 test.

  14. (Workshop on nuclear structure in the era of new spectroscopy)

    SciTech Connect

    Garrett, J.D.

    1989-11-08

    The traveler lectured on New Ways to Look at Old (and New) Data'' and served as a study group chairman at the four-week-long Workshop on Nuclear Structure in the Era of New Spectroscopy, Part B: The Nucleus at High Spin, held at the Niels Bohr Institute, October 2--27, 1989. He also visited the Tandem Accelerator Laboratory of the Niels Bohr Institute and, during the workshop, discussed plans for new nuclear structure instrumentation with various European colleagues.

  15. Adaptive low Mach number simulations of nuclear flame microphysics

    SciTech Connect

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.A.

    2003-03-20

    We introduce a numerical model for the simulation of nuclear flames in Type Ia supernovae. This model is based on a low Mach number formulation that analytically removes acoustic wave propagation while retaining the compressibility effects resulting from nuclear burning. The formulation presented here generalizes low Mach number models used in combustion that are based on an ideal gas approximation to the arbitrary equations of state such as those describing the degenerate matter found in stellar material. The low Mach number formulation permits time steps that are controlled by the advective time scales resulting in a substantial improvement in computational efficiency compared to a compressible formulation. We briefly discuss the basic discretization methodology for the low Mach number equations and their implementation in an adaptive projection framework. We present validation computations in which the computational results from the low Mach number model are compared to a compressible code and present an application of the methodology to the Landau-Darrieus instability of a carbon flame.

  16. Online Simulation of Radiation Track Structure Project

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  17. Digital system for structural dynamics simulation

    SciTech Connect

    Krauter, A.I.; Lagace, L.J.; Wojnar, M.K.; Glor, C.

    1982-11-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  18. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  19. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  20. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report.

  1. New method for calculation of nuclear cluster structure of nuclei

    NASA Astrophysics Data System (ADS)

    Ibishi, A. I.

    2005-05-01

    In the calculations of the many-nucleon bound states, using the realistic nucleon-nucleon potential, and a three- and four-nucleon potential, the Exact Many-Body Nuclear Cluster Model (EMBNCM) was found to give accurate results, that converege much more rapidly, than those obtained by the Faddeev equation calculations. With the use of realistic nucleon-nucleon potentials, and many-nucleon potentials, containing strong tensor, Majorana, and repulsive core components, the many-body cluster structure of 16O, 27Al, 44Ti, and 48Ti is discussed. In 27Al(p,x)Na reactions we assume that two different nuclear cluster structures of 27Al, gives us two different isotopes of Na: 22Na and 24Na. But the most important result is the existence of two different permutations symmetries of 27Al. Using new method for calculation of nuclear cluster structure of 27Al, we have found two different nuclear cluster structures of 27Al: 24Na+3He and 25Na+d. The internal nuclear cluster wave functions of different nuclear cluster models (nuclear cluster isomers) of the same isotope are not equivalent, if we take into account Many-Body Nuclear Forces, such as 3BF and 4BF. The core clusters of 16O, 27Al, 44Ti, and 48Ti nuclei have a trigonal-pyramide Td, D2d, and C3v symmetry, while exterior clusters in 16O and 27Al[(24Na +3 He)model] nuclei have a trigonal symmetry C2v, and D3h. We have developed a new system of Jacobi coordinates for our EMBNCM model with the symmetry above. The new computer code for determination of direct nuclear cluster reactions has been written in Mathematica 5 programming language. We have found a high level of dependence of the nuclear cluster wave functions from the center of mass and cluster effects.

  2. New method for calculation of nuclear cluster structure of nuclei

    SciTech Connect

    Ibishi, A.I.

    2005-05-06

    In the calculations of the many-nucleon bound states, using the realistic nucleon-nucleon potential, and a three- and four-nucleon potential, the Exact Many-Body Nuclear Cluster Model (EMBNCM) was found to give accurate results, that converege much more rapidly, than those obtained by the Faddeev equation calculations. With the use of realistic nucleon-nucleon potentials, and many-nucleon potentials, containing strong tensor, Majorana, and repulsive core components, the many-body cluster structure of 16O, 27Al, 44Ti, and 48Ti is discussed. In 27Al(p,x)Na reactions we assume that two different nuclear cluster structures of 27Al, gives us two different isotopes of Na: 22Na and 24Na. But the most important result is the existence of two different permutations symmetries of 27Al. Using new method for calculation of nuclear cluster structure of 27Al, we have found two different nuclear cluster structures of 27Al: 24Na+3He and 25Na+d. The internal nuclear cluster wave functions of different nuclear cluster models (nuclear cluster isomers) of the same isotope are not equivalent, if we take into account Many-Body Nuclear Forces, such as 3BF and 4BF. The core clusters of 16O, 27Al, 44Ti, and 48Ti nuclei have a trigonal-pyramide Td, D2d, and C3v symmetry, while exterior clusters in 16O and 27Al[(24Na +3 He)model] nuclei have a trigonal symmetry C2v, and D3h. We have developed a new system of Jacobi coordinates for our EMBNCM model with the symmetry above. The new computer code for determination of direct nuclear cluster reactions has been written in Mathematica 5 programming language. We have found a high level of dependence of the nuclear cluster wave functions from the center of mass and cluster effects.

  3. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    SciTech Connect

    Hamilton, Steven P; Clarno, Kevin T; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth

    2012-01-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms, such as neutron flux distribution, coolant conditions and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. With this novel capability, AMPFuel was used to model an entire 1717 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics). A full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 160 billion degrees of freedom for 10 loading steps. The single radiation transport calculation required about 50% of the time required to solve the thermo-mechanics with a single loading step, which demonstrates that it is feasible to incorporate, in a single code, a high-fidelity radiation transport capability with a high-fidelity nuclear fuel thermo-mechanics capability and anticipate acceptable computational requirements. The

  4. Numerical simulation of shock interaction with above-ground structures

    NASA Astrophysics Data System (ADS)

    Baum, Joseph D.; Lohner, Rainald

    1994-05-01

    This final report for DNA contract DNA 001-89-C-0098 for the time period May 15, 1989 to Dec 31, 1992 describes the results of several of the computations conducted under this research effort. The numerical simulations conducted simulated shock wave diffraction phenomenon about complex-geometry two-dimensional and three-dimensional structures. Since a significant part of this effort was composed of parametric studies that have been delivered to the sponsors, the Defense Nuclear Agency and the Air Force Ballistic Missile Organization (BMO), and conducted under the now defunct Rail Garrison project, we included in this report a detailed description of the results of the major computations, and a brief summary of all the repetitive computations. The final report is divided into three sections. Chapter 1 describes in detail the two-dimensional numerical methodology and typical two-dimensional computation, i.e., the application of the numerical methodology to the simulation of shock interaction with a typical 2-D train (a 2-D cut at the center of a 3-D train). Chapter 2 describes the numerical development of a passive shock reflector, a major effort undertaken in this project. The objective of this effort was to design a passive device that, while allowing the ventilation of the enclosure under steady conditions, will prevent blast waves impinging on the wall from entering the enclosure when the structure is impacted by a shock.

  5. Nuclear microscopy of sperm cell elemental structure

    NASA Astrophysics Data System (ADS)

    Bench, Graham S.; Balhorn, Rod; Friz, Alexander M.

    1995-05-01

    Theories suggest there is a link between protamine concentrations in individual sperm and male fertility. Previously, biochemical analyses have used pooled samples containing millions of sperm to determine protamine concentrations. These methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. Nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the amount of phosphorus and sulfur, the total DNA and protamine content in individual sperm from fertile bull and mouse semen have been determined. These values agree with results obtained from other biochemical analyses. Nuclear microscopy shows promise for measuring elemental profiles in the chromatin of individual sperm. The technique may be able to resolve theories regarding the importance of protamines to male fertility and identify biochemical defects responsible for certain types of male infertility.

  6. Nuclear microscopy of sperm cell elemental structure

    SciTech Connect

    Bench, G.S.; Balhorn, R.; Friz, A.M.; Freeman, S.P.H.T.

    1994-09-28

    Theories suggest there is a link between protamine concentrations in individual sperm and male fertility. Previously, biochemical analyses have used pooled samples containing millions of sperm to determine protamine concentrations. These methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. Nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the amount of phosphorus and sulfur, the total DNA and protamine content in individual sperm from fertile bull and mouse semen have been determined. These values agree with results obtained from other biochemical analyses. Nuclear microscopy shows promise for measuring elemental profiles in the chromatin of individual sperm. The technique may be able to resolve theories regarding the importance of protamines to male fertility and identify biochemical defects responsible for certain types of male infertility.

  7. Shape analysis of simulated breast anatomical structures

    NASA Astrophysics Data System (ADS)

    Contijoch, Francisco; Lynch, Jennifer M.; Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-03-01

    Recent advances in high-resolution 3D breast imaging, namely, digital breast tomosynthesis and dedicated breast CT, have enabled detailed analysis of the shape and distribution of anatomical structures in the breast. Such analysis is critically important, since the projections of breast anatomical structures make up the parenchymal pattern in clinical images which can mask the existing abnormalities or introduce false alarms; the parenchymal pattern is also correlated with the risk of cancer. As a first step towards the shape analysis of anatomical structures in the breast, we have analyzed an anthropomorphic software breast phantom. The phantom generation is based upon the recursive splitting of the phantom volume using octrees, which produces irregularly shaped tissue compartments, qualitatively mimicking the breast anatomy. The shape analysis was performed by fitting ellipsoids to the simulated tissue compartments. The ellipsoidal semi-axes were calculated by matching the moments of inertia of each individual compartment and of an ellipsoid. The distribution of Dice coefficients, measuring volumetric overlap between the compartment and the corresponding ellipsoid, as well as the distribution of aspect ratios, measuring relative orientations of the ellipsoids, were used to characterize various classes of phantoms with qualitatively distinctive appearance. A comparison between input parameters for phantom generation and the properties of fitted ellipsoids indicated the high level of user control in the design of software breast phantoms. The proposed shape analysis could be extended to clinical breast images, and used to inform the selection of simulation parameters for improved realism.

  8. Analysis by simulation of the disposition of nuclear fuel waste

    SciTech Connect

    Turek, J.L.

    1980-09-01

    A descriptive simulation model is developed which includes all aspects of nuclear waste disposition. The model is comprised of two systems, the second system orchestrated by GASP IV. A spent fuel generation prediction module is interfaced with the AFR Program Management Information System and a repository scheduling information module. The user is permitted a wide range of options with which to tailor the simulation to any desired storage scenario. The model projects storage requirements through the year 2020. The outputs are evaluations of the impact that alternative decision policies and milestone date changes have on the demand for, the availability of, and the utilization of spent fuel storage capacities. Both graphs and detailed listings are available. These outputs give a comprehensive view of the particular scenario under observation, including the tracking, by year, of each discharge from every reactor. Included within the work is a review of the status of spent fuel disposition based on input data accurate as of August 1980. The results indicate that some temporary storage techniques (e.g., transshipment of fuel and/or additional at-reactor storage pools) must be utilized to prevent reactor shutdowns. These techniques will be required until the 1990's when several AFR facilities, and possibly one repository, can become operational.

  9. The nuclear structure and low-energy reactions (NSLER) collaboration

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; NSLER Collaboration

    2006-09-01

    The long-term vision of the Nuclear Structure and Low-Energy Reactions (NSLER) collaboration is to arrive at a comprehensive and unified description of nuclei and their reactions that is grounded in the interactions between the constituent nucleons. For this purpose, we will develop a universal energy density functional for nuclei and replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that will deliver maximum predictive power with minimal uncertainties that are well quantified. Nuclear structure and reactions play an essential role in the science to be investigated at rare isotope facilities, and in nuclear physics applications to the Science-Based Stockpile Stewardship Program, next-generation reactors, and threat reduction. We anticipate an expansion of the computational techniques and methods we currently employ, and developments of new treatments, to take advantage of petascale architectures and demonstrate the capability of the leadership class machines to deliver new science heretofore impossible.

  10. PREFACE: Structure of Exotic Nuclei and Nuclear Forces

    NASA Astrophysics Data System (ADS)

    Honma, Michio; Otsuka, Takaharu; Aoi, Nori

    2006-11-01

    The International Symposium on `Structure of Exotic Nuclei and Nuclear Forces' was held at The Koshiba Hall, University of Tokyo, on 9 - 12 March 2006. This symposium was organized as an activity of the Grant-in-Aid for the specially promoted area `Monte Carlo Shell Model' from the Ministry of Education, Science, Sports and Culture (MEXT) of Japan. The symposium was sponsored by the Center for Nuclear Study (CNS) and by RIKEN. The purpose of the symposium was to discuss theoretical and experimental developments in the study of the structure of exotic nuclei and its relationship with nuclear forces. There has been much progress recently in our understanding of what the structure of exotic nuclei is and how it can be linked to nuclear forces, with emerging intriguing perspectives. The following subjects were covered in this symposium

  11. Present status and future of the shell model
  12. Effective interaction theories
  13. Experimental results and perspectives
  14. Few-body methods including ab initio calculations
  15. Advancements of mean-fieeld models
  16. Transition between shell and cluster structure>
  17. Nuclear astrophysics and nuclear structure>
  18. Particle physics and the shell model
  19. Emphasis was placed on the interplay between many-body structures and nuclear forces, and on the experimental clarification of these topics. Around 80 participants attended the symposium and we enjoyed 34 excellent and lively invited talks and 26 oral presentations. The organizing committee consisted of B A Brown (MSU), S Fujii (CNS), M Honma (Aizu), T Kajino (NAO), T Mizusaki (Senshu), T Motobayashi (RIKEN), K Muto (TIT), T Otsuka (Chair, Tokyo/CNS/RIKEN), P Ring (TMU), N Shimizu (Scientific Secretary, Tokyo), S Shimoura (CNS), Y Utsuno (Scientific Secretary, JAEA). Finally, we would like to thank all the speakers and the participants as well as the other organizers for their contributions which made the symposium so successful.

  20. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    NASA Astrophysics Data System (ADS)

    Mattoon, C. M.; Beck, B. R.; Patel, N. R.; Summers, N. C.; Hedstrom, G. W.; Brown, D. A.

    2012-12-01

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it

  21. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    SciTech Connect

    Mattoon, C.M.; Beck, B.R.; Patel, N.R.; Summers, N.C.; Hedstrom, G.W.; Brown, D.A.

    2012-12-15

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it

  22. Simulations of kinetically irreversible protein aggregate structure.

    PubMed Central

    Patro, S Y; Przybycien, T M

    1994-01-01

    We have simulated the structure of kinetically irreversible protein aggregates in two-dimensional space using a lattice-based Monte-Carlo routine. Our model specifically accounts for the intermolecular interactions between hydrophobic and hydrophilic protein surfaces and a polar solvent. The simulations provide information about the aggregate density, the types of inter-monomer contacts and solvent content within the aggregates, the type and extent of solvent exposed perimeter, and the short- and long-range order all as a function of (i) the extent of monomer hydrophobic surface area and its distribution on the model protein surface and (ii) the magnitude of the hydrophobic-hydrophobic contact energy. An increase in the extent of monomer hydrophobic surface area resulted in increased aggregate densities with concomitant decreased system free energies. These effects are accompanied by increases in the number of hydrophobic-hydrophobic contacts and decreases in the solvent-exposed hydrophobic surface area of the aggregates. Grouping monomer hydrophobic surfaces in a single contiguous stretch resulted in lower aggregate densities and lower short range order. More favorable hydrophobic-hydrophobic contact energies produced structures with higher densities but the number of unfavorable protein-protein contacts was also observed to increase; greater configurational entropy produced the opposite effect. Properties predicted by our model are in good qualitative agreement with available experimental observations. Images FIGURE 6 FIGURE 13 PMID:8061184

  23. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  24. Structural Basis of Vesicle Formation at the Inner Nuclear Membrane.

    PubMed

    Hagen, Christoph; Dent, Kyle C; Zeev-Ben-Mordehai, Tzviya; Grange, Michael; Bosse, Jens B; Whittle, Cathy; Klupp, Barbara G; Siebert, C Alistair; Vasishtan, Daven; Bäuerlein, Felix J B; Cheleski, Juliana; Werner, Stephan; Guttmann, Peter; Rehbein, Stefan; Henzler, Katja; Demmerle, Justin; Adler, Barbara; Koszinowski, Ulrich; Schermelleh, Lothar; Schneider, Gerd; Enquist, Lynn W; Plitzko, Jürgen M; Mettenleiter, Thomas C; Grünewald, Kay

    2015-12-17

    Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.

  25. Nuclear war group survival: Structures and camp site

    SciTech Connect

    David, C.V.

    1987-06-09

    A nuclear war group survival camp is described including a combination of structures, facilities, equipment and other camp site improvements and further comprising: means for protecting people inside structures located above ground against the effects of blast caused by the explosion of a nuclear weapon, on and above ground, within a distance that would create a lethal environment inside any conventionally constructed building structure at such distance; means for removing fallout debris (dust) generated by the explosion in a manner such that the total radiation dosage received by any and all so sheltered people remains below the radiation dose level considered critical.

  26. QCD and a new paradigm for nuclear structure

    NASA Astrophysics Data System (ADS)

    Thomas, A. W.

    2016-09-01

    We review the reasons why one might choose to seriously re-examine the traditional approach to nuclear theory where nucleons are treated as immutable. This examination leads us to argue that the modification of the structure of the nucleon when immersed in a nuclear medium is fundamental to how atomic nuclei are built. Consistent with this approach we suggest key experiments which should tell us unambiguously whether there is such a change in the structure of a bound nucleon. We also briefly report on extremely promising recent calculations of the structure of nuclei across the periodic table based upon this idea.

  27. High-Fidelity Space-Time Adaptive Multiphysics Simulations in Nuclear Engineering

    SciTech Connect

    Solin, Pavel; Ragusa, Jean

    2014-03-09

    We delivered a series of fundamentally new computational technologies that have the potential to significantly advance the state-of-the-art of computer simulations of transient multiphysics nuclear reactor processes. These methods were implemented in the form of a C++ library, and applied to a number of multiphysics coupled problems relevant to nuclear reactor simulations.

  28. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an

  29. Phenomenological correlations in nuclear structure: An opportunity for nuclear astrophysics and a challenge to theory

    SciTech Connect

    Casten, R.F. ); Zamfir, N.V. Clark Univ., Worcester, MA )

    1992-01-01

    Though it often appears daunting in its complexity, nuclear data frequently exhibits remarkable simplicities when viewed from the appropriate perspectives. This realization, which is becoming more and more apparent, is one of the fruits of the vast amount of nuclear data that has been accumulated over many years but, surprisingly, has never been completely digested. This emerging, unified, and simple macroscopic phenomenology, aided by microscopic underpinnings and physical arguments, appears in many guises and often simplifies semi-empirical estimates of structure far from stability in the critical realms where nuclear astrophysics takes place and where it is in need for improved nuclear input. The generality of simple phenomenological relationships begs both for a sound theoretical basis and for the advent of Radioactive Nuclear Beams so that the reliability of their extrapolations can be assessed and tested. These issues will be discussed, and illustrated with a number of specific examples.

  1. Phenomenological correlations in nuclear structure: An opportunity for nuclear astrophysics and a challenge to theory

    SciTech Connect

    Casten, R.F.; Zamfir, N.V. |

    1992-12-01

    Though it often appears daunting in its complexity, nuclear data frequently exhibits remarkable simplicities when viewed from the appropriate perspectives. This realization, which is becoming more and more apparent, is one of the fruits of the vast amount of nuclear data that has been accumulated over many years but, surprisingly, has never been completely digested. This emerging, unified, and simple macroscopic phenomenology, aided by microscopic underpinnings and physical arguments, appears in many guises and often simplifies semi-empirical estimates of structure far from stability in the critical realms where nuclear astrophysics takes place and where it is in need for improved nuclear input. The generality of simple phenomenological relationships begs both for a sound theoretical basis and for the advent of Radioactive Nuclear Beams so that the reliability of their extrapolations can be assessed and tested. These issues will be discussed, and illustrated with a number of specific examples.

  2. Structure of matter, radioactivity, and nuclear fission. Volume 3

    SciTech Connect

    Not Available

    1986-01-01

    Subject matter includes structure of matter (what is matter, forces holding atoms together, visualizing the atom, the chemical elements, atomic symbols, isotopes, radiation from the atom), radioactivity (what holds the nucleus together, can one element change into another element, radiation from the nucleus, half-life, chart of the nuclides), and nuclear fission (nuclear energy release, the fission process, where does fission energy go, radiation and radioactivity resulting from fission).

  3. Nuclear structure from radioactive decay. Annual progress report

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  4. Nuclear microscopy of sperm cell elemental structure

    SciTech Connect

    Bench, G.S.

    1994-12-31

    Theories have suggested that there is a link between protamine concentrations in individual sperm and sperm fertility. At present, biochemical analyses have only been performed on bulk populations and existing methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. As part of an investigation into male sperm fertility, nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the ratio of Phosphorus to Sulfur the authors have been able to determine the amount of protamine 1 and protamine 2 in individual cells from bulk fertile samples of bull and mouse sperm. Preliminary results show that, for each species, the relative amounts of protamine 1 and protamine 2 in morphologically normal sperm agree well with expected values.

  5. Structural Ceramic Composites for Nuclear Applications

    SciTech Connect

    William Windes; P.A. Lessing; Y. Katoh; L. L. Snead; E. Lara-Curzio; J. Klett; C. Henager, Jr.; R. J. Shinavski

    2005-08-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. Initial irradiation stability studies to determine the maximum dose for each composite type have been initiated within the High Flux Isotope Reactor at Oak Ridge National Laboratory. Test samples exposed to 10 dpa irradiation dose have been completed with future samples to dose levels of 20 and 30 dpa scheduled for completion in following years. Mechanical and environmental testing is being conducted concurrently at the Idaho National Laboratory and at Pacific Northwest National Laboratory. High temperature test equipment, testing methodologies, and test samples for high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Specific attention was paid to the architectural fiber preform design as well as the materials used in construction of the composites. Actual testing of both tubular and flat, "dog-bone" shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures will be established from these mechanical and environmental tests. Close collaborations between the U.S. national laboratories and international collaborators (i.e. France and Japan) are being forged to establish both national and international test standards to be used to qualify ceramic composites for nuclear reactor applications.

  6. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  7. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems. PMID:25347594

  8. Separation of technetium from nuclear waste stream simulants. Final report

    SciTech Connect

    Strauss, S.H.

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  9. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  10. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  11. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  12. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.

  13. Nuclear structure at intermediate energies. Progress report

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1992-07-15

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS {bar p} experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance.

  14. Structural performance of HEPA filters under simulated tornado conditions

    SciTech Connect

    Horak, H.L.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1982-02-01

    This report contains the results of structural tests to determine the response of High Efficiency Particulate Air filters to simulated tornado conditions. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The type of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 m/sup 3//s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, faceguards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits.

  15. Crashworthiness simulation of composite automotive structures

    SciTech Connect

    Botkin, M E; Johnson, N L; Simunovic, S; Zywicz, E

    1998-06-01

    In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3DTM specifically for composite structures. This model is in LS-DYNA3DTM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.

  16. Probing nuclear structure of {sup 124}Xe

    SciTech Connect

    Saha, B.; Dewald, A.; Moeller, O.; Peusquens, R.; Jessen, K.; Fitzler, A.; Klug, T.; Tonev, D.; Brentano, P. von; Jolie, J.; Gall, B.J.P.; Petkov, P.

    2004-09-01

    Excited states in {sup 124}Xe were populated in the fusion-evaporation reaction {sup 110}Pd({sup 18}O,4n){sup 124}Xe at a beam energy of 80 MeV. A recoil distance measurement using the Euroball spectrometer in Strasbourg and the Cologne plunger was performed. Altogether 19 lifetimes of excited states in six different bands were determined using gated spectra only, in order to avoid problems related to feeding. The measured B(E2) values were used to derive the nuclear deformation of {sup 124}Xe and the interaction of the ground state band with two s bands. Two sd-IBM-1 calculations with two Hamiltonians of different complexities were performed, which show a good agreement with the measured B(E2) values in the ground state band and the quasi-{gamma} band. The deduced B(M1) values for the regular M1 band show the behavior expected for magnetic rotation. However, it is also shown that these experimental B(M1) values can be described on the basis of a rotational band as well.

  17. Nuclear spins and moments: Fundamental structural information

    SciTech Connect

    Semmes, P.B.

    1991-01-01

    Predictions for the low energy structure of well deformed odd-A Pm and Sm nuclei in the A {approx} 130 region are given, based on the particle-rotor model. Distinctive magnetic dipole properties (static moments and transition rates) are expected for certain Nilsson configurations, and comparisons to recent data are made for {sup 133}Pm, {sup 135}Sm and {sup 133}Sm.

  18. Nuclear spins and moments: Fundamental structural information

    SciTech Connect

    Semmes, P.B.

    1991-12-31

    Predictions for the low energy structure of well deformed odd-A Pm and Sm nuclei in the A {approx} 130 region are given, based on the particle-rotor model. Distinctive magnetic dipole properties (static moments and transition rates) are expected for certain Nilsson configurations, and comparisons to recent data are made for {sup 133}Pm, {sup 135}Sm and {sup 133}Sm.

  19. 3D structure and nuclear targets

    NASA Astrophysics Data System (ADS)

    Dupré, Raphaël; Scopetta, Sergio

    2016-06-01

    Recent experimental and theoretical ideas are laying the ground for a new era in the knowledge of the parton structure of nuclei. We report on two promising directions beyond inclusive deep inelastic scattering experiments, aimed at, among other goals, unveiling the three-dimensional structure of the bound nucleon. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative content is parametrized in terms of generalized parton distributions. In this way the distribution of partons in the transverse plane will be obtained, providing a pictorial view of the realization of the European Muon Collaboration effect. In particular, we show how, through the generalized parton distribution framework, non-nucleonic degrees of freedom in nuclei can be unveiled. Analogously, the momentum space 3D structure can be accessed by studying transverse-momentum-dependent parton distributions in semi-inclusive deep inelastic scattering processes. The status of measurements is also summarized, in particular novel coincidence measurements at high-luminosity facilities, such as Jefferson Laboratory. Finally the prospects for the next years at future facilities, such as the 12GeV Jefferson Laboratory and the Electron Ion Collider, are presented.

  20. High-spin nuclear structure data on the Internet

    SciTech Connect

    Singh, B. |

    1997-12-31

    The study of nuclear structure at fast nuclear rotations, using fusion-evaporation reactions, started in the early sixties but since the experimental observation of superdeformation about a decade ago it has become one of the most pursued research topics in nuclear physics. Large gamma-ray detector arrays GAMMASPHERE, EUROGAM, and GASP were developed during the last few years and these continue to produce a wealth of new, information about the properties of nuclei at high spins, including superdeformation. It is considered vital to compile, evaluate and systematize published data on many thousands of levels and gamma rays and associated nuclear bands obtained in such studies and make these available to the research community in conveniently retrievable and modern formats. This talk will describe the numerical, bibliographic and other high-spin related databases that are already accessible via INTERNET. Present limitations and ways to improve the current status and display of such databases will also be discussed.

  1. Thermal Simulator Development: Non-Nuclear Testing of Space Fission Systems

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky E.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system. At the NASA MSFC Early Flight Fission Test Facility (EFF-TF), highly designed electric heaters are used to simulate the heat from nuclear fuel to test space fission power and propulsion systems. To allow early utilization, nuclear system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. In this test strategy, highly designed electric heaters are used to simulate the heat from nuclear fuel, allowing one to develop a significant understanding of individual components and integrated system operation without the cost, time and safety concerns associated with nuclear testing.

