Sample records for nuclear technology application

  1. Applications of Nuclear and Particle Physics Technology: Particles & Detection — A Brief Overview

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew G.

    A brief overview of the technology applications with significant societal benefit that have their origins in nuclear and particle physics research is presented. It is shown through representative examples that applications of nuclear physics can be classified into two basic areas: 1) applying the results of experimental nuclear physics and 2) applying the tools of experimental nuclear physics. Examples of the application of the tools of experimental nuclear and particle physics research are provided in the fields of accelerator and detector based technologies namely synchrotron light sources, nuclear medicine, ion implantation and radiation therapy.

  2. 78 FR 29390 - Applications; SHINE Medical Technologies, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... NUCLEAR REGULATORY COMMISSION [Proj-0792; NRC-2013-0053] Applications; SHINE Medical Technologies, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: Notice; receipt and availability. FOR FURTHER... (ADAMS) Accession No. ML13088A192), SHINE Medical Technologies (SHINE) filed with the U.S. Nuclear...

  3. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  4. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The radioactive waste debate in the United States and nuclear technology for peaceful purposes

    NASA Astrophysics Data System (ADS)

    Tehan, Terrence Norbert

    Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.

  6. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  7. Digital Sensor Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Quinn; Jerry Mauck; Richard Bockhorst

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  8. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  9. Defense Threat Reduction Agency > Research > DTRIAC > Our Services

    Science.gov Websites

    DTRIAC reference collection of more than 300,000 documents dating from 1946; experimental test data Analysis of nuclear and non-nuclear-related technology information as applied to defense policy, force technology transfer (application of nuclear related technologies to non-nuclear weapon phenomenologies and

  10. 78 FR 73897 - SHINE Medical Technologies, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-608; NRC-2013-0053] SHINE Medical Technologies, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: License application; docketing. SUMMARY: The U.S. Nuclear... construction permit, submitted by SHINE Medical Technologies, Inc. (SHINE) is acceptable for docketing...

  11. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-01-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  12. History of nuclear technology development in Japan

    NASA Astrophysics Data System (ADS)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  13. History of nuclear technology development in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp; General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  14. Update on Common-Cause Failure Experience and Mitigation Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Richard Thomas; Muhlheim, Michael David; Pullum, Laura L

    2014-04-01

    Experience in other industries has shown that digital technology can provide substantial benefits in terms of performance and reliability. However, the U.S. nuclear power industry has been slow to adopt the technology extensively in its instrumentation and control (I&C) applications because of inhibiting factors such as regulatory uncertainty, insufficient technological experience base, implementation complexity, limited availability of nuclear-qualified products and vendors, and inadequate definition of modernization cost recapture. Although there have been examples of digital technology usage in the nuclear power industry, challenges to the qualification of digital technology for high-integrity nuclear power plant (NPP) applications have severely constrained moremore » widespread progress in achieving the benefits that are possible through the transition to digital. The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) established the Advanced Sensors and Instrumentation (ASI) technology area under the Nuclear Energy Enabling Technologies (NEET) Program to coordinate the instrumentation and controls (I&C) research across DOE NE and to identify and lead efforts to address common needs. As part of the NEET ASI research program, the Digital Technology Qualification project was established. Under this project, the Oak Ridge National Laboratory (ORNL) is leading the investigation into mitigation of digital common-cause failure (CCF) vulnerabilities for nuclear-qualified applications. This technical report documents updated and expanded findings from research activities by ORNL. Specifically, the report describes CCF experience in the nuclear and nonnuclear industries, identifies the state of the practice for CCF mitigation through key examples, and presents conclusions from the determination of knowledge gaps.« less

  15. 75 FR 80730 - Francis Slakey on Behalf of the American Physical Society; Receipt of Petition for Rulemaking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... that over the next few years, the NRC would be reviewing license applications for new technologies, and... the design of the technology be altered easily to allow for diversion of nuclear material? Could the... of applications. (o) Nuclear Proliferation Assessment. Each applicant for the license of an...

  16. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Lightmore » Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.« less

  17. Nuclear Technology for the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Darby, Iain

    2017-01-01

    Science, technology and innovation will play a crucial role in helping countries achieve the ambitious Sustainable Development Goals (SDGs). Since the discovery of nuclear fission in the 1930s, the peaceful applications of nuclear technology have helped many countries improve crops, fight pests, advance health, protect the environment and guarantee a stable supply of energy. Highlighting the goals related to health, hunger, energy and the environment, in this presentation I will discuss how nuclear technology contributes to the SDGs and how nuclear technology can further contribute to the well-being of people, help protect the planet and boost prosperity.

  18. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED... LICENSES TO EXPORT AND FILE APPLICATIONS IN FOREIGN COUNTRIES Licenses for Foreign Exporting and Filing § 5.20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  19. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED... LICENSES TO EXPORT AND FILE APPLICATIONS IN FOREIGN COUNTRIES Licenses for Foreign Exporting and Filing § 5.20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  20. 15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Review of license applications by BIS...

  1. 15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Review of license applications by BIS...

  2. 78 FR 7819 - Request to Amend a License to Import

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... Country; from application no.; docket No. Eastern Technologies, Inc.; Class A radioactive Up to a maximum... Mexico. Following nuclear power plant processing at operations and Eastern maintenance). The Technologies...

  3. Australian Students' Views on Nuclear Issues: Does Teaching Alter Prior Beliefs?

    ERIC Educational Resources Information Center

    Cooper, Sarina; Yeo, Shelley; Zadnik, Marjan

    2003-01-01

    We have investigated the conceptual understandings of seventy-eight 16-year-old Australian high school students' and their knowledge about several issues related to nuclear energy. As a result of their study of the physics topic Nuclear Technology, the students learned more about applications of nuclear technology, had better though still…

  4. Recent Developments and Applications of Radiation/Detection Technology in Tsinghua University

    NASA Astrophysics Data System (ADS)

    Kang, Ke-Jun

    2010-03-01

    Nuclear technology applications have been very important research fields in Tsinghua University (THU) for more than 50 years. This paper describes two major directions and related projects running in THU concerning nuclear technology applications for radiation imaging and nuclear technology applications for astrophysics. Radiation imaging is a significant application of nuclear technology for all kinds of real world needs including security inspections, anti-smuggling operations, and medicine. The current improved imaging systems give much higher quality radiation images. THU has produced accelerating tubes for both industrial and medical accelerators with energy levels ranging from 2.5˜20Mev. Detectors have been produced for medical and industrial imaging as well as for high energy physics experiments such as the MRPC with fast time and position resolutions. DR and CT systems for radiation imaging systems have been continuously improved with new system designs and improved algorithms for image reconstruction and processing. Two important new key initiatives are the dual-energy radiography and dual-energy CT systems. Dual-energy CT imaging improves material discrimination by providing both the electron density and the atomic number distribution of scanned objects. Finally, this paper also introduces recent developments related to the hard X-ray modulation telescope (HXMT) provided by THU.

  5. 78 FR 52579 - SHINE Medical Technologies, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-608; NRC-2013-0053] SHINE Medical Technologies, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: Notice of receipt and availability. SUMMARY: The U.S... application for a construction permit, submitted by SHINE Medical Technologies, Inc. (SHINE). ADDRESSES...

  6. 15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology...

  7. 15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology...

  8. 15 CFR 750.3 - Review of license applications by BIS and other government agencies and departments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... items controlled for national security, missile technology, nuclear nonproliferation, and chemical and... primarily with items controlled for national security, nuclear nonproliferation, missile technology...

  9. SP-100 nuclear space power systems with application to space commercialization

    NASA Technical Reports Server (NTRS)

    Smith, John M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power.

  10. Nuclear Data Uncertainty Quantification: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Smith, D. L.

    2015-01-01

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for future investigation of this subject are also suggested.

  11. Blazing the trailway: Nuclear electric propulsion and its technology program plans

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  12. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  13. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  14. Export Control Guide: Loose Parts Monitoring Systems for Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenberg, Donald W.

    2012-12-01

    This report describes a typical LPMS, emphasizing its application to the RCS of a modern NPP. The report also examines the versatility of AE monitoring technology by describing several nuclear applications other than loose parts monitoring, as well as some non-nuclear applications. In addition, LPMS implementation requirements are outlined, and LPMS suppliers are identified. Finally, U.S. export controls applicable to LPMSs are discussed.

  15. Nuclear Data Uncertainty Quantification: Past, Present and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D. L.

    2015-01-01

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less

  16. Nuclear Data Uncertainty Quantification: Past, Present and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L., E-mail: Donald.L.Smith@anl.gov

    2015-01-15

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less

  17. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  18. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  19. The results of the investigations of Russian Research Center - {open_quotes}Kurchatov Institute{close_quotes} on molten salt applications to problems of nuclear energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, V.M.

    1995-10-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclearmore » energy systems.« less

  20. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.; ELI-NP Team

    2015-10-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High Energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam, a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical and scientific status of the project as well as the applications of the gamma source will be discussed.

  1. Overview of nuclear energy: Present and projected use

    NASA Astrophysics Data System (ADS)

    Stanculescu, Alexander

    2012-06-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  2. Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities

    DOE PAGES

    Solodov, Alexander; Williams, Adam; Al Hanaei, Sara; ...

    2017-04-18

    Unmanned aerial vehicles (UAV) are among the major growing technologies that have many beneficial applications, yet they can also pose a significant threat. Recently, several incidents occurred with UAVs violating privacy of the public and security of sensitive facilities, including several nuclear power plants in France. The threat of UAVs to the security of nuclear facilities is of great importance and is the focus of this work. This paper presents an overview of UAV technology and classification, as well as its applications and potential threats. We show several examples of recent security incidents involving UAVs in France, USA, and Unitedmore » Arab Emirates. Further, the potential threats to nuclear facilities and measures to prevent them are evaluated. The importance of measures for detection, delay, and response (neutralization) of UAVs at nuclear facilities are discussed. An overview of existing technologies along with their strength and weaknesses are shown. Finally, the results of a gap analysis in existing approaches and technologies is presented in the form of potential technological and procedural areas for research and development. Furthermore based on this analysis, directions for future work in the field can be devised and prioritized.« less

  3. UF/RO applications at the Browns Ferry Nuclear Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palino, G.F.; Sailor, W.C.; Sawochka, S.G.

    1981-04-01

    In June 1979, NWT was contracted by TVA to review the applicability of reverse osmosis (RO) and ultrafiltration (UF) membrane treatment technology at the Browns Ferry Nuclear Power Station. Specific program tasks are described and results presented.

  4. The measurement programme at the neutron time-of-flight facility n_TOF at CERN

    NASA Astrophysics Data System (ADS)

    Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Negret, A.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented.

  5. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eipeldauer, Mary D; Shelander Jr, Bruce R

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) wasmore » established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.« less

  6. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular Particle and Nuclear Physics, Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  7. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-11-01

    The development of high-power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular high-energy nuclear physics and astrophysics, as well as societal applications in material science, nuclear energy and medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for nuclear physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10-PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  8. Cyber security evaluation of II&C technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Ken

    The Light Water Reactor Sustainability (LWRS) Program is a research and development program sponsored by the Department of Energy, which is conducted in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) tomore » address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. The II&C Pathway is conducted by Idaho National Laboratory (INL). Cyber security is a common concern among nuclear utilities and other nuclear industry stakeholders regarding the digital technologies that are being developed under this program. This concern extends to the point of calling into question whether these types of technologies could ever be deployed in nuclear plants given the possibility that the information in them can be compromised and the technologies themselves can potentially be exploited to serve as attack vectors for adversaries. To this end, a cyber security evaluation has been conducted of these technologies to determine whether they constitute a threat beyond what the nuclear plants already manage within their regulatory-required cyber security programs. Specifically, the evaluation is based on NEI 08-09, which is the industry’s template for cyber security programs and evaluations, accepted by the Nuclear Regulatory Commission (NRC) as responsive to the requirements of the nuclear power plant cyber security regulation found in 10 CFR 73.54. The evaluation was conducted by a cyber security team with expertise in nuclear utility cyber security programs and experience in conducting these evaluations. The evaluation has determined that, for the most part, cyber security will not be a limiting factor in the application of these technologies to nuclear power plant applications.« less

  9. Freeze Technology for Nuclear Applications - 13590

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostmark, Susanne C.; Knutsson, Sven; Lindberg, Maria

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwatermore » applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)« less

  10. 75 FR 43945 - Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... emitted by any source of radiation inside a nuclear installation, provided that such application does not... facilities, equipment, fuel, services, technology, or transport of nuclear materials related to any step... DEPARTMENT OF ENERGY Convention on Supplementary Compensation for Nuclear Damage Contingent Cost...

  11. Nuclear powerplants for mobile applications.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  12. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  13. Application of Molten Salt Reactor Technology to Nuclear Electric Propulsion Mission

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) and planetary surface power missions require reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional gas cooled, liquid metal, and heat pipe space reactors.

  14. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  15. Nuclear Security Education Program at the Pennsylvania State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less

  16. 78 FR 7818 - Request To Amend a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... Recipient country application no.; docket No. Eastern Technologies, Inc.; Class A radioactive The total...

  17. Prospects for public participation on nuclear risks and policy options: innovations in governance practices for sustainable development in the European Union.

    PubMed

    O'Connor, M; van den Hove, S

    2001-09-14

    We outline the potential participative governance and risk management in application to technological choices in the nuclear sector within the European Union (EU). Well-conducted public participation, stakeholder consultation and deliberation procedures can enhance the policy process and improve the robustness of strategies dealing with high-stakes investment and risk management challenges. Key nuclear issues now confronting EU member states are: public concern with large-scale environmental and health issues; the Chernobyl accident (and others less catastrophic) whose effect has been to erode public confidence and trust in the nuclear sector; the maturity of the nuclear plant, hence the emerging prominence of waste transportation, reprocessing and disposal issues as part of historical liability within the EU; the nuclear energy heritage of central and eastern European candidate countries to EU accession. The obligatory management of inherited technological risks and uncertainties on large temporal and geographical scales, is a novel feature of technology assessment and governance. Progress in the nuclear sector will aid the development of methodologies for technological foresight and risk governance in fields other than the nuclear alone.

  18. Extreme Light Infrastructure - Nuclear Physics Eli-Np Project

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-06-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam , a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  19. Nuclear data activities at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Radeck, D.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-10-01

    Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility n_TOF will be presented.

  20. 10 CFR 110.46 - Conduct resulting in termination of nuclear exports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2010-01-01 2010-01-01 false Conduct resulting in termination of nuclear exports. 110...

  1. 10 CFR 110.46 - Conduct resulting in termination of nuclear exports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2011-01-01 2011-01-01 false Conduct resulting in termination of nuclear exports. 110...

  2. History of remote operations and robotics in nuclear facilities. Robotics and Intelligent Systems Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herndon, J.N.

    1992-05-01

    The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. Remote technology has roots which reach into the early history of man. Fireplace pokers, blacksmith`s tongs, and periscopes are examples of the beginnings of remote technology. The technology which we recognize today has evolved over the last 45-plus years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extendedmore » reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Work for space applications has been primarily research oriented with few successful space applications, although the shuttle`s remote manipulator system has been successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus. This document consists of viewgraphs and subtitled figures.« less

  3. History of remote operations and robotics in nuclear facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herndon, J.N.

    1992-01-01

    The field of remote technology is continuing to evolve to support man's efforts to perform tasks in hostile environments. Remote technology has roots which reach into the early history of man. Fireplace pokers, blacksmith's tongs, and periscopes are examples of the beginnings of remote technology. The technology which we recognize today has evolved over the last 45-plus years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extendedmore » reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Work for space applications has been primarily research oriented with few successful space applications, although the shuttle's remote manipulator system has been successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus. This document consists of viewgraphs and subtitled figures.« less

  4. Space power thermal management materials and fabrication technologies for commerical use

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Anderson, William G.; Horner-Richardson, Kevin; Hartenstine, John R.; Keller, Robert F.; Beals, James T.

    1995-01-01

    This paper describes three materials technologies, developed for space nuclear power thermal management, with exciting and varied applications in other fields. Six dual-use applications are presented. The three basic technologies are described: (1) Refractory-metal/ceramic layered composites can be made into thin, rigid, vacuum tight shells. These shells can be tailored for excellent impact resistance and/or excellent corrision/erosion properties. Dual use applications range from micrometeroid shield radiators for spacecraft to erosion resistant waste-stream heat recovery for corrosive exhaust. (2.) Porous metal technology was initially developed to produce wicks for liquid metal heat pipes. This technology is being developed in several new directions. Porous metal heat exchangers feature extraordinarily high specific surface ratios and have absorbed heat fluxes in excess of 100 MW/m2. Porous metal structures are highly compliant, so the technology has been expanded to produce a compliant interface for the attachment of materials with widely different coefficients of thermal expansion such as low expansion carbon-carbon to high expansion metals. (3.) The paper also describes a process, developed for space nuclear power (thermionics), which achieves 100% dense tungsten by plasma spraying. This could have major application in the reprocessing of spent nuclear fuel or other pyrochemical processes, where it would replace gun-drilled tungsten-molybdenum tubes with pure tungsten tubes of smaller diameter, longer, and thiner walled. The process could produce pure tungsten components in complex shapes for arcjet thrusters and other electric propulsion devices.

  5. Summary Report for the Radiation Detection for Nuclear Security Summer School 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runkle, Robert C.; Baciak, James E.; Stave, Jean A.

    The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; themore » second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.« less

  6. Advanced Demonstration and Test Reactor Options Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petti, David Andrew; Hill, R.; Gehin, J.

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercializationmore » of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy”. Advanced reactors are defined in this study as reactors that use coolants other than water. Advanced reactor technologies have the potential to expand the energy applications, enhance the competitiveness, and improve the sustainability of nuclear energy.« less

  7. Trial application of reliability technology to emergency diesel generators at the Trojan Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.M.; Boccio, J.L.; Karimian, S.

    1986-01-01

    In this paper, a trial application of reliability technology to the emergency diesel generator system at the Trojan Nuclear Power Plant is presented. An approach for formulating a reliability program plan for this system is being developed. The trial application has shown that a reliability program process, using risk- and reliability-based techniques, can be interwoven into current plant operational activities to help in controlling, analyzing, and predicting faults that can challenge safety systems. With the cooperation of the utility, Portland General Electric Co., this reliability program can eventually be implemented at Trojan to track its effectiveness.

  8. DOE research and development report. Progress report, October 1980-September 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, Carleton D.

    The DOE New Brunswick Laboratory (NBL) is the US Government's Nuclear Materials Standards and Measurement Laboratory. NBL is assigned the mission to provide and maintain, as an essential part of federal statutory responsibilities related to national and international safeguards of nuclear materials for USA defense and energy programs, an ongoing capability for: the development, preparation, certification, and distribution of reference materials for the calibration and standardization of nuclear materials measurements; the development, improvement, and evaluation of nuclear materials measurement technology; the assessment and evaluation of the practice and application of nuclear materials measurement technology; expert and reliable specialized nuclear materialsmore » measurement services for the government; and technology exchange and training in nuclear materials measurement and standards. Progress reports for this fiscal year are presented under the following sections: (1) development or evaluation of measurement technology (elemental assay of uranium plutonium; isotope composition); (2) standards and reference materials (NBL standards and reference materials; NBS reference materials); and (3) evaluation programs (safeguards analytical laboratory evaluation; general analytical evaluation program; other evaluation programs).« less

  9. 37 CFR 5.15 - Scope of license.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... through 130; or (ii) Restricted Data, sensitive nuclear technology or technology useful in the production... COMMERCE GENERAL SECRECY OF CERTAIN INVENTIONS AND LICENSES TO EXPORT AND FILE APPLICATIONS IN FOREIGN COUNTRIES Licenses for Foreign Exporting and Filing § 5.15 Scope of license. (a) Applications or other...

  10. 37 CFR 5.15 - Scope of license.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... through 130; or (ii) Restricted Data, sensitive nuclear technology or technology useful in the production... COMMERCE GENERAL SECRECY OF CERTAIN INVENTIONS AND LICENSES TO EXPORT AND FILE APPLICATIONS IN FOREIGN COUNTRIES Licenses for Foreign Exporting and Filing § 5.15 Scope of license. (a) Applications or other...

  11. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen (Technical Monitor)

    2002-01-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multimegawatt nuclear reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multimegawatt gas-cooled and liquid metal concepts.

  12. Nuclear science and society: social inclusion through scientific education

    NASA Astrophysics Data System (ADS)

    Levy, Denise S.

    2017-11-01

    This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.

  13. Research Technology

    NASA Image and Video Library

    1960-01-01

    Originally investigated in the 1960's by Marshall Space Flight Center plarners as part of the Nuclear Energy for Rocket Vehicle Applications (NERVA) program, nuclear-thermal rocket propulsion has been more recently considered in spacecraft designs for interplanetary human exploration. This artist's concept illustrates a nuclear-thermal rocket with an aerobrake disk as it orbits Mars.

  14. Semiconductor Radiation Detectors: Basic principles and some uses of a recent tool that has revolutionized nuclear physics are described.

    PubMed

    Goulding, F S; Stone, Y

    1970-10-16

    The past decade has seen the rapid development and exploitation of one of the most significant tools of nuclear physics, the semiconductor radiation detector. Applications of the device to the analysis of materials promises to be one of the major contributions of nuclear research to technology, and may even assist in some aspects of our environmental problems. In parallel with the development of these applications, further developments in detectors for nuclear research are taking place: the use of very thin detectors for heavyion identification, position-sensitive detectors for nuclear-reaction studies, and very pure germanium for making more satisfactory detectors for many applications suggest major future contributions to physics.

  15. An historical collection of papers on nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  16. Nuclear data for medical applications: An overview of present status and future needs

    NASA Astrophysics Data System (ADS)

    Syed, M. Qaim

    2017-09-01

    A brief overview of nuclear data required for medical applications is given. The major emphasis is on radionuclides for internal applications, both for diagnosis and therapy. The status of the presently available data is discussed and some of the emerging needs are outlined. Most of the needs are associated with the development of non-standard positron emitters and novel therapeutic radionuclides. Some new developments in application of radionuclides, e.g. theranostic approach, multimode imaging, radionanoparticles, etc. are described and the related nuclear data needs are discussed. The possible use of newer irradiation technologies for medical radionuclide production, e.g. intermediate energy charged-particle accelerators, high-power electron accelerators for photon production, and spallation neutron sources, will place heavy demands on nuclear data.

  17. Physics and Its Multiple Roles in the International Atomic Energy Agency

    NASA Astrophysics Data System (ADS)

    Massey, Charles D.

    2017-01-01

    The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.

  18. NNDC Stand: Activities and Services of the National Nuclear Data Center

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Arcilla, R.; Burrows, T. W.; Dunford, C. L.; Herman, M. W.; McLane, V.; Obložinský, P.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2005-05-01

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic nuclear research, applied nuclear technologies including energy, shielding, medical and homeland security. In 2004, to answer the needs of nuclear data users community, NNDC completed a project to modernize data storage and management of its databases and began offering new nuclear data Web services. The principles of database and Web application development as well as related nuclear reaction and structure database services are briefly described.

  19. New applications of renormalization group methods in nuclear physics.

    PubMed

    Furnstahl, R J; Hebeler, K

    2013-12-01

    We review recent developments in the use of renormalization group (RG) methods in low-energy nuclear physics. These advances include enhanced RG technology, particularly for three-nucleon forces, which greatly extends the reach and accuracy of microscopic calculations. We discuss new results for the nucleonic equation of state with applications to astrophysical systems such as neutron stars, new calculations of the structure and reactions of finite nuclei, and new explorations of correlations in nuclear systems.

  20. The status of power supplies for primary electric propulsion in the U.S.A.

    NASA Technical Reports Server (NTRS)

    Jones, R. M.; Scott-Monck, J. A.

    1984-01-01

    This paper reviews the status of and requirements on solar electric and nuclear electric power supplies for primary electric propulsion missions. The power supply requirements of power level, specific mass (kg/kWe) and lifetime are defined as a function of the mission and electric propulsion system characteristics for planetary missions. The technology status of planar and concentrator arrays is discussed. Nuclear reactors and thermoelectric, thermionic, Brayton and Rankine conversion technologies are reviewed, as well as recent nuclear power system design concepts and program activity. Technology projections for power supplies applicable to primary electric propulsion missions are included.

