Science.gov

Sample records for nuclear transcription factor-kappab

  1. Propanil inhibits tumor necrosis factor-alpha production by reducing nuclear levels of the transcription factor nuclear factor-kappab in the macrophage cell line ic-21.

    PubMed

    Frost, L L; Neeley, Y X; Schafer, R; Gibson, L F; Barnett, J B

    2001-05-01

    Tumor necrosis factor-alpha (TNF-alpha) is an essential proinflammatory cytokine whose production is normally stimulated by bacterial cell wall components, such as lipopolysaccharide (LPS), during an infection. Macrophages stimulated with LPS in vitro produce several cytokines, including TNF-alpha. LPS-stimulated primary mouse macrophages produced less TNF-alpha protein and message after treatment with the herbicide propanil (Xie et al., Toxicol. Appl. Pharmacol. 145, 184-191, 1997). Nuclear factor-kappaB (NF-kappaB) tightly regulates TNF-alpha transcription. Therefore, as a step toward understanding the mechanism of the effect of propanil on TNF-alpha transcription, IC-21 cells were transfected with a TNF-alpha promoter-luciferase construct, and the effect of propanil on luciferase activity was measured. Cells transfected with promoter constructs containing a kappaB site showed decreased luciferase activity relative to controls after propanil treatment. These observations implicated NF-kappaB binding as an intracellular target of propanil. Further studies demonstrated a marked reduction in the nuclear levels of the stimulatory p65 subunit of NF-kappaB after propanil treatment, as measured by fluorescence confocal microscopy and Western blot analysis. The p50 subunit of NF-kappaB was not found to be reduced after propanil exposure by Western blot. Electrophoretic mobility gel shift assays showed decreased DNA binding of both p65/p50 heterodimers and p50/p50 homodimers to the kappaB3 site of the TNF-alpha promoter of propanil-treated cells. The marked reduction in nuclear p65/p50 NF-kappaB levels and diminished binding to the TNF-alpha promoter in propanil-treated cells are consistent with reduced TNF-alpha levels induced by LPS. PMID:11312646

  2. Morphology of nuclear transcription.

    PubMed

    Weipoltshammer, Klara; Schöfer, Christian

    2016-04-01

    Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle. PMID:26847177

  3. Spliceosome twin introns in fungal nuclear transcripts.

    PubMed

    Flipphi, Michel; Fekete, Erzsébet; Ag, Norbert; Scazzocchio, Claudio; Karaffa, Levente

    2013-08-01

    The spliceosome is an RNA/protein complex, responsible for intron excision from eukaryotic nuclear transcripts. In bacteria, mitochondria and plastids, intron excision does not involve the spliceosome, but occurs through mechanisms dependent on intron RNA secondary and tertiary structure. For group II/III chloroplast introns, "twintrons" (introns within introns) have been described. The excision of the external intron, and thus proper RNA maturation, necessitates prior removal of the internal intron, which interrupts crucial sequences of the former. We have here predicted analogous instances of spliceosomal twintrons ("stwintrons") in filamentous fungi. In two specific cases, where the internal intron interrupts the donor of the external intron after the first or after the second nucleotide, respectively, we show that intermediates with the sequence predicted by the "stwintron" hypothesis, are produced in the splicing process. This implies that two successive rounds of RNA scanning by the spliceosome are necessary to produce the mature mRNA. The phylogenetic distributions of the stwintrons we have identified suggest that they derive from "late" events, subsequent to the appearance of the host intron. They may well not be limited to fungal nuclear transcripts, and their generation and eventual disappearance in the evolutionary process are relevant to hypotheses of intron origin and alternative splicing.

  4. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    PubMed

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  5. RNA editing of nuclear transcripts in Arabidopsis thaliana

    PubMed Central

    2010-01-01

    Background RNA editing is a transcript-based layer of gene regulation. To date, no systemic study on RNA editing of plant nuclear genes has been reported. Here, a transcriptome-wide search for editing sites in nuclear transcripts of Arabidopsis (Arabidopsis thaliana) was performed. Results MPSS (massively parallel signature sequencing) and PARE (parallel analysis of RNA ends) data retrieved from public databases were utilized, focusing on one-base-conversion editing. Besides cytidine (C)-to-uridine (U) editing in mitochondrial transcripts, many nuclear transcripts were found to be diversely edited. Interestingly, a sizable portion of these nuclear genes are involved in chloroplast- or mitochondrion-related functions, and many editing events are tissue-specific. Some editing sites, such as adenosine (A)-to-U editing loci, were found to be surrounded by peculiar elements. The editing events of some nuclear transcripts are highly enriched surrounding the borders between coding sequences (CDSs) and 3′ untranslated regions (UTRs), suggesting site-specific editing. Furthermore, RNA editing is potentially implicated in new start or stop codon generation, and may affect alternative splicing of certain protein-coding transcripts. RNA editing in the precursor microRNAs (pre-miRNAs) of ath-miR854 family, resulting in secondary structure transformation, implies its potential role in microRNA (miRNA) maturation. Conclusions To our knowledge, the results provide the first global view of RNA editing in plant nuclear transcripts. PMID:21143795

  6. Repression of TFII-I-dependent transcription by nuclear exclusion

    PubMed Central

    Tussié-Luna, María Isabel; Bayarsaihan, Dashzeveg; Ruddle, Frank H.; Roy, Ananda L.

    2001-01-01

    TFII-I is an unusual transcription factor possessing both basal and signal-induced transcriptional functions. Here we report the characterization of a TFII-I-related factor (MusTRD1/BEN) that regulates transcriptional functions of TFII-I by controlling its nuclear residency. MusTRD1/BEN has five or six direct repeats, each containing helix–loop–helix motifs, and, thus, belongs to the TFII-I family of transcription factors. TFII-I and MusTRD1/BEN, when expressed individually, show predominant nuclear localization. However, when the two proteins are coexpressed ectopically, MusTRD1/BEN locates almost exclusively to the nucleus, whereas TFII-I is largely excluded from the nucleus, resulting in a loss of TFII-I-dependent transcriptional activation of the c-fos promoter. Mutation of a consensus nuclear localization signal in MusTRD1/BEN results in a reversal of nuclear residency of the two proteins and a concomitant gain of c-fos promoter activity. These data suggest a means of transcriptional repression by competition at the level of nuclear occupancy. PMID:11438732

  7. Contribution of nuclear actin to transcription regulation.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; Harata, Masahiko

    2015-06-01

    Actin, an integral component of the cytoskeleton, plays crucial roles in a variety of cell functions, including cell migration, adhesion, polarity and shape change. Studies performed during the last couple of decades have revealed that the actin also exists in the nucleus. However, the function and properties of nuclear actin remained elusive so far. Recently, we showed that an actin tagged with EYFP and fused with a nuclear localization signal (EYFP-NLS-actin) formed visible filamentous (F)-actin bundles in cells. To obtain further details about the individual genes that are affected by the nuclear actin, we have used the microarray analysis to determine the changes in the expression levels of RNAs in HeLa cells as a result of EYFP-NLS-actin expression. Our results suggest that the nuclear actin plays a role in the activation of genes rather than their repression. The data has been deposited in the Gene Expression Omnibus (GEO) database under the accession number GSE59799.

  8. Regulation of mammalian transcription and splicing by Nuclear RNAi.

    PubMed

    Kalantari, Roya; Chiang, Cheng-Ming; Corey, David R

    2016-01-29

    RNA interference (RNAi) is well known as a mechanism for controlling mammalian mRNA translation in the cytoplasm, but what would be the consequences if it also functions in cell nuclei? Although RNAi has also been found in nuclei of plants, yeast, and other organisms, there has been relatively little progress towards understanding the potential involvement of mammalian RNAi factors in nuclear processes including transcription and splicing. This review summarizes evidence for mammalian RNAi factors in cell nuclei and mechanisms that might contribute to the control of gene expression. When RNAi factors bind small RNAs, they form ribonucleoprotein complexes that can be selective for target sequences within different classes of nuclear RNA substrates. The versatility of nuclear RNAi may supply a previously underappreciated layer of regulation to transcription, splicing, and other nuclear processes.

  9. Regulation of mammalian transcription and splicing by Nuclear RNAi

    PubMed Central

    Kalantari, Roya; Chiang, Cheng-Ming; Corey, David R.