  2. Nuclear Structure Corrections in Muonic Deuterium

    SciTech Connect

    Pachucki, Krzysztof

    2011-05-13

    The muonic hydrogen experiment measuring the 2P-2S transition energy [R. Pohl et al., Nature (London) 466, 213 (2010)] is significantly discrepant with theoretical predictions based on quantum electrodynamics. A possible approach to resolve this conundrum is to compare experimental values with theoretical predictions in another system, muonic deuterium {mu}D. The only correction which might be questioned in {mu}D is that due to the deuteron polarizability. We investigate this effect in detail and observe cancellation with the elastic contribution. The total value obtained for the deuteron structure correction in the 2P-2S transition is 1.680(16) meV.

  3. Topics on Nuclear Structure with Electroweak Probes

    NASA Astrophysics Data System (ADS)

    Moya de Guerra, E.; Moreno, O.; Sarriguren, P.; Ramon, M.

    2012-05-01

    We study some relevant aspects of complex nuclei structure using electroweak probes within the framework of self-consistent mean field theories with Skyrme density-dependent two-body interactions, including pairing and spin-isospin RPA correlations where necessary. We apply the formalism to the study of single and double beta decays as normal modes of the system, as well as to the analysis of parity-violating electron scattering by nuclei. Finally, we profit from the studied processes to draw some conclusions on the neutrino nature (eigenstates mixing).

  4. Nuclear power: Fourth edition

    SciTech Connect

    Deutsch, R.W.

    1986-01-01

    This book describes the basics of nuclear power generation, explaining both the benefits and the real and imagined risks of nuclear power. It includes a discussion of the Three Mile Island accident and its effects. Nuclear Power has been used in the public information programs of more than 100 utilities. The contents discussed are: Nuclear Power and People; Why Nuclear Power. Electricity produced by coal; Electricity produced by nuclear fuel; Nuclear plant sites in the United States; Short History of Commercial Nuclear Power; U.S. nuclear submarines, Regulation of Nuclear Power Plants; Licensing process, Nuclear Power Plant Operator Training; Nuclear power plant simulator, Are Nuclear Plants Safe.; Containment structure, Nuclear Power Plant Insurance; Is Radiation Dangerous.; Man-made radiation, What is Nuclear Fuel.; Fuel cycle for commercial nuclear power plants; Warm Water Discharge; Cooling tower; Protection of Radioactive Materials; Plutonium and Proliferation; Disposal of Radioactive Wastes; Are Alternate Energy Sources Available.; Nuclear Opposition; and Nuclear Power in the Future.

  5. Nuclear clusters and structure in light nuclei

    SciTech Connect

    Kokalova, Tz.; Oertzen, W. von; Thummerer, S.; Bohlen, H.G.; Milin, M.; Tumino, A.; De Angelis, G.; Farnea, E.; Axiotis, M.; Marginean, N.; Napoli, D.R.; Lenzi, S.M.; Ur, C.; Rousseau, M.; Papka, P.

    2004-02-27

    We have studied the {gamma}-decay properties of 21Ne up to the limits of the particle emission thresholds in order to establish the band structure. The GASP {gamma}-ray detector array together with the multi-detector array, ISIS, were used for the selection of the reaction channels. The reaction 16O(7Li,pn)21Ne has been studied at E=29 MeV. The observed decays in 21Ne, support the identification of parity doublets with states of opposite parity connected by strong dipole transitions. The behaviour of the octupole deformed bands in 21Ne is interpreted as consisting of an intrinsic reflection asymmetric (4He+16O)-structure with an additional valence neutron in {sigma}- and {pi}-orbitals. Using the same experimental set-up the emission of the light unbound cluster 8Be has been studied in the reaction 18O+13C{yields}31Si{yields}23Ne+8Be. The emission has been studied relative to the sequential emission of 2{alpha}-particles.

  6. A-dependence of weak nuclear structure functions

    SciTech Connect

    Haider, H.; Athar, M. Sajjad; Simo, I. Ruiz

    2015-05-15

    Effect of nuclear medium on the weak structure functions F{sub 2}{sup A}(x, Q{sup 2}) and F{sub 3}{sup A}(x, Q{sup 2}) have been studied using charged current (anti)neutrino deep inelastic scattering on various nuclear targets. Relativistic nuclear spectral function which incorporate Fermi motion, binding and nucleon correlations are used for the calculations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. Using these structure functions, F{sub i}{sup A}/F{sub i}{sup proton} and F{sub i}{sup A}/F{sub i}{sup deuteron}(i=2,3, A={sup 12}C, {sup 16}O, CH and H{sub 2}O) are obtained.

  7. Structural performance of HEPA filters under simulated tornado conditions

    NASA Astrophysics Data System (ADS)

    Horak, H. L.; Gregory, W. S.; Ricketts, C. I.; Smith, P. R.

    1982-02-01

    The response of high efficiency particulate air filters to simulated tornado conditions was determined. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The types of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 cu m/s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, face-guards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits.

  8. Nuclear structure studies of 24F

    NASA Astrophysics Data System (ADS)

    Cáceres, L.; Lepailleur, A.; Sorlin, O.; Stanoiu, M.; Sohler, D.; Dombrádi, Zs.; Bogner, S. K.; Brown, B. A.; Hergert, H.; Holt, J. D.; Schwenk, A.; Azaiez, F.; Bastin, B.; Borcea, C.; Borcea, R.; Bourgeois, C.; Elekes, Z.; Fülöp, Zs.; Grévy, S.; Gaudefroy, L.; Grinyer, G. F.; Guillemaud-Mueller, D.; Ibrahim, F.; Kerek, A.; Krasznahorkay, A.; Lewitowicz, M.; Lukyanov, S. M.; Mrázek, J.; Negoita, F.; de Oliveira, F.; Penionzhkevich, Yu.-E.; Podolyák, Zs.; Porquet, M. G.; Rotaru, F.; Roussel-Chomaz, P.; Saint-Laurent, M. G.; Savajols, H.; Sletten, G.; Thomas, J. C.; Timàr, J.; Timis, C.; Vajta, Zs.

    2015-07-01

    The structure of the 24F nucleus has been studied at GANIL using the β decay of 24O and the in-beam γ -ray spectroscopy from the fragmentation of Na,2827,25,26Ne, and 29,30

  9. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon; Dickens, Ricky; Dixon, David

    2007-01-01

    This viewgraph presentation reviews the development of a simulator for non-nuclear tests for the development of a space nuclear power system. The development of the Instrumented Thermal Simulator is to assist in developing an understanding of individual components and integrated system operation without the cost, time, safety concerns associated with nuclear testing. The presentation shows the design, the electrical integration, the hardware, and the assembly of the simulators. There are slides that show the test plan, the analysis, and the initial results.

  10. Self-consistent methods in nuclear structure physics

    SciTech Connect

    Dobaczewski, J. |

    1997-11-01

    The authors present a very brief description of the Hartree Fock method in nuclear structure physics, discuss the numerical methods used to solve the self-consistent equations, and analyze the precision and convergence properties of solutions. As an application, they present results pertaining to quadrupole moments and single-particle quadrupole polarizations in superdeformed nuclei with A {approximately} 60.

  11. 10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL CROSS SECTION. Giffals & Vallet, Inc., L. Rosetti, Associated Architects and Engineers, Detroit, Michigan; and U.S. Army Engineer Division, New England Corps of Engineers, Boston, Massachusetts. Drawing Number 35-84-04. (Original: AMTL Engineering Division, Watertown). - Watertown Arsenal, Building No. 100, Wooley Avenue, Watertown, Middlesex County, MA

  12. Passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  13. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  14. Nuclear structure studies. [Dept. of Chemistry, Univ. of Maryland

    SciTech Connect

    Walters, W.B.

    1992-08-31

    New results are reported for the decay and nuclear orientation of [sup 114,116]I and [sup 114]Sb as well as data for the structure of daughter nuclides [sup 114,116]Te. New results for IBM-2 calculations for the structure of [sup 126]Xe are also reported. A new approach to the problem of the underproduction of A = 120 nuclides in the astrophysical r-process is reported.

  15. A Structured Debriefing Process for International Business Culture Simulations.

    ERIC Educational Resources Information Center

    McGraw, Peter; Palmer, Ian

    1999-01-01

    Outlines a nine-step structure for debriefing an international business culture simulation. Stresses the need to address three stages in the experiential learning cycle: reflection, processing, and transfer. Appendices include the specific simulation used and a debriefing note. (DB)

  16. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential

  17. In situ structural analysis of the human nuclear pore complex.

    PubMed

    von Appen, Alexander; Kosinski, Jan; Sparks, Lenore; Ori, Alessandro; DiGuilio, Amanda L; Vollmer, Benjamin; Mackmull, Marie-Therese; Banterle, Niccolo; Parca, Luca; Kastritis, Panagiotis; Buczak, Katarzyna; Mosalaganti, Shyamal; Hagen, Wim; Andres-Pons, Amparo; Lemke, Edward A; Bork, Peer; Antonin, Wolfram; Glavy, Joseph S; Bui, Khanh Huy; Beck, Martin

    2015-10-01

    Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.

  18. Microstructural characterization and pore structure analysis of nuclear graphite

    NASA Astrophysics Data System (ADS)

    Kane, J.; Karthik, C.; Butt, D. P.; Windes, W. E.; Ubic, R.

    2011-08-01

    Graphite will be used as a structural and moderator material in next-generation nuclear reactors. While the overall nature of the production of nuclear graphite is well understood, the historic nuclear grades of graphite are no longer available. This paper reports the virgin microstructural characteristics of filler particles and macro-scale porosity in virgin nuclear graphite grades of interest to the Next Generation Nuclear Plant program. Optical microscopy was used to characterize filler particle size and shape as well as the arrangement of shrinkage cracks. Computer aided image analysis was applied to optical images to quantitatively determine the variation of pore structure, area, eccentricity, and orientation within and between grades. The overall porosity ranged between ˜14% and 21%. A few large pores constitute the majority of the overall porosity. The distribution of pore area in all grades was roughly logarithmic in nature. The average pore was best fit by an ellipse with aspect ratio of ˜2. An estimated 0.6-0.9% of observed porosity was attributed to shrinkage cracks in the filler particles. Finally, a preferred orientation of the porosity was observed in all grades.

  19. Microstructural Characterization and Pore Structure Analysis of Nuclear Graphite

    SciTech Connect

    J. Kane; C. Karthik; D. P. Butt; W. E. Windes; R. Ubic

    2011-08-01

    Graphite will be used as a structural and moderator material in next-generation nuclear reactors. While the overall nature of the production of nuclear graphite is well understood, the historic nuclear grades of graphite are no longer available. This paper reports the virgin microstructural characteristics of filler particles and macro-scale porosity in virgin nuclear graphite grades of interest to the Next Generation Nuclear Plant program. Optical microscopy was used to characterize filler particle size and shape as well as the arrangement of shrinkage cracks. Computer aided image analysis was applied to optical images to quantitatively determine the variation of pore structure, area, eccentricity, and orientation within and between grades. The overall porosity ranged between {approx}14% and 21%. A few large pores constitute the majority of the overall porosity. The distribution of pore area in all grades was roughly logarithmic in nature. The average pore was best fit by an ellipse with aspect ratio of {approx}2. An estimated 0.6-0.9% of observed porosity was attributed to shrinkage cracks in the filler particles. Finally, a preferred orientation of the porosity was observed in all grades.

  20. Geometric simulation of structures containing rigid units

    NASA Astrophysics Data System (ADS)

    Wells, Stephen

    2005-03-01

    Much insight into the behaviour of the framework silicates can be obtained from the Rigid Unit model. I review results from geometric analyses [1] of framework structures, quantifying the significance of rigid unit motion in thermal disorder and in defect accomodation, and from a method of simulation [2,3] based on a whole-body `geometric potential' rather than on interatomic potentials. I show the application of the geometric potential to the symmetry-constrained generation of hypothetical zeolite frameworks [4], and to the rapid generation of protein conformations using insights from rigid cluster decomposition [5]. 1. Wells, Dove and Tucker, Journal of Applied Crystallography, 37:536--544 (2004). 2. G.D. Gatta and S.A. Wells, Phys. Chem. Min. 31:1--10 (2004). 3. A. Sartbaeva, S. A. Wells, S. A. T. Redfern, J. Phys.: Condens. Matter 16, 8173 (2004) 4. M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall and M. D. Foster, Micropor. Mesopor. Mater. 74, 121-132 (2004). 5. M.F. Thorpe, Ming Lei, A.J. Rader, Donald J. Jacobs, and Leslie A. Kuhn, Journal of Molecular Graphics and Modelling 19, 1:60 - 69, (2001).

  1. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.

    2007-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.

  2. Initial Operation and Shakedown of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.

  3. Storage ring mass spectrometry for nuclear structure and astrophysics research

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Litvinov, Yu A.; Uesaka, T.; Xu, H. S.

    2016-07-01

    In the last two and a half decades ion storage rings have proven to be powerful tools for precision experiments with unstable nuclides in the realm of nuclear structure and astrophysics. There are presently three storage ring facilities in the world at which experiments with stored radioactive ions are possible. These are the ESR in GSI, Darmstadt/Germany, the CSRe in IMP, Lanzhou/China, and the R3 storage ring in RIKEN, Saitama/Japan. In this work, an introduction to the facilities is given. Selected characteristic experimental results and their impact in nuclear physics and astrophysics are presented. Planned technical developments and the envisioned future experiments are outlined.

  4. Phase structure in a chiral model of nuclear matter

    SciTech Connect

    Phat, Tran Huu; Anh, Nguyen Tuan; Tam, Dinh Thanh

    2011-08-15

    The phase structure of symmetric nuclear matter in the extended Nambu-Jona-Lasinio (ENJL) model is studied by means of the effective potential in the one-loop approximation. It is found that chiral symmetry gets restored at high nuclear density and a typical first-order phase transition of the liquid-gas transition occurs at zero temperature, T=0, which weakens as T grows and eventually ends up with a second-order critical point at T=20 MeV. This phase transition scenario is confirmed by investigating the evolution of the effective potential versus the effective nucleon mass and the equation of state.

  5. Nuclear structure studies with gamma-ray beams

    DOE PAGES

    Tonchev, Anton; Bhatia, Chitra; Kelley, John; Raut, Rajarshi; Rusev, Gencho; Tornow, Werner; Tsoneva, Nadia

    2015-05-28

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR) in contrast to the Giant Dipole Resonance (GDR) that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.

  6. Precision Penning Trap Mass Measurements for Nuclear Structure at Triumf

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Dilling, J.; Andreoiu, C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Delheij, P.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Gwinner, G.; Lennarz, A.; Mané, E.; Pearson, M. R.; Schultz, B. E.; Simon, M. C.; Simon, V. V.

    2013-03-01

    Precision determinations of ground state or even isomeric state masses reveal fingerprints of nuclear structure. In particular at the limits at existence for very neutron-rich or deficient isotopes, this allows one to find detailed information about nuclear structure from separation energies or binding energies. This is important to test theoretical predictions or to refine model approaches, for example for new "magic numbers," as predicted around N = 34, where strong indications exist that the inclusion of NNN forces in theoretical calculations for Ca isotopes leads to significantly better predictions for ground state binding energies. Similarly, halo nuclei present an excellent application for ab-initio theory, where ground state properties, like masses and radii, present prime parameters for testing our understanding of nuclear structure. Precision mass determinations at TRIUMF are carried out with the TITAN (TRIUMF's Ion Trap for Atomic and Nuclear science) system. It is an ion trap setup coupled to the on-line facility ISAC. TITAN has measured masses of isotopes as short-lived as 9 ms (almost an order of magnitude shorter-lived than any other Penning trap system) and the only one with charge breeding capabilities, a feature that allows us to boost the precision by almost 2 orders of magnitude. We recently were able to make use of this feature by measuring short-lived Rb-isotopes, up to 74Rb, and reaching the 12+ charge state, which together with other improvements lead to an increase in precision by a factor 36.

  7. Redox of Simulated Nuclear Waste Glass Forming Melts

    SciTech Connect

    Vick, Sara C.; Sundaram, S. K.

    2001-12-01

    Glasses are found in most reduction-oxidation (redox) items that are used everyday; from automobiles to planes. With stability of most glasses, they are being used to store hazardous waste materials. Many elements have different oxidation states and are found in multiple states in glasses. Redox of glasses has significant effect on processing of waste glass melts in melters as well as properties of the waste forms. Nuclear waste glasses generally have complex chemistry (including several redox ions) and form corrosive melts. Basic objective: study the redox of the glasses containing Fe and Ni with square wave voltammetry. A basic simulated frit glass was used for vitrification. The frit composition used was 57.90% SiO2, 17.70% Na2O, 14.70% B2O3, 5.70% Li2O, 2.00% MgO, 1.00% TiO2, 0.50% ZrO2, and 0.50% La2O3. Batch glasses were synthesized and then dopants of Fe2O3 , NiO, and a combination of Fe2O3-NiO were added in 1-wt % amounts. The glass was melted at 1150 C and held for 24 hours. It was poured to the top of a medium sized Pt/Rh crucible and placed in a furnace at 1150 C. The glass powder was allowed to melt for five minutes before the testing apparatus was placed in the melt. The testing apparatus was composed of a Pt/Rh working electrode, Pt/Rh counter electrode, and a Zr/Al reference electrode. The counter electrode is placed in the melt until it is touching the bottom of the crucible creating a closed circuit. Both the reference electrode and working electrode are located half way down the counter electrode. The test showed that melt resistivity was high indicating the amount of conductivity in the melt. Sample melt volume and area of the working electrode were high. Adjusting the crucible size and sizing other electrodes will improve the measurements. Future work: testing NiO glass and Fe2O3-NiO glass to see the interaction between the Fe and the Ni and synthesis of 2 wt %, 3 wt %, and 5-wt % Fe2O3 doped glasses to study effects of Fe concentration.

  8. Specification and verification of nuclear-power-plant training-simulator response characteristics. Part II. Conclusions and recommendations

    SciTech Connect

    Haas, P M; Selby, D L; Kerlin, T W; Felkins, L

    1982-05-01

    The nuclear industry should adopt and NRC regulatory and research actions should support the systems approach to training as a structured framework for development and validation of personnel training systems. Potential exists for improving the ability to assess simulator fidelity. Systems Identification Technology offers a potential framework for model validation. Installation of the data collection/recording equipment required by NUREG-0696 could provide a vastly improved source of data for simulator fidelity assessment. The NRC needs to continue its post-TMI actions to involve itself more rigorously and more formally in the entire process of NPP personnel training system development. However, this involvement should be a participative one with industry. The existing similator standards and guidelines should be reorganized to support the use of systems approach to training. The standards should require and support a holistic approach to training system development that recognizes simulators and simulator training as only parts of the complete training program and full-scope, high-fidelity, site-specific simulators as only one useful training device. Some recommendations for adapting the SAT/ISD process to the nuclear industry are: The formation of an NRC/industry planning/coordination group, a program planning study to develop a programmatic plan, development of a user's guide and NRC/industry workshops to establish common terminology and practice, and a pilot study applying the adopted SAT/ISD methodology to an actual nuclear industry training program.

  9. Effects of realistic tensor force on nuclear structure

    SciTech Connect

    Nakada, H.

    2012-10-20

    First-order tensor-force effects on nuclear structure are investigated in the self-consistent mean-field and RPA calculations with the M3Y-type semi-realistic interactions, which contain the realistic tensor force. The tensor force plays a key role in Z- or N-dependence of the shell structure, and in transitions involving spin degrees-of-freedom. It is demonstrated that the semi-realistic interactions successfully describe the N-dependence of the shell structure in the proton-magic nuclei (e.g. Ca and Sn), and the magnetic transitions (e.g. M1 transition in {sup 208}Pb).

  10. Nonuniform nuclear structures and QPOs in giant flares

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2012-11-01

    We show that the shear modes in the neutron star crust are quite sensitive to the existence of nonuniform nuclear structures, the so-called ``pasta''. Due to the existence of pasta phase, the frequencies of shear modes are reduced. Since the torsional shear frequencies depend strongly on the structure of pasta phase, through the observations of stellar oscillations, one can probe the pasta structure in the crust. Additionally, considering the effect of pasta phase, we show the possibility to explain all the observed frequencies in the SGR 1806-20 with using only crust torsional oscillations.

  11. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling

    PubMed Central

    Zeev-Ben-Mordehai, Tzviya; Weberruß, Marion; Lorenz, Michael; Cheleski, Juliana; Hellberg, Teresa; Whittle, Cathy; El Omari, Kamel; Vasishtan, Daven; Dent, Kyle C.; Harlos, Karl; Franzke, Kati; Hagen, Christoph; Klupp, Barbara G.; Antonin, Wolfram; Mettenleiter, Thomas C.; Grünewald, Kay

    2015-01-01

    Summary Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC), which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling. PMID:26711332

  12. Probing nuclear bubble structure via neutron star asteroseismology

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2016-10-01

    We consider torsional oscillations that are trapped in a layer of spherical-hole (bubble) nuclear structure, which is expected to occur in the deepest region of the inner crust of a neutron star. Because this layer intervenes between the phase of slab nuclei and the outer core of uniform nuclear matter, torsional oscillations in the bubble phase can be excited separately from usual crustal torsional oscillations. We find from eigenmode analyses for various models of the equation of state of uniform nuclear matter that the fundamental frequencies of such oscillations are almost independent of the incompressibility of symmetric nuclear matter, but strongly depend on the slope parameter of the nuclear symmetry energy L. Although the frequencies are also sensitive to the entrainment effect, i.e., what portion of nucleons outside bubbles contribute to the oscillations, by having such a portion fixed, we can successfully fit the calculated fundamental frequencies of torsional oscillations in the bubble phase inside a star of specific mass and radius as a function of L. By comparing the resultant fitting formula to the frequencies of quasi-periodic oscillations (QPOs) observed from the soft-gamma repeaters, we find that each of the observed low-frequency QPOs can be identified either as a torsional oscillation in the bubble phase or as a usual crustal oscillation, given generally accepted values of L for all the stellar models considered here.

  13. Unified ab initio approaches to nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-05-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.

  14. In situ structural analysis of the human nuclear pore complex

    PubMed Central

    Ori, Alessandro; DiGuilio, Amanda L.; Vollmer, Benjamin; Mackmull, Marie-Therese; Banterle, Niccolo; Parca, Luca; Kastritis, Panagiotis; Buczak, Katarzyna; Mosalaganti, Shyamal; Hagen, Wim; Andres-Pons, Amparo; Lemke, Edward A.; Bork, Peer; Antonin, Wolfram; Glavy, Joseph S.; Bui, Khanh Huy; Beck, Martin

    2016-01-01

    Summary Nuclear pore complexes (NPCs) are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Elucidating their 110 MDa structure imposes a formidable challenge and requires in situ structural biology approaches. Fifteen out of about thirty nucleoporins (Nups) are structured and form the Y- and inner ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ∼60 nm in diameter 1. The scaffold is decorated with transport channel Nups that often contain phenylalanine (FG)-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y-complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here, we combined cryo electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modeling to generate the most comprehensive architectural model of the NPC to date. Our data suggest previously unknown protein interfaces across Y-complexes and to inner ring complex members. We demonstrate that the higher eukaryotic transport channel Nup358 (RanBP2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport channel Nups. We conclude that, similarly to coated vesicles, multiple copies of the same structural building block - although compositionally identical - engage in different local sets of interactions and conformations. PMID:26416747

  15. Evaluated Nuclear Structure Data File (ENSDF) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    ENSDF contains evaluated nuclear structure and decay data in a standard format. An international network of evaluators contributes to the database, which is maintained by the National Nuclear Data Center at Brookhaven National Laboratory. Information in the database is regularly updated to reflect revised evaluation results. Most of the recently completed evaluations are published in Nuclear Data Sheets, a monthly journal published by Academic Press, a division of Elsevier Science. For each nuclide, all known experimental data used to deduce nuclear structure information are included. Each type of experiment is presented as a separate dataset. In addition, there is a dataset of "adopted" level and gamma-ray transition properties, which represent the evaluator's determination of the best values for these properties, based on all available experimental data. As of February 2008, the ENSDF database contains 16236 datasets for 3030 nuclides. (Taken from the NNDC's information page on ENSDF at http://www.nndc.bnl.gov/ensdf/ensdf_info.jsp) ENSDF may be browsed or the data may be retrieved based on nuclide, charge, or mass, or by indexed reaction and decay quantities. (Specialized interface)

  16. EVALUATED NUCLEAR STRUCTURE DATA FILE -- A MANUAL FOR PREPARATION OF DATA SETS.

    SciTech Connect

    TULI, J.K.

    2001-02-01

    This manual describes the organization and structure of the Evaluated Nuclear Structure Data File (ENSDF). This computer-based file is maintained by the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory for the international Nuclear Structure and Decay Data Network. For every mass number (presently, A {le} 293), the Evaluated Nuclear Structure Data File (ENSDF) contains evaluated structure information. For masses A {ge} 44, this information is published in the Nuclear Data Sheets; for A < 44, ENSDF is based on compilations published in the journal Nuclear Physics. The information in ENSDF is updated by mass chain or by nuclide with a varying cycle time dependent on the availability of new information.

  17. Ab initio nuclear structure from lattice effective field theory

    SciTech Connect

    Lee, Dean

    2014-11-11

    This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.

  18. TAS measurements for reactor physics and nuclear structure

    NASA Astrophysics Data System (ADS)

    Algora, A.; Jordan, D.; Taín, J. L.; Rubio, B.; Agramunt, J.; Caballero, L.; Nácher, E.; Perez-Cerdan, A. B.; Molina, F.; Estevez, E.; Krasznahorkay, A.; Hunyadi, M. D.; Gulyás, J.; Vitéz, A.; Csatlós, M.; Csige, L.; ńysto, J.; Penttilä, H.; Rinta-Antila, S.; Moore, I.; Eronen, T.; Jokinen, A.; Nieminen, A.; Hakala, J.; Karvonen, P.; Kankainen, A.; Hager, U.; Sonoda, T.; Saastamoinen, A.; Rissanen, J.; Kessler, T.; Weber, C.; Ronkainen, J.; Rahaman, S.; Elomaa, V.; Burkard, K.; Hüller, W.; Batist, L.; Gelletly, W.; Nichols, A. L.; Yoshida, T.; Sonzogni, A. A.; Peräjärvi, K.

    2011-10-01

    In this contribution we will present recent total absorption measurements of the beta decay of neutron-rich nuclei performed at the IGISOL facility of the Univ. of Jyväskyla. In the measurements the JYFL Penning Trap was used as a high resolution isobaric separator. The total absorption technique will be described and the impact of recent results in the fields of reactor physics (decay heat calculations) and nuclear structure will be discussed.