  1. A History of the Atomic Energy Commission

    DOE R&D Accomplishments Database

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  2. New Measurements of the Cosmic Background Radiation Spectrum

    DOE R&D Accomplishments Database

    Smoot, G. F.; De Amici, G.; Levin, S.; Witebsky, C.

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  3. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficialmore » engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)« less

  4. Nuclear Systems Kilopower Overview

    NASA Technical Reports Server (NTRS)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  5. Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects

    DOE PAGES

    Bernstein, Adam; Baldwin, George; Boyer, Brian; ...

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline—Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This work presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoingmore » fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  6. Nuclear security applications of antineutrino detectors : current capabilities and future prospects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, A.; Goodman, M.; Baldwin, G.

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline withmore » other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  7. Understanding the Challenges in the Transition from Film Radiography in the Nuclear Power Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Moran, Traci L.

    2012-09-01

    Nondestructive examination (NDE) applications in the nuclear power industry using film radiography are shrinking due to the advent of modern digital imaging technologies and advances in alternative inspection methods that do not present an ionizing radiation hazard. Technologies that are used routinely in the medical industry for patient diagnosis are being adapted to industrial NDE applications including the detection and characterization of defects in welds. From the user perspective, non-film inspection techniques provide several advantages over film techniques. It is anticipated that the shift away from the application of film radiography in the nuclear power industry represents an irreversible trend.more » The U.S. Nuclear Regulatory Commission (NRC) has noted this trend in the U.S. nuclear power industry and will be working to ensure that the effectiveness and reliability of component inspections is not compromised by this transition. Currently, specific concerns are associated with 1) obtaining a fundamental understanding of how inspection effectiveness and reliability may be impacted by this transition and 2) ensuring training standards and qualifications remain compatible with modern industrial radiographic practice. This paper discusses recent trends in industrial radiography and assesses their advantages and disadvantages from the perspective of nuclear power plant component inspections.« less

  8. Early Program Development

    NASA Image and Video Library

    1963-01-01

    This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.

  9. ALL-UNION CONFERENCE ON APPLICATIONS OF RADIOACTIVE ISOTOPES AND NUCLEAR EMISSIONS IN THE NATIONAL INDUSTRY OF USSR (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-09-01

    Papers presented at the All-Union Conference on Industrial Applications of Radioactive Isotopes and Nuclear Emissions in the National Economy of USSR, April 12 to 16, 1960, in Riga are surveyed. Short summaries are given on applications of radioactive isotopes and nuclear emissions in prospecting, developing mineral resources, metallurgy, ore enrichment processes, machine construction technology, agriculture, food processing, and medicine. Sources of alpha , beta , and gamma radiation for control and automation of processes are also discussed. The full reports from the conference will be published in 1960. (R.V.J.)

  10. 75 FR 68600 - Secretarial India High Technology Business Development Mission; February 6-11, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Government of India (GOI) officially designated two site locations for U.S. commercial nuclear technology.... Applications can be completed on-line at the India High Technology Business Development Mission Web site at... Department of Commerce Secretarial India High Technology Business Development Mission; February 6...

  11. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  12. Small reactor power system for space application

    NASA Technical Reports Server (NTRS)

    Shirbacheh, M.

    1987-01-01

    A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.

  13. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less

  14. A Nuclear Energy Elective for "Ungineers"

    ERIC Educational Resources Information Center

    Long, R. L.; And Others

    1975-01-01

    Describes a course in the technology of nuclear energy which responds to the immediate concerns of students in areas such as environmental effects, weapons effects, national energy needs, and medical and forensic applications. Includes a course outline and description of appropriate textbooks, (GS)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenji Akagi; Masayuki Ishiwata; Kenji Araki

    In nuclear power plant construction, countless variety of parts, products, and jigs more than one million are treated under construction. Furthermore, strict traceability to the history of material, manufacturing, and installation is required for all products from the start to finish of the construction, which enforce much workforce and many costs at every project. In an addition, the operational efficiency improvement is absolutely essential for the effective construction to reduce the initial investment for construction. As one solution, RFID (Radio Frequent Identification) application technology, one of the fundamental technologies to realize a ubiquitous society, currently expands its functionality and generalmore » versatility at an accelerating pace in mass-production industry. Hitachi believes RFID technology can be useful of one of the key solutions for the issues in non-mass production industry as well. Under this situation, Hitachi initiated the development of next generation plant concept (ubiquitous plant construction technology) which utilizes information and RFID technologies. In this paper, our application plans of RFID technology to nuclear power is described. (authors)« less

  16. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  17. The NASA CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-08-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  18. Active and Passive Diagnostic Signatures of Special Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, William L.; Karpius, Peter Joseph; Myers, Steven Charles

    2017-05-26

    An overview will be given discussing signatures associated with special nuclear materials acquired using both active and passive diagnostic techniques. Examples of how technology advancements have helped improve diagnostic capabilities to meet the challenges of today’s applications will be discussed.

  19. 18 CFR 125.3 - Schedule of records and periods of retention.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and agreements. 4. Accountants' and auditors' reports. Information Technology Management 5. Automatic... licensees (less nuclear). 13.2 Production—Nuclear. 14. Transmission and distribution—Public utilities and... Collection 29. Customers' service applications and contracts. 30. Rate schedules. 31. Maximum demand and...

  20. Nuclear magnetic resonance technology in acupoint catgut embedding therapy for the treatment of menopausal panic disorder: its applications

    NASA Astrophysics Data System (ADS)

    Chen, Gui-zhen; Zhang, Sha-sha; Xu, Yun-xiang; Wang, Xiao-yun

    2011-11-01

    Nuclear Magnetic Resonance (NMR) is a diagnostic method which is non-invasive and non-ionizing irradiative to the human body. It not only suits structural, but also functional imaging. The NMR technique develops rapidly in its application in life science, which has become the hotspot in recent years. Menopausal panic disorder (MPD) is a typical psychosomatic disease during climacteric period, which may affect physical and mental health. Looking for a convenient, effective, and safe method, which is free of toxic-side effects to control the disease, is a modern medical issue. Based on reviewing the etiology and pathogenesis of MPD according to dual traditional Chinese medicine (TCM) and western medicine, further analyzed the advantages and principles for selecting acupoint prescription by tonifying kidney and benefiting marrow therapy for acupoint catgut-embedding to this disease. The application of Nuclear Magnetic Resonance Spectroscopy (NMRS) and Magnetic Resonance Imaging (MRI) technologies in mechanism research on acupoint catgut embedding for the treatment of MPD was discussed. It's pointed out that this intervention method is safe and effective to treat MPD. Breakthrough will be achieved from the research of the selection of acupoint prescription and therapeutic mechanism of acupoint catgut embedding for the treatment of menopausal panic disorder by utilizing the Functional Nuclear Magnetic Resonance Imaging (fMRI) and Metabonomics technologies.

  1. Nuclear magnetic resonance technology in acupoint catgut embedding therapy for the treatment of menopausal panic disorder: its applications

    NASA Astrophysics Data System (ADS)

    Chen, Gui-zhen; Zhang, Sha-sha; Xu, Yun-xiang; Wang, Xiao-yun

    2012-03-01

    Nuclear Magnetic Resonance (NMR) is a diagnostic method which is non-invasive and non-ionizing irradiative to the human body. It not only suits structural, but also functional imaging. The NMR technique develops rapidly in its application in life science, which has become the hotspot in recent years. Menopausal panic disorder (MPD) is a typical psychosomatic disease during climacteric period, which may affect physical and mental health. Looking for a convenient, effective, and safe method, which is free of toxic-side effects to control the disease, is a modern medical issue. Based on reviewing the etiology and pathogenesis of MPD according to dual traditional Chinese medicine (TCM) and western medicine, further analyzed the advantages and principles for selecting acupoint prescription by tonifying kidney and benefiting marrow therapy for acupoint catgut-embedding to this disease. The application of Nuclear Magnetic Resonance Spectroscopy (NMRS) and Magnetic Resonance Imaging (MRI) technologies in mechanism research on acupoint catgut embedding for the treatment of MPD was discussed. It's pointed out that this intervention method is safe and effective to treat MPD. Breakthrough will be achieved from the research of the selection of acupoint prescription and therapeutic mechanism of acupoint catgut embedding for the treatment of menopausal panic disorder by utilizing the Functional Nuclear Magnetic Resonance Imaging (fMRI) and Metabonomics technologies.

  2. A Practical Approach to Starting Fission Surface Power Development

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.

  3. Radiation Protection Research Needs Workshop: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewji, Shaheen A.; Davis, Jason; Hertel, Nolan E.

    In order to protect humans and the environment when using ionizing radiation for the advancement and benefit of society, accurately quantifying radiation and its potential effects remains the driver for ensuring the safety and secure use of nuclear and radiological applications of technology. In the realm of radiation protection and its various applications with the nuclear fuel cycle, (nuclear) medicine, emergency response, national defense, and space exploration, the scientific and research needs to support state and federal radiation protection needs in the United States in each of these areas are still deficient.

  4. Sandia technology: Engineering and science applications

    NASA Astrophysics Data System (ADS)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  5. Spent fuel data base: commercial light water reactors. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  6. On-line condition monitoring applications in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastiemian, H. M.; Feltus, M. A.

    2006-07-01

    Existing signals from process instruments in nuclear power plants can be sampled while the plant is operating and analyzed to verify the static and dynamic performance of process sensors, identify process-to-sensor problems, detect instrument anomalies such as venturi fouling, measure the vibration of the reactor vessel and its internals, or detect thermal hydraulic anomalies within the reactor coolant system. These applications are important in nuclear plants to satisfy a variety of objectives such as: 1) meeting the plant technical specification requirements; 2) complying with regulatory regulations; 3) guarding against equipment and process degradation; 4) providing a means for incipient failuremore » detection and predictive maintenance; or 5) identifying the root cause of anomalies in equipment and plant processes. The technologies that are used to achieve these objectives are collectively referred to as 'on-line condition monitoring.' This paper presents a review of key elements of these technologies, provides examples of their use in nuclear power plants, and illustrates how they can be integrated into an on-line condition monitoring system for nuclear power plants. (authors)« less

  7. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  8. Nuclear Power in Space.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  9. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  10. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... application of all potentially beneficial non nuclear energy sources and utilization technologies. (b) This..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, C.; Arsenlis, T.; Bailey, A.

    Lawrence Livermore National Laboratory Campus Capability Plan for 2018-2028. Lawrence Livermore National Laboratory (LLNL) is one of three national laboratories that are part of the National Nuclear Security Administration. LLNL provides critical expertise to strengthen U.S. security through development and application of world-class science and technology that: Ensures the safety, reliability, and performance of the U.S. nuclear weapons stockpile; Promotes international nuclear safety and nonproliferation; Reduces global danger from weapons of mass destruction; Supports U.S. leadership in science and technology. Essential to the execution and continued advancement of these mission areas are responsive infrastructure capabilities. This report showcases each LLNLmore » capability area and describes the mission, science, and technology efforts enabled by LLNL infrastructure, as well as future infrastructure plans.« less

  12. 48 CFR 970.5227-10 - Patent rights-management and operating contracts, nonprofit organization or small business firm...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-level nuclear waste and spent fuel technology; and (C) National security technologies classified or... Energy (DOE) Patent Counsel assisting the DOE contracting activity. (7) Practical application means to... inventions. (i) Inventions within or relating to the following fields of technology are exceptional...

  13. 48 CFR 970.5227-10 - Patent rights-management and operating contracts, nonprofit organization or small business firm...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-level nuclear waste and spent fuel technology; and (C) National security technologies classified or... Energy (DOE) Patent Counsel assisting the DOE contracting activity. (7) Practical application means to... inventions. (i) Inventions within or relating to the following fields of technology are exceptional...

  14. Benchmark Report on Key Outage Attributes: An Analysis of Outage Improvement Opportunities and Priorities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germain, Shawn St.; Farris, Ronald

    2014-09-01

    Advanced Outage Control Center (AOCC), is a multi-year pilot project targeted at Nuclear Power Plant (NPP) outage improvement. The purpose of this pilot project is to improve management of NPP outages through the development of an AOCC that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report documents the results of a benchmarking effort to evaluate the transferability of technologies demonstrated at Idaho National Laboratory and the primary pilot project partner, Palo Verde Nuclear Generating Station. The initial assumption for this pilot project was that NPPs generally domore » not take advantage of advanced technology to support outage management activities. Several researchers involved in this pilot project have commercial NPP experience and believed that very little technology has been applied towards outage communication and collaboration. To verify that the technology options researched and demonstrated through this pilot project would in fact have broad application for the US commercial nuclear fleet, and to look for additional outage management best practices, LWRS program researchers visited several additional nuclear facilities.« less

  15. Advanced Borobond™ Shields for Nuclear Materials Containment and Borobond™ Immobilization of Volatile Fission Products - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-05-19

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond. The major objective of this project was to produce a more versatile composition of this material and find new applications. Major target applications were use for nuclear radiation shields, such as in dry storage casks; use in immobilization of most difficult waste streams, such as Hanford K-Basin waste; use for soluble and volatile fission products, such asmore » Cs, Tc, Sr, and I; and use for corrosion and fire protection applications in nuclear facilities.« less

  16. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  17. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barefield Ii, James E; Clegg, Samuel M; Veirs, Douglas K

    2009-01-01

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges,more » NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.« less

  18. National and International Security Applications of Cryogenic Detectors—Mostly Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Rabin, Michael W.

    2009-12-01

    As with science, so with security—in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  19. Critical Path to Nuclear Science and Technology Knowledge Transfer and Skill Development in K-12 Schools: Why America Needs Action and Support from Federal and State Education Departments Now

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincenti, J.R.; Anderson, G.E.

    2006-07-01

    With the signing of President Bush's energy bill in August of 2005, the successful application of the new energy legislation may have more to do with educational standards required in our schools than applications of research and technology in the long-term. Looking inside the new legislation, the future of that legislation's success may not just hinge on investment in technology, but ensuring that our citizens, especially our youth, are prepared and better informed to be able to understand, react, and apply the economically and national security driven intent of the law. How can our citizens make sense of change ifmore » they lack the skills to be able to understand, not only the technology, but also the science that drives the change? President Bush's passage of the 1,724-page bill emphasizes conservation, clean energy research, and new and improved technology. The legislation also provides for economic incentives toward building more nuclear power plants. This paper will use four questions as a focal point to emphasize the need for both state and federal education departments to review their current standards and respond to deficiencies regarding learning about radioactivity, radiation, and nuclear science and technology. The questions are: 1. Will America accept new nuclear power development? 2. Will waste issues be resolved concerning high- and low-level radioactive waste management and disposal? 3. Will nuclear 'anything' be politically correct when it comes to your backyard? 4. Is our youth adequately educated and informed about radioactivity, radiation, and nuclear science and technology? This paper will use Pennsylvania as a case study to better understand the implications and importance of the educational standards in our school systems. This paper will also show how the deficiency found in Pennsylvania's academic standards, and in other states, has a significant impact on the ability to fulfill the legislation's intent of realizing energy independence and national security. (authors)« less

  20. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    NASA Astrophysics Data System (ADS)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields. Role of Nuclear Techniques in Environment Problems. Applications of Nuclear Techniques relevant for Civil Security (contraband and explosive detection, search for Weapons of Mass Destruction, Nuclear Safeguards). Nuclear Applications in Space Research. Material and Structure Testing in Research and Industry. New contributions of Nuclear Techniques to the solution of the Energy Production problems and Nuclear Waste Transmutation. Emerging experimental techniques, new detectors and new modeling tools. During the Monday morning Session of the Conference, the 2005 IBA-EUROPHYSICS PRIZE for Applied Nuclear Science and Nuclear Methods in Medicine, sponsored by the Belgian company IBA, was awarded to the two laureates Werner Heil (Mainz) and Pierre Jean Nacher (Paris) for the development of spin polarized 3He targets by optical pumping and their applications in nuclear science and medicine. The meeting was a real success, with 18 invited talks, 66 contributed talks and 31 posters and an overall participation, during five full days, of around 150 scientists from different European and non-European countries. It also hosted a three day industrial exhibition of a selection of Companies that sponsored the event. The Organisers take thos opportunity to thank the University of Pavia, the Amministrazione Comunale di Pavia and the Provincia di Pavia, as well as all exhibitors (Ametek, Ansaldo Superconduttori, Caen, Else, Hamamatsu, IBA, Micos, Micron Semiconductor), for their support of the Conference. The Organisers finally wish to thank the Scientific Secretary of the Conference, Dr Andrea Fontana of INFN Pavia, for the huge amount of work done in preparing the Conference, Mr Claudio Casella of the Department of Nuclear and Theoretical Physics of the University of Pavia for technical support and the Conference staff, Dr Gaia Boghen and the graduate students Federica Devecchi and Silvia Franchino, for their invaluable help. The very effective and professional work of the staff of PRAGMA Congressi, who took charge of all the administrative and accommodation procedures, is also acknowledged. The Local Organizing Committee (Pavia, January 2006)

  1. Nuclear Proliferation Technology Trends Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activitiesmore » (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.« less

  2. Early Program Development

    NASA Image and Video Library

    2004-04-15

    This artist's concept illustrates the NERVA (Nuclear Engine for Rocket Vehicle Application) engine's hot bleed cycle in which a small amount of hydrogen gas is diverted from the thrust nozzle, thus eliminating the need for a separate system to drive the turbine. The NERVA engine, based on KIWI nuclear reactor technology, would power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which the Marshall Space Flight Center had development responsibility.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, R N

    This report draws on a series of international workshops held to mark the fiftieth anniversary of President Dwight D. Eisenhower's Atoms for Peace address before the United Nations General Assembly. A half-century after President Eisenhower's landmark speech, the world is vastly different, but mankind still faces the challenge he identified--gaining the benefits of nuclear technology in a way that limits the risks to security. Fifty years after Eisenhower declared that the people of the world should be ''armed with the significant facts of today's existence,'' the consequences of his bold vision should be evaluated to provide a foundation upon whichmore » to shape the next fifty years. Policy and technology communities cannot escape the legacy of a half-century of nuclear technology expansion. At the same time, citizens need to consider the future role of military and civilian nuclear technology in a global strategy to meet the challenges of the twenty-first century. The new century brought with it a set of contradictions regarding nuclear technology. Nuclear knowledge, technology, materials, and facilities have spread around the world, but control and management of the nuclear genie have not kept pace. The Cold War is over, but not the threat from weapons of mass destruction, including the prospect that nuclear, chemical, or biological weapons may get into the hands of terrorists. Nevertheless, mankind continues to explore the frontiers of technology, including nuclear technology. Public concern about nuclear safety and security--exacerbated by accidents, nuclear weapon proliferation, and terrorism--confronts major growth in applications of nuclear technology in nuclear power, medicine, agriculture, and industry. While some developed countries have essentially stopped civilian nuclear-power expansion, mainly for economic reasons, several developing states--notably China and India--plan increases in the nuclear generation of electricity. Ironically, while governments still seek answers to long-term, nuclear waste disposal, other concerns about the environmental health of the planet such as climate change, regional air pollution, and possible rising natural gas prices have also renewed interest in nuclear power, even in countries that once sought to terminate their own nuclear programs. Many of these contradictions can and will be resolved--for better or worse. A wide range of forces--economic, political, and technical--will determine the impact of nuclear technology in the future, and no consensus exists on the outcome. The significance of nuclear technology for civilian or military purposes may expand, contract, or remain the same. This suggests a matrix of basic possibilities from which we focus on five alternative futures: (1) More civilian/Less military significance, (2) Less civilian/Less military significance, (3) Less civilian/More military significance, and (4) More civilian/More military significance. Of course, changed circumstances could also result in (5) the significance of both civilian and military nuclear technologies remaining about the same as today. Experts offer compelling logic why each of these alternatives is more likely or desirable. For each of these futures or their modifications, a more comprehensive vision can be presented and specific measures recommended. Some call for a new nuclear ''compact'' or ''bargain'' to share benefits and reduce risks. No matter which alternative future emerges, however, dealing with the legacy of existing civilian and military nuclear materials and infrastructure will keep important nuclear issues active for the next half-century.« less

  4. Atoms for Peace After 50 Years: The New Challenges and Opportunities

    DOE R&D Accomplishments Database

    2003-12-01

    This report draws on a series of international workshops held to mark the fiftieth anniversary of President Dwight D. Eisenhower's Atoms for Peace address before the United Nations General Assembly. A half-century after President Eisenhower's landmark speech, the world is vastly different, but mankind still faces the challenge he identified--gaining the benefits of nuclear technology in a way that limits the risks to security. Fifty years after Eisenhower declared that the people of the world should be "armed with the significant facts of today's existence," the consequences of his bold vision should be evaluated to provide a foundation upon which to shape the next fifty years. Policy and technology communities cannot escape the legacy of a half-century of nuclear technology expansion. At the same time, citizens need to consider the future role of military and civilian nuclear technology in a global strategy to meet the challenges of the twenty-first century. The new century brought with it a set of contradictions regarding nuclear technology. Nuclear knowledge, technology, materials, and facilities have spread around the world, but control and management of the nuclear genie have not kept pace. The Cold War is over, but not the threat from weapons of mass destruction, including the prospect that nuclear, chemical, or biological weapons may get into the hands of terrorists. Nevertheless, mankind continues to explore the frontiers of technology, including nuclear technology. Public concern about nuclear safety and security--exacerbated by accidents, nuclear weapon proliferation, and terrorism--confronts major growth in applications of nuclear technology in nuclear power, medicine, agriculture, and industry. While some developed countries have essentially stopped civilian nuclear-power expansion, mainly for economic reasons, several developing states--notably China and India--plan increases in the nuclear generation of electricity. Ironically, while governments still seek answers to long-term, nuclear waste disposal, other concerns about the environmental health of the planet such as climate change, regional air pollution, and possible rising natural gas prices have also renewed interest in nuclear power, even in countries that once sought to terminate their own nuclear programs. Many of these contradictions can and will be resolved--for better or worse. A wide range of forces--economic, political, and technical--will determine the impact of nuclear technology in the future, and no consensus exists on the outcome. The significance of nuclear technology for civilian or military purposes may expand, contract, or remain the same. This suggests a matrix of basic possibilities from which we focus on five alternative futures: (1) More civilian/Less military significance, (2) Less civilian/Less military significance, (3) Less civilian/More military significance, and (4) More civilian/More military significance. Of course, changed circumstances could also result in (5) the significance of both civilian and military nuclear technologies remaining about the same as today. Experts offer compelling logic why each of these alternatives is more likely or desirable. For each of these futures or their modifications, a more comprehensive vision can be presented and specific measures recommended. Some call for a new nuclear "compact" or "bargain" to share benefits and reduce risks. No matter which alternative future emerges, however, dealing with the legacy of existing civilian and military nuclear materials and infrastructure will keep important nuclear issues active for the next half-century.

  5. Radiation sensors for medical, industrial and environmental applications: how to engage with schools and the general public

    NASA Astrophysics Data System (ADS)

    Seitz, B.; Campos Rivera, N.; Gray, R.; Powell, A.; Thomson, F.

    2018-01-01

    Radiation, radiation detection and radiation protection are topics in physics and its applications which generate a wide interest in the public. This interest is either generated through medical procedures, applications of nuclear energy or nuclear accidents. The technical nature of these topics usually means that they are not well covered in the normal education stream, opening many opportunities to engage with schools and the general public to showcase the latest developments and their applications. The detection of radiation is at the very heart of understanding radiation, its fascination and associated fears. The outreach group of the nuclear physics group at the University of Glasgow demonstrates a number of successful outreach activities centred around radiation detection and described in this paper, focusing on activities delivered to a variety of audiences and related to applied nuclear physics work within our group. These concentrate on the application of novel sensor technologies for nuclear decommissioning, medical imaging modalities and the monitoring of environmental radioactivity. The paper will provide some necessary background material as well as practical instructions for some of the activities developed.

  6. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.

    2004-01-01

    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  7. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development ofmore » room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.« less

  8. Potential civil mission applications for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Beatty, R. G. G.

    1985-01-01

    It is pointed out that the energy needs of spacecraft over the last 25 years have been met by photovoltaic arrays with batteries, primary fuel cells, and radioisotope thermoelectric generators (RTG). However, it might be difficult to satisfy energy requirements for the next generation of space missions with the currently used energy sources. Applications studies have emphasized the need for a lighter, cheaper, and more compact high-energy source than the scaling up of current technologies would permit. These requirements could be satisfied by a nuclear reactor power system. The joint NASA/DOD/DOE SP-100 program is to explore and evaluate this option. Critical elements of the technology are also to be developed, taking into account space reactor systems of the 100 kW class. The present paper is concerned with some of the civil mission categories and concepts which are enabled or significantly enhanced by the performance characteristics of a nuclear reactor energy system.

  9. 48 CFR 970.5227-12 - Patent rights-management and operating contracts, for-profit contractor, advance class waiver.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fields of technology are exceptional circumstance subject inventions: (A) Uranium enrichment technology; (B) Storage and disposal of civilian high-level nuclear waste and spent fuel technology; and (C... Counsel assisting the contracting activity. (7) Practical application means to manufacture, in the case of...

  10. 48 CFR 970.5227-12 - Patent rights-management and operating contracts, for-profit contractor, advance class waiver.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fields of technology are exceptional circumstance subject inventions: (A) Uranium enrichment technology; (B) Storage and disposal of civilian high-level nuclear waste and spent fuel technology; and (C... Counsel assisting the contracting activity. (7) Practical application means to manufacture, in the case of...

  11. Peaceful Uses of the Atom and Atoms for Peace

    Science.gov Websites

    power plants. Converting Energy to Medical Progress [Nuclear Medicine] The DOE Office of Biological and Environmental Research (BER) Medical Sciences program fosters research that develops beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. The First Weighing of Plutonium

  12. A historical perspective of remote operations and robotics in nuclear facilities. Robotics and Intelligent Systems Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herndon, J.N.

    1992-12-31

    The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. The technology which we recognize today as remote technology has evolved over the last 45 years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extended reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety.more » The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed largely due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Manipulation systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Viewing systems have included periscopes, shield windows, and television systems. Experience over the past 45 years indicates that maintenance system flexibility is essential to typical repair tasks because they are usually not repetitive, structured, or planned. Fully remote design (manipulation, task provisions, remote tooling, and facility synergy) is essential to work task efficiency. Work for space applications has been primarily research oriented with relatively few successful space applications, although the shuttle`s remote manipulator system has been quite successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus.« less

  13. Revolution in nuclear detection affairs

    NASA Astrophysics Data System (ADS)

    Stern, Warren M.

    2014-05-01

    The detection of nuclear or radioactive materials for homeland or national security purposes is inherently difficult. This is one reason detection efforts must be seen as just one part of an overall nuclear defense strategy which includes, inter alia, material security, detection, interdiction, consequence management and recovery. Nevertheless, one could argue that there has been a revolution in detection affairs in the past several decades as the innovative application of new technology has changed the character and conduct of detection operations. This revolution will likely be most effectively reinforced in the coming decades with the networking of detectors and innovative application of anomaly detection algorithms.

  14. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.

    1981-01-01

    A series of technical developments and their clinical applications in various nuclear technologies at Brookhaven National Laboratory is described. These include the development of a portable neutron activation facility for measuring cadmium in vivo in kidney and liver, a technique for the measurement of body iron utilizing nuclear resonant scattering of gamma rays, a non-invasive measure of the skeletal levels of lead by an x-ray fluorescence technique, and the development of a pulsed Van de Graaff generator as a source of pulsed neutrons for the measurement of lung silicon. (ACR)

  15. The development of nuclear energy in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleta, C.

    1992-01-01

    The paper traces the development of nuclear energy in the Philippines and outlines the program on the peaceful uses of nuclear energy in the country as well as the problems and prospects of nuclear energy development. Nuclear power is at a standstill but the other areas of nuclear energy development are underway. The projects on the application of nuclear energy in agriculture, industry, public health and safety, are being pursued. Technology transfer to end users is sometimes hampered by public acceptance issues, such as irradiated food being believed to become radioactive, dislike with anything associated with radiation, and plain inherentmore » fear of nuclear energy.« less

  16. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  17. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components andmore » fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.« less

  18. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.

  19. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  20. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-6, Protective Coating Inspection.

    ERIC Educational Resources Information Center

    Espy, John

    This sixth in a series of eight modules for a course titled Mechanical Inspection describes the duties of the nuclear quality assurance/quality control technician that are associated with protective coatings, and the national standards that govern the selection, application, and inspection of protective coatings for the reactor containment…

  1. Energy for Development: Third World Options. Worldwatch Paper 15.

    ERIC Educational Resources Information Center

    Hayes, Denis

    Focusing on the need for energy to sustain economic development on a long-term basis, the document examines energy options of the post-petroleum era in developing nations. Nuclear power and solar power are the most important among proposed alternative energy sources. Limited applicability of nuclear technology to the Third World is discussed.…

  2. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler technology for space Rankine cycle systems. Research is summarized on the problems of flow stability, liquid carryover, pressure drop and heat transfer, and on potential solutions developed, primarily those developed by the NASA Lewis Research Center in the 1960's and early 1970's.

  3. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    NASA Technical Reports Server (NTRS)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  4. Technologies for Upgrading Light Water Reactor Outlet Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessmentmore » of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less

  6. Microprocessor-based control systems application in nuclear power plant critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M.R.; Nowak, J.B.

    Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems inmore » existing plants or design new power plants with microprocessor-based control systems.« less

  7. Nuclear Electric Propulsion for Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Schmidt, G.

    Nuclear electric propulsion (NEP) holds considerable promise for deep space exploration in the future. Research and development of this technology is a key element of NASA's Nuclear Systems Initiative (NSI), which is a top priority in the President's FY03 NASA budget. The goal is to develop the subsystem technologies that will enable application of NEP for missions to the outer planets and beyond by the beginning of next decade. The high-performance offered by nuclear-powered electric thrusters will benefit future missions by (1) reducing or eliminating the launch window constraints associated with complex planetary swingbys, (2) providing the capability to perform large spacecraft velocity changes in deep space, (3) increasing the fraction of vehicle mass allocated to payload and other spacecraft systems, and, (3) in some cases, reducing trip times over other propulsion alternatives. Furthermore, the nuclear energy source will provide a power-rich environment that can support more sophisticated science experiments and higher- speed broadband data transmission than current deep space missions. This paper addresses NASA's plans for NEP, and discusses the subsystem technologies (i.e., nuclear reactors, power conversion and electric thrusters) and system concepts being considered for the first generation of NEP vehicles.

  8. Evaluating Nonproliferation Bona Fides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, Amy M.; Mathews, Caroline E.; Kessler, Carol E.

    2008-07-14

    Anticipated growth of global nuclear energy in a difficult international security environment heightens concerns that states could decide to exploit their civilian nuclear fuel cycles as a means of acquiring nuclear weapons. Such concerns partly reflect a fundamental tension in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). On the one hand, Articles II and III of the NPT clearly prohibit each non-nuclear-weapon state party from acquiring nuclear weapons. On the other hand, Article IV of the NPT confers the “inalienable right” of Parties to the treaty to “develop research, production and use of nuclear energy for peaceful purposes…,”more » and directs all Parties to “facilitate… the fullest possible exchange of equipment, materials and scientific and technological information for the peaceful uses of nuclear energy…,” and “cooperate in contributing…to the further development of the applications of nuclear energy for peaceful purposes….” This juxtaposition raises the possibility that a state could exercise its Article IV right to develop a civilian nuclear fuels cycle and then use the equipment, materials and technology to acquire nuclear weapons in violation of its Article II and III obligations.« less

  9. NASA's progress in nuclear electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  10. Opportunities and challenges for structural health monitoring of radioactive waste systems and structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giurgiutiu, Victor; Mendez Torres, Adrian E.

    2013-07-01

    Radioactive waste systems and structures (RWSS) are safety-critical facilities in need of monitoring over prolonged periods of time. Structural health monitoring (SHM) is an emerging technology that aims at monitoring the state of a structure through the use of networks of permanently mounted sensors. SHM technologies have been developed primarily within the aerospace and civil engineering communities. This paper addresses the issue of transitioning the SHM concept to the monitoring of RWSS and evaluates the opportunities and challenges associated with this process. Guided wave SHM technologies utilizing structurally-mounted piezoelectric wafer active sensors (PWAS) have a wide range of applications basedmore » on both propagating-wave and standing-wave methodologies. Hence, opportunities exist for transitioning these SHM technologies into RWSS monitoring. However, there exist certain special operational conditions specific to RWSS such as: radiation field, caustic environments, marine environments, and chemical, mechanical and thermal stressors. In order to address the high discharge of used nuclear fuel (UNF) and the limited space in the storage pools the U.S. the Department of Energy (DOE) has adopted a 'Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste' (January 2013). This strategy endorses the key principles that underpin the Blue Ribbon Commission's on America's Nuclear Future recommendations to develop a sustainable program for deploying an integrated system capable of transporting, storing, and disposing of UNF and high-level radioactive waste from civilian nuclear power generation, defense, national security, and other activities. This will require research to develop monitoring, diagnosis, and prognosis tools that can aid to establish a strong technical basis for extended storage and transportation of UNF. Monitoring of such structures is critical for assuring the safety and security of the nation's spent nuclear fuel until a national policy for closure of the nuclear fuel cycle is defined and implemented. In addition, such tools can provide invaluable and timely information for verification of the predicted mechanical performance of RWSS (e.g. concrete or steel barriers) during off-normal occurrence and accident events such as the tsunami and earthquake event that affected Fukushima Daiichi nuclear power plant. The ability to verify the conditions, health, and degradation behavior of RWSS over time by applying nondestructive testing (NDT) as well as development of nondestructive evaluation (NDE) tools for new degradation processes will become challenging. The paper discusses some of the challenges associated to verification and diagnosis for RWSS and identifies SHM technologies which are more readily available for transitioning into RWSS applications. Fundamental research objectives that should be considered for the transition of SHM technologies (e.g., radiation hardened piezoelectric materials) for RWSS applications are discussed. The paper ends with summary, conclusions, and suggestions for further work. (authors)« less

  11. Revolution in nuclear detection affairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Warren M.

    The detection of nuclear or radioactive materials for homeland or national security purposes is inherently difficult. This is one reason detection efforts must be seen as just one part of an overall nuclear defense strategy which includes, inter alia, material security, detection, interdiction, consequence management and recovery. Nevertheless, one could argue that there has been a revolution in detection affairs in the past several decades as the innovative application of new technology has changed the character and conduct of detection operations. This revolution will likely be most effectively reinforced in the coming decades with the networking of detectors and innovativemore » application of anomaly detection algorithms.« less

  12. The Midlife Crisis of the Nuclear Nonproliferation Treaty

    NASA Astrophysics Data System (ADS)

    Pella, Peter

    2016-03-01

    The Nuclear Nonproliferation Treaty (NPT) has been the principal legal barrier to prevent the spread of nuclear weapons for the past forty-five years. It promotes the peaceful uses of nuclear technology and insures, through the application of safeguards inspections conducted by the International Atomic Energy Agency (IAEA), that those technologies are not being diverted toward the production of nuclear weapons. It is also the only multinational treaty that obligates the five nuclear weapons states that are party to the treaty (China, France, Great Britain, Russia, and the United States) to pursue nuclear disarmament measures. Though there have been many challenges over the years, most would agree that the treaty has largely been successful. However, many are concerned about the continued viability of the NPT. The perceived slow pace of nuclear disarmament, the interest by some countries to consider a weapons program while party to the treaty, and the funding and staffing issues at the IAEA, are all putting considerable strain on the treaty. This manuscript explores those issues and offers some possible solutions to ensure that the NPT will survive effectively for many years to come.

  13. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFee, J.; Langsted, J.; Young, M.

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc.,more » was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)« less

  14. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  15. SP-100 program developments

    NASA Technical Reports Server (NTRS)

    Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.; Verga, R. L.; Wiley, R. L.

    1985-01-01

    An update is provided on the status of the Sp-100 Space Reactor Power Program. The historical background that led to the program is reviewed and the overall program objectives and development approach are discussed. The results of the mission studies identify applications for which space nuclear power is desirable and even essential. Results of a series of technology feasibility experiments are expected to significantly improve the earlier technology data base for engineering development. The conclusion is reached that a nuclear reactor space power system can be developed by the early 1990s to meet emerging mission performance requirements.

  16. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  17. Possibilities for Nuclear Photo-Science with Intense Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C J; Hartemann, F V; McNabb, D P

    2006-06-26

    The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging ofmore » materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear materials. With TREX it is possible to use NRF to provide high spatial resolution (micron scale) images of the isotopic distribution of all materials in a given object. Because of the high energy of the photons, imaging through dense and/or thick objects is possible. This technology will have applicability in many arenas including the survey of cargo for the presence of clandestine nuclear materials. It is also possible to address the more general radiographic challenge of imaging low-density objects that are shielded or placed behind high density objects. In this case, it is the NRF cross section and not the electron density of the material that provides contrast. Extensions of T-REX technology will be dependent upon the evolution of short pulse laser technology to high average powers. Concepts for sources that would produce 10's of kWs of gamma-rays by utilizing MW-class average-power, diode-pumped, short pulse lasers and energy recovery LINAC technology have been developed.« less

  18. Recent Advances in Resonance Region Nuclear Data Measurements and Analyses for Supporting Nuclear Energy Applications

    NASA Astrophysics Data System (ADS)

    Dunn, Michael

    2008-10-01

    For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.

  19. Nuclear cardiograph and scintigraphy

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P.

    1975-01-01

    Extensive advances in the technology of detectors, data analysis systems, and tracers used have resulted in greatly expanded applications of radioisotopes to the assessment of cardiac function and disease. The development of nuclear cardiology has proceeded along four lines: (1) radionuclide angiography, (2) myocardial perfusion imaging, (3) intracoronary microsphere imaging, and (4) regional myocardial blood flow determination using inert gases.

  20. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performancemore » of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial application and demonstration under NHES.« less

  1. Distributed nuclear medicine applications using World Wide Web and Java technology.

    PubMed

    Knoll, P; Höll, K; Mirzaei, S; Koriska, K; Köhn, H

    2000-01-01

    At present, medical applications applying World Wide Web (WWW) technology are mainly used to view static images and to retrieve some information. The Java platform is a relative new way of computing, especially designed for network computing and distributed applications which enables interactive connection between user and information via the WWW. The Java 2 Software Development Kit (SDK) including Java2D API, Java Remote Method Invocation (RMI) technology, Object Serialization and the Java Advanced Imaging (JAI) extension was used to achieve a robust, platform independent and network centric solution. Medical image processing software based on this technology is presented and adequate performance capability of Java is demonstrated by an iterative reconstruction algorithm for single photon emission computerized tomography (SPECT).

  2. Integral nuclear data validation using experimental spent nuclear fuel compositions

    DOE PAGES

    Gauld, Ian C.; Williams, Mark L.; Michel-Sendis, Franco; ...

    2017-07-19

    Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors andmore » representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. Furthermore, the database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.« less

  3. Integral nuclear data validation using experimental spent nuclear fuel compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauld, Ian C.; Williams, Mark L.; Michel-Sendis, Franco

    Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors andmore » representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. Furthermore, the database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.« less

  4. Mobile robotics application in the nuclear industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.L.; White, J.R.

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Somemore » of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.« less

  5. Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.; Slattery, Stuart; Billings, Jay Jay

    The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of Energy's Office of Nuclear Energy provides a robust toolkit for the modeling and simulation of current and future advanced nuclear reactor designs. This toolkit provides these technologies organized across product lines: two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling, and high-level workflow management. The Fuels Product Line and the Reactor Product line provide advanced computational technologies that serve each respective field well, however, their current lack of integration presents a major impediment to future improvements of simulation solution fidelity. Theremore » is a desire for the capability to mix and match tools across Product Lines in an effort to utilize the best from both to improve NEAMS modeling and simulation technologies. This report details a new effort to provide this Product Line interoperability through the development of a new application called Warthog. This application couples the BISON Fuel Performance application from the Fuels Product Line and the PROTEUS Core Neutronics application from the Reactors Product Line in an effort to utilize the best from all parts of the NEAMS toolkit and improve overall solution fidelity of nuclear fuel simulations. To achieve this, Warthog leverages as much prior work from the NEAMS program as possible, and in doing so, enables interoperability between the disparate MOOSE and SHARP frameworks, and the libMesh and MOAB mesh data formats. This report describes this work in full. We begin with a detailed look at the individual NEAMS framework technologies used and developed in the various Product Lines, and the current status of their interoperability. We then introduce the Warthog application: its overall architecture and the ways it leverages the best existing tools from across the NEAMS toolkit to enable BISON-PROTEUS integration. Furthermore, we show how Warthog leverages a tool known as DataTransferKit to seamlessly enable the transfer for solution data between disparate frameworks and mesh formats. To end, we demonstrate tests for the direct software coupling of BISON and PROTEUS using Warthog, and discuss current impediments and solutions to the construction of physically realistic input models for this coupled BISON-PROTEUS system.« less

  6. Kennedy Space Center's Partnership with Graftel Incorporated

    NASA Technical Reports Server (NTRS)

    Dunn, Carol Anne

    2010-01-01

    NASA Kennedy Space Center (KSC) has recently partnered with Graftel Incorporated under an exclusive license agreement for the manufacture and sale of the Smart Current Signature Sensor. The Smart Current Signature Sensor and software were designed and developed to be utilized on any application using solenoid valves. The system monitors the electrical and mechanical health of solenoids by comparing the electrical current profile of each solenoid actuation to a typical current profile and reporting deviation from its learned behavior. The objective of this partnership with Graftel is for them to develop the technology into a hand-held testing device for their customer base in the Nuclear Power Industry. The device will be used to perform diagnostic testing on electromechanical valves used in Nuclear Power plants. Initially, Graftel plans to have working units within the first year of license in order to show customers and allow them to put purchase requests into their next year's budget. The subject technology under discussion was commercialized by the Kennedy Space Center Technology Programs and Partnerships Office, which patented the technology and licensed it to Graftel, Inc., a company providing support, instrumentation, and calibration services to the nuclear community and private sector for over 10 years. For the nuclear power industry, Graftel designs, manufacturers, and calibrates a full line of testing instrumentation. Grafters smart sensors have been in use in the United States since 1993 and have proved to decrease set-up time and test durations. The project was funded by Non-Destructive Engineering, and it is felt that this technology will have more emphasis on future vehicles. Graftel plans to market the Current Signature Sensor to the Electric Utility industry. Graftel currently supplies product and services to the Nuclear Power Industry in the United States as well as internationally. Product and services sold are used in non-destructive testing for valves, penetrations and other applications. Graftel also supplies testing services to an industrial customer base. The customer base includes 90 percent of the U.S. Nuclear plants and plants in Brazil, Europe, and Asia. Graftel works internationally with two representative groups and employees and has ten people at the principle location and a group of contract engineers around the country.

  7. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  8. Digital Sensor Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. Anmore » example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).« less

  9. Current submarine atmosphere control technology.

    PubMed

    Mazurek, W

    1998-01-01

    Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less

  11. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  12. On The Export Control Of High Speed Imaging For Nuclear Weapons Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Scott Avery; Altherr, Michael Robert

    Since the Manhattan Project, the use of high-speed photography, and its cousins flash radiography1 and schieleren photography have been a technological proliferation concern. Indeed, like the supercomputer, the development of high-speed photography as we now know it essentially grew out of the nuclear weapons program at Los Alamos2,3,4. Naturally, during the course of the last 75 years the technology associated with computers and cameras has been export controlled by the United States and others to prevent both proliferation among non-P5-nations and technological parity among potential adversaries among P5 nations. Here we revisit these issues as they relate to high-speed photographicmore » technologies and make recommendations about how future restrictions, if any, should be guided.« less

  13. MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREENE,G.A.; GUPPY,J.G.

    1998-08-01

    This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors andmore » hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.« less

  14. 15 CFR Supplement No. 1 to Part 766 - Guidance on Charging and Penalty Determinations in Settlement of Administrative Enforcement Cases

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... based on nuclear, biological, and chemical weapon proliferation, missile technology proliferation, and... are relevant to the application of this guidance to their cases, to whether a violation has in fact... question—for example, export of items subject to nuclear controls to a country with a poor record of...

  15. 15 CFR Supplement No. 1 to Part 766 - Guidance on Charging and Penalty Determinations in Settlement of Administrative Enforcement Cases

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... based on nuclear, biological, and chemical weapon proliferation, missile technology proliferation, and... are relevant to the application of this guidance to their cases, to whether a violation has in fact... question—for example, export of items subject to nuclear controls to a country with a poor record of...

  16. Editorial

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqing; Shen, Hao; Du, Guanghua

    2017-08-01

    This special issue of Nuclear Instruments and Methods B contains the proceedings of the 15th International Conference on Nuclear Microprobe Technology and Applications (ICNMTA2016) and the 6th International Workshop on Proton Beam Writing held in Lanzhou, China, from 31 July to 5 August 2016. The conference was hosted by the Institute of Modern Physics, Chinese Academy of Sciences and was co-organized by Fudan University.

  17. Information barrier technology applied to less restrictive environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacArthur, D. W.; Langner, D. C.; Hypes, P. A.

    2004-01-01

    The information barrier is an important part of any system that allows inspector verification of declared classified materials. In this context, the information barrier must protect classified information while allowing the inspectors to reach correct and independent conclusions concerning the veracity of the declaration. Although other applications may not involve national security, information barrier techniques can still be used to protect information considered sensitive by individuals, commercial entities, or national organizations. Other potential areas of application include homeland security and airport screening, personal information disclosed by modern scanning techniques, nuclear information not considered classified but still sensitive, and industrial secretmore » information that could be compromised during 3rd party acceptance testing. Modern personnel screening devices are limited more by their potential for release of personal information than by technology. Screening systems that could be used in airports and other sensitive areas are often not utilized because the same system that can show the details of weapons carried on a person's body can also reveal potentially embarrassing and sensitive details of the body itself. Much other nuclear information, as well as industrially secret information, while not actually classified, is not appropriate for widespread dissemination. In both cases an inspector may need to verify elements of the manufacturer's or owner's claims, but at the same time not disclose sensitive information to either the inspector or the general public. Thus, information barrier technology, although originally developed for protection of nuclear weapons information, is also directly usable in a number of counter-terrorism and nonproliferation applications. Although these applications may not (or may) require the same level of rigor as the original application to classified items, many of the same techniques can be used in protecting this non-classified, but still sensitive, information.« less

  18. Commercial users panel

    NASA Technical Reports Server (NTRS)

    Byrd, Joseph S.; Flatau, Carl; Hodge, David C.; Hollis, Ralph; Leach, Eugene F.; Gilbert, Ray; Cleland, John; Leifer, Larry; Naser, Joseph; Schmuter, Samson D.

    1987-01-01

    The discussions of motives and requirements for telerobotics application demonstrated that, in many cases, lack of progress was a result not of limited opportunities but of inadequate mechanisms and resources for promoting opportunities. Support for this conclusion came from Telerobotics, Inc., one of the few companies devoted primarily to telerobot systems. They have produced units for such diverse applications as nuclear fusion research, particle accelerators, cryogenics, firefighting, marine biology/undersea systems and nuclear mobile robotics. Mr. Flatau offered evidence that telerobotics research is only rarely supported by the private sector and that it often presents a difficult market. Questions on the mechanisms contained within the NASA technology transfer process for promoting commercial opportunities were fielded by Ray Gilbert and Tom Walters. A few points deserve emphasis: (1) NASA/industry technology transfer occurs in both directions and NASA recognizes the opportunity to learn a great deal from industry in the fields of automation and robotics; (2) promotion of technology transfer projects takes a demand side approach, with requests to industry for specific problem identification. NASA then proposes possible solutions; and (3) comittment ofmotivated and technically qualified people on each end of a technology transfer is essential.

  19. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE PAGES

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; ...

    2016-10-05

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  20. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  1. Archival and Dissemination of the U.S. and Canadian Experimental Nuclear Reaction Data (EXFOR Project)

    NASA Astrophysics Data System (ADS)

    Pritychenko, Boris; Hlavac, Stanislav; Schwerer, Otto; Zerkin, Viktor

    2017-09-01

    The Exchange Format (EXFOR) or experimental nuclear reaction database and the associated Web interface provide access to the wealth of low- and intermediate-energy nuclear reaction physics data. This resource includes numerical data sets and bibliographical information for more than 22,000 experiments since the beginning of nuclear science. Analysis of the experimental data sets, recovery and archiving will be discussed. Examples of the recent developments of the data renormalization, uploads and inverse reaction calculations for nuclear science and technology applications will be presented. The EXFOR database, updated monthly, provides an essential support for nuclear data evaluation, application development and research activities. It is publicly available at the National Nuclear Data Center website http://www.nndc.bnl.gov/exfor and the International Atomic Energy Agency mirror site http://www-nds.iaea.org/exfor. This work was sponsored in part by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookha ven Science Associates, LLC.

  2. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  3. The Power of Integrators, Financiers, and Insurers to Reduce Proliferation Risks: Nuclear Dual-Use Goods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weise, Rachel A.; Hund, Gretchen

    2015-05-01

    Globalization of manufacturing supply chains has changed the nature of nuclear proliferation. Before 1991, nonproliferation efforts focused almost exclusively on limiting the spread of materials and equipment specifically designed for nuclear use -- reactors, centrifuges, and fissile material. Dual-use items, those items with both nuclear and non-nuclear applications, were not closely scrutinized or controlled. However, in 1991 the international community discovered that Iraq had developed a fairly sophisticated nuclear weapons program by importing dual-use items; this discovery spurred the international community to increase controls on dual-use technologies. Despite these international efforts, dual-use items are still a challenge for those seekingmore » to limit proliferation.« less

  4. From Confrontation to Cooperation: 8th International Seminar on Nuclear War

    NASA Astrophysics Data System (ADS)

    Zichichi, A.; Dardo, M.

    1992-09-01

    The Table of Contents for the full book PDF is as follows: * OPENING SESSION * A. Zichichi: Opening Statements * R. Nicolosi: Opening Statements * MESSAGES * CONTRIBUTIONS * "The Contribution of the Erice Seminars in East-West-North-South Scientific Relations" * 1. LASER TECHNOLOGY * "Progress in laser technology" * "Progress in laboratory high gain ICF: prospects for the future" * "Applications of laser in metallurgy" * "Laser tissue interactions in medicine and surgery" * "Laser fusion" * "Compact X-ray lasers in the laboratory" * "Alternative method for inertial confinement" * "Laser technology in China" * 2. NUCLEAR AND CHEMICAL SAFETY * "Reactor safety and reactor design" * "Thereotical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core" * "How really to attain reactor safely" * "The problem of chemical weapons" * "Long terms genetic effects of nuclear and chemical accidents" * "Features of the brain which are of importance in understanding the mode of operation of toxic substances and of radiation" * "CO2 and ultra safe reactors" * 3. USE OF MISSILES * "How to convert INF technology for peaceful scientific purposes" * "Beating words into plowshares: a proposal for the peaceful uses of retired nuclear warheads" * "Some thoughts on the peaceful use of retired nuclear warheads" * "Status of the HEFEST project" * 4. OZONE * "Status of the ozone layer problem" * 5. CONVENTIONAL AND NUCLEAR FORCE RESTRUCTURING IN EUROPE * 6. CONFLICT AVOIDANCE MODEL * 7. GENERAL DISCUSSION OF THE WORLD LAB PROJECTS * "East-West-North-South Collaboration in Subnuclear Physics" * "Status of the World Lab in the USSR" * CLOSING SESSION

  5. Taxonomy for Common-Cause Failure Vulnerability and Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Richard Thomas; Korsah, Kofi; Mullens, James Allen

    2015-09-01

    Applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The potential for CCF vulnerability inhibits I&C modernization, thereby challenging the long-term sustainability of existing plants. For new plants and advanced reactor concepts, concern about CCF vulnerability in highly integrated digital I&C systems imposes a design burden that results in higher costs and increased complexity. The regulatory uncertainty in determining which mitigation strategies will be acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutionsmore » devised for existing plants. To address the conditions that constrain the transition to digital I&C technology by the US nuclear industry, crosscutting research is needed to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for nuclear power plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is investigating mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive basis to qualify digital technology for nuclear power applications. This report documents the development of a CCF taxonomy. The basis for the CCF taxonomy was generated by determining consistent terminology and establishing a classification approach. The terminology is based on definitions from standards, guides, and relevant nuclear power industry technical reports. The classification approach is derived from identified classification schemes focused on I&C systems and key characteristics, including failure modes. The CCF taxonomy provides the basis for a systematic organization of key systems aspects relevant to analyzing the potential for CCF vulnerability and the suitability of mitigation techniques. Development of an effective CCF taxonomy will help to provide a framework for establishing the objective analysis and assessment capabilities desired to facilitate rigorous identification of fault types and triggers that are the fundamental elements of CCF.« less

  6. Computer codes for checking, plotting and processing of neutron cross-section covariance data and their application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E.; Roussin, R.W.

    This paper presents a brief review of computer codes concerned with checking, plotting, processing and using of covariances of neutron cross-section data. It concentrates on those available from the computer code information centers of the United States and the OECD/Nuclear Energy Agency. Emphasis will be placed also on codes using covariances for specific applications such as uncertainty analysis, data adjustment and data consistency analysis. Recent evaluations contain neutron cross section covariance information for all isotopes of major importance for technological applications of nuclear energy. It is therefore important that the available software tools needed for taking advantage of this informationmore » are widely known as hey permit the determination of better safety margins and allow the optimization of more economic, I designs of nuclear energy systems.« less

  7. Fiber optic cables for severe environment

    NASA Astrophysics Data System (ADS)

    Massarani, M. G.

    1982-10-01

    The most severe challenges to the fiber optic cable are related to nuclear weapons testing and other military applications. Nuclear experiments are conducted in deep underground holes. Cables connect the experimental device to recording stations positioned at a certain distance from ground zero. Attractive features provided by fiber optic cable technology include large cost advantages in cable purchase price, savings in handling cost due to the lighter weight, immunity to electromagnetic pulses (EMP), and the capability to transmit high data rates. Details of underground nuclear testing are discussed, taking into account the underground nuclear test environment, and questions of fiber optic cable design for the underground experiments. The use of fiber optics for the Ground Launched Cruise Missile Weapons System (GLCM) is also considered. Attention is given to the GLCM environment, and the proposed cable for GLCM application.

  8. Possible Impacts of Major Counter Terrorism Security Actions on Research, Development, and Higher Education

    DTIC Science & Technology

    2002-04-08

    purpose is to avert the spread of weapons of mass destruction and missile delivery systems, maintain U.S. advantage in some militarily critical...the Production and Use of Nuclear Material for Military Applications, 3. Missile / missile Technology: Technologies Associated with Air Vehicles And...Unmanned Missile Systems. 4. Aircraft and Missile Propulsion and Vehicular Systems: Technologies Associated With Liquid and Solid Rocket Propulsion

  9. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  10. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashdan, Ahmad Al; Oxstrand, Johanna; Agarwal, Vivek

    As part of the ongoing efforts at the U.S. Department of Energy’s Light Water Reactor Sustainability Program, Idaho National Laboratory is conducting several pilot projects in collaboration with the nuclear industry to improve the reliability, safety, and economics of the nuclear power industry, especially as the nuclear power plants extend their operating licenses to 80 years. One of these pilot projects is the automated work package (AWP) pilot project. An AWP is an electronic intelligent and interactive work package. It uses plant condition, resources status, and user progress to adaptively drive the work process in a manner that increases efficiencymore » while reducing human error. To achieve this mission, the AWP acquires information from various systems of a nuclear power plant’s and incorporates several advanced instrumentation and control technologies along with modern human factors techniques. With the current rapid technological advancement, it is possible to envision several available or soon-to-be-available capabilities that can play a significant role in improving the work package process. As a pilot project, the AWP project develops a prototype of an expanding set of capabilities and evaluates them in an industrial environment. While some of the proposed capabilities are based on using technological advances in other applications, others are conceptual; thus, require significant research and development to be applicable in an AWP. The scope of this paper is to introduce a set of envisioned capabilities, their need for the industry, and the industry difficulties they resolve.« less

  12. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  13. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology demonstration unit (TDU). In November, 2011 testing of a 37-pin core simulator (designed in conjunction with Los Alamos National Laboratory) for use with the TDU will occur. Previous testing at the EFFTF has included the thermal and mechanical coupling of a pumped NaK loop to Stirling engines (provided by GRC). Testing related to heat pipe cooled systems, gas cooled systems, heat exchangers, and other technologies has also been performed. Integrated TDU testing will begin at GRC in 2013. Thermal simulators developed at the EFF-TF are capable of operating over the temperature and power range typically of interest to compact reactors. Small and large diameter simulators have been developed, and simulators (coupled with the facility) are able to closely match the axial and radial power profile of all potential systems of interest. A photograph of the TDU core simulator during assembly is provided in Figure 2.

  14. Proceedings of the American Power Conference. Volume 58-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1996-10-01

    This is volume 58-I of the proceedings of the American Power Conference, 1996, Technology for Competition and Globalization. The topics of the papers include power plant DC issues; cost of environmental compliance; advanced coal systems -- environmental performance; technology for competition in dispersed generation; superconductivity technologies for electric utility applications; power generation trends and challenges in China; aging in nuclear power plants; innovative and competitive repowering options; structural examinations, modifications and repairs; electric load forecasting; distribution planning; EMF effects; fuzzy logic and neural networks for power plant applications; electrokinetic decontamination of soils; integrated gasification combined cycle; advances in fusion; coolingmore » towers; relays; plant controls; flue gas desulfurization; waste product utilization; and improved technologies.« less

  15. TOWARD THE DEVELOPMENT OF A CONSENSUS MATERIALS DATABASE FOR PRESSURE TECHNOLGY APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, Robert W; Ren, Weiju

    The ASME construction code books specify materials and fabrication procedures that are acceptable for pressure technology applications. However, with few exceptions, the materials properties provided in the ASME code books provide no statistics or other information pertaining to material variability. Such information is central to the prediction and prevention of failure events. Many sources of materials data exist that provide variability information but such sources do not necessarily represent a consensus of experts with respect to the reported trends that are represented. Such a need has been identified by the ASME Standards Technology, LLC and initial steps have been takenmore » to address these needs: however, these steps are limited to project-specific applications only, such as the joint DOE-ASME project on materials for Generation IV nuclear reactors. In contrast to light-water reactor technology, the experience base for the Generation IV nuclear reactors is somewhat lacking and heavy reliance must be placed on model development and predictive capability. The database for model development is being assembled and includes existing code alloys such as alloy 800H and 9Cr-1Mo-V steel. Ownership and use rights are potential barriers that must be addressed.« less

  16. Current status and applications of somatic cell nuclear transfer in dogs.

    PubMed

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Developments of AMS at the TANDAR accelerator

    NASA Astrophysics Data System (ADS)

    Fernández Niello, J. O.; Abriola, D.; Alvarez, D. E.; Capurro, O. A.; di Tada, M.; Etchegoyen, A.; Ferrero, A. M. J.; Martí, G. V.; Pacheco, A. J.; Testoni, J. E.; Korschinek, G.

    1996-08-01

    Man-made long-lived radioisotopes have been produced as a result of different nuclear technologies. The study of accidental spillages and the determination of radioisotope concentrations in nuclear waste prior to final storage in a repository are subjects of great interest in connection with this activity. The accelerator mass spectrometry (AMS) technique is a powerful tool to measure long-lived isotopes at abundance ratios as low as 10 -12-10 -15 in small samples. Applications to the Argentine nuclear program like those mentioned above, as well as applications to archaeology, hydrology and biomedical research, are considered in an AMS program using the TANDAR 20 UD electrostatic accelerator at Buenos Aires. In this work we present the status of the program and a description of the facility.

  18. Touch NMR: An NMR Data Processing Application for the iPad

    ERIC Educational Resources Information Center

    Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to…

  19. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of thermal high-enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of 233,235U and 239Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, fusion, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL, and can be retrieved from www.nndc.bnl.gov.

  20. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    NASA Astrophysics Data System (ADS)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry’s physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator engineers and vendors, medical doctors, cultural heritage experts... the list goes on and on. While thousands of his acquaintances already miss Jerry, this is being felt most by his family and us (B.D. and F.D.M).

  1. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    NASA Astrophysics Data System (ADS)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry's physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator engineers and vendors, medical doctors, cultural heritage experts... the list goes on and on. While thousands of his acquaintances already miss Jerry, this is being felt most by his family and us (B.D. and F.D.M).

  2. Inspection report: the Department of Energy's export licensing process for dual-use and munitions commodities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Gregory H.

    1999-05-01

    Export of commodities, encouraged by both the private sector and the Federal Government, helps to improve our position in the global economy and is in the national interest of the US. However, exports of commodities or technologies, without regard to whether they may significantly contribute to the military potential of individual countries or combination of countries or enhance the proliferation of weapons of mass destruction, may adversely affect the national security of the US. The Federal Government, therefore, implements several laws, Executive Orders, and regulations to control the export of certain commodities and technologies. These commodities and technologies require amore » license for export. Some of the controlled items are designated as ''dual-use,'' that is, commodities and technologies that have both civilian and military application. Some dual-use commodities are designated as ''nuclear dual-use''--items controlled for nuclear nonproliferation purposes. Another group of controlled commodities is designated as munitions, which are goods and technologies that have solely military uses. The Department of Energy (Energy) conducts reviews of export license applications for nuclear dual-use items and certain munitions. On August 26, 1998, the Chairman of the Senate Committee on Governmental Affairs requested that the Inspectors General from the Departments of Commerce, Defense, Energy, State, and Treasury, and the Central Intelligence Agency (CIA), update and expand on a 1993 interagency review conducted by the Inspectors General of the Departments of Commerce, Defense, Energy, and State of the export licensing processes for dual-use and munitions commodities.« less

  3. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documentsmore » have also been provided to KHNP-CRI.« less

  4. Post-Cold War Science and Technology at Los Alamos

    NASA Astrophysics Data System (ADS)

    Browne, John C.

    2002-04-01

    Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances including our national security contributions, and discuss some of challenges for Los Alamos in the future.

  5. Annual Report to Congress of the Atomic Energy Commission for 1969

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1970-01-31

    The document represents the 1969 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1969'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Byproduct Nuclear Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Space Nuclear Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less

  6. Annual Report to Congress of the Atomic Energy Commission for 1968

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1969-01-31

    The document represents the 1968 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1968'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Nuclear Byproduct Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less

  7. Ion Thruster Development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Sarver-Verhey, Timothy R.

    1992-01-01

    Recent ion propulsion technology efforts at NASA's Lewis Research Center including development of kW-class xenon ion thrusters, high power xenon and krypton ion thrusters, and power processors are reviewed. Thruster physical characteristics, performance data, life projections, and power processor component technology are summarized. The ion propulsion technology program is structured to address a broad set of mission applications from satellite stationkeeping and repositioning to primary propulsion using solar or nuclear power systems.

  8. Study of influence of plastic scintillators thicknesses to detect Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Pereira, Maria da Conceicao Costa

    2015-07-01

    The Nuclear and Energy Research Institute - IPEN, offers post-graduate programs, namely: Nuclear Technology - Applications (TNA), Nuclear Technology - Materials (TNM), Nuclear Technology - Reactors (TNR). The Institute programs mission is to form expert technicians, physicists and engineers with a strong knowledge in their discipline to work in the nuclear area. The course: 'Theoretical Fundamentals and Practices of the Instrumentation used in Nuclear Data Acquisition' covers the use of laboratory nuclear instrumentation and the accomplishment of experiments to obtain nuclear parameters. One of these experimental exercises is object of this work: 'Study of influence of plastic scintillators to detectmore » Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources'. The use of scintillators plastic for the detection has the advantage of low cost, high mechanical strength, is not hygroscopic and can be manufactured in large volumes. This work aims to present the analysis of relative efficiency of detection of plastic scintillators of various thicknesses for beta particles and gamma radiation by the spectrum of {sup 137}Cs and {sup 90}Sr. Due to lack of resolution of the detectors plastic scintillators we worked with relative efficiency. The evaluation was done by reading deposited energy, using the software MAESTRO, for each detector thickness. For beta particles was observed an ideal thickness around 3 mm and the better photon efficiency was observed with increasing the thickness of the detector. The present experiment does not intend to establish a new technique for this subject: it solely aims student's practical exercises in nuclear properties of elements and detectors being part of the nuclear experimental course. (authors)« less

  9. The application of high-speed photography in z-pinch high-temperature plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Wang, Kui-lu; Qiu, Meng-tong; Hei, Dong-wei

    2007-01-01

    This invited paper is presented to discuss the application of high speed photography in z-pinch high temperature plasma diagnostics in recent years in Northwest Institute of Nuclear Technology in concentrative mode. The developments and applications of soft x-ray framing camera, soft x-ray curved crystal spectrometer, optical framing camera, ultraviolet four-frame framing camera and ultraviolet-visible spectrometer are introduced.

  10. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have been done to appropriately size components in the loop. Sensitivity analysis has been done to find the optimum design for the loop.

  11. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  12. Development and operation of the JAERI superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  13. Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Hill, T. J.; Stanley, M. L.; Martinell, J. S.

    1993-01-01

    The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.

  14. Neutron physics with accelerators

    NASA Astrophysics Data System (ADS)

    Colonna, N.; Gunsing, F.; Käppeler, F.

    2018-07-01

    Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.

  15. New frontiers in science and technology: nuclear techniques in nutrition123

    PubMed Central

    Davidsson, Lena; Tanumihardjo, Sherry

    2011-01-01

    The use of nuclear techniques in nutrition adds value by the increased specificity and sensitivity of measures compared with conventional techniques in a wide range of applications. This article provides a brief overview of well-established stable-isotope techniques to evaluate micronutrient bioavailability and assess human-milk intake in breastfed infants to monitor the transfer of micronutrients from the mother to the infant. Recent developments are highlighted in the use of nuclear techniques to evaluate biological interactions between food, nutrition, and health to move the agenda forward. PMID:21653797

  16. 1976 annual summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-01

    Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.

  17. Radiation pager

    NASA Astrophysics Data System (ADS)

    Warren, John L.; Vadnais, Kenneth G.

    1997-01-01

    Recent advances in miniature photomultiplier tubes and low power electronics have made possible a new generation of small gamma-ray radiation detectors specifically designed for use by government and law enforcement agencies for the detection and interdiction of concealed nuclear materials. This paper describes an inexpensive pager sized radiation detector that can be worn on the belt or carried in a pocket for hands free operation, and which can quietly alert the operator to the presence of nuclear material. The sensitivity performance of the detector technology and the application of the instrument to law enforcement and nuclear smuggling are discussed.

  18. Grumman and SDI-related technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, B.

    1985-01-01

    The application of Grumman Corporation's aerospace and nuclear fusion technology to the Strategic Defense Initiative (SDI) program has taken place in at least five major areas. These include infrared boost surveillance and tracking to detect intercontinental ballistic missiles just after launch, space-based radar, neutral particle beam platforms, nuclear electric power and propulsion units in space, and battle management systems. The author summarizes developments in each of these areas to illustrate how Grumman has responded to the request that the scientific and industrial communities pursue innovative, high-risk concepts involving materials, structures, space power, space physics, and kinetic energy weapon concepts. 3more » figures.« less

  19. Current status and recent research achievements in SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.

    2014-12-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  20. Engineering Design and Automation in the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wantuck, P. J.; Hollen, R. M.

    2002-01-01

    This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and processmore » the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the automation needs of many Laboratory programs.« less

  1. Military Applications of Fiber Optics Technology

    DTIC Science & Technology

    1989-05-01

    Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have

  2. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  3. Exploring the Application of Shared Ledger Technology to Safeguards and other National Security Topics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazar, Sarah L.; Winters, Samuel T.; Kreyling, Sean J.

    In 2016, the Office of International Nuclear Safeguards at the National Nuclear Security Administration (NNSA) within the Department of Energy (DOE) commissioned the Pacific Northwest National Laboratory (PNNL) to explore the potential implications of the digital currency bitcoin and its underlying technologies on the safeguards system. The authors found that one category of technologies referred to as Shared Ledger Technology (SLT) offers a spectrum of benefits to the safeguards system. While further research is needed to validate assumptions and findings in the paper, preliminary analysis suggests that both the International Atomic Energy Agency (IAEA) and Member States can use SLTmore » to promote efficient, effective, accurate, and timely reporting, and increase transparency in the safeguards system without sacrificing confidentiality of safeguards data. This increased transparency and involvement of Member States in certain safeguards transactions could lead to increased trust and cooperation among States and the public, which generates a number of benefits. This paper describes these benefits and the analytical framework for assessing SLT applications for specific safeguards problems. The paper will also describe other national security areas where SLT could provide benefits.« less

  4. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, M B; Oblozinsky, P; Herman, M

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutronmore » transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of {sup 233,235}U and {sup 239}Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL. The complete library, or any part of it, may be retrieved from www.nndc.bnl.gov.« less

  5. Treatment of donor cell/embryo with different approaches to improve development after nuclear transfer.

    PubMed

    Mizutani, Eiji; Wakayama, Sayaka; Wakayama, Teruhiko

    2015-01-01

    The successful production of cloned animals by somatic cell nuclear transfer (SCNT) is a promising technology with many potential applications in basic research, medicine, and agriculture. However, the low efficiency and the difficulty of cloning are major obstacles to the widespread use of this technology. Since the first mammal cloned from an adult donor cell was born, many attempts have been made to improve animal cloning techniques, and some approaches have successfully improved its efficiency. Nuclear transfer itself is still difficult because it requires an accomplished operator with a practiced technique. Thus, it is very important to find simple and reproducible methods for improving the success rate of SCNT. In this chapter, we will review our recent protocols, which seem to be the simplest and most reliable method to date to improve development of SCNT embryos.

  6. Power generation technology options for a Mars mission

    NASA Technical Reports Server (NTRS)

    Bozek, John M.; Cataldo, Robert L.

    1994-01-01

    The power requirements and resultant power system performances of an aggressive Mars mission are characterized. The power system technologies discussed will support both cargo and piloted space transport vehicles as well as a six-person crew on the Martian surface for 600 days. The mission uses materials transported by cargo vehicles and materials produced using in-situ planetary feed stock to establish a life-support cache and infrastructure for the follow-on piloted lander. Numerous power system technical options are sized to meet the mission power requirements using conventional and solar, nuclear, and wireless power transmission technologies for stationary, mobile surface, and space applications. Technology selections will depend on key criteria such as mass, volume, area, maturity, and application flexibility.

  7. Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert

    This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less

  8. Reexamining the Ethics of Nuclear Technology.

    PubMed

    Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor

    2015-08-01

    This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.

  9. Power management and distribution technology

    NASA Astrophysics Data System (ADS)

    Dickman, John Ellis

    Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.

  10. Power management and distribution technology

    NASA Technical Reports Server (NTRS)

    Dickman, John Ellis

    1993-01-01

    Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, H. C.; Chen, K.; Liu, Y. Y.

    The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (modelsmore » 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.« less

  12. Mid-Infrared Laser Absorption Diagnostics for Combustion and Propulsion Applications

    DTIC Science & Technology

    2010-12-01

    Combustion and Propulsion Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-07-1-0844 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew A...Institute Mechancial, Aerospace, and Nuclear Engineering Dept Troy NY 12180-3590 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING...absorption sensors based on quantum cascade laser (QCL) technology for combustion and propulsion applications. To demonstrate the potential of mid-IR QCL

  13. Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.

    2011-09-30

    Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guidedmore » wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.« less

  14. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  15. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  16. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Westfall, R. M.; McKnight, R. D.

    2005-05-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG). The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less

  18. Digital Actuator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken Thomas; Ted Quinn; Jerry Mauck

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs duemore » to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.« less

  19. Heat Pipe Technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.

  20. An Educology of Peace Education: Formulating a Strategy for the Promotion of Non-Violent Conflict Resolution in a Democracy

    ERIC Educational Resources Information Center

    Mallum, Jane O.

    2002-01-01

    The world today is fraught with violence and conflicts. This state of affairs is made all the more dangerous by the development of nuclear technology and the possibility of dissemination of military applications of this technology to unstable countries and militant terrorists. At the same time, there has been a rapid diffusion of democratization…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henzlova, Daniela; Kouzes, R.; McElroy, R.

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Departmentmore » of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3He-alternative technologies.« less

  2. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a reference 240 t-class heavy lift launch vehicle (HLLV) and smaller 120 t HLLV option. Attractive performance characteristics and high-leverage technologies associated with both the engine and stage are identified, and supporting parametric sensitivity data is provided. The potential for commonality of engine and stage components to satisfy a broad range of lunar and Mars missions is also discussed.

  3. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  4. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  5. Public relations and the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Coates, T. Donna

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the "enemy". Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. Clearly it is a challenge we cannot afford to ignore.

  6. Navy Omni-Directional Vehicle (ODV) development program

    NASA Technical Reports Server (NTRS)

    Mcgowen, Hillery

    1994-01-01

    The Omni-Directional Vehicle (ODV) development program sponsored by the Office of Naval Research at the Coastal Systems Station has investigated the application of ODV technology for use in the Navy shipboard environment. ODV technology as originally received by the Navy in the form of the Cadillac-Gage Side Mover Vehicle was applicable to the shipboard environment with the potential to overcome conditions of reduced traction, ship motion, decks heeled at high angles, obstacles, and confined spaces. Under the Navy program, ODV technology was investigated and a series of experimental vehicles were built and successfully tested under extremely demanding conditions. The ODV drive system has been found to be applicable to autonomous, remotely, or manually operated vehicles. Potential commercial applications include multi-directional forklift trucks, automatic guided vehicles employed in manufacturing environments, and remotely controlled platforms used in nuclear facilities or for hazardous waste clean up tasks.

  7. Navy Omni-Directional Vehicle (ODV) development program

    NASA Astrophysics Data System (ADS)

    McGowen, Hillery

    1994-02-01

    The Omni-Directional Vehicle (ODV) development program sponsored by the Office of Naval Research at the Coastal Systems Station has investigated the application of ODV technology for use in the Navy shipboard environment. ODV technology as originally received by the Navy in the form of the Cadillac-Gage Side Mover Vehicle was applicable to the shipboard environment with the potential to overcome conditions of reduced traction, ship motion, decks heeled at high angles, obstacles, and confined spaces. Under the Navy program, ODV technology was investigated and a series of experimental vehicles were built and successfully tested under extremely demanding conditions. The ODV drive system has been found to be applicable to autonomous, remotely, or manually operated vehicles. Potential commercial applications include multi-directional forklift trucks, automatic guided vehicles employed in manufacturing environments, and remotely controlled platforms used in nuclear facilities or for hazardous waste clean up tasks.

  8. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    PubMed Central

    Wang, Bin; Zhou, Jiangfeng

    2003-01-01

    The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined. PMID:14614774

  9. Put a Coalatom in Your Tank: The Compelling Case for a Marriage of Coal and Nuclear Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfield, Scott R. Jr.; Bolthrunis, Charles O.

    2006-07-01

    Increasing costs and security concerns with present fossil energy sources, plus environmental concerns related to CO{sub 2} emissions and the emergence of new technologies in the energy and transportation sectors set the stage for a marriage of convenience between coal and nuclear energy. As the price of oil continues to increase and supply becomes increasingly constrained, coal offers a secure domestic alternative to foreign oil as a source of liquid fuels. However, conventional technologies for converting coal to liquid fuels produce large quantities of CO{sub 2} that must be released or sequestered. Advanced nuclear technologies, particularly the High-Temperature Gas-Cooled Reactormore » (HTGR), have the potential to produce hydrogen via water splitting; however, the transportation and storage of hydrogen are significant barriers to the 'Holy Grail', the Hydrogen Economy. In a coal/nuclear marriage, the hydrogen and oxygen provided by nuclear energy are joined with coal as a source of carbon to provide liquid fuels with negligible CO{sub 2} release from the process. In combination with emerging hybrid vehicles, fuels based on a coal/nuclear marriage promise stable prices, increased domestic security and a reduction in CO{sub 2} emissions without the need to completely replace our transportation fuels infrastructure. The intent of this paper is to outline the technical basis for the above points and to show that process energy applications of nuclear energy can provide the basis for answering some of the tougher questions related to energy and the environment. (authors)« less

  10. Revolution in Detection Affairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern W.

    The detection of nuclear or radioactive materials for homeland or national security purposes is inherently difficult. This is one reason detection efforts must be seen as just one part of an overall nuclear defense strategy which includes, inter alia, material security, detection, interdiction, consequence management and recovery. Nevertheless, one could argue that there has been a revolution in detection affairs in the past several decades as the innovative application of new technology has changed the character and conduct of detection operations. This revolution will likely be most effectively reinforced in the coming decades with the networking of detectors and innovativemore » application of anomaly detection algorithms.« less

  11. Medical Applications at CERN and the ENLIGHT Network

    PubMed Central

    Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh

    2016-01-01

    State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN. PMID:26835422

  12. Medical Applications at CERN and the ENLIGHT Network.

    PubMed

    Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh

    2016-01-01

    State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN.

  13. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Wood, Richard Thomas

    2015-06-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adoptmore » complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that can be adapted to contribute to the basis for developing systematic methods, quantifiable measures, and objective criteria for evaluating CCF vulnerabilities and mitigation strategies.« less

  14. Robust Joining and Assembly Technologies for Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Mrityunjay, Singh; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fiber reinforced ceramic matrix composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, energy, process, and nuclear industries. The engineering designs require fabrication and manufacturing of complex shaped parts. In many instances, it is more economical to build up complex shapes by Joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. Various joint design philosophies and design issues in joining of composites will be discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of ceramic composites, in different shapes and sizes, have been joined using this technology. Microstructure and mechanical properties of joints will be reported. Current status of various ceramic joining technologies and future prospects for their applications will also be discussed.

  15. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  16. Emerging battery research in Indonesia: The role of nuclear applications

    NASA Astrophysics Data System (ADS)

    Kartini, E.

    2015-12-01

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesian National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.

  17. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    NASA Astrophysics Data System (ADS)

    Gales, S.; Zamfir, N. V.

    2015-02-01

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  18. Detector Array Performance Estimates for Nuclear Resonance Fluorescence Applications

    NASA Astrophysics Data System (ADS)

    Johnson, Micah; Hall, J. M.; McNabb, D. P.

    2012-10-01

    There are a myriad of explorative efforts underway at several institutions to determine the feasibility of using photonuclear reactions to detect and assay materials of varying complexity and compositions. One photonuclear process that is being explored for several applications is nuclear resonance fluorescence (NRF). NRF is interesting because the resonant lines are unique to each isotope and the widths are sufficiently narrow and the level densities are sufficiently low so as to not cause interference. Therefore, NRF provides a means to isoptically map containers and materials. The choice of detector array is determined by the application and the source. We will present results from a variety of application studies of an assortment of detector arrays that may be useful. Our results stem from simulation and modeling exercises and benchmarking measurements. We will discuss the data requirements from basic scientific research that enables these application studies. We will discuss our results and the future outlook of this technology.

  19. Applications Using High Flux LCS gamma-ray Beams: Nuclear Security and Contributions to Fukushima

    NASA Astrophysics Data System (ADS)

    Fujiwara, Mamoru

    2014-09-01

    Nuclear nonproliferation and security are an important issue for the peaceful use of nuclear energy. Many countries now collaborate together for preventing serious accidents from nuclear terrorism. Detection of hidden long-lived radioisotopes and fissionable nuclides in a non-destructive manner is useful for nuclear safeguards and management of nuclear wastes as well as nuclear security. After introducing the present situation concerning the nuclear nonproliferation and security in Japan, we plan to show the present activities of JAEA to detect the hidden nuclear materials by means of the nuclear resonance fluorescence with energy-tunable, monochromatic gamma-rays generated by Laser Compton Scattering (LCS) with an electron beam. The energy recovery linac (ERL) machine is now under development with the KEK-JAEA collaboration for realizing the new generation of gamma-ray sources. The detection technologies of nuclear materials are currently developed using the existing electron beam facilities at Duke University and at NewSubaru. These developments in Japan will contribute to the nuclear security program in Japan and to the assay of melted nuclear fuels in the Fukushima Daiichi nuclear power plants.

  20. High speed automated microtomography of nuclear emulsions and recent application

    NASA Astrophysics Data System (ADS)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.

    2015-12-01

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m2/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  1. Proposed BISOL Facility - a Conceptual Design

    NASA Astrophysics Data System (ADS)

    Ye, Yanlin

    2018-05-01

    In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.

  2. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    NASA Astrophysics Data System (ADS)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately generic to remain relevantly independent of technological progress, of national organisational setups and of space mission types. Implementing its guidance therefore leaves room for interpretation and adaptation. Relying on reported practices, we analyse the guidance particularly relevant to engineers and space mission designers.

  3. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less

  4. Thermionic energy conversion technology - Present and future

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  5. An Evaluation of Energy Storage Options for Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin L.; Bragg-Sitton, Shannon M.; Dufek, Eric J.

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advancedmore » nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.« less

  6. Technology for Bayton-cycle powerplants using solar and nuclear energy

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  7. Technology Survey for Enhancement of Chemical Biological Radiological and Nuclear Respiratory Protection

    DTIC Science & Technology

    2008-02-01

    goal to develop artificial skins for robots . Thermoelectric devices and miniature blowers and fans were reviewed for cooling applications. The ability of...including medical (e.g., drug delivery, implants), aerospace, textile, robotics (i.e., artificial muscles), and sensors. The technology survey to...implants. ILC Dover is developing a self - repairing space suit that incorporates a pressure sensitive gel (Shiga, 2006). The polymer gel is contained between

  8. Lessons from Fukushima: Relocation and Recovery from Nuclear Catastrophe

    DTIC Science & Technology

    2015-06-01

    of Education, Culture, Sports , Science and Technology MOE Japan Ministry of Environment mSv/y Milisievert per year NA not applicable NAS...japan.kantei.go.jp/kan/topics/201106/iaea_houkokusho_e.html, II-1 36 The Radiation Review Council within the Ministry of Education, Culture, Sports ...information. Japan’s Cabinet Office, the Ministry of Economy, Trade, and Industry, and the Ministry of Education, Culture, Sports , Science and Technology

  9. System Verification Through Reliability, Availability, Maintainability (RAM) Analysis & Technology Readiness Levels (TRLs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel Ohene Opare, Jr.; Charles V. Park

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heatmore » for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.« less

  10. Evolving the SP-100 reactor in order to boost large payloads to GEO and to low lunar orbit via nuclear-electric propulsion

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1991-01-01

    In striving to reduce exploration cost and exploration risks, a crucial aspect of the plans is program continuity, i.e., the continuing application of a given technology over a long period so that experience will accumulate from extended testing here on Earth and from a diversity of applications in space. An integrated view needs to be formed of the missions SEI will carry out, near term as well as far, and of the ways in which these missions can mutually support one another. Near term programs should be so constituted as to provide for the long term missions both the enabling technologies and the accumulation of experience they need. In achieving this, missions in Earth orbit should both evolve and show the technologies crucial to long term missions on the lunar surface, and the program for the lunar labs should evolve and show the enabling technologies for exploration of the surface of Mars and for flights of human beings to Mars and return. In the near term, the program for the Space Station should be directed and funded to develop and demonstrate the solar Brayton power plant that will be most useful as the power generator for the SP-100 nuclear reactor.

  11. Evolving the SP-100 reactor in order to boost large payloads to GEO and to low lunar orbit via nuclear-electric propulsion

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1991-01-01

    In striving to reduce exploration cost and exploration risks, a crucial aspect of the plans is program continuity, i.e., the continuing application of a given technology over a long period so that experience will accumulate from extended testing here on earth and from a diversity of applications in space. An integrated view needs to be formed of the missions SEI will carry out, near term as well as far, and of the ways in which these missions can mutually support one another. Near term programs should be so constituted as to provide for the long term missions both the enabling technologies and the accumulation of experience they need. In achieving this, missions in earth orbit should both evolve and show the technologies crucial to long term missions on the lunar surfaces, and the program for the lunar labs should evolve and show the enabling technologies for exploration of the surface of Mars and for flights of human beings to Mars and return. In the near term, the program for the Space Station should be directed and funded to develop and demonstrate the solar Brayton power plant that will be most useful as the power generator for the SP-100 nuclear reactor.

  12. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  13. Current Status and Recent Research Achievements in SiC/SiC Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Snead, Lance L.; Henager, Charles H.

    2014-12-01

    The development and maturation of the silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen the evolution from fundamental development and understanding of the material system and its behavior in a hostile irradiation environment to the current effort which essentially is a broad-based program of technology, directed at moving this material class from a laboratory curiosity to an engineering material. This paper lays out the recent international scientific and technological achievements in the development of SiC/SiC composite material technologies for fusion application and will discuss future research directions. It also reviews the materials system inmore » the larger context of progress to maturity as an engineering material for both the larger nuclear community and for general engineering applications.« less

  14. NRV web knowledge base on low-energy nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpov, V., E-mail: karpov@jinr.ru; Denikin, A. S.; Alekseev, A. P.

    Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it tomore » the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.« less

  15. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  16. Radiation Hardened Electronics Destined For Severe Nuclear Reactor Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holbert, Keith E.; Clark, Lawrence T.

    Post nuclear accident conditions represent a harsh environment for electronics. The full station blackout experience at Fukushima shows the necessity for emergency sensing capabilities in a radiation-enhanced environment. This NEET (Nuclear Energy Enabling Technologies) research project developed radiation hardened by design (RHBD) electronics using commercially available technology that employs commercial off-the-shelf (COTS) devices and present generation circuit fabrication techniques to improve the total ionizing dose (TID) hardness of electronics. Such technology not only has applicability to severe accident conditions but also to facilities throughout the nuclear fuel cycle in which radiation tolerance is required. For example, with TID tolerance tomore » megarads of dose, electronics could be deployed for long-term monitoring, inspection and decontamination missions. The present work has taken a two-pronged approach, specifically, development of both board and application-specific integrated circuit (ASIC) level RHBD techniques. The former path has focused on TID testing of representative microcontroller ICs with embedded flash (eFlash) memory, as well as standalone flash devices that utilize the same fabrication technologies. The standalone flash devices are less complicated, allowing better understanding of the TID response of the crucial circuits. Our TID experiments utilize biased components that are in-situ tested, and in full operation during irradiation. A potential pitfall in the qualification of memory circuits is the lack of rigorous testing of the possible memory states. For this reason, we employ test patterns that include all ones, all zeros, a checkerboard of zeros and ones, an inverse checkerboard, and random data. With experimental evidence of improved radiation response for unbiased versus biased conditions, a demonstration-level board using the COTS devices was constructed. Through a combination of redundancy and power gating, the demonstration board exhibits radiation resilience to over 200 krad. Furthermore, our ASIC microprocessor using RHBD techniques was shown to be fully functional after an exposure of 2.5 Mrad whereas the COTS microcontroller units failed catastrophically at <100 krad. The methods developed in this work can facilitate the long-term viability of radiation-hard robotic systems, thereby avoiding obsolescence issues. As a case in point, the nuclear industry with its low purchasing power does not drive the semiconductor industry strategic plans, and the rapid advancements in electronics technology can leave legacy systems stranded.« less

  17. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  18. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  19. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  20. NGNP High Temperature Materials White Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew Lommers; George Honma

    2012-08-01

    This white paper is one in a series of white papers that address key generic issues of the combined construction and operating license (COL) pre-application program key generic issues for the Next Generation Nuclear Plant reactor using the prismatic block fuel technology. The purpose of the pre-application program interactions with the NRC staff is to reduce the time required for COL application review by identifying and addressing key regulatory issues and, if possible, obtaining agreements for their resolution

  1. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    PubMed

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  2. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to themore » knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.« less

  3. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5×1019 n/cm2, and a maximum gamma dose of 2×103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  4. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... application of all potentially beneficial nonnuclear energy sources and utilization technologies. (b) This...

  5. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... application of all potentially beneficial nonnuclear energy sources and utilization technologies. (b) This...

  6. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... application of all potentially beneficial nonnuclear energy sources and utilization technologies. (b) This...

  7. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... application of all potentially beneficial nonnuclear energy sources and utilization technologies. (b) This...

  8. Evaluative studies in nuclear medicine research: positron computed tomography assessment. Final report, January 1, 1982-December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potchen, E.J.; Harris, G.I.; Gift, D.A. Reinhard, D.K.

    Results are reported of the final phase of the study effort generally titled Evaluative Studies in Nuclear Medicine Research. The previous work is reviewed and extended to an assessment providing perspectives on medical applications of positron emission tomographic (PET) systems, their technological context, and the related economic and marketing environment. Methodologies developed and used in earlier phases of the study were continued, but specifically extended to include solicitation of opinion from commercial organizations deemed to be potential developers, manufacturers and marketers of PET systems. Several factors which influence the demand for clinical uses of PET are evaluated and discussed. Themore » recent Federal funding of applied research with PET systems is found to be a necessary and encouraging event toward a determination that PET either is a powerful research tool limited to research, or whether it also presents major clinical utility. A comprehensive, updated bibliography of current literature related to the development, applications and economic considerations of PET technology is appended.« less

  9. Development of Technologies on Innovative-Simplified Nuclear Power Plant using High-Efficiency Steam Injectors

    NASA Astrophysics Data System (ADS)

    Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu; Iwaki, Chikako; Asanuma, Yutaka; Goto, Shoji

    A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "High-Efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and Emergency Core Cooling System of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). This paper describes the results of the endurance and performance tests of low-pressure SIs for feed-water heaters with Jet-deaerator and core injection system.

  10. Mentoring and the Nuclear Medicine Technologist.

    PubMed

    Burrell, Lance

    2018-06-08

    The goal of this article is to give an overview of mentoring for nuclear medicine technologists (NMT). Mentoring is an integral part of the training and practice in the field of nuclear medicine technology. There is a great need for NMTs to continue involvement in mentorship so that we can develop and maintain the talent and leadership that the field needs. In this article, definitions of mentorship will be provided. Then, how mentoring can work; including different methods and techniques will be covered. Next, the benefits of mentoring will be discussed. Finally, advice for improved application will be presented. Throughout, this article will discuss how mentoring applies to the NMT. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    NASA Astrophysics Data System (ADS)

    Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.

    2018-04-01

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.

  12. Emerging battery research in Indonesia: The role of nuclear applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartini, E.

    2015-12-31

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesianmore » National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.« less

  13. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gales, S., E-mail: sydney.gales@eli-np.ro; Zamfir, N. V., E-mail: sydney.gales@eli-np.ro

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as themore » science, applications and future perspectives will be discussed.« less

  14. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well asmore » spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.« less

  15. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  16. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  17. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  18. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  19. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  20. High speed automated microtomography of nuclear emulsions and recent application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.

    2015-12-31

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m{sup 2}/day scalemore » and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.« less

  1. Overview of criminal justice projects at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, D.D.

    1995-07-01

    The criminal justice projects at SNL include three projects for the National Institute of Justice (smart gun, restraining foam, aqueous foam, corrections perimeter), a Southwest Border study, and one involving corrections agencies. It is concluded that the national technologies developed to protect nuclear and other high value assets have enormous potential for application to crime and personal safety; the difficulty lies in simplifying the technology transfer and making the new systems affordable.

  2. Nondestructive Evaluation Technology Working Group Report (IDA/OSD R&M (Institute for Defense Analyses/Office of the Secretary of Defense Reliability and Maintainability Study).

    DTIC Science & Technology

    1983-08-01

    evaluating surface residual stresses in ferromagnetic materials, but until recently has - been considered too time consuming for production application. Fast...generic residual stress , X-ray, image processing, neutron processing, neutron radiography, vibrothermography, nuclear magnetic resonance 20. ABSTRACT...studied, this technology study effort would not have been possible within the time and resources available. P-3 i La

  3. Estimation and Coordination of Sequence Patterns for Frequency Hopping Dynamic Spectrum Access Networks

    DTIC Science & Technology

    2014-03-27

    Technology (AFIT). Research at AFIT investigates the use of DSA for both civilian and military applications while advancing technology in the area of radio...other military platforms is vital for successful operations. Twelve core functions comprise the US Air Force: Nuclear Deterrence Operations, Special...problems. This Air Force report discusses “Frequency Agile Spectrum Utilization”, a sub-topic of DSA, as a potential capability area [3]. Military

  4. Ceramic Integration Technologies for Aerospace and Energy Systems: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2007-01-01

    Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.

  5. Terrorists and Nuclear Technology

    ERIC Educational Resources Information Center

    Krieger, David

    1975-01-01

    This essay explores the ways terrorist groups may gain possession of nuclear materials; the way in which they may use nuclear weapons and other nuclear technologies to their benefit; and various courses of action designed to minimize the possibilities of terrorists utilizing nuclear technology to their benefit and society's detriment. (BT)

  6. Evaluation and analysis of non-intrusive techniques for detecting illicit substances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micklich, B.J.; Roche, C.T.; Fink, C.L.

    1995-12-31

    Argonne National Laboratory (ANL) and the Houston Advanced Research Center (HARC) have been tasked by the Counterdrug Technology Assessment Center of the Office of National Drug Control Policy to conduct evaluations and analyses of technologies for the non-intrusive inspection of containers for illicit substances. These technologies span the range of nuclear, X-ray, and chemical techniques used in nondestructive sample analysis. ANL has performed assessments of nuclear and X-ray inspection concepts and undertaken site visits with developers to understand the capabilities and the range of applicability of candidate systems. ANL and HARC have provided support to law enforcement agencies (LEAs), includingmore » participation in numerous field studies. Both labs have provided staff to assist in the Narcotics Detection Technology Assessment (NDTA) program for evaluating drug detection systems. Also, the two labs are performing studies of drug contamination of currency. HARC has directed technical evaluations of automated ballistics imaging and identification systems under consideration by law enforcement agencies. ANL and HARC have sponsored workshops and a symposium, and are participating in a Non-Intrusive Inspection Study being led by Dynamics Technology, Incorporated.« less

  7. Selected technology for the gas industry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers were presented at a conference concerned with the application of technical topics from aerospace activities for the gas industry. The following subjects were covered: general future of fossil fuels in America, exploration for fossil and nuclear fuels from orbital altitudes, technology for liquefied gas, safety considerations relative to fires, explosions, and detonations, gas turbomachinery technology, fluid properties, fluid flow, and heat transfer, NASA information and documentation systems, instrumentation and measurement, materials and life prediction, reliability and quality assurance, and advanced energy systems (including synthetic fuels, energy storage, solar energy, and wind energy).

  8. Advance of Hazardous Operation Robot and its Application in Special Equipment Accident Rescue

    NASA Astrophysics Data System (ADS)

    Zeng, Qin-Da; Zhou, Wei; Zheng, Geng-Feng

    A survey of hazardous operation robot is given out in this article. Firstly, the latest researches such as nuclear industry robot, fire-fighting robot and explosive-handling robot are shown. Secondly, existing key technologies and their shortcomings are summarized, including moving mechanism, control system, perceptive technology and power technology. Thirdly, the trend of hazardous operation robot is predicted according to current situation. Finally, characteristics and hazards of special equipment accident, as well as feasibility of hazardous operation robot in the area of special equipment accident rescue are analyzed.

  9. The Soviet program for peaceful uses of nuclear explosions. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordyke, M.D.