    2016-01-01

    RNA interference (RNAi) is well known as a mechanism for controlling mammalian mRNA translation in the cytoplasm, but what would be the consequences if it also functions in cell nuclei? Although RNAi has also been found in nuclei of plants, yeast, and other organisms, there has been relatively little progress towards understanding the potential involvement of mammalian RNAi factors in nuclear processes including transcription and splicing. This review summarizes evidence for mammalian RNAi factors in cell nuclei and mechanisms that might contribute to the control of gene expression. When RNAi factors bind small RNAs, they form ribonucleoprotein complexes that can be selective for target sequences within different classes of nuclear RNA substrates. The versatility of nuclear RNAi may supply a previously underappreciated layer of regulation to transcription, splicing, and other nuclear processes. PMID:26612865

  10. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions

    PubMed Central

    Wang, Jayson; Shiels, Carol; Sasieni, Peter; Wu, Pei Jun; Islam, Suhail A.; Freemont, Paul S.; Sheer, Denise

    2004-01-01

    The promyelocytic leukemia (PML) protein is aggregated into nuclear bodies that are associated with diverse nuclear processes. Here, we report that the distance between a locus and its nearest PML body correlates with the transcriptional activity and gene density around the locus. Genes on the active X chromosome are more significantly associated with PML bodies than their silenced homologues on the inactive X chromosome. We also found that a histone-encoding gene cluster, which is transcribed only in S-phase, is more strongly associated with PML bodies in S-phase than in G0/G1 phase of the cell cycle. However, visualization of specific RNA transcripts for several genes showed that PML bodies were not themselves sites of transcription for these genes. Furthermore, knock-down of PML bodies by RNA interference did not preferentially change the expression of genes closely associated with PML bodies. We propose that PML bodies form in nuclear compartments of high transcriptional activity, but they do not directly regulate transcription of genes in these compartments. PMID:14970191

  11. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    SciTech Connect

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  12. The Basal Transcription Complex Component TAF3 Transduces Changes in Nuclear Phosphoinositides into Transcriptional Output

    PubMed Central

    Stijf-Bultsma, Yvette; Sommer, Lilly; Tauber, Maria; Baalbaki, Mai; Giardoglou, Panagiota; Jones, David R.; Gelato, Kathy A.; van Pelt, Jason; Shah, Zahid; Rahnamoun, Homa; Toma, Clara; Anderson, Karen E.; Hawkins, Philip; Lauberth, Shannon M.; Haramis, Anna-Pavlina G.; Hart, Daniel; Fischle, Wolfgang; Divecha, Nullin

    2015-01-01

    Summary Phosphoinositides (PI) are important signaling molecules in the nucleus that influence gene expression. However, if and how nuclear PI directly affects the transcriptional machinery is not known. We report that the lipid kinase PIP4K2B regulates nuclear PI5P and the expression of myogenic genes during myoblast differentiation. A targeted screen for PI interactors identified the PHD finger of TAF3, a TATA box binding protein-associated factor with important roles in transcription regulation, pluripotency, and differentiation. We show that the PI interaction site is distinct from the known H3K4me3 binding region of TAF3 and that PI binding modulates association of TAF3 with H3K4me3 in vitro and with chromatin in vivo. Analysis of TAF3 mutants indicates that TAF3 transduces PIP4K2B-mediated alterations in PI into changes in specific gene transcription. Our study reveals TAF3 as a direct target of nuclear PI and further illustrates the importance of basal transcription components as signal transducers. PMID:25866244

  13. RNA transcription modulates phase transition-driven nuclear body assembly

    PubMed Central

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P.

    2015-01-01

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid–liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of “extranucleolar droplets” (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  14. RNA transcription modulates phase transition-driven nuclear body assembly.

    PubMed

    Berry, Joel; Weber, Stephanie C; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P

    2015-09-22

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid-liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of "extranucleolar droplets" (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  15. Regulated nuclear export of the homeodomain transcription factor Prospero.

    PubMed

    Demidenko, Z; Badenhorst, P; Jones, T; Bi, X; Mortin, M A

    2001-04-01

    Subcellular distribution of the Prospero protein is dynamically regulated during Drosophila embryonic nervous system development. Prospero is first detected in neuroblasts where it becomes cortically localized and tethered by the adapter protein, Miranda. After division, Prospero enters the nucleus of daughter ganglion mother cells where it functions as a transcription factor. We have isolated a mutation that removes the C-terminal 30 amino acids from the highly conserved 100 amino acid Prospero domain. Molecular dissection of the homeo- and Prospero domains, and expression of chimeric Prospero proteins in mammalian and insect cultured cells indicates that Prospero contains a nuclear export signal that is masked by the Prospero domain. Nuclear export of Prospero, which is sensitive to the drug leptomycin B, is mediated by Exportin. Mutation of the nuclear export signal-mask in Drosophila embryos prevents Prospero nuclear localization in ganglion mother cells. We propose that a combination of cortical tethering and regulated nuclear export controls Prospero subcellular distribution and function in all higher eukaryotes. PMID:11262236

  16. Reshaping the Transcriptional Frontier: Epigenetics and Somatic Cell Nuclear Transfer

    PubMed Central

    LONG, CHARLES R.; WESTHUSIN, MARK E.; GOLDING, MICHAEL C.

    2014-01-01

    SUMMARY Somatic-cell nuclear transfer (SCNT) experiments have paved the way to the field of cellular reprogramming. The demonstrated ability to clone over 20 different species to date has proven that the technology is robust but very inefficient, and is prone to developmental anomalies. Yet, the offspring from cloned animals exhibit none of the abnormalities of their parents, suggesting the low efficiency and high developmental mortality are epigenetic in origin. The epigenetic barriers to reprogramming somatic cells into a totipotent embryo capable of developing into a viable offspring are significant and varied. Despite their intimate relationship, chromatin structure and transcription are often not uniformly reprogramed after nuclear transfer, and many cloned embryos develop gene expression profiles that are hybrids between the donor cell and an embryonic blastomere. Recent advances in cellular reprogramming suggest that alteration of donor-cell chromatin structure towards that found in an normal embryo is actually the rate-limiting step in successful development of SCNT embryos. Here we review the literature relevant to the transformation of a somatic-cell nucleus into an embryo capable of full-term development. Interestingly, while resetting somatic transcription and associated epigenetic marks are absolutely required for development of SCNT embryos, life does not demand perfection. PMID:24167064

  17. Dynamic Encounters of Genes and Transcripts with the Nuclear Pore.

    PubMed

    Ben-Yishay, Rakefet; Ashkenazy, Asaf J; Shav-Tal, Yaron

    2016-07-01

    Transcribed mRNA molecules must reach the cytoplasm to undergo translation. Technological developments in imaging have placed mRNAs under the spotlight, allowing the quantitative study of the spatial and temporal dynamics of the nucleocytoplasmic mRNA export process. Here, we discuss studies that have used such experimental approaches to demonstrate that gene tethering at the nuclear pore complex (NPC) regulates mRNA expression, and to characterize mRNA dynamics during transport in real time. The paths taken by mRNAs as they move from their sites of transcription and travel through the nucleoplasm, in between chromatin domains, and finally through the NPC, can now be observed in detail. PMID:27185238

  18. Dynamic mitochondrial localization of nuclear transcription factor HMGA1

    SciTech Connect

    Dement, Gregory A.; Treff, Nathan R.; Magnuson, Nancy S.; Franceschi, Vincent; Reeves, Raymond . E-mail: reevesr@mail.wsu.edu

    2005-07-15

    It has been well established that high mobility group A1 (HMGA1) proteins act within the nucleus of mammalian cells as architectural transcription factors that regulate the expression of numerous genes. Here, however, we report on the unexpected cytoplasmic/mitochondrial localization of the HMGA1 proteins within multiple cell types. Indirect immunofluorescence, electron microscopic immunolocalization, and Western blot studies revealed that, in addition to the nucleus, HMGA1 proteins could also be found in both the cytoplasm and mitochondria of randomly dividing populations of wild-type murine NIH3T3 cells and transgenic human MCF-7 breast cancer epithelial cells expressing a hemagglutinin tagged-HMGA1a fusion protein. While the molecular mechanisms underlying these novel subcellular localization patterns have not yet been determined, initial synchronization studies revealed a dynamic, cell cycle-dependent translocation of HMGA1 proteins from the nucleus into the cytoplasm and mitochondria of NIH3T3 cells. Furthermore, preliminary functionality studies utilizing a modified 'chromatin' immunoprecipitation protocol revealed that HMGA1 retains its DNA binding capabilities within the mitochondria and associates with the regulatory D-loop region in vivo. We discuss potential new biological roles for the classically nuclear HMGA1 proteins with regard to the observed nucleocytoplasmic translocation, mitochondrial internalization, and regulatory D-loop DNA binding.