  19. PARTNERSHIP FOR THE DEVELOPMENT OF NEXT GENERATION SIMULATION TOOLS TO EVALUATE CEMENTITIOUS BARRIERS AND MATERIALS USED IN NUCLEAR APPLICATION - 8388

    SciTech Connect

    Langton, C; Richard Dimenna, R

    2008-01-29

    The US DOE has initiated a multidisciplinary cross cutting project to develop a reasonable and credible set of tools to predict the structural, hydraulic and chemical performance of cement barriers used in nuclear applications over extended time frames (e.g., > 100 years for operating facilities and > 1000 years for waste management). A partnership that combines DOE, NRC, academia, private sector, and international expertise has been formed to accomplish the project objectives by integrating existing information and realizing advancements where necessary. The set of simulation tools and data developed under this project will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems, e.g., waste forms, containment structures, entombments and environmental remediation, including decontamination and decommissioning (D&D) activities. The simulation tools will also support analysis of structural concrete components of nuclear facilities (spent fuel pools, dry spent fuel storage units, and recycling facilities, e.g., fuel fabrication, separations processes). Simulation parameters will be obtained from prior literature and will be experimentally measured under this project, as necessary, to demonstrate application of the simulation tools for three prototype applications (waste form in concrete vault, high level waste tank grouting, and spent fuel pool). Test methods and data needs to support use of the simulation tools for future applications will be defined. This is a national issue that affects all waste disposal sites that use cementitious waste forms and structures, decontamination and decommissioning activities, service life determination of existing structures, and design of future public and private nuclear facilities. The problem is difficult because it requires projecting conditions and responses over extremely long times. Current performance assessment analyses show that engineered barriers are

  20. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

  1. Structural Composites Corrosive Management by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  2. Spin and Isospin Dependent Interactions in Classical Molecular Simulations of Dense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Amason, Charlee; Caplan, Matt; Horowitz, Cj

    2015-10-01

    A neutron star is the hot, incredibly dense remnant of a massive star gone supernova. Extreme conditions on neutron stars allow for the formation of exotically shaped nuclear matter, known colloquially as ``nuclear pasta.'' Competition between the strong nuclear force and the repulsive Coulomb force results in frustration of the neutron star crust, ultimately resulting in these pasta shapes. Previous work at Indiana University has used classical molecular dynamic simulations to model the formation of this pasta. For this project, we introduce a similar model with a new spin dependent interaction. Using this model, we perform molecular dynamics simulations of both symmetric nuclear matter and pure neutron matter with 400 particles. The energies found are similar to those in chiral effective field theory calculations. When we include Coulomb interactions, the model produces pasta shapes. Future work will incorporate this spin potential into larger pasta simulations. Supported by the National Science Foundation REU at Indiana University.

  3. Modeling Choices in Nuclear Warfighting: Two Classroom Simulations on Escalation and Retaliation

    ERIC Educational Resources Information Center

    Schofield, Julian

    2013-01-01

    Two classroom simulations--"Superpower Confrontation" and "Multipolar Asian Simulation"--are used to teach and test various aspects of the Borden versus Brodie debate on the Schelling versus Lanchester approach to nuclear conflict modeling and resolution. The author applies a Schelling test to segregate high from low empathic students, and assigns…

  4. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Adams, Mike; Davis, Joe; Kapernick, Richard

    2007-01-30

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being developed are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. Static and dynamic fuel pin performances for a proposed reactor design have been determined using SINDA/FLUINT thermal analysis software, and initial comparison has been made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts. This paper presents the current status of high fidelity thermal simulator design relative to a SNAP derivative reactor design that could be applied for Lunar surface power.

  5. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure?

    PubMed

    O'Sullivan, Justin M; Pai, Dave A; Cridge, Andrew G; Engelke, David R; Ganley, Austen R D

    2013-06-01

    The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfill the cellular demand for rRNA, the ribosomal RNA (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review, we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization.

  6. Mathematical analysis of compressive/tensile molecular and nuclear structures

    NASA Astrophysics Data System (ADS)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  7. Effect of nuclear hyperfine structure on microwave spectral pressure broadening

    NASA Astrophysics Data System (ADS)

    Green, Sheldon

    1988-06-01

    The spectral pressure broadening formalism of Ben-Reuven [Phys. Rev. 145, 7 (1966)] is applied to rotational transitions of a closed-shell linear molecule with nuclear quadrupole hyperfine structure (hfs) due to a nucleus of spin I. If, as expected, nuclear spin does not affect molecular collision dynamics, generalized pressure broadening cross sections can be expressed in terms of the spin-free collisional S matrices. For the three hfs components of the lowest j=0-1 rotational transition, the line shape is a simple sum of three noninterfering Lorentzians each of which has the same width and shift as would be expected in the absence of nuclear spin. For higher rotational transitions, however, the line shape is no longer so simple; in general, each hfs component is described by a different width and shift, and collisions transfer intensity among them. Numerical results for HCN broadened by He atoms are presented using both the accurate close coupling (CC) collision formalism and also the infinite order sudden (IOS) approximation. For the case that broadening is very large compared with the hfs splittings it is shown (numerically, within the IOS approximation) that the line shape is nearly (but not exactly, except for j=0-1 as noted above) a Lorentzian with the same width as would be expected in the absence of nuclear spin.

  8. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  9. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect

    Clayton, Dwight; Smith, Cyrus

    2014-02-18

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  10. Evaluation and Numerical Simulation of Tsunami for Coastal Nuclear Power Plants of India

    SciTech Connect

    Sharma, Pavan K.; Singh, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-07-01

    Recent tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunami-genic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on different analytical/numerical approaches with shallow water wave theory. (authors)

  11. Comments on ``Use of conditional simulation in nuclear waste site performance assessment`` by Carol Gotway

    SciTech Connect

    Downing, D.J.

    1993-10-01

    This paper discusses Carol Gotway`s paper, ``The Use of Conditional Simulation in Nuclear Waste Site Performance Assessment.`` The paper centers on the use of conditional simulation and the use of geostatistical methods to simulate an entire field of values for subsequent use in a complex computer model. The issues of sampling designs for geostatistics, semivariogram estimation and anisotropy, turning bands method for random field generation, and estimation of the comulative distribution function are brought out.

  12. Response analysis of a nuclear containment structure with nonlinear soil-structure interaction under bi-directional ground motion

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar

    2015-06-01

    Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.

  13. Study of Exotic Nuclear Structures via Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Takechi, Maya

    2009-10-01

    Nuclear radius is one of the most basic physical quantities to study unknown exotic nuclei. A number of radii for unstable nuclei were studied through measurements of interaction cross sections (σI) at high energies, using the Glauber-type calculation (Optical-Limit approximation (OLA) of Glauber theory) to investigate halo and skin structures of exotic nuclei. On the other hand, it was indicated that reaction cross sections (σR) at intermediate energies (from several tens to hundreds of MeV/nucleon) were more sensitive to dilute nucleon density distribution owing to large nucleon-nucleon total cross sections (σNN) compared to high-energy region. Recently, we developed a new method to deduce nucleon density distributions from the energy dependences of σ R, through the precise measurements of σ R for various nuclei and some modifications of Glauber-type calculation. Using this method, we studied nucleon density distributions of light nuclei by measuring σ R for those nuclei at HIMAC (Heavy ion Medical Accelerator in CHIBA), NIRS (National Institute of Radiological Sciences). And very recently, we deduced nuclear radii of neutron-rich Ne isotopes (^28-32Ne) which are in the island-of-inversion region by measuring σI using BigRIPS at RIBF (RI Beam Factory) to study nuclear structures of those isotopes using our method. In this workshop, results of nucleon density distributions obtained at HIMAC and results of the studies of Ne isotopes at RIBF will be introduced and discussed.

  14. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  15. Visualizing Structure and Dynamics of Disaccharide Simulations

    SciTech Connect

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  16. The Molecular Mechanism of Bisphenol A (BPA) as an Endocrine Disruptor by Interacting with Nuclear Receptors: Insights from Molecular Dynamics (MD) Simulations

    PubMed Central

    Li, Lanlan; Wang, Qianqian; Zhang, Yan; Niu, Yuzhen; Yao, Xiaojun; Liu, Huanxiang

    2015-01-01

    Bisphenol A (BPA) can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA. PMID:25799048

  17. The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD) simulations.

    PubMed

    Li, Lanlan; Wang, Qianqian; Zhang, Yan; Niu, Yuzhen; Yao, Xiaojun; Liu, Huanxiang

    2015-01-01

    Bisphenol A (BPA) can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA.

  18. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  19. KEYNOTE: Simulation, computation, and the Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Reis, Victor, Dr.

    2006-01-01

    Dr. Victor Reis delivered the keynote talk at the closing session of the conference. The talk was forward looking and focused on the importance of advanced computing for large-scale nuclear energy goals such as Global Nuclear Energy Partnership (GNEP). Dr. Reis discussed the important connections of GNEP to the Scientific Discovery through Advanced Computing (SciDAC) program and the SciDAC research portfolio. In the context of GNEP, Dr. Reis talked about possible fuel leasing configurations, strategies for their implementation, and typical fuel cycle flow sheets. A major portion of the talk addressed lessons learnt from ‘Science Based Stockpile Stewardship’ and the Accelerated Strategic Computing Initiative (ASCI) initiative and how they can provide guidance for advancing GNEP and SciDAC goals. Dr. Reis’s colorful and informative presentation included international proverbs, quotes and comments, in tune with the international flavor that is part of the GNEP philosophy and plan. He concluded with a positive and motivating outlook for peaceful nuclear energy and its potential to solve global problems. An interview with Dr. Reis, addressing some of the above issues, is the cover story of Issue 2 of the SciDAC Review and available at http://www.scidacreview.org This summary of Dr. Reis’s PowerPoint presentation was prepared by Institute of Physics Publishing, the complete PowerPoint version of Dr. Reis’s talk at SciDAC 2006 is given as a multimedia attachment to this summary.

  20. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers

    PubMed Central

    Kojetin, Douglas J.; Matta-Camacho, Edna; Hughes, Travis S.; Srinivasan, Sathish; Nwachukwu, Jerome C.; Cavett, Valerie; Nowak, Jason; Chalmers, Michael J.; Marciano, David P.; Kamenecka, Theodore M.; Shulman, Andrew I.; Rance, Mark; Griffin, Patrick R.; Bruning, John B.; Nettles, Kendall W.

    2015-01-01

    A subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA). This SCA network acts as a signalling rheostat to integrate signals between dimer partners, ligands and coregulator-binding sites, thereby affecting signal transmission in RXR heterodimers. These findings define rules guiding how NRs integrate two ligand-dependent signalling pathways into RXR heterodimer-specific responses. PMID:26289479

  1. Nuclear structure studies with medium energy probes. [Northwestern Univ

    SciTech Connect

    Seth, Kamal K.

    1980-01-01

    Progress in the continuing program of experimental research in nuclear structure with medium-energy probes during the year 1979-1980 is reviewed, and the research activities planned for the year 1980-1981 are discussed. In the study of pion-induced reactions emphasis is placed on investigation of isovector characteristics of nuclear excitations and on double charge exchange reactions. Pion production studies form the major part of the program of experiments with proton beams of 400 to 800 MeV at LAMPF. Current emphasis is on the bearing of these investigations on di-baryon existence. The study of high-spin states and magnetic scattering constitute the main goals of the electron scattering program at Bates. Representative results are presented; completed work is reported in the usual publications. (RWR)

  2. Beta delayed neutrons for nuclear structure and astrophysics

    NASA Astrophysics Data System (ADS)

    Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (β xn) is a significant or even dominant decay channel for the majority of very neutron-rich nuclei, especially for those on the r-process path. The recent theoretical models predicts that it may play more significant role then previously expected for astrophysics and this realization instigated a renewed experimental interest in this topic as a part of a larger scope of research on beta-decay strength distribution. Because studies of the decay strength directly probe relevant physics on the microscopic level, energy-resolved measurements of the beta-decay strength distribution is a better test of nuclear models than traditionally used experimental observables like half-lives and neutron branching ratios. A new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed to directly address this issue. In its first experimental campaign at the Holifield Radioactive Ion Beam Facility neutron energy spectra in key regions of the nuclear chart were measured: near the shell closures at 78Ni and 132Sn, and for the deformed nuclei near 100Rb. In several cases, unexpectedly intense and concentrated, resonant-like, high-energy neutron structures were observed. These results were interpreted within shell model framework which clearly indicated that these neutron emission is driven by nuclear structure effects and are due to large Gamow-Teller type transition matrix elements. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552.

  3. Chapter 2: Simulations of the Structure of Cellulose

    SciTech Connect

    Matthews, J. F.; Himmel, M. E.; Brady, J. W.

    2010-01-01

    Cellulose is the homopolymer of (1 {yields} 4)-{beta}-D-glucose. The chemical composition of this polymer is simple, but understanding the conformation and packing of cellulose molecules is challenging. This chapter describes the structure of cellulose from the perspective of molecular mechanics simulations, including conformational analysis of cellobiose and simulations of hydrated cellulose I{beta} with CSFF and GLYCAM06, two sets of force field parameters developed specifically for carbohydrates. Many important features observed in these simulations are sensitive to differences in force field parameters, giving rise to dramatically different structures. The structures and properties of non-naturally occurring cellulose allomorphs (II, III, and IV) are also discussed.

  4. Nuclear PTEN tumor-suppressor functions through maintaining heterochromatin structure.

    PubMed

    Gong, Lili; Govan, Jeane M; Evans, Elizabeth B; Dai, Hui; Wang, Edward; Lee, Szu-Wei; Lin, Hui-Kuan; Lazar, Alexander J; Mills, Gordon B; Lin, Shiaw-Yih

    2015-01-01

    The tumor suppressor, PTEN, is one of the most commonly mutated genes in cancer. Recently, PTEN has been shown to localize in the nucleus and is required to maintain genomic stability. Here, we show that nuclear PTEN, independent of its phosphatase activity, is essential for maintaining heterochromatin structure. Depletion of PTEN leads to loss of heterochromatic foci, decreased chromatin compaction, overexpression of heterochromatic genes, and reduced protein stability of heterochromatin protein 1 α. We found that the C-terminus of PTEN is required to maintain heterochromatin structure. Additionally, cancer-associated PTEN mutants lost their tumor-suppressor function when their heterochromatin structure was compromised. We propose that this novel role of PTEN accounts for its function in guarding genomic stability and suppressing tumor development. PMID:25946202

  5. Nuclear PTEN tumor-suppressor functions through maintaining heterochromatin structure

    PubMed Central

    Gong, Lili; Govan, Jeane M; Evans, Elizabeth B; Dai, Hui; Wang, Edward; Lee, Szu-Wei; Lin, Hui-Kuan; Lazar, Alexander J; Mills, Gordon B; Lin, Shiaw-Yih

    2015-01-01

    The tumor suppressor, PTEN, is one of the most commonly mutated genes in cancer. Recently, PTEN has been shown to localize in the nucleus and is required to maintain genomic stability. Here, we show that nuclear PTEN, independent of its phosphatase activity, is essential for maintaining heterochromatin structure. Depletion of PTEN leads to loss of heterochromatic foci, decreased chromatin compaction, overexpression of heterochromatic genes, and reduced protein stability of heterochromatin protein 1 α. We found that the C-terminus of PTEN is required to maintain heterochromatin structure. Additionally, cancer-associated PTEN mutants lost their tumor-suppressor function when their heterochromatin structure was compromised. We propose that this novel role of PTEN accounts for its function in guarding genomic stability and suppressing tumor development. PMID:25946202

  6. Short-term nuclear annual power production simulation documentation (SNAPPS). Task 15

    SciTech Connect

    Andress, D.

    1985-09-01

    Short-Term Nuclear Annual Power Production Simulation (SNAPPS) is a FORTRAN computer program that projects the short-term monthly and annual generation of electricity by the nation's nuclear reactors. SNAPPS develops a power supply curve (histograms) for each individual reactor and then tallies its monthly and annual electricity production. The SNAPPS input requirements include reactor characteristics, cycle parameters, and scheduled outage data. This report contains the documentation for the program.

  7. Use of computer simulations for the early introduction of nuclear engineering concepts

    SciTech Connect

    Ougouag, A.M.; Zerguini, T.H.

    1985-11-01

    A sophomore level nuclear engineering (NE) course is being introduced at the University of Illinois. Via computer simulations, this course presents materials covering the most important aspects of the field. It is noted that computer simulations in nuclear engineering are cheaper and safer than experiments yet they provide an effective teaching tool for the early introduction of advanced concepts. The new course material can be used as a tutorial and for remedial learning. The use of computer simulation motivates learning since students associate computer activities with games. Such a course can help in the dissemination of the proper information to students from different fields, including liberal arts, and eventually increase undergraduate student enrollment in nuclear engineering.

  8. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  9. Photon energy absorption coefficients for nuclear track detectors using Geant4 Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.

    2015-01-01

    Geant4 Monte Carlo code simulations were used to solve experimental and theoretical complications for calculation of mass energy-absorption coefficients of elements, air, and compounds. The mass energy-absorption coefficients for nuclear track detectors were computed first time using Geant4 Monte Carlo code for energy 1 keV-20 MeV. Very good agreements for simulated results of mass energy-absorption coefficients for carbon, nitrogen, silicon, sodium iodide and nuclear track detectors were observed on comparison with the values reported in the literatures. Kerma relative to air for energy 1 keV-20 MeV and energy absorption buildup factors for energy 50 keV-10 MeV up to 10 mfp penetration depths of the selected nuclear track detectors were also calculated to evaluate the absorption of the gamma photons. Geant4 simulation can be utilized for estimation of mass energy-absorption coefficients in elements and composite materials.

  10. Increased reliability of nuclear magnetic resonance protein structures by consensus structure bundles.

    PubMed

    Buchner, Lena; Güntert, Peter

    2015-02-01

    Nuclear magnetic resonance (NMR) structures are represented by bundles of conformers calculated from different randomized initial structures using identical experimental input data. The spread among these conformers indicates the precision of the atomic coordinates. However, there is as yet no reliable measure of structural accuracy, i.e., how close NMR conformers are to the "true" structure. Instead, the precision of structure bundles is widely (mis)interpreted as a measure of structural quality. Attempts to increase precision often overestimate accuracy by tight bundles of high precision but much lower accuracy. To overcome this problem, we introduce a protocol for NMR structure determination with the software package CYANA, which produces, like the traditional method, bundles of conformers in agreement with a common set of conformational restraints but with a realistic precision that is, throughout a variety of proteins and NMR data sets, a much better estimate of structural accuracy than the precision of conventional structure bundles.

  11. Disentangling effects of nuclear structure in heavy element formation.

    PubMed

    Hinde, D J; Thomas, R G; du Rietz, R; Diaz-Torres, A; Dasgupta, M; Brown, M L; Evers, M; Gasques, L R; Rafiei, R; Rodriguez, M D

    2008-05-23

    Forming the same heavy compound nucleus with different isotopes of the projectile and target elements allows nuclear structure effects in the entrance channel (resulting in static deformation) and in the dinuclear system to be disentangled. Using three isotopes of Ti and W, forming 232Cm, with measurement spanning the capture barrier energies, alignment of the heavy prolate deformed nucleus is shown to be the main reason for the broadening of the mass distribution of the quasifission fragments as the beam energy is reduced. The complex, consistently evolving mass-angle correlations that are observed carry more information than the integrated mass or angular distributions, and should severely test models of quasifission.

  12. Grain boundary engineering for structure materials of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Allen, T. R.; Busby, J. T.

    2013-10-01

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic-martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  13. Disentangling Effects of Nuclear Structure in Heavy Element Formation

    SciTech Connect

    Hinde, D. J.; Thomas, R. G.; Rietz, R. du; Diaz-Torres, A.; Dasgupta, M.; Brown, M. L.; Evers, M.; Gasques, L. R.; Rafiei, R.; Rodriguez, M. D.

    2008-05-23

    Forming the same heavy compound nucleus with different isotopes of the projectile and target elements allows nuclear structure effects in the entrance channel (resulting in static deformation) and in the dinuclear system to be disentangled. Using three isotopes of Ti and W, forming {sup 232}Cm, with measurement spanning the capture barrier energies, alignment of the heavy prolate deformed nucleus is shown to be the main reason for the broadening of the mass distribution of the quasifission fragments as the beam energy is reduced. The complex, consistently evolving mass-angle correlations that are observed carry more information than the integrated mass or angular distributions, and should severely test models of quasifission.

  14. Nuclear reactor containment structure with continuous ring tunnel at grade

    DOEpatents

    Seidensticker, Ralph W.; Knawa, Robert L.; Cerutti, Bernard C.; Snyder, Charles R.; Husen, William C.; Coyer, Robert G.

    1977-01-01

    A nuclear reactor containment structure which includes a reinforced concrete shell, a hemispherical top dome, a steel liner, and a reinforced-concrete base slab supporting the concrete shell is constructed with a substantial proportion thereof below grade in an excavation made in solid rock with the concrete poured in contact with the rock and also includes a continuous, hollow, reinforced-concrete ring tunnel surrounding the concrete shell with its top at grade level, with one wall integral with the reinforced concrete shell, and with at least the base of the ring tunnel poured in contact with the rock.

  15. Simulation of Sintering of Layered Structures

    SciTech Connect

    OLEVSKY,EUGENE; TIKARE,VEENA; GARINO,TERRY J.; BRAGINSKY,MICHAEL V.

    2000-11-22

    An integrated approach, combining the continuum theory of sintering and Potts model based mesostructure evolution analysis, is used to solve the problem of bi-layered structure sintering. Two types of bi-layered structures are considered: layers of the same material with different initial porosity, and layers of two different materials. The effective sintering stress for the bi-layer powder sintering is derived, both at the meso- and the macroscopic levels. Macroscopic shape distortions and spatial distributions of porosity are determined as functions of the dimensionless specific time of sintering. The effect of the thickness of the layers on shrinkage, warpage, and pore-grain structure is studied. Ceramic ZnO powders are employed as a model experimental system to assess the model predictions.

  16. Global nuclear structure effects of the tensor interaction

    SciTech Connect

    Zalewski, M.; Olbratowski, P.; Rafalski, M.; Werner, T. R.; Satula, W.; Wyss, R. A.

    2009-12-15

    A direct fit of the isoscalar spin-orbit (SO) and both isoscalar and isovector tensor coupling constants to the f{sub 5/2}-f{sub 7/2} SO splittings in {sup 40}Ca, {sup 56}Ni, and {sup 48}Ca nuclei requires a drastic reduction of the isoscalar SO strength and strong attractive tensor coupling constants. The aim of this work is to address further consequences of these strong attractive tensor and weak SO fields on binding energies, nuclear deformability, and high-spin states. In particular, the contribution to the nuclear binding energy from the tensor field shows a generic magic structure with tensorial magic numbers N(Z)=14,32,56, or 90, corresponding to the maximum spin asymmetries in 1d{sub 5/2}, 1f{sub 7/2}+2p{sub 3/2}, 1g{sub 9/2}+2d{sub 5/2}, and 1h{sub 11/2}+2f{sub 7/2} single-particle configurations, respectively, and that these numbers are smeared out by pairing correlations and deformation effects. The consequences of strong attractive tensor fields and weak SO interaction for nuclear stability at the drip lines are also examined, particularly those close to the tensorial doubly magic nuclei. The possibility of an entirely new tensor-force-driven deformation effect is discussed.

  17. Design of Accelerator Online Simulator Server Using Structured Data

    SciTech Connect

    Shen, Guobao; Chu, Chungming; Wu, Juhao; Kraimer, Martin; /Argonne

    2012-07-06

    Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describes the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.

  18. CAD-based Monte Carlo Program for Integrated Simulation of Nuclear System SuperMC

    NASA Astrophysics Data System (ADS)

    Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin

    2014-06-01

    Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as routine method for nuclear design and analysis in the future. High fidelity simulation with MC method coupled with multi-physical phenomenon simulation has significant impact on safety, economy and sustainability of nuclear systems. However, great challenges to current MC methods and codes prevent its application in real engineering project. SuperMC is a CAD-based Monte Carlo program for integrated simulation of nuclear system developed by FDS Team, China, making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC were presented in this paper. SuperMC2.1, the latest version for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. SuperMC is still in its evolution process toward a general and routine tool for nuclear system. Warning, no authors found for 2014snam.conf06023.

  19. The solution conformation of the antibacterial peptide cecropin A: A nuclear magnetic resonance and dynamical simulated annealing study

    SciTech Connect

    Holak, T.A.; Gronenborn, A.M.; Clore, G.M. ); Engstroem, A.; Kraulis, P.J.; Lindeberg, G.; Bennich, H.; Jones, T.A. )

    1988-10-04

    The solution conformation of the antibacterial polypeptide cecropin A from the Cecropia moth is investigated by nuclear magnetic resonance (NMR) spectroscopy under conditions where it adopts a fully ordered structure, as judged by previous circular dichroism studies. By use of a combination of two-dimensional NMR techniques the {sup 1}H NMR spectrum of cecropin A is completely assigned. A set of 243 approximate interproton distance restraints is derived from nuclear Overhauser enhancement (NOE) measurements. These, together with 32 restraints for the 16 intrahelical hydrogen bonds identified on the basis of the pattern of short-range NOEs, form the basis of a three-dimensional structure determination by dynamical simulated annealing. The calculations are carried out starting from three initial structures, an {alpha}-helix, an extended {beta}-strand, and a mixed {alpha}/{beta} structure. Seven independent structures are computed from each starting structure by using a different random number seeds for the assignments of the initial velocities. Analysis of the 21 converged structure indicates that there are two helical regions extending from residues 5 to 21 and from residues 24 to 37 which are very well defined in terms of both atomic root mean square differences and backbone torsion angles. The long axes of the two helices lie in two planes, which are at an angle of 70-100{degree} to each other. The orientation of the helices within these planes, however, cannot be determined due to the paucity of NOEs between the two helices.

  20. Numerical simulation of tornado wind loading on structures

    NASA Technical Reports Server (NTRS)

    Maiden, D. E.

    1976-01-01

    A numerical simulation of a tornado interacting with a building was undertaken in order to compare the pressures due to a rotational unsteady wind with that due to steady straight winds used in design of nuclear facilities. The numerical simulations were performed on a two-dimensional compressible hydrodynamics code. Calculated pressure profiles for a typical building were then subjected to a tornado wind field and the results were compared with current quasisteady design calculations. The analysis indicates that current design practices are conservative.

  1. Methodology for reliability based condition assessment. Application to concrete structures in nuclear plants

    SciTech Connect

    Mori, Y.; Ellingwood, B.

    1993-08-01

    Structures in nuclear power plants may be exposed to aggressive environmental effects that cause their strength to decrease over an extended period of service. A major concern in evaluating the continued service for such structures is to ensure that in their current condition they are able to withstand future extreme load events during the intended service life with a level of reliability sufficient for public safety. This report describes a methodology to facilitate quantitative assessments of current and future structural reliability and performance of structures in nuclear power plants. This methodology takes into account the nature of past and future loads, and randomness in strength and in degradation resulting from environmental factors. An adaptive Monte Carlo simulation procedure is used to evaluate time-dependent system reliability. The time-dependent reliability is sensitive to the time-varying load characteristics and to the choice of initial strength and strength degradation models but not to correlation in component strengths within a system. Inspection/maintenance strategies are identified that minimize the expected future costs of keeping the failure probability of a structure at or below an established target failure probability during its anticipated service period.

  2. Analysis of space reactor system components: Investigation through simulation and non-nuclear testing

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and

  3. Dynamics of adaptive structures: Design through simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, S.

    1993-01-01

    The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.

  4. Gaseous Diffusion and Pore Structure in Nuclear Graphites.

    NASA Astrophysics Data System (ADS)

    Mays, Timothy John

    Available from UMI in association with The British Library. With the incentive of providing more information for oxidation and safety studies of graphite components in thermal nuclear reactors, a new method has been developed to determine the gas transport pore structure in nuclear graphites. It involves an analysis of the dependence on pressure of the isobaric, isothermal (room temperature) diffusivity ratios of components in a binary gas mixture flowing through annular graphite samples. A Wicke-Kallenbach apparatus was specially built to measure He-Ar diffusivity ratios at pressures below 100 Torr. The new apparatus incorporates capacitance manometers and servovalves for pressure measurement and control, hot wire meters for flow rate measurements, and a mass spectrometer for gas analysis. As pressure decreased, the diffusivity ratios were observed to decrease non-linearly, indicating that the mechanism of flow in the materials was in the transition region between molecular and Knudsen diffusion. A mathematical model was derived to relate the pressure dependence of the transition diffusivity ratio to gas transport pore structure, and a statistical analysis based on Tikhonov regularisation was developed which gave a good fit of the model to the data, and optimal estimates of the number of model capillary pores, and the distribution of pore sizes. In comparison, the established methods of molecular diffusion and permeation (flow of pure gases) only give mean data on the pore size distribution. Pore structure data from the new method accurately predicted CO_2-Ar molecular diffusivity ratios, but overestimated N_2 permeability coefficients, due, it was assumed, to differences between diffusion and permeation pore structure. The cumulative volume distributions for transport pores from the transition diffusion data were similar in shape to those for open pores from mercury porosimetry, but shifted towards higher pore radii, indicating that diffusion is not so influenced

  5. Direct reactions for nuclear structure required for fundamental symmetry tests

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Rand, E. T.; Diaz Varela, A.; Ball, G. C.; Bildstein, V.; Faestermann, T.; Hadinia, B.; Hertenberger, R.; Jamieson, D. S.; Jigmeddorj, B.; Leach, K. G.; Svensson, C. E.; Wirth, H.-F.

    2016-09-01

    A program of nuclear structure studies to support fundamental symmetry tests has been initiated. Motivated by the search for an electric dipole moment in 199Hg, the structure in the vicinity has been explored via direct reaction studies. To date, these have included the 198,200Hg(d, d') inelastic scattering reactions, with the aim to obtain information on the E2 and E3 strength distributions, and the 198Hg(d, p) and 200Hg(d, t) reactions to obtain information on the single-particle states in 199Hg. The studies using the 200Hg targets have been fully analyzed using the FRESCO reaction code yielding the E2 and E3 strength distribution to 4 MeV in excitation energy, and the (d, t) single- particle strength to over 3 MeV in excitation energy.

  6. Analysis of fine structure in the nuclear continuum

    SciTech Connect

    Shevchenko, A.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Usman, I.; Cooper, G. R. J.; Fearick, R. W.

    2008-02-15

    Fine structure has been shown to be a general phenomenon of nuclear giant resonances of different multipolarities over a wide mass range. In this article we assess various techniques that have been proposed to extract quantitative information from the fine structure in terms of characteristic scales. These include the so-called local scaling dimension, the entropy index method, Fourier analysis, and continuous and discrete wavelet transforms. As an example, results on the isoscalar giant quadrupole resonance in {sup 208}Pb from high-energy-resolution inelastic proton scattering and calculations with the quasiparticle-phonon model are analyzed. Wavelet analysis, both continuous and discrete, of the spectra is shown to be a powerful tool to extract the magnitude and localization of characteristic scales.

  7. ROR nuclear receptors: structures, related diseases, and drug discovery

    PubMed Central

    Zhang, Yan; Luo, Xiao-yu; Wu, Dong-hai; Xu, Yong

    2015-01-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that regulate metabolism, development and immunity. The NR superfamily is one of the major classes of drug targets for human diseases. Retinoic acid receptor-related orphan receptor (ROR) α, β and γ belong to the NR superfamily, and these receptors are still considered as 'orphan' receptors because the identification of their endogenous ligands has been controversial. Recent studies have demonstrated that these receptors are regulated by synthetic ligands, thus emerge as important drug targets for the treatment of multiple sclerosis, rheumatoid arthritis, psoriasis, etc. Studying the structural basis and ligand development of RORs will pave the way for a better understanding of the roles of these receptors in human diseases. Here, we review the structural basis, disease relevance, strategies for ligand identification, and current status of development of therapeutic ligands for RORs. PMID:25500868

  8. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  9. A Method of Simulating Fluid Structure Interactions for Deformable Decelerators

    NASA Astrophysics Data System (ADS)

    Gidzak, Vladimyr Mykhalo

    A method is developed for performing simulations that contain fluid-structure interactions between deployable decelerators and a high speed compressible flow. The problem of coupling together multiple physical systems is examined with discussion of the strength of coupling for various methods. A non-monolithic strongly coupled option is presented for fluid-structure systems based on grid deformation. A class of algebraic grid deformation methods is then presented with examples of increasing complexity. The strength of the fluid-structure coupling is validated against two analytic problems, chosen to test the time dependent behavior of structure on fluid interactions, and of fluid on structure interruptions. A one-dimentional material heating model is also validated against experimental data. Results are provided for simulations of a wind tunnel scale disk-gap-band parachute with comparison to experimental data. Finally, a simulation is performed on a flight scale tension cone decelerator, with examination of time-dependent material stress, and heating.

  10. Nuclear Structure Studies at the Future FAIR facility

    SciTech Connect

    Rubio, Berta

    2010-04-26

    This article is intended to be an introduction to studies of nuclear structure at the future FAIR facility. It addresses interested readers not necessarily expert in the field. It outlines the physics aims and experiments to be carried out at FAIR in the field of nuclear structure and astrophysics. Starting with a brief description of what can be achieved in experiments with intense, high quality stable beams the article leads the reader to how beams of unstable radioactive nuclei will be produced and exploited at FAIR. The characteristics of the beams from the main separation device, the Super-FRS, are outlined and the limitations they impose on experiment are discussed. The various setups at the three experimental branches associated with the Super-FRS are described. The aims of the various experimental setups, how they complement each other and the physics they will address are all explained. The concept of the r-process of nucleosynthesis is outlined at the beginning and used as a running example of how useful it will be to be able to carry out experiments with beams of short-lived, exotic ions.

  11. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  12. New exclusive CHIPS-TPT algorithms for simulation of neutron-nuclear reactions

    NASA Astrophysics Data System (ADS)

    Kosov, M.; Savin, D.

    2015-05-01

    The CHIPS-TPT physics library for simulation of neutron-nuclear reactions on the new exclusive level is being developed in CFAR VNIIA. The exclusive modeling conserves energy, momentum and quantum numbers in each neutron-nuclear interaction. The CHIPS-TPT algorithms are based on the exclusive CHIPS library, which is compatible with Geant4. Special CHIPS-TPT physics lists in the Geant4 format are provided. The calculation time for an exclusive CHIPS-TPT simulation is comparable to the time of the corresponding Geant4- HP simulation. In addition to the reduction of the deposited energy fluctuations, which is a consequence of the energy conservation, the CHIPS-TPT libraries provide a possibility of simulation of the secondary particles correlation, e.g. secondary gammas, and of the Doppler broadening of gamma lines in the spectrum, which can be measured by germanium detectors.

  13. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  14. The use of conditional simulation in nuclear-waste-site performance assessment

    SciTech Connect

    Gotway, C.A.

    1994-05-01

    Stochastic simulation methodology is becoming an important tool for evaluating the performance of potential nuclear-waste repositories. This article presents an overview of such methodology as it is currently used in many waste-management applications. Details involved with the statistical and geostatistical analyses of relevant hydrogeologic variables are provided in a simulation study of groundwater travel time through an aquifer overlying the Waste Isolation Pilot Plant repository in southeastern New Mexico.

  15. Input visualization for the Cyclus nuclear fuel cycle simulator: CYClus Input Control

    SciTech Connect

    Flanagan, R.; Schneider, E.

    2013-07-01

    This paper discusses and demonstrates the methods used for the graphical user interface for the Cyclus fuel cycle simulator being developed at the University of Wisconsin-Madison. Cyclus Input Control (CYCIC) is currently being designed with nuclear engineers in mind, but future updates to the program will be made to allow even non-technical users to quickly and efficiently simulate fuel cycles to answer the questions important to them. (authors)

  16. Estimating Building Simulation Parameters via Bayesian Structure Learning

    SciTech Connect

    Edwards, Richard E; New, Joshua Ryan; Parker, Lynne Edwards

    2013-01-01

    Many key building design policies are made using sophisticated computer simulations such as EnergyPlus (E+), the DOE flagship whole-building energy simulation engine. E+ and other sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine's capabilities. Currently, these problems are addressed by having an engineer manually calibrate simulation parameters to real world data or using algorithmic optimization methods to adjust the building parameters. However, some simulations engines, like E+, are computationally expensive, which makes repeatedly evaluating the simulation engine costly. This work explores addressing this issue by automatically discovering the simulation's internal input and output dependencies from 20 Gigabytes of E+ simulation data, future extensions will use 200 Terabytes of E+ simulation data. The model is validated by inferring building parameters for E+ simulations with ground truth building parameters. Our results indicate that the model accurately represents parameter means with some deviation from the means, but does not support inferring parameter values that exist on the distribution's tail.

  17. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  18. A MULTIDIMENSIONAL AND MULTIPHYSICS APPROACH TO NUCLEAR FUEL BEHAVIOR SIMULATION

    SciTech Connect

    R. L. Williamson; J. D. Hales; S. R. Novascone; M. R. Tonks; D. R. Gaston; C. J. Permann; D. Andrs; R. C. Martineau

    2012-04-01

    Important aspects of fuel rod behavior, for example pellet-clad mechanical interaction (PCMI), fuel fracture, oxide formation, non-axisymmetric cooling, and response to fuel manufacturing defects, are inherently multidimensional in addition to being complicated multiphysics problems. Many current modeling tools are strictly 2D axisymmetric or even 1.5D. This paper outlines the capabilities of a new fuel modeling tool able to analyze either 2D axisymmetric or fully 3D models. These capabilities include temperature-dependent thermal conductivity of fuel; swelling and densification; fuel creep; pellet fracture; fission gas release; cladding creep; irradiation growth; and gap mechanics (contact and gap heat transfer). The need for multiphysics, multidimensional modeling is then demonstrated through a discussion of results for a set of example problems. The first, a 10-pellet rodlet, demonstrates the viability of the solution method employed. This example highlights the effect of our smeared cracking model and also shows the multidimensional nature of discrete fuel pellet modeling. The second example relies on our the multidimensional, multiphysics approach to analyze a missing pellet surface problem. As a final example, we show a lower-length-scale simulation coupled to a continuum-scale simulation.

  19. Modeling and Simulation of Semiconductor Quantum Well Structures and Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Saini, Subbash (Technical Monitor)

    1998-01-01

    In this talk I will cover two aspects of modeling and simulation efforts at NASA Ames Research Center. In the quantum well structure simulation, we typically start from the quantum mechanical calculation of the quantum well structures for the confined/and unconfined eigen states and functions. A bandstructure calculation of the k*p type is then performed for the confined valence states. This information is then used to computer the optical gain and refractive index of the quantum well structures by solving the linearized multiband semiconductor Bloch equations with the many-body interactions included. In our laser simulation, we typically solve the envelope equations for the laser field in space-time domain, coupled with a reduced set of material equations using the microscopic calculation of the first step. Finally I will show some examples of both aspects of simulation and modeling.

  20. Corrosion of steel in simulated nuclear waste solutions

    SciTech Connect

    Mickalonis, J.I.

    1993-12-01

    Processing of inhibited nuclear waste to forms for long-term storage will cause waste tank environments to have dynamic conditions. During processing compositional changes in the waste may produce a corrosive environment for the plain carbon steel tanks. Large concentrations of nitrates which corrode steel are contained in the waste. Nitrite and hydroxides are added to inhibit any corrosion. Concentration changes of nitrate and nitrite were investigated to identify corrosion regimes that may occur during processing. Corrosion testing was performed with cyclic potentiodynamic polarization and linear polarization resistance. Test samples were plain carbon steel which was similar to the material of construction of the waste tanks. The corrosion morphology of test samples was investigated by visual evaluation and scanning electron microscopy. Qualitative chemical analysis was also performed using energy dispersive spectroscopy. The corrosion mechanism changed as a function of the nitrate concentration. As the nitrate concentration was increased the steel transitioned from a passive state to general attack, and finally pitting and crevice corrosion. The nitrate anion appeared to destabilize the surface oxide. Nitrite countered the oxide breakdown, although the exact mechanism was not determined.

  1. Photoassisted Biodegradation of Irradiated Organics in Simulated Nuclear Wastewater.

    PubMed

    Makgato, Stanford S; Nkhalambayausi-Chirwa, Evans M

    2015-05-01

    The extent of dehalogenation and degradation of toxic aromatic compounds in a nuclear wastewater was evaluated using a two-stage system consisting of a photolytic reactor followed by a biological reactor. Experiments were performed by varying the initial 4-chlorophenol (4-CP) concentration from 50 to 1000 mg/L. The UV pretreatment stage improved the overall efficiency of biodegradation of the recalcitrant compound by facilitating degradability in the biological stage. Removal efficiencies greater than 98% were achieved at 4-CP feed concentrations < 50 mg/L. Adding an H2O2 dose of 0.1 mg/L as an oxidant further improved biodegradation under optimum operating conditions for the entire system. Some known aromatic compound degraders such as Pseudomonas aeruginosa and Pseudomonas mendocina were detected in the consortium using the 16S rRNA genetic fingerprint technique. To the authors' knowledge, this is the first study on biodegradation of halogenated aromatic compounds that are copollutants of metallic radionuclides in radioactive wastewater.

  2. Photoassisted Biodegradation of Irradiated Organics in Simulated Nuclear Wastewater.

    PubMed

    Makgato, Stanford S; Nkhalambayausi-Chirwa, Evans M

    2015-05-01

    The extent of dehalogenation and degradation of toxic aromatic compounds in a nuclear wastewater was evaluated using a two-stage system consisting of a photolytic reactor followed by a biological reactor. Experiments were performed by varying the initial 4-chlorophenol (4-CP) concentration from 50 to 1000 mg/L. The UV pretreatment stage improved the overall efficiency of biodegradation of the recalcitrant compound by facilitating degradability in the biological stage. Removal efficiencies greater than 98% were achieved at 4-CP feed concentrations < 50 mg/L. Adding an H2O2 dose of 0.1 mg/L as an oxidant further improved biodegradation under optimum operating conditions for the entire system. Some known aromatic compound degraders such as Pseudomonas aeruginosa and Pseudomonas mendocina were detected in the consortium using the 16S rRNA genetic fingerprint technique. To the authors' knowledge, this is the first study on biodegradation of halogenated aromatic compounds that are copollutants of metallic radionuclides in radioactive wastewater. PMID:26460459

  3. Look at nuclear artillery yield options using JANUS, a wargame simulation code

    SciTech Connect

    Andre, C.G.

    1982-06-15

    JANUS, a two-sided, interactive wargame simulation code, was used to explore how using each of several different yield options in a nuclear artillery shell might affect a tactical battlefield simulation. In a general sense, the results or outcomes of these simulations support the results or outcomes of previous studies. In these simulations the Red player knew of the anticipated nuclear capability of the Blue player. Neither side experienced a decisive win over the other, and both continued fighting and experienced losses that, under most historical circumstances, would have been termed unacceptable - that is, something else would have happened (the attack would have been called off). During play, each side had only fragmentary knowledge of the remaining resources on the other side - thus each side desired to continue fighting on the basis of known information. We found that the anticipated use of nuclear weapons by either side affects the character of a game significantly and that, if the employment of nuclear weapons is to have a decided effect on the progress and outcome of a battle, each side will have to have an adequate number of nuclear weapons. In almost all the simulations we ran using JANUS, enhanced radiation (ER) weapons were more effective than 1-kt fission weapons in imposing overall losses on Red. The typical visibility in the JANUS simulation limited each side's ability to acquire units deep into enemy territory and so the 10-kt fission weapon was not useful against enemy tanks that were not engaged in battle. (Troop safety constraints limited its use on tanks that were engaged in direct fire with the enemy).

  4. Transverse wake field simulations for the ILC acceleration structure

    SciTech Connect

    Solyak, N.; Lunin, A.; Yakovlev, V.; /Fermilab

    2008-06-01

    Details of wake potential simulation in the acceleration structure of ILC, including the RF cavities and input/HOM couplers are presented. Transverse wake potential dependence is described versus the bunch length. Beam emittance dilution caused by main and HOM couplers is estimated, followed by a discussion of possible structural modifications allowing a reduction of transverse wake potential.

  5. Computer simulation of the scaled power bipolar SHF transistor structures

    NASA Astrophysics Data System (ADS)

    Nelayev, V. V.; Efremov, V. A.; Snitovsky, Yu. P.

    2007-04-01

    New advanced technology for creation of the npn power silicon bipolar SHF transistor structure is proposed. Preferences of the advanced technology in comparison with standard technology are demonstrated. Simulation of both technology flows was performed with emphasis on scaling of the discussed device structure.

  6. Fundamental Science-Based Simulation of Nuclear Waste Forms

    SciTech Connect

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  7. Nuclear Technology Series. Course 29: Civil/Structural Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  9. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  10. USNRC's Nuclear Plant Analyzer: Engineering simulation capabilities into the 1990's

    SciTech Connect

    Laats, E.T.

    1987-01-01

    The Nuclear Plant Analyzer (NPA) is the US Nuclear Regulatory Commission's (NRC's) state-of-the-art nuclear reactor simulation capability. This computer software package integrates high fidelity nuclear reactor simulation codes such as the TRAC and RELAP5 series of codes with color graphics display techniques and advanced workstation hardware. The NPA first became operational at the Idaho National Engineering Laboratory (INEL) in 1983. Since then, the NPA system has been used for a number of key reactor safety-related tasks ranging from plant operator guidelines evaluation to emergency preparedness training. The NPA system is seen by the NRC as their vehicle to maintain modern, state-of-the-art simulation capabilities for use into the 1990s. System advancements are envisioned in two areas: first, software improvements to existing and evolving plant simulation codes utilized by the NPA through the use of such techniques as parallel and vector processing and artificial intelligence expert systems, and second, advanced hardware implementations using combinations of super-, minisuper-, supermini-, and supermicrocomputer system and satellite data communications networks for high flexibilty and greatly increased NPA system performance. 23 refs., 2 figs.

  11. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  12. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    SciTech Connect

    Ellingwood, B.; Song, J.

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two.

  13. Raman study of aluminum speciation in simulated alkaline nuclear waste.

    PubMed

    Johnston, Cliff T; Agnew, Stephen F; Schoonover, Jon R; Kenney, John W; Page, Bobbi; Osborn, Jill; Corbin, Rob

    2002-06-01

    The chemistry of concentrated sodium aluminate solutions stored in many of the large, underground storage tanks containing high-level waste (HLW) at the Hanford and Savannah River Nuclear Reservations is an area of recent research interest. Not only is the presence of aluminate in solution important for continued safe storage of these wastes, the nature of both solid and solution aluminum oxyhydroxides is important for waste pretreatment. Moreover, for many tanks that have leaked high aluminum waste in the past, little is known about the speciation of Al in the soil. In this study, Raman spectroscopy has been used to investigate the speciation of the aqueous species in the Al2O3-Na2O-H2O system over a wide range of solution compositions and hydration. A ternary phase diagram has been used to correlate the observed changes in the spectra with the composition of the solution and with dimerization of aluminate that occurs at elevated aluminate concentrations (>1.5 M). Dimerization is evidenced by growth of new Al-O stretching bands at 535 and 695 cm(-1) at the expense of the aluminate monomer band at 620 cm(-1). The spectrum of water was strongly influenced by the high concentrations of Na+ and OH- (>17 M). Upon increasing the concentration of NaOH in solution, the delta-(H-O-H) bending band of water (v2 mode) increased in frequency to 1663 cm(-1), indicating that the water contained in the concentrated caustic solution was more strongly hydrogen bonded at the higher base content. In addition, the sharp, well-resolved band at 3610 cm(-1), assigned to the v(O-H) of free OH-, increased in intensity with increasing NaOH. Analysis of the v(O-H) bands in the 3800-2600 cm(-1) region supported the overall increase in hydrogen bonding as evidenced by the increase in relative intensity of a strongly hydrated water band at 3118 cm(-1). Taking into consideration the activity of water, the molar concentrations of the monomeric and dimeric aluminate species were estimated using

  14. Three new renal simulators for use in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dullius, Marcos; Fonseca, Mateus; Botelho, Marcelo; Cunha, Clêdison; Souza, Divanízia

    2014-03-01

    Renal scintigraphy is useful to provide both functional and anatomic information of renal flow of cortical functions and evaluation of pathological collecting system. The objective of this study was develop and evaluate the performance of three renal phantoms: Two anthropomorphic static and another dynamic. The static images of the anthropomorphic phantoms were used for comparison with static renal scintigraphy with 99mTc-DMSA in different concentrations. These static phantoms were manufactured in two ways: one was made of acrylic using as mold a human kidney preserved in formaldehyde and the second was built with ABS (acrylonitrile butadiene styrene) in a 3D printer. The dynamic renal phantom was constructed of acrylic to simulate renal dynamics in scintigraphy with 99mTc-DTPA. These phantoms were scanned with static and dynamic protocols and compared with clinical data. Using these phantoms it is possible to acquire similar renal images as in the clinical scintigraphy. Therefore, these new renal phantoms can be very effective for use in the quality control of renal scintigraphy, and image processing systems.

  15. Nonlocalized clustering: a new concept in nuclear cluster structure physics.

    PubMed

    Zhou, Bo; Funaki, Y; Horiuchi, H; Ren, Zhongzhou; Röpke, G; Schuck, P; Tohsaki, A; Xu, Chang; Yamada, T

    2013-06-28

    We investigate the α+^{16}O cluster structure in the inversion-doublet band (Kπ=0(1)±}) states of 20Ne with an angular-momentum-projected version of the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function, which was successful "in its original form" for the description of, e.g., the famous Hoyle state. In contrast with the traditional view on clusters as localized objects, especially in inversion doublets, we find that these single THSR wave functions, which are based on the concept of nonlocalized clustering, can well describe the Kπ=0(1)- band and the Kπ=0(1)+ band. For instance, they have 99.98% and 99.87% squared overlaps for 1- and 3- states (99.29%, 98.79%, and 97.75% for 0+, 2+, and 4+ states), respectively, with the corresponding exact solution of the α+16O resonating group method. These astounding results shed a completely new light on the physics of low energy nuclear cluster states in nuclei: The clusters are nonlocalized and move around in the whole nuclear volume, only avoiding mutual overlap due to the Pauli blocking effect.

  16. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  17. Pseudospin symmetry in nuclear structure and its supersymmetric representation

    NASA Astrophysics Data System (ADS)

    Liang, H. Z.

    2016-08-01

    The quasi-degeneracy between the single-particle states (n,l,j=l+1/2) and (n-1,l+2,j=l+3/2) indicates a special and hidden symmetry in atomic nuclei—the so-called pseudospin symmetry (PSS)—which is an important concept in both spherical and deformed nuclei. A number of phenomena in nuclear structure have been successfully interpreted directly or implicitly by this symmetry, including nuclear superdeformed configurations, identical bands, quantized alignment, pseudospin partner bands, and so on. Since the PSS was recognized as a relativistic symmetry in 1990s, there have been comprehensive efforts to understand its properties in various systems and potentials. In this review, we mainly focus on the latest progress on the supersymmetric (SUSY) representation of PSS, and one of the key targets is to understand its symmetry-breaking mechanism in realistic nuclei in a quantitative and perturbative way. The SUSY quantum mechanics and its applications to the SU(2) and U(3) symmetries of the Dirac Hamiltonian are discussed in detail. It is shown that the origin of PSS and its symmetry-breaking mechanism, which are deeply hidden in the origin Hamiltonian, can be traced by its SUSY partner Hamiltonian. Essential open questions, such as the SUSY representation of PSS in the deformed system, are pointed out.

  18. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    SciTech Connect

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-29

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  19. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    NASA Astrophysics Data System (ADS)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-01

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder's intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties' absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  20. NUCLEAR REACTION AND STRUCTURE DATABASES OF THE NATIONAL NUCLEAR DATA CENTER.

    SciTech Connect

    PRITYCHENKO, B.; HERMAN, M.W.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; SONZOGNI, A.A.

    2006-06-23

    We discuss nuclear data resources of the National Nuclear Data Center (NNDC) of relevance to nuclear astrophysics applications. These resources include databases, tools and powerful web service at www.nndc.bnl.gov. Our objective is to provide an overview of nuclear databases, related products and demonstrate nuclear astrophysics potential of the ENDF/B-VII beta2 library. A detailed discussion on the Maxwellian neutron capture cross sections obtained from the ENDF/B-VII beta2 library is presented.

  1. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    NASA Technical Reports Server (NTRS)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  2. Extending the lifespan of nuclear power plant structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.

    1995-04-01

    By the end of this decade, 63 of the 111 commercial nuclear power plants in the United States will be more than 20 years old, with some nearing the end of their 40-year operating license term. Faced with the prospect of having to replace lost generating capacity from other sources and substantial shutdown and decommissioning costs, many utilities are expected to apply to continue the service of their plants past the initial licensing period. In support of such applications, evidence should be provided that the capacity of the safety-related systems and structures to mitigate potential extreme events has not deteriorated unacceptably due to either aging or environmental stressor effects during the previous service history.

  3. NPTool: a simulation and analysis framework for low-energy nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Matta, A.; Morfouace, P.; de Séréville, N.; Flavigny, F.; Labiche, M.; Shearman, R.

    2016-08-01

    The Nuclear Physics Tool (NPTool) is an open source data analysis and Monte Carlo simulation framework that has been developed for low-energy nuclear physics experiments with an emphasis on radioactive beam experiments. The NPTool offers a unified framework for designing, preparing and analyzing complex experiments employing multiple detectors, each of which may comprise some hundreds of channels. The framework has been successfully used for the analysis and simulation of experiments at facilities including GANIL, RIKEN, ALTO and TRIUMF, using both stable and radioactive beams. This paper details the NPTool philosophy together with an overview of the workflow. The framework has been benchmarked through the comparison of simulated and experimental data for a variety of detectors used in charged particle and gamma-ray spectroscopy.

  4. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    SciTech Connect

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-06-15

    Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

  5. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  6. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  7. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    SciTech Connect

    Gai, Moshe

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  8. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-02-01

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as 12C and 16O . All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the 12C (α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  9. Computational simulation for analysis and synthesis of impact resilient structure

    NASA Astrophysics Data System (ADS)

    Djojodihardjo, Harijono

    2013-10-01

    Impact resilient structures are of great interest in many engineering applications varying from civil, land vehicle, aircraft and space structures, to mention a few examples. To design such structure, one has to resort fundamental principles and take into account progress in analytical and computational approaches as well as in material science and technology. With such perspectives, this work looks at a generic beam and plate structure subject to impact loading and carry out analysis and numerical simulation. The first objective of the work is to develop a computational algorithm to analyze flat plate as a generic structure subjected to impact loading for numerical simulation and parametric study. The analysis will be based on dynamic response analysis. Consideration is given to the elastic-plastic region. The second objective is to utilize the computational algorithm for direct numerical simulation, and as a parallel scheme, commercial off-the shelf numerical code is utilized for parametric study, optimization and synthesis. Through such analysis and numerical simulation, effort is devoted to arrive at an optimum configuration in terms of loading, structural dimensions, material properties and composite lay-up, among others. Results will be discussed in view of practical applications.

  10. Controlled multibody dynamics simulation for large space structures

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Wu, S. C.; Chang, C. W.

    1989-01-01

    Multibody dynamics discipline, and dynamic simulation in control structure interaction (CSI) design are discussed. The use, capabilities, and architecture of the Large Angle Transient Dynamics (LATDYN) code as a simulation tool are explained. A generic joint body with various types of hinge connections; finite element and element coordinate systems; results of a flexible beam spin-up on a plane; mini-mast deployment; space crane and robotic slewing manipulations; a potential CSI test article; and multibody benchmark experiments are also described.

  11. Computer Simulation of Sexual Selection on Age-Structured Populations

    NASA Astrophysics Data System (ADS)

    Martins, S. G. F.; Penna, T. J. P.

    Using computer simulations of a bit-string model for age-structured populations, we found that sexual selection of older males is advantageous, from an evolutionary point of view. These results are in opposition to a recent proposal of females choosing younger males. Our simulations are based on findings from recent studies of polygynous bird species. Since secondary sex characters are found mostly in males, we could make use of asexual populations that can be implemented in a fast and efficient way.

  12. Simulating Weak Lensing by Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Vale, Chris; White, Martin

    2003-08-01

    We model weak gravitational lensing of light by large-scale structure using ray tracing through N-body simulations. The method is described with particular attention paid to numerical convergence. We investigate some of the key approximations in the multiplane ray-tracing algorithm. Our simulated shear and convergence maps are used to explore how well standard assumptions about weak lensing hold, especially near large peaks in the lensing signal.

  13. Impact and Penetration Simulations for Composite Wing-like Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.

    1998-01-01

    The goal of this research project was to develop methodologies for the analysis of wing-like structures subjected to impact loadings. Low-speed impact causing either no damage or only minimal damage and high-speed impact causing severe laminate damage and possible penetration of the structure were to be considered during this research effort. To address this goal, an assessment of current analytical tools for impact analysis was performed. Assessment of the analytical tools for impact and penetration simulations with regard to accuracy, modeling, and damage modeling was considered as well as robustness, efficient, and usage in a wing design environment. Following a qualitative assessment, selected quantitative evaluations will be performed using the leading simulation tools. Based on this assessment, future research thrusts for impact and penetration simulation of composite wing-like structures were identified.

  14. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    NASA Astrophysics Data System (ADS)

    Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.; Guimbal, P.

    2016-02-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  15. Demonstrating Structural Adequacy of Nuclear Power Plant Containment Structures for Beyond Design-Basis Pressure Loadings

    SciTech Connect

    Braverman, J.I.; Morante, R.

    2010-07-18

    ABSTRACT Demonstrating the structural integrity of U.S. nuclear power plant (NPP) containment structures, for beyond design-basis internal pressure loadings, is necessary to satisfy Nuclear Regulatory Commission (NRC) requirements and performance goals. This paper discusses methods for demonstrating the structural adequacy of the containment for beyond design-basis pressure loadings. Three distinct evaluations are addressed: (1) estimating the ultimate pressure capacity of the containment structure (10 CFR 50 and US NRC Standard Review Plan, Section 3.8) ; (2) demonstrating the structural adequacy of the containment subjected to pressure loadings associated with combustible gas generation (10 CFR 52 and 10 CFR 50); and (3) demonstrating the containment structural integrity for severe accidents (10 CFR 52 as well as SECY 90-016, SECY 93-087, and related NRC staff requirements memoranda (SRMs)). The paper describes the technical basis for specific aspects of the methods presented. It also presents examples of past issues identified in licensing activities related to these evaluations.

  16. Simulated tornado debris tracks: implications for inferring corner flow structure

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael; Lewellen, David

    2011-11-01

    A large collection of three-dimensional large eddy simulations of tornadoes with fine debris have been recently been performed as part of a longstanding effort at West Virginia University to understand tornado corner flow structure and dynamics. Debris removal and deposition is accounted for at the surface, in effect simulating formation of tornado surface marks. Physical origins and properties of the most prominent marks will be presented, and the possibility of inferring tornado corner flow structure from real marks in the field will be discussed. This material is based upon work supported by the National Science Foundation under Grants No. 0635681 and AGS-1013154.

  17. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    NASA Astrophysics Data System (ADS)

    Ji, Chen; Hernandez, Oscar Javier; Nevo Dinur, Nir; Bacca, Sonia; Barnea, Nir

    2016-03-01

    We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  18. Numerical simulations of cloud rise phenomena associated with nuclear bursts: compressible and low Mach approaches

    NASA Astrophysics Data System (ADS)

    Kanarska, Y.; Lomov, I.; Antoun, T.

    2008-12-01

    The nuclear cloud rise is a two stage phenomenon. The initial phase (fireball expansion) of the cloud formation is dominated by compressible flow effects and propagation of shock waves. At the later stage, shock waves become weak, the Mach number decreases and the time steps required by an explicit code to model the acoustic waves make simulation of the late time cloud dynamics with a compressible code very expensive. The buoyant cloud rise at this stage can be efficiently simulated by low Mach-number approximation. In this approach acoustic waves are removed analytically, compressible effects are included as a non-zero divergence constraint due to background stratification and the system of equations is solved implicitly using pressure projection methods. Our numerical approach includes fluid mechanical models that are able to simulate both compressible, incompressible and low Mach regimes. Compressible dynamics is simulated with the explicit high order Eulerian code GEODYN (Lomov et al., 2001). It is based on the second-order Godunov method of Colella and Woodward (1984) that is extended for multiple dimensions using operator-splitting. The code includes the material interface tracking based on a volume-of-fluid (VOF) approach of Miller and Puckett (1996). The code we use for the low Mach approximation (LMC) is based on the incompressible solver of Bell et al., (2003). An unsplit second-order Godunov method and the MAC projection method (Bell et al., 2003) are used. An algebraic slip multiphase model is implemented to describe fallout of dust particles. Both codes incorporate adaptive mesh refinement (AMR). Additionally, the codes are explicitly coupled via input/output files. First, we compared solutions for an idealized buoyant bubble rise problem, that is characterized by low Mach numbers, in GEODYN and LMC codes. While the cloud evolution process is reproduced in both codes, some differences are found in the cloud rise speed and the cloud interface structure

  19. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear

  20. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4

    SciTech Connect

    Sterpin, E.; Sorriaux, J.; Vynckier, S.

    2013-11-15

    Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for {sup 1}H and ICRU 63 data for {sup 12}C, {sup 14}N, {sup 16}O, {sup 31}P, and {sup 40}Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth

  1. Activities in support of continuing the service of nuclear power plant concrete structures

    SciTech Connect

    Naus, Dan J

    2012-01-01

    In general, nuclear power plant concrete structure s performance has been very good; however, aging of concrete structures occurs with the passage of time that can potentially result in degradation if is effects are not controlled. Safety-related nuclear power plant concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The interaction of the license renewal process and concrete structures is noted. A summary of operating experience related to aging of nuclear power plant concrete structures is provided. Several candidate areas are identified where additional research would be beneficial for aging management of nuclear power plant concrete structures. Finally, an update on recent activities at Oak Ridge National Laboratory related to aging management of nuclear power plant concrete structures is provided.

  2. Simulation approach to understanding the processes that structure food webs

    SciTech Connect

    Jager, H.I.; Gardner, R.H.; DeAngelis, D.L.; Post, W.M.

    1984-08-01

    A simulation model of food web dynamics, WEB, was constructed and used in Monte Carlo experiments to study the relationship between structure and function in food webs. Four main experiments were designed using WEB. The first tested the robustness of food web structures at equilibrium to variations in the functional response of predators in the food web to the densities of their prey. The second experiment clarified the roles of predation and resource limitation in the process of structuring food webs. A third experiment studied the influence of productivity on food web structure and function using simulated food webs. The final experiment was designed to study the differential successes of generalists and specialists. The main advantage gained by using a simulation approach in each of these experiments was the ability to assess the roles played by processes of predation and competition in structuring model food webs. This was accomplished by interpreting the order of extinction events that occurred in the simulations and relating these to the species configurations at equilibrium. 61 references, 23 figures.

  3. Exclusive CHIPS-TPT algorithms for simulation of neutron-nuclear reactions

    NASA Astrophysics Data System (ADS)

    Kosov, Mikhail; Savin, Dmitriy

    2016-09-01

    The CHIPS-TPT physics library for simulation of neutron-nuclear reactions on the new exclusive level is being developed in CFAR VNIIA. The exclusive modeling conserves energy, momentum and quantum numbers in each neutron-nuclear interaction. The CHIPS-TPT algorithms are based on the exclusive CHIPS library, which is compatible with Geant4. Special CHIPS-TPT physics lists in the Geant4 format are provided. The calculation time for an exclusive CHIPS-TPT simulation is comparable to the time of the corresponding inclusive Geant4-HP simulation and much faster for mono-isotopic simulations. In addition to the reduction of the deposited energy fluctuations, which is a consequence of the energy conservation, the CHIPS-TPT libraries provide a possibility of simulation of the secondary particles correlation, e.g. secondary gammas or n-γ correlations, and of the Doppler broadening of the γ-lines in the simulated spectra, which can be measured by germanium detectors.

  4. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    SciTech Connect

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-07-05

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy’s Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  5. Design Considerations for the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Kirk, Daniel

    2006-01-01

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today s best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Currently, such a simulator is nearing completion at the Marshall Space Flight Center, and will shortly be used in the future to evaluate a wide variety of he1 element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the Nuclear Thermal Rocket Element Environmental Simulator or NTREES and some of the design considerations which were considered prior to and during its construction.

  6. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus.

    PubMed

    Razin, S V; Borunova, V V; Iarovaia, O V; Vassetzky, Y S

    2014-07-01

    Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.

  7. Structural Modeling and Molecular Dynamics Simulation of the Actin Filament

    SciTech Connect

    Splettstoesser, Thomas; Holmes, Kenneth; Noe, Frank; Smith, Jeremy C

    2011-01-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.

  8. The shell model as a unified view of nuclear structure

    SciTech Connect

    Caurier, E.; Martinez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P.

    2005-04-01

    The last decade has witnessed both quantitative and qualitative progress in shell-model studies, which have resulted in remarkable gains in our understanding of the structure of the nucleus. Indeed, it is now possible to diagonalize matrices in determinantal spaces of dimensionality up to 10{sup 9} using the Lanczos tridiagonal construction, whose formal and numerical aspects are analyzed in this review. In addition, many new approximation methods have been developed in order to overcome the dimensionality limitations. New effective nucleon-nucleon interactions have been constructed that contain both two- and three-body contributions. The former are derived from realistic potentials (i.e., potentials consistent with two-nucleon data). The latter incorporate the pure monopole terms necessary to correct the bad saturation and shell-formation properties of the realistic two-body forces. This combination appears to solve a number of hitherto puzzling problems. The present review concentrates on those results which illustrate the global features of the approach: the universality of the effective interaction and the capacity of the shell model to describe simultaneously all the manifestations of the nuclear dynamics, either single-particle or collective in nature. The review also treats in some detail the problems associated with rotational motion, the origin of quenching of the Gamow-Teller transitions, double-{beta} decays, the effect of isospin nonconserving nuclear forces, and the specificities of neutron-rich nuclei. Many other calculations--which appear to have 'merely' spectroscopic interest--are touched upon briefly, although the authors are fully aware that much of the credibility of the shell model rests on them.

  9. Structure of overheated metal clusters: MD simulation study

    SciTech Connect

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  10. Information diversity in structure and dynamics of simulated neuronal networks.

    PubMed

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  11. Numerical simulations of drop impact on superhydrophobic structured surfaces

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide; Larentis, Stefano; Pugno, Nicola

    2011-11-01

    During the last decade drop impact dynamics on superhydrophobic surfaces has been intensively investigated because of the incredible properties of water repellency exhibited by this kind of surfaces, mostly inspired by biological examples such as Lotus leave. Thanks to the recent progress in micro-fabrication technology is possible to tailor surfaces wettability defining specific pillar-like structured surfaces. In this work, the behavior of impinging drops on these pillar-like surfaces is simulated, characterizing temporal evolution of droplets contact radius and drop maximal deformation dependence on Weber number. Numerical simulations results are compared with theoretical and experimental results guaranteeing simulation reliability. Fingering patterns obtained from drop impact has been studied obtaining a correlation between number of fingers and Weber number. Drop fragmentation pattern obtained from simulations supports the proposed correlation. Different drop impact outcomes (e.g. rebound, fragmentation) on structured superhydrophobic surfaces are simulated, focusing on the influence of micro-structured surface geometrical pattern. This investigation is relevant in order to define design rules for possible reliable non wettable surfaces. Financial support by Alta Scuola Politecnica.

  12. Multiscale Simulations of the Structure and Dynamics of the Magnetopause

    NASA Astrophysics Data System (ADS)

    Berchem, Jean; Lapenta, Giovanni; Ashour-Abdalla, Maha

    2016-04-01

    Ongoing observations by the spacecraft of NASA's Magnetospheric Multiscale Mission are revealing a very complex structure and dynamics of the low-latitude magnetopause. One of the main difficulties to comprehend physical processes occurring at the magnetopause is that it requires following both the evolution of the large-scale interaction of the solar wind with the dayside magnetosphere, and the details of the kinetic processes that enable transport of energy and mass in localized regions of the magnetospheric boundary. To address this multiscale problem, we have carried out particle-in-cell (PIC) simulations of the dayside magnetopause. These simulations employ domains that are large enough to include large-scale features of the solar wind interaction with the geomagnetic field (e.g., field curvature and plasma asymmetries). The numerical challenge is dealt with by using the implicit iPic3d simulation code together with the results of global magnetohydrodynamic (MHD) simulations. We discuss the results of the PIC simulations in the context of the global MHD states that provide initial and boundary conditions, and local spacecraft observations at the magnetopause. In particular, we analyze the evolution of electromagnetic fields and particle distributions in different regions of the simulations to determine how reconnection processes affect the structure and dynamics of the magnetospheric boundary.

  13. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  14. Numerical Simulation of the Seismic Response for the Recent North Korean Nuclear Tests (Invited)

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Vorobiev, O.; Petersson, A.; Sjogreen, B.; Matzel, E.

    2009-12-01

    We performed a series of numerical simulations of the 2006 and 2009 North Korean nuclear tests to model the observed seismic data and gain insight into the wave propagation phenomena that may impact source estimates of these events, such as the waveform shapes and amplitudes of direct P-waves, the generation of S-waves, high-frequency P/S ratios. Simulations span the hydrodynamic (near-field, non-linear), local and regional distance ranges, although seismic data are only available for regional and teleseismic distances. Firstly, we modeled the response of the immediate near-field assuming emplacement in granite for small explosions (yields 0.5-3 kiloton) with GEODYN, an Eulerian finite-volume hydrodynamics code. This is a rather hard material that results in an impulsive short duration source time function and small cavity. Secondly, we modeled the elastic response of simple earth models including free surface topography with WPP (an anelastic finite difference code) for a domain ~20 km around the sources. Topographic relief is significant at the test site, with elevations rising from 300 m to 2000 m over short distances. We found that the inclusion of topography has a strong impact on the wavefield, causing azimuthal dependence of both the P-wave scattering and S-wave generation. Furthermore, the scattering by the rough free-surface causes decorrelation of the emerging P-waves for the 2006 and 2009 events, spaced only ~4 km apart. Thirdly, we simulated seismic wave propagation to regional distances (< 2000 km) using three-dimensional (3D) wavespeed models and SPECFEM3D, a spectral element code, and compared results with the available long-period waveforms. We used the source models of Dreger et al. (manuscript submitted) and find that the synthetics for 3D models and an isotropic source predict some features of the observed waveforms. The one-dimensional (1D) iasp91 (Kennett and Engdahl, 1991) model performs surprisingly well for the vertical and radial component

  15. Global MHD Simulation of Mesoscale Structures at the Magnetospheric Boundary

    NASA Technical Reports Server (NTRS)

    Berchem, Jean

    1998-01-01

    The research carried out for this protocol was focused on the study of mesoscales structures at the magnetospheric boundary. We investigated three areas: (1) the structure of the magnetospheric boundary for steady solar wind conditions; (2) the dynamics of the dayside magnetospheric boundary and (3) the dynamics of the distant tail magnetospheric boundary. Our approach was to use high resolution three-dimensional global magnetohydrodynamic (MHD) simulations of the interaction of the solar wind with the Earth's magnetosphere. We first considered simple variations of the interplanetary conditions to obtain generic cases that helped us in establishing the basic cause and effect relationships for steady solar wind conditions. Subsequently, we used actual solar wind plasma and magnetic field parameters measured by an upstream spacecraft as input to the simulations and compared the simulation results with sequences of events observed by another or several other spacecraft located downstream the bow shock. In particular we compared results with observations made when spacecraft crossed the magnetospheric boundary.

  16. A performance comparison of integration algorithms in simulating flexible structures

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1989-01-01

    Asymptotic formulas for the characteristic root errors as well as transfer function gain and phase errors are presented for a number of traditional and new integration methods. Normalized stability regions in the lambda h plane are compared for the various methods. In particular, it is shown that a modified form of Euler integration with root matching is an especially efficient method for simulating lightly-damped structural modes. The method has been used successfully for structural bending modes in the real-time simulation of missiles. Performance of this algorithm is compared with other special algorithms, including the state-transition method. A predictor-corrector version of the modified Euler algorithm permits it to be extended to the simulation of nonlinear models of the type likely to be obtained when using the discretized structure approach. Performance of the different integration methods is also compared for integration step sizes larger than those for which the asymptotic formulas are valid. It is concluded that many traditional integration methods, such as RD-4, are not competitive in the simulation of lightly damped structures.

  17. Structural materials from lunar simulants through thermal liquefaction

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Girdner, Kirsten

    1992-01-01

    Thermal liquefaction that allows development of intermediate ceramic composites from a lunar simulant with various admixtures is used to develop structural materials for construction on the moon. Bending and compressive properties of resulting composites are obtained from laboratory tests and evaluated with respect to the use of three different types and fibers.

  18. Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Schnitzler, Bruce G.

    2008-01-01

    The Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for exploratory expeditions to the moon, Mars, and beyond. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the Rover/NERVA program from 1955 to 1973. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design, and a comparison of its results to the Small Nuclear Rocket Engine (SNRE) design.

  19. Numerical simulations of the subsurface structure of sunspots

    NASA Astrophysics Data System (ADS)

    Rempel, M.; Cheung, M.; Birch, A. C.; Braun, D. C.

    2011-12-01

    Knowledge of the subsurface magnetic field and flow structure of sunspots is essential for understanding the processes involved in their formation, dynamic evolution and decay. Information on the subsurface structure can be obtained by either direct numerical modeling or helioseismic inversions. Numerical simulations have reached only in recent years the point at which entire sunspots or even active regions can be modeled including all relevant physical processes such as 3D radiative transfer and a realistic equation of state. We present in this talk results from a series of different models: from simulations of individual sunspots (with and without penumbrae) in differently sized computational domains to simulations of the active region formation process (flux emergence). It is found in all models that the subsurface magnetic field fragments on an intermediate scale (larger than the scale of sunspot fine structure such as umbral dots); most of these fragmentations become visible as light bridges or flux separation events in the photosphere. The subsurface field strength is found to be in the 5-10 kG range. The simulated sunspots are surrounded by large scale flows, the most dominant and robust flow component is a deep reaching outflow with an amplitude reaching about 50% of the convective RMS velocity at the respective depth. The simulated sunspots show helioseismic signatures (frequency dependent travel time shifts) similar to those in observed sunspots. On the other hand it is clear from the simulations that these signatures originate in the upper most 2-3 Mm of the convection zone, since only there substantial perturbations of the wave speed are present. The contributions from deeper layers are insignificant, in particular a direct comparison between an 8 Mm and 16 Mm deep simulation leads to indiscernible helioseismic differences. The National Center for Atmospheric Research is sponsored by the National Science Foundation. This work is in part supported

  20. SNM-DAT: Simulation of a heterogeneous network for nuclear border security

    NASA Astrophysics Data System (ADS)

    Nemzek, R.; Kenyon, G.; Koehler, A.; Lee, D. M.; Priedhorsky, W.; Raby, E. Y.

    2007-08-01

    We approach the problem of detecting Special Nuclear Material (SNM) smuggling across open borders by modeling a heterogeneous sensor network using an agent-based simulation. Our simulation SNM Data Analysis Tool (SNM-DAT) combines fixed seismic, metal, and radiation detectors with a mobile gamma spectrometer. Decision making within the simulation determines threat levels by combined signatures. The spectrometer is a limited-availability asset, and is only deployed for substantial threats. "Crossers" can be benign or carrying shielded SNM. Signatures and sensors are physics based, allowing us to model realistic sensor networks. The heterogeneous network provides great gains in detection efficiency compared to a radiation-only system. We can improve the simulation through better sensor and terrain models, additional signatures, and crossers that mimic actual trans-border traffic. We expect further gains in our ability to design sensor networks as we learn the emergent properties of heterogeneous detection, and potential adversary responses.

  1. Are there nuclear structure effects on the isoscalar giant monopole resonance and nuclear incompressibility near A ∼ 90?

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Garg, U.; Howard, K. B.; Matta, J. T.; Şenyiğit, M.; Itoh, M.; Ando, S.; Aoki, T.; Uchiyama, A.; Adachi, S.; Fujiwara, M.; Iwamoto, C.; Tamii, A.; Akimune, H.; Kadono, C.; Matsuda, Y.; Nakahara, T.; Furuno, T.; Kawabata, T.; Tsumura, M.; Harakeh, M. N.; Kalantar-Nayestanaki, N.

    2016-09-01

    "Background-free" spectra of inelastic α-particle scattering have been measured at a beam energy of 385 MeV in 90,92Zr and 92Mo at extremely forward angles, including 0°. The ISGMR strength distributions for the three nuclei coincide with each other, establishing clearly that nuclear incompressibility is not influenced by nuclear shell structure near A ∼ 90 as was claimed in recent measurements.

  2. Nuclear subsurface explosion modeling and hydrodynamic fragmentation simulation of hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Premaratne, Pavithra Dhanuka

    Disruption and fragmentation of an asteroid using nuclear explosive devices (NEDs) is a highly complex yet a practical solution to mitigating the impact threat of asteroids with short warning time. A Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, developed at the Asteroid Deflection Research Center (ADRC), consists of a primary vehicle that acts as kinetic impactor and a secondary vehicle that houses NEDs. The kinetic impactor (lead vehicle) strikes the asteroid creating a crater. The secondary vehicle will immediately enter the crater and detonate its nuclear payload creating a blast wave powerful enough to fragment the asteroid. The nuclear subsurface explosion modeling and hydrodynamic simulation has been a challenging research goal that paves the way an array of mission critical information. A mesh-free hydrodynamic simulation method, Smoothed Particle Hydrodynamics (SPH) was utilized to obtain both qualitative and quantitative solutions for explosion efficiency. Commercial fluid dynamics packages such as AUTODYN along with the in-house GPU accelerated SPH algorithms were used to validate and optimize high-energy explosion dynamics for a variety of test cases. Energy coupling from the NED to the target body was also examined to determine the effectiveness of nuclear subsurface explosions. Success of a disruption mission also depends on the survivability of the nuclear payload when the secondary vehicle approaches the newly formed crater at a velocity of 10 km/s or higher. The vehicle may come into contact with debris ejecting the crater which required the conceptual development of a Whipple shield. As the vehicle closes on the crater, its skin may also experience extreme temperatures due to heat radiated from the crater bottom. In order to address this thermal problem, a simple metallic thermal shield design was implemented utilizing a radiative heat transfer algorithm and nodal solutions obtained from hydrodynamic simulations.

  3. Simulating the large-scale structure of HI intensity maps

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus; Refregier, Alexandre; Amara, Adam; Akeret, Joel

    2016-03-01

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 20483 particles (particle mass 1.6 × 1011 Msolar / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (108 Msolar / h < Mhalo < 1013 Msolar / h), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 lesssim z lesssim 0.9 in redshift bins of width Δ z ≈ 0.05 and cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.

  4. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    SciTech Connect

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svard, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetrically burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.

  5. 1H nuclear spin relaxation of liquid water from molecular dynamics simulations.

    PubMed

    Calero, C; Martí, J; Guàrdia, E

    2015-02-01

    We have investigated the nuclear spin relaxation properties of (1)H in liquid water with the help of molecular dynamics simulations. We have computed the (1)H nuclear spin relaxation times T1 and T2 and determined the contribution of the different interactions to the relaxation at different temperatures and for different classical water models (SPC/E, TIP3P, TIP4P, and TIP4P/2005). Among the water models considered, the TIP4P/2005 model exhibits the best agreement with the experiment. The same analysis was performed with Car-Parrinello ab initio molecular dynamics simulations of bulk water at T = 330 K, which provided results close to the experimental values at room temperature. To complete the study, we have successfully accounted for the temperature-dependence of T1 and T2 in terms of a simplified model, which considers the reorientation in finite angle jumps and the diffusive translation of water molecules.

  6. Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model.

    PubMed

    Lagzi, I; Kármán, D; Turányi, T; Tomlin, A S; Haszpra, L

    2004-01-01

    Application of an Eulerian model using layered adaptive unstructured grids coupled to a meso-scale meteorological model is presented for modelling the dispersion of nuclear contamination following the accidental release from a single but strong source to the atmosphere. The model automatically places a finer resolution grid, adaptively in time, in regions were high spatial numerical error is expected. The high-resolution grid region follows the movement of the contaminated air over time. Using this method, grid resolutions of the order of 6 km can be achieved in a computationally effective way. The concept is illustrated by the simulation of hypothetical nuclear accidents at the Paks NPP, in Central Hungary. The paper demonstrates that the adaptive model can achieve accuracy comparable to that of a high-resolution Eulerian model using significantly less grid points and computer simulation time. PMID:15149762

  7. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation.

    PubMed

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine; Sobolevsky, Nikolai; Bassler, Niels

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte Carlo simulations with SHIELD-HIT10Areasonably matched the most abundant PET isotopes (11)C and (15)O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10Aand measurement. Improved modeling requires more accurate measurements of cross-section values.

  8. Nuclear Pore Complex Protein Sequences Determine Overall Copolymer Brush Structure and Function

    PubMed Central

    Ando, David; Zandi, Roya; Kim, Yong Woon; Colvin, Michael; Rexach, Michael; Gopinathan, Ajay

    2014-01-01

    The transport of cargo across the nuclear membrane is highly selective and accomplished by a poorly understood mechanism involving hundreds of nucleoporins lining the inside of the nuclear pore complex (NPC). Currently, there is no clear picture of the overall structure formed by this collection of proteins within the pore, primarily due to their disordered nature. We perform coarse-grained simulations of both individual nucleoporins and grafted rings of nups mimicking the in vivo geometry of the NPC and supplement this with polymer brush modeling. Our results indicate that different regions or blocks of an individual NPC protein can have distinctly different forms of disorder and that this property appears to be a conserved functional feature. Furthermore, this block structure at the individual protein level is critical to the formation of a unique higher-order polymer brush architecture that can exist in distinct morphologies depending on the effective interaction energy between the phenylalanine glycine (FG) domains of different nups. Because the interactions between FG domains may be modulated by certain forms of transport factors, our results indicate that transitions between brush morphologies could play an important role in regulating transport across the NPC, suggesting novel forms of gated transport across membrane pores with wide biomimetic applicability. PMID:24806932

  9. Designing a Component-Based Architecture for the Modeling and Simulation of Nuclear Fuels and Reactors

    SciTech Connect

    Billings, Jay Jay; Elwasif, Wael R; Hively, Lee M; Bernholdt, David E; Hetrick III, John M; Bohn, Tim T

    2009-01-01

    Concerns over the environment and energy security have recently prompted renewed interest in the U.S. in nuclear energy. Recognizing this, the U.S. Dept. of Energy has launched an initiative to revamp and modernize the role that modeling and simulation plays in the development and operation of nuclear facilities. This Nuclear Energy Advanced Modeling and Simulation (NEAMS) program represents a major investment in the development of new software, with one or more large multi-scale multi-physics capabilities in each of four technical areas associated with the nuclear fuel cycle, as well as additional supporting developments. In conjunction with this, we are designing a software architecture, computational environment, and component framework to integrate the NEAMS technical capabilities and make them more accessible to users. In this report of work very much in progress, we lay out the 'problem' we are addressing, describe the model-driven system design approach we are using, and compare them with several large-scale technical software initiatives from the past. We discuss how component technology may be uniquely positioned to address the software integration challenges of the NEAMS program, outline the capabilities planned for the NEAMS computational environment and framework, and describe some initial prototyping activities.

  10. Integrated nuclear and conventional theater warfare simulation (inwars) documentation. Part I. Synopsis. Final report

    SciTech Connect

    Aldrich, J.R.; Gilmer, J.B.

    1980-02-08

    This volume constitutes the Synopsis Component of the Integrated Nuclear and Conventional Theater Warfare Simulation (INWARS) documentation. It provides an overview of the simulation in terms of unique features, inputs and outputs, and modes of application. The INWARS representation of theater warfare and its software implementation are then synopsized. INWARS has been developed to provide a tool for investigating interactions among conventional, nuclear, and chemical operations in the context of a theater-level conflict situation. INWARS is also distinguished by its focus on upper-echelon command, control, and intelligence (C22I) processes. In particular, INWARS contains explicit, fully-automated representation of the C2I activities involved in: (1) developing, and executing operations to achieve assigned objectives; (2) considering the employment of conventional, nuclear, or chemical weapons in support of those operations; and, (3) adapting ongoing activities to the perceived threat of enemy nuclear or chemical attacks. Since these activities are driven by generalized doctrines and policies supplied as user-inputs, INWARS can support investigations of alternative doctrinal approaches.

  11. An End-To-End Test of A Simulated Nuclear Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Hrbud, Ivana; Goddfellow, Keith; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase I Space Fission Systems issues in it particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  12. (Nuclear structure physics): Foreign trip report, May 9--June 14, 1988

    SciTech Connect

    Baktash, C.

    1988-06-29

    The traveler visited the Niels Bohr Institute in Copenhagen, Denmark, to analyze data from a joint ORNL-NBI experiment that was performed last summer at ORNL. He also participated in the Nuclear Structure Workshop held at NBI, May 16-20, 1988. On June 9-14 he attended the ''International Conference on Contemporary Topics in Nuclear Structure Physics'' held in Cocoyoc, Mexico.

  13. Finite element simulation of adaptive aerospace structures with SMA actuators

    NASA Astrophysics Data System (ADS)

    Frautschi, Jason; Seelecke, Stefan

    2003-07-01

    The particular demands of aerospace engineering have spawned many of the developments in the field of adaptive structures. Shape memory alloys are particularly attractive as actuators in these types of structures due to their large strains, high specific work output and potential for structural integration. However, the requisite extensive physical testing has slowed development of potential applications and highlighted the need for a simulation tool for feasibility studies. In this paper we present an implementation of an extended version of the M'ller-Achenbach SMA model into a commercial finite element code suitable for such studies. Interaction between the SMA model and the solution algorithm for the global FE equations is thoroughly investigated with respect to the effect of tolerances and time step size on convergence, computational cost and accuracy. Finally, a simulation of a SMA-actuated flexible trailing edge of an aircraft wing modeled with beam elements is presented.

  14. A Poisson resampling method for simulating reduced counts in nuclear medicine images.

    PubMed

    White, Duncan; Lawson, Richard S

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image. PMID:25880881

  15. A Poisson resampling method for simulating reduced counts in nuclear medicine images.

    PubMed

    White, Duncan; Lawson, Richard S

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image.

  16. Geographic structure of European anchovy: A nuclear-DNA study

    NASA Astrophysics Data System (ADS)

    Bouchenak-Khelladi, Yanis; Durand, Jean-Dominique; Magoulas, Antonios; Borsa, Philippe

    2008-08-01

    Atlantic-Mediterranean anchovies were genetically characterized at two polymorphic nuclear loci (intron 6 of two creatine-kinase genes) and compared to reference Engraulis albidus and E. encrasicolus samples from the northern Western Mediterranean to provide new insights into their geographic structure. Northeastern Atlantic anchovy, represented by one sample from the Canary archipelago and one sample from the Alboran Sea, were genetically distinct from Mediterranean E. encrasicolus (Weir and Cockerham's ^θ = 0.027-0.311), indicating geographic isolation from either side of the Almería-Oran oceanographic front. Generally smaller genetic differences were evident among anchovy populations from different sub-basins in the Mediterranean ( ^θ = - 0.019-0.116), the genetic differences between Black Sea and Ionian Sea/Aegean Sea anchovies being the strongest ( ^θ = 0.002-0.116). There was no evidence of the presence of E. albidus in our samples outside Camargue (northern shore of the Western Mediterranean). However, a sample from the southern Western Mediterranean appeared to be genetically intermediate between E. albidus and Mediterranean E. encrasicolus, indicating possible hybridization. Anchovy from the Benguela current system off southern Africa possessed allele frequencies characteristic of E. albidus at one locus and Northeastern Atlantic anchovy at the other locus, suggesting past introgression.

  17. Nuclear-structure aspects of double beta decay

    SciTech Connect

    Suhonen, Jouni

    2010-11-24

    Neutrinoless double beta (0{nu}{beta}{beta}) decay of nuclei is a process that requires the neutrino to be a massive Majorana particle and thus cannot proceed in the standard model of electro-weak interactions. Recent results of the neutrino-oscillation experiments have produced accurate information on the mixing of neutrinos and their squared mass differences. The 0{nu}{beta}{beta} decay takes place in atomic nuclei where it can be observed, at least in principle, by underground neutrino experiments. The need of nuclei in observation of the 0{nu}{beta}{beta} decay bears two facets: The nucleus serves as laboratory for detection but at the same time its complicated many-nucleon structure interferes strongly with the analysis of the experimental data. The information about the weak-interaction observables, like the neutrino mass, has to be filtered from the data through the nuclear matrix elements (NMEs). Hence, exact knowledge about the NMEs is of paramount importance in the analysis of the data provided by the expensive and time-consuming underground experiments.

  18. NGC 1068 - Resolution of nuclear structure in the optical continuum

    NASA Technical Reports Server (NTRS)

    Lynds, Roger; Faber, S. M.; Light, Robert M.; Groth, Edward J.; Holtzman, Jon A.

    1991-01-01

    The HST Planetary Camera has been used to obtain an optical continuum image of the Seyfert galaxy NGC 1068. The image reveals a bright nucleus embedded in an irregular cloudlike structure which is well-differentiated against the background of the galaxy. The nucleus is resolved, with an FWHM of about 0.15 arcsec, or 11 pc. There is no evidence for any unresolved nuclear component. The precise geometry of the scattering region cannot yet be inferred. The cloud surrounding the nucleus is elongated in the NE-SSW direction and has extreme dimensions of 3.5 arcsec x 1.7 arcsec. The brightness centroid is situated 0.4 arcsec SW of the nucleus. It is concluded that the light from the cloud is contributed largely by stars, but that the appearance of the cloud is distinctly dissimilar to what is expected from young or old stellar systems and bears to simple relationship to the numerous features that have heretofore been resolved at other wavelengths.

  19. NGC 1068 - Resolution of nuclear structure in the optical continuum

    SciTech Connect

    Lynds, R.; Faber, S.M.; Light, R.M.; Groth, E.J.; Holtzman, J.A. Lick Observatory, Santa Cruz, CA Princeton Univ., NJ Lowell Observatory, Flagstaff, AZ )

    1991-03-01

    The HST Planetary Camera has been used to obtain an optical continuum image of the Seyfert galaxy NGC 1068. The image reveals a bright nucleus embedded in an irregular cloudlike structure which is well-differentiated against the background of the galaxy. The nucleus is resolved, with an FWHM of about 0.15 arcsec, or 11 pc. There is no evidence for any unresolved nuclear component. The precise geometry of the scattering region cannot yet be inferred. The cloud surrounding the nucleus is elongated in the NE-SSW direction and has extreme dimensions of 3.5 arcsec x 1.7 arcsec. The brightness centroid is situated 0.4 arcsec SW of the nucleus. It is concluded that the light from the cloud is contributed largely by stars, but that the appearance of the cloud is distinctly dissimilar to what is expected from young or old stellar systems and bears to simple relationship to the numerous features that have heretofore been resolved at other wavelengths. 9 refs.

  20. Studies of Nuclear Structure and Decay Properties of Actinide Nuclei

    SciTech Connect

    Kondev, F. G.; Ahmad, I.; Carpenter, M. P.; Chiara, C. J.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Moore, E. F.; Seweryniak, D.; Zhu, S.; Kellett, M. A.; Nichols, A. L.

    2009-01-28

    The identification of single-particle states in heavy actinide nuclei by means of studying their decay schemes plays a seminal role in understanding the structure of the heaviest elements and testing the predictive power of modern theoretical models. The heaviest odd-mass nuclides available in sufficient quantity for detailed decay spectroscopic studies are 20-h {sup 255} Fm(for neutrons) and 20-d {sup 253}Es(for protons). Decay spectra of these isotopes, together with those for the odd-odd 276-d {sup 254}Es nuclide, were measured using a variety of {alpha}-particle and {gamma}-ray spectroscopy techniques. Well-defined decay data are also essential pre-requisites for the detection and accurate characterization of fissile radionuclides. The parameters of greatest relevance include actinide half-lives, branching fractions, and {alpha}-particle and {gamma}-ray energies and emission probabilities. Their quantification to good accuracy provides the means of monitoring their presence, behavior and transport in nuclear facilities as well as any clandestine movement and usage. As a consequence of recommendations made at recent IAEA research coordination meetings on 'Updated Decay Data Library for Actinides,' measurements were undertaken to determine specific decay data of the more inadequately defined radionuclides.

  1. Nuclear structure and reaction studies at medium energies

    SciTech Connect

    Hoffmann, G.W.; Ray, R.L.

    1990-10-01

    This document constitutes the (1988--1991) technical progress report for the ongoing medium energy physics research program supported by the US Department of Energy through special Research Grant FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF), the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL), and at the Fermi National Accelerator Laboratory (FNAL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics;(2) provide unique, first-of-a-kind exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics.

  2. Monitoring the Geneseo Nuclear Structure Lab with VISION

    NASA Astrophysics Data System (ADS)

    Nicklaw, R.; Padalino, S.; McLean, J.

    2002-10-01

    VISION (Virtual Instrument System Information) is a LabVIEW based program designed to monitor a 2 MV Van de Graaff accelerator in the Geneseo Nuclear Structure Laboratory (GNSL). The purpose of the system is to monitor and notify the user of potentially critical situations in the lab. Main parameters of interest are the water coolant temperatures in the diffusion pumps, pressures within the vacuum chambers, and Van de Graaff operational parameters. LabVIEW reads these values and then displays them on monitors located throughout the laboratory. The user can set alarm limits on the relevant parameters, and when exceeded notifies the user verbally and visually. Recent additions to the VISION program include the water level sensor, calibration of the pressure readings, a web server application, and data logging. The VISION system is Internet accessible ^1, data from the main screen is displayed over the web for remote monitoring of the accelerator. Another useful monitoring tool is the data logger, which writes acquired data to a formatted text document at specified intervals. A future goal for VISION is to not only monitor, but to control aspects of the GNSL with LabVIEW. ^1 Webpage accessible at: http://s69n144.sci.geneseo.edu/vision.htm * Research funded in part by the United States Department of Energy

  3. Seismic Source Characteristics of Nuclear and Chemical Explosions in Granite from Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Heming; Rodgers, Arthur J.; Lomov, Ilya N.; Vorobiev, Oleg Y.

    2014-03-01

    Seismic source characteristics of low-yield (0.5-5 kt) underground explosions are inferred from hydrodynamic simulations using a granite material model on high-performance (parallel) computers. We use a non-linear rheological model for granite calibrated to historical near-field nuclear test data. Equivalent elastic P-wave source spectra are derived from the simulated hydrodynamic response using reduced velocity potentials. Source spectra and parameters are compared with the models of M ueller and M urphy (Bull Seism Soc Am 61:1675-1692, 1971, hereafter MM71) and D enny and J ohnson (Explosion source phenomenology, pp 1-24, 1991, hereafter DJ91). The source spectra inferred from the simulations of different yields at normal scaled depth-of-burial (SDOB) match the MM71 spectra reasonably well. For normally buried nuclear explosions, seismic moments are larger for the hydrodynamic simulations than MM71 (by 25 %) and for DJ91 (by over a factor of 2), however, the scaling of moment with yield across this low-yield range is consistent for our calculations and the two models. Spectra from our simulations show higher corner frequencies at the lower end of the 0.5-5.0 kt yield range and stronger variation with yield than the MM71 and DJ91 models predict. The spectra from our simulations have additional energy above the corner frequency, probably related to non-linear near-source effects, but at high frequencies the spectral slopes agree with the f -2 predictions of MM71. Simulations of nuclear explosions for a range of SDOB from 0.5 to 3.9 show stronger variations in the seismic moment than predicted by the MM71 and DJ91 models. Chemical explosions are found to generate higher moments by a factor of about two compared to nuclear explosions of the same yield in granite and at normal depth-of-burial, broadly consistent with comparisons of nuclear and chemical shots at the US Nevada Test Site (D enny, Proceeding of symposium on the non-proliferation experiment, Rockville

  4. Structure of entangled polymer network from primitive chain network simulations

    NASA Astrophysics Data System (ADS)

    Masubuchi, Yuichi; Uneyama, Takashi; Watanabe, Hiroshi; Ianniruberto, Giovanni; Greco, Francesco; Marrucci, Giuseppe

    2010-04-01

    The primitive chain network (PCN) model successfully employed to simulate the rheology of entangled polymers is here tested versus less coarse-grained (lattice or atomistic) models for what concerns the structure of the network at equilibrium (i.e., in the absence of flow). By network structure, we mean the distributions of some relevant quantities such as subchain length in space or in monomer number. Indeed, lattice and atomistic simulations are obviously more accurate, but are also more difficult to use in nonequilibrium flow situations, especially for long entangled polymers. Conversely, the coarse-grained PCN model that deals more easily with rheology lacks, strictly speaking, a rigorous foundation. It is therefore important to verify whether or not the equilibrium structure of the network predicted by the PCN model is consistent with the results recently obtained by using lattice and atomistic simulations. In this work, we focus on single chain properties of the entangled network. Considering the significant differences in modeling the polymer molecules, the results here obtained appear encouraging, thus providing a more solid foundation to Brownian simulations based on the PCN model. Comparison with the existing theories also proves favorable.

  5. Nur77 forms novel nuclear structures upon DNA damage that cause transcriptional arrest

    SciTech Connect

    Leseleuc, Louis de; Denis, Francois . E-mail: francois.denis@iaf.inrs.ca

    2006-05-15

    The orphan nuclear receptor Nur77 has been implicated in both growth and apoptosis, and its function and activity can be modulated by cellular redistribution. Green fluorescent protein-tagged Nur77 was used to evaluate the role of Nur77 intracellular redistribution in response to genotoxic stress. Selected DNA damaging agents and transcription inhibition lead to rapid redistribution of Nur77 into nuclear structures distinct from conventional nuclear bodies. These nuclear bodies formed transiently were tightly bound to the nuclear matrix and conditions that lead to their appearance were associated with Nur77 transcriptional inhibition. The formation of Nur77 nuclear bodies might be involved in programmed cell death modulation upon exposure to DNA damaging agents that inhibit transcription by sequestrating this proapoptotic factor in dense nuclear structures.

  6. The Structural Role of Zr within Alkali Borosilicate Glasses for Nuclear Waste Immobilisation

    SciTech Connect

    A Connelly; N Hyatt; K Travis; R Hand; E Maddrell; R Short

    2011-12-31

    Zirconium is a key constituent element of High Level nuclear Waste (HLW) glasses, occurring both as a fission product and a fuel cladding component. As part of a wider research program aimed at optimizing the solubility of zirconium in HLW glasses, we have investigated the structural chemistry of zirconium in such materials using X-ray Absorption Spectroscopy (XAS). Zirconium K-edge XAS data were acquired from several inactive simulant and simplified waste glass compositions, including a specimen of blended Magnox/UO{sub 2} fuel waste glass. These data demonstrate that zirconium is immobilized as (octahedral) six-fold coordinate ZrO{sub 6} species in these glasses, with a Zr-O contact distance of 2.09 {angstrom}. The next nearest neighbors of the Zr species are Si at 3.42 {angstrom} and possibly Na at 3.44 {angstrom}, no next nearest neighbor Zr could be resolved.

  7. Simulation of the photogrammetric appendage structural dynamics experiment

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Gilbert, Michael G.; Welch, Sharon S.

    1995-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) uses six video cameras in the Space Shuttle cargo bay to measure vibration of the Russian Mir space station Kvant-ll solar array. It occurs on Shuttle/Mir docking mission STS-74 scheduled for launch in November 1995. The objective of PASDE is to demonstrate photogrammetric technology for measuring 'untargeted' spacecraft appendage structural dynamics. This paper discusses a pre-flight simulation test conducted in July 1995, focusing on the image processing aspects. The flight camera system recorded vibrations of a full-scale structural test article having grids of white lines on black background, similar in appearance to the Mir solar array. Using image correlation analysis, line intersections on the structure are tracked in the video recordings to resolutions of less than 0.1 pixel. Calibration and merging of multiple camera views generated 3-dimensional displacements from which structural modal parameters are then obtained.

  8. Degradation and failure susceptibility of carbon steels in simulated Yucca Mountain nuclear repository environments

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ahmet

    Environmental degradation and cracking of medium carbon steel (MCS) rock bolts and low carbon steel (LCS) I-beam have been investigated by experimental methods such as linear polarization, impedance spectroscopy, weight loss measurements, and electro-mechanical dynamic slow strain rate tensile (SSRT) tests, along with potentiostatic in-situ potential-current monitoring techniques. The experiments were conducted in concentrated aqueous environments of various temperatures, which simulated the conditions at the Yucca Mountain (YM) nuclear waste repository site, where the candidate structural materials introduced above, will be used for supporting the waste repository tunnels. MCS corroded at medium general rates approximately around 40 mum/year to 200 mum/year in de-aerated simulated YM waters of various temperatures and concentrations. Increased temperatures increased the corrosion rates in the all de-aerated waters. Increased concentrations of overall species in the simulated waters also increased the corrosion rates, but only slightly. Impedance spectroscopy revealed similar trends for temperature and concentration effects on the rates in both aerated and deaerated environments. Aeration increased corrosion rates significantly in dilute (1X) and ten times concentrated (10X) waters at all temperatures. However, inhibitive precipitates on the specimens formed by oxygen-environment reactions at higher temperatures (up to 85°C) in hundred times concentrated (100X) waters decreased corrosion rates drastically, resulting some localized corrosion and pitting. The average rates were determined to be between approximately 100 mu/year and 1000 mu/year in the entire concentration and temperature range tested. Electrochemical results showed slightly higher rates compared to the other tests because of their much shorter testing period, therefore in general they should be taken as conservative upper bounds. SSRT on LCS under various imposed metal-electrolyte interface

  9. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2016-03-01

    Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'.

  10. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2016-03-01

    Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'. PMID:26159912

  11. Research of TREETOPS Structural Dynamics Controls Simulation Upgrade

    NASA Technical Reports Server (NTRS)

    Yates, Rose M.

    1996-01-01

    Under the provisions of contract number NAS8-40194, which was entitled 'TREETOPS Structural Dynamics and Controls Simulation System Upgrade', Oakwood College contracted to produce an upgrade to the existing TREETOPS suite of analysis tools. This suite includes the main simulation program, TREETOPS, two interactive preprocessors, TREESET and TREEFLX, an interactive post processor, TREEPLOT, and an adjunct program, TREESEL. A 'Software Design Document', which provides descriptions of the argument lists and internal variables for each subroutine in the TREETOPS suite, was established. Additionally, installation guides for both DOS and UNIX platforms were developed. Finally, updated User's Manuals, as well as a Theory Manual, were generated.

  12. Modeling of Large Avionic Structures in Electrical Network Simulations

    NASA Astrophysics Data System (ADS)

    Piche, A.; Perraud, R.; Lochot, C.

    2012-05-01

    The extensive introduction of carbon fiber reinforced plastics (CFRP) in conjunction with an increase of electrical systems in aircraft has led to new electromagnetic issues. This situation has reinforced the need for numerical simulation early in the design phase. In this context, we have proposed [1] a numerical methodology to deal with 3D CFRP avionic structures in time domain simulations at system level. This paper presents the last results on this subject and particularly the modeling of A350 fuselage in SABER computation containing the aircraft power distribution.

  13. Simulation of blast action on civil structures using ANSYS Autodyn

    NASA Astrophysics Data System (ADS)

    Fedorova, N. N.; Valger, S. A.; Fedorov, A. V.

    2016-10-01

    The paper presents the results of 3D numerical simulations of shock wave spreading in cityscape area. ANSYS Autodyne software is used for the computations. Different test cases are investigated numerically. On the basis of the computations, the complex transient flowfield structure formed in the vicinity of prismatic bodies was obtained and analyzed. The simulation results have been compared to the experimental data. The ability of two numerical schemes is studied to correctly predict the pressure history in several gauges placed on walls of the obstacles.

  14. Simulations of the formation of large-scale structure

    NASA Astrophysics Data System (ADS)

    White, S. D. M.

    Numerical studies related to the simulation of structure growth are examined. The linear development of fluctuations in the early universe is studied. The research of Aarseth, Gott, and Turner (1979) based on N-body integrators that obtained particle accelerations by direct summation of the forces due to other objects is discussed. Consideration is given to the 'pancake theory' of Zel'dovich (1970) for the evolution from adiabatic initial fluctuation, the neutrino-dominated universe models of White, Frenk, and Davis (1983), and the simulations of Davis et al. (1985).

  15. Analysis of statistical model properties from discrete nuclear structure data

    NASA Astrophysics Data System (ADS)

    Firestone, Richard B.

    2012-02-01

    Experimental M1, E1, and E2 photon strengths have been compiled from experimental data in the Evaluated Nuclear Structure Data File (ENSDF) and the Evaluated Gamma-ray Activation File (EGAF). Over 20,000 Weisskopf reduced transition probabilities were recovered from the ENSDF and EGAF databases. These transition strengths have been analyzed for their dependence on transition energies, initial and final level energies, spin/parity dependence, and nuclear deformation. ENSDF BE1W values were found to increase exponentially with energy, possibly consistent with the Axel-Brink hypothesis, although considerable excess strength observed for transitions between 4-8 MeV. No similar energy dependence was observed in EGAF or ARC data. BM1W average values were nearly constant at all energies above 1 MeV with substantial excess strength below 1 MeV and between 4-8 MeV. BE2W values decreased exponentially by a factor of 1000 from 0 to 16 MeV. The distribution of ENSDF transition probabilities for all multipolarities could be described by a lognormal statistical distribution. BE1W, BM1W, and BE2W strengths all increased substantially for initial transition level energies between 4-8 MeV possibly due to dominance of spin-flip and Pygmy resonance transitions at those excitations. Analysis of the average resonance capture data indicated no transition probability dependence on final level spins or energies between 0-3 MeV. The comparison of favored to unfavored transition probabilities for odd-A or odd-Z targets indicated only partial support for the expected branching intensity ratios with many unfavored transitions having nearly the same strength as favored ones. Average resonance capture BE2W transition strengths generally increased with greater deformation. Analysis of ARC data suggest that there is a large E2 admixture in M1 transitions with the mixing ratio δ ≈ 1.0. The ENSDF reduced transition strengths were considerably stronger than those derived from capture gamma ray

  16. Study of Nuclear Structure of 13C and 20Ne by Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Campajola, L.; Dell'Aquila, D.; La Commara, M.; Ordine, A.; Rosato, E.; Spadaccini, G.; Vigilante, M.

    2014-12-01

    We report some recent experimental results on the spectroscopy of 13C and 20Ne nuclei by means of low energy nuclear reactions carried out with high resolution electrostatic accelerators. In the case of 13C we investigated the possible existence of a-cluster states above the a emission threshold by means of low energy elastic resonant scattering α+9Be in direct kinematics. Excitation functions show the presence of various resonances that have been reproduced by R-matrix fit. We studied also the structure of 20Ne by means of the 19F(p,α0) reaction at sub-barrier energies. The spectroscopy of 20Ne excited states in the region Ex ≈ 13.5-14.0 MeV can be probed by analyzing experimental angular distributions and excitation functions. This reaction plays an important role also in the CNOF cycle and is an important ingredient to describe hydrogen-induced destruction of fluorine in massive stars. For this reason we investigated the trend of S-factor, that has been compared with results previously reported in the literature.

  17. Simulation of Aircraft Engine Blade-Out Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  18. Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  19. Results from tight and loose coupled multiphysics in nuclear fuels performance simulations using BISON

    SciTech Connect

    Novascone, S. R.; Spencer, B. W.; Andrs, D.; Williamson, R. L.; Hales, J. D.; Perez, D. M.

    2013-07-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won't converge and vice versa. (authors)

  20. Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON

    SciTech Connect

    S. R. Novascone; B. W. Spencer; D. Andrs; R. L. Williamson; J. D. Hales; D. M. Perez

    2013-05-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won’t converge and vice versa.

  1. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  2. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. PMID:24727389

  3. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report, September 1, 1991--August 31, 1992

    SciTech Connect

    Sarantites, D.G.

    1992-12-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A {approx_equal} 182 region, structure of {sup 182}Hg and {sup 182}Au at high spin, a highly deformed band in {sup 136}Pm and the anomalous h{sub 11/2} proton crossing in the A{approximately}135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier {alpha} particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative {sup 209}Bi + {sup 136}Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4{pi} channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  4. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. [Dept. of Chemistry, Washington Univ. , St. Louis, Mo

    SciTech Connect

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A [approx equal] 182 region, structure of [sup 182]Hg and [sup 182]Au at high spin, a highly deformed band in [sup 136]Pm and the anomalous h[sub 11/2] proton crossing in the A[approximately]135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier [alpha] particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative [sup 209]Bi + [sup 136]Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4[pi] channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  5. Fluid Structure Interaction Simulations of Pediatric Ventricular Assist Device Operation

    NASA Astrophysics Data System (ADS)

    Long, Chris; Marsden, Alison; Bazilevs, Yuri

    2011-11-01

    Pediatric ventricular assist devices (PVADs) are used for mechanical circulatory support in children with failing hearts. They can be used to allow the heart to heal naturally or to extend the life of the patient until transplant. A PVAD has two chambers, blood and air, separated by a flexible membrane. The air chamber is pressurized, which drives the membrane and pumps the blood. The primary risk associated with these devices is stroke or embolism from thrombogenesis. Simulation of these devices is difficult due to a complex coupling of two fluid domains and a thin membrane, requiring fluid-structure interaction modeling. The goal of this work is to accurately simulate the hemodynamics of a PVAD. We perform FSI simulations using an Arbitrary Lagrangian-Eulerian (ALE) finite element framework to account for large motions of the membrane and the fluid domains. The air, blood, and membrane are meshed as distinct subdomains, and a method for non-matched discretizations at the fluid-structure interface is presented. The use of isogeometric analysis to model the membrane mechanics is also discussed, and the results of simulations are presented.

  6. Structure identification methods for atomistic simulations of crystalline materials

    DOE PAGES

    Stukowski, Alexander

    2012-05-28

    Here, we discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as common neighbor analysis (CNA), centrosymmetry analysis, bond angle analysis, bond order analysis and Voronoi analysis. In addition we propose a simple extension to the CNA method that makes it suitable for multi-phase systems. Finally, we introduce a new structure identification algorithm, the neighbor distance analysis, which is designed to identify atomic structure units in grain boundaries.

  7. Tracking Non-rigid Structures in Computer Simulations

    SciTech Connect

    Gezahegne, A; Kamath, C

    2008-01-10

    A key challenge in tracking moving objects is the correspondence problem, that is, the correct propagation of object labels from one time step to another. This is especially true when the objects are non-rigid structures, changing shape, and merging and splitting over time. In this work, we describe a general approach to tracking thousands of non-rigid structures in an image sequence. We show how we can minimize memory requirements and generate accurate results while working with only two frames of the sequence at a time. We demonstrate our results using data from computer simulations of a fluimix problem.

  8. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    SciTech Connect

    M. P. Short; D. Gaston; C. R. Stanek; S. Yip

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the development of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.

  9. Simulation of optical breast density measurements using structured light illumination

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Li, Yifan; Chen, Jeon-Hor; Su, Min-Ying; Gulsen, Gultekin

    2014-02-01

    Breast density is a risk factor for breast cancer and we propose using diffuse optical tomography with structured light illuminations (SLI) to quantify the percentage of the fibroglandular (dense) tissue within the breast. Segmentations of dense tissue from breast MRI cases were used to create a geometric model of the breast. COMSOL-generated Finite Element Method (FEM) meshes were used for simulating photon migration through the breast tissue and reconstructing the absorption maps. In these preliminary simulations, the absorption coefficients of the non-dense and dense tissue were assigned using literature values based on their concentrations of water, lipid, oxy- and deoxyhemoglobin as they are the main chromophores, or absorbers of light, within the breast. Synthetic SLI measurements were obtained using a FEMbased forward solver. During the simulation, 12 distinct patterns consisting of vertical stripes, horizontal stripes, and checkerboard patterns were used for illumination and detection. Using these simulated measurements, FEM-based inverse solvers were used to reconstruct the 3D absorption maps. In this study, the methods are applied to reconstruct the absorption maps for multiple wavelengths (780nm, 830nm, 900nm, 1000nm) using one case as an example. We are currently continuing these simulations with additional cases and reconstructing 3D concentration maps of the chromophores within the dense and non-dense breast tissue.

  10. Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2003-01-01

    Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.

  11. Structure and Properties of HELICAL CARBON NANOTUBES through MD Simulations

    NASA Astrophysics Data System (ADS)

    Dahiya, Akshay; Verma, Deepti; Gupta, Shakti S.

    Helical Carbon Nanotubes (HCNTs) are coiled 3-valent carbon networks which represent pure carbon helix. Here we study the geometries of two classes: hexagonal helix containing purely polyhex networks and the second class with 5-and 7-membered rings besides hexagons. We followed a model of hexagonal, single wall HCNTs, and determined their relaxed configuration using MD simulations based on Tersoff potential. A race-track like structure is observed in the cross-section of HCNTs upon minimization. For generating class two helix, the adjacency matrix eigenvector's (AME) method is applied which utilizes 3-coordinated tiling of the plane by 5-,6-,and 7-membered ring for the construction of helical structures. The application of the AME method to torusenes is crucial for class two helix generation as it is based on an appropriate choice of bi-lobial eigenvectors triplet which can be selected on the basis of their nodal properties as verified here. After 3-D transformations the final structure was obtained with the help of MM3-potential based MD simulations on Tinker commercial code. The spring constants of HCNTs are computed through MD simulations.

  12. Coupled Eulerian/Lagrangian Simulation for Overpressure Structural Response

    NASA Astrophysics Data System (ADS)

    Lloyd, Andrew; Pan, Hua; Miller, David; Cogar, John

    2011-06-01

    Accurately modeling blast dynamics is critical in the assessment of structures subjected to blast loading. The current industry standard for modeling blast effects in Lagrangian based Finite Element simulations is CONWEP; tabulated pressure data taken directly from blast events. CONWEP is limited, however, and may not always be physically representative of the blast/structural interaction that occurs in the field. Eulerian hydrocodes provide advantages over CONWEP in that they can capture shock front interaction and model blast surface interfaces with fidelity due to the presence of the working fluid. Eulerian codes, however, break down over larger time scales; whereas, Lagrangian modeling allows for discrete finite elements with definable boundary interfaces that can be tracked out to longer time scales. Hence, a hybrid approach that couples the Eulerian blast modeling with Lagrangian system dynamics is necessary. The objective of this paper is to demonstrate improvements in overpressure structural response modeling using a Coupled Eulerian/Lagrangian algorithm implemented in VelodyneTM. Velodyne results using the Coupled Eulerian/Lagrangian algorithm are compared to results from Eulerian hydrocode simulations and Velodyne simulations using the CONWEP algorithm.

  13. Coupled Euler-La Grange simulation for overpressure structural response

    NASA Astrophysics Data System (ADS)

    Lloyd, Andrew N.; Miller, David K.; Pan, Hua; Cogar, John

    2012-03-01

    Accurately modeling blast dynamics is critical in the assessment of structures subjected to blast loading. The current industry standard for modeling blast effects in La Grange based finite element simulations is CONWEP; tabulated pressure data taken directly from blast events. CONWEP is limited, however, and may not always be physically representative of the blast/structural interaction that occurs in the field. Euler hydrocodes provide advantages over CONWEP in that they can capture shock front interaction and model blast surface interfaces with fidelity due to the presence of the working fluid. Euler codes, however, break down over larger time scales due to advection; whereas, Lagrange modeling allows for discrete finite elements with definable boundary interfaces that can be tracked out to longer time scales. Hence, a hybrid approach that couples the Euler blast modeling with La Grange system dynamics is necessary. The objective of this paper is to demonstrate improvements for high explosive overpressure structural response modeling specifically with respect COMP-B high explosive acting upon blasted fragments using a Coupled Euler-La Grange algorithm implemented in VelodyneTM. Velodyne results using the Coupled Euler-La Grange algorithm are compared to results from an Euler hydrocode simulation (CTH) and Velodyne simulations using the CONWEP algorithm.

  14. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    PubMed

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  15. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  16. Accelerating Full Configuration Interaction Calculations for Nuclear Structure

    SciTech Connect

    Yang, Chao; Sternberg, Philip; Maris, Pieter; Ng, Esmond; Sosonkina, Masha; Le, Hung Viet; Vary, James; Yang, Chao

    2008-04-14

    One of the emerging computational approaches in nuclear physics is the full configuration interaction (FCI) method for solving the many-body nuclear Hamiltonian in a sufficiently large single-particle basis space to obtain exact answers - either directly or by extrapolation. The lowest eigenvalues and correspondingeigenvectors for very large, sparse and unstructured nuclear Hamiltonian matrices are obtained and used to evaluate additional experimental quantities. These matrices pose a significant challenge to the design and implementation of efficient and scalable algorithms for obtaining solutions on massively parallel computer systems. In this paper, we describe the computational strategies employed in a state-of-the-art FCI code MFDn (Many Fermion Dynamics - nuclear) as well as techniques we recently developed to enhance the computational efficiency of MFDn. We will demonstrate the current capability of MFDn and report the latest performance improvement we have achieved. We will also outline our future research directions.

  17. Structure and Activities of Nuclear Medicine in Kuwait.

    PubMed

    Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud

    2016-07-01

    The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016. PMID:27237444

  18. Nucleon structure at large x: nuclear effects in deuterium

    SciTech Connect

    Wally Melnitchouk

    2010-07-01

    I review quark momentum distributions in the nucleon at large momentum fractions x. Particular attention is paid to the impact of nuclear effects in deuterium on the d/u quark distribution ratio as x -> 1. A new global study of parton distributions, using less restrictive kinematic cuts in Q^2 and W^2, finds strong suppression of the d quark distribution once nuclear corrections are accounted for.

  19. Nuclear charge radii as signature for structural changes

    NASA Astrophysics Data System (ADS)

    Angeli, I.; Marinova, K.

    2016-06-01

    The correlation of nuclear charge radii with other ground and excited state nuclear observables is considered. An empirical approach is used to deal with a large amount of experimental information, which is properly handled to obtain interesting correlations among different observables as one moves away from the line of stability. Especially the appearance of new magic numbers and/or disappearance of traditional ones as well as the onset of deformation in the region of light nuclei (A < 30) are discussed.

  20. Structure and Activities of Nuclear Medicine in Kuwait.

    PubMed

    Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud

    2016-07-01

    The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016.

  1. PREFACE: 11th International Spring Seminar on Nuclear Physics: Shell Model and Nuclear Structure - achievements of the past two decades

    NASA Astrophysics Data System (ADS)

    2015-02-01

    The 11th International Seminar on Nuclear Physics was held in Ischia from May 12 to May 16, 2014. This Seminar was dedicated to Aldo Covello, who has been the promoter of this series of meetings, which started in Sorrento in 1986 and continued with meetings held every two or three years in the Naples area. Aldo's idea was to offer to a group of researchers, actively working in selected fields of Nuclear Physics, the opportunity to confront their points of view in a lively and informal way. The choice for the period of the year, Spring, as well as the sites chosen reflected this intent. The first meeting was of a purely theoretical nature, but it was immediately clear that the scope of these conferences needed to be enlarged calling into play the experimental community. Then, starting from the second meeting, all the following ones have been characterized by fruitful discussion between theoretical and experimental researchers on current achievements and future developments of nuclear structure. This may be read, in fact, as one of the motivating factors for Aldo's election as Fellow of the American Physical Society in 2008 "... for his outstanding contributions to the international nuclear physics community by providing, for over two decades, a venue for theorists and experimentalists to share their latest ideas." The present meeting, organized by Aldo's former students and with the benefit of his suggestions, has maintained this tradition. The title "Shell model and nuclear structure: achievements of the past two decades" recalls that of the 2nd International Spring Seminar "Shell Model and Nuclear Structure: where do we stand?". The main aim of this 11th Seminar was, in fact, to discuss the changes of the past two decades on our view of nuclei in terms of shell structure as well as the perspectives of the shell model, which has been one of the key points in Aldo's research. This point is well accounted by the Opening Speech of Igal Talmi, one of the fathers of the

  2. Uncertainty analysis of atmospheric deposition simulation of radiocesium and radioiodine from Fukushima Daiichi Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Morino, Yu; Ohara, Toshimasa; Yumimoto, Keiya

    2014-05-01

    Chemical transport models (CTM) played key roles in understanding the atmospheric behaviors and deposition patterns of radioactive materials emitted from the Fukushima Daiichi nuclear power plant (FDNPP) after the nuclear accident that accompanied the great Tohoku earthquake and tsunami on 11 March 2011. In this study, we assessed uncertainties of atmospheric simulation by comparing observed and simulated deposition of radiocesium (137Cs) and radioiodine (131I). Airborne monitoring survey data were used to assess the model performance of 137Cs deposition patterns. We found that simulation using emissions estimated with a regional-scale (~500 km) CTM better reproduced the observed 137Cs deposition pattern in eastern Japan than simulation using emissions estimated with local-scale (~50 km) or global-scale CTM. In addition, we estimated the emission amount of 137Cs from FDNPP by combining a CTM, a priori source term, and observed deposition data. This is the first use of airborne survey data of 137Cs deposition (more than 16,000 data points) as the observational constraints in inverse modeling. The model simulation driven by a posteriori source term achieved better agreements with 137Cs depositions measured by aircraft survey and at in-situ stations over eastern Japan. Wet deposition module was also evaluated. Simulation using a process-based wet deposition module reproduced the observations well, whereas simulation using scavenging coefficients showed large uncertainties associated with empirical parameters. The best-available simulation reproduced the observed 137Cs deposition rates in high-deposition areas (≥10 kBq m-2) within one order of magnitude. Recently, 131I deposition map was released and helped to evaluate model performance of 131I deposition patterns. Observed 131I/137Cs deposition ratio is higher in areas southwest of FDNPP than northwest of FDNPP, and this behavior was roughly reproduced by a CTM if we assume that released 131I is more in gas phase

  3. Computer simulation of the Sequential Probability Ratio Test for nuclear safeguards

    SciTech Connect

    Coop, K.L.

    1985-07-01

    A Fortran IV computer program called SPRTEST is used to simulate the Sequential Probability Ratio Test (SPRT). The program provides considerably more information than one can obtain from the approximate SPRT theory of Wald. For nuclear safeguards applications SPRTEST permits the equipment designer to optimize the input test parameters and, indeed, to determine whether the SPRT is the statistical test of choice. Using Monte Carlo techniques, SPRTEST simulates the use of the SPRT in a radiation monitor. The accumulation of monitoring data from a normal distribution is simulated by repeated sampling of a random number generator. In this way, SPRTEST determines the expected false-positive (..cap alpha..) and false-negative (..beta..) detection probabilities and the average step number (ASN) for a particular SPRT. The report describes SPRTEST, provides a Fortran listing, and demonstrates SPRTEST applications. The report also compares results with those expected from the single-interval test (SIT) on which the SPRT is based; generally, the SPRT provides better detection probabilities for a wide range of source strengths and, at bakcground levels, it takes less time, on average, to make decisions. To obtain optimal results with the SPRT, it must have the capability to detain the counting subject for longer than the SIT time. The SPRTEST program should be useful in choosing the best statistical test for a wide variety of applications, including safeguards, health physics monitoring, and general nuclear detection. 14 refs., 11 figs., 15 tabs.

  4. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    SciTech Connect

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.

  5. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE PAGES

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  6. Diverse structural evolution at z > 1 in cosmologically simulated galaxies

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory F.; Lotz, Jennifer; Moody, Christopher; Peth, Michael; Freeman, Peter; Ceverino, Daniel; Primack, Joel; Dekel, Avishai

    2015-08-01

    From mock Hubble Space Telescope images, we quantify non-parametric statistics of galaxy morphology, thereby predicting the emergence of relationships among stellar mass, star formation, and observed rest-frame optical structure at 1 < z < 3. We measure automated diagnostics of galaxy morphology in cosmological simulations of the formation of 22 central galaxies with 9.3 < log10M*/M⊙ < 10.7. These high-spatial-resolution zoom-in calculations enable accurate modelling of the rest-frame UV and optical morphology. Even with small numbers of galaxies, we find that structural evolution is neither universal nor monotonic: galaxy interactions can trigger either bulge or disc formation, and optically bulge-dominated galaxies at this mass may not remain so forever. Simulated galaxies with M* > 1010M⊙ contain relatively more disc-dominated light profiles than those with lower mass, reflecting significant disc brightening in some haloes at 1 < z < 2. By this epoch, simulated galaxies with specific star formation rates below 10- 9.7 yr- 1 are more likely than normal star-formers to have a broader mix of structural types, especially at M* > 1010 M⊙. We analyse a cosmological major merger at z ˜ 1.5 and find that the newly proposed Multimode-Intensity-Deviation (MID) morphology diagnostics trace later merger stages while Gini-M20 trace earlier ones. MID is sensitive also to clumpy star-forming discs. The observability time of typical MID-enhanced events in our simulation sample is <100 Myr. A larger sample of cosmological assembly histories may be required to calibrate such diagnostics in the face of their sensitivity to viewing angle, segmentation algorithm, and various phenomena such as clumpy star formation and minor mergers.

  7. Amyloid oligomer structure characterization from simulations: A general method

    SciTech Connect

    Nguyen, Phuong H.; Li, Mai Suan

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  8. Amyloid oligomer structure characterization from simulations: A general method

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong H.; Li, Mai Suan; Derreumaux, Philippe

    2014-03-01

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  9. Analysis by simulation of the disposition of nuclear-fuel waste

    SciTech Connect

    Turek, J.L.

    1980-09-01

    To achieve the non-proliferation objectives of the United States, the reprocessing of spent nuclear fuel was discontinued in 1977. Since current at-reactor storage capacity is based upon a nuclear fuel cycle which includes reprocessing, this halt in reprocessing is causing large quantities of non-storable spent fuel. Permanent nuclear waste storage repositories will not be available until the end of the century. Present Department of Energy policy calls for sufficient interim Away-From-Reactor (AFR) Storage capacity to insure that no commercial reactor has to shutdown due to inadequate storage space for discharged spent fuel. A descriptive simulation model is developed which includes all aspects of nuclear waste disposition. The model is comprised of two systems, the second system orchestrated by GASP IV. A spent fuel generation prediction module is interfaced with the AFR Program Management Information System and a repository scheduling information module. The user is permitted a wide range of options with which to tailor the simulation to any desired storage scenario. The model projects storage requirements through the year 2020. The outputs are evaluations of the impact that alternative decision policies and milestone date changes have on the demand for, the availability of, and the utilization of spent fuel storage capacities. Both graphs and detailed listings are available. These outputs give a comprehensive view of the particular scenario under observation, including the tracking, by year, of each discharge from every reactor. Included within the work is a review of the status of spent fuel disposition based on input data accurate as of August 1980.

  10. Unconstrained Structure Formation in Coarse-Grained Protein Simulations

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan

    The ability of proteins to fold into well-defined structures forms the basis of a wide variety of biochemical functions in and out of the cell membrane. Many of these processes, however, operate at time- and length-scales that are currently unattainable by all-atom computer simulations. To cope with this difficulty, increasingly more accurate and sophisticated coarse-grained models are currently being developed. In the present thesis, we introduce a solvent-free coarse-grained model for proteins. Proteins are modeled by four beads per amino acid, providing enough backbone resolution to allow for accurate sampling of local conformations. It relies on simple interactions that emphasize structure, such as hydrogen bonds and hydrophobicity. Realistic alpha/beta content is achieved by including an effective nearest-neighbor dipolar interaction. Parameters are tuned to reproduce both local conformations and tertiary structures. By studying both helical and extended conformations we make sure the force field is not biased towards any particular secondary structure. Without any further adjustments or bias a realistic oligopeptide aggregation scenario is observed. The model is subsequently applied to various biophysical problems: (i) kinetics of folding of two model peptides, (ii) large-scale amyloid-beta oligomerization, and (iii) protein folding cooperativity. The last topic---defined by the nature of the finite-size thermodynamic transition exhibited upon folding---was investigated from a microcanonical perspective: the accurate evaluation of the density of states can unambiguously characterize the nature of the transition, unlike its corresponding canonical analysis. Extending the results of lattice simulations and theoretical models, we find that it is the interplay between secondary structure and the loss of non-native tertiary contacts which determines the nature of the transition. Finally, we combine the peptide model with a high-resolution, solvent-free, lipid

  11. Durabiliy of two simulated nuclear waste glasses, a frit glass, and tektite in aqueous solutions: Final report, Volume I

    SciTech Connect

    Hagen, D.A.; Altstetter, C.J.; Brown, S.D.

    1988-05-01

    High level nuclear waste is commonly incorporated into glass for disposal. Therefore the long term aqueous durability of the waste glass is important. The leaching behavior of three simulated nuclear waste glasses (AH10, AH165, and Frit 165) and a natural glass (tektite) were examined using nuclear reaction analysis, leachate solution analysis, and microscopy. The three simulated waste glasses developed hydrated layers which increased in thickness by t/sup /1/2//. The hydrated layer in Frit 165 reached a constant thickness of about one micron. Alkali were preferentially removed from the Frit 165 and AH10. The tektite corroded by slow uniform dissolution. 94 refs., 68 figs., 13 tabs.

  12. Effect of doping of graphene structure: A Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2016-10-01

    In this work, we have studied the effect of magnetic atom doping of graphene structure using Monte Carlo simulation. The reduced critical temperature with the magnetic atom doping x has been deduced from the thermal variation of magnetization and magnetic susceptibility. The variation of magnetization versus the crystal field of grapheme structure for different x and for different reduced temperatures has been established. We also have measured the coercive field (hC) as a function x in grapheme structure, finding that hC increases with increasing x concentration as predicted experimentally. The doping-induced magnetism in graphene. Magnetically atom doping in graphene systems are potential candidates for application in future spintronic devices, magnetometry requires macroscopic quantities of graphene to detect magnetic moments directly.

  13. Analysis of forest structure using thematic mapper simulator data

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Westman, W. E.; Brass, J. A.; Stephenson, N. J.; Ambrosia, V. G.; Spanner, M. A.

    1986-01-01

    The potential of Thematic Mapper Simulator (TMS) data for sensing forest structure information has been explored by principal components and feature selection techniques. In a survey of forest structural properties conducted for 123 field sites of the Sequoia National Park, the canopy closure could be well estimated (r = 0.62 to 0.69) by a variety of channel bands and band ratios, without reference to the forest type. Estimation of the basal area was less successful (r = 0.51 or less) on the average, but could be improved for certain forest types when data were stratified by floristic composition. To achieve such a stratification, individual sites were ordinated by a detrended correspondence analysis based on the canopy of dominant species. The analysis of forest structure in the Sequoia data suggests that total basal area can be best predicted in stands of lower density, and in younger even-aged managed stands.

  14. Structural Simulations and Conservation Analysis -Historic Building Information Model (HBIM)

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.; McCarthy, S.; Brechin, F.; Casidy, C.; Dirix, E.

    2015-02-01

    In this paper the current findings to date of the Historic Building Information Model (HBIM) of the Four Courts in Dublin are presented. The Historic Building Information Model (HBIM) forms the basis for both structural and conservation analysis to measure the impact of war damage which still impacts on the building. The laser scan survey was carried out in the summer of 2014 of the internal and external structure. After registration and processing of the laser scan survey, the HBIM was created of the damaged section of the building and is presented as two separate workflows in this paper. The first is the model created from historic data, the second a procedural and segmented model developed from laser scan survey of the war damaged drum and dome. From both models structural damage and decay simulations will be developed for documentation and conservation analysis.

  15. Correlating simulated surface marks with near-surface tornado structure

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael I.

    Tornadoes often leave behind patterns of debris deposition, or "surface marks", which provide a direct signature of their near surface winds. The intent of this thesis is to investigate what can be learned about near-surface tornado structure and intensity through the properties of surface marks generated by simulated, debris-laden tornadoes. Earlier work showed through numerical simulations that the tornado's structure and intensity is highly sensitive to properties of the near-surface flow and can change rapidly in time for some conditions. The strongest winds often occur within tens of meters of the surface where the threat to human life and property is highest, and factors such as massive debris loadings and asymmetry of the main vortex have proven to be critical complications in some regimes. However, studying this portion of the flow in the field is problematic; while Doppler radar provides the best tornado wind field measurements, it cannot probe below about 20 m, and interpretation of Doppler data requires assumptions about tornado symmetry, steadiness in time, and correlation between scatterer and air velocities that are more uncertain near the surface. As early as 1967, Fujita proposed estimating tornado wind speeds from analysis of aerial photography and ground documentation of surface marks. A handful of studies followed but were limited by difficulties in interpreting physical origins of the marks, and little scientific attention has been paid to them since. Here, Fujita's original idea is revisited in the context of three-dimensional, large-eddy simulations of tornadoes with fully-coupled debris. In this thesis, the origins of the most prominent simulated marks are determined and compared with historical interpretations of real marks. The earlier hypothesis that cycloidal surface marks were directly correlated with the paths of individual vortices (either the main vortex or its secondary vortices, when present) is unsupported by the simulation results

  16. Cosmological Structure Formation Shocks and Cosmic Rays in Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Pfrommer, C.; Springel, V.; Enβlin, T. A.; Jubelgas, M.

    Cosmological shock waves during structure formation not only play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. We discuss a novel numerical treatment of the physics of cosmic rays in combination with a formalism for identifying and measuring the shock strength on-the-fly during a smoothed particle hydrodynamics simulation. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. Using this formalism, we study the history of the thermalization process in high-resolution hydrodynamic simulations of the Lambda cold dark matter model. Collapsed cosmological structures are surrounded by shocks with high Mach numbers up to 1000, but they play only a minor role in the energy balance of thermalization. However, this finding has important consequences for our understanding of the spatial distribution of CRs in the large-scale structure. In high resolution simulations of galaxy clusters, we find a low contribution of the averaged CR pressure, due to the small acceleration efficiency of lower Mach numbers of flow shocks inside halos and the softer adiabatic index of CRs. These effects disfavour CRs when a composite of thermal gas and CRs is adiabatically compressed. However, within cool core regions, the CR pressure reaches equipartition with the thermal pressure leading, to a lower effective adiabatic index and thus to an enhanced compressibility of the central intracluster medium. This effect increases the central density and pressure of the cluster, and thus the resulting X-ray emission and the central Sunyaev-Zel'dovich flux decrement. The integrated Sunyaev-Zel'dovich effect, however, is only slightly changed.

  17. Detection of Coherent Structures in Extreme-Scale Simulations

    SciTech Connect

    Kamath, C; Iverson, J; Kirk, R; Karypis, G

    2012-03-24

    The analysis of coherent structures is a common problem in many scientific domains ranging from astrophysics to combustion, fusion, and materials science. The data from three-dimensional simulations are analyzed to detect the structures, extract statistics on them, and track them over time to gain insights into the phenomenon being modeled. This analysis is typically done off-line, using data that have been written out by the simulations. However, the move towards extreme scale architectures, with multi-core processors and graphical processing units, will affect how such analysis is done as it is unlikely that the systems will support the I/O bandwidth required for off-line analysis. Moving the analysis in-situ is a solution only if we know a priori what analysis will be done, as well as the algorithms used and their parameter settings. Even then, we need to ensure that this will not substantially increase the memory requirements or the data movement as the former will be limited and the latter will be expensive. In the Exa-DM project, a collaboration between Lawrence Livermore National Laboratory and University of Minnesota, we are exploring ways in which we can address the conflicting demands of coherent structure analysis of simulation data and the architecture of modern parallel systems, while enabling scientific discovery at the exascale. In this paper, we describe our work in two areas: the in situ implementation of an existing algorithm for coherent structure analysis and the use of graph-based techniques to efficiently compress the data.

  18. Study of resonances in light nuclei for nuclear structure and nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Almaraz Calderon, Sergio Jesus

    Resonances in exotic nuclei play a central role in the nucleosynthesis processes occurring in the stars. Nuclear reactions proceed through resonance states in exotic nuclei. This dissertation reports on measurements of resonances in 18Ne, 30S and 9Be. The radioactive nucleus 18Ne was studied via the 16O(3He, n) reaction. These resonances are relevant in understanding one of the two breakout paths from the Hot Carbon-Oxygen-Nitrogen (HCNO) cycle. Neutrons from this reaction were measured in coincidence with charged particles from the decay of resonances in 18Ne to directly extract the charged particle branching ratios of the populated resonance states. Significant alpha branching ratios coming from the resonances at Eex = 7.95 MeV and Eex = 8.09 MeV were measured for the first time. Evidence of an exotic 2p decay is indicated from the state at Eex = 6.15 MeV. The results from this work allows for a more reliable calculation of the 14O( alpha, p)17F reaction rate, central in the breakout of the HCNO cycle and in the direct competition between alphap-process and the rp-process for the flow of nuclear material in the proton rich side of the valley of stability. The exotic nucleus 30S was studied via the 28 Si(3He, n) transfer reaction. Neutrons from this reaction were measured in coincidence with charged particle decays from the populated resonance states in 30S. Several states above Eex = 8.5 MeV are reported for the first time. For the states measured between the proton decay threshold and the alpha decay threshold, the branching ratios were extracted and used to tentatively assign spins and parities. The results led to the determination of the first experimental 26Si(alpha, p) 29P reaction rate. The calculated reaction rate is compared with statistical methods traditionally used in the calculations of such reaction rate. The results of the present work will be combined with the results of the 32S(p, t) experiment carried out by O'Brien. Resonance states with Isospin

  19. Brownian Dynamics Simulation of Protein Solutions: Structural and Dynamical Properties

    SciTech Connect

    Mereghetti, Paolo; Gabdoulline, Razif; Wade, Rebecca C.

    2010-12-01

    The study of solutions of biomacromolecules provides an important basis for understanding the behavior of many fundamental cellular processes, such as protein folding, self-assembly, biochemical reactions, and signal transduction. Here, we describe a Brownian dynamics simulation procedure and its validation for the study of the dynamic and structural properties of protein solutions. In the model used, the proteins are treated as atomically detailed rigid bodies moving in a continuum solvent. The protein-protein interaction forces are described by the sum of electrostatic interaction, electrostatic desolvation, nonpolar desolvation, and soft-core repulsion terms. The linearized Poisson-Boltzmann equation is solved to compute electrostatic terms. Simulations of homogeneous solutions of three different proteins with varying concentrations, pH, and ionic strength were performed. The results were compared to experimental data and theoretical values in terms of long-time self-diffusion coefficients, second virial coefficients, and structure factors. The results agree with the experimental trends and, in many cases, experimental values are reproduced quantitatively. There are no parameters specific to certain protein types in the interaction model, and hence the model should be applicable to the simulation of the behavior of mixtures of macromolecules in cell-like crowded environments.

  20. CFD Simulations of a Flow Mixing and Heat Transfer Enhancement in an Advanced LWR Nuclear Fuel Assembly

    SciTech Connect

    In, Wang-Kee; Chun, Tae-Hyun; Shin, Chang-Hwan; Oh, Dong-Seok

    2007-07-01

    A computational fluid dynamics (CFD) analysis has been performed to investigate a flow-mixing and heat-transfer enhancement caused by a mixing-vane spacer in a LWR fuel assembly which is a rod bundle. This paper presents the CFD simulations of a flow mixing and heat transfer in a fully heated 5x5 array of a rod bundle with a split-vane and hybrid-vane spacer. The CFD prediction at a low Reynolds number of 42,000 showed a reasonably good agreement of the initial heat transfer enhancement with the measured one for a partially heated experiment using a similar spacer structure. The CFD simulation also predicted the decay rate of a normalized Nusselt number downstream of the split-vane spacer which agrees fairly well with those of the experiment and the correlation. The CFD calculations for the split vane and hybrid vane at the LWR operating conditions(Re = 500,000) predicted hot fuel spots in a streaky structure downstream of the spacer, which occurs due to the secondary flow occurring in an opposite direction near the fuel rod. However, the split-vane and hybrid-vane spacers are predicted to significantly enhance the overall heat transfer of a LWR nuclear fuel assembly. (authors)

  1. Measurement of leaching from simulated nuclear-waste glass using radiotracers

    SciTech Connect

    Bates, J.K.; Jardine, L.J.; Steindler, M.J.

    1982-09-01

    The use of radiotracer spiking as a method of measuring the leaching from simulated nuclear-waste glass is shown to give results comparable with other analytical detection methods. The leaching behavior of /sup 85/Sr, /sup 106/Ru, /sup 133/Ba, /sup 137/Cs, /sup 141/Ce, /sup 152/Eu, and other isotopes is measured for several defense waste glasses. These tests show that radiotracer spiking is a sensitive, multielement technique that can provide leaching data, for actual waste elements, that are difficult to obtain by other methods. Additionally, a detailed procedure is described that allows spiked glass to be prepared with a suitable distribution of radionuclides.

  2. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    SciTech Connect

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  3. Nuclear shapes: from earliest ideas to multiple shape coexisting structures

    NASA Astrophysics Data System (ADS)

    Heyde, K.; Wood, J. L.

    2016-08-01

    The concept of the atomic nucleus being characterized by an intrinsic property such as shape came as a result of high precision hyperfine studies in the field of atomic physics, which indicated a non-spherical nuclear charge distribution. Herein, we describe the various steps taken through ingenious experimentation and bold theoretical suggestions that mapped the way for later work in the early 50s by Aage Bohr, Ben Mottelson and James Rainwater. We lay out a long and winding road that marked, in the period of 50s to 70s, the way shell-model and collective-model concepts were reconciled. A rapid increase in both accelerator and detection methods (70s towards the early 2000s) opened new vistas into nuclear shapes, and their coexistence, in various regions of the nuclear mass table. Next, we outline a possible unified view of nuclear shapes: emphasizing decisive steps taken as well as questions remaining, next to the theoretical efforts that could result in an emerging understanding of nuclear shapes, building on the nucleus considered as a strongly interacting system of nucleons as the microscopic starting point.

  4. Nuclear structure from direct reactions with rare isotopes: observables, methods and highlights

    NASA Astrophysics Data System (ADS)

    Obertelli, Alexandre

    2016-09-01

    An overview of direct reactions employed for nuclear structure studies is presented. The basic and most used analysis methods of elastic and inelastic scattering, transfer reactions and intermediate-energy removal reactions are reviewed. The most relevant observables from direct reactions regarding the nuclear many-body problem, as well as related experimental techniques, are illustrated through recent achievements with unstable nuclei.

  5. Structural development and energy dissipation in simulated silicon apices.

    PubMed

    Jarvis, Samuel Paul; Kantorovich, Lev; Moriarty, Philip

    2013-12-20

    In this paper we examine the stability of silicon tip apices by using density functional theory (DFT) calculations. We find that some tip structures - modelled as small, simple clusters - show variations in stability during manipulation dependent on their orientation with respect to the sample surface. Moreover, we observe that unstable structures can be revealed by a characteristic hysteretic behaviour present in the F(z) curves that were calculated with DFT, which corresponds to a tip-induced dissipation of hundreds of millielectronvolts resulting from reversible structural deformations. Additionally, in order to model the structural evolution of the tip apex within a low temperature NC-AFM experiment, we simulated a repeated tip-surface indentation until the tip structure converged to a stable termination and the characteristic hysteretic behaviour was no longer observed. Our calculations suggest that varying just a single rotational degree of freedom can have as measurable an impact on the tip-surface interaction as a completely different tip structure.

  6. A numerical simulation package for analysis of neutronics and thermal fluids of space nuclear power and propulsion systems

    SciTech Connect

    Anghaie, S.; Feller, G.J. ); Peery, S.D.; Parsley, R.C. )

    1993-01-20

    A system of computer codes for engineering simulation and in-depth analysis of nuclear and thermal fluid design of nuclear thermal rockets is developed. The computational system includes a neutronic solver package, a thermal fluid solver package and a propellant and materials property package. The Rocket Engine Transient Simulation (ROCETS) system code is incorporated with computational modules specific to nuclear powered engines. ROCETS features a component based performance architecture that interfaces component modules into the user designed configuration, interprets user commands, creates an executable FORTRAN computer program, and executes the program to provide output to the user. Basic design features of the Pratt Whitney XNR2000 nuclear rocket concept and its operational performance are analyzed and simulated.

  7. System Simulation of Nuclear Power Plant by Coupling RELAP5 and Matlab/Simulink

    SciTech Connect

    Meng Lin; Dong Hou; Zhihong Xu; Yanhua Yang; Ronghua Zhang

    2006-07-01

    Since RELAP5 code has general and advanced features in thermal-hydraulic computation, it has been widely used in transient and accident safety analysis, experiment planning analysis, and system simulation, etc. So we wish to design, analyze, verify a new Instrumentation And Control (I and C) system of Nuclear Power Plant (NPP) based on the best-estimated code, and even develop our engineering simulator. But because of limited function of simulating control and protection system in RELAP5, it is necessary to expand the function for high efficient, accurate, flexible design and simulation of I and C system. Matlab/Simulink, a scientific computation software, just can compensate the limitation, which is a powerful tool in research and simulation of plant process control. The software is selected as I and C part to be coupled with RELAP5 code to realize system simulation of NPPs. There are two key techniques to be solved. One is the dynamic data exchange, by which Matlab/Simulink receives plant parameters and returns control results. Database is used to communicate the two codes. Accordingly, Dynamic Link Library (DLL) is applied to link database in RELAP5, while DLL and S-Function is applied in Matlab/Simulink. The other problem is synchronization between the two codes for ensuring consistency in global simulation time. Because Matlab/Simulink always computes faster than RELAP5, the simulation time is sent by RELAP5 and received by Matlab/Simulink. A time control subroutine is added into the simulation procedure of Matlab/Simulink to control its simulation advancement. Through these ways, Matlab/Simulink is dynamically coupled with RELAP5. Thus, in Matlab/Simulink, we can freely design control and protection logic of NPPs and test it with best-estimated plant model feedback. A test will be shown to illuminate that results of coupling calculation are nearly the same with one of single RELAP5 with control logic. In practice, a real Pressurized Water Reactor (PWR) is

  8. Monte Carlo simulation of a clearance box monitor used for nuclear power plant decommissioning.

    PubMed

    Bochud, François O; Laedermann, Jean-Pascal; Bailat, Claude J; Schuler, Christoph

    2009-05-01

    When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries. PMID:19359851

  9. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  10. Integrated nuclear and conventional theater warfare simulation (INWARS) documentation. Part IV. User's manual component. Volume I. Introduction. Final report

    SciTech Connect

    Aldrich, J.R.; Gilmer, J.B.

    1980-02-08

    This is Volume I of the User's Manual Component of the Interpreted Nuclear and Conventional Theater Warfare Simulation (INWARS) documentation. It introduces the User's Manual Component by reviewing the utilization of INWARS and surveying the inputs and outputs of the simulation.

  11. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  12. Development and mechanical properties of structural materials from lunar simulants

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Girdner, K.; Saadatmanesh, H.; Allen, T.

    1991-01-01

    Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. Here, it is vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility and deformation characteristics be defined toward establishment of the ranges of engineering applications of the materials developed. The objective is to describe the research results in two areas for the above goal: (1) liquefaction of lunar simulant (at about 100 C) with different additives (fibers, powders, etc.); and (2) development and use of a new triaxial test device in which lunar simulants are first compressed under cycles of loading, and then tested with different vacuums and initial confining or in situ stress.

  13. Fission product partitioning in aerosol release from simulated spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Rasmussen, G.; Konings, R. J. M.

    2015-10-01

    Aerosols created by the vaporization of simulated spent nuclear fuel (simfuel) were produced by laser heating techniques and characterised by a wide range of post-analyses. In particular attention has been focused on determining the fission product behaviour in the aerosols, in order to improve the evaluation of the source term and consequently the risk associated with release from spent fuel sabotage or accidents. Different simulated spent fuels were tested with burn-up up to 8 at. %. The results from the aerosol characterisation were compared with studies of the vaporization process by Knudsen Effusion Mass Spectrometry and thermochemical equilibrium calculations. These studies permit an understanding of the aerosol gaseous precursors and the gaseous reactions taking place during the aerosol formation process.

  14. Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.

  15. Transient analysis and startup simulation of a thermionic space nuclear reactor system

    SciTech Connect

    El-Genk, M.S.; Xue, Huimin; Paramonov, D. . Dept. of Chemical and Nuclear Engineering)

    1994-01-01

    The thermionic transient analysis model is used to simulate the startup of the TOPAZ-2 space nuclear power system in orbit. The simulated startup procedures are assumed for the purpose of demonstrating the capabilities of the model and may not represent an accurate account of the actual startup procedures of the TOPAZ-2 system. The temperature reactivity feedback effects of the moderator, UO[sub 2] fuel, electrodes, coolant, and other components in the core are calculated, and their effects on the thermal and criticality conditions of the reactor are investigated. Also, estimates of the time constants of the temperature reactivity feedback for the UO[sub 2] fuel and the ZrH moderator during startup, as well as of the total temperature reactivity feedback as a function of the reactor steady-state thermal power, are obtained.

  16. Start-up simulation of a thermionic space nuclear reactor system

    SciTech Connect

    El-Genk, M.S.; Xue, H.; Paramonov, D. )

    1993-01-15

    The Thermionic Transient Analysis Model (TITAM) is used in this paper to simulate the start-up of the TOPAZ-II space nuclear power system in orbit. The start-up procedures simulated herein are assumed for the purpose of demonstrating the capabilities of the model and may not represent an accurate account of the actual start-up procedures of the TOPAZ-II system. The temperature reactivity feedback effects of the moderator, UO[sub 2] fuel, electrodes, coolant, and other components in the core are calculated and their effects on the thermal and criticality conditions of the reactor are investigated. Also, estimates of the time constants of the temperature reactivity feedback for the UO[sub 2] fuel and the ZrH moderator during start-up, as well as of the total temperature reactivity feedback as a function of the reactor steady-state thermal power, are obtained.

  17. Multicomponent leach tests in Standard Canadian Shield Saline Solution on glasses containing simulated nuclear waste

    SciTech Connect

    Heimann, R.B.; Wood, D.D.; Hamon, R.F.

    1984-01-01

    Leaching experiments on borosilicate glass frit and simulated nuclear waste glasses were performed as a preliminary to leaching experiments on glasses incorporating radioactive waste. The experimental design included (1) simulated waste glass, (2) ASTM Grade-2 titanium container material, (3) clay buffer material, (4) Standard Canadian Shield Saline Solution, and (5) granitic rock. Cumulative fractions of release for boron were determined, as well as the solution concentrations of silicon, iron, strontium and cesium. The leach rates for boron after 28 d were approximately 5 x 10/sup -6/ kg x m/sup -2/ x s/sup -1/ in Hastelloy vessels. There is an apparently strong relationship between the clay/groundwater ratio, the concentration of iron in the solution, and the concentrations of silicon, strontium, and cesium.

  18. Visualizing microscopic structure and dynamics of simulated silicate melts

    NASA Astrophysics Data System (ADS)

    Karki, B. B.; Bohara, B.

    2013-12-01

    We perform a detailed visualization-based analysis of atomic-position series data for silicate melts obtained from first-principles (quantum mechanical) molecular dynamics simulations. This involves processing atomic trajectories as well as relevant structural and dynamical information. Clutter associated with trajectory rendering can be reduced with an adaptive position-merging scheme. To gain insight into the short- and mid-range order of the melt structure, we extract and visualize the details of radial distribution function (RDF) and coordination environment. The first peaks of all partial RDFs lie in the distance range of 1.6 to 4 Å and the corresponding mean coordination numbers vary from less than 1 to more than 9. The coordination environments involving cations and anions differ substantially from each other, each consisting of a rich set of coordination states. These states vary both spatially and temporally: The per-atom coordination information extracted on the fly is rendered instantaneously as the spheres and polyhedra as well as along the corresponding trajectories using a color-coding scheme. The information is also visualized as clusters formed by atoms that are coordinated at different time intervals during the entire simulation. The animated visualization suggests that the melt structure can be viewed as a dynamic (partial) network of Al/Si-O coordination polyhedra connected via bridging oxygen in an inhomogeneous distribution of mobile cations including magnesium, calcium, and protons.

  19. Full-wave simulations of electromagnetic cloaking structures

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Popa, Bogdan-Ioan; Schurig, David; Smith, David R.; Pendry, John

    2006-09-01

    Pendry have reported electromagnetically anisotropic and inhomogeneous shells that, in theory, completely shield an interior structure of arbitrary size from electromagnetic fields without perturbing the external fields. Neither the coordinate transformation-based analytical formulation nor the supporting ray-tracing simulation indicate how material perturbations and full-wave effects might affect the solution. We report fully electromagnetic simulations of the cylindrical version of this cloaking structure using ideal and nonideal (but physically realizable) electromagnetic parameters that show that the low-reflection and power-flow bending properties of the electromagnetic cloaking structure are not especially sensitive to modest permittivity and permeability variations. The cloaking performance degrades smoothly with increasing loss, and effective low-reflection shielding can be achieved with a cylindrical shell composed of an eight- (homogeneous) layer approximation of the ideal continuous medium. An imperfect but simpler version of the cloaking material is derived and is shown to reproduce the ray bending of the ideal material in a manner that may be easier to experimentally realize.

  20. Corrosion Behavior of Alloy 625 in Simulated Nuclear High-Level Waste Medium

    NASA Astrophysics Data System (ADS)

    Girija, S.; Nandakumar, T.; Mudali, U. Kamachi

    2015-11-01

    The present investigation aims to study the effect of various ions present in nuclear high-level waste (HLW) (acidic) medium on the corrosion resistance of Alloy 625, with solution-annealed and sensitized microstructure. The heat-affected zones are prone to sensitization during welding of components and subsequent exposure to acidic waste during service could result in intergranular corrosion in these regions and hence it was attempted to study the corrosion behavior of the alloy under sensitized conditions. Double loop electrochemical potentiokinetic reactivation test was carried out to obtain the extent of chromium depletion. Potentiodynamic anodic polarization and electrochemical noise investigations were carried out on Alloy 625 in 3 M nitric acid and simulated nuclear HLW medium (prepared in 3 M nitric acid) at 298 K and 323 K. The study showed that the alloy possess good corrosion resistance in 3 M nitric acid and simulated HLW medium. However, a marginal decrease in the corrosion resistance occurred in simulated HLW when compared to the plain acid, as observed from an increase in passivation current density, decrease in transpassive potentials, and decrease in electrochemical noise resistance. Increase in temperature of the medium and change in microstructure from solution-annealed to sensitized state further decreased the corrosion resistance of Alloy 625. Electrochemical noise time records obtained at open circuit conditions showed a stable passive film for 22 h of immersion of the alloy in 3 M nitric acid and simulated HLW. However, the amplitude of current fluctuations was higher for the sensitized microstructure when compared to the solution-annealed microstructure.

  1. Studies on Nuclear Astrophysics and Exotic Structure at the Low-Energy RI Beam Facility CRIB

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Nakao, T.; Wakabayashi, Y.; Hashimoto, T.; Teranishi, T.; Kubono, S.; Cherubini, S.; Mazzocco, M.; Signorini, C.; Gulino, M.; Di Pietro, A.; Figuera, P.; La Cognata, M.; Lattuada, M.; Spitaleri, C.; Torresi, D.; Lee, P. S.; Lee, C. S.; Komatsubara, T.; Iwasa, N.; Okoda, Y.; Pierroutsakou, D.; Parascandolo, C.; La Commara, M.; Strano, E.; Boiano, C.; Boiano, A.; Manea, C.; Sánchez-Benítez, A. M.; Miyatake, H.; Watanabe, Y. X.; Ishiyama, H.; Jeong, S. C.; Imai, N.; Hirayama, Y.; Kimura, S.; Mukai, M.; Kim, Y. H.; Lin, C. J.; Jia, H. M.; Yan, L.; Yang, Y. Y.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. N.

    Studies on nuclear astrophysics, resonant structure, and nuclear reaction are going on at CRIB (CNS Radioactive Ion Beam separator), a low-energy RI beam separator operated by Center for Nuclear Study (CNS), the University of Tokyo. Two major methods used at CRIB to study nuclear reactions of astrophysical relevance are the resonant scattering, and direct measurements of (α,p) reactions using a thick-gas target. Several experiments for decay measurements and reaction mechanism are also performed using low-energy RI beams at CRIB. Some of the results from recent experiments at CRIB are discussed.

  2. Nuclear hormone receptor architecture - form and dynamics: The 2009 FASEB Summer Conference on Dynamic Structure of the Nuclear Hormone Receptors.

    PubMed

    McEwan, Iain J; Nardulli, Ann M

    2009-01-01

    Nuclear hormone receptors (NHRs) represent a large and diverse family of ligand-activated transcription factors involved in regulating development, metabolic homeostasis, salt balance and reproductive health. The ligands for these receptors are typically small hydrophobic molecules such as steroid hormones, thyroid hormone, vitamin D3 and fatty acid derivatives. The first NHR structural information appeared approximately 20 years ago with the solution and crystal structures of the DNA binding domains and was followed by the structure of the agonist and antagonist bound ligand binding domains of different NHR members. Interestingly, in addition to these defined structural features, it has become clear that NHRs also possess significant structural plasticity. Thus, the dynamic structure of the NHRs was the topic of a recent stimulating and informative FASEB Summer Research Conference held in Vermont. PMID:20087432

  3. Nuclear structure studies in JUSTIPEN and EFES activities

    NASA Astrophysics Data System (ADS)

    Itagaki, Naoyuki

    2009-10-01

    JUSTIPEN: Japan-US Theory Institute for Physics with Exotic Nuclei was launched in June 2006. JUSTIPEN has been established in order to facilitate collaborations between U.S. and Japanese scientists whose main research thrust is in the area of the physics of exotic nuclei. More than 40 nuclear scientists in U.S. have visited Japan in three years, and the many collaborations are established. I briefly summarize the JUSTIPEN activity from the Japanese side. There is counterpart program for the Japanese scientists. International Research Network for Exotic Femto Systems (EFES) was selected as one of the Core-to-Core Programs of Japan Society for the Promotion of Science (JSPS). This is the program to send Japanese nuclear scientists to U.S., Germany, France, Italy, Norway, and Finland and to promote the international collaborations in the field of nuclear study. Many joint workshops were held with partner countries. To operate these international programs, University of Tokyo and RIKEN agreed to corporate with each other and established Todai-RIKEN Joint International Program for Nuclear Physics (TORIJIN) in June 2006. I summarize the activities in three years, and I also mention about the relation between these activities and my personal research -- many-body correlations in light nuclei.

  4. Shifted-Contour Monte Carlo Method for Nuclear Structure

    SciTech Connect

    Stoitcheva, G.S.; Dean, D.J.

    2004-09-13

    We propose a new approach for alleviating the 'sign' problem in the nuclear shell model Monte Carlo method. The approach relies on modifying the integration contour of the Hubbard-Stratonovich transformation to pass through an imaginary stationary point in the auxiliary-field associated with the Hartree-Fock density.

  5. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  6. Simulation and modeling techniques for parachute fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Stein, Keith Robert

    This thesis is on advanced flow simulation and modeling techniques for fluid-structure interactions (FSI) encountered in parachute systems. The main fluid dynamics solver is based on the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation of the Navier-Stokes equations of incompressible flows. The DSD/SST formulation, which was introduced earlier for flow computations involving moving boundaries and interfaces, gives us the capability to handle parachute structural deformations. The structural dynamics solver is based on a total Lagrangian finite element formulation of the equilibrium equations for a "tension structure" composed of membranes, cables, and concentrated masses. The fluid and structure are coupled iteratively within a nonlinear iteration loop, with multiple nonlinear iterations improving the convergence of the coupled system. Unstructured mesh generation and mesh moving techniques for handling of parachute deformations are developed and/or adapted to address the challenges posed by the coupled problem. The FSI methodology was originally implemented on the Thinking Machines CM-5 supercomputer and is now actively used on the CRAY T3E-1200. Applications to a variety of round and cross parachutes used by the US Army are presented, and different stages of the parachute operations, including inflation and terminal descent, are modeled.

  7. Robust simulation of buckled structures using reduced order modeling

    NASA Astrophysics Data System (ADS)

    Wiebe, R.; Perez, R. A.; Spottswood, S. M.

    2016-09-01

    Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.

  8. Simulation analysis for ion assisted fast ignition using structured targets

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-05-01

    As the heating efficiency by fast electrons in the fast ignition scheme is estimated to be very low due to their large divergence angle and high energy. To mitigate this problem, low-density plastic foam, which can generate not only proton (H+) but also carbon (C6+) beams, can be introduced to currently used cone-guided targets and additional core heating by ions is expected. According to 2D PIC simulations, it is found that the ion beams also diverge by the static electric field and concave surface deformation. Thus structured targets are suggested to optimize ion beam characteristics, and their improvement and core heating enhancement by ion beams are confirmed.

  9. Probabilistic Simulation of the Human Factor in Structural Reliability

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Singhal, Surendra N.

    1994-01-01

    The formal approach described herein computationally simulates the probable ranges of uncertainties for the human factor in probabilistic assessments of structural reliability. Human factors such as marital status, professional status, home life, job satisfaction, work load, and health are studied by using a multifactor interaction equation (MFIE) model to demonstrate the approach. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Subsequently performed probabilistic sensitivity studies assess the suitability of the MFIE as well as the validity of the whole approach. Results show that uncertainties range from 5 to 30 percent for the most optimistic case, assuming 100 percent for no error (perfect performance).

  10. A Study of the Nuclear Structure at High Energy and Low Spin

    NASA Astrophysics Data System (ADS)

    Rekstad, J.; Henriquez, A.; Ingebretsen, F.; Midttun, G.; Skaali, B.; Øyan, R.; Wikne, J.; Engeland, T.; Thorsteinsen, T. F.; Hammaren, E.; Liukkonen, E.

    1983-01-01

    A novel method to study nuclear structure at low spin as a function of temperature is developed and used on 146,148Sm, 154,156Gd and 160,162Dy, by means of the (3He, α) reaction. The nuclear level density for a wide energy range is also studied. The γ-multiplicities and the first generation γ-ray spectra indicate a structure change in deformed nuclei at about 6 MeV.

  11. A Numerical Simulation of Star Formation in Nuclear Rings of Barred-Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Woo-Young; Kim, W.

    2014-01-01

    We use grid-based hydrodynamic simulations to study star formation history in nuclear rings of barred-spiral galaxies. We assume infinitesimally thin, isothermal, and unmagnetized gaseous disk. To investigate effects of spiral arm potential, we calculate both models with and without spiral. We find that star formation rate (SFR) in a nuclear ring is determined by the mass inflow rate to the ring rather than the total gas mass in the ring. In case of models without spiral arms, the SFR shows a strong primary burst at early time, and declines to small values after after that. The primary burst is caused by the rapid gas infall to the ring due to the bar growth. On the other hand, models with spiral arms show multiple star bursts at late time caused by additional gas inflow from outside bar region. When the SFR is low, ages of young star clusters exhibit a bipolar azimuthal gradient along the ring since star formation occurs near the contact points between dust lanes and the nuclear ring. When the SFR is large, there are no age gradient of star clusters since star formation sites are widely distributed throughout the whole ring region.

  12. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    SciTech Connect

    Smith, William S.; Bull, Jeffrey S.; Wilcox, Trevor; Bos, Randall J.; Shao, Xuan-Min; Goorley, John T.; Costigan, Keeley R.

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  13. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  14. Physics-based multiscale coupling for full core nuclear reactor simulation

    SciTech Connect

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; Zou, Ling; Martineau, Richard C.

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different data exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license

  15. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE PAGES

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; et al

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  16. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    SciTech Connect

    Ames, David E.

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  17. Simulation of beta radiator handling procedures in nuclear medicine by means of a movable hand phantom.

    PubMed

    Blunck, Ch; Becker, F; Urban, M

    2011-03-01

    In nuclear medicine therapies, people working with beta radiators such as (90)Y may be exposed to non-negligible partial body doses. For radiation protection, it is important to know the characteristics of the radiation field and possible dose exposures at relevant positions in the working area. Besides extensive measurements, simulations can provide these data. For this purpose, a movable hand phantom for Monte Carlo simulations was developed. Specific beta radiator handling scenarios can be modelled interactively with forward kinematics or automatically with an inverse kinematics procedure. As a first investigation, the dose distribution on a medical doctor's hand injecting a (90)Y solution was measured and simulated with the phantom. Modelling was done with the interactive method based on five consecutive frames from a video recorded during the injection. Owing to the use of only one camera, not each detail of the radiation scenario is visible in the video. In spite of systematic uncertainties, the measured and simulated dose values are in good agreement.

  18. Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD

    NASA Astrophysics Data System (ADS)

    Viellieber, Mathias; Class, Andreas G.

    2013-11-01

    Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.

  19. A virtual control room with an embedded, interactive nuclear reactor simulator

    SciTech Connect

    Markidis, S.; Rizwan, U.

    2006-07-01

    The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. In this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)

  20. Comparison of chemical and nuclear explosions: Numerical simulations of the Non-Proliferation Experiment

    SciTech Connect

    Kamm, J.R.; Bos, R.J.

    1995-06-01

    In this paper the authors discuss numerical simulations of the Non-Proliferation Experiment (NPE), which was an underground explosion conducted in September 1993 in the volcanic tuff of the Nevada Test Site. The NPE source consisted of 1.29 {times} 10{sup 6} kg of ANFO-emulsion blasting agent, with the approximate energy of 1.1 kt, emplaced 389 m beneath the surface of Rainier Mesa. The authors compare detailed numerical simulations of the NPE with data collected from that experiment, and with calculations of an equally energetic nuclear explosion in identical geology. Calculated waveforms, at ranges out to approximately 1 km, agree moderately well in the time domain with free-field data, and are in qualitative agreement with free-surface records. Comparison of computed waveforms for equally energetic chemical and nuclear sources reveals relatively minor differences beyond the immediate near-source region, with the chemical source having an {approximately}25% greater seismic moment but otherwise indistinguishable (close-in) seismic source properties. 41 refs., 67 figs., 7 tabs.