    1996-10-01

    An extensive review is given of the US and Russian efforts on peaceful uses of nuclear explosions (PNE). The Soviet PNE program was many times larger than the US Plowshare program in terms of both the number of applications explored with field experiments and the extent to which they were introduced into industrial use. Several PNE applications, such as deep seismic sounding and oil stimulation, have been explored in depth and appear to have had a positive cost benefit at minimal public risk. Closure of runaway gas wells is another possible application where all other techniques fail. However, the fundamentalmore » problem with PNEs is the fact that, if they are to be economically significant, there must be widespread use of the technology, involving large numbers of sites, each of which presents a potential source of radioactivity to the environment and nearby communities. Russia now has more than 100 sites where significant high-level radioactivity has been buried. Experience over the last 20 years in US and in today`s Russia shows that it is virtually impossible to gain public acceptance of such applications of nuclear energy. In addition, PNEs also pose a difficult problem in the arms control area. Under a comprehensive test ban, any country conducting PNEs would, in appearance if not in fact, receive information useful for designing new nuclear weapons or maintaining an existing nuclear stockpile, information denied to the other parties to the treaty. 6 tabs, 10 figs.« less

  10. Nuclides Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Evgeny; Subbotin, Stanislav

    2007-07-01

    Traditionally the subject of discussion about the nuclear technology development is focused on the conditions that facilitate the nuclear power deployment. The main objective of this work is seeking of methodological basis for analysis of the coupling consequences of nuclear development. Nuclide economy is the term, which defines a new kind of society relations, dependent on nuclear technology development. It is rather closed to the setting of problems then to the solving of them. Last year Dr. Jonathan Tennenbaum published in Executive Intelligence Review Vol. 33 no 40 the article entitled as 'The Isotope Economy' where main interconnections for nuclearmore » energy technologies and their infrastructure had been explained on the popular level. There he has given several answers and, therefore, just here we will try to expand this concept. We were interested by this publication because of similarity of our vision of resource base of technologies development. The main paradigm of 'Isotope economy' was expresses by Lyndon H. LaRouche: 'Instead of viewing the relevant resources of the planet as if they were a fixed totality, we must now assume responsibility of man's creating the new resources which will be more than adequate to sustain a growing world population at a constantly improved standard of physical per-capita output, and personal consumption'. We also consider the needed resources as a dynamic category. Nuclide economy and nuclide logistics both are needed for identifying of the future development of nuclear power as far we follow the holistic analysis approach 'from cave to grave'. Thus here we try to reasoning of decision making procedures and factors required for it in frame of innovative proposals development and deployment. The nuclear power development is needed in humanitarian scientific support with maximally deep consideration of all inter-disciplinary aspects of the nuclear power and nuclear technologies implementation. The main objectives for such consideration should be prognosis of all political, social, environmental and infra-structural consequences. Understanding of this necessity turned us to use the formalism of so called techno-dynamics and represent of resources needed for nuclear technology development as dynamic categories. The basic ideas of the methodology of innovative project assessment have been applied for holistic analysis of the development of the nuclear systems. This methodology has been developed for innovative proposals analysis in frame of IAEA INPRO project and it was a consensus product of the wide international expert's society discussions. All aspects of application of radioactivity in the industry and medicine had not been presented because the main ideas are quite evident but scale factor of their using has too big uncertainties. But cyclic character of organizing fuel management for the future development of nuclear technologies was added by cycles of structure materials as well. It has obtained that asymptotically the nuclear technology generates their specific compositions of structure materials. Thus wide scale using of the nuclear power will make new kind of metals that will be materials of nuclear quality. Development of new technologies and their penetration on the market will be accompanied by the several kinds of critical events. Crisis of resource's supplying is only most well known of them. But it is not both the single and not the most important. The model of corporation development made on Marshall's theory unambiguously demonstrates that transition from one technology to another can be made only in conditions of falling of the market. This result does not allow us to predict of time of the optimal transition from one technology basis onto the nets generation but it gives an indicator of readiness for changing of the mainstream. For the analysis of new innovative initiative it has been used the scale factor. Thus it shows that required installed capacity of G.N.E.P. systems will not be less then two hundred GW. Therefore the burner segment of the projected syste ms should also have significant capacity. Consequently it will lead to the flexible fuel cycle and to the keeping of the breeding options. Concept of nuclide economy gives understanding of real motivation that lied in the basis of one or other innovative proposals. By another words it is only tool for cross-disciplinary systematic study of innovative technologies. (authors)« less

  11. Making Microscopic Cubes Of Boron

    NASA Technical Reports Server (NTRS)

    Faulkner, Joseph M.

    1993-01-01

    Production of finely divided cubes of boron involves vacuum-deposition technology and requires making of template. Template supports pattern of checkered squares 25 micrometers on side, which are etched 25 micrometers into template material. Template coasted uniformly with paralyene or some similar vacuum coating with low coefficient of adhesion. Intended application to solid rocket fuels, explosives, and pyrotechnics; process used for other applications, from manufacture of pharmaceuticals to processing of nuclear materials.

  12. Particle and nuclear physics instrumentation and its broad connections

    DOE PAGES

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard; ...

    2016-12-20

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  13. Particle and nuclear physics instrumentation and its broad connections

    NASA Astrophysics Data System (ADS)

    Demarteau, M.; Lipton, R.; Nicholson, H.; Shipsey, I.

    2016-10-01

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector research and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. This symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.

  14. Particle and nuclear physics instrumentation and its broad connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  15. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  16. White Paper on Nuclear Data Needs and Capabilities for Basic Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelder, J.; Kawano, T.; Kelley, J.

    Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and societymore » by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.« less

  17. Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebak, Raul B.; Lou, Xiaoyuan

    Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1) Evaluate nuclear related properties of AM 316L SS, including microstructure, tensile properties, impact toughness, stress corrosion cracking (SCC), corrosion fatigue (CF), irradiation effects, and irradiation assisted stress corrosion cracking (IASCC). (2) Understand the correlations among laser processing, heat treatment, microstructure and SCC/irradiation properties; (3) Optimize and improve the manufacturing process to achieve enhanced nuclear application properties; (4) Fabricate, evaluate, qualify and test a prototype reactor component to demonstrate the commercial viability and cost benefit; (5) Create regulatory approval path and commercialization plans for the production of a commercial reactor component.« less

  18. Science and technology of farm animal cloning: state of the art.

    PubMed

    Vajta, Gábor; Gjerris, Mickey

    2006-05-01

    Details of the first mammal born after nuclear transfer cloning were published by Steen Malte Willadsen in 1986. In spite of its enormous scientific significance, this discovery failed to trigger much public concern, possibly because the donor cells were derived from pre-implantation stage embryos. The major breakthrough in terms of public recognition has happened when Ian Wilmut et al. [Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., Campbell, K.H., 1997. Viable offspring derived from fetal és adult mammalian cells. Nature 385, 810-813] described the successful application of almost exactly the same method, but using the nuclei of somatic cells from an adult mammal, to create Dolly the sheep. It has become theoretically possible to produce an unlimited number of genetic replicates from an adult animal or a post-implantation foetus. Since 1997 a number of different species including pigs, goats, horses, cats, etc. have been cloned with the somatic cell nuclear transfer technique. Although the technology still has relatively low success rates and there seems to be substantial problems with the welfare of some of the cloned animals, cloning is used both within basic research and the biomedical sector. The next step seems to be to implement cloning in the agricultural production system and several animals have been developed in this direction. This article reviews the current state of the art of farm animal cloning from a scientific and technological perspective, describes the animal welfare problems and critically assess different applications of farm animal cloning. The scope is confined to animal biotechnologies in which the use of cell nuclear transfer is an essential part and extends to both biomedical and agricultural applications of farm animal cloning. These applications include the production of genetically identical animals for research purposes, and also the creation of genetically modified animals. In the agricultural sector, cloning can be used as a tool within farm animal breeding. We do not intend to give an exhaustive review of the all the literature available; instead we pinpoint issues and events pivotal to the development of current farm animal cloning practices and their possible applications.

  19. Science and Social Science in a World Perspective.

    ERIC Educational Resources Information Center

    Morrissett, Irving

    While notable advances in astronomy, nuclear physics, microbiology, and computer technology seem to contribute to the possibility of human betterment, each of these advances involves hazards, the most ominous being their application to warfare. While considering the wonders and hazards of scientific advance, it is necessary to consider the less…

  20. 10 CFR 63.305 - Required characteristics of the reference biosphere.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....305 Section 63.305 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE... biosphere (other than climate), human biology, or increases or decreases of human knowledge or technology... factors remain constant as they are at the time of submission of the license application. (c) DOE must...

  1. 10 CFR 26.155 - Laboratory personnel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Laboratory personnel. 26.155 Section 26.155 Energy NUCLEAR... for drugs of abuse; and (B) Appropriate training and/or experience in forensic applications of... individual with at least a bachelor's degree in the chemical or biological sciences, medical technology, or...

  2. Teach the History and Practice of Science

    ERIC Educational Resources Information Center

    Spillane, Nancy K.

    2013-01-01

    Through the reading, study, and performance of "Copenhagen", a play by Michael Frayn, chemistry students see the application of nuclear chemistry content, acquire a better understanding of the continuum from scientific research to technology design, and also become aware of the many and varied interrelationships of science with history…

  3. 77 FR 35809 - Revision of Fee Schedules; Fee Recovery for Fiscal Year 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ..., 1974, the U.S. Supreme Court rendered major decisions in two cases, National Cable Television...- submission audit has been useful in improving the quality of applications which helps to expedite reviews... and to support nuclear technology programs at minority- serving institutions. Response. The purposes...

  4. Heat pipe technology. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites 55 publications on the theory, design, development, fabrication, and testing of heat pipes. Applications covered include solar, nuclear, and thermoelectric energy conversion. A book (in Russian) on low temperature heat pipes is included as well as abstracts when available. Indexes provided list authors, titles/keywords (permuted) and patents.

  5. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  6. Analysis of nuclear export using photoactivatable GFP fusion proteins and interspecies heterokaryons.

    PubMed

    Nakrieko, Kerry-Ann; Ivanova, Iordanka A; Dagnino, Lina

    2010-01-01

    In this chapter, we review protocols for the analysis of nucleocytoplasmic shuttling of transcription factors and nuclear proteins, using two different approaches. The first involves the use of photoactivatable forms of the protein of interest by fusion to photoactivatable green fluorescent protein to follow its movement out of the nucleus by live-cell confocal microscopy. This methodology allows for the kinetic characterization of protein movements as well as measurement of steady-state levels. In a second procedure to assess the ability of a nuclear protein to move into and out of the nucleus, we describe the use of interspecies heterokaryon assays, which provide a measurement of steady-state distribution. These technologies are directly applicable to the analysis of nucleocytoplasmic movements not only of transcription factors, but also other nuclear proteins.

  7. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  8. An evolution strategy for lunar nuclear surface power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1992-01-01

    The production and transmission of electric power for a permanently inhabited lunar base poses a significant challenge which can best be met through an evolution strategy. Nuclear systems offer the best opportunity for evolution in terms of both life and performance. Applicable nuclear power technology options include isotope systems (either radioisotope thermoelectric generators or dynamic isotope power systems) and reactor systems with either static (thermoelectric or thermionic) or dynamic (Brayton, Stirling, Rankine) conversion. A power system integration approach that takes evolution into account would benefit by reduced development and operations cost, progressive flight experience, and simplified logistics, and would permit unrestrained base expansion. For the purposes of defining a nuclear power system evolution strategy, the lunar base development shall consist of four phases: precursor, emplacement, consolidation, and operations.

  9. Robotics for Nuclear Material Handling at LANL:Capabilities and Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harden, Troy A; Lloyd, Jane A; Turner, Cameron J

    Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory formore » nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.« less

  10. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    DOE PAGES

    Durham, J. M.; Poulson, D.; Bacon, J.; ...

    2018-04-10

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less

  11. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, J. M.; Poulson, D.; Bacon, J.

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less

  12. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne L.

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less

  13. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less

  14. Nb3Sn SRF Cavities for Nuclear Physics Applications

    NASA Astrophysics Data System (ADS)

    Eremeev, Grigory

    2017-01-01

    Nuclear physics experiments rely increasingly on accelerators, which employ superconducting RF (SRF) technology. CEBAF, SNS, FRIB, ESS, among others exploit the low surface resistance of SRF cavities to efficiently accelerate particle beams towards experimental targets. Niobium is the cavity material of choice for all current or planned SRF accelerators, but it has been long recognized that other superconductors with high superconducting transition temperatures have the potential to surpass niobium for SRF applications. Among the alternatives, Nb3Sn coated cavities are the most advanced on the path to practical applications: Nb3Sn coatings on R&D cavities have Tc consistently close the optimal 18 K, very low RF surface resistances, and very recently were shown to reach above Hc1 without anomalous RF surface resistance increase. In my talk I will discuss the prospects of Nb3Sn SRF cavities, the research efforts to realize Nb3Sn coatings on practical multi-cell accelerating structures, and the path toward possible inclusion in CEBAF. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.

  15. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  16. Recent advancements in cloning by somatic cell nuclear transfer.

    PubMed

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  17. Recent advancements in cloning by somatic cell nuclear transfer

    PubMed Central

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  18. Status and improvement of CLAM for nuclear application

    NASA Astrophysics Data System (ADS)

    Huang, Qunying

    2017-08-01

    A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.

  19. Overview of the INPRO Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupitz, J.; Depisch, F.; Zou, Y.

    2004-10-03

    During the last fifty years remarkable results are achieved in the application of nuclear technology for the production of electricity. Looking ahead to the next fifty years it is clear that the demand for energy will grow considerably and also the requirements for the way the energy will be supplied. Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), the future of the energy demand and supply was explored and several scenario's identified. A leading requirement for energy supply is coming up and will play a crucial role: sustainability of the way the energy supply will bemore » realized. Fulfilling the growing need for energy in developing countries is as well an important issue. Based on these scenario's for the next fifty years, an inventory of requirements for the future of nuclear energy systems has been collected as well a methodology developed by INPRO to assess innovative nuclear systems and fuel cycles. On the base of this assessment, the need for innovations and breakthroughs in existing technology can be defined. To facilitate the deployment of innovative nuclear systems also the infrastructure, technical as well as institutional has to be adjusted to the anticipated changes in the world such as the globalization. As a contribution to the conference the main messages of INPRO will be presented.« less

  20. Feedback control for manipulating magnetization in spin-exchange optical pumping system

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Li, Jun; Jiang, Min; Zhao, Nan; Peng, XinHua

    2018-08-01

    Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.

  1. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 3, Sessions 12-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, R.C.; Feiner, F.

    This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  2. Single-photon emitting radiotracers produced by cyclotrons for myocardial imaging

    NASA Astrophysics Data System (ADS)

    Kulkarni, Padmakar V.

    1989-04-01

    Radionuclides produced by cyclotron have played an important role in clinical nuclear medicine. Among these, 210T1, 123I, 111In and 67Ga in various chemical forms have important applications in the diagnosis of cancer and heart disease using scintigraphic imaging techniques. Cardiac imaging using nuclear scintigraphy and echocardiography has been among the fastest growing diagnostic technologies in medicine during the past 15 years. Development of new tracers in conjunction with new equipment with better resolution has contributed to the better quantification and analysis of test results. The development of new biomolecules, monoclonal antibodies to myosin, platelets, fibrin and other receptor binding agents has added a new dimension to nuclear imaging studies.

  3. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    NASA Astrophysics Data System (ADS)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinn, D J

    This month's issue has the following articles: (1) Homeland Security Begins Abroad--Commentary by John C. Doesburg; (2) Out of Harm's Way--New physical protection and accountability systems, together with a focus on security, safeguard nuclear materials in the Russian Federation; (3) A Calculated Journey to the Center of the Earth--Determining the permeability of partially melted metals in a mineral matrix unlocks secrets about the formation of Earth's core; (4) Wireless That Works--Communication technologies using ultrawideband radar are improving national security; and (5) Power to the People--Edward Teller envisioned safe and plentiful nuclear power for peaceful applications.

  5. Risk perception & strategic decision making :general insights, a framework, and specific application to electricity generation using nuclear energy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Jeffrey D.

    The objective of this report is to promote increased understanding of decision making processes and hopefully to enable improved decision making regarding high-consequence, highly sophisticated technological systems. This report brings together insights regarding risk perception and decision making across domains ranging from nuclear power technology safety, cognitive psychology, economics, science education, public policy, and neural science (to name a few). It forms them into a unique, coherent, concise framework, and list of strategies to aid in decision making. It is suggested that all decision makers, whether ordinary citizens, academics, or political leaders, ought to cultivate their abilities to separate themore » wheat from the chaff in these types of decision making instances. The wheat includes proper data sources and helpful human decision making heuristics; these should be sought. The chaff includes ''unhelpful biases'' that hinder proper interpretation of available data and lead people unwittingly toward inappropriate decision making ''strategies''; obviously, these should be avoided. It is further proposed that successfully accomplishing the wheat vs. chaff separation is very difficult, yet tenable. This report hopes to expose and facilitate navigation away from decision-making traps which often ensnare the unwary. Furthermore, it is emphasized that one's personal decision making biases can be examined, and tools can be provided allowing better means to generate, evaluate, and select among decision options. Many examples in this report are tailored to the energy domain (esp. nuclear power for electricity generation). The decision making framework and approach presented here are applicable to any high-consequence, highly sophisticated technological system.« less

  6. Neutron and Gamma Imaging for National Security Applications

    NASA Astrophysics Data System (ADS)

    Hornback, Donald

    2017-09-01

    The Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D/NA-22) possesses, in part, the mission to develop technologies in support of nuclear security efforts in coordination with other U.S. government entities, such as the Department of Defense and the Department of Homeland Security. DNN R&D has long supported research in nuclear detection at national labs, universities, and through the small business innovation research (SBIR) program. Research topics supported include advanced detector materials and electronics, detection algorithm development, and advanced gamma/neutron detection systems. Neutron and gamma imaging, defined as the directional detection of radiation as opposed to radiography, provides advanced detection capabilities for the NNSA mission in areas of emergency response, international safeguards, and nuclear arms control treaty monitoring and verification. A technical and programmatic overview of efforts in this field of research will be summarized.

  7. The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: The case for data fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Jonathan L.; Miley, Harry S.; Bowyer, Theodore W.

    The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed—particulate and noble gas (radioxenon) detection—have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature.more » Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked.« less

  8. The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: The case for data fusion.

    PubMed

    Burnett, Jonathan L; Miley, Harry S; Bowyer, Theodore W; Cameron, Ian M

    2018-09-01

    The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed-particulate and noble gas (radioxenon) detection-have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature. Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D Dudenhoeffer; Burce P Hallbert

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less

  10. NRC Licensing Status Summary Report for NGNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland; Kinsey, James Carl

    2014-11-01

    The Next Generation Nuclear Plant (NGNP) Project, initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy (DOE) pursuant to provisions of the Energy Policy Act of 2005, is based on research and development activities supported by the Department of Energy Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. The NGNP will be licensed for construction andmore » operation by the Nuclear Regulatory Commission (NRC). However, not all elements of current regulations (and their related implementation guidance) can be applied to HTGR technology at this time. Certain policies established during past LWR licensing actions must be realigned to properly accommodate advanced HTGR technology. A strategy for licensing HTGR technology was developed and executed through the cooperative effort of DOE and the NRC through the NGNP Project. The purpose of this report is to provide a snapshot of the current status of the still evolving pre-license application regulatory framework relative to commercial HTGR technology deployment in the U.S. The following discussion focuses on (1) describing what has been accomplished by the NGNP Project up to the time of this report, and (2) providing observations and recommendations concerning actions that remain to be accomplished to enable the safe and timely licensing of a commercial HTGR facility in the U.S.« less

  11. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political opposition specific to sodium. In conclusion, research and technology breakthroughs in nuclear power are needed for shaping a sustainable low carbon future. International cooperation is key for sharing costs of research and development of the required novel technologies and cost of first experimental reactors needed to demonstrate enabling technologies. At the same time technology breakthroughs are developed, pre-normative research is required to support codification work and harmonized regulations that will ultimately apply to safety and security features of resulting innovative reactor types and fuel cycles.

  12. Nuclear Electric Propulsion Technology Panel findings and recommendations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  13. Who Should Control Nuclear Technology? A Curriculum Unit for Contemporary U.S. and World History, Grades 9-12.

    ERIC Educational Resources Information Center

    Zimney, Michelle; Boston, Jane

    Since the end of World War II and the onset of the "new age," nuclear technology has remained high on the world's agenda as questions regarding sovereignty and the balance of power, control of the development and spread of nuclear weapons, non-military uses for nuclear technology, and nuclear safety are debated among and within nations.…

  14. Annotated bibliography of human factors applications literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCafferty, D.B.

    1984-09-30

    This bibliography was prepared as part of the Human Factors Technology Project, FY 1984, sponsored by the Office of Nuclear Safety, US Department of Energy. The project was conducted by Lawrence Livermore National Laboratory, with Essex Corporation as a subcontractor. The material presented here is a revision and expansion of the bibliographic material developed in FY 1982 as part of a previous Human Factors Technology Project. The previous bibliography was published September 30, 1982, as Attachment 1 to the FY 1982 Project Status Report.

  15. AGC 2 Irradiated Material Properties Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  16. AGC 2 Irradiation Creep Strain Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, William E.; Rohrbaugh, David T.; Swank, W. David

    2016-08-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  17. Cooperative monitoring and its role in regional security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biringer, K.; Olsen, J.; Lincoln, R.

    1997-03-01

    Cooperative monitoring systems can play an important part in promoting the implementation of regional cooperative security agreements. These agreements advance the national security interests of the United States in a post Cold War environment. Regional issues as widely varying as nuclear nonproliferation, trade and environmental pollution can be the source of tensions which may escalate to armed conflict which could have global implications. The Office of National Security Policy Analysis at the US Department of Energy (DOE) has an interest in seeking ways to promote regional cooperation that can reduce the threats posed by regional conflict. DOE technologies and technicalmore » expertise can contribute to developing solutions to a wide variety of these international problems. Much of this DOE expertise has been developed in support of the US nuclear weapons and arms control missions. It is now being made available to other agencies and foreign governments in their search for regional security and cooperation. This report presents two examples of interest to DOE in which monitoring technologies could be employed to promote cooperation through experimentation. The two scenarios include nuclear transparency in Northeast Asia and environmental restoration in the Black Sea. Both offer the potential for the use of technology to promote regional cooperation. The issues associated with both of these monitoring applications are presented along with examples of appropriate monitoring technologies, potential experiments and potential DOE contributions to the scenarios.« less

  18. 40 CFR 60.2265 - What definitions must I know?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... technology such as mass burn, modular, and fluidized bed combustors.) Auxiliary fuel means natural gas... waste is not high-level radioactive waste, spent nuclear fuel, or byproduct material as defined by the... for application of a coating. The unit burns the coating overspray off the rack so the rack can be...

  19. 40 CFR 62.14840 - What definitions must I know?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... which typically have enclosed fireboxes and controlled air technology such as mass burn, modular, and... waste is not high-level radioactive waste, spent nuclear fuel, or by-product material as defined by the... unit means a unit that burns the coatings off racks used to hold small items for application of a...

  20. Nuclear Technology. Course 27: Metrology. Module 27-5, Tolerancing.

    ERIC Educational Resources Information Center

    Selleck, Ben; Espy, John

    This fifth in a series of eight modules for a course titled Metrology describes the application of the American National Standard (ANSI Y14.5-1973) for dimensioning and tolerancing and gives guidance on interpreting form and location controls consistent with the national standard. The module follows a typical format that includes the following…

  1. Nuclear Technology. Course 28: Welding Inspection. Module 28-9, Weld Repair Control.

    ERIC Educational Resources Information Center

    Espy, John

    This ninth in a series of ten modules for a course titled Welding Inspection describes the purposes, essential elements, and application of a weld control program. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  2. Nuclear Technology. Course 31: Quality Assurance Practices. Module 31-5, Nonconforming Materials.

    ERIC Educational Resources Information Center

    Pritchard, Jim; Espy, John

    This fifth in a series of eight modules for a course titled Quality Assurance Practices describes the essential elements of a nonconforming material control system, including purpose and application. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…

  3. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fireboxes and controlled air technology such as mass burn, modular, and fluidized bed combustors.) Auxiliary... waste is not high-level radioactive waste, spent nuclear fuel, or by-product material as defined by the... for application of a coating. The unit burns the coating overspray off the rack so the rack can be...

  4. 40 CFR 62.14840 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... which typically have enclosed fireboxes and controlled air technology such as mass burn, modular, and... waste is not high-level radioactive waste, spent nuclear fuel, or by-product material as defined by the... unit means a unit that burns the coatings off racks used to hold small items for application of a...

  5. 40 CFR 60.2265 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... technology such as mass burn, modular, and fluidized bed combustors.) Auxiliary fuel means natural gas... waste is not high-level radioactive waste, spent nuclear fuel, or byproduct material as defined by the... for application of a coating. The unit burns the coating overspray off the rack so the rack can be...

  6. Suggestions for Evaluating the Quality of the Army’s Science and Technology Program: The Portfolio and Its Execution

    DTIC Science & Technology

    2013-01-01

    definition of 6.1 research apply. Namely, the work is curiosity work with no specific application in mind. The two extramural categories include...direct interest in relativity and gravitation, cosmology , elementary particles, nuclear physics, astronomy, or astrophysics, since they generally have

  7. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC. Design of a multi-cusp ion source for proton therapy

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Bing; Huang, Tao; Ouyang, Hua-Fu; Zhang, Hua-Shun; Gong, Ke-Yun

    2010-12-01

    The permanent magnets of the discharge chamber in a multi-cusp proton source are studied and designed. The three electrode extraction system is adopted and simulated. A method to extract different amounts of current while keeping the beam emittance unchanged is proposed.

  8. Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1991-01-01

    Heat engines were evaluated for terrestrial Solar Distributed Heat Receivers. The Stirling engine was identified as one of the most promising heat engines for terrestrial applications. Technology development is also conducted for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other.

  9. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.

    2010-08-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  10. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less

  11. 78 FR 32640 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... Relating to the Transfer of Certain Nuclear Technologies in the Course of the Joint Fuel Cycle Study (the... Agreement is sensitive nuclear technology (SNT) within the meaning of Section 4(a)(5) of the Nuclear Non... Government of the Republic of Korea Relating to the Transfer of Certain Nuclear Technologies in the Course of...

  12. Bright perspectives for nuclear photonics

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.

    2014-05-01

    With the advent of new high-power, short-pulse laser facilities in combination with novel technologies for the production of highly brilliant, intense γ beams (like, e.g., Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Bucharest, MEGaRay in Livermore or a planned upgrade of the HIγS facility at Duke University), unprecedented perspectives will open up in the coming years for photonuclear physics both in basic sciences as in various fields of applications. Ultra-high sensitivity will be enabled by an envisaged increase of the γ-beam spectral density from the presently typical 102γ/eVs to about 104γ/eVs, thus enabling a new quality of nuclear photonics [1], assisted by new γ-optical elements [2]. Photonuclear reactions with highly brilliant γ beams will allow to produce radioisotopes for nuclear medicine with much higher specific activity and/or more economically than with conventional methods. This will open the door for completely new clinical applications of radioisotopes [3]. The isotopic, state-selective sensitivity of the well-established technique of nuclear resonance fluorescence (NRF) will be boosted by the drastically reduced energy bandwidth (<0.1%) of the novel γ beams. Together with a much higher intensity of these beams, this will pave the road towards a γ-beam based non-invasive tomography and microscopy, assisting the management of nuclear materials, such as radioactive waste management, the detection of nuclear fissile material in the recycling process or the detection of clandestine fissile materials. Moreover, also secondary sources like low-energy, pulsed, polarized neutron beams of high intensity and high brilliance [4] or a new type of positron source with significantly increased brilliance, for the first time fully polarized [5], can be realized and lead to new applications in solid state physics or material sciences.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenoy, G. K.; Rohlsberger, R.; X-Ray Science Division

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, tomore » a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.« less

  14. Proliferation risks from nuclear power infrastructure

    NASA Astrophysics Data System (ADS)

    Squassoni, Sharon

    2017-11-01

    Certain elements of nuclear energy infrastructure are inherently dual-use, which makes the promotion of nuclear energy fraught with uncertainty. Are current restraints on the materials, equipment, and technology that can be used either to produce fuel for nuclear electricity generation or material for nuclear explosive devices adequate? Technology controls, supply side restrictions, and fuel market assurances have been used to dissuade countries from developing sensitive technologies but the lack of legal restrictions is a continued barrier to permanent reduction of nuclear proliferation risks.

  15. Scholarship for Nuclear Communications and Methods for Evaluation of Nuclear Project Acceptability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golay, Michael

    This project aims to go beyond effective communication in understanding how to design nuclear enterprise projects that will gain stakeholder acceptability. Much of what we are studying is generally applicable to controversial projects, and we expect our results to be of broad value beyond the nuclear arena. Acceptability is more than effective communication; it also requires varying degrees of engagement with a disparate number of stakeholder groups. In the nuclear enterprise, previous attempts have been well designed physically (i.e., technologically sound), but have floundered by being insensitive concerning acceptance. Though effective communication is a necessary, but insufficient, condition for suchmore » success, there is a lack of scholarship regarding how to gain stakeholder acceptance for new controversial projects, including nuclear ones. Our work is building a model for use in assessing the performance of a project in the area of acceptability. In the nuclear-social nexus, gaining acceptance requires a clear understanding of factors regarded as being important by the many stakeholders that are common to new nuclear project (many of whom hold an effective veto power). Projects tend to become socially controversial when public beliefs, expert opinion and decision-maker understanding are misaligned. As such, stakeholder acceptance is hypothesized as both an ongoing process and an initial project design parameter comprised of complex, social, cognitive and technical components. Controversial projects may be defined as aspects of modern technologies that some people question, or are cautious about. They could range from genetic modifications, biological hazards, effects of chemical agents, nuclear radiation or hydraulic fracturing operations. We intend that our work will result in a model likely to be valuable for refining project design and implementation to increase the knowledge needed for successful management of stakeholder relationships.« less

  16. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  17. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.

    PubMed

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH techniques have visualized intra-nuclear genomic structure and sub-cellular transcriptional dynamics of many genes and revealed their functions in various biological processes.

  18. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  19. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  20. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  1. Multi-sensor radiation detection, imaging, and fusion

    NASA Astrophysics Data System (ADS)

    Vetter, Kai

    2016-01-01

    Glenn Knoll was one of the leaders in the field of radiation detection and measurements and shaped this field through his outstanding scientific and technical contributions, as a teacher, his personality, and his textbook. His Radiation Detection and Measurement book guided me in my studies and is now the textbook in my classes in the Department of Nuclear Engineering at UC Berkeley. In the spirit of Glenn, I will provide an overview of our activities at the Berkeley Applied Nuclear Physics program reflecting some of the breadth of radiation detection technologies and their applications ranging from fundamental studies in physics to biomedical imaging and to nuclear security. I will conclude with a discussion of our Berkeley Radwatch and Resilient Communities activities as a result of the events at the Dai-ichi nuclear power plant in Fukushima, Japan more than 4 years ago.

  2. A historical application of social amplification of risk model: Economic impacts of risk events at nuclear weapons facilities?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, W.C.

    1996-12-31

    Public perceptions of risk have proven to be a critical barrier to the federal government`s extensive, decade-long, technical and scientific effort to site facilities for the interim storage and permanent disposal of high-level radioactive waste (HLW). The negative imagery, fear, and anxiety that are linked to ``nuclear`` and ``radioactive`` technologies, activities, and facilities by the public originate from the personal realities and experiences of individuals and the information they receive. These perceptions continue to be a perplexing problem for those responsible for making decisions about federal nuclear waste management policies and programs. The problem of understanding and addressing public perceptionsmore » is made even more difficult because there are decidedly different opinions about HLW held by the public and nuclear industry and radiation health experts.« less

  3. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    NASA Astrophysics Data System (ADS)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  4. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  5. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    DOE PAGES

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena; ...

    2016-10-22

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  6. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  7. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    NASA Astrophysics Data System (ADS)

    Poulson, D.; Durham, J. M.; Guardincerri, E.; Morris, C. L.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D.; Hecht, A. A.

    2017-01-01

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ∼ 18 σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Potential detector technologies and geometries are discussed.

  8. Cloning of aged animals: a medical model for tissue and organ regeneration.

    PubMed

    Tian, X C; Kubota, C; Yang, X

    2001-11-01

    Cloning by nuclear transfer has great potential application in pharmaceutical protein production, xeno-transplantation, and perhaps most excitingly, therapeutic cloning. In therapeutic cloning a patient's own skin cells can be used to generate cloned embryos from which embryonic stem cells are isolated. Through targeted differentiation, embryonic stem cells can be directed to develop into the desired tissues/organs for replacement. The combination of homologous recombination of genes and nuclear transfer also offers the promise of correcting defective genes in humans. Demonstration of the successful cloning of aged animals is important for these future medical applications because degenerative diseases often afflict older adults. Our studies have demonstrated that skin fibroblast cells from aged adults, even after prolonged culture, provide nuclear donors equally as competent for cloning as cells from young adults or fetuses. These findings have paved the way for medically treating degenerative diseases of aged humans by tissue regeneration technologies made possible through cloning and homologous recombination.

  9. Radioactive decay data tables: A handbook of decay data for application to radiation dosimetry and radiological assessments

    NASA Astrophysics Data System (ADS)

    Kocher, D. C.; Smith, J. S.

    Decay data are presented for approximately 500 radionuclides including those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. Physical processes involved in radioactive decay which produce the different types of radiation observed, methods used to prepare the decay data sets for each radionuclide in the format of the computerized evaluated nuclear structure data file, the tables of radioactive decay data, and the computer code MEDLIST used to produce the tables are described. Applications of the data to problems of interest in radiation dosimetry and radiological assessments are considered as well as the calculations of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain.

  10. Quantum Mechanics - Fundamentals and Applications to Technology

    NASA Astrophysics Data System (ADS)

    Singh, Jasprit

    1996-10-01

    Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. The many helpful features include * Twenty-eight application-oriented sections that focus on lasers, transistors, magnetic memories, superconductors, nuclear magnetic resonance (NMR), and other important technology-driving materials and devices * One hundred solved examples, with an emphasis on numerical results and the connection between the physics and its applications * End-of-chapter problems that ground the student in both fundamental and applied concepts * Numerous figures and tables to clarify the various topics and provide a global view of the problems under discussion * Over two hundred illustrations to highlight problems and text A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.

  11. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  12. III International Conference on Laser and Plasma Researches and Technologies

    NASA Astrophysics Data System (ADS)

    2017-12-01

    A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of the speakers, participants, organizing and program committee members for their contribution to the conference.

  13. A Nuclear Tech Course = Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    A nuclear technology college course for engineering students is outlined and described. The course begins with an historical account of the scientific discoveries leading up to the uranium experiments of Hahn and Strassman in Germany and the subsequent explanation of nuclear fission by Meitner and Frisch. The technological achievements of the…

  14. Application of Two Phase (Liquid/Gas) Xenon Gamma-Camera for the Detection of Special Nuclear Material and PET Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinsey, Daniel Nicholas

    The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have bettermore » energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid detectors for astrophysics, most recently in the XENON10 experiment. The existing facilities at Yale are fully adequate for the completion of this project. The facilities of the UConn group at the LNS at Avery Point include a (clean) lab for detector development and this group recently delivered an Optical Readout TPC (O-TPC) for research in Nuclear Astrophysics at the TUNL in Duke University. The machine shop at UConn will be used (free of charge) for producing the extra hardware needed for this project including grids and frames.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Divisionmore » operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.« less

  16. A Comparison of Brayton and Stirling Space Nuclear Power Systems for Power Levels from 1 Kilowatt to 10 Megawatts

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.

  17. Space and nuclear research and technology

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A fact sheet is presented on the space and nuclear research and technology program consisting of a research and technology base, system studies, system technology programs, entry systems technology, and experimental programs.

  18. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  19. Technology Advancement and the CTBT: Taking One Step Back from the Nuclear Brink

    NASA Astrophysics Data System (ADS)

    Perry, W. J.

    2016-12-01

    Technology plays a pivotal role in international nuclear security and technological advancement continues to support a path toward stability. One near-term and readily-obtainable step back from the nuclear brink is the Comprehensive Nuclear-test Ban Treaty (CTBT). The technology to independently verify adherence to the CTBT has matured in the 20 years since the Treaty was opened for signature. Technology has also improved the safety and reliability of the US nuclear stockpile in the absence of testing. Due to these advances over the past two decades neither verification nor stockpiles effectiveness should be an impediment to the Treaty's entry into force. Other technical and geo-political evolution in this same period has changed the perceived benefit of nuclear weapons as instruments of security. Recognizing the change technology has brought to deliberation of nuclear security, nations are encouraged to take this one step away from instability.This presentation will reflect on the history and assumptions that have been used to justify the build-up and configuration of nuclear stockpiles, the changes in technology and conditions that alter the basis of these original assumptions, and the re-analysis of security using current and future assumptions that point to the need for revised nuclear policies. The author has a unique and well informed perspective as both the most senior US Defense Official and a technologist.

  20. Performance of a Boron-Coated-Straw-Based HLNCC for International Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simone, Angela T.; Croft, Stephen; McElroy, Robert Dennis

    3He gas has been used in various scientific and security applications for decades, but it is now in short supply. Alternatives to 3He detectors are currently being integrated and tested in neutron coincidence counter designs, of a type which are widely used in nuclear safeguards for nuclear materials assay. A boron-coated-straw-based design, similar to the High-Level Neutron Coincidence Counter-II, was built by Proportional Technologies Inc., and has been tested by the Oak Ridge National Laboratory (ORNL) at both the JRC in Ispra and ORNL. Characterization measurements, along with nondestructive assays of various plutonium samples, have been conducted to determine themore » performance of this coincidence counter replacement in comparison with other similar counters. This paper presents results of these measurements.« less

  1. Nuclear power technology requirements for NASA exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1990-01-01

    It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.

  2. Nuclear thermal propulsion workshop overview

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning.

  3. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadasivan, Pratap

    2012-08-24

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mixmore » of innovative methods that support the general practice of risk assessments, and selected applications.« less

  4. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  5. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Astrophysics Data System (ADS)

    Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.

    The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  6. Annual Report to Congress of the Atomic Energy Commission for 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less

  7. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  8. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  9. Physical Limitations of Nuclear Propulsion for Earth to Orbit

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Patton, Bruce; Rhys, Noah O.; Schafer, Charles F. (Technical Monitor)

    2001-01-01

    An assessment of current nuclear propulsion technology for application in Earth to Orbit (ETO) missions has been performed. It can be shown that current nuclear thermal rocket motors are not sufficient to provide single stage performance as has been stated by previous studies. Further, when taking a systems level approach, it can be shown that NTRs do not compete well with chemical engines where thrust to weight ratios of greater than I are necessary, except possibly for the hybrid chemical/nuclear LANTR (LOX Augmented Nuclear Thermal Rocket) engine. Also, the ETO mission requires high power reactors and consequently large shielding weights compared to NTR space missions where shadow shielding can be used. In the assessment, a quick look at the conceptual ASPEN vehicle proposed in 1962 in provided. Optimistic NTR designs are considered in the assessment as well as discussion on other conceptual nuclear propulsion systems that have been proposed for ETO. Also, a quick look at the turbulent, convective heat transfer relationships that restrict the exchange of nuclear energy to thermal energy in the working fluid and consequently drive the reactor mass is included.

  10. Summary Report for the Radiation Detection for Nuclear Security Summer School 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runkle, Robert C.; Baciak, James E.; Woodring, Mitchell L.

    Executive Summary The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the 3rd Radiation Detection for Nuclear Security Summer School from 16 – 27 June 2014. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectivesmore » of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security. In fact, we are beginning to see previous students both enroll in graduate programs (former undergraduates) and complete internships at agencies like the National Nuclear Security Administration.« less

  11. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  12. Smart storage technologies applied to fresh foods: A review.

    PubMed

    Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu

    2017-06-30

    Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.

  13. Nuclear Proliferation: A Historical Overview

    DTIC Science & Technology

    2008-03-01

    Talbert, “Nuclear Proliferation Technology Trends Analysis ,” Pacific Northwest National Laboratory, PNNL -14480 (September 2005), p. 92. 1973: Closed...L. Coles, and R. J. Talbert, “Nuclear Proliferation Technology Trends Analysis ,” Pacific Northwest National Laboratory, PNNL -14480 (September 2005...D. Zentner, G. L. Coles, and R. J. Talbert, “Nuclear Proliferation Technology Trends Analysis ,” Pacific Northwest National Laboratory, PNNL -14480

  14. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  15. Nuclear Technology. Course 28: Welding Inspection. Module 28-2, Shielded Metal Arc and Oxyacetylene Welding.

    ERIC Educational Resources Information Center

    Espy, John; Selleck, Ben

    This second in a series of ten modules for a course titled Welding Inspection describes the key features of the oxyacetylene and shielded metal arc welding process. The apparatus, process techniques, procedures, applications, associated defects, and inspections are presented. The module follows a typical format that includes the following…

  16. Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Dr. Peter S.; Ball, Robert; Chapman, J. Wehrley

    2010-01-01

    A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.

  17. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-5, Fundamentals of Eddy Current Testing.

    ERIC Educational Resources Information Center

    Espy, John

    This fifth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the fundamental concepts applicable to eddy current testing in general. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…

  18. New Brunswick Laboratory: Progress report, October 1987--September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    NBL has been tasked by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP) to assure the application of accurate and reliable measurement technology for the safeguarding of special nuclear materials. NBL is fulfilling its mission responsibilities by identifying and addressing the measurement and measurement-related needs of the nuclear material safeguards community. These responsibilities are being addressed by activities in the following program areas: (1) reference and calibration materials, (2) measurement development, (3) measurement services, (4) measurement evaluation, (5) safeguards assessment, and (6) site-specific assistance. Highlights of each of these programs areas are provided in this summary.

  19. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  20. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    NASA Technical Reports Server (NTRS)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  1. Atoms for Peace after 50 Years

    DOE R&D Accomplishments Database

    Joeck, N.; Lehman, R. F.; Vergino, E. S.; Schock, R. N.

    2004-03-20

    President Eisenhower's hopes for nuclear technology still resonate, but the challenges to fulfilling them are much different today. On December 8, 1953, President Eisenhower, returning from his meeting with the leaders of Britain and France at the Bermuda Summit, flew directly to New York to address the United Nations General Assembly. His presentation, known afterwards as the "Atoms for Peace" speech, was bold, broad, and visionary. Eisenhower highlighted dangers associated with the further spread of nuclear weapons and the end of the thermonuclear monopoly, but the president also pointed to opportunities. Earlier that year, Stalin had died and the Korean War armistice was signed. Talks on reunification of Austria were about to begin. The speech sought East-West engagement and outlined a framework for reducing nuclear threats to security while enhancing the civilian benefits of nuclear technology. One specific proposal offered to place surplus military fissile material under the control of an "international atomic energy agency" to be used for peaceful purposes, especially economic development. Eisenhower clearly recognized the complex interrelationships between different nuclear technologies and the risks and the benefits that accrue from each. The widespread use of civilian nuclear technology and absence of any use of a nuclear weapon during the next half-century reflects success in his approach. Today, the world faces choices about nuclear technology that have their parallels in the Eisenhower calculus and its legacy. Although his specific fissile material proposal was never implemented, his broader themes gave impetus to agreements such as the nuclear Non-Proliferation Treaty (NPT) and institutions such as the International Atomic Energy Agency (IAEA). The resulting governance process has promoted some and restricted other nuclear technology. Perhaps even more influential was Eisenhower's overarching recommendation that we try to reduce the risks and seek the benefits of nuclear technology. Whether seen as an effort to rebalance investment in a dual-use technology or as the foundation for a "bargain" between nuclear haves and have-nots, Eisenhower's speech brought together concepts that furnished the theoretical underpinnings of the nuclear technology control regime that has governed for nearly half a century. Some believe that Eisenhower's basic concepts remain sound and will provide the foundation for the future. Others believe they were never sound and promulgated dangerous dual-use technology around the world. Many are still debating exactly what Eisenhower meant to say.

  2. Atoms for Peace after Fifty Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joeck, N; Lehman, R; Vergino, E

    2004-03-15

    President Eisenhower's hopes for nuclear technology still resonate, but the challenges to fulfilling them are much different today. On December 8, 1953, President Eisenhower, returning from his meeting with the leaders of Britain and France at the Bermuda Summit, flew directly to New York to address the United Nations General Assembly. His presentation, known afterwards as the ''Atoms for Peace'' speech, was bold, broad, and visionary. Eisenhower highlighted dangers associated with the further spread of nuclear weapons and the end of the thermonuclear monopoly, but the president also pointed to opportunities. Earlier that year, Stalin had died and the Koreanmore » War armistice was signed. Talks on reunification of Austria were about to begin. The speech sought East-West engagement and outlined a framework for reducing nuclear threats to security while enhancing the civilian benefits of nuclear technology. One specific proposal offered to place surplus military fissile material under the control of an ''international atomic energy agency'' to be used for peaceful purposes, especially economic development. Eisenhower clearly recognized the complex interrelationships between different nuclear technologies and the risks and the benefits that accrue from each. The widespread use of civilian nuclear technology and absence of any use of a nuclear weapon during the next half-century reflects success in his approach. Today, the world faces choices about nuclear technology that have their parallels in the Eisenhower calculus and its legacy. Although his specific fissile material proposal was never implemented, his broader themes gave impetus to agreements such as the nuclear Non-Proliferation Treaty (NPT) and institutions such as the International Atomic Energy Agency (IAEA). The resulting governance process has promoted some and restricted other nuclear technology. Perhaps even more influential was Eisenhower's overarching recommendation that we try to reduce the risks and seek the benefits of nuclear technology. Whether seen as an effort to rebalance investment in a dual-use technology or as the foundation for a ''bargain'' between nuclear haves and have-nots, Eisenhower's speech brought together concepts that furnished the theoretical underpinnings of the nuclear technology control regime that has governed for nearly half a century. Some believe that Eisenhower's basic concepts remain sound and will provide the foundation for the future. Others believe they were never sound and promulgated dangerous dual-use technology around the world. Many are still debating exactly what Eisenhower meant to say.« less

  3. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less

  4. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  5. The effect of ionizing radiation on microbiological decontamination of medical herbs and biologically active compounds

    NASA Astrophysics Data System (ADS)

    Migdal, W.; Owczarczyk, B.; Kedzia, B.; Holderna-Kedzia, E.; Segiet-Kujawa, E.

    1998-06-01

    Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently, chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology the national program on the application of irradiation to the decontamination of medical herbs is in progress now. The purpose of the program is to elaborate, on the basis of research work, the facility standards and technological instructions indispensable for the practice of radiation technology.

  6. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, M.W.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  7. Nanoscale NMR spectroscopy and imaging of multiple nuclear species.

    PubMed

    DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ∼100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (∼20 mT) using two complementary sensor modalities.

  8. Performance Assessment of the Commercial CFD Software for the Prediction of the Reactor Internal Flow

    NASA Astrophysics Data System (ADS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku

    2014-06-01

    As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodie, K B; Mailhiot, C; Eaglesham, D

    Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted themore » assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme conditions--Fundamental investigations of the properties and performance of states of matter under extreme dynamic, environmental, and nanoscale conditions, with an emphasis on materials of interest to Laboratory programs and mission needs. (2) Chemistry under extreme conditions and chemical engineering to support national security programs--Insights into the chemical reactions of energetic materials in the nuclear stockpile through models of molecular response to extreme conditions of temperature and pressure, advancing a new technique for processing energetic materials by using sol-gel chemistry, providing materials for NIF optics, and furthering developments to enhance other high-power lasers. (3) Science supporting national objectives at the intersection of chemistry, materials science, and biology--Multidisciplinary research for developing new technologies to combat chemical and biological terrorism, to monitor changes in the nation's nuclear stockpile, and to enable the development and application of new physical-science-based methodologies and tools for fundamental biology studies and human health applications. (4) Applied nuclear science for human health and national security: Nuclear science research that is used to develop new methods and technologies for detecting and attributing nuclear materials, assisting Laboratory programs that require nuclear and radiochemical expertise in carrying out their missions, discovering new elements in the periodic table, and finding ways of detecting and understanding cellular response to radiation.« less

  10. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    NASA Astrophysics Data System (ADS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").

  11. Application of modern autoradiography to nuclear forensic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. Here in this article we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris.« less

  12. Application of modern autoradiography to nuclear forensic analysis

    DOE PAGES

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; ...

    2018-05-20

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. Here in this article we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris.« less

  13. Application of modern autoradiography to nuclear forensic analysis.

    PubMed

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; Stone, Gary; Caldeira, Lee; Ramon, Christina; Kristo, Michael

    2018-05-01

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary to information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20×40cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5 ) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ∼10μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. In this paper we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Overview of Energy Storage Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  15. Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne; Honma, George

    This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical informationmore » is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.« less

  16. Like a bridge over troubled water--Opening pathways for integrating social sciences and humanities into nuclear research.

    PubMed

    Turcanu, Catrinel; Schröder, Jantine; Meskens, Gaston; Perko, Tanja; Rossignol, Nicolas; Carlé, Benny; Hardeman, Frank

    2016-03-01

    Research on nuclear technologies has been largely driven by a detachment of the 'technical content' from the 'social context'. However, social studies of science and technology--also for the nuclear domain--emphasize that 'the social' and 'the technical' dimensions of technology development are inter-related and co-produced. In an effort to create links between nuclear research and innovation and society in mutually beneficial ways, the Belgian Nuclear Research Centre started fifteen years ago a 'Programme of Integration of Social Aspects into nuclear research' (PISA). In line with broader science-policy agendas (responsible research and innovation and technology assessment), this paper argues that the importance of such programmes is threefold. First, their multi-disciplinary basis and participatory character contribute to a better understanding of the interactions between science, technology and society, in general, and the complexity of nuclear technology assessment in particular. Second, their functioning as (self -)critical policy supportive research with outreach to society is an essential prerequisite for policies aiming at generating societal trust in the context of controversial issues related to nuclear technologies and exposure to ionising radiation. Third, such programmes create an enriching dynamic in the organisation itself, stimulating collective learning and transdisciplinarity. The paper illustrates with concrete examples these claims and concludes by discussing some key challenges that researchers face while engaging in work of this kind. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  18. A nuclear driven metallic vapor MHD coupled with MPD thrusters

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim; Kumar, Ratan

    1991-01-01

    Nuclear energy as a source of power for space missions, represents an enabling technology for advanced and ambitious space applications. Nuclear fuel in a gaseous or liquid form has been configured as a promising and practical candidate in this regard. The present study investigates and performs a feasibility analysis of an innovative concept for space power generation and propulsion. The system embodies a conceptual nuclear reactor with an MHD generator and coupled to MPD thrusters. The reactor utilizes liquid uranium in droplet form as fuel and superheated metallic vapor as the working fluid. This ultrahigh temperature vapor core reactor brings forward varied and challenging technical issues, and it has been addressed to in this paper. A parametric study of the conceived system has been performed in a qualitative and quantitative manner. Preliminary results show enough promise for further indepth analysis of this novel system.

  19. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  20. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  1. Fish genome manipulation and directional breeding.

    PubMed

    Ye, Ding; Zhu, ZuoYan; Sun, YongHua

    2015-02-01

    Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.

  2. Advanced teleoperation: Technology innovations and applications

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.; Bejczy, Antal K.; Kim, Won S.

    1994-01-01

    The capability to remotely, robotically perform space assembly, inspection, servicing, and science functions would rapidly expand our presence in space, and the cost efficiency of being there. There is considerable interest in developing 'telerobotic' technologies, which also have comparably important terrestrial applications to health care, underwater salvage, nuclear waste remediation and other. Such tasks, both space and terrestrial, require both a robot and operator interface that is highly flexible and adaptive, i.e., capable of efficiently working in changing and often casually structured environments. One systems approach to this requirement is to augment traditional teleoperation with computer assists -- advanced teleoperation. We have spent a number of years pursuing this approach, and highlight some key technology developments and their potential commercial impact. This paper is an illustrative summary rather than self-contained presentation; for completeness, we include representative technical references to our work which will allow the reader to follow up items of particular interest.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roussel, G.

    Leak-Before-Break (LBB) technology has not been applied in the first design of the seven Pressurized Water Reactors the Belgian utility is currently operating. The design basis of these plants required to consider the dynamic effects associated with the ruptures to be postulated in the high energy piping. The application of the LBB technology to the existing plants has been recently approved by the Belgian Safety Authorities but with a limitation to the primary coolant loop. LBB analysis has been initiated for the Doel 3 and Tihange 2 plants to allow the withdrawal of some of the reactor coolant pump snubbersmore » at both plants and not reinstall some of the restraints after steam generator replacement at Doel 3. LBB analysis was also found beneficial to demonstrate the acceptability of the primary components and piping to the new conditions resulting from power uprating and stretch-out operation. LBB analysis has been subsequently performed on the primary coolant loop of the Tihange I plant and is currently being performed for the Doel 4 plant. Application of the LBB to the primary coolant loop is based in Belgium on the U.S. Nuclear Regulatory Commission requirements. However the Belgian Safety Authorities required some additional analyses and put some restrictions on the benefits of the LBB analysis to maintain the global safety of the plant at a sufficient level. This paper develops the main steps of the safety evaluation performed by the Belgian Safety Authorities for accepting the application of the LBB technology to existing plants and summarizes the requirements asked for in addition to the U.S. Nuclear Regulatory Commission rules.« less

  4. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.« less

  5. Converting energy to medical progress [nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biologicalmore » research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.« less

  6. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments Database

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  7. Advances in display technology III; Proceedings of the Meeting, Los Angeles, CA, January 18, 19, 1983

    NASA Astrophysics Data System (ADS)

    Schlam, E.

    1983-01-01

    Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.

  8. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Nuclear Materials and Equipment * Nuclear Regulatory Commission, Office of International Programs, Tel. (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  9. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors, Enrichment, Reprocessing, Fuel Fabrication, and Heavy Water...-6050. 10 CFR 205.300 through 205.379 and part 590. Nuclear Materials and Equipment * Nuclear Regulatory...

  10. Occupational exposure assessment: Practices in Malaysian nuclear agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarowi, S. Muhd, E-mail: suzie@nuclearmalaysia.gov.my; Ramli, S. A.; Kontol, K. Mohamad

    Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia includingmore » the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H{sub 0}) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304)« less

  11. Occupational exposure assessment: Practices in Malaysian nuclear agency

    NASA Astrophysics Data System (ADS)

    Sarowi, S. Muhd; Ramli, S. A.; Kontol, K. Mohamad; Rahman, N. A. H. Abd.

    2016-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia including the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H₀) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304).

  12. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    NASA Astrophysics Data System (ADS)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  13. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  14. NIMBY, CLAMP, and the location of new nuclear-related facilities: U.S. national and 11 site-specific surveys.

    PubMed

    Greenberg, Michael R

    2009-09-01

    Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.

  15. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  16. Research, Development and Demonstration (RD&D) Needs for Light Water Reactor (LWR) Technologies A Report to the Reactor Technology Subcommittee of the Nuclear Energy Advisory Committee (NEAC) Office of Nuclear Energy U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.; Adams, Bradley J.

    The LWR RD&D Working Group developed a detailed list of RD&D suggestions and recommendations, which are provided in Appendix D. The Working Group then undertook a systematic ranking process, described in Appendix E. The results of the ranking process are not meant to be a strict set of priorities, but rather should provide insight into how the items generally ranked within the Working Group. Future discussions and investigation into these items could provide information that would support a change in these priorities or in their emphasis. The results of this prioritization are provided below. Note that in general, many RD&Dmore » ideas are applicable to both new Advanced Light Water Reactor (ALWR) plants and currently operating plants.« less

  17. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, whichmore » contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.« less

  18. Organizational/institutional factors affecting performance in the nuclear power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, J.L.

    1992-01-01

    The dramatic macro experiences occurring at Three Mile Island and Chernobyl as well as the cumulative micro experiences represented by sky-rocketing costs and public concerns have demonstrated how the institutionally and organizationally related aspects of the nuclear power industry have dominated and shaped the technical ones. Further, given the relatively stable or evolutionary nature of the technology as it is currently applied, these institutional and organizational factors contain the roots of most of the complications/problems associated with the industry relative to achieving any or all of its future performance objectives (technical, economic, and safety). Some technology transfer was attempted bymore » the author from the field of general systems/cybernetics, which was explicitly aimed at dealing with the organizational/institutional factors, i.e., the problems and issues were approached using principles and methodology substantially different from that typically seen from applications based on the more traditional paradigmic engineering/industrial management orientation.« less

  19. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    PubMed

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.

  1. Media analysis of the representations of fusion and other future energy technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio

    2015-07-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in amore » selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)« less

  2. The Role of Ceramics in a Resurgent Nuclear Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J

    2006-02-28

    With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operatemore » at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.« less

  3. Maintenance Free Fluidic Transfer and Mixing Devices for Highly Radioactive Applications - Design, Development, Deployment and Operational Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Richardson, J. E.; Fallows, P.

    2006-07-01

    Power Fluidics is the generic name for a range of maintenance-free fluid transfer and mixing devices, capable of handling a wide range of highly radioactive fluids, jointly developed by British Nuclear Group, its US-based subsidiary BNG America, and AEA Technology. Power Fluidic devices include Reverse Flow Diverters (RFDs), Vacuum Operated Slug Lifts (VOSLs), and Air Lifts, all of which have an excellent proven record for pumping radioactive liquids and sludges. Variants of the RFD, termed Pulse Jet Mixers (PJMs) are used to agitate and mix tank contents, where maintenance-free equipment is desirable, and where a high degree of homogenization ismore » necessary. The equipment is designed around the common principle of using compressed air to provide the motive force to transfer liquids and sludges. These devices have no moving parts in contact with the radioactive medium and therefore require no maintenance in radioactive areas of processing plants. Once commissioned, Power Fluidic equipment has been demonstrated to operate for the life of the facility. Over 800 fluidic devices continue to operate safely and reliably in British Nuclear Group's nuclear facilities at the Sellafield site in the United Kingdom, and some of these have done so for almost 40 years. More than 400 devices are being supplied by AEA Technology and BNG America for the Waste Treatment Plant (WTP) at the Hanford Site in southeastern Washington State, USA. This paper discusses: - Principles of operation of fluidic pumps and mixers. - Selection criteria and design of fluidic pumps and mixers. - Operational experience of fluidic pumps and mixers in the United Kingdom. - Applications of fluidic pumps and mixers at the U.S. Department of Energy nuclear sites. (authors)« less

  4. Development and application of biological technologies in fish genetic breeding.

    PubMed

    Xu, Kang; Duan, Wei; Xiao, Jun; Tao, Min; Zhang, Chun; Liu, Yun; Liu, ShaoJun

    2015-02-01

    Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology.

  5. Development of Sendai Virus Vectors and their Potential Applications in Gene Therapy and Regenerative Medicine

    PubMed Central

    Nakanishi, Mahito; Otsu, Makoto

    2012-01-01

    Gene delivery/expression vectors have been used as fundamental technologies in gene therapy since the 1980s. These technologies are also being applied in regenerative medicine as tools to reprogram cell genomes to a pluripotent state and to other cell lineages. Rapid progress in these new research areas and expectations for their translation into clinical applications have facilitated the development of more sophisticated gene delivery/expression technologies. Since its isolation in 1953 in Japan, Sendai virus (SeV) has been widely used as a research tool in cell biology and in industry, but the application of SeV as a recombinant viral vector has been investigated only recently. Recombinant SeV vectors have various unique characteristics, such as low pathogenicity, powerful capacity for gene expression and a wide host range. In addition, the cytoplasmic gene expression mediated by this vector is advantageous for applications, in that chromosomal integration of exogenous genes can be undesirable. In this review, we introduce a brief historical background on the development of recombinant SeV vectors and describe their current applications in gene therapy. We also describe the application of SeV vectors in advanced nuclear reprogramming and introduce a defective and persistent SeV vector (SeVdp) optimized for such reprogramming. PMID:22920683

  6. High-energy photon interrogation for nonproliferation applications

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Blackburn, B. W.; Watson, S. M.; Norman, D. R.; Hunt, A. W.

    2007-08-01

    There is an immediate need for technologies that can successfully address homeland security challenges related to the inspection of commercial rail, air and maritime-cargo container inspections for nuclear and radiological devices. The pulsed photonuclear assessment (PPA) technology, developed through collaboration between Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL) and the Idaho Accelerator Center (IAC) has demonstrated the ability to detect shielded/unshielded nuclear material primarily through the analysis of delayed neutrons and gamma-rays produced via photonuclear reactions. Because of current food irradiation limitations, however, most active photon (i.e. bremsstrahlung) interrogation studies have been performed with electron beam energies at or below 10 MeV. While this energy limit currently applies to cargo inspections, the World Health Organization has indicated that higher energy electron beam operations could be considered for future operations. Clinical applications using photon energies well in excess of 10 MeV are already well established. Notwithstanding the current limitation of 10 MeV, there is a definite advantage in using higher photon energies for cargo inspections. At higher energies, several phenomena contribute to increased sensitivity in regards to detecting shielded nuclear material. Two of the most important are: (1) increased ability for source photons to penetrate shielding; and (2) enhanced signature production via increased (γ,n) and (γ,f) cross-sections in materials such as 235U and 239Pu directly leading to faster inspection throughput. Experimental assessments have been conducted for various electron beam energies from 8 to 25 MeV. Increases of up to three orders of magnitude in delayed signatures have been measured over these energy ranges. Through the continued investigation into PPA-based inspection applications using photon energies greater than 10 MeV, higher detection sensitivities with potentially lower delivered dose to cargo and increased throughput may be realized.

  7. The role of science in treaty verification.

    PubMed

    Gavron, Avigdor

    2005-01-01

    Technologically advanced nations are currently applying more science to treaty verification than ever before. Satellites gather a multitude of information relating to proliferation concerns using thermal imaging analysis, nuclear radiation measurements, and optical and radio frequency signals detection. Ground stations gather complementary signals such as seismic events and radioactive emissions. Export controls in many countries attempt to intercept materials and technical means that could be used for nuclear proliferation. Nevertheless, we have witnessed a plethora of nuclear proliferation episodes, that were undetected (or were belatedly detected) by these technologies--the Indian nuclear tests in 1998, the Libyan nuclear buildup, the Iranian enrichment program and the North Korea nuclear weapons program are some prime examples. In this talk, we will discuss some of the technologies used for proliferation detection. In particular, we will note some of the issues relating to nuclear materials control agreements that epitomize political difficulties as they impact the implementation of science and technology.

  8. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Shropshire

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions tomore » their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.« less

  9. Overview of nuclear education and outreach program among Malaysian school students

    NASA Astrophysics Data System (ADS)

    Sahar, Haizum Ruzanna; Masngut, Nasaai; Yusof, Mohd Hafizal; Ngadiron, Norzehan; Adnan, Habibah

    2017-01-01

    This paper gives an overview of nuclear education and outreach program conducted by Agensi Nuklear Malaysia (Nuklear Malaysia) throughout its operation and establishment. Since its foundation in 1972, Nuklear Malaysia has been the pioneer and is competent in the application of nuclear science and technology. Today, Nuklear Malaysia has ventured and eventually contributed into the development of various socio-economic sectors which include but not limited to medical, industry, manufacturing, agriculture, health, radiation safety and environment. This paper accentuates on the history of education and outreach program by Nuklear Malaysia, which include its timeline and evolution; as well as a brief on education and outreach program management, involvement of knowledge management as part of its approach and later the future of Nuklear Malaysia education and outreach program.

  10. Updated and revised neutron reaction data for 237Np

    NASA Astrophysics Data System (ADS)

    Chen, Guochang; Wang, Jimin; Cao, Wentian; Tang, Guoyou; Yu, Baosheng

    2017-09-01

    Nuclear data with high accuracy for minor actinides play an important role in nuclear technology applications, including reactor design and operation, fuel cycle, estimation of the amount of minor actinides in high burn-up reactors and the minor actinides transmutation. Based on the evaluated experimental data, the updated and revised evaluation of a full set of n+237Np nuclear data from 10-5 eV ˜ 20 MeV are carried out and recommended. Mainly revised quantities are neutron multiplicities from fission reaction, inelastic, fission, (n, 2n) and (n, γ) reaction cross sections as well as angular distribution and so on. The promising results are obtained when the renewal evaluated data of 237Np will be used to instead of the evaluated data in CENDL-3.1 database.

  11. The quantum universe

    NASA Astrophysics Data System (ADS)

    Hey, Anthony J. G.; Walters, Patrick

    This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.

  12. GAIN Technology Workshops Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori Ann

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is requiredmore » to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.« less

  13. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer.

    PubMed

    Ahn, Byeong-Cheol

    2016-01-01

    Molecular imaging based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theranostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contribute to the success of personalized medicine. Although the term "theranostics" was used after the second millennium, its basic principle was applied more than 70 years ago in the field of thyroidology with radioiodine molecular imaging. Differentiated thyroid cancer, which arises from follicular cells in the thyroid, is the most common endocrine malignancy, and theranostic radioiodine has been successfully applied to diagnose and treat differentiated thyroid cancer, the applications of which were included in the guidelines published by various thyroid or nuclear medicine societies. Through better pathophysiologic understanding of thyroid cancer and advancements in nuclear technologies, theranostic radioiodine contributes more to modern tailored personalized management by providing high therapeutic effect and by avoiding significant adverse effects in differentiated thyroid cancer. This review details the inception of theranostic radioiodine and recent radioiodine applications for differentiated thyroid cancer management as a prototype of personalized medicine based on molecular imaging.

  14. 8 CFR 204.10 - Petitions by, or for, certain scientists of the Commonwealth of Independent States or the Baltic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass destruction, or who are working on nuclear, chemical, biological, or other high-technology defense projects, as... production of ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass...

  15. 8 CFR 204.10 - Petitions by, or for, certain scientists of the Commonwealth of Independent States or the Baltic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass destruction, or who are working on nuclear, chemical, biological, or other high-technology defense projects, as... production of ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass...

  16. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  17. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  18. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  19. Sandia National Laboratories: News

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: Locations

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. Sandia National Laboratories: Careers

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. Sandia National Laboratories: Mission

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. Sandia National Laboratories: Research

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  4. Sandia National Laboratories:

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  5. Sandia National Laboratories: Feedback

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  6. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  7. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    NASA Astrophysics Data System (ADS)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.

  8. Trends in HFE Methods and Tools and Their Applicability to Safety Reviews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, J.M.; Plott, C.; Milanski, J.

    2009-09-30

    The U.S. Nuclear Regulatory Commission's (NRC) conducts human factors engineering (HFE) safety reviews of applicant submittals for new plants and for changes to existing plants. The reviews include the evaluation of the methods and tools (M&T) used by applicants as part of their HFE program. The technology used to perform HFE activities has been rapidly evolving, resulting in a whole new generation of HFE M&Ts. The objectives of this research were to identify the current trends in HFE methods and tools, determine their applicability to NRC safety reviews, and identify topics for which the NRC may need additional guidance tomore » support the NRC's safety reviews. We conducted a survey that identified over 100 new HFE M&Ts. The M&Ts were assessed to identify general trends. Seven trends were identified: Computer Applications for Performing Traditional Analyses, Computer-Aided Design, Integration of HFE Methods and Tools, Rapid Development Engineering, Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. We assessed each trend to determine its applicability to the NRC's review by considering (1) whether the nuclear industry is making use of M&Ts for each trend, and (2) whether M&Ts reflecting the trend can be reviewed using the current design review guidance. We concluded that M&T trends that are applicable to the commercial nuclear industry and are expected to impact safety reviews may be considered for review guidance development. Three trends fell into this category: Analysis of Cognitive Tasks, Use of Virtual Environments and Visualizations, and Application of Human Performance Models. The other trends do not need to be addressed at this time.« less

  9. PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)

    NASA Astrophysics Data System (ADS)

    Veeraiah, N.

    2009-07-01

    The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous commercial and academic centers of Andhra Pradesh, India. The Departments of Physics of Acharya Nagarjuna University and the Nuzvid Campus have existed since the inception of the University. For the past decade and a half, these Departments have been actively involved in research on glass materials. More than 200 research articles have been published by staff members of these departments exclusively on glass materials. A number of Major Research Projects are being carried out by the staff members of these Departments. The organizing committee is indebted to all the scientists and scholars for their active participation in the seminar and their contribution to this proceedings. The committee expresses its gratitude to the authorities of Acharya Nagarjuna University (The Vice-Chancellor, The Rector and The Registrar), Department of Atomic Energy, Board of Research in Nuclear Sciences, Department of Science and Technology, Council of Scientific and Industrial Research, Defence Research and Development Organization and AP State Council of Science and Technology for their financial support. The committee thanks the IOP: Conference Series publisher for publishing this proceedings which added value to the seminar. Professor N Veeraiah Convener and Editor-in-Chief Professor D Krishna Rao Co-Convener

  10. Tutorial: Neural networks and their potential application in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhrig, R.E.

    A neural network is a data processing system consisting of a number of simple, highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks have emerged in the past few years as an area of unusual opportunity for research, development and application to a variety of real world problems. Indeed, neural networks exhibit characteristics and capabilities not provided by any other technology. Examples include reading Japanese Kanjimore » characters and human handwriting, reading a typewritten manuscript aloud, compensating for alignment errors in robots, interpreting very noise'' signals (e.g. electroencephalograms), modeling complex systems that cannot be modelled mathematically, and predicting whether proposed loans will be good or fail. This paper presents a brief tutorial on neural networks and describes research on the potential applications to nuclear power plants.« less

  11. Exploratory study on potential safeguards applications for shared ledger technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazar, Sarah L.; Jarman, Kenneth D.; Joslyn, Cliff A.

    The International Atomic Energy Agency (IAEA) is responsible for providing credible assurance that countries are meeting their obligations not to divert or misuse nuclear materials and facilities for non-peaceful purposes. To this end, the IAEA integrates information about States’ nuclear material inventories and transactions with other types of data to draw its safeguards conclusions. As the amount and variety of data and information has increased, the IAEA’s data acquisition, management, and analysis processes have greatly benefited from advancements in computer science, data management, and cybersecurity during the last 20 years. Despite these advancements, inconsistent use of advanced computer technologies asmore » well as political concerns among certain IAEA Member States centered on trust, transparency, and IAEA authorities limit the overall effectiveness and efficiency of IAEA safeguards. As a result, there is an ongoing need to strengthen the effectiveness and efficiency of IAEA safeguards while improving Member State cooperation and trust in the safeguards system. These chronic safeguards needs could be met with some emerging technologies, specifically those associated with the digital currency bitcoin.« less

  12. Emergency Preparedness technology support to the Health and Safety Executive (HSE), Nuclear Installations Inspectorate (NII) of the United Kingdom. Appendix A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Kula, K.R.

    1994-03-01

    The Nuclear Installations Inspectorate (NII) of the United Kingdom (UK) suggested the use of an accident progression logic model method developed by Westinghouse Savannah River Company (WSRC) and Science Applications International Corporation (SAIC) for K Reactor to predict the magnitude and timing of radioactivity releases (the source term) based on an advanced logic model methodology. Predicted releases are output from the personal computer-based model in a level-of-confidence format. Additional technical discussions eventually led to a request from the NII to develop a proposal for assembling a similar technology to predict source terms for the UK`s advanced gas-cooled reactor (AGR) type.more » To respond to this request, WSRC is submitting a proposal to provide contractual assistance as specified in the Scope of Work. The work will produce, document, and transfer technology associated with a Decision-Oriented Source Term Estimator for Emergency Preparedness (DOSE-EP) for the NII to apply to AGRs in the United Kingdom. This document, Appendix A is a part of this proposal.« less

  13. Fuel Cycle Technologies 2014 Achievement Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Bonnie C.

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities.more » FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.« less

  14. Novel Scintillating Materials Based on Phenyl-Polysiloxane for Neutron Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Degerlier, M.; Carturan, S.; Gramegna, F.; Marchi, T.; Palma, M. Dalla; Cinausero, M.; Maggioni, G.; Quaranta, A.; Collazuol, G.; Bermudez, J.

    Neutron detectors are extensively used at many nuclear research facilities across Europe. Their application range covers many topics in basic and applied nuclear research: in nuclear structure and reaction dynamics (reaction reconstruction and decay studies); in nuclear astrophysics (neutron emission probabilities); in nuclear technology (nuclear data measurements and in-core/off-core monitors); in nuclear medicine (radiation monitors, dosimeters); in materials science (neutron imaging techniques); in homeland security applications (fissile materials investigation and cargo inspection). Liquid scintillators, widely used at present, have however some drawbacks given by toxicity, flammability, volatility and sensitivity to oxygen that limit their duration and quality. Even plastic scintillators are not satisfactory because they have low radiation hardness and low thermal stability. Moreover organic solvents may affect their optical properties due to crazing. In order to overcome these problems, phenyl-polysiloxane based scintillators have been recently developed at Legnaro National Laboratory. This new solution showed very good chemical and thermal stability and high radiation hardness. The results on the different samples performance will be presented, paying special attention to a characterization comparison between synthesized phenyl containing polysiloxane resins where a Pt catalyst has been used and a scintillating material obtained by condensation reaction, where tin based compounds are used as catalysts. Different structural arrangements as a result of different substituents on the main chain have been investigated by High Resolution X-Ray Diffraction, while the effect of improved optical transmittance on the scintillation yield has been elucidated by a combination of excitation/fluorescence measurements and scintillation yield under exposure to alpha and γ-rays.

  15. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingensmith, A. L.

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  16. A personal computer-based nuclear magnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  17. Sandia National Laboratories: Search Results

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  18. Sandia National Laboratories: Social Media

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  19. Sandia National Laboratories: Visiting Research Scholars

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: News: Videos

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

Top