  19. Nur77 forms novel nuclear structures upon DNA damage that cause transcriptional arrest

    SciTech Connect

    Leseleuc, Louis de; Denis, Francois . E-mail: francois.denis@iaf.inrs.ca

    2006-05-15

    The orphan nuclear receptor Nur77 has been implicated in both growth and apoptosis, and its function and activity can be modulated by cellular redistribution. Green fluorescent protein-tagged Nur77 was used to evaluate the role of Nur77 intracellular redistribution in response to genotoxic stress. Selected DNA damaging agents and transcription inhibition lead to rapid redistribution of Nur77 into nuclear structures distinct from conventional nuclear bodies. These nuclear bodies formed transiently were tightly bound to the nuclear matrix and conditions that lead to their appearance were associated with Nur77 transcriptional inhibition. The formation of Nur77 nuclear bodies might be involved in programmed cell death modulation upon exposure to DNA damaging agents that inhibit transcription by sequestrating this proapoptotic factor in dense nuclear structures.

  20. Murine Leukemia Virus Uses TREX Components for Efficient Nuclear Export of Unspliced Viral Transcripts

    PubMed Central

    Sakuma, Toshie; Tonne, Jason M.; Ikeda, Yasuhiro

    2014-01-01

    Previously we reported that nuclear export of both unspliced and spliced murine leukemia virus (MLV) transcripts depends on the nuclear export factor (NXF1) pathway. Although the mRNA export complex TREX, which contains Aly/REF, UAP56, and the THO complex, is involved in the NXF1-mediated nuclear export of cellular mRNAs, its contribution to the export of MLV mRNA transcripts remains poorly understood. Here, we studied the involvement of TREX components in the export of MLV transcripts. Depletion of UAP56, but not Aly/REF, reduced the level of both unspliced and spliced viral transcripts in the cytoplasm. Interestingly, depletion of THO components, including THOC5 and THOC7, affected only unspliced viral transcripts in the cytoplasm. Moreover, the RNA immunoprecipitation assay showed that only the unspliced viral transcript interacted with THOC5. These results imply that MLV requires UAP56, THOC5 and THOC7, in addition to NXF1, for nuclear export of viral transcripts. Given that naturally intronless mRNAs, but not bulk mRNAs, require THOC5 for nuclear export, it is plausible that THOC5 plays a key role in the export of unspliced MLV transcripts. PMID:24618812

  1. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    SciTech Connect

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit; Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar; Mitra, Debashis; Chattopadhyay, Samit

    2010-04-25

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFalpha leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  2. Exosome Cofactors Connect Transcription Termination to RNA Processing by Guiding Terminated Transcripts to the Appropriate Exonuclease within the Nuclear Exosome.

    PubMed

    Kim, Kyumin; Heo, Dong-Hyuk; Kim, Iktae; Suh, Jeong-Yong; Kim, Minkyu

    2016-06-17

    The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease.

  3. Triptolide Induced Transcriptional Arrest is Associated with Changes in Nuclear Sub-Structure

    PubMed Central

    Leuenroth, Stephanie J.; Crews, Craig M.

    2008-01-01

    Triptolide, an active component of the medicinal herb, lei gong teng, is a potent anti-cancer and anti-inflammatory therapeutic. It potently inhibits NFκB transcriptional activation subsequent to DNA binding, although a precise mechanism is as yet unknown. Here, we report that triptolide also induces distinct nuclear sub-structural changes in HeLa cells. These changes in the nucleolus and nuclear speckles are reversible and dependent on both time and concentration. Furthermore, nuclear changes occurred within hours of triptolide treatment and were calcium and caspase independent. Rounding of nuclear speckles, an indication of transcriptional arrest was evident and was associated with a decrease in RNA Polymerase II CTD Ser2 phosphorylation. Additionally, the nucleolus disassembled and RNA Pol I activity declined subsequent to RNA Pol II inhibition. We therefore conclude that triptolide causes global transcriptional arrest as evidenced by inactivity of RNA polymerases I and II and the subsequent alteration in nuclear sub-structure. PMID:18593926

  4. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells

    SciTech Connect

    Quina, Ana Sofia; Parreira, Leonor . E-mail: lparreir@igc.gulbenkian.pt

    2005-07-01

    Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters upon activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.

  5. Bmal1 is a direct transcriptional target of the orphan nuclear receptor, NR2F1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orphan nuclear receptor NR2F1 (also known as COUP-TFI, Chicken Ovalbumin Upstream Promoter Transcription Factor I) is a highly conserved member of the nuclear receptor superfamily. NR2F1 plays a critical role during embryonic development, particularly in the central and peripheral nervous systems a...

  6. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire

    PubMed Central

    Senti, Kirsten-André; Jurczak, Daniel; Sachidanandam, Ravi; Brennecke, Julius

    2015-01-01

    PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways. PMID:26302790

  7. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire.

    PubMed

    Senti, Kirsten-André; Jurczak, Daniel; Sachidanandam, Ravi; Brennecke, Julius

    2015-08-15

    PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways. PMID:26302790

  8. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor.

    PubMed Central

    Cavaillès, V; Dauvois, S; L'Horset, F; Lopez, G; Hoare, S; Kushner, P J; Parker, M G

    1995-01-01

    A conserved region in the hormone-dependent activation domain AF2 of nuclear receptors plays an important role in transcriptional activation. We have characterized a novel nuclear protein, RIP140, that specifically interacts in vitro with this domain of the estrogen receptor. This interaction was increased by estrogen, but not by anti-estrogens and the in vitro binding capacity of mutant receptors correlates with their ability to stimulate transcription. RIP140 also interacts with estrogen receptor in intact cells and modulates its transcriptional activity in the presence of estrogen, but not the anti-estrogen 4-hydroxytamoxifen. In view of its widespread expression in mammalian cells, RIP140 may interact with other members of the superfamily of nuclear receptors and thereby act as a potential co-activator of hormone-regulated gene transcription. Images PMID:7641693

  9. Isolation of Arabidopsis nuclei and measurement of gene transcription rates using nuclear run-on assays.

    PubMed

    Folta, Kevin M; Kaufman, Lon S

    2006-01-01

    Isolation of transcriptionally active nuclei from plant tissues is a fundamental first step in many plant molecular biology protocols. Enriched nuclear fractions may be used in "run-on" assays to measure the rate of transcription for any given gene, adding additional resolution to assays of steady-state transcript accumulation such as RNA-gel blots, RT-PCR or microarrays. The protocols presented here streamline, adapt and optimize existing methods for use in Arabidopsis thaliana. Plant materials are ground in hexylene glycol-based buffers and highly enriched nuclear fractions are obtained using Percoll density gradients. Standard and small-scale protocols are presented, along with a tested method for nuclear run-on assays. The entire process may be completed within 3 days. This capability complements the immense body of steady-state transcript measurements and indirectly identifies instances where message turnover may have a critical and/or primary role in regulating gene expression levels.

  10. Mapping neural circuits with activity-dependent nuclear import of a transcription factor.

    PubMed

    Masuyama, Kaoru; Zhang, Yi; Rao, Yi; Wang, Jing W

    2012-03-01

    Abstract: Nuclear factor of activated T cells (NFAT) is a calcium-responsive transcription factor. We describe here an NFAT-based neural tracing method-CaLexA (calcium-dependent nuclear import of LexA)-for labeling active neurons in behaving animals. In this system, sustained neural activity induces nuclear import of the chimeric transcription factor LexA-VP16-NFAT, which in turn drives green fluorescent protein (GFP) reporter expression only in active neurons. We tested this system in Drosophila and found that volatile sex pheromones excite specific neurons in the olfactory circuit. Furthermore, complex courtship behavior associated with multi-modal sensory inputs activated neurons in the ventral nerve cord. This method harnessing the mechanism of activity-dependent nuclear import of a transcription factor can be used to identify active neurons in specific neuronal population in behaving animals. PMID:22236090

  11. “Co-transcriptionality” - the transcription elongation complex as a nexus for nuclear transactions

    PubMed Central

    Perales, Roberto; Bentley, David

    2009-01-01

    Much of the complex process of RNP biogenesis takes place at the gene, co-transcriptionally. The target for RNA binding and processing factors is therefore not a solitary RNA molecule, but a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized co-transcriptionally around the TEC scaffold. In addition DNA repair, covalent chromatin modification, “gene gating” at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a co-transcriptional component. From this perspective, TEC’s can be viewed as potent “community organizers” within the nucleus. PMID:19854129

  12. The nuclear periphery of embryonic stem cells is a transcriptionally permissive and repressive compartment

    PubMed Central

    Luo, Li; Gassman, Katherine L.; Petell, Lydia M.; Wilson, Christian L.; Bewersdorf, Joerg; Shopland, Lindsay S.

    2009-01-01

    Summary Chromatin adapts a distinct structure and epigenetic state in embryonic stem cells (ESCs), but how chromatin is three-dimensionally organized within the ESC nucleus is poorly understood. Because nuclear location can influence gene expression, we examined the nuclear distributions of chromatin with key epigenetic marks in ESC nuclei. We focused on chromatin at the nuclear periphery, a compartment that represses some but not all associated genes and accumulates facultative heterochromatin in differentiated cells. Using a quantitative, cytological approach, we measured the nuclear distributions of genes in undifferentiated mouse ESCs according to epigenetic state and transcriptional activity. We found that trimethyl histone H3 lysine 27 (H3K27-Me3), which marks repressed gene promoters, is enriched at the ESC nuclear periphery. In addition, this compartment contains 10-15% of chromatin with active epigenetic marks and hundreds of transcription sites. Surprisingly, comparisons with differentiated cell types revealed similar nuclear distributions of active chromatin. By contrast, H3K27-Me3 was less concentrated at the nuclear peripheries of differentiated cells. These findings demonstrate that the nuclear periphery is an epigenetically dynamic compartment that might be distinctly marked in pluripotent ESCs. In addition, our data indicate that the nuclear peripheries of multiple cell types can contain a significant fraction of both active and repressed genes. PMID:19773359

  13. Nuclear localization signal in a cancer-related transcriptional regulator protein NAC1.

    PubMed

    Okazaki, Kosuke; Nakayama, Naomi; Nariai, Yuko; Nakayama, Kentaro; Miyazaki, Kohji; Maruyama, Riruke; Kato, Hiroaki; Kosugi, Shunichi; Urano, Takeshi; Sakashita, Gyosuke

    2012-10-01

    Nucleus accumbens-associated protein 1 (NAC1) might have potential oncogenic properties and participate in regulatory networks for pluripotency. Although NAC1 is described as a transcriptional regulator, the nuclear import machinery of NAC1 remains unclear. We found, using a point mutant, that dimer formation was not committed to the nuclear localization of NAC1 and, using deletion mutants, that the amino-terminal half of NAC1 harbored a potential nuclear localization signal (NLS). Wild type, but not mutants of this region, alone was sufficient to drive the importation of green fluorescent protein (GFP) into the nucleus. Bimax1, a synthetic peptide that blocks the importin α/β pathway, impaired nuclear localization of NAC1 in cells. We also used the binding properties of importin to demonstrate that this region is an NLS. Furthermore, the transcriptional regulator function of NAC1 was dependent on its nuclear localization activity in cells. Taken together, these results show that the region with a bipartite motif constitutes a functional nuclear import sequence in NAC1 that is independent of NAC1 dimer formation. The identification of an NAC1 NLS thus clarifies the mechanism through which NAC1 translocates to the nucleus to regulate the transcription of genes involved in oncogenicity and pluripotency.

  14. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins.

    PubMed

    Takeda, Akiko; Sarma, Nayan J; Abdul-Nabi, Anmaar M; Yaseen, Nabeel R

    2010-05-21

    NUP98 is a nucleoporin that plays complex roles in the nucleocytoplasmic trafficking of macromolecules. Rearrangements of the NUP98 gene in human leukemia result in the expression of numerous fusion oncoproteins whose effect on nucleocytoplasmic trafficking is poorly understood. The present study was undertaken to determine the effects of leukemogenic NUP98 fusion proteins on CRM1-mediated nuclear export. NUP98-HOXA9, a prototypic NUP98 fusion, inhibited the nuclear export of two known CRM1 substrates: mutated cytoplasmic nucleophosmin and HIV-1 Rev. In vitro binding assays revealed that NUP98-HOXA9 binds CRM1 through the FG repeat motif in a Ran-GTP-dependent manner similar to but stronger than the interaction between CRM1 and its export substrates. Two NUP98 fusions, NUP98-HOXA9 and NUP98-DDX10, whose fusion partners are structurally and functionally unrelated, interacted with endogenous CRM1 in myeloid cells as shown by co-immunoprecipitation. These leukemogenic NUP98 fusion proteins interacted with CRM1, Ran, and the nucleoporin NUP214 in a manner fundamentally different from that of wild-type NUP98. NUP98-HOXA9 and NUP98-DDX10 formed characteristic aggregates within the nuclei of a myeloid cell line and primary human CD34+ cells and caused aberrant localization of CRM1 to these aggregates. These NUP98 fusions caused nuclear accumulation of two transcription factors, NFAT and NFkappaB, that are regulated by CRM1-mediated export. The nuclear entrapment of NFAT and NFkappaB correlated with enhanced transcription from promoters responsive to these transcription factors. Taken together, the results suggest a new mechanism by which NUP98 fusions dysregulate transcription and cause leukemia, namely, inhibition of CRM1-mediated nuclear export with aberrant nuclear retention of transcriptional regulators.

  15. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly.

    PubMed

    Sawamura, N; Ando, T; Maruyama, Y; Fujimuro, M; Mochizuki, H; Honjo, K; Shimoda, M; Toda, H; Sawamura-Yamamoto, T; Makuch, L A; Hayashi, A; Ishizuka, K; Cascella, N G; Kamiya, A; Ishida, N; Tomoda, T; Hai, T; Furukubo-Tokunaga, K; Sawa, A

    2008-12-01

    Disrupted-in-schizophrenia-1 (DISC1) is one of major susceptibility factors for a wide range of mental illnesses, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions. DISC1 is located in several subcellular domains, such as the centrosome and the nucleus, and interacts with various proteins, including NudE-like (NUDEL/NDEL1) and activating transcription factor 4 (ATF4)/CREB2. Nevertheless, a role for DISC1 in vivo remains to be elucidated. Therefore, we have generated a Drosophila model for examining normal functions of DISC1 in living organisms. DISC1 transgenic flies with preferential accumulation of exogenous human DISC1 in the nucleus display disturbance in sleep homeostasis, which has been reportedly associated with CREB signaling/CRE-mediated gene transcription. Thus, in mammalian cells, we characterized nuclear DISC1, and identified a subset of nuclear DISC1 that colocalizes with the promyelocytic leukemia (PML) bodies, a nuclear compartment for gene transcription. Furthermore, we identified three functional cis-elements that regulate the nuclear localization of DISC1. We also report that DISC1 interacts with ATF4/CREB2 and a corepressor N-CoR, modulating CRE-mediated gene transcription. PMID:18762802

  16. Dependence of Enhancer-Mediated Transcription of the Immunoglobulin μ Gene on Nuclear Matrix Attachment Regions

    NASA Astrophysics Data System (ADS)

    Forrester, William C.; van Genderen, Courtney; Jenuwein, Thomas; Grosschedl, Rudolf

    1994-08-01

    Transcription of the immunoglobulin μ heavy chain locus is regulated by an intronic enhancer that is flanked on both sides by nuclear matrix attachment regions (MARs). These MARs have now been shown to be essential for transcription of a rearranged μ gene in transgenic B lymphocytes, but they were not required in stably transfected tissue culture cells. Normal rates of transcriptional initiation at a variable region promoter and the formation of an extended deoxyribonuclease I (DNase I)-sensitive chromatin domain were dependent on MARs, although DNase I hypersensitivity at the enhancer was detected in the absence of MARs. Thus, transcriptional activation of the μ gene during normal lymphoid development requires a synergistic collaboration between the enhancer and flanking MARs.

  17. Multi-Tasking: Nuclear Transcription Factors with Novel Roles in the Mitochondria

    PubMed Central

    Szczepanek, Karol; Lesnefsky, Edward J.; Larner, Andrew C.

    2012-01-01

    Coordinated responses between the nucleus and mitochondria are essential for maintenance of homeostasis. For over 15 years, pools of nuclear transcription factors (TFs), such as p53 and nuclear hormone receptors, have been observed in the mitochondria. The contribution of the mitochondrial pool of these TFs to their well-defined biological actions is in some cases clear and in others not well understood. Recently, a small mitochondrial pool of the TF signal transducer and activator of transcription factor 3 (STAT3) was shown to modulate the activity of the electron transport chain. The mitochondrial function of STAT3 encompasses both its biological actions in the heart as well as its oncogenic effects. This review highlights advances in our understanding of how mitochondrial pools of nuclear TFs may influence the function of this organelle. PMID:22705015

  18. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila

    PubMed Central

    Mossman, Jim A.; Tross, Jennifer G.; Li, Nan; Wu, Zhijin; Rand, David M.

    2016-01-01

    The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses. PMID:27558138

  19. Nuclear Glycolytic Enzyme Enolase of Toxoplasma gondii Functions as a Transcriptional Regulator

    PubMed Central

    Mouveaux, Thomas; Oria, Gabrielle; Werkmeister, Elisabeth; Slomianny, Christian; Fox, Barbara A.; Bzik, David J.; Tomavo, Stanislas

    2014-01-01

    Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii. PMID:25153525

  20. Identifying the RNA polymerases that synthesize specific transcripts of the Autographa californica nuclear polyhedrosis virus.

    PubMed

    Huh, N E; Weaver, R F

    1990-01-01

    Nuclear run-on assays carried out in the presence and absence of the RNA polymerase II inhibitor, alpha-amanitin, were used to determine the exact timing of the switch from inhibitor-sensitive transcription catalysed by host RNA polymerase II, to inhibitor-resistant transcription catalysed by the baculovirus-induced RNA polymerase. These studies revealed that the onset of alpha-amanitin-resistant transcription is just after 6 h post-infection, simultaneous with the beginning of the late phase of infection. They also showed that transcripts from the p26 gene in the HindIII Q/P region and the p35 gene in the HindIII K/Q region of the viral genome are synthesized by the host RNA polymerase II both early and late in infection. On the other hand, transcripts of the p10 gene in the HindIII Q/P region and the gamma transcripts in the HindIII K region are synthesized by the alpha-amanitin-resistant, virus-induced RNA polymerase late in infection. PMID:2106003

  1. Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription?

    PubMed

    Nawaz, Zafar; O'Malley, Bert W

    2004-03-01

    The importance of the ubiquitin proteasome pathway in higher eukaryotes has been well established in cell cycle regulation, signal transduction, and cell differentiation, but has only recently been linked to nuclear hormone receptor-regulated gene transcription. Characterization of a number of ubiquitin proteasome pathway enzymes as coactivators and observations that several nuclear receptors are ubiquitinated and degraded in the course of their nuclear activities provide evidence that ubiquitin proteasome-mediated protein degradation plays an integral role in eukaryotic transcription. In addition to receptors, studies have revealed that coactivators are ubiquitinated and degraded via the proteasome. The notion that the ubiquitin proteasome pathway is involved in gene transcription is further strengthened by the fact that ubiquitin proteasome pathway enzymes are recruited to the promoters of target genes and that proteasome-dependent degradation of nuclear receptors is required for efficient transcriptional activity. These findings suggest that protein degradation is coupled with nuclear receptor coactivation activity. It is possible that the ubiquitin proteasome pathway modulates transcription by promoting remodeling and turnover of the nuclear receptor-transcription complex. In this review, we discus the possible role of the ubiquitin proteasome pathway in nuclear hormone receptor-regulated gene transcription.

  2. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5' UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  3. Nuclear rRNA transcript processing versus internal transcribed spacer secondary structure.

    PubMed

    Coleman, Annette W

    2015-03-01

    rRNA is one of the few universal features of life, making it uniquely suited to assess phylogenetic relationships. The processing of the initial polycistronic rRNA transcript is also a conserved process, involving numerous cleavage events and the generation of secondary structures. The secondary structure of the internal transcribed spacer (ITS) regions of nuclear rRNA transcripts are well known for a wide variety of eukaryotes and have been used to aid in the alignment of these sequences for phylogenetic comparisons. By contrast, study of the processing of the initial rRNA transcripts has been largely limited to yeast, mice, rats, and humans. Here I examine the known cleavage sites in the two ITS regions and their positions relative to the secondary structure. A better understanding of the conservation of secondary structures and cleavage sites within the ITS regions will improve evolutionary inferences based on these sequences.

  4. A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program

    PubMed Central

    Sack, Michael N.; Disch, Dennis L.; Rockman, Howard A.; Kelly, Daniel P.

    1997-01-01

    During cardiac hypertrophy, the chief myocardial energy source switches from fatty acid β-oxidation (FAO) to glycolysis—a reversion to fetal metabolism. The expression of genes encoding myocardial FAO enzymes was delineated in a murine ventricular pressure overload preparation to characterize the molecular regulatory events involved in the alteration of energy substrate utilization during cardiac hypertrophy. Expression of genes involved in the thioesterification, mitochondrial import, and β-oxidation of fatty acids was coordinately down-regulated after 7 days of right ventricular (RV) pressure overload. Results of RV pressure overload studies in mice transgenic for the promoter region of the gene encoding human medium-chain acyl-CoA dehydrogenase (MCAD, which catalyzes a rate-limiting step in the FAO cycle) fused to a chloramphenicol acetyltransferase reporter confirmed that repression of MCAD gene expression in the hypertrophied ventricle occurred at the transcriptional level. Electrophoretic mobility-shift assays performed with MCAD promoter fragments and nuclear protein extracts prepared from hypertrophied and control RV identified pressure overload-induced protein/DNA interactions at a regulatory unit shown previously to confer control of MCAD gene transcription during cardiac development. Antibody “supershift” studies demonstrated that members of the Sp (Sp1, Sp3) and nuclear hormone receptor [chicken ovalbumin upstream promoter transcription factor (COUP-TF)/erbA-related protein 3] families interact with the pressure overload-responsive unit. Cardiomyocyte transfection studies confirmed that COUP-TF repressed the transcriptional activity of the MCAD promoter. The DNA binding activities and nuclear expression of Sp1/3 and COUP-TF in normal fetal mouse heart were similar to those in the hypertrophied adult heart. These results identify a transcriptional regulatory mechanism involved in the reinduction of a fetal metabolic program during pressure

  5. The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators.

    PubMed

    Rekdal, C; Sjøttem, E; Johansen, T

    2000-12-22

    SPBP (stromelysin-1 platelet-derived growth factor-responsive element binding protein) was originally cloned from a cDNA expression library by virtue of its ability to bind to a platelet-derived growth factor-responsive element in the human stromelysin-1 promoter. A 937-amino acid-long protein was deduced from a 3995-nucleotide murine cDNA sequence. By analyses of both human and murine cDNAs, we now show that SPBP is twice as large as originally found. The human SPBP gene contains six exons and is located on chromosome 22q13.1-13.3. Two isoforms differing in their C termini are expressed due to alternative splicing. PCR analyses of multitissue cDNA panels showed that SPBP is expressed in most tissues except for ovary and prostate. Functional mapping revealed that SPBP is a nuclear, multidomain protein containing an N-terminal region with transactivating ability, a novel type of DNA-binding domain containing an AT hook motif, and a bipartite nuclear localization signal as well as a C-terminal zinc finger domain. This type of zinc finger domain is also found in the trithorax family of chromatin-based transcriptional regulator proteins. Using cotransfection experiments, we find that SPBP enhances the transcriptional activity of various transcription factors such as c-Jun, Ets1, Sp1, and Pax6. Hence, SPBP seems to act as a transcriptional coactivator. PMID:10995766

  6. A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau

    PubMed Central

    1993-01-01

    We previously reported the presence of the microtubule-associated protein, tau in the nuclei of primate cells in culture. The present study confirms the existence of nuclear tau in two human neuroblastoma cells lines by indirect immunofluorescence and Western blot using mAbs to tau. Northern blot analysis of poly A+ mRNA detects a novel 2-kb tau transcript coexpressed with the 6-kb message in cultured human cells and human frontal cortex. PCR and cDNA sequencing demonstrate that the 2-kb message contains the entire tau coding region. Furthermore, actinomycin D transcription inhibition experiments indicate that the 2- kb message is not derived from the 6-kb message, but instead arises from the original tau transcript. One of the human neuroblastoma cell lines examined contains both nuclear and cytoplasmic tau as assayed by both Western blot and indirect immunofluorescence. Northern blot analysis of this cell line indicates that copious amounts of the 2-kb message are present while little of the 6-kb transcript is obvious. Immunofluorescence analysis of this cell line demonstrates that the cytoplasmic tau is not localized to microtubules. Together, these results indicate that the 2-kb tau message in humans may specify tau for non-microtubule functions in both the cytoplasm and the nucleus. We hypothesize that this is accomplished via a message targeting mechanism mediated by the untranslated regions of the tau messages. PMID:8468346

  7. Transcription-dependent nuclear localization of DAZAP1 requires an N-terminal signal

    SciTech Connect

    Lin, Yi-Tzu; Wen, Wan-Ching; Yen, Pauline H.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer DAZAP1 shuttles between the nucleus and the cytoplasm. Black-Right-Pointing-Pointer DAZAP1 accumulates in the cytoplasm when the nuclear transcription is inhibited. Black-Right-Pointing-Pointer DAZAP1's transcription-dependent nuclear localization requires N-terminal N42. Black-Right-Pointing-Pointer SLIRP binds to N42 and may be involved in the process. -- Abstract: Deleted in Azoospermia Associated Protein 1 (DAZAP1) is a ubiquitous hnRNP protein required for normal development and spermatogenesis. It resides predominantly in the nucleus and moves between the nucleus and the cytoplasm via a ZNS shuttling signal at its C-terminus. DAZAP1 accumulates in the cytoplasm when RNA polymerase II activity is inhibited by actinomycin D. Here we report the mapping of a 42-amino acid segment (N42) at the N-terminus of DAZAP1 that is both necessary and sufficient for its transcription-dependent nuclear localization. In addition, using a yeast two-hybrid system, we have identified SLIRP as a N42-binding protein which may regulate DAZAP1 subcellular localization.

  8. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  9. Review: movement of mRNA from transcription site to nuclear pores.

    PubMed

    Politz, J C; Pederson, T

    2000-04-01

    Pre-mRNA is transcribed primarily from genes located at the interface between chromatin domains and the interchromatin space. After partial or complete processing and complexing with nuclear proteins, the transcripts leave their site of synthesis and travel through the interchromatin space to the nuclear pores for export to the cytoplasm. It is unclear whether transcripts are tethered within the interchromatin space and move toward the nuclear pores using a metabolic energy-requiring, directed mechanism or, alternatively, move randomly by a diffusion-based process. We discuss here recent progress in understanding this step of gene expression, including our experiments tracking the movement of intranuclear poly(A) RNA in living cells. Our results and those of others are most consistent with a model in which newly synthesized mRNAs diffuse throughout the interchromatin space until they randomly encounter and are captured by the export machinery. Because the export machinery appears to preferentially bind transport-competent mRNAs (complexed with the correct complement of nuclear proteins), this diffusion-based model for intranuclear RNA movement potentially allows for a significant level of posttranscriptional control of gene expression.

  10. O-GlcNAc-glycosylation of {beta}-catenin regulates its nuclear localization and transcriptional activity

    SciTech Connect

    Sayat, Ria; Leber, Brian; Grubac, Vanja; Wiltshire, Lesley; Persad, Sujata

    2008-09-10

    {beta}-catenin plays a role in intracellular adhesion and regulating gene expression. The latter role is associated with its oncogenic properties. Phosphorylation of {beta}-catenin controls its intracellular expression but mechanism/s that regulates the nuclear localization of {beta}-catenin is unknown. We demonstrate that O-GlcNAc glycosylation (O-GlcNAcylation) of {beta}-catenin negatively regulates its levels in the nucleus. We show that normal prostate cells (PNT1A) have significantly higher amounts of O-GlcNAcylated {beta}-catenin compared to prostate cancer (CaP) cells. The total nuclear levels of {beta}-catenin are higher in the CaP cells than PNT1A but only a minimal fraction of the nuclear {beta}-catenin in the CaP cells are O-GlcNAcylated. Increasing the levels of O-GlcNAcylated {beta}-catenin in the CaP cells with PUGNAc (O- (2-acetamido-2-deoxy-D-gluco-pyranosylidene) amino-N-phenylcarbamate) treatment is associated with a progressive decrease in the levels of {beta}-catenin in the nucleus. TOPFlash reporter assay and mRNA expressions of {beta}-catenin's target genes indicate that O-GlcNAcylation of {beta}-catenin results in a decrease in its transcriptional activity. We define a novel modification of {beta}-catenin that regulates its nuclear localization and transcriptional function.

  11. Phosphatidylinositol 3-kinase/Akt signaling enhances nuclear localization and transcriptional activity of BRCA1

    SciTech Connect

    Hinton, Cimona V.; Fitzgerald, Latricia D.; Thompson, Marilyn E. . E-mail: methompson@mmc.edu

    2007-05-15

    Signaling pathways involved in regulating nuclear-cytoplasmic distribution of BRCA1 have not been previously reported. Here, we provide evidence that heregulin {beta}1-induced activation of the Akt pathway increases the nuclear content of BRCA1. First, treatment of T47D breast cancer cells with heregulin {beta}1 results in a two-fold increase in nuclear BRCA1 as assessed by FACS analysis, immunoblotting and immunofluorescence. This heregulin-induced increase in nuclear BRCA1 is blocked by siRNA-mediated down-regulation of Akt. Second, mutation of threonine 509 in BRCA1, the site of Akt phosphorylation, to an alanine, attenuates the ability of heregulin to induce BRCA1 nuclear accumulation. These data suggest that Akt-catalyzed phosphorylation of BRCA1 is required for the heregulin-regulated nuclear concentration of BRCA1. Because most functions ascribed to BRCA1 occur within the nucleus, we postulated that phosphorylation-dependent nuclear accumulation of BRCA1 would result in enhanced nuclear activity, specifically transcriptional activity, of BRCA1. This postulate is affirmed by our observation that the ability of BRCA1 to transactivate GADD45 promoter constructs was enhanced in T47D cells treated with heregulin {beta}1. Furthermore, the heterologous expression of BRCA1 in HCC1937 human breast cancer cells, which have constitutively active Akt, also induces GADD45 promoter activity, whereas the expression of BRCA1 in which threonine 509 has been mutated to an alanine is able to only minimally induce promoter activity. These findings implicate Akt in upstream events leading to BRCA1 nuclear localization and function.

  12. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization.

    PubMed

    Kawai, Yumiko; Garduño, Lakisha; Theodore, Melanie; Yang, Jianqi; Arinze, Ifeanyi J

    2011-03-01

    Activation of Nrf2 by covalent modifications that release it from its inhibitor protein Keap1 has been extensively documented. In contrast, covalent modifications that may regulate its action after its release from Keap1 have received little attention. Here we show that CREB-binding protein induced acetylation of Nrf2, increased binding of Nrf2 to its cognate response element in a target gene promoter, and increased Nrf2-dependent transcription from target gene promoters. Heterologous sirtuin 1 (SIRT1) decreased acetylation of Nrf2 as well as Nrf2-dependent gene transcription, and its effects were overridden by dominant negative SIRT1 (SIRT1-H355A). The SIRT1-selective inhibitors EX-527 and nicotinamide stimulated Nrf2-dependent gene transcription, whereas resveratrol, a putative activator of SIRT1, was inhibitory, mimicking the effect of SIRT1. Mutating lysine to alanine or to arginine at Lys(588) and Lys(591) of Nrf2 resulted in decreased Nrf2-dependent gene transcription and abrogated the transcription-activating effect of CREB-binding protein. Furthermore, SIRT1 had no effect on transcription induced by these mutants, indicating that these sites are acetylation sites. Microscope imaging of GFP-Nrf2 in HepG2 cells as well as immunoblotting for Nrf2 showed that acetylation conditions resulted in increased nuclear localization of Nrf2, whereas deacetylation conditions enhanced its cytoplasmic rather than its nuclear localization. We posit that Nrf2 in the nucleus undergoes acetylation, resulting in binding, with basic-region leucine zipper protein(s), to the antioxidant response element and consequently in gene transcription, whereas deacetylation disengages it from the antioxidant response element, thereby resulting in transcriptional termination and subsequently in its nuclear export. PMID:21196497

  13. Nuclear receptor-induced transcription is driven by spatially and timely restricted waves of ROS

    PubMed Central

    Perillo, Bruno; Di Santi, Annalisa; Cernera, Gustavo; Ombra, Maria Neve; Castoria, Gabriella; Migliaccio, Antimo

    2014-01-01

    Gene expression is governed by chromatin mainly through posttranslational modifications at the N-terminal tails of nucleosomal histone proteins. According to the histone code theory, peculiar sets of such modifications (marks) give rise to reproducible final effects on transcription and, very recently, a further level of complexity has been highlighted in binary switches between specific marks at adjacent residues. In particular, disappearance of dimethyl-lysine 9 in histone H3 is faced by phosphorylation of the following serine during activation of gene expression. Demethylation of lysine 9 by the lysine-specific demethylase 1 (LSD1) is a pre-requisite for addition of the phosphoryl mark to serine 10 and an essential step in the transcriptional control by estrogens. It generates a local burst of oxygen reactive species (ROS) that induce oxidation of nearby nucleotides and recruitment of repair enzymes with a consequent formation of single or double stranded nicks on DNA that modify chromatin flexibility in order to allow correct assembly of the transcriptional machinery.   We describe here the molecular mechanism by which members of the family of nuclear receptors prevent the potential damage to DNA during transcription of target genes elicited by the use of ROS to shape chromatin. The mechanism is based on the presence of phosphorylated serine 10 in histone H3 to prevent unbalanced DNA oxidation waves. We also discuss the opportunities raised by the use of voluntary derangement of this servo system to induce selective death in hormone-responsive transformed cells. PMID:25482200

  14. The AP-1 family member FOS blocks transcriptional activity of the nuclear receptor steroidogenic factor 1

    PubMed Central

    Sirianni, Rosa; Nogueira, Edson; Bassett, Mary H.; Carr, Bruce R.; Suzuki, Takashi; Pezzi, Vincenzo; Andò, Sebastiano; Rainey, William E.

    2010-01-01

    Steroid production in the adrenal zona glomerulosa is under the control of angiotensin II (Ang II), which, upon binding to its receptor, activates protein kinase C (PKC) within these cells. PKC is a potent inhibitor of the steroidogenic enzyme CYP17. We have demonstrated that, in the ovary, PKC activates expression of FOS, a member of the AP-1 family, and increased expression of this gene is linked to CYP17 downregulation. However, the pathway and the molecular mechanism responsible for the inhibitory effect of PKC on CYP17 expression are not defined. Herein, we demonstrated that Ang II inhibited CYP17 through PKC and ERK1/2-activated FOS and that blocking FOS expression decreased PKC-mediated inhibition. Although CYP17 transcription was activated by the nuclear receptor SF-1, expression of FOS resulted in a decrease in SF-1-mediated gene transcription. FOS physically interacted with the hinge region of SF-1 and modulated its transactivity, thus preventing binding of cofactors such as SRC1 and CBP, which were necessary to fully activate CYP17 transcription. Collectively, these results indicate a new regulatory mechanism for SF-1 transcriptional activity that might influence adrenal zone-specific expression of CYP17, a mechanism that can potentially be applied to other steroidogenic tissues. PMID:20980388

  15. Multiple early transcripts and splicing of the Autographa californica nuclear polyhedrosis virus IE-1 gene.

    PubMed Central

    Chisholm, G E; Henner, D J

    1988-01-01

    The immediate-early IE-1 gene of Autographa californica nuclear polyhedrosis virus was cloned, and its nucleotide sequence was determined. Sequence analysis indicated that this gene would encode a protein of 582 amino acids with a predicted molecular weight of 66,822. Analysis of IE-1 gene expression during baculovirus infection identified two transcripts. One, 1.9 kilobases (kb), was expressed at constant steady-state levels throughout infection, whereas the other, 2.1 kb, was expressed only early in infection. Analysis of IE-1 cDNA clones demonstrated that the 2.1-kb transcript contained the entire 1.9-kb transcript (exon 1) plus an additional 5' end (exon 0). Genomic Southern analysis placed the exon 0 sequences on the EcoRI B fragment, 4 kilobase pairs upstream of exon 1. Sequencing of the upstream region identified an open reading frame whose 5' end was identical to the exon 0 sequences in the cDNAs. Examination of the genomic DNA sequences around the exon-exon junction revealed sequences similar to published consensus splice acceptor and donor sequences. This is the first example of splicing of any viral transcript during baculovirus infection. Images PMID:3043024

  16. Nuclear speckles are detention centers for transcripts containing expanded CAG repeats.

    PubMed

    Urbanek, Martyna O; Jazurek, Magdalena; Switonski, Pawel M; Figura, Grzegorz; Krzyzosiak, Wlodzimierz J

    2016-09-01

    The human genetic disorders caused by CAG repeat expansions in the translated sequences of various genes are called polyglutamine (polyQ) diseases because of the cellular "toxicity" of the mutant proteins. The contribution of mutant transcripts to the pathogenesis of these diseases is supported by several observations obtained from cellular models of these disorders. Here, we show that the common feature of cell lines modeling polyQ diseases is the formation of nuclear CAG RNA foci. We performed qualitative and quantitative analyses of these foci in numerous cellular models endogenously and exogenously expressing mutant transcripts by fluorescence in situ hybridization (FISH). We compared the CAG RNA foci of polyQ diseases with the CUG foci of myotonic dystrophy type 1 and found substantial differences in their number and morphology. Smaller differences within the polyQ disease group were also revealed and included a positive correlation between the foci number and the CAG repeat length. We show that expanded CAA repeats, also encoding glutamine, did not trigger RNA foci formation and foci formation is independent of the presence of mutant polyglutamine protein. Using FISH combined with immunofluorescence, we demonstrated partial co-localization of CAG repeat foci with MBNL1 alternative splicing factor, which explains the mild deregulation of MBNL1-dependent genes. We also showed that foci reside within nuclear speckles in diverse cell types: fibroblasts, lymphoblasts, iPS cells and neuronal progenitors and remain dependent on integrity of these nuclear structures. PMID:27239700

  17. Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes

    PubMed Central

    Sharili, Amir S.; Kenny, Fiona N.; Vartiainen, Maria K.; Connelly, John T.

    2016-01-01

    The actin cytoskeleton is a classic biomechanical mediator of cell migration. While it is known that actin also shuttles in and out of the nucleus, its functions within this compartment remain poorly understood. In this study, we investigated how nuclear actin regulates keratinocyte gene expression and cell behavior. Gene expression profiling of normal HaCaT keratinocytes compared to HaCaTs over-expressing wild-type β-actin or β-actin tagged with a nuclear localization sequence (NLS-actin), identified multiple adhesive and cytoskeletal genes, such as MYL9, ITGB1, and VCL, which were significantly down-regulated in keratinocytes with high levels of nuclear actin. In addition, genes associated with transcriptional regulation and apoptosis were up-regulated in cells over expressing NLS-actin. Functionally, accumulation of actin in the nucleus altered cytoskeletal and focal adhesion organization and inhibited cell motility. Exclusion of endogenous actin from the nucleus by knocking down Importin 9 reversed this phenotype and enhanced cell migration. Based on these findings, we conclude that the level of actin in the nucleus is a transcriptional regulator for tuning keratinocyte migration. PMID:27650314

  18. Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes.

    PubMed

    Sharili, Amir S; Kenny, Fiona N; Vartiainen, Maria K; Connelly, John T

    2016-01-01

    The actin cytoskeleton is a classic biomechanical mediator of cell migration. While it is known that actin also shuttles in and out of the nucleus, its functions within this compartment remain poorly understood. In this study, we investigated how nuclear actin regulates keratinocyte gene expression and cell behavior. Gene expression profiling of normal HaCaT keratinocytes compared to HaCaTs over-expressing wild-type β-actin or β-actin tagged with a nuclear localization sequence (NLS-actin), identified multiple adhesive and cytoskeletal genes, such as MYL9, ITGB1, and VCL, which were significantly down-regulated in keratinocytes with high levels of nuclear actin. In addition, genes associated with transcriptional regulation and apoptosis were up-regulated in cells over expressing NLS-actin. Functionally, accumulation of actin in the nucleus altered cytoskeletal and focal adhesion organization and inhibited cell motility. Exclusion of endogenous actin from the nucleus by knocking down Importin 9 reversed this phenotype and enhanced cell migration. Based on these findings, we conclude that the level of actin in the nucleus is a transcriptional regulator for tuning keratinocyte migration. PMID:27650314

  19. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    The following is a review of research accomplished in the first two years of funding for the above mentioned project. The work performed is a molecular characterization of nuclear mutants of Chlamydomonas reinhardtii which are deficient in different stages in the post-transcriptional expression of a single chloroplast encoded polypeptide, the D2 protein of Photosystem II. Our long-term goals are to understand the molecular mechanisms by which nuclear gene products affect the expression of chloroplast genes. Specifically, we which to understand how specific nuclear gene products affect the turnover rate of the D2 encoding mRNA (psbD), how other nuclear encoded factors work to promote the translation of psbD mRNA and/or stabilize the D2 protein, and what the role of the D2 protein itself is in Photosystem II assembly and in the control of expression of other chloroplast genes. This progress report will be organized into four major sections concerning (I) The characterization of nuclear mutants affected in D2 translation/turnover, (II) The study of trans-acting factors which associate with the 5{prime} end of the psbD mRNA, (III) In vitro mutagenesis of the psbD gene, and (IV) Additional studies.

  20. Nuclear Import of Transcription Factor BR-C Is Mediated by Its Interaction with RACK1

    PubMed Central

    Wang, Yonghu; Meng, Meng; Wei, Ling; Li, Zhiqing; Kang, Lixia; Peng, Jian; Xia, Qingyou

    2014-01-01

    The transcription factor Broad Complex (BR-C) is an early ecdysone response gene in insects and contains two types of domains: two zinc finger domains for the activation of gene transcription and a Bric-a-brac/Tramtrack/Broad complex (BTB) domain for protein-protein interaction. Although the mechanism of zinc finger-mediated gene transcription is well studied, the partners interacting with the BTB domain of BR-C has not been elucidated until now. Here, we performed a yeast two-hybrid screen using the BTB domain of silkworm BR-C as bait and identified the receptor for activated C-kinase 1 (RACK1), a scaffolding/anchoring protein, as the novel partner capable of interacting with BR-C. The interaction between BR-C and RACK1 was further confirmed by far-western blotting and pull-down assays. Importantly, the disruption of this interaction, via RNAi against the endogenous RACK1 gene or deletion of the BTB domain, abolished the nuclear import of BR-C in BmN4 cells. In addition, RNAi against the endogenous PKC gene as well as phosphorylation-deficient mutation of the predicted PKC phosphorylation sites at either Ser373 or Thr406 in BR-C phenocopied RACK1 RNAi and altered the nuclear localization of BR-C. However, when BTB domain was deleted, phosphorylation mimics of either Ser373 or Thr406 had no effect on the nuclear import of BR-C. Moreover, mutating the PKC phosphorylation sites at Ser373 and Thr406 or deleting the BTB domain significantly decreased the transcriptional activation of a BR-C target gene. Given that RACK1 is necessary for recruiting PKC to close and phosphorylate target proteins, we suggest that the PKC-mediated phosphorylation and nuclear import of BR-C is determined by its interaction with RACK1. This novel finding will be helpful for further deciphering the mechanism underlying the role of BR-C proteins during insect development. PMID:25280016

  1. Transcriptional activation of NAD{sup +}-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    SciTech Connect

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD{sup +}-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  2. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer.

    PubMed

    Catz, S D; Johnson, J L

    2001-11-01

    This work presents direct evidence that the bcl-2 gene is transcriptionally regulated by nuclear factor-kappa B (NF-kappa B) and directly links the TNF-alpha/NF-kappa B signaling pathway with Bcl-2 expression and its pro-survival response in human prostate carcinoma cells. DNase I footprinting, gel retardation and supershift analysis identified a NF-kappa B site in the bcl-2 p2 promoter. In the context of a minimal promoter, this bcl-2 p2 site 1 increased transcription 10-fold in the presence of the p50/p65 expression vectors, comparable to the increment observed with the consensus NF-kappa B site, while for the full p2 promoter region transcriptional activity was increased sixfold by over-expression of NF-kappa B, an effect eliminated by mutating the bcl-2 p2 site 1. The expression of Bcl-2 has been linked to the hormone-resistant phenotype of advanced prostate cancer. Here we show that an increase in the level of expression of Bcl-2 in the human prostate carcinoma cell line LNCaP observed in response to hormone withdrawal is further augmented by TNF-alpha treatment, and this effect is abated by inhibitors of NF-kappa B. Concomitantly, bcl-2 p2 promoter studies in LNCaP cells show a 40-fold increase in promoter activity after stimulation with TNF-alpha in the absence of hormone.

  3. Agonist ligands mediate the transcriptional response of nuclear receptor heterodimers through distinct stoichiometric assemblies with coactivators.

    PubMed

    Pavlin, Mark Remec; Brunzelle, Joseph S; Fernandez, Elias J

    2014-09-01

    The constitutive androstane (CAR) and retinoid X receptors (RXR) are ligand-mediated transcription factors of the nuclear receptor protein superfamily. Functional CAR:RXR heterodimers recruit coactivator proteins, such as the steroid receptor coactivator-1 (SRC1). Here, we show that agonist ligands can potentiate transactivation through both coactivator binding sites on CAR:RXR, which distinctly bind two SRC1 molecules. We also observe that SRC1 transitions from a structurally plastic to a compact form upon binding CAR:RXR. Using small angle x-ray scattering (SAXS) we show that the CAR(tcp):RXR(9c)·SRC1 complex can encompass two SRC1 molecules compared with the CAR(tcp):RXR·SRC1, which binds only a single SRC1. Moreover, sedimentation coefficients and molecular weights determined by analytical ultracentrifugation confirm the SAXS model. Cell-based transcription assays show that disrupting the SRC1 binding site on RXR alters the transactivation by CAR:RXR. These data suggest a broader role for RXR within heterodimers, whereas offering multiple strategies for the assembly of the transcription complex.

  4. Nuclear transcription factor Y and its roles in cellular processes related to human disease.

    PubMed

    Ly, Luong Linh; Yoshida, Hideki; Yamaguchi, Masamitsu

    2013-01-01

    Nuclear transcription factor Y (NF-Y) is an example of a transcriptional regulation factor in eukaryotes consisting of three different subunits, NF-YA, NF-YB and NF-YC, which are all necessary for formation of NF-Y complexes and binding to CCAAT boxes in promoters of its target genes. Highly conserved between human and Drosophila, NF-Y regulates transcription of various genes related to the cell cycle and various human diseases. Drosophila models have been widely used as tools for studying genetics and developmental biology and more recently for analyzing the functions of human disease genes, including those responsible for developmental and neurological disorders, cancer, cardiovascular disease and metabolic and storage diseases, as well as genes required for function of the visual, auditory and immune systems. In this review, in vivo findings from Drosophila models relevant to the roles of NF-Y in various human diseases are summarized. Recent studies have demonstrated novel contributions of dNF-Y to apoptosis and apoptosis-induced proliferation, and in photoreceptor cell differentiation during the development of the Drosophila compound eye.

  5. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    SciTech Connect

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  6. Deacetylase-Independent Function of HDAC3 in Transcription and Metabolism Requires Nuclear Receptor Corepressor

    PubMed Central

    Sun, Zheng; Feng, Dan; Fang, Bin; Mullican, Shannon E.; You, Seo-Hee; Lim, Hee-Woong; Everett, Logan J.; Nabel, Christopher S.; Li, Yun; Selvakumaran, Vignesh; Won, Kyoung-Jae; Lazar, Mitchell A.

    2013-01-01

    Histone deacetylases (HDACs) are believed to regulate gene transcription by catalyzing deacetylation reactions. HDAC3 depletion in mouse liver upregulates lipogenic genes and results in severe hepatosteatosis. Here we show that pharmacologic HDAC inhibition in primary hepatocytes causes histone hyperacetylation but does not upregulate expression of HDAC3 target genes. Meanwhile, deacetylase-dead HDAC3 mutants can rescue hepatosteatosis and repress lipogenic genes expression in HDAC3-depleted mouse liver, demonstrating that histone acetylation is insufficient to activate gene transcription. Mutations abolishing interactions with the nuclear receptor corepressor (NCOR or SMRT) render HDAC3 nonfunctional in vivo. Additionally, liver-specific knockout of NCOR, but not SMRT, causes metabolic and transcriptomal alterations resembling those of mice without hepatic HDAC3, demonstrating that interaction with NCOR is essential for deacetylase-independent function of HDAC3. These findings highlight non-enzymatic roles of a major HDAC in transcriptional regulation in vivo and warrant reconsideration of the mechanism of action of HDAC inhibitors. PMID:24268577

  7. Strategies to regulate transcription factor–mediated gene positioning and interchromosomal clustering at the nuclear periphery

    PubMed Central

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren

    2016-01-01

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. PMID:26953353

  8. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    SciTech Connect

    Sun, Zhen; Xiang, Wenqing; Guo, Yajuan; Chen, Zhi; Liu, Wei; Lu, Daru

    2011-06-10

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  9. Nuclear transcription factors: a new approach to enhancing cellular responses to ALA-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Maytin, Edward V.; Anand, Sanjay; Sato, Nobuyuki; Moore, Brian; Mack, Judith; Gasbarre, Christopher; Keevