Science.gov

Sample records for nuclear technology studies

  1. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  2. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  3. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  4. A Nuclear Tech Course = Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    A nuclear technology college course for engineering students is outlined and described. The course begins with an historical account of the scientific discoveries leading up to the uranium experiments of Hahn and Strassman in Germany and the subsequent explanation of nuclear fission by Meitner and Frisch. The technological achievements of the…

  5. A Nuclear Tech Course = Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    A nuclear technology college course for engineering students is outlined and described. The course begins with an historical account of the scientific discoveries leading up to the uranium experiments of Hahn and Strassman in Germany and the subsequent explanation of nuclear fission by Meitner and Frisch. The technological achievements of the…

  6. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Five viewgraphs are presented that outline the objectives and elements of the Nuclear Propulsion Program, mission considerations, propulsion technologies, and the logic flow path for nuclear propulsion development.

  7. Terrorists and Nuclear Technology

    ERIC Educational Resources Information Center

    Krieger, David

    1975-01-01

    This essay explores the ways terrorist groups may gain possession of nuclear materials; the way in which they may use nuclear weapons and other nuclear technologies to their benefit; and various courses of action designed to minimize the possibilities of terrorists utilizing nuclear technology to their benefit and society's detriment. (BT)

  8. Terrorists and Nuclear Technology

    ERIC Educational Resources Information Center

    Krieger, David

    1975-01-01

    This essay explores the ways terrorist groups may gain possession of nuclear materials; the way in which they may use nuclear weapons and other nuclear technologies to their benefit; and various courses of action designed to minimize the possibilities of terrorists utilizing nuclear technology to their benefit and society's detriment. (BT)

  9. Advanced nuclear propulsion technologies

    SciTech Connect

    Cassenti, B.N. )

    1991-01-01

    Advanced nuclear propulsion can take on several forms. Radioactive thrust sheets directly use the decay of radioactive nuclei to provide propulsion. The fissioning of nuclei has been extensively studied for propulsion both analytically and experimentally. Fusion has been analytically examined as a means of providing propulsion during the last few decades. In the last decade, serious attention has been given to the direct annihilation of matter. Each of these technologies is discussed in this paper with the greatest emphasis on antiproton annihilation propulsion.

  10. Nuclear Rocket Technology Conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the

  11. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  12. Technology Efficiency Study on Nuclear Power and Coal Power in Guangdong Province Based on DEA

    SciTech Connect

    Yinong Li; Dong Wang

    2006-07-01

    Guangdong Province has taken the lead in embarking on nuclear power development to resolve its dire lack of primary resources. With the deepening of the on-going structural reform in the electric power sector in China, the market competition scheme is putting electricity generation enterprises under severe strain. Consequently, it is incumbent upon the nuclear power producers to steadily upgrade management, enhance technical capabilities, reduce cost and improve efficiency. At present, gradual application of such efficiency evaluation methodology has already commenced in some sectors in China including the electric power industry. The purpose of this paper is to use the Data Envelopment Analysis (DEA), which is a cutting-edge approach in the efficiency evaluation field - to study the technological efficiency between nuclear power and coal power in Guangdong Province. The DEA results demonstrate that, as far as Guangdong Province is concerned, the technological efficiency of nuclear power is higher than that of coal power in terms of Technological Efficiency (TE), Pure Technology Efficiency (PTE) and Scale Efficiency (SE). The reason is that nuclear power technology is advanced with a much higher equipment availability factor. Under the same scale, the generation output of nuclear power is far higher than that of equivalent coal power generation. With the environmental protection and sustainable development requirements taken into full account, nuclear power constitutes a clean, safe and highly-efficient energy form which should be extensively harnessed in Guangdong Province to fuel its future continuing economic growth. (authors)

  13. Study in the political economy of technological development: Brazil's nuclear program

    SciTech Connect

    Goldman-Solingen, E.

    1987-01-01

    This study is focused on the impact Brazil's nuclear program has had on the development of industrial technological capabilities. In Part I, the theoretical framework, Chapter II discusses contending approaches to technological development, and the role ascribed to the state in this process. Chapter III examines the determinants of the state's behavior as conditioned by its nature and insertion in civil society, through a comparison between Brazil's and Argentina's nuclear program. Part II, the empirical study, evaluates the performance of the state sector (Section A), the private sector (Section B), and the scientific community (Section C) in the country's nuclear program, with systematic comparative references to the Argentine case. Chapter IV dissects a first moment in the process of technology transfer, namely, the bargaining over transfer modes. Chapter V examines a second phase, involving technological absorption, adaptation, and improvements. The impact of the program on the diffusion of technological capabilities into other industrial areas is the focus of Chapter VI. The conclusions place the nuclear program within the general patterns of technological behavior of state enterprises, evaluates opportunity costs and non-technological impacts, and the relevance of some of the findings to the general literature on the state in technological development.

  14. Latest nuclear emulsion technology

    NASA Astrophysics Data System (ADS)

    Rokujo, Hiroki; Kawahara, Hiroaki; Komatani, Ryosuke; Morishita, Misaki; Nakano, Toshiyuki; Otsuka, Naoto; Yoshimoto, Masahiro

    2017-06-01

    Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ * ντ oscillations in appearance mode in 2015) The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments.

  15. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  16. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  17. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  18. Space and nuclear research and technology

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A fact sheet is presented on the space and nuclear research and technology program consisting of a research and technology base, system studies, system technology programs, entry systems technology, and experimental programs.

  19. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect

    Howe, S. ); Borowski, S. . Lewis Research Center); Motloch, C. ); Helms, I. ); Diaz, N.; Anghaie, S. ); Latham, T. (United

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  20. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion - Phase I

    SciTech Connect

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-06

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature {approx} 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  1. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion — Phase I

    NASA Astrophysics Data System (ADS)

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-01

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature ˜ 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  2. Nuclear Technology Programs

    SciTech Connect

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  3. Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This is the syllabus of a course that explores the technology of nuclear weapons and nuclear energy for electric power generation, and considers some problems of nuclear weapons proliferation and technical alternatives. It provides a course description, a course outline, a list of required readings, and information on the films shown in the…

  4. Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This is the syllabus of a course that explores the technology of nuclear weapons and nuclear energy for electric power generation, and considers some problems of nuclear weapons proliferation and technical alternatives. It provides a course description, a course outline, a list of required readings, and information on the films shown in the…

  5. Innovative nuclear thermal propulsion technology evaluation - Results of the NASA/DOE task team study

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.

  6. Innovative nuclear thermal propulsion technology evaluation - Results of the NASA/DOE task team study

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.

  7. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  8. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  9. Nuclear Reactors and Technology; (USA)

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  10. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  11. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    SciTech Connect

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  12. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  13. Nuclear Medical Technology Training.

    ERIC Educational Resources Information Center

    Simmons, Guy H., Ed.

    This 1-day colloquium, attended by 23 participants representing societies, government agencies, colleges and universities, and other training programs, was conducted for the purpose of reporting on and discussing the curriculums developed at the University of Cincinnati for training nuclear medical technologists. Pilot programs at both the…

  14. The Governance of Nuclear Technology

    SciTech Connect

    Vergino, E S; May, M

    2003-09-22

    Eisenhower's Atoms for Peace speech in 1953 is remembered for engaging the world, and the Soviet Union in particular, in a dialogue about arms control and the formulation of a nuclear regime in which national and international security concerns growing from this unprecedented emerging and frightening new weapons capability would be addressed while tapping the civilian promise of nuclear applications for the good of mankind. Out of it came a series of initiatives, leading fifteen years later to the NPT, intended to allow the growth and spread of the beneficial uses of nuclear know-how while constraining the incentives and capabilities for nuclear weapons. The last 50 years has seen a gradual spread in nations with nuclear weapons, other nations with nuclear knowledge and capabilities, and still others with nuclear weapon intentions. Still most nations of the world have forgone weapon development, most have signed and abided by the NPT, and some that have had programs or even weapons, have turned these capabilities off. Yet despite this experience, and despite a relatively successful record up to a few years ago, there is today a clear and generally recognized crisis in nuclear governance, a crisis that affects the future of all the cross-cutting civilian/security issues we have cited. The crux of this crisis is a lack of consensus among the major powers whose support of international efforts is necessary for effective governance of nuclear activities. The lack of consensus focuses on three challenges: what to do about non-compliance, what to do about non-adherence, and what to do about the possible leakage of nuclear materials and technologies to terrorist groups. Short of regaining consensus on the priority to be given to nuclear material and technology controls, it is unlikely that any international regime to control nuclear materials and technologies, let alone oversee a growth in the nuclear power sector, will be successful in the tough cases where it needs to

  15. Nonconventional applications of nuclear technology to space

    SciTech Connect

    Woodall, D.M.; Dolan, T.J. )

    1991-01-01

    The application of nuclear energy to power and propulsion to support President Bush's Space Exploration Initiative (SEI) has received considerable technical attention. This paper discusses the application of other nuclear technologies in space, including nuclear fusion, advanced accelerator research, antimatter research, nuclear technologies for exploration and mining, and nuclear astronomy.

  16. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  17. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  18. Baseline Study Methodology for Future Phases of Research on Nuclear Power Plant Control Room Technologies

    SciTech Connect

    Le Blanc, Katya Lee; Bower, Gordon Ross; Hill, Rachael Ann; Spielman, Zachary Alexander; Rice, Brandon Charles

    2016-07-01

    In order to provide a basis for industry adoption of advanced technologies, the Control Room Upgrades Benefits Research Project will investigate the benefits of including advanced technologies as part of control room modernization This report describes the background, methodology, and research plan for the first in a series of full-scale studies to test the effects of advanced technology in NPP control rooms. This study will test the effect of Advanced Overview Displays in the partner Utility’s control room simulator

  19. Nuclear technology requires free elections

    NASA Astrophysics Data System (ADS)

    Synek, Miroslav

    1999-10-01

    The historical development on our planet has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized ``push-button." If this technology ever falls under the control of an irresponsible, miscalculating, or insane DICTATOR, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very SURVIVAL OF ALL HUMANITY on our planet could be threatened. Therefore, it is a historical urgency that this technology is under the control by the people, through a sufficiently secure system of FREE ELECTIONS, in any country, wherever and whenever such a threatening possibility exists. Of course, a starting system of FREE ELECTIONS, even if quite rudimentary, should try to provide for its continuous functioning, with an underlying appropriate freedom of expression and with rules for its continuation, while aiming towards continuous improvements.

  20. Advanced nuclear energy analysis technology.

    SciTech Connect

    Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente JosÔe; Young, Michael Francis; Rochau, Gary Eugene

    2004-05-01

    A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems.

  1. Plasma core nuclear rocket technology

    NASA Astrophysics Data System (ADS)

    Latham, Thomas S.; Roman, Ward C.; Johnson, Bruce V.

    1993-06-01

    The nuclear lightbulb (NLB) rocket propulsion concept furnishes specific impulse above 2000 sec in conjunction with the greater-than-50,000 lb thrust levels required for rapid transit-time round-trip Mars missions requiring low initial mass in earth orbit. The NLB transfers energy from the gaseous nuclear fuel region to a hydrogen propellant via thermal radiation, thereby precluding material temperature constraints. An evaluation is presently made of technology and test method readiness for implementation and validation of this propulsion system concept.

  2. Plasma core nuclear rocket technology

    SciTech Connect

    Latham, T.S.; Roman, W.C.; Johnson, B.V.

    1993-06-01

    The nuclear lightbulb (NLB) rocket propulsion concept furnishes specific impulse above 2000 sec in conjunction with the greater-than-50,000 lb thrust levels required for rapid transit-time round-trip Mars missions requiring low initial mass in earth orbit. The NLB transfers energy from the gaseous nuclear fuel region to a hydrogen propellant via thermal radiation, thereby precluding material temperature constraints. An evaluation is presently made of technology and test method readiness for implementation and validation of this propulsion system concept. 13 refs.

  3. ANSTO: Australian Nuclear Science and Technology Organization

    NASA Astrophysics Data System (ADS)

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for the nuclear medicine industry and research. It also operates national nuclear facilities (HIFAR and Moata research reactors), promotes training, provides advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities.

  4. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    SciTech Connect

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  5. Technology and applications of space nuclear power

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.; Rosen, Robert; Bennett, Gary L.; Schnyer, A. D.

    1991-01-01

    Requirements for a number of potential NASA civil space missions are addressed, and the nuclear power technology base to meet these requirements is described. Particular attention is given to applications of space nuclear power to lunar, Mars, and science missions and the technology status of space nuclear power with emphasis on dynamic isotope and space nuclear reactor power systems.

  6. Reexamining the Ethics of Nuclear Technology.

    PubMed

    Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor

    2015-08-01

    This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.

  7. Development of nanosensors in nuclear technology

    NASA Astrophysics Data System (ADS)

    Hassan, Thamir A. A.

    2017-01-01

    Selectivity, sensitivity, and stability (three S parameters) are developed as a new range of sensor this provided instruments for harsh, radioactive waste polluted environment monitoring. Isotope effect is very effective for nuclear radiation sensors preparation.in this presentation are reviewed of the development of Nanosensors in nuclear technology, such as high temperature boron and its compounds with suitable physical and chemical features as sensitive element for temperature and nuclear sensor, Boron isotopes based semiconductor nanosensors and studies of the mechanism of the removal uranium from radioactive wastewater with graphene oxide (GO).

  8. The opinions of radiographers, nuclear medicine technologists and radiation therapists regarding technology in health care: a qualitative study.

    PubMed

    Aarts, Sil; Cornelis, Forra; Zevenboom, Yke; Brokken, Patrick; van de Griend, Nicole; Spoorenberg, Miriam; Ten Bokum, Wendy; Wouters, Eveline

    2017-03-01

    New technology is continuously introduced in health care. The aim of this study was (1) to collect the opinions and experiences of radiographers, nuclear medicine technologists and radiation therapists regarding the technology they use in their profession and (2) to acquire their views regarding the role of technology in their future practice. Participants were recruited from five departments in five hospitals in The Netherlands. All radiographers, nuclear medicine therapists and radiation therapists who were working in these departments were invited to participate (n = 252). The following topics were discussed: technology in daily work, training in using technology and the role of technology in future practice. The recorded interviews were transcribed verbatim and analysed using open and axial coding. A total of 52 participants (57.7% radiographer) were included, 19 men and 33 women (age range: 20-63). Four major themes emerged: (1) technology as an indispensable factor, (2) engagement, support and training in using technology, (3) transitions in work and (4) the radiographer of the future. All participants not only value technological developments to perform their occupations, but also aspects such as documentation and physical support. When asked about the future of their profession, contradictory answers were provided; while some expect less autonomy, others belief they will get more autonomy in their work. Technology plays a major role in all three occupations. All participants believe that technology should be in the best interests of patients. Being involved in the implementation of new technology is of utmost importance; courses and training, facilitated by the managers of the departments, should play a major role. Only when a constant dialogue exists between health care professionals and their managers, in which they discuss their experiences, needs and expectations, technology can be implemented in a safe and effective manner. This, in turn, might

  9. History of nuclear technology development in Japan

    SciTech Connect

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  10. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.

  11. Overview of space nuclear technologies and the American Nuclear Society

    SciTech Connect

    Singleterry, R.C. Jr.

    2000-07-01

    The American Nuclear Society (ANS) has seen an aspect of the universe where nuclear technology is the best energy source available for power, transportation, etc. The National Aeronautics and Space Administration (NASA) has been exploiting this aspect of the universe by sending machines and humans into it and exploring, colonizing, industrializing, developing, inhabiting, etc. Space is the final frontier, and nuclear technology is the best suited for today's or the next century's space exploration and development. Many aspects of nuclear technology and its uses in space will be needed. ANS encompasses these and many more aspects of nuclear technology, and all have some role to play in the exploration and development of space. It should be ANS's intent to be an advisory body to NASA on the nuclear aspects of space exploration.

  12. Nuclear Technology for the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Darby, Iain

    2017-01-01

    Science, technology and innovation will play a crucial role in helping countries achieve the ambitious Sustainable Development Goals (SDGs). Since the discovery of nuclear fission in the 1930s, the peaceful applications of nuclear technology have helped many countries improve crops, fight pests, advance health, protect the environment and guarantee a stable supply of energy. Highlighting the goals related to health, hunger, energy and the environment, in this presentation I will discuss how nuclear technology contributes to the SDGs and how nuclear technology can further contribute to the well-being of people, help protect the planet and boost prosperity.

  13. NASA's progress in nuclear electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  14. NASA's progress in nuclear electric propulsion technology

    SciTech Connect

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-06-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  15. (Nuclear power plant control and instrumentation technology)

    SciTech Connect

    White, J.D.

    1990-10-10

    While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

  16. Nuclear technology for the year 2000

    SciTech Connect

    Not Available

    1987-01-01

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base. (DLC)

  17. The nuclear materials control technology briefing book

    SciTech Connect

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  18. The market viability of nuclear hydrogen technologies.

    SciTech Connect

    Botterud, A.; Conzelmann, G.; Petri, M. C.; Yildiz, B.

    2007-04-06

    The Department of Energy Office of Nuclear Energy is supporting system studies to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options. One of the objectives of the current analysis phase is to determine how nuclear hydrogen technologies could evolve under a number of different futures. The outputs of our work will eventually be used in a larger hydrogen infrastructure and market analysis conducted for DOE-EE using a system-level market simulation tool now underway. This report expands on our previous work by moving beyond simple levelized cost calculations and looking at profitability, risk, and uncertainty from an investor's perspective. We analyze a number of technologies and quantify the value of certain technology and operating characteristics. Our model to assess the profitability of the above technologies is based on Real Options Theory and calculates the discounted profits from investing in each of the production facilities. We use Monte-Carlo simulations to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from a production plant. We also quantify the value of the option to switch between hydrogen and electricity production in order to maximize investor profits. Uncertainty in electricity and hydrogen prices can be represented with two different stochastic processes: Geometric Brownian Motion (GBM) and Mean Reversion (MR). Our analysis finds that the flexibility to switch between hydrogen and electricity leads to

  19. Nuclear Reaction Data for Nuclear Technologies and Applications

    NASA Astrophysics Data System (ADS)

    Kawano, T.; Chadwick, M. B.; Talou, P.; Young, P. G.; Bonneau, L.

    2008-04-01

    We discuss how nuclear reaction theories and experimental data are utilized in many different application fields. The neutron-induced compound nuclear reactions, which take place from the sub-eV energy range up to tens of MeV, are the most important mechanisms to analyze the experimental data, to predict unknown reaction cross sections, to evaluate the nuclear data for databases, and to reduce the uncertainties. Improvement of predictive-power of nuclear reaction theories still requires further development of compound nuclear reaction theories for fission and radiative capture processes, since these reaction cross sections are especially important for nuclear science and technologies. An acceptable accuracy of these cross-sections has been achieved only if they were experimentally confirmed.

  20. Nuclear Reaction Data for Nuclear Technologies and Applications

    SciTech Connect

    Kawano, T.; Talou, P.; Young, P. G.; Chadwick, M. B.; Bonneau, L.

    2008-04-17

    We discuss how nuclear reaction theories and experimental data are utilized in many different application fields. The neutron-induced compound nuclear reactions, which take place from the sub-eV energy range up to tens of MeV, are the most important mechanisms to analyze the experimental data, to predict unknown reaction cross sections, to evaluate the nuclear data for databases, and to reduce the uncertainties. Improvement of predictive-power of nuclear reaction theories still requires further development of compound nuclear reaction theories for fission and radiative capture processes, since these reaction cross sections are especially important for nuclear science and technologies. An acceptable accuracy of these cross-sections has been achieved only if they were experimentally confirmed.

  1. DOE NHI: Progress in Nuclear Connection Technologies

    SciTech Connect

    Steven R. Sherman

    2007-06-01

    The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

  2. MSFC nuclear thermal propulsion technology program

    NASA Astrophysics Data System (ADS)

    Swint, Shane

    Viewgraphs on non-nuclear materials assessment, nuclear thermal propulsion (NTP) turbomachinery technologies, and high temperature superconducting magnetic bearing technology are presented. The objective of the materials task is to identify and evaluate candidate materials for use in NTP turbomachinery and propellant feed system applications. The objective of the turbomachinery technology task is to develop and validate advanced turbomachinery technologies at the component and turbopump assembly levels. The objective of the high temperature superconductors (HTS) task is to develop and validate advanced technology for HTS passive magnetic/hydrostatic bearing.

  3. MSFC nuclear thermal propulsion technology program

    NASA Technical Reports Server (NTRS)

    Swint, Shane

    1993-01-01

    Viewgraphs on non-nuclear materials assessment, nuclear thermal propulsion (NTP) turbomachinery technologies, and high temperature superconducting magnetic bearing technology are presented. The objective of the materials task is to identify and evaluate candidate materials for use in NTP turbomachinery and propellant feed system applications. The objective of the turbomachinery technology task is to develop and validate advanced turbomachinery technologies at the component and turbopump assembly levels. The objective of the high temperature superconductors (HTS) task is to develop and validate advanced technology for HTS passive magnetic/hydrostatic bearing.

  4. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    SciTech Connect

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  5. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given

  6. ABB Combustion Engineering nuclear technology

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  7. Nuclear technology and the space exploration missions

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W.; Sovie, Ronald J.

    1990-01-01

    The strategy for a major exploration initiative leading to permanent human presence beyond earth orbit is still being developed; however enough is known to begin defining the role of nuclear technologies. Three broad areas are discussed: low power (less than 10 kWe) rover/vehicle power systems; integrated, evolutionary base power systems (25 to 100 kW) and nuclear energy for electric propulsion (2 to 100 MWe); and direct thermal propulsion (1000s MW). A phased, evolutionary approach is described for both the moon and Mars, and the benefits of nuclear technologies relative to solar and their integration are described.

  8. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    SciTech Connect

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  9. [Nuclear medicine: medical technology research].

    PubMed

    Lerch, H; Jigalin, A

    2005-01-01

    AIM, METHOD: The scientific publications in the 2003 and 2004 issues of the journal Nuklearmedizin were analyzed retrospectively with regard to the proportion of medical technology research. Out of a total of 73 articles examined, 9 (12%) were classified as medical technology research, that is, 8/15 of the original papers (16%) and one of the case reports (5%). Of these 9 articles, 44% (4/9) focused on the combination of molecular and morphological imaging with direct technical appliance or information technology solutions. Medical technology research is limited in the journal's catchment area. The reason for this is related to the interdependency between divergent development dynamics in the medical technology industry's locations, the many years that the area of scintigraphic technology has been underrepresented, research policy particularly in discrepancies in the promotion of molecular imaging and a policy in which health is not perceived as a predominantly good and positive economic factor, but more as a curb to economic development.

  10. Nuclear technology and forest dieback

    SciTech Connect

    Koenig, L. A.; Penzhorn, R. D.; Schuettelkopf, H.

    1985-01-01

    The possibility that forest dieback in the vicinity of nuclear power plants is due to the emission of radioactive materials was investigated. Damage was assumed to be caused by direct radiation by tritium as well as the production of O/sub 3/ and NO/sub x/ by radiochemical reactions and radioactive byproducts. 41 references.

  11. Effective citizen advocacy of beneficial nuclear technologies

    SciTech Connect

    Wood, S.; McKibben, Ph.D.

    2007-07-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  12. Study of an intrinsically safe infrastructure for training and research on nuclear technologies

    NASA Astrophysics Data System (ADS)

    Ripani, Marco; Frambati, Stefano; Mansani, Luigi; Bruzzone, Maurizio; Reale, Marco; Monti, Stefano; Ciotti, Marco; Barbagallo, Massimo; Colonna, Nicola; Celentano, Andrea; Osipenko, Mikhail; Ricco, Giovanni; Saracco, Paolo; Viberti, Carlo Maria; Frasciello, Oscar; Boccaccio, Pasquale; Esposito, Juan; Lombardi, Augusto; Maggiore, Mario; Piazza, Leandro A. C.; Prete, Gianfranco; Alba, Rosa; Calabretta, Luciano; Cosentino, Gianluigi; Del Zoppo, Antonio; Di Pietro, Alessia; Figuera, Pierpaolo; Finocchiaro, Paolo; Maiolino, Cettina; Santonocito, Domenico; Schillaci, Maria; Chiesa, Davide; Clemenza, Massimiliano; Previtali, Ezio; Sisti, Monica; Kostyukov, Alexander; Cammi, Antonio; Bortot, Sara; Lorenzi, Stefano; Ricotti, Marco; Dulla, Sandra; Ravetto, Piero; Lomonaco, Guglielmo; Rebora, Alessandro; Alloni, Daniele; Borio di Tigliole, Andrea; Cagnazzo, Marcella; Cremonesi, Riccardo; Magrotti, Giovanni; Manera, Sergio; Panza, Fabio; Prata, Michele; Salvini, Andrea

    2014-12-01

    Within European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics and engineering parameters of future fast-neutron-based reactors are very important, being some of these features not available in present zero-power prototypes. This presentation will illustrate the conceptual design of an Accelerator-Driven System with high safety standards, but ample flexibility for measurements. The design assumes as base option a 70 MeV, 0.75 mA proton cyclotron, as the one which will be installed at the INFN National Laboratory in Legnaro, Italy and a Beryllium target, with Helium gas as core coolant. Safety is guaranteed by limiting the thermal power to 200 kW, with a neutron multiplication coefficient around 0.94, loading the core with fuel containing Uranium enriched at 20% inserted in a solid-lead diffuser. The small decay heat can be passively removed by thermal radiation from the vessel. Such a system could be used to study, among others, some specific aspects of neutron diffusion in lead, beam-core coupling, target cooling and could serve as a training facility.

  13. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  14. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    SciTech Connect

    Volpe, Tristan A.

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  15. Nuclear technologies for Moon and Mars exploration

    SciTech Connect

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  16. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    SciTech Connect

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  17. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  18. Latest Developments in Nuclear Emulsion Technology

    NASA Astrophysics Data System (ADS)

    Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. These trajectories are recorded as tracks consist of a lot of silver grains. The size of silver grain is about 1 μm, so that nuclear emulsion has submicron three-dimensional spatial resolution, which gives us a few mrad three-dimensional angular resolution. The important technical progress was speed-up of the read-out technique of nuclear emulsions built with optical microscope system. We succeeded in developing a high-speed three-dimensional read-out system named Super Ultra Track Selector (S-UTS) with the operating read-out speed of approximately 50 cm2/h. Nowadays we are developing the nuclear emulsion gel independently in Nagoya University by introducing emulsion gel production machine. Moreover, we are developing nuclear emulsion production technologies (gel production, poring and mass production). In this paper, development of nuclear emulsion technologies for the OPERA experiment, applications by the technologies and current development are described.

  19. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  20. New technologies for monitoring nuclear materials

    SciTech Connect

    Moran, B.W.

    1993-07-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items.

  1. Small Nuclear Technology and Market Entry

    SciTech Connect

    Stewart, J S; Schock, R N; Brown, N W; Smith, C F

    2002-05-31

    An overview of energy-system projections into the new century leads to the conclusion that nuclear power will play a significant role. How significant a role will be determined by the marketplace. Within the range of nuclear-power technologies available, small nuclear-power plants of innovative design appear to fit the needs of a number of developing nations and states. Under similar financing options used by the airline industry and others, the capital requirement barrier that puts the nuclear industry at a disadvantage in deregulated markets could be reduced. These plants have the potential advantage of modularity, are proliferation-resistant, incorporate passive safety features, minimize waste, and could be cost-competitive with fossil-fuel plants.

  2. Review of Current Nuclear Vacuum System Technologies

    SciTech Connect

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  3. Nuclear Lunar Logistics Study

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This document has been prepared to incorporate all presentation aid material, together with some explanatory text, used during an oral briefing on the Nuclear Lunar Logistics System given at the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, on 18 July 1963. The briefing and this document are intended to present the general status of the NERVA (Nuclear Engine for Rocket Vehicle Application) nuclear rocket development, the characteristics of certain operational NERVA-class engines, and appropriate technical and schedule information. Some of the information presented herein is preliminary in nature and will be subject to further verification, checking and analysis during the remainder of the study program. In addition, more detailed information will be prepared in many areas for inclusion in a final summary report. This work has been performed by REON, a division of Aerojet-General Corporation under Subcontract 74-10039 from the Lockheed Missiles and Space Company. The presentation and this document have been prepared in partial fulfillment of the provisions of the subcontract. From the inception of the NERVA program in July 1961, the stated emphasis has centered around the demonstration of the ability of a nuclear rocket to perform safely and reliably in the space environment, with the understanding that the assignment of a mission (or missions) would place undue emphasis on performance and operational flexibility. However, all were aware that the ultimate justification for the development program must lie in the application of the nuclear propulsion system to the national space objectives.

  4. NASA's nuclear electric propulsion technology project

    SciTech Connect

    Stone, J.R.; Sovey, J.S. )

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities. 33 refs.

  5. NASA's nuclear electric propulsion technology project

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Sovey, James S.

    1992-01-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  6. NASA's nuclear electric propulsion technology project

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Sovey, James S.

    1992-01-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  7. NASA's nuclear electric propulsion technology project

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Sovey, James S.

    1992-01-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  8. NASA's nuclear electric propulsion technology project

    NASA Astrophysics Data System (ADS)

    Stone, James R.; Sovey, James S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  9. NASA's nuclear electric propulsion technology project

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Sovey, James S.

    1992-01-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  10. NASA's nuclear electric propulsion technology project

    NASA Astrophysics Data System (ADS)

    Stone, James R.; Sovey, James S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  11. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  12. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  13. Freeze Technology for Nuclear Applications - 13590

    SciTech Connect

    Rostmark, Susanne C.; Knutsson, Sven; Lindberg, Maria

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  14. Technological Advances, Human Performance, and the Operation of Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Corrado, Jonathan K.

    Many unfortunate and unintended adverse industrial incidents occur across the United States each year, and the nuclear industry is no exception. Depending on their severity, these incidents can be problematic for people, the facilities, and surrounding environments. Human error is a contributing factor in many such incidents. This dissertation first explored the hypothesis that technological changes that affect how operators interact within the systems of the nuclear facilities exacerbate the cost of incidents caused by human error. I conducted a review of nuclear incidents in the United States from 1955 through 2010 that reached Level 3 (serious incident) or higher on the International Nuclear Events Scale (INES). The cost of each incident at facilities that had recently undergone technological changes affecting plant operators' jobs was compared to the cost of events at facilities that had not undergone changes. A t-test determined a statistically significant difference between the two groups, confirming the hypothesis. Next, I conducted a follow-on study to determine the impact of the incorporation of new technologies into nuclear facilities. The data indicated that spending more money on upgrades increased the facility's capacity as well as the number of incidents reported, but the incident severity was minor. Finally, I discuss the impact of human error on plant operations and the impact of evolving technology on the 21st-century operator, proposing a methodology to overcome these challenges by applying the systems engineering process.

  15. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  16. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

  17. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear explosive safety study process

    SciTech Connect

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  4. Training at the Australian school of nuclear technology

    SciTech Connect

    Culley, D.; Fredsall, J.R.; Toner, B.

    1988-01-01

    The Australian School of Nuclear Technology was founded in 1964 as a joint enterprise of the Australian Atomic Energy Commission and the University of New South Wales to support nuclear developments primarily in Australia. However, ASNT has developed into an important century for nuclear science and technology training within the South East Asian Region with participants also attending from countries outside this Region.

  5. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  6. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-12-31

    The US Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 l of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper presents technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  7. Space nuclear power, propulsion, and related technologies.

    SciTech Connect

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  8. Nuclear data for fusion technology - the European approach

    NASA Astrophysics Data System (ADS)

    Fischer, Ulrich; Avrigeanu, Marilena; Avrigeanu, Vlad; Cabellos, Oscar; Dzysiuk, Natalia; Koning, Arjan; Klix, Axel; Konobeev, Alexander; Kodeli, Ivo; Leeb, Helmut; Leichtle, Dieter; Nunnenmann, Elena; Packer, Lee; Rochman, Dimitri; Pereslavtsev, Pavel; Sauvan, Patrick; Trkov, Andrej

    2017-09-01

    The European approach for the development of nuclear data for fusion technology applications is presented. Related R&D activities are conducted by the Consortium on Nuclear Data Development and Analysis for Fusion to satisfy the nuclear data needs of the major projects including ITER, the Early Neutron Source (ENS) and DEMO. Recent achievements are presented in the area of nuclear data evaluations, benchmarking and validation, nuclear model improvements, and uncertainty assessments.

  9. Applying RFID technology in nuclear materials management.

    SciTech Connect

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  10. Waging nuclear peace: The technology and politics of nuclear war

    SciTech Connect

    Ehrlich, R.

    1985-01-01

    Since the explosions of the first atomic bombs, a large literature has appeared on the effects and risks of nuclear war. The most widely quoted recent publications have concentrated on the impossibility of any meaningful survival after a superpower nuclear exchange. By contrast, Dr. Ehrlich tries to show both sides of the various arguments involved. As a result, he undoubtedly succeeds in his avowed intention of angering both hawks and doves. He offers a critical analysis of most considerations apposite to the current nuclear-weapon impasse, including the nature of current nuclear arms, the possibility of limited nuclear war, the short-term and long-term effects of nuclear weapons, the value of civil defense, the importance of public opinion, and the feasibility of arms control.

  11. The broad view of nuclear technology for aerospace

    NASA Astrophysics Data System (ADS)

    Buden, David; Angelo, Joseph A., Jr.

    1991-01-01

    Nuclear technologies can directly support advanced space initiatives. For near-Earth missions, nuclear technology can be used to power air traffic control, communications and manufacturing platforms, provide emergency power for manned platforms, provide power for maneuvering units, move asteroids for mining, measure the natural radiation environment, provide radiation protection instruments, and design radiation hardened robotic systems. For the Lunar and Mars surfaces, nuclear technology can be used for base stationary, mobile, and emergency power, energy storage, process heat, nuclear thermal and electric rocket propulsion, excavation and underground engineering, water and sewage treatment and sterilization, food processing and preservation, mineral exploration, self-luminous systems, radiation protection instrumentation, radiation environmental warning systems, and habitat shielding design. Outer planet missions can make use of nuclear technology for power and propulsion. Programs need to be initiated to ensure the full beneficial use of nuclear technologies in advanced space missions.

  12. Nuclear Technology Series. Course 12: Reactor Physics.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Nuclear Technology Series. Course 30: Mechanical Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 7: Reactor Operations.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course l: Radiation Physics.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 8: Reactor Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 18: Radiological Emergencies.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 19: Radiation Shielding.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 27: Metrology.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 28: Welding Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 7: Reactor Operations.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 19: Radiation Shielding.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 12: Reactor Physics.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 27: Metrology.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Nuclear Technology Series. Course 18: Radiological Emergencies.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 8: Reactor Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course l: Radiation Physics.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 28: Welding Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 30: Mechanical Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  11. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  12. The Los Alamos nuclear safeguards and nonproliferation technology development program

    SciTech Connect

    Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

    1994-04-01

    For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

  13. The Limits of Empowerment in Anti-Nuclear Advocacy: A Case Study of Adult Education for Technological Literacy.

    ERIC Educational Resources Information Center

    Regnier, Robert; Penna, Phillip

    1996-01-01

    Using a theory of technological literacy, analysis of a project to oppose uranium mining in Saskatchewan revealed how the potential for empowerment is often overstated. Informing citizens to participate in critical discourse does not always lead to decisions reflecting their interests. (SK)

  14. Nuclear Technology Series. Nuclear Instrumentation and Control Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear instrumentation and control technician program is designed for use with courses 33-35 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist…

  15. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  16. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  17. Nuclear Technology Series. Nuclear Materials Processing Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear materials processing technician program is designed for use with courses 23-25 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  18. Nuclear Technology Series. Nuclear Instrumentation and Control Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear instrumentation and control technician program is designed for use with courses 33-35 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist…

  19. Nuclear Technology Series. Nuclear Materials Processing Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear materials processing technician program is designed for use with courses 23-25 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  20. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  1. Nuclear Electric Propulsion Technology Panel findings and recommendations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  2. Nuclear Thermal Rocket - An Established Space Propulsion Technology

    NASA Astrophysics Data System (ADS)

    Klein, Milton

    2004-02-01

    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  3. Advanced Filter Technology For Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  4. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  5. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  6. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  7. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    SciTech Connect

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-19

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  8. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect

    Blumenthal, Daniel J.; Clark, Harvey W.; Essex, James J.; Wagner, Eric C.

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  9. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  10. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  11. Nuclear power technology requirements for NASA exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1990-01-01

    It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.

  12. Nuclear Medicine Technology: A Suggested Postsecondary Curriculum.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    The purpose of this curriculum guide is to assist administrators and instructors in establishing nuclear medicine technician programs that will meet the accreditation standards of the American Medical Association (AMA) Council on Medical Education. The guide has been developed to prepare nuclear medicine technicians (NMT's) in two-year…

  13. Citizen Education on Nuclear Technology (CENT).

    ERIC Educational Resources Information Center

    Intermountain Science Experience Center, ID Falls, ID.

    Using an interdisciplinary approach, this curriculum focuses on an understanding of: (1) the fundamental principles of operation of a nuclear power plant; (2) the place of nuclear energy in the overall energy-supply-demand situation; (3) risk-benefit balance of the major energy sources; and (4) the role of political action in the development of…

  14. Nuclear Medicine Technology: A Suggested Postsecondary Curriculum.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    The purpose of this curriculum guide is to assist administrators and instructors in establishing nuclear medicine technician programs that will meet the accreditation standards of the American Medical Association (AMA) Council on Medical Education. The guide has been developed to prepare nuclear medicine technicians (NMT's) in two-year…

  15. Nuclear Energy Response in the EMF27 Study

    SciTech Connect

    Kim, Son H.; Wada, Kenichi; Kurosawa, Atsushi; Roberts, Matthew

    2014-03-25

    The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 – 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 – 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

  16. Investigation of gaseous nuclear rocket technology

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.

    1972-01-01

    The experimental and theoretical investigations conducted during the period from September 1969 through September 1972 are reported which were directed toward obtaining information necessary to determine the feasibility of the full-scale nuclear light bulb engine, and of small-scale nuclear tests involving fissioning uranium plasmas in a unit cell installed in a driver reactor, such as the Nuclear Furnace. Emphasis was placed on development of RF simulations of conditions expected in nuclear tests in the Nuclear Furnace. The work included investigations of the following: (1) the fluid mechanics and containment characteristics of one-component and two-component vortex flows, both unheated and RF-induction heated; (2) heating of particle-seeded streams by thermal radiation from a dc arc to simulate propellant heating; (3) condensation and separation phenomena for metal-vapor/heated-gas mixtures to provide information for conceptual designs of components of fuel exhaust and recycle systems; (4) the characteristics of the radiant energy spectrum emitted from the fuel region, with emphasis on definition of fuel and buffer-gas region seed systems to reduce the ultraviolet radiation emitted from the nuclear fuel; and (5) the effects of nuclear radiation on the optical transmission characteristics of transparent materials.

  17. History of the Development of NERVA Nuclear Rocket Engine Technology

    SciTech Connect

    David L. Black

    2000-06-04

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably.

  18. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    SciTech Connect

    David Shropshire

    2009-09-01

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  19. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  20. Task Force Report: Assessment of Nuclear Monitoring and Verification Technologies

    DTIC Science & Technology

    2014-01-01

    state actions and their potential cascading effects;  The impact of advancing technologies relevant to nuclear weapons development ;  The...detection programs to:  o Conduct systems  studies  and engage operators early in  development  to improve  transition of radiation detection  advances  to...Regimes| 23  Resilient Military Systems and the  Advanced  Cyber Threat  UNCLASSIFIED  stability were  achieved  between  the  United   States   and Russia

  1. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  2. Neutrino Nuclear Responses For Neutrino Studies In Nuclear Femto Laboratories

    SciTech Connect

    Ejiri, H.

    2011-12-16

    Neutrinos are key particles for particle and astro-nuclear physics. Majorana neutrino masses and phases, solar and supernova neutrino productions and oscillations, and neutrino nuclear synthesis and fundamental weak interactions are well studied in nuclei as femto laboratories. Here neutrino nuclear responses are crucial for the neutrino studies. This reports briefly experimental studies of neutrino nuclear responses, charge exchange reactions on Ga to study nuclear responses for solar and {sup 51}Cr neutrinos, and {beta}{sup +} neutrino responses for {beta}{beta}-{nu} matrix elements and astro {nu} interactions by photon and muon probes.

  3. The radioactive waste debate in the United States and nuclear technology for peaceful purposes

    NASA Astrophysics Data System (ADS)

    Tehan, Terrence Norbert

    Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.

  4. Technologies for detection of nuclear materials

    SciTech Connect

    DeVolpi, A.

    1996-03-30

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

  5. The broad view of nuclear technology for aerospace

    NASA Astrophysics Data System (ADS)

    Buden, David; Angelo, Joseph A., Jr.

    In near-earth aerospace missions, nuclear technology can be used to power (1) ATC systems, (2) LEO communications and manufacturing platforms, (3) orbital maneuvering units, (4) radiation-protection systems, and (5) the movements of asteroids for mining operations. In the cases of the lunar and Martian surfaces, nuclear technology may be used in stationary base, vehicular and rocket propulsion, excavation/mining, water and sewage treatment, food processing/preservation, and radiation-shielding systems. Outer planet missions will capitalize on nuclear powerplants for onboard power and propulsion.

  6. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  7. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed.

  8. Nuclear electric propulsion technologies: Overview of the NASA/DOE/DOD nuclear electric propulsion workshop

    NASA Astrophysics Data System (ADS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  9. Telerobotic technology for nuclear and space applications

    SciTech Connect

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs.

  10. Nuclear safety technology and public acceptance

    NASA Astrophysics Data System (ADS)

    Kienle, F.

    1985-11-01

    In the years 1976 to 1982 officialdom intensified the safety regulations in German nuclear power plants out of all proportion, without actually bringing about a recognizable plus in safety or indeed a greater acceptance by the public of the peaceful use of nuclear energy. Although the risk to employees of nuclear power plants and to the population living in their vicinity is substantially smaller than the dangers of modern civilization, the general public still regards with concern the consequences of radioactive exposure and the hazards to later generations from long-life radionuclides. The task for the coming years must be to maintain the safety standard now attained, while simultaneously reducing those exaggerated individual requirements in order to establish a balance in safety precautions. Additionally, a proposal put forward by Sir Walter Marshall, Chairman of the CEGB, should be pursued, i.e., to put the presumed risks of nuclear energy into their correct perspective in the public eye using comprehensible comparisons such as the risks from active or passive smoking. This cannot be accomplished by quoting abstract statistics.

  11. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  12. A Lesson from the Nuclear Industry: Professionalism and Technology.

    ERIC Educational Resources Information Center

    Roth, Gene L.; Widen, W. C.

    1991-01-01

    Focuses on an innovative approach to instill professionalism in workers such as reactor operators and other nuclear power workers. It may be used by technology instructors to send a message to their students: regardless of the advanced state of technology, the human element provides the key to desirable outcomes. (Author/JOW)

  13. A Lesson from the Nuclear Industry: Professionalism and Technology.

    ERIC Educational Resources Information Center

    Roth, Gene L.; Widen, W. C.

    1991-01-01

    Focuses on an innovative approach to instill professionalism in workers such as reactor operators and other nuclear power workers. It may be used by technology instructors to send a message to their students: regardless of the advanced state of technology, the human element provides the key to desirable outcomes. (Author/JOW)

  14. ABB Combustion Engineering`s nuclear experience and technologies

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  15. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  16. Studying Nuclear Astrophysics at NIF

    SciTech Connect

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on

  17. Template identification technology of nuclear warheads and components

    NASA Astrophysics Data System (ADS)

    Liu, Su-Ping; Gong, Jian; Hao, Fan-Hua; Hu, Guang-Chun

    2008-02-01

    Template identification technology (TIT) is designed for the scenarios where a batch of disarmed nuclear weapons or components would be dismantled to observe a nuclear disarmament treaty. The core function played by the TIT is to make a judgment on whether the verified item belongs to a certain kind of nuclear weapons or component (NW/NC) or to which kind the verified item belongs. This paper analyses the functions played by the TIT in the process of NW/NC dismantlement, and proposes that two phases would be followed when applying the TIT: firstly to establish NW/NC templates with a sample of size n drawn from a certain kind of disarmament NW; secondly to authenticate NW/NC by means of the TIT. This paper also expatiates some terms related to the concept of the TIT and investigates on the development status of NW/NC TIT based on radiation signatures. The study concludes that the design of template structure is crucial to the establishment of an effective TIT and that starting from different research angles and aiming at the same goal of classification different template structures and corresponding template identification methods can be built up to meet specific identification requirements.

  18. [Nuclear medicine in Spain: high technology 2013].

    PubMed

    Soriano Castrejón, A M; Prats Rivera, E; Alonso Farto, J C; Vallejo Casas, J A; Rodriguez Gasen, A; Setoain Perego, J; Arbizu Lostao, J

    2014-01-01

    This article details the high technology equipment in Spain obtained through a survey sent to the three main provider companies of equipment installed in Spain. The geographical distribution of high technology by Autonomous Communities and its antiquity have been analyzed. Copyright © 2014 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  19. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-08-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  20. Nuclear Power Technologies for Deep Space and Planetary Missions

    NASA Astrophysics Data System (ADS)

    Stephenson, K.; Blancquaert, T.

    2008-09-01

    Photovoltaic cells are well established as the appropriate primary power source for most space missions. For long duration missions that cannot rely on harnessing the external power of the sun, electrochemical processes are simply too low in energy density to provide useful sustained power. Nuclear processes, however, can have huge energy densities, and for this reason, nuclear power systems (NPS) are the only current alternative to solar arrays for long-term generation of power in space.Although nuclear power has been in use since the beginnings of spaceflight, it remains a niche technology that has not enjoyed the visibility and commercial-sector development effort of solar photovoltaics. However, as our space science and exploration programmes look to the outer planets or to long-duration lander missions, nuclear power becomes a key enabling technology.It is logical and useful to divide space nuclear power systems into three categories. In order of increasing complexity, these are:• Direct production of heat by radioactive decay.• Electrical power generation via radioactive decay heat.• Nuclear reactor systems.Past and future mission applications for these are briefly considered before examining, in greater detail, the technology challenges presented by the first two classes of NPS; the radioactive decay heat systems. Of particular current interest are the various methods for conversion of heat to electrical power. For space nuclear power systems, thermoelectricity has been the dominant technology, due to its long-term reliability and vibration-free operation. However, the cost, mass, and safety implications of radioisotopic fuel provide a strong driver to move towards higher-efficiency conversion techniques that could greatly reduce the fuel quantities required.This paper reviews the established technologies used in space nuclear power systems, and then looks to the future, summarising the main areas of worldwide development and considering the

  1. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  2. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  3. Nuclear reaction studies

    SciTech Connect

    Alexander, J.M.; Lacey, R.A.

    1994-11-01

    Research focused on the statistical and dynamical properties of ``hot`` nuclei formed in symmetric heavy-ion reactions. Theses included ``flow`` measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study {sup 40}Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs.

  4. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  5. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  6. Nuclear physics detector technology applied to plant biology research

    SciTech Connect

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  7. Nuclear physics detector technology applied to plant biology research

    NASA Astrophysics Data System (ADS)

    Weisenberger, A. G.; Kross, B.; Lee, S. J.; McKisson, J.; McKisson, J. E.; Xi, W.; Zorn, C.; Howell, C. R.; Crowell, A. S.; Reid, C. D.; Smith, M.

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: 11C has been utilized as a 11CO2 tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the 11CO2 radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for 11CO2 tracer studies in plants will be briefly outlined.

  8. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated incorporation into a reactor system. The thermoelectric electromagnetic pump is recommended for inclusion in the present system based on favorable quantitative and qualitative measures relative to the other options under consideration.

  9. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated incorporation into a reactor system. The thermoelectric electromagnetic pump is recommended for inclusion in the present system based on favorable quantitative and qualitative measures relative to the other options under consideration.

  10. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance

  11. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  12. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  13. High Energy Nuclear Database: A Testbed for Nuclear Data Information Technology

    SciTech Connect

    Brown, D A; Vogt, R; Beck, B; Pruet, J

    2007-04-18

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a testbed for the further development of an object-oriented nuclear data format and database system. By using ''off-the-shelf'' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a ''Grand Unified Nuclear Format'' encapsulating data types used in the ENSDF, ENDF/B, EXFOR, NSR and other formats, including processed data formats.

  14. A methodology for evaluating ``new`` technologies in nuclear power plants

    SciTech Connect

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-06-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

  15. Technology Teachers' Attitudes toward Nuclear Energy and Their Implications for Technology Education

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng; Yang, Hsiu-Chuan

    2013-01-01

    The purpose of this paper was to explore high-school (grades 10-12) technology teachers' attitudes toward nuclear energy and their implications to technology education. A questionnaire was developed to solicit 323 high-school technology teachers' responses in June 2013 and 132 (or 41%) valid questionnaires returned. Consequently, the following…

  16. Nuclear power applications of NASA control and diagnostics technology

    SciTech Connect

    Touchton, R.A. )

    1990-05-01

    The main objective of Research Project RP2902-1, Nuclear Applications of NASA Control and Diagnostics Technology, were the assessment of NASA's KATE technology, development of a generic software tool suitable for use by the utility industry, and the building of a demonstration application in the power utility domain. Accordingly, the KATE technology was studied, evaluated and the essential features selected for reimplementation in a generic, user-friendly tool called ProSys.'' ProSys represents a growing interest in the use of computer systems to represent the causes for their undesired behavior. Recent attempts have concentrated on representing such knowledge and drawing inferences using a generic, model-based approach. Thus ProSys is a model-based diagnostic program that runs on a microcomputer. It is built on basic principles of troubleshooting, such as cause and effect, and not on experiential heuristics. Models built using ProSys store a knowledge of the structure and function of the system that is being diagnosed. ProSys uses this knowledge to draw inferences about the current state of the system. ProSys is also knowledgeable about the command inputs (operator actions) to the system and the effect that these have on the sensors. Thus, ProSys expects certain values from the sensors and when those are different, it works backwards to hypothesize the failure of system components. This document, Volume 2, provides a technical discussion of the system. 17 figs.

  17. Technology readiness levels for advanced nuclear fuels and materials development

    SciTech Connect

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; Todosow, M.

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of current and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  18. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  19. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  20. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  1. Proceedings of the nuclear criticality technology safety project

    SciTech Connect

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  2. U.S.-Russian Cooperation in Science and Technology: A Case Study of the TOPAZ Space-Based Nuclear Reactor International Program

    NASA Astrophysics Data System (ADS)

    Dabrowski, Richard S.

    2014-08-01

    The TOPAZ International Program (TIP) was the final name given to a series of projects to purchase and test the TOPAZ-II, a space-based nuclear reactor of a type that had been further developed in the Soviet Union than in the United States. In the changing political situation associated with the break-up of the Soviet Union it became possible for the United States to not just purchase the system, but also to employ Russian scientists, engineers and testing facilities to verify its reliability. The lessons learned from the TIP illuminate some of the institutional and cultural challenges to U.S. - Russian cooperation in technology research which remain true today.

  3. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  4. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development. Final report of a scientific research supported by the USDOE/SBIR program

    SciTech Connect

    E.T. Cheng, et al.

    1999-06-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation 3, can produce a neutron wall loading from 0.5 to 5 MW/m{sup 2} at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW-y/m{sup 2} is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept.

  5. Nuclear Power, Small Nuclear Technology, and the Role of Technical Innovation: An Assessment

    SciTech Connect

    Schock, R N; Brown, N W; Smith, C F

    2001-05-18

    An overview of energy-system projections into the new century leads to the conclusion that nuclear power will play a significant role. How significant a role will be determined by the marketplace. Within the range of nuclear-power technologies available, small nuclear-power plants of innovative design appear to fit the needs of a number of developing nations and states. These plants have the potential advantage of modularity, are proliferation-resistant, incorporate passive safety features, minimize waste, and could be cost-competitive with fossil-fuel plants.

  6. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  7. Compact Gamma-Beam Source for Nuclear Security Technologies

    NASA Astrophysics Data System (ADS)

    Gladkikh, P.; Urakawa, J.

    2015-10-01

    A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.

  8. Important technology considerations for space nuclear power systems

    SciTech Connect

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  9. Nuclear Concepts & Technological Issues Institute: Teacher Activity Booklet.

    ERIC Educational Resources Information Center

    Davison, Candace C., Ed.; Lunetta, Lois W., Ed.

    For many summers the Radiation Science and Engineering Center at Pennsylvania State University has been the site of a Nuclear Concepts and Technological Issues Institute for secondary school science teachers. As a culminating activity of the institute teachers develop lesson plans, laboratory experiments, demonstrations, or other activities and…

  10. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    SciTech Connect

    Sanchez, R.G.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  11. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    SciTech Connect

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Aspinall, M.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Peranteau, D.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Vaccaro, S.; Takamine, J.; Weber, A. -L.; Yamaguchi, T.; Zhu, H.

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3

  12. Nuclear power applications of NASA control and diagnostics technology

    SciTech Connect

    Touchton, R.A. )

    1990-05-01

    The main objectives of Research Project RP2902-1, Nuclear Applications of NASA Control and Diagnostics Technology, were the assessment of NASA's KATE technology, development of a generic software tool suitable for use by the utility industry, and the building of a demonstration application in the power utility domain. Accordingly, the KATE technology was studied, evaluated and the essential features selected for reimplementation in a generic, user-friendly tool called ProSys.'' ProSys represents a growing interest in the use of computer systems to represent structural and functional information of complex physical systems and to deduce the causes for their undesired behavior. Recent attempts have concentrated on representing such knowledge and drawing inferences using a generic, model-based approach. The Reactor Coolant Pump Seal System, including a few alarms, was selected and modeled as a demonstration application. Prioritization of alarms was performed using functional relationships specified by the user as part of the model. Following this, an experiment was conducted on the modeling and diagnosis of flow systems using more heuristic techniques. In general, it was proven that given enough information about the physical system in the form of a complete model, a generic system can monitor and troubleshoot the physical system. The main advantage of such a generic system is that it is very easy to maintain and extend, because any change in the design of the physical system need only be reflected in the model. The development methodology and tasks also contributed significantly to the understanding of strengths and weaknesses of the KATE technology and gave direction towards addressing the weakness. 16 figs., 5 tabs.

  13. Nuclear fission technology in Spain: History and social concerns.

    PubMed

    Aliende Urtasun, Ana; Luquin, Asunción; Garrido, Julián J

    2017-04-01

    This research examines the evolution of nuclear technology in Spain from the early years of the Franco dictatorship to the global financial crisis and technology's influence on Spanish culture. To this end, we take a sociological perspective, with science culture and social perceptions of risk in knowledge societies serving as the two elements of focus in this work. In this sense, this article analyses the transformation of social relationships in light of technological changes. We propose technology as a strategic place to observe the institutional and organisational dynamics of technologic-scientific risks, the expert role and Spain's science culture. In addition, more specifically, within the language of co-production, we 'follow the actor' and favour new forms of citizen participation that promote ethics to discuss technological issues.

  14. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  15. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  16. The roles and functions of a lunar base Nuclear Technology Center

    SciTech Connect

    Buden, D. ); Angelo, J.A. Jr. )

    1991-01-01

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth. 12 refs., 4 figs., 1 tab.

  17. [Ergonomic technology. Design study].

    PubMed

    Apostol, I; Ciobanu, O

    2007-01-01

    The paper deals with domains and technological developments and related supports that enhance the rehabilitation process. Ergonomic Technology, Rehabilitation Engineering, Accessibility and Assistive technology are factors involved in promoting a greater independence for people with disabilities by designing and developing new devices with improved design and functionality. Results of a device design study for people with disabilities are presented.

  18. (Safety and reliability of nuclear power plant technology)

    SciTech Connect

    Dickson, T.L.

    1990-10-22

    The traveler attended the 16th MPA Seminar on the Safety and Reliability of Plant Technology with Special Emphasis on Nuclear Technology. The objective of the trip was to gather information and data that could prove useful to the US Nuclear Regulatory Commission (USNRC) sponsored Heavy-Section Steel Irradiation (HSSI) and Heavy-Section Steel Technology (HSST) Programs and to present a paper entitled, Effects of Irradiation on Initiation and Crack-Arrest Toughness of Two High-Copper Welds and on Stainless Steel Cladding. This paper summarizes results from the 5th, 6th, and 7th Irradiation Series of experiments performed within the HSSI Program by the Metals and Ceramics Division at Oak Ridge National Laboratory (ORNL).

  19. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced

  20. Radiography Inspection Technology of CPR1000 Nuclear Power Unit Pressurizer

    NASA Astrophysics Data System (ADS)

    Hao, Jingyun; Deng, Dong; Wang, Jing; Wang, Shuangyin; Hua, Xiongfei

    This article takes the first in-service inspection of the 3rd Unit nuclear island pressurizer (PZR) radiography inspection of Ling Ao nuclear power station for example. It is introduced that the gamma radiographic inspection technology of CPR1000 nuclear power island PZR welds which include the cylinder weld, the tube welds and the head connection welds, the safe-end-welds of PZR tube, and the thermal sleeve, mainly focused on the exposure mode, the film layout and other content in each weld inspection. Meanwhile according to the site operating experience by the inspectors, it is summarized that the technical difficulties and key points which the PZR radiography inspection technology has. Combined with the related sections of the French design and construction rules for mechanical components of PWR nuclear Islands (the RCC-M standard) and the in-service inspection rules for mechanical components of PWR nuclear islands (the RSE-M specification), it makes analysis, calculation and discussion of the technical parameters and crucial details about the ray source selection, the identification of the film and the location markers, the focal length and the times of exposures at least, aiming the characteristics of the PZR ray inspection, which can provide reference method and the suggestion for the similar container radiography inspection.

  1. Piloted rover technology study

    NASA Technical Reports Server (NTRS)

    Thrasher, D. L.

    1990-01-01

    This is the May 25, 1990 summary report for Space Transfer Concepts and Analyses (STCA) Study, special study task 9.1, Piloted Rovers Technology Study. Piloted rover concepts, mission scenarios, and the requirements necessary for completion of these missions resulting in the establishment of a lunar base. These tasks were intended to lead to a logical conclusion concerning which piloted rovers technologies are needed to accomplish the various missions, along with a recommended schedule for the development of these technologies.

  2. Legal and Regulatroy Obstacles to Nuclear Fission Technology in Space

    NASA Astrophysics Data System (ADS)

    Force, Melissa K.

    2013-09-01

    In forecasting the prospective use of small nuclear reactors for spacecraft and space-based power stations, the U.S. Air Force describes space as "the ultimate high ground," providing access to every part of the globe. But is it? A report titled "Energy Horizons: United States Air Force Energy Science &Technology Vision 2011-2026," focuses on core Air Force missions in space energy generation, operations and propulsion and recognizes that investments into small modular nuclear fission reactors can be leveraged for space-based systems. However, the report mentions, as an aside, that "potential catastrophic outcomes" are an element to be weighed and provides no insight into the monumental political and legal will required to overcome the mere stigma of nuclear energy, even when referring only to the most benign nuclear power generation systems - RTGs. On the heels of that report, a joint Department of Energy and NASA team published positive results from the demonstration of a uranium- powered fission reactor. The experiment was perhaps most notable for exemplifying just how effective the powerful anti-nuclear lobby has been in the United States: It was the first such demonstration of its kind in nearly fifty years. Space visionaries must anticipate a difficult war, consisting of multiple battles that must be waged in order to obtain a license to fly any but the feeblest of nuclear power sources in space. This paper aims to guide the reader through the obstacles to be overcome before nuclear fission technology can be put to use in space.

  3. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    NASA Astrophysics Data System (ADS)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  4. Liquid-Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  5. Nuclear technology programs. Semiannual progress report, April--September 1991

    SciTech Connect

    Not Available

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  6. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    SciTech Connect

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  7. Nuclear Technology Programs semiannual progress report, October 1990--March 1991

    SciTech Connect

    1992-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  8. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  9. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  10. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    SciTech Connect

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  11. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  12. Use of exotic nuclear beams for nuclear structure studies

    SciTech Connect

    Sugimoto, K.

    1984-10-01

    Possible experiments are discussed for nuclear structure studies using, as secondary beams, projectile fragments produced by high-energy heavy-ion collisions. They are, specifically, (a) determination of nuclear sizes from measurements of the total interaction cross sections of nucleus-nucleus collisions, and (b) determination of static electromagnetic moments, ..mu..'s and Q's, of short-lived ..beta..-radioactive nuclei. 9 references.

  13. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  14. Refractory alloy technology for space nuclear power applications

    SciTech Connect

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  15. Technology development issues in space nuclear power for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Atkins, K. L.; Mastal, E. F.; Mcconnell, D. G.

    1990-01-01

    Planning for future planetary exploration missions indicates that there are continuing, long range requirements for nuclear power, and in particular radioisotope-based power sources. In meeting these requirements, there is a need for higher efficiency, lower mass systems. Four technology areas currently under development that address these goals are described: modular RTG, modular RTG with advanced thermoelectric materials, dynamic isotope power system (DIPS), and the Alkali Metal Thermoelectric Converter (AMTEC).

  16. Nuclear power and the risks of new technologies

    SciTech Connect

    Wilson, R.

    1993-04-01

    There is often excessive euphoria about new technologies. This can lead to disillusionment and then excessive fear. Excessive fear can arise on its own. There are many indications that those who understand nuclear power are more willing to accept it. The author will present from his own experience several occasions in which lack of understanding has led to opposition and how the lack of understanding can be modified. But once a person is already opposed it is hard to change his actions.

  17. Technology development issues in space nuclear power for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Atkins, K. L.; Mastal, E. F.; Mcconnell, D. G.

    1990-01-01

    Planning for future planetary exploration missions indicates that there are continuing, long range requirements for nuclear power, and in particular radioisotope-based power sources. In meeting these requirements, there is a need for higher efficiency, lower mass systems. Four technology areas currently under development that address these goals are described: modular RTG, modular RTG with advanced thermoelectric materials, dynamic isotope power system (DIPS), and the Alkali Metal Thermoelectric Converter (AMTEC).

  18. Application of AI technology to nuclear plant operations

    SciTech Connect

    Sackett, J.I.

    1988-01-01

    In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives.

  19. Nuclear Structure Studies with Polarized Radioactive Beams

    SciTech Connect

    Asahi, K.; Uchida, M.; Inoue, T.; Hatakeyama, M.; Kagami, S.; Hasama, Y.; Suzuki, K.; Ueno, H.; Nagatomo, T.; Yoshimi, A.; Kameda, D.; Ishihara, M.; Shimada, K.; Nagae, D.; Murata, J.; Narita, K.; Kawamura, H.

    2009-08-04

    Nuclear moment studies on nuclei far from the beta-stability line, performed by taking advantage of the projectile fragmentation reaction, are reviewed. A method to produce spin polarization/alignment in the projectile fragments was developed and utilized for the beta-NMR/NQR measurements. Several new findings in nuclear structure physics were obtained from the nuclear moment experiments done with these techniques.

  20. Nuclear Technology Series. Nuclear Quality-Assurance and Quality-Control Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear quality-assurance and quality-control technician program is designed for use with courses 26-32 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to…

  1. Nuclear Technology Series. Nuclear Quality-Assurance and Quality-Control Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear quality-assurance and quality-control technician program is designed for use with courses 26-32 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to…

  2. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  3. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  4. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  5. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2015-01-01

    The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.

  6. Patenting the bomb: nuclear weapons, intellectual property, and technological control.

    PubMed

    Wellerstein, Alex

    2008-03-01

    During the course of the Manhattan Project, the U.S. government secretly attempted to acquire a monopoly on the patent rights for inventions used in the production of nuclear weapons and nuclear energy. The use of patents as a system of control, while common for more mundane technologies, would seem at first glance to conflict with the regimes of secrecy that have traditionally been associated with nuclear weapons. In explaining the origins and operations of the Manhattan Project patent system, though, this essay argues that the utilization of patents was an ad hoc attempt at legal control of the atomic bomb by Manhattan Project administrators, focused on the monopolistic aspects of the patent system and preexisting patent secrecy legislation. From the present perspective, using patents as a method of control for such weapons seems inadequate, if not unnecessary; but at the time, when the bomb was a new and essentially unregulated technology, patents played an important role in the thinking of project administrators concerned with meaningful postwar control of the bomb.

  7. A GRADUATE CERTIFICATE PROGRAM IN NUCLEAR SAFEGUARDS TECHNOLOGY.

    SciTech Connect

    FISHBONE, L.; SISKIND, B.; PEPPER, S.

    2005-07-10

    While there are a number of university graduate-education programs that address non-proliferation and safeguards policy issues; there are none in the United States that train students in the specific technical aspects of nuclear safeguards. Formal education of this kind is necessary to sustain the flow of technically trained individuals to diverse programs in safeguards, nonproliferation, and national security. In response to this need, the University of Missouri-Columbia, with assistance from Brookhaven National Laboratory, is initiating a Graduate Certificate Program in Nuclear Safeguards Technology: Students seeking advanced degrees in a variety of technical areas will complete a required sequence of courses in order to receive the certification. Required course work covers topics such as Nuclear Material Control and Accountability (MC&A), Physical Protection (PP); nuclear measurements, and a variety of other relevant subjects. Laboratory-based instruction will be included which will utilize the University of Missouri Research Reactor(MURR). MURR is the largest university-based research reactor and has extensive laboratory resources including a Canberra Aquila MPC&A Operational Monitoring demonstration system.

  8. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  9. The limits of technology in nuclear crisis management

    SciTech Connect

    White, P.C.

    1986-01-01

    For some purposes, one may consider the roles of technology in nuclear crisis management to fall into four categories. Certain technologies, such as signals intelligence, may assist in monitoring for the emergence of crisis precursors. Other kinds of surveillance, such as that by certain satellites, are intended to detect phenomena, such as missile launches, which clearly signal the transition from pre-crisis to mid-crisis. During this phase, communications and surveillance technologies may be called upon to aid in managing the crisis. Finally, communications technologies will play a vital role in crisis resolution, preferably during the pre-crisis phase, but in mid-crisis if necessary. It has long been recognized that a large fraction of these technical means are vulnerable, both to selective, direct attack, and to the unintended, collateral effects of conflict itself. Systematic efforts are underway to make these systems more robust and survivable in crisis environments, but one must clearly recognize the limits of technology. In particular, one must weigh very seriously the implications and possible consequences of intentional, direct attack, including decapitation, on just those means which may permit timely crisis resolution. In the end, these technologies may prove so vulnerable, that nations may be forced to rely on pre-crisis planning, including force structuring, clearly defined options planning, and clear statements of intent, in order to permit any sort of mid-crisis resolution and conflict termination.

  10. Perspectives on Educational Technology. Educational Technology Study.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    Conducted by the State Office of Education in cooperation with IBM Corporation, this study was designed to examine the uses of technology in Utah schools and how the implementation of technology could greatly assist the educational process. Six objectives are specified in Section I: (1) design state-of-the-art technological models to be offered by…

  11. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  12. Nuclear technology aspects of ITER vessel-mounted diagnostics

    NASA Astrophysics Data System (ADS)

    Vayakis, George; Bertalot, Luciano; Encheva, Anna; Walker, Chris; Brichard, Benoît; Cheon, M. S.; Chitarin, G.; Hodgson, Eric; Ingesson, Christian; Ishikawa, M.; Kondoh, T.; Meister, Hans; Moreau, Philippe; Peruzzo, Simone; Pak, S.; Pérez-Pichel, Germán; Reichle, Roger; Testa, Duccio; Toussaint, Matthieu; Vermeeren, Ludo; Vershkov, Vladimir

    2011-10-01

    ITER has diagnostics with machine protection, basic and advanced control, and physics roles. Several are distributed on the inner and outer periphery of the vacuum vessel. They have reduced maintainability compared to diagnostics in ports. They also endure some of the highest nuclear and EM loads of any diagnostic for the longest time. They include: Inductive sensors for time-integrated and raw inductive measurements; Steady-state magnetic sensors to correct drifts of the inductive sensors; Bolometer cameras to provide electromagnetic radiation tomography; Microfission chambers and neutron activation stations to provide fusion power and fluence; MM-wave reflectometry to measure the plasma density profile and the plasma-wall distance and; Wiring to service magnetics, bolometry, and in-vessel instrumentation. This paper summarises the key technological issues these diagnostics arising from the nuclear environment, recent progress and outstanding R&D for each system.

  13. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  14. Technological implications of SNAP reactor power system development on future space nuclear power systems

    SciTech Connect

    Anderson, R.V.

    1982-11-16

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development.

  15. Lead lithium eutectic material database for nuclear fusion technology

    NASA Astrophysics Data System (ADS)

    Mas de les Valls, E.; Sedano, L. A.; Batet, L.; Ricapito, I.; Aiello, A.; Gastaldi, O.; Gabriel, F.

    2008-06-01

    Fully validated material databases are needed for coherent technological developments in any R&D field. For nuclear fusion technology (NFT), within a near-term perspective of qualification and licensing of nuclear components and systems, this goal is both compulsory and urgent. This mandatory requirement applies for the particular case of the Pb-Li eutectic database as fusion reactor material. Pb16Li is today a reference breeder material in diverse fusion R&D programs worldwide. Technical consensus on most part of the material database inputs seems a major technological objective. In this work Pb16Li material database inputs for NFT have been systematically reviewed. Database inputs (bulk, thermal, physical-chemistry properties, and H-isotopes transport) are discussed and extended to base magnetohydrodynamic (MHD) properties, values for non-dimensional parameters and pipe/channel correlations in 2-phases dispersion models. Ongoing efforts to develop the Pb16Li material database as a computing expert system are reported.

  16. 77 FR 18271 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 4.11, ``Terrestrial Environmental Studies for Nuclear Power Stations... environmental studies and analyses supporting licensing decisions for nuclear power reactors. ADDRESSES: Please...

  17. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  18. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  19. Overview of materials technologies for space nuclear power and propulsion

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  20. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Astrophysics Data System (ADS)

    Doherty, Michael P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  1. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  2. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  3. Proceedings of the Nuclear Criticality Technology Safety Workshop

    SciTech Connect

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  4. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  5. Nuclear structure studies with intermediate energy probes

    SciTech Connect

    Lee, T.S.H.

    1993-10-01

    Nuclear structure studies with pions are reviewed. Results from a recent study of 1 p-shell nuclei using (e,e{prime}), ({pi}, {pi}{prime}), and ({gamma},{pi}) reactions are reported. Future nuclear structure studies with GeV electrons at CEBAF are also briefly discussed.

  6. Nuclear and neutron matter studies

    SciTech Connect

    Wiringa, R.B.; Akmal, A.; Pandharipande, V.R.

    1995-08-01

    We are studying nuclear and neutron matter with the new Argonne v{sub 18} NN and Urbana 3N potentials. We use variational wave functions and a diagrammatic cluster expansion with Fermi hypernetted and single-operator chain (FHNC/SOC) integral equations to evaluate the energy expectation value. Initial results show some interesting differences with our previous calculations with the older Argonne v{sub 14} potential. In particular, there are a number of diagrams involving L{center_dot}S and L{sup 2} terms which were small with the older model and were rather crudely estimated or even neglected. It appears that these terms are more important with the new potential and will have to be evaluated more accurately. Work on this subject is in progress. A simple line of attack is to just add additional diagrams at the three-body cluster level. A longer term approach may be to adapt some of the methods for evaluating nucleon clusters used in the few-body and closed shell nuclei described above.

  7. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  8. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  9. Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team

    SciTech Connect

    Not Available

    1985-06-01

    This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning.

  10. Human response to nuclear and advanced technology weapons effects. Final report, January-December 1995

    SciTech Connect

    Coleman, J.L.

    1996-05-01

    The purpose of this study is to help the system survivability analyst estimate hardness requirements for systems exposed to nuclear weapons and advanced technology weapons (ATWs). The system survivability analyst is often asked to make quick, order-of-magnitude estimates on the hardness requirements for existing or proposed systems based upon human responses to the effects of nuclear weapons and ATWs. The intent of this report is to identity the general range of human survivability to nuclear weapons and ATWs and to provide simple example calcuiations and scenarios that can give the reader rough estimates of the effects of these weapons. While high-powered microwave (HPM) and laser weapons are considered in this report, the main emphasis is on nuclear weapons and their ionizing radiation effects.

  11. Nuclear Weapons Complex reconfiguration study

    SciTech Connect

    Not Available

    1991-01-01

    Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

  12. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  13. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

    SciTech Connect

    Herbst, A.K.; McCray, J.A.; Rogers, A.Z.; Simmons, R.F.; Palethrope, S.J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  14. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    SciTech Connect

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  15. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  16. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  17. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  18. Howitzer Technology Assessment Study.

    DTIC Science & Technology

    1980-11-01

    AD-A091 782 VEDA INC SOUTHAMPTON PA p~1t HOWITZER TECHNOLOGY ASSESSMENT STUDY.CU) Fs1/ NOV 80 A J CURRAN , J M MAGINN N000OI8?gC-0925 UNCLASSIFIED...ADIO SCONTRACTOR REPORT ARLCD-CR-SO036 0 HOWITZER TECHNOLOGY ASSESSMENT STUDY ROGER I. CURRAN - JAMES M. MAGINN VEDA INCORPORATED 1360 INDUSTRIAL...C-0925," 9. PERFORMING ORGANIZATION NAME ARC ADDRESS VI POGAMEUNTPRJCAS JPROe &. M HaSN. RJETTn Veda Incorporated 1360 Industrial Highway Southampton

  19. Lunar nuclear power feasibility study

    NASA Technical Reports Server (NTRS)

    Erdman, C. A.; Tran, T.

    1984-01-01

    Based on review of literature and on limited examination of nuclear power systems now proposed for space applications, a nuclear fission reactor powered system should be seriously considered as the first large (order of 50 kWe or greater) power system to be placed on a lunar base. With relatively minor modifications, the major one being addition of a cooled side shield, the proposed 100 kWe product of the SP-100 Program could be adapted for use on a lunar base.

  20. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  1. Cryogenic Fluid Management Technology and Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2016-01-01

    Cryogenic fluid management (CFM) is critical to the success of future nuclear thermal propulsion powered vehicles. While this is an issue for any propulsion system utilizing cryogenic propellants, this is made more challenging by the radiation flux produced by the reactor in a nuclear thermal rocket (NTR). Managing the cryogenic fuel to prevent propellant loss to boil off and leakage is needed to limit the required quantity of propellant to a reasonable level. Analysis shows deposition of energy into liquid hydrogen fuel tanks in the vicinity of the nuclear thermal engine. This is on top of ambient environment sources of heat. Investments in cryogenic/thermal management systems (some of which are ongoing at various organizations) are needed in parallel to nuclear thermal engine development in order to one day see the successful operation of an entire stage. High durability, low thermal conductivity insulation is one developmental need. Light weight cryocoolers capable of removing heat from large fluid volumes at temperatures as low as approx. 20 K are needed to remove heat leak from the propellant of an NTR. Valve leakage is an additional CFM issue of great importance. Leakage rates of state of the art, launch vehicle size valves (which is approximately the size valves needed for a Mars transfer vehicle) are quite high and would result in large quantities of lost propellant over a long duration mission. Additionally, the liquid acquisition system inside the propellant tank must deliver properly conditioned propellant to the feed line for successful engine operation and avoid intake of warm or gaseous propellant. Analysis of the thermal environment and the CFM technology development are discussed in the accompanying presentation.

  2. Geosynchronous Technology Infusion Studies

    NASA Technical Reports Server (NTRS)

    Hilliard, L.; Jenstrom, D.; Chesters, D.; Racette, P.

    1997-01-01

    NASA and NOAA are now sponsoring Advanced Geosynchronous Studies (AGeoS), technology work that will lead to the next generation of space sensors located in geosynchronous orbit. This report briefly describes the initial steps being taken to investigate the high priority geosynchronous measurement needs identified so far.

  3. Defining the "proven technology" technical criterion in the reactor technology assessment for Malaysia's nuclear power program

    NASA Astrophysics Data System (ADS)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul; Manan, Jamal Abdul Nasir Abd

    2015-04-01

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that "proven technology" is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for "proven technology" is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the "proven technology" term according to a specific country's requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of "proven technology" that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia's definition of "proven technology".

  4. A Strategic Framework for Proliferation Resistance: A systematic Approach for the Identification and Evaluation of Technology Opportunities to Enhance the Proliferation Resistance of Civilian Nuclear Energy Systems

    SciTech Connect

    Hassberger, J A; Isaacs, T; Schock, R N

    2001-05-11

    The United States' Department of Energy Nuclear Energy Research Advisory Committee recently completed a study ''Technological Opportunities To Increase The Proliferation Resistance Of Global Civilian Nuclear Power Systems (TOPS).'' That effort included the development of a set of both intrinsic and extrinsic barriers to proliferation that technologies can directly impact. In this paper we will review these barriers as and framework for assisting in the evaluation of the relative proliferation resistance of various nuclear fuel cycles, technologies and alternatives.

  5. Emerging Technologies Integrating Technology into Study Abroad

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2016-01-01

    "Ready access to travel and to technology-enhanced social networking (e.g., Facebook or Skype) has changed the nature of study abroad to the point where today's experiences are fundamentally different from those of earlier eras" (Kinginger, 2013a, p. 345). In addition to more travel options and greater technology availability, study…

  6. Emerging Technologies Integrating Technology into Study Abroad

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2016-01-01

    "Ready access to travel and to technology-enhanced social networking (e.g., Facebook or Skype) has changed the nature of study abroad to the point where today's experiences are fundamentally different from those of earlier eras" (Kinginger, 2013a, p. 345). In addition to more travel options and greater technology availability, study…

  7. Improvised Nuclear Device Case Study

    SciTech Connect

    Buddemeier, Brooke; Suski, Nancy

    2011-07-12

    Reducing the casualties of catastrophic terrorist attacks requires an understanding of weapons of mass destruction (WMD) effects, infrastructure damage, atmospheric dispersion, and health effects. The Federal Planning Guidance for Response to a Nuclear Detonation provides the strategy for response to an improvised nuclear device (IND) detonation. The supporting science developed by national laboratories and other technical organizations for this document significantly improves our understanding of the hazards posed by such an event. Detailed fallout predictions from the advanced suite of three-dimensional meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory, including extensive global geographical and real-time meteorological databases to support model calculations, are a key part of response planning. This presentation describes the methodology and results to date, including visualization aids developed for response organizations. These products have greatly enhanced the community planning process through first-person points of view and description of the dynamic nature of the event.

  8. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Astrophysics Data System (ADS)

    Barnett, John W.

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  9. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  10. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  11. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    SciTech Connect

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-22

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  12. Electromagnetic studies of nuclear structure and reactions

    SciTech Connect

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  13. [Occupational risk and technological innovations. Comparison of conventional and nuclear energy systems (fuel, coal and nuclear) (author's transl)].

    PubMed

    Fagnani, F; Hubert, P; Maccia, C

    1981-01-01

    The objective is to compare the occupational risks associated to the production of electricity through three alternative technologies: fuel, coal and nuclear (Pressurised Water Reactor). A methodology is proposed in order to integrate the operation and construction activities. The data related to a French scenario have been collected and are presented. The results obtained in the case of nuclear technology correspond to the present French program for 1990 and have in this respect a prospective value.

  14. Technology status of tantalum alloys for space nuclear power applications

    NASA Technical Reports Server (NTRS)

    Hoffman, E. E.

    1985-01-01

    Tantalum alloys have a variety of properties which make them attractive candidates for application in nuclear power systems required to operate in space at elevated temperatures (1200 to 1600 K) for extended time periods. Most of the technology development on this class of alloys which is pertinent to space system application occurred during the 1960 to 1972 time period under NASA sponsorship. The most extensive data bases resulting from this earlier work were obtained on the alloys T-111 (Ta-8W-2Hf) and ASTAR 811C (Ta-8W-1Re-0.7Hf-0.025C). Emphasis in this paper is directed at the following technical factors: producibility, creep strength, weldability and compatibility. These factors are considered to be the most important elements in the selection of alloys for this application. Review of the available information indicates that alloys of this type are appropriate for application in many systems, particularly those utilizing alkali metals as the working fluid.

  15. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  16. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    SciTech Connect

    Doherty, M.P. )

    1993-01-10

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  17. Nuclear Technology Series. Course 11: Radiation Detection and Measurement.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 34: Control Systems II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 4: Heat Transfer and Fluid Flow.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 2: Radiation Protection I.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 16: Mechanical Component Characteristics and Specifications.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 31: Quality-Assurance Practices.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 33: Control Systems I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 17: Radiation Protection II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 35: Systems and Components.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 9: Reactor Auxiliary Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course 13: Power Plant Chemistry.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  12. Nuclear Technology Series. Course 29: Civil/Structural Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Nuclear Technology Series. Course 33: Control Systems I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 17: Radiation Protection II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 9: Reactor Auxiliary Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 4: Heat Transfer and Fluid Flow.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 31: Quality-Assurance Practices.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 16: Mechanical Component Characteristics and Specifications.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 13: Power Plant Chemistry.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 10: Power Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 3: Principles of Process Instrumentation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 2: Radiation Protection I.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Nuclear Technology Series. Course 21: Radioactive Materials Disposal and Management.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 11: Radiation Detection and Measurement.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 35: Systems and Components.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course 15: Metallurgy and Metals Properties.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  12. Nuclear Technology Series. Course 34: Control Systems II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Nuclear Technology Series. Course 29: Civil/Structural Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 3: Principles of Process Instrumentation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 15: Metallurgy and Metals Properties.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 10: Power Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 21: Radioactive Materials Disposal and Management.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Non-Nuclear Testing of Fission Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Robert G.; Pearson, J. Boise; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky E.; Emrich, William J.; Garber, Anne E.; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; Polzin, Kurt A.; Schoenfeld, Michael P.; Webster, Kenneth L.

    2011-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing also provides an excellent way for screening potential advanced fuels and materials prior to nuclear testing, and for investigating innovative geometries and operating regimes. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA s Marshall Space Flight Center (MSFC).

  20. Future of strategic nuclear deterrence. Study project

    SciTech Connect

    Floris, J.

    1992-04-10

    The evolving role of our Strategic Nuclear Forces and the deterrent requirement of that force in a changing and volatile world are two of the most contentious issues facing this country's leadership. The debate surrounding these forces has been brought about by many diverse factors that include the dissolution of the Soviet Union and the resultant end of the Cold War, bilateral arms control agreements and unilateral reductions which have reduced the number and operational status of nuclear forces, and a perceived reduction in the threat facing the U.S. and its allies. Additionally, the success of U.S. technology as seen in the effects of modern conventional munitions in the Gulf War and the proliferation of ballistic missile and nuclear weapons technology into Third World countries have further compounded the complexity of the issue. The concomitant changes in the focus and structure of U.S. and allied military forces have further fueled the debate. As the National Security Strategy and supporting National Military Strategy are evolving to meet new threats, it is essential to provide an analysis of the continued deterrent role of our Strategic Nuclear Force in this changing world.

  1. Application of Telepresence Technologies to Nuclear Material Safeguards

    SciTech Connect

    Wright, M.C.; Rome, J.A.

    1999-09-20

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications.

  2. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    SciTech Connect

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  3. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  4. Nuclear Power Options Viability Study. Volume 3. Nuclear discipline topics

    SciTech Connect

    Trauger, D B; White, J D; Bowers, H I; Braid, R B; Cantor, R A; Daniels, L; Davis, R M; Delene, J G; Gat, U; Hood, T C

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were chosen on the basis of three ground rules: (1) the potential for commercialization between 2000-2010, (2) economic competiveness with coal-fired plants, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high temperature reactors, and most were of modular design. All the concepts appear to be potentially viable in the time frame selected, but the information available is not adequate for a definitive evaluation of their economic competitiveness. This volume primarily reports in greater detail on several topics from the study. These are: Construction, Economics, Regulation, Safety and Economic Risk, Nuclear Waste Transportation and Disposal, and Market Acceptance. Although treated generically, the topics are presented in the context of the reactor concepts of the study.

  5. Nuclear-spectroscopy problems studied with neutrons

    NASA Astrophysics Data System (ADS)

    Raman, S.

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions were obtained that are not only interesting per se but are also grist for old and new theory mills. The above technical advances have opened up opportunities for further discoveries.

  6. Nuclear-spectroscopy problems studied with neutrons

    SciTech Connect

    Raman, S.

    1982-01-01

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions have been obtained that are not ony interesting per se but are also grist for old and new theory mills. The above technical advances have opened up new opportunities for further discoveries.

  7. Ventilation technologies scoping study

    SciTech Connect

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  8. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  9. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  10. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  11. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  12. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  13. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR...

  14. Leasing of Nuclear Power Plants With Using Floating Technologies

    SciTech Connect

    Kuznetsov, Yu.N.; Gabaraev, B.A.; Reshetov, V.A.; Moskin, V.A.

    2002-07-01

    The proposal to organize and realize the international program on leasing of Nuclear Power Plant (NPP) reactor compartments is brought to the notice of potential partners. The proposal is oriented to the construction of new NPPs or to replacement of worked-out reactor units of the NPPs in operation on the sites situated near water area and to the use of afloat technologies for construction, mounting and transportation of reactor units as a Reactor Compartment Block Module (RCBM). According to the offered project the RCBM is fabricated in factory conditions at the largest Russian defense shipbuilding plant - State Unitary Enterprise 'Industrial Association SEVMASHPREDPRIYATIE' (SEVMASH) in the city of Severodvinsk of the Arkhangelsk region. After completion of assembling, testing and preliminary licensing the RCBM is given buoyancy by means of hermetic sealing and using pontoons and barges. The RCBM delivery to the NPP site situated near water area is performed by sea route. The RCBM is brought to the place of its installation with the use of appropriate hydraulic structures (canals, shipping locks), then is lowered on the basement constructed beforehand and incorporated into NPP scheme, of which the components are installed in advance. Floating means can be detached from the RCBM and used repeatedly for other RCBMs. Further procedure of NPP commissioning and its operation is carried out according to traditional method by power company in the framework of RCBM leasing with enlisting the services of firm-manufacturer's specialists either to provide reactor plant operation and concomitant processes or to perform author's supervision of operation. After completion of lifetime and reactor unloading the RCBM is dismantled with using the same afloat technology and taken away from NPP site to sea area entirely, together with its structures (reactor vessel, heat exchangers, pumps, pipelines and other equipment). Then RCBM is transported by shipping route to a firm

  15. Citizen Education on Nuclear Technology (CENT). Teacher's Guide.

    ERIC Educational Resources Information Center

    Intermountain Science Experience Center, ID Falls, ID.

    Using an interdisciplinary approach, this curriculum focuses on understanding: (1) the fundamental principles of operating a nuclear power plant; (2) the place of nuclear energy in the overall energy supply/demand situation; (3) risk-benefit balance of the major energy sources; and (4) the role of political action in developing nuclear energy…

  16. The Mighty Atom? The Development of Nuclear Power Technology

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  17. The Mighty Atom? The Development of Nuclear Power Technology

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  18. 2002 Industry Studies: Information Technology

    DTIC Science & Technology

    2002-01-01

    Information Technology ABSTRACT: The information technology (IT) industry represents a vital interest of the United States. The IT industry fuels...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE 2002 Industry Studies: Information Technology 5a. CONTRACT NUMBER 5b. GRANT...Executive Office of the President, Washington, DC Software & Information Industry Association, Washington, DC Information Technology Association of America

  19. An Overview of Comprehensive Inspection Technologies Under Investigation at Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Chipman, V.; Emer, D. F.; Townsend, M.; Drellack, S.

    2013-12-01

    Comprehensive Inspection Technologies (CIT) under investigation include methods that might be of use in detecting a clandestine underground nuclear test. These include techniques for detecting noble gases, visual observation methods, hyperspectral imaging, controlled- and passive-source seismic surveys, and other geophysical methods. Noble gas detection studies include a series of experiments called the Noble Gas Migration (NGM) experiments, that explore the fundamental parameters that determine the capability to detect radioxenon isotopes and 37Ar produced in underground nuclear tests. These isotopes are of interest to both the International Monitoring System (IMS) global monitoring and On-Site Inspection (OSI) regimes. Through a unique combination of field experiments, sampling of radioactive noble gas from a legacy underground nuclear test, large-scale hydrogeologic computer simulations, and a regimen involving carefully designed field-sampling techniques, the experiments are providing information about the production, release, and sampling challenges that determine the ability to detect these two important noble gases. Other CIT experiments explore and validate geophysical (controlled-source and passive-source seismic, gravity, electrical, magnetic, etc.) and optical techniques (both visual and instrument-based) that greatly enhance the understanding of the efficiency of these techniques for OSI, including how to better integrate the various technologies with each other and individually at different physical scales. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25936--1840.

  20. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  1. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  2. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    NASA Astrophysics Data System (ADS)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.

  3. Study Gives Good Odds on Nuclear Reactor Safety

    ERIC Educational Resources Information Center

    Russell, Cristine

    1974-01-01

    Summarized is data from a recent study on nuclear reactor safety completed by Norman C. Rasmussen and others. Non-nuclear events are about 10,000 times more likely to produce large accidents than nuclear plants. (RH)

  4. Study Gives Good Odds on Nuclear Reactor Safety

    ERIC Educational Resources Information Center

    Russell, Cristine

    1974-01-01

    Summarized is data from a recent study on nuclear reactor safety completed by Norman C. Rasmussen and others. Non-nuclear events are about 10,000 times more likely to produce large accidents than nuclear plants. (RH)

  5. Technology Advancement and the CTBT: Taking One Step Back from the Nuclear Brink

    NASA Astrophysics Data System (ADS)

    Perry, W. J.

    2016-12-01

    Technology plays a pivotal role in international nuclear security and technological advancement continues to support a path toward stability. One near-term and readily-obtainable step back from the nuclear brink is the Comprehensive Nuclear-test Ban Treaty (CTBT). The technology to independently verify adherence to the CTBT has matured in the 20 years since the Treaty was opened for signature. Technology has also improved the safety and reliability of the US nuclear stockpile in the absence of testing. Due to these advances over the past two decades neither verification nor stockpiles effectiveness should be an impediment to the Treaty's entry into force. Other technical and geo-political evolution in this same period has changed the perceived benefit of nuclear weapons as instruments of security. Recognizing the change technology has brought to deliberation of nuclear security, nations are encouraged to take this one step away from instability.This presentation will reflect on the history and assumptions that have been used to justify the build-up and configuration of nuclear stockpiles, the changes in technology and conditions that alter the basis of these original assumptions, and the re-analysis of security using current and future assumptions that point to the need for revised nuclear policies. The author has a unique and well informed perspective as both the most senior US Defense Official and a technologist.

  6. Nuclear Plant Siting Study. Volume 1

    DTIC Science & Technology

    1976-06-01

    power plant outfalls. Most sensitive genera were Potomogeton, Chara, and Stellaria wlth Elodea and Frontinalis apparently somewhat less sensitive (Ref...ti :NUCLEAR POWER PLANT SITING STUDY for DEPARTENT OF THE ARMY OFFICE, CHIEF OF ENGINEERS . -,SHINGTON, D.C. VOLUME I OCT, Sbmitted by 0 D B $ k...MO1 (,L~ A SI~~.3 EII’S CATALOG N4UMBER 4. TITLE (and ubtltio) S. TYPE OF REPORT &PERIOD COVERED Final - Jul 75-Jun 76 (6Nuclear Plant Siting Study

  7. Who Should Control Nuclear Technology? A Curriculum Unit for Contemporary U.S. and World History, Grades 9-12.

    ERIC Educational Resources Information Center

    Zimney, Michelle; Boston, Jane

    Since the end of World War II and the onset of the "new age," nuclear technology has remained high on the world's agenda as questions regarding sovereignty and the balance of power, control of the development and spread of nuclear weapons, non-military uses for nuclear technology, and nuclear safety are debated among and within nations.…

  8. Who Should Control Nuclear Technology? A Curriculum Unit for Contemporary U.S. and World History, Grades 9-12.

    ERIC Educational Resources Information Center

    Zimney, Michelle; Boston, Jane

    Since the end of World War II and the onset of the "new age," nuclear technology has remained high on the world's agenda as questions regarding sovereignty and the balance of power, control of the development and spread of nuclear weapons, non-military uses for nuclear technology, and nuclear safety are debated among and within nations.…

  9. Materials Science and Technology, Volume 10B, Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Frost, Brian R. T.

    1996-12-01

    The second of two volumes in this series to deal with the information required for the use of materials in the nuclear power industry. The two volumes together contain the most comprehensive collection of information ever published in nuclear materials. Contents: Motta/Lemaignan: Zirconium Alloys. Dietz: Structural Materials. Ullmaier/Schilling: Physics of Radiation Damage in Solids. Smith/Mattas/Billone: First Wall and Blanket Materials. Boltax: Mixed Oxide Fuel Pin Performance. Oversby: Nuclear Wate Materials.

  10. Powered by technology or powering technology?---Belief-based decision-making in nuclear power and synthetic fuel

    NASA Astrophysics Data System (ADS)

    Yang, Chi-Jen

    The overarching question in this study is how and why technical-fixes in energy policy failed. In the post-WWII era, civilian nuclear power and synthetic fuel had both been top priorities on the U.S. national policy agenda during certain periods of time. Nuclear power was promoted and pursued persistently with great urgency for over two decades. In contrast, synthetic fuel policy suffered from boom-and-bust cycles. The juxtaposition of policy histories of nuclear power and synthetic fuel highlights many peculiarities in policymaking. The U.S. government forcefully and consistently endorsed the development of civilian nuclear power for two decades. It adopted policies to establish the competitiveness of civilian nuclear power far beyond what would have occurred under free-market conditions. Even though synthetic fuel was characterized by a similar level of economic potential and technical feasibility, the policy approach toward synthetic fuel was almost the opposite of nuclear power. Political support usually stopped when the development of synthetic fuel technology encountered economic difficulties. The contrast between the unfaltering faith in nuclear power and the indeterminate attitude toward synthetic fuel raises many important questions. I argue that these diverging paths of development can be explained by exploring the dominant government ideology of the time or "ideology of the state" as the sociology literature describes it. The price-determining approach was a result of government preoccupied with fighting the Cold War. The U.S. intentionally idealized and deified nuclear power to serve its Cold War psychological strategy. These psychological maneuverings attached important symbolic meaning to nuclear power. The society-wide enthusiasm and resulting bandwagon market are better understood by taking the role of symbolism in the political arena into account. On the other hand, a "welfare state" ideology that stood behind synthetic fuel was confused

  11. WELCOME SPEECH: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    NASA Astrophysics Data System (ADS)

    Johnson, R. C.

    2006-06-01

    Ladies and gentlemen, On behalf of the European Physical Society it is my pleasure to welcome you to the Conference: NEW TRENDS IN NUCLEAR PHYSICS APPLICATIONS AND TECHNOLOGY This is the 19th International Nuclear Physics Divisional Conference of the Nuclear Physics Board of the EPS. It is a relatively new experience for the Board to support a Conference in an area so closely linked to applications and technology. I am therefore very pleased to see such a good response to the initiative of Professor Scannicchio and his local Organizing Committee under Professor Zenoni's Chairmanship. I would like to take this opportunity to say a few words about the EPS Nuclear Physics Board. The Board consists of 18 people (10 elected plus up to 10 co-opted) from across Europe, with me as Chair. Elections by members of the Division are held if there is competition for a vacancy, which is announced in Europhysics News. The Board exchanges observers with NuPECC. The Board has 3 major activities: 1. Divisional Scientific Meetings of which this is one. There are usually two per year, but this year there are three. Nuclear Physics in Astrophysics 2 (NPA2), Debrecen, Hungary, 16 20 May 2005. This conference, New Trends in Nuclear Physics Applications and Technology, Pavia, 5 9 September 2005. "Sandanski 3" Co-ordination Meeting in Nuclear Science organized by the Joint Institute for Nuclear Research, Dubna, and the Institute for Nuclear Research and Energy, Sofia, which will be held in Albena, Bulgaria, 25 September to 2 October 2005. This grew out of two earlier meetings in 1995 and 2001 in Sandanski, Bulgaria. The aim of these meetings was to foster and support scientific collaborations in nuclear physics between eastern and western European countries. 2. The Board awards two prizes, usually in alternate years: The Lise Meitner Prize for outstanding contributions in the field of Nuclear Science. The 2004 recipients were Bent Herskind and Peter Twin for their pioneering work on rapidly

  12. Extraterrestrial Studies Using Nuclear Interactions

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    2003-01-01

    Cosmogenic nuclides were used to study the recent histories of the aubrite Norton County and the pallasite Brenham using calculated production rates. Calculations were done of the rates for making cosmogenic noble-gas isotopes in the Jovian satellite Europa by the interactions of galactic cosmic rays and especially trapped Jovian protons. Cross sections for the production of cosmogenic nuclides were reported and plans made to measure additional cross sections. A new code, MCNPX, was used to numerically simulate the interactions of cosmic rays with matter and the subsequent production of cosmogenic nuclides. A review was written about studies of extraterrestrial matter using cosmogenic radionuclides. Several other projects were done. Results are reviewed here with references to my recent publications for details.

  13. Spent Nuclear Fuel Transport Reliability Study

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2016-01-01

    This conference paper was orignated and shorten from the following publisehd PTS documents: 1. Jy-An Wang, Hao Jiang, and Hong Wang, Dynamic Deformation Simulation of Spent Nuclear Fuel Assembly and CIRFT Deformation Sensor Stability Investigation, ORNL/SPR-2015/662, November 2015. 2. Jy-An Wang, Hong Wang, Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications, NUREG/CR-7198, ORNL/TM-2014/214, May 2015. 3. Jy-An Wang, Hong Wang, Hao Jiang, Yong Yan, Bruce Bevard, Spent Nuclear Fuel Vibration Integrity Study 16332, WM2016 Conference, March 6 10, 2016, Phoenix, Arizona.

  14. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.

  15. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As visions of space applications expand and as probes extend further and further out into the universe, the need for power also expands, and missions evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources are defined. These include earth orbital platforms, deep space platforms, planetary exploration and extraterrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the moon and Mars has more clearly defined these missions and their power requirements. This paper presents results of recent studies of radioisotope and nuclear-reactor energy sources combined with various energy-conversion devices for earth orbital applications, SEI lunar/Mars rover and surface power, and planetary exploration.

  16. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  17. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  18. Nuclear power program and technology development in Korea

    SciTech Connect

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t as easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.

  19. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  20. Nuclear Proliferation: A Unit for Study.

    ERIC Educational Resources Information Center

    Fernekes, William R.

    1990-01-01

    Using Argentina as a sample case study, presents a classroom unit designed to explain the implications for world peace of nuclear weapons development. Employs a policy analysis model to make an indepth examination of the values underlying all government policy decisions. Includes unit topics and procedures for the exercise. (NL)

  1. Nuclear Proliferation: A Unit for Study.

    ERIC Educational Resources Information Center

    Fernekes, William R.

    1990-01-01

    Using Argentina as a sample case study, presents a classroom unit designed to explain the implications for world peace of nuclear weapons development. Employs a policy analysis model to make an indepth examination of the values underlying all government policy decisions. Includes unit topics and procedures for the exercise. (NL)

  2. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  3. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  4. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  5. 76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory Commission... Environmental Studies for Nuclear Power Stations.'' This guide provides technical guidance that the NRC staff... nuclear power reactors. DATES: Submit comments by October 11, 2011. Comments received after this date will...

  6. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  7. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  8. Nuclear technologies and agricultural production sphere (prospects of application, ecological aspects)

    SciTech Connect

    Alexakhin, R.M.

    1993-12-31

    Issues involved with the application of ionizing radiation to agricultural products are described in this paper. Many sides of agricultural application are alternative. However, nuclear technology is the most safe ecologically of the food preservation techniques.

  9. 75 FR 36648 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY: Office of Nuclear Energy, DOE. ACTION: Notice of open meeting correction. On June 21, 2010,...

  10. Nuclear Technology Series. Radiation Protection Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary radiation protection technician program is designed for use with courses 17-22 of thirty-five included in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians, and operators; and to assist planners,…

  11. Nuclear Technology Series. Radiation Protection Technician. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary radiation protection technician program is designed for use with courses 17-22 of thirty-five included in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians, and operators; and to assist planners,…

  12. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    SciTech Connect

    Maloy, Stuart Andrew

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  13. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    M. D. Staiger M. C. Swenson

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  14. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  15. Nuclear anxiety: a test-construction study

    SciTech Connect

    Braunstein, A.L.

    1986-01-01

    The Nuclear Anxiety Scale was administered to 263 undergraduate and graduate studies (on eight occasions in December, 1985 and January, 1986). (1) The obtained alpha coefficient was .91. This was significant at the .01 level, and demonstrated that the scale was internally homogeneous and consistent. (2) Item discrimination indices (point biserial correlation coefficients) computered for the thirty (30) items yielded a range of .25 to .64. All coefficients were significant at the .01 level, and all 30 items were retained as demonstrating significant discriminability. (3) The correlation between two administrations of the scale (with a 48-hour interval) was .83. This was significant at the .01 level, and demonstrated test-retest reliability and stability over time. (4) The point-biserial correlation coefficient between scores on the Nuclear Anxiety Scale, and the students' self-report of nuclear anxiety as being either a high or low ranked stressor, was .59. This was significant at the .01 level, and demonstrated concurrent validity. (5) The correlation coefficient between scores on the Nuclear Anxiety Scale and the Spielberger State-Trait Anxiety Inventory, A-Trait, (1970), was .41. This was significant at the .01 level, and demonstrated convergent validity. (6) The correlation coefficient between positively stated and negatively stated items (with scoring reversed) was .76. This was significant at the .01 level, and demonstrated freedom from response set bias.

  16. Blazing the trailway: Nuclear electric propulsion and its technology program plans

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  17. Blazing the trailway - Nuclear electric propulsion and its technology program plans

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1991-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for outer space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  18. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  19. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    SciTech Connect

    Not Available

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry.

  20. Aerospace technology and commercial nuclear power; Proceedings of the Workshop Conference, Williamsburg, VA, November 18-20, 1981

    NASA Astrophysics Data System (ADS)

    Grey, J.

    An attempt has been made to compare the technologies, institutions and procedures of the aerospace and commercial nuclear power industries, in order to characterize similarities and contrasts as well as to identify the most fruitful means by which to transfer information, technology, and procedures between the two industries. The seven working groups involved in this study took as their topics powerplant design formulation and effectiveness, plant safety and operations, powerplant control technology and integration, economic and financial analyses, public relations, and the management of nuclear waste and spent fuel. Consequential differences are noted between the two industries in matters of certification and licencing procedures, assignment of responsibility for both safety and financial performance, and public viewpoint. Areas for beneficial interaction include systems management and control and safety system technology. No individual items are abstracted in this volume

  1. Aerospace technology and commercial nuclear power; Proceedings of the Workshop Conference, Williamsburg, VA, November 18-20, 1981

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor)

    1982-01-01

    An attempt has been made to compare the technologies, institutions and procedures of the aerospace and commercial nuclear power industries, in order to characterize similarities and contrasts as well as to identify the most fruitful means by which to transfer information, technology, and procedures between the two industries. The seven working groups involved in this study took as their topics powerplant design formulation and effectiveness, plant safety and operations, powerplant control technology and integration, economic and financial analyses, public relations, and the management of nuclear waste and spent fuel. Consequential differences are noted between the two industries in matters of certification and licencing procedures, assignment of responsibility for both safety and financial performance, and public viewpoint. Areas for beneficial interaction include systems management and control and safety system technology. No individual items are abstracted in this volume

  2. Aerospace technology and commercial nuclear power; Proceedings of the Workshop Conference, Williamsburg, VA, November 18-20, 1981

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor)

    1982-01-01

    An attempt has been made to compare the technologies, institutions and procedures of the aerospace and commercial nuclear power industries, in order to characterize similarities and contrasts as well as to identify the most fruitful means by which to transfer information, technology, and procedures between the two industries. The seven working groups involved in this study took as their topics powerplant design formulation and effectiveness, plant safety and operations, powerplant control technology and integration, economic and financial analyses, public relations, and the management of nuclear waste and spent fuel. Consequential differences are noted between the two industries in matters of certification and licencing procedures, assignment of responsibility for both safety and financial performance, and public viewpoint. Areas for beneficial interaction include systems management and control and safety system technology. No individual items are abstracted in this volume

  3. DOE/LLNL verification symposium on technologies for monitoring nuclear tests related to weapons proliferation

    SciTech Connect

    Nakanishi, K.K.

    1993-02-12

    The rapidly changing world situation has raised concerns regarding the proliferation of nuclear weapons and the ability to monitor a possible clandestine nuclear testing program. To address these issues, Lawrence Livermore National Laboratory`s (LLNL) Treaty Verification Program sponsored a symposium funded by the US Department of Energy`s (DOE) Office of Arms Control, Division of Systems and Technology. The DOE/LLNL Symposium on Technologies for Monitoring Nuclear Tests Related to Weapons Proliferation was held at the DOE`s Nevada Operations Office in Las Vegas, May 6--7,1992. This volume is a collection of several papers presented at the symposium. Several experts in monitoring technology presented invited talks assessing the status of monitoring technology with emphasis on the deficient areas requiring more attention in the future. In addition, several speakers discussed proliferation monitoring technologies being developed by the DOE`s weapons laboratories.

  4. DOE/LLNL verification symposium on technologies for monitoring nuclear tests related to weapons proliferation

    SciTech Connect

    Nakanishi, K.K.

    1993-02-12

    The rapidly changing world situation has raised concerns regarding the proliferation of nuclear weapons and the ability to monitor a possible clandestine nuclear testing program. To address these issues, Lawrence Livermore National Laboratory's (LLNL) Treaty Verification Program sponsored a symposium funded by the US Department of Energy's (DOE) Office of Arms Control, Division of Systems and Technology. The DOE/LLNL Symposium on Technologies for Monitoring Nuclear Tests Related to Weapons Proliferation was held at the DOE's Nevada Operations Office in Las Vegas, May 6--7,1992. This volume is a collection of several papers presented at the symposium. Several experts in monitoring technology presented invited talks assessing the status of monitoring technology with emphasis on the deficient areas requiring more attention in the future. In addition, several speakers discussed proliferation monitoring technologies being developed by the DOE's weapons laboratories.

  5. RAM Technology Study.

    DTIC Science & Technology

    1980-01-03

    Devereux, "Isoplanar-S Sclaes Down for New Heights in Performance," Electronics, Vol. 52, pp 137-141, December 6, 1979. 4. Rogers , T.J., et al, "VMOS...Memory Technology," IEEE Journal of Solid-State Circuits, SC-12, No. 5, pp 515-523, October, 1977. 5. Rogers , T.J., "VMOS", International Electron...ATTN: G. Maddox Grumman Aerospace Corp. ATTN: J. Retzler ATTN: J. Rogers Lockheed Missiles & Space Co., Inc. Harris Corporation ATTN: J. Crowley ATTN

  6. SEI nuclear technology findings by the Stafford Synthesis Group

    SciTech Connect

    Buden, D. )

    1991-01-01

    Nuclear propulsion is key to reducing travel time to Mars, greatly reducing the mass in low Earth orbit, and enhancing schedule flexibility by increasing the Earth orbit departure launch window. Nuclear thermal rockets have twice to three times the performance of the best chemical rockets. This directly translates into reduced trip times and lower mass in low Earth orbit. Trip times of < 400 days in space are possible, a limitation if restricted to chemical propulsion. Psychological, physiological and radiological problems are significant issues for long mission times. The psychology of being cooped up so long in a minimum-sized capsule is cause for concern - much longer than considered healthy for nuclear submarine crews. The effects of long-term weightlessness are being debated. Short trip times eliminate the need for artificial gravity. The largest uncertainty is the effect of galactic radiation that will expose the crew to high levels of radiation for as much as 60 rem/yr.

  7. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    NASA Astrophysics Data System (ADS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").

  8. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  9. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  10. Nuclear rocket performance based on Rover/NERVA technology

    SciTech Connect

    Kirk, W.L.

    1990-01-01

    It has been suggested that the 1955-1972 nuclear rocket development (Rover) program provides a strong foundation for a renewed nuclear engine development effort. It is concluded that there is an extensive development base deriving from the Rover/NERVA program for bead-loaded graphite-fueled reactors (Isp = 825-900 s), a moderate base for composite fuel (Isp = 875-925 s), and a modest base for carbide fuel (Isp = 975-1025 s). For carbide fuel and to some extent for composite fuel, there is a potential for considerable increase in reactor core and presumable engine lifetime with only modest reduction in Isp.

  11. Russian Missile Technology and Nuclear Reactor Transfers to Iran

    DTIC Science & Technology

    1998-07-29

    Kraftwerk Union (KWU) to build two large pressurized water reactors ( PWRs ) at Bushehr, near Kharg Island. At one point 10,000 workers were reported at...Russian- designed PWR on the site instead. Why Is Oil-Rich Iran Building Nuclear Power Plants? At the time the Shah’s government first started a nuclear...focused primarily on the power plant itself. It is not expected that Iran would divert weapons material from the Bushehr PWR . If Iran has a program to

  12. Technological requirements of nuclear electric propulsion systems for fast Earth-Mars transfers

    NASA Astrophysics Data System (ADS)

    Bérend, N.; Epenoy, R.; Cliquet, E.; Laurent-Varin, J.; Avril, S.

    2013-03-01

    Recent advances in electric propulsion technologies such as magnetoplasma rockets gave a new momentum to the study of nuclear electric propulsion concepts for Mars missions. Some recent works have been focused on very short Earth-to-Mars transfers of about 40 days with high-power, variable specific impulse propulsion systems [1]. While the interest of nuclear electric propulsion appears clearly with regard to the payload mass ratio (due to a high level of specific impulse), its interest with regard to the transfer time is more complex to define, as it depends on many design parameters. In this paper, a general analysis of the capability of nuclear electric propulsion systems considering both criteria (the payload mass ratio and the transfer time) is performed, and the technological requirements for fast Earth-Mars transfers are studied. This analysis has been performed in two steps. First, complete trajectory optimizations have been performed by CNES-DCT in order to obtain the propulsion requirements of the mission for different technological hypotheses regarding the engine technology (specific impulse levels and the throttling capability) and different mission requirements. The methodology used for designing fuel-optimal heliocentric trajectories, based on the Pontryagin's Maximum Principle will be presented. Trajectories have been computed for various power levels combined with either variable or fixed Isp. The second step consisted in evaluating a simpler method that could easily link the main mission requirements (the transfer time and the payload fraction) to the main technological requirements (the specific mass of the power generation system and the structure mass ratio of the whole vehicle, excluding the power generation system). Indeed, for power-limited systems, propulsion requirements can be characterized through the "trajectory characteristic" parameter, defined as the integral over time of the squared thrust acceleration. Technological requirements for

  13. Nuclear orientation and nuclear structure

    SciTech Connect

    Krane, K.S.

    1988-01-01

    The present generation of on-line nuclear orientation facilities promises to revolutionize the gathering of nuclear structure information, especially for the hitherto poorly known and understood nuclei far from stability. Following a brief review of the technological developments that have facilitated these experiments, the nuclear spectroscopic information that can be obtained is summarized. Applications to understanding nuclear structure are reviewed, and challenges for future studies are discussed. 14 refs., 4 figs., 3 tabs.

  14. Nuclear arms race technologies in the 1990s The case of India and Pakistan

    SciTech Connect

    Donnelly, W.H.

    1988-12-15

    India and Pakistan continue to inch towards a capability to produce nuclear weapons, with India having the stronger industrial base of the two to supply the necessary nuclear materials. This trend challenges U.S. policy to discourage the further spread, or proliferation, of nuclear weapons. After providing background on the production of nuclear weapons materials, this paper briefly describes the nuclear industrial bases of India and Pakistan; reason for and against their acquisition of nuclear weapons, and related U.S. response; and suggests some options for action and for study.

  15. Underground nuclear astrophysics studies with CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wiescher, Michael

    2016-02-01

    The drive of low-energy nuclear astrophysics laboratories is to study the reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, over the energy range of astrophysical interest. As laboratory measurements approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need to lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13C(α,n)16O and 22Ne(α,n)25Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, South Dakota

  16. Future payload technology requirements study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology advances needed for an overall mission model standpoint as well as those for individual shuttle payloads are defined. The technology advances relate to the mission scientific equipment, spacecraft subsystems that functionally support this equipment, and other payload-related equipment, software, and environment necessary to meet broad program objectives. In the interest of obtaining commonality of requirements, the study was structured according to technology categories rather than in terms of individual payloads.

  17. Electromagnetic studies of nucleon and nuclear structure

    SciTech Connect

    Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.

    1993-06-01

    Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.

  18. Nuclear Medicine Technology: A Suggested Two-Year Curriculum Manual.

    ERIC Educational Resources Information Center

    Hunter, David

    This curriculum guide prescribes an educational program for training nuclear medicine technologists. Following a brief section on program development, the curriculum is both outlined and presented in detail. For each of the 44 courses, the following information is given: (1) sequential placement of the course in the curriculum; (2) course…

  19. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  20. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  1. Nuclear Medicine Technology: A Suggested Two-Year Curriculum Manual.

    ERIC Educational Resources Information Center

    Hunter, David

    This curriculum guide prescribes an educational program for training nuclear medicine technologists. Following a brief section on program development, the curriculum is both outlined and presented in detail. For each of the 44 courses, the following information is given: (1) sequential placement of the course in the curriculum; (2) course…

  2. Nuclear Medical Technology. Curriculum for a Two Year Program. Final Report.

    ERIC Educational Resources Information Center

    Buatti, A.; Rich, D.

    Objectives of the project briefly described here were (1) to develop curriculum for a two-year nuclear medical technology program based on a working relationship between three institutions (community college, university health center, and hospital) and (2) to develop procedures for the operation of a medical imaging and radiation technology core…

  3. Technology diffusion of a different nature: Applications of nuclear safeguards technology to the chemical weapons verification regime

    SciTech Connect

    Kadner, S.P.; Reisman, A.; Turpen, E.

    1996-10-01

    The following discussion focuses on the issue of arms control implementation from the standpoint of technology and technical assistance. Not only are the procedures and techniques for safeguarding nuclear materials undergoing substantial changes, but the implementation of the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC) will give rise to technical difficulties unprecedented in the implementation of arms control verification. Although these regimes present new challenges, an analysis of the similarities between the nuclear and chemical weapons non-proliferation verification regimes illustrates the overlap in technological solutions. Just as cost-effective and efficient technologies can solve the problems faced by the nuclear safeguards community, these same technologies offer solutions for the CWC safeguards regime. With this in mind, experts at the Organization for the Prohibition of Chemical Weapons (OPCW), who are responsible for verification implementation, need to devise a CWC verification protocol that considers the technology already available. The functional similarity of IAEA and the OPCW, in conjunction with the technical necessities of both verification regimes, should receive attention with respect to the establishment of a technical assistance program. Lastly, the advanced status of the nuclear and chemical regime vis-a-vis the biological non-proliferation regime can inform our approach to implementation of confidence building measures for biological weapons.

  4. Identification and Evaluation of Human Factors Issues Associated with Emerging Nuclear Plant Technology

    SciTech Connect

    O'Hara,J.M.; Higgins,J.; Brown, William S.

    2009-04-01

    This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

  5. Attutude-action consistency and social policy related to nuclear technology

    SciTech Connect

    Lindell, M.K.; Perry, R.W.; Greene, M.

    1980-06-01

    This study reports the results of a further analysis of questionnaire data--parts of which have been previously reported by Lindell, Earle, Hebert and Perry (1978)--that are related to the issue of consistency of attitudes and behavior toward nuclear power and nuclear waste management. Three factors are considered that might be expected to have a significant bearing on attitude-action consistency: social support, attitude object importance and past activism. Analysis of the data indicated that pronuclear respondents were more likely to show consistency of attitudes and actions (66%) than were antinuclear respondents (51%) although the difference in proportions is not statistically significant. Further analyses showed a strong positive relation between attitude-action consistency and perceived social support, measured by the degree to which the respondent believed that close friends and work associated agreed with his attitude. This relationship held up even when controls for attitude object importance and past activism were introduced. Attitude object importance--the salience of the issue of energy shortage--had a statistically significant effect only when perceived social support was low. Past activism had no significant relation to attitude-action consistency. These data suggest that the level of active support for or opposition to nuclear technology will be affected by the distribution of favorable and unfavorable attitudes among residents of an area. Situations in which pro- and antinuclear attitudes are concentrated among members of interacting groups, rather than distributed randomly, are more likely to produce high levels of polarization.

  6. Nuclear thermal propulsion engine cost trade studies

    SciTech Connect

    Paschall, R.K. )

    1993-01-10

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp[gt]870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified.

  7. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  8. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  9. Middle School Technology Integration Study.

    ERIC Educational Resources Information Center

    Hall, Grey; Mantz, Chris

    This paper is a report on the development and findings of an on-going study being conducted on 126 middle schools in rural eastern North Carolina. An analysis of the technological readiness of each school is being followed with a program to offer school leaders a technology design and teacher training that will work in their schools. This includes…

  10. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  11. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    SciTech Connect

    Robbins, W.H.; Finger, H.B.

    1991-07-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  12. Status of nuclear fuels technologies activities in the fissile material disposition program

    SciTech Connect

    Buksa, J.J.

    1996-12-31

    Approximately 2 yr ago, the U.S. Department of Energy (DOE) formed the Office of Fissile Material Disposition, DOE/MD, whose charter was to develop plants and technologies for the disposition of excess fissile material from the U.S. nuclear weapons program. The major focus of the Fissile Material Disposition (FMD) Program has been to gather the data necessary for the preparation of programmatic environmental impact statements and records of decision (RODs) for fissile material storage, highly enriched uranium disposition, and plutonium disposition. During 1996 and 1997, significant effort will be expended on technology development and implementation, including a major effort in nuclear fuels technologies. This paper presents the status of the primary activities being pursued in the nuclear fuels technologies area.

  13. An historical perspective of the NERVA nuclear rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  14. Recent Studies of the Nuclear Interaction

    NASA Astrophysics Data System (ADS)

    Carlson, J.

    Recent studies of light p-shell nuclei reveal that so-called 'realistic' nuclear interactions, those based on the NN scattering data augmented with plausible models of the three-nucleon interaction, provide a good description or nuclei through A=8. However, significant discrepancies exist, primarily in the energies of neutron rich systems and in the L.S splittings in the spectra of these nuclei. We briefly describe the methods used in these studies, and describe improved models of the three-nucleon interaction.

  15. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  16. Sensors and nuclear power. Report by the Technology Transfer Sensors Task Team

    SciTech Connect

    Not Available

    1985-06-01

    The existing sensor systems for the basic process parameters in nuclear power plant operation have limitations with respect to accuracy, ease of maintenance and signal processing. These limitations comprise the economy of nuclear power generation. To reduce the costs and improve performance of nuclear power plant fabrication, operation, maintenance and repair we need to advance the sensor technology being applied in the nuclear industry. The economic viability and public acceptance of nuclear power will depend on how well we direct and apply technological advances to the industry. This report was prepared by a team with members representing a wide range of the nuclear industry embracing the university programs, national laboratories, architect engineers and reactor manufacturers. An intensive effort was made to survey current sensor technology, evaluate future trends and determine development needs. This included literature surveys, visits with utilities, universities, laboratories and organizations outside the nuclear industry. Several conferences were attended to take advantage of the access to experts in selected topics and to obtain opinions. Numerous telephone contacts and exchanges by mail supplemented the above efforts. Finally, the broad technical depth of the team members provided the basis for the stimulating working sessions during which this report was organized and drafted.

  17. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  18. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Husser, D. L.; Mohr, T. C.; Richardson, W. C.

    2004-02-01

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  19. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2009-08-04

    such as thorium and uranium, is present everywhere, often in trace amounts. Cosmic rays generate low levels of neutrons. Some commercial goods contain...radioactive material, such as ceramics (which may contain uranium) and kitty litter (which may contain thorium and uranium). Other radioactive...11 HEU that has been through a nuclear reactor picks up small quantities of U-232, which decays through intermediate steps to thallium-208, which

  20. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2008-11-06

    other nuclear facilities, tracking materials at border crossings and choke points, screening maritime cargo containers, and examining actual or...generate low levels of neutrons. Some commercial goods contain radioactive material, such as ceramics (which may contain uranium) and kitty litter (which...alert individuals to the presence of elevated levels of radiation. They may use any of several types of detector material. They are lightweight and

  1. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    NASA Astrophysics Data System (ADS)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  2. Electrochemical Treatment of Alkaline Nuclear Wastes. Innovative Technology Summary Report

    SciTech Connect

    2001-01-01

    Nitrate and nitrite are two of the major hazardous non-radioactive species present in Hanford and Savannah River (SR) high-level waste (HLW). Electrochemical treatment processes have been developed to remove these species by converting aqueous sodium nitrate/nitrite into sodium hydroxide and chemically reducing the nitrogen species to gaseous ammonia, nitrous oxide and nitrogen. Organic complexants and other organic compounds found in waste can be simultaneously oxidized to gaseous carbon dioxide and water, thereby reducing flammability and leaching risks as well as process interferences in subsequent radionuclide separation processes. Competing technologies include thermal, hydrothermal and chemical destruction. Unlike thermal and hydrothermal processes that typically operate at very high temperatures and pressures, electrochemical processes typically operate at low temperatures (<100 C) and atmospheric pressure. Electrochemical processes effect chemical transformations by the addition or removal of electrons and, thus, do not add additional chemicals, as is the case with chemical destruction processes. Hanford and SR have different plans for disposal of the low-activity waste (LAW) that results when radioactive Cs{sup 137} has been removed from the HLW. At SR, the decontaminated salt solution will be disposed in a cement waste form referred to as Saltstone, whereas at Hanford the waste will be vitrified as a borosilicate glass. Destruction of the nitrate and nitrite before disposing the decontaminated salt solution in Saltstone would eliminate possible groundwater contamination that could occur from the leaching of nitrate and nitrite from the cement waste form. Destruction of nitrate and nitrite before vitrification at Hanford would significantly reduce the size of the off-gas system by eliminating the formation of NO{sub x} gases in the melter. Throughout the 1990's, the electrochemical conversion process has been extensively studied at SR, the University of

  3. Technology Status of Thermionic Fuel Elements for Space Nuclear Power

    NASA Technical Reports Server (NTRS)

    Holland, J. W.; Yang, L.

    1984-01-01

    Thermionic reactor power systems are discussed with respect to their suitability for space missions. The technology status of thermionic emitters and sheath insulator assemblies is described along with testing of the thermionic fuel elements.

  4. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect

    Gohar, Yousry; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  5. The 2011 nuclear medicine technology job analysis project of the American Registry of Radiologic Technologists.

    PubMed

    Anderson, Dan; Hubble, William; Press, Bret A; Hall, Scott K; Michels, Ann D; Koenen, Roxanne; Vespie, Alan W

    2010-12-01

    The American Registry of Radiologic Technologists (ARRT) conducts periodic job analysis projects to update the content and eligibility requirements for all certification examinations. In 2009, the ARRT conducted a comprehensive job analysis project to update the content specifications and clinical competency requirements for the nuclear medicine technology examination. ARRT staff and a committee of volunteer nuclear medicine technologists designed a job analysis survey that was sent to a random sample of 1,000 entry-level staff nuclear medicine technologists. Through analysis of the survey data and judgments of the committee, the project resulted in changes to the nuclear medicine technology examination task list, content specifications, and clinical competency requirements. The primary changes inspired by the project were the introduction of CT content to the examination and the expansion of the content covering cardiac procedures.

  6. Nuclear fuel cycle assessment of India: A technical study for U.S.-India cooperation

    NASA Astrophysics Data System (ADS)

    Krishna, Taraknath Woddi Venkat

    The recent civil nuclear cooperation proposed by the Bush Administration and the Government of India has heightened the necessity of assessing India's nuclear fuel cycle inclusive of nuclear materials and facilities. This agreement proposes to change the long-standing U.S. policy of preventing the spread of nuclear weapons by denying nuclear technology transfer to non-NPT signatory states. The nuclear tests in 1998 have convinced the world community that India would never relinquish its nuclear arsenal. This has driven the desire to engage India through civilian nuclear cooperation. The cornerstone of any civilian nuclear technological support necessitates the separation of military and civilian facilities. A complete nuclear fuel cycle assessment of India emphasizes the entwinment of the military and civilian facilities and would aid in moving forward with the separation plan. To estimate the existing uranium reserves in India, a complete historical assessment of ore production, conversion, and processing capabilities was performed using open source information and compared to independent reports. Nuclear energy and plutonium production (reactor- and weapons-grade) was simulated using declared capacity factors and modern simulation tools. The three-stage nuclear power program entities and all the components of civilian and military significance were assembled into a flowsheet to allow for a macroscopic vision of the Indian fuel cycle. A detailed view of the nuclear fuel cycle opens avenues for technological collaboration. The fuel cycle that grows from this study exploits domestic thorium reserves with advanced international technology and optimized for the existing system. To utilize any appreciable fraction of the world's supply of thorium, nuclear breeding is necessary. The two known possibilities for production of more fissionable material in the reactor than is consumed as fuel are fast breeders or thermal breeders. This dissertation analyzes a thermal

  7. Ethnographic Study: @ONE Technology Training Project Study.

    ERIC Educational Resources Information Center

    Obler, Susan; Schiorring, Eva

    This report presents findings from an ethnographic study of technology integration and diffusion in two California community colleges. The study was commissioned to examine whether faculty behavior and student learning outcomes have changed as a result of @ONE instructional technology training and resources. The California Community Colleges…

  8. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  9. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Falabella, S.; Guethlein, G.; Harris, J. R.; Hawkins, S.; Holmes, C.; Nelson, S.; Paul, A. C.; Poole, B.; Sanders, D.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.; Carazo, V.; Guse, S.; Pearson, D.; Schmidt, R.

    2009-12-02

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve approx10 MV/m gradients for 10 s of nanoseconds pulses and approx100 MV/m gradients for approx1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  10. Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques

    NASA Astrophysics Data System (ADS)

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2009-12-01

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  11. Human factors design review guidelines for advanced nuclear control room technologies

    SciTech Connect

    O'Hara, J.; Brown, W. ); Granda, T.; Baker, C. )

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig.

  12. Dewar technology study

    NASA Technical Reports Server (NTRS)

    Davis, W.

    1975-01-01

    The development of a Dewar system for handling liquid helium under weightless conditions is described. Porous plug designs for the prevention of superfluid creep out of the dewar through the vent line were evaluated. For the purpose of designing a neck to provide a transition from the cold cavity to the outside, the loads carried by the neck and equipment supports were studied. Temperature, pressure, and mass flow instrumentation for monitoring Dewar performance were also evaluated. In addition, multilayer blankets consisting of aluminized Mylar separated by Dacron net sheets were designed to insulate the pressure vessel. The dewar system is suggested for use with the star tracking telescope aboard the relativity satellite.

  13. The bungling giant: Atomic Energy Canada Limited and next-generation nuclear technology, 1980--1994

    NASA Astrophysics Data System (ADS)

    Slater, Ian James

    From 1980--1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be "passively" or "inherently" safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, "piecemeal social engineering." Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large-scale centralized nuclear technology to the piecemeal

  14. Spent Nuclear Fuel Vibration Integrity Study

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Yan, Yong; Bevard, Bruce Balkcom

    2016-01-01

    The objective of this research is to collect dynamic experimental data on spent nuclear fuel (SNF) under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT), the hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). The collected CIRFT data will be utilized to support ongoing spent fuel modeling activities, and support SNF transportation related licensing issues. Recent testing to understand the effects of hydride reorientation on SNF vibration integrity is also being evaluated. CIRFT results have provided insight into the fuel/clad system response to transportation related loads. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance, Fuel structure contributes to the SNF system stiffness, There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interaction, and SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous. Because of the non-homogeneous composite structure of the SNF system, finite element analyses (FEA) are needed to translate the global moment-curvature measurement into local stress-strain profiles. The detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained directly from a CIRFT system measurement. Therefore, detailed FEA is used to understand the global test response, and that data will also be presented.

  15. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  16. A Comparison Study of Various Nuclear Fuel Cycle Alternatives

    SciTech Connect

    Kwon, Eun-ha; Ko, Won-il

    2007-07-01

    As a nation develops its nuclear strategies, it must consider various aspects of nuclear energy such as sustainability, environmental-friendliness, proliferation-resistance, economics, technologies, and so on. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects; the nation must identify its top priority and accordingly evaluate all the possible nuclear fuel cycle options. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 3. Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of resource utilization and waste generation. The analysis shows that the GEN-IV Recycle appears to be most competitive from these aspects. (authors)

  17. A multidisciplinary study of DPRK nuclear tests

    NASA Astrophysics Data System (ADS)

    Materni, Valerio; Bignami, Christian; Giuntini, Alessandra; Chiappini, Stefano; Carluccio, Roberto; D'Ajello Caracciolo, Francesca; Pignatelli, Alessandro; Stramondo, Salvatore; Console, Rodolfo; Chiappini, Massimo

    2013-04-01

    The Democratic People Republic of Korea announced two underground nuclear tests carried out in their territory respectively on October 9th, 2006 and May 25th, 2009. The scarce information on the precise location and the size of those explosions has stimulated various kinds of studies, mostly based on seismological observations, by several National Agencies concerned with the Nuclear Test Ban Treaty verification. We analysed the available seismological data collected through a global high quality network for the two tests. After picking up the arrival times at the various stations, a standard location program has been applied to the observed data. If we use all the available data for each single event, due to the different magnitude and different number of available stations, the locations appear quite different. On the contrary, if we use only the common stations, they happen to be only few km apart from each other and within their respective error ellipses. A more accurate relative location has been carried out by the application of algorithms such as Double Difference Joint Hypocenter Determination (DDJHD) and waveform alignment. The epicentral distance between the two events obtained by these methods is 2 km, with the 2006 event shifted to the ESE with respect to that of 2009. We then used a dataset of VHR TerraSAR-X satellite images to detect possible surface effects of the underground tests. This is the first ever case where these highly performing SAR data have been used to such aim. We applied InSAR processing technique to fully exploit the capabilities of SAR data to measure very short displacements over large areas. Two interferograms have been computed, one co-event and one post-event, to remove possible residual topographic signals. A clear displacement pattern has been highlighted over a mountainous area within the investigated region, measuring a maximum displacement of about 45 mm overall the relief. Hypothesizing that the 2009 nuclear test had been

  18. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  19. Analytical study of nozzle performance for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.

  20. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  1. "Mitochondrial Replacement" Technologies and Human Germline Nuclear Modification.

    PubMed

    Lane, Alyssa; Nisker, Jeff

    2016-08-01

    In 2015 the United Kingdom became the first jurisdiction to approve "mitochondrial replacement techniques" (MRT), thereby dropping prohibitions against creating human embryos with a permanently altered genetic make-up for purposes of reproduction. MRT is a misnomer because in fact it is the nucleus of the oocyte of the woman who wants a genetically related child that is transferred to the enucleated oocyte of a woman paid to undergo IVF to provide the oocyte. MRT thus constitutes nuclear transfer, which is prohibited by criminal sanctions under sections of laws on reproductive cloning in Canada, the United States, Australia, and European countries that regulate assisted reproduction. By adopting policies permitting the use of MRT, the United Kingdom has become the first jurisdiction to counteract an international consensus prohibiting germline modification. Analyses of the legal, ethical, and societal implications of MRT in assisted human reproduction are essential.

  2. Nuclear techniques in studies of condensed matter

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1987-01-01

    Nuclear techniques have played an important role in the studies of materials over the past several decades. For example, X-ray diffraction, neutron diffraction, neutron activation, and particle- or photon-induced X-ray emission techniques have been used extensively for the elucidation of structural and compositional details of materials. Several new techniques have been developed recently. Four such techniques are briefly reviewed which have great potential in the study and development of new materials. Of these four, Mossbauer spectroscopy, muon spin rotation, and positron annihilation spectroscopy techniques exploit their great sensitivity to the local atomic environments in the test materials. Interest in synchrotron radiation, on the other hand, stems from its special properties, such as high intensity, high degree of polarization, and high monochromaticity. It is hoped that this brief review will stimulate interest in the exploitation of these newer techniques for the development of improved materials.

  3. Pulsed Power Science and Technology: A Strategic Outlook for the National Nuclear Security Administration (Summary)

    SciTech Connect

    Sinars, Daniel; Scott, Kimberly Carole; Edwards, M. John; Olson, Russell Teall

    2016-10-17

    Major advances in pulsed power technology and applications over the last twenty years have expanded the mission areas for pulsed power and created compelling new opportunities for the Stockpile Stewardship Program (SSP). This summary document is a forward look at the development of pulsed power science and technology (PPS&T) capabilities in support of the next 20 years of the SSP. This outlook was developed during a three-month-long tri-lab study on the future of PPS&T research and capabilities in support of applications to: (1) Dynamic Materials, (2) Thermonuclear Burn Physics and Inertial Confinement Fusion (ICF), and (3) Radiation Effects and Nuclear Survivability. It also considers necessary associated developments in next-generation codes and pulsed power technology as well as opportunities for academic, industry, and international engagement. The document identifies both imperatives and opportunities to address future SSP mission needs. This study was commissioned by the National Nuclear Security Administration (NNSA). A copy of the memo request is contained in the Appendix. NNSA guidance received during this study explicitly directed that it not be constrained by resource limitations and not attempt to prioritize its findings against plans and priorities in other areas of the national weapons program. That prioritization, including the relative balance amongst the three focus areas themselves, must of course occur before any action is taken on the observations presented herein. This unclassified summary document presents the principal imperatives and opportunities identified in each mission and supporting area during this study. Preceding this area-specific outlook, we discuss a cross-cutting opportunity to increase the shot capacity on the Z pulsed power facility as a near-term, cost-effective way to broadly impact PPS&T for SSP as well as advancing the science and technology to inform future SSMP milestones over the next 5-10 years. The final page of the

  4. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect

    Garaizar, Xabier

    2009-07-02

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  5. Nuclear morphometric analysis in gastrointestinal stromal tumors: a preliminary study.

    PubMed

    Ozdamar, Sükrü Oğuz; Bektaş, Sibel; Erdem Ozdamar, Sevim; Gedikoğlu, Gökhan; Doğan Gün, Banu; Bahadir, Burak

    2007-06-01

    Gastrointestinal stromal tumors are considered a specialized group of mesenchymal neoplasms. In this study, the histomorphologic and immunohistochemical features of gastrointestinal stromal tumors are compared with nuclear morphometric results. Morphometric nuclear parameters such as mean area, mean roundness factor, mean form ellipse, mean length and mean perimeter were evaluated in hematoxylin and eosin stained slides of 22 gastrointestinal stromal tumors (9 benign and 13 malignant) by using a computer-assisted image analysis system. Morphometric results were compared with tumor behavior and tumor size, the presence of necrosis, mitotic index, and immunohistochemical expressions of p53 and proliferating cell nuclear antigen. We found that tumor necrosis was correlated with mean nuclear roundness factor, mean nuclear form ellipse, mean nuclear length and mean nuclear perimeter (p<0.05). Mitotic index was also correlated with mean nuclear roundness factor and mean nuclear form ellipse (p<0.05). However, no correlation was found between morphometric features and gastrointestinal stromal tumor behavior, tumor size, or index of proliferating cell nuclear antigen and p53 expressions (p>0.05). In this preliminary study, the relative concordance of the morphometric results and general histomorphologic data exhibited the importance of nuclear morphometric analysis in gastrointestinal stromal tumors. Studies including larger series of cases investigating detailed nuclear morphometric analysis of gastrointestinal stromal tumors are needed.

  6. Use of Second Life for interactive instruction and distance learning in nuclear physics and technology

    NASA Astrophysics Data System (ADS)

    Amme, Robert C.

    2009-05-01

    The developing nuclear power renaissance, coupled with related environmental consequences, is forcing a re-examination of the manner in which nuclear science and technology is (or is not) being taught in the United States. The 20-year hiatus of the nuclear power industry has been a decided factor in the relatively stagnant growth of nuclear physics and nuclear technology instruction, from middle school to graduate education. Furthermore, the general public remains fairly ignorant of the various features of nuclear power, at best having been briefly exposed to the subject only in a middle-school course in Physical Science. Essential to this renaissance is the capacity to deal with the regulatory environment and safety standards that must be addressed prior to new plant certification. Regrettably, too few individuals who are trained in environmental science are adequately prepared in the basic concepts of nuclear physics to deal with such issues as radioactive waste storage and transportation, biological effects of ionizing radiation, geological repositories, nuclear fuel reprocessing, etc. which are of great concern to the Nuclear Regulatory Commission. We are developing a master's degree, to be taught online, in the area of environmental impact assessment as it relates to these and other issues. To accommodate the need for laboratory exercises, we have adopted the virtual world developed by Linden Laboratory entitled Second Life; it is here that the student, as an avatar, will gain knowledge of the nature of ionizing radiation, radioactive half-lives, gamma and beta ray spectroscopy, neutron activation, and radiation shielding, using virtual apparatus and virtual radiation sources. Additionally, a virtual Generation III+ power reactor has been constructed on an adjoining Second Life island (entitled Science School II) which provides the visitor with a realistic impression of its inner workings. This presentation will provide the details of this construct and how it

  7. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program

  8. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-01-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  9. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-04-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  10. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  11. 2009 Mississippi Curriculum Framework: Postsecondary Nuclear Medicine Technology. (Program CIP: 51.0905 - Nuclear Medical Technology/Technologist)

    ERIC Educational Resources Information Center

    Boney, Linda; Lee, Joanne; Pyles, Alice; Whitfield, Stacy

    2009-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  12. Nuclear waste spectrum as evidence of technological extraterrestrial civilizations

    NASA Astrophysics Data System (ADS)

    Whitmire, D. P.; Wright, D. P.

    1980-04-01

    The possible observational consequences of galactic civilizations which utilize their local star as a repository for radioactive fissile waste material are considered. If a relatively small fraction of the nuclear resources present in the crust of a terrestrial-type planet were processed via breeder reactors, the resulting stellar spectrum would be selectively modified over geological time periods provided the star has a sufficiently shallow outer convective zone. Consideration of surface convective mixing and stellar lifetimes restricts the possible candidate stars to the approximate spectral range A5-F2. The abundance anomalies resulting from the slow neutron fission of plutonium-239 and uranium-233 are presented and it is argued that these anomalous distributions are unlikely to be duplicated by natural nucleosynthesis processes. Relative to solar system abundances, the elements praseodymium and neodymium are found to be the most overabundant. These elements, along with the radioactive elements technetium and plutonium, could be used to identify A5-F2 candidate stars in a preliminary spectral survey.

  13. Nuclear waste spectrum as evidence of technological extraterrestrial civilizations

    SciTech Connect

    Whitmire, D.P.; Wright, D.P.

    1980-01-01

    The possible observational consequences of galactic civilizations which utilize their local star as a repository for radioactive fissile waste material are considered. If a relatively small fraction of the nuclear resources present in the crust of a terrestrial-type planet were processed via breeder reactors, the resulting stellar spectrum would be selectively modified over geological time periods provided the star has a sufficiently shallow outer convective zone. Consideration of surface convective mixing and stellar lifetimes restricts the possible candidate stars to the approximate spectral range A5-F2. The abundance anomalies resulting from the slow neutron fission of plutonium-239 and uranium-233 are presented and it is argued that these anomalous distributions are unlikely to be duplicated by natural nucleosynthesis processes. Relative to solar system abundances, the elements praseodymium and neodymium are found to be the most overabundant. These elements, along with the radioactive elements technetium and plutonium, could be used to identify A5-F2 candidate stars in a preliminary spectral survey.

  14. Review of LIBS application in nuclear fusion technology

    NASA Astrophysics Data System (ADS)

    Li, Cong; Feng, Chun-Lei; Oderji, Hassan Yousefi; Luo, Guang-Nan; Ding, Hong-Bin

    2016-12-01

    Nuclear fusion has enormous potential to greatly affect global energy production. The next-generation tokamak ITER, which is aimed at demonstrating the feasibility of energy production from fusion on a commercial scale, is under construction. Wall erosion, material transport, and fuel retention are known factors that shorten the lifetime of ITER during tokamak operation and give rise to safety issues. These factors, which must be understood and solved early in the process of fusion reactor design and development, are among the most important concerns for the community of plasma-wall interaction researchers. To date, laser techniques are among the most promising methods that can solve these open ITER issues, and laser-induced breakdown spectroscopy (LIBS) is an ideal candidate for online monitoring of the walls of current and next-generation (such as ITER) fusion devices. LIBS is a widely used technique for various applications. It has been considered recently as a promising tool for analyzing plasma-facing components in fusion devices in situ. This article reviews the experiments that have been performed by many research groups to assess the feasibility of LIBS for this purpose.

  15. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    SciTech Connect

    Ludwig, E.J.

    1996-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei {sup 30}P and {sup 34}Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using {sup 166}Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented.

  16. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    SciTech Connect

    Ludwig, E.J.

    1995-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in {sup 30}P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized {gamma}-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary.

  17. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    SciTech Connect

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana

    2015-07-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  18. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  19. The Zwilag interim storage plasma plant technology to handle operational waste from nuclear plants

    SciTech Connect

    Heep, Walter

    2007-07-01

    The first processing of low level radioactive wastes from Swiss nuclear power plants marks the successful completion of commissioning in March 2004 of a treatment facility for low and intermediate level radioactive wastes, which is operated with the help of plasma technology. The theoretical principles of this metallurgy-derived process technology are based on plasma technology, which has already been used for a considerable period outside of nuclear technology for the production of highly pure metal alloys and for the plasma synthesis of acetylene. The commercial operation of the Plasma Plant owned by Zwischenlager Wuerenlingen AG (ZWILAG) has also enabled this technology to be used successfully for the first time in the nuclear field, especially in compliance with radiation protection aspects. In addition to a brief presentation of the technology used in the plant, the melting process under operating conditions will be explained in more detail. The separation factors attained and volume reductions achieved open interesting perspectives for the further optimisation of the entire process in the future. (author)

  20. Robotics and nuclear power. Report by the Technology Transfer Robotics Task Team

    SciTech Connect

    Not Available

    1985-06-01

    A task team was formed at the request of the Department of Energy to evaluate and assess technology development needed for advanced robotics in the nuclear industry. The mission of these technologies is to provide the nuclear industry with the support for the application of advanced robotics to reduce nuclear power generating costs and enhance the safety of the personnel in the industry. The investigation included robotic and teleoperated systems. A robotic system is defined as a reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks. A teleoperated system includes an operator who remotely controls the system by direct viewing or through a vision system.

  1. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Hnatowicz, V.; Červená, J.; Peřina, V.; Mach, R.; Peka, I.

    1998-04-01

    Accelerator driven transmutation technology (ADTT) is a promissing way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a subcritical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600°C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration.

  2. Nuclear Data for Fusion Energy Technologies: Requests, Status and Development Needs

    SciTech Connect

    Fischer, U.; Batistoni, P.; Cheng, E.; Forrest, R.A.

    2005-05-24

    The current status of nuclear data evaluations for fusion technologies is reviewed. Well-qualified data are available for neutronics and activation calculations of fusion power reactors and the next-step device ITER, the International Thermonuclear Experimental Reactor. Major challenges for the further development of fusion nuclear data arise from the needs of the long-term fusion programme. In particular, co-variance data are required for uncertainty assessments of nuclear responses. Further, the nuclear data libraries need to be extended to higher energies above 20 MeV to enable neutronics and activation calculations of IFMIF, the International Fusion Material Irradiation Facility. A significant experimental effort is required in this field to provide a reliable and sound database for the evaluation of cross-section data in the higher energy range.

  3. Application of Molten Salt Reactor Technology to Nuclear Electric Propulsion Mission

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) and planetary surface power missions require reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional gas cooled, liquid metal, and heat pipe space reactors.

  4. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    SciTech Connect

    Hajek, B.K.; Miller, D.W.

    1989-06-20

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility.

  5. On-Going Nuclear Physics and Technology Research Programmes in Europe

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2007-10-01

    Innovative nuclear technology applications have emerged in recent years and triggered an unprecedented interest of different communities of scientists worldwide, concerned by the multidisciplinary scientific, technical and engineering aspects of such applications. ADS (Accelerator Driven Systems, for the transmutation of highly radiotoxic nuclear waste), EA (Energy Amplifiers, for the production of energy), Spallation Neutron Sources (for multiple applications such as in Bio-Sciences, Medicine, Material Science), Radioactive Ion Beams (of relevance for fundamental Nuclear Physics and Astrophysics, for applications in Medicine, amongst many others) are examples of applications that address a set of common multidisciplinary, leading edge and cross-cutting issues and research topics. Other applications being considered for High-Energy Physics purposes consist on facilities aiming at producing intense neutrino beams. The sustainability of nuclear energy as an economically competitive, environmentally friend and proliferation resistant technology to meet mankind's growing energy demand has imposed in recent years the consideration of new (Generation IV) or non-conventional types of nuclear reactors, operating with non-standard coolants, higher-energy neutron spectra, higher temperatures, amongst other issues. The safety and operational aspects of these nuclear energy systems share with the nuclear technology applications previously referred (ADS, EA, SNS, etc.) a set of common scientific and technical issues. In this paper, the scientific, technical and engineering topics and issues of relevance for the implementation and deployment of some of the systems previously described are briefly presented. A set of selected major on-going R&D programmes and experiments involving international collaborations of scientists and consortia of institutions are succinctly described.

  6. Nuclear Structure and Nuclear Astrophysics Studies with Fast Heavy-Ion Beams

    NASA Astrophysics Data System (ADS)

    Motobayashi, Tohru

    Collaboration between France and Japan on studies with fast RI (radioactive isotope) beams and related technical developments started in 1980s, when the GANIL accelerators and RIKEN cyclotron complex started operation and RI beam production technique was developed. Several examples of collaboration on nuclear physics and nuclear astrophysics experiments including related technical development are discussed.

  7. Status and prospect of NDT technology for nuclear energy industry in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyun

    2016-02-01

    Innovative energy technology is considered to be one of the key solutions for meeting the challenges of climate change and energy security, which is why global leaders are focusing on enhancing energy technology R&D. In accordance with the global movements to accelerate energy R&D, the Korean government has made significant investments in a broad spectrum of energy R&D programs, including energy efficiency, resources, CCS, new and renewable energy, power generation and electricity delivery, nuclear power and nuclear waste management. In order to manage government sponsored energy R&D programs in an efficient and effective way, the government established the Korea Institute of Energy technology Evaluation and Planning (KETEP) in 2009. Main activities of KETEP include developing energy technology roadmaps, planning, evaluating, and managing R&D programs, fostering experts in the field of energy, promoting international cooperation programs, gathering and analyzing energy statistics, and supporting infrastructure and commercialization. KETEP assists the Ministry of Trade, Industry and Energy in developing national R&D strategies while also working with researchers, universities, national institutes and the private sector for their successful energy technology and deployment. This presentation consists of three parts. First, I will introduce the characteristics of energy trends and mix in Korea. Then, I'll speak about the related national R&D strategies of energy technology. Finally, I'll finish up with the status and prospect of NDT technology for nuclear energy industry in Korea. The development of the on-line structural integrity monitoring systems and the related techniques in Korean nuclear power plant for the purpose of condition based maintenance is introduced. The needs of NDT techniques for inspection and condition monitoring for GEN IV including SFR, small module reactor etc., are also discussed.

  8. Integrating Nuclear and Renewable Electricity in a Low-Carbon World: MIT-Japan Future of Nuclear Power Studies

    SciTech Connect

    Haratyk, Geoffrey; Komiyama, Ryoichi; Forsberg, Charles; Fujii, Yasumasa; Omoto, Akira; Taniguchi, Tomihiro; Curtis, Daniel; Sepulveda, Nestor

    2017-01-01

    Affordable reliable energy made possible a large middle class in the industrial world. Concerns about climate change require a transition to nuclear, wind, and solar—but these energy sources in current forms do not have the capability to meet the requirements for variable affordable energy. Researchers from the Massachusetts Institute of Technology, the University of Tokyo, the Tokyo Institute of Technology and the Institute for Energy Economics are undertaking a series of studies to address how to make this transition to a low carbon world. Three areas are being investigated. The first area is the development of electricity grid models to understand the impacts of different choices of technologies and different limits on greenhouse gas emissions. The second area is the development of technologies to enable variable electricity to the grid while capital-intensive nuclear, wind and solar generating plants operate at full capacity to minimize costs. Technologies to enable meeting variable electricity demand while operating plants at high-capacity factors include use of heat and hydrogen storage. The third area is the development of electricity market rules to enable transition to a low-carbon grid.

  9. A review on the applications of the nuclear magnetic resonance (NMR) technology for investigating fractures

    NASA Astrophysics Data System (ADS)

    Golsanami, Naser; Sun, Jianmeng; Zhang, Zhiying

    2016-10-01

    This review focuses on the recent applications of nuclear magnetic resonance (NMR) technology for characterizing fractures. The paper aims to help researchers in extending the existing reservoir characterization methods (which are commonly used in conventional hydrocarbon reservoirs) for appropriate usage in unconventional resources. This is because some techniques for quantifying and qualifying fractures have been investigated in conventional sandstone and carbonate reservoirs, but the reality for unconventional resources is that such techniques are still poorly developed. Fractures are necessary for economical production of petroleum from many low-permeability reservoirs. The characterization of fractures by well logging technology is of great interest in the petroleum industry. The main purpose of this study is to review the characterization techniques that are developed either for identifying fractures or distinguishing fracture porosity from matrix porosity. This concept plays a leading role in providing availability of an optimized well completion program. The results of this study indicated that in terms of both sandstone and carbonate tight reservoirs, there have not been many steps taken toward the aforementioned goal up to now. Nevertheless, these steps are valuable enough to be counted on and could serve a meaningful function in treating hydrocarbon reservoirs. Because of the ongoing changes in today's petroleum industry, development of a comprehensive methodology will create greater economic benefits in unconventional reservoirs than in the conventional ones.

  10. Feasibility study for Zaporozhye Nuclear Power Plant spent fuel dry storage facility in Ukraine. Export trade information

    SciTech Connect

    1995-12-01

    This document reports the results of a Feasibility Study sponsored by a TDA grant to Zaporozhye Nuclear Power Plant (ZNPP) in Ukraine to study the construction of storage facilities for spent nuclear fuel. It provides pertinent information to U.S. companies interested in marketing spent fuel storage technology and related business to countries of the former Soviet Union or Eastern Europe.

  11. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  12. Status of Rankine-cycle technology for space nuclear power applications

    SciTech Connect

    Holcomb, R.S.

    1991-01-01

    A substantial effort on the development of the liquid metal Rankine cycle space nuclear power system was carried out in programs jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Atomic Energy Commission (AEC) during the period of 1960--1972. Component tests were conducted which have established a considerable technology base for the concept. The development effort and technology status of each component are presented. The key technology issues remaining for development of the system are: refractory metal parts fabrication, turbine blade endurance, turbine bearings and seals, and generator winding seal. 5 refs.

  13. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  14. Questioning nuclear waste substitution: a case study.

    PubMed

    Marshall, Alan

    2007-03-01

    This article looks at the ethical quandaries, and their social and political context, which emerge as a result of international nuclear waste substitution. In particular it addresses the dilemmas inherent within the proposed return of nuclear waste owned by Japanese nuclear companies and currently stored in the United Kingdom. The UK company responsible for this waste, British Nuclear Fuels Limited (BNFL), wish to substitute this high volume intermediate-level Japanese-owned radioactive waste for a much lower volume of much more highly radioactive waste. Special focus is given to ethical problems that they, and the UK government, have not wished to address as they move forward with waste substitution. The conclusion is that waste substitution can only be considered an ethical practice if a set of moderating conditions are observed by all parties. These conditions are listed and, as of yet, they are not being observed.

  15. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  16. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of 64Cu and 67Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Sepiani, M.

    2015-03-01

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  17. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    SciTech Connect

    Nasrabadi, M. N. Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  18. Nuclear fragmentation studies for microelectronic application

    NASA Technical Reports Server (NTRS)

    Ngo, Duc M.; Wilson, John W.; Buck, Warren W.; Fogarty, Thomas N.

    1989-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. Predicted results are compared to experiments with the surface barrier detectors of McNulty et al. The intranuclear cascade nuclear reaction model does not predict the McNulty experimental data for the highest energy events. A semiempirical nuclear cross section gives an adequate explanation of McNulty's experiments. Application of the formalism to specific electronic devices is discussed.

  19. Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility

    NASA Astrophysics Data System (ADS)

    Froideval, A.; Badillo, A.; Bertsch, J.; Churakov, S.; Dähn, R.; Degueldre, C.; Lind, T.; Paladino, D.; Patterson, B. D.

    2011-09-01

    Spectroscopy and imaging of condensed matter have benefited greatly from the availability of intense X-ray beams from synchrotron sources, both in terms of spatial resolution and of elemental specificity. The advent of the X-ray free electron laser (X-ray FEL) provides the additional features of ultra-short pulses and high transverse coherence, which greatly expand possibilities to study dynamic processes and to image non-crystalline materials. The proposed SwissFEL facility at the Paul Scherrer Institute is one of at present four X-ray FEL projects worldwide and is scheduled to go into operation in the year 2017. This article describes a selection of problems in nuclear materials science and technology that would directly benefit from this and similar X-ray FEL sources. X-ray FEL-based experiments are proposed to be conducted on nuclear energy-related materials using single-shot X-ray spectroscopy, coherent X-ray scattering and/or X-ray photon correlation spectroscopy in order to address relevant scientific questions such as the evolution in time of the irradiation-induced damage processes, the deformation processes in nuclear materials, the ion diffusion processes in the barrier systems of geological repositories, the boiling heat transfer in nuclear reactors, as well as the structural characterization of graphite dust in advanced nuclear reactors and clay colloid aggregates in the groundwater near a radioactive waste repository.

  20. Nuclear power and nuclear weapons

    SciTech Connect

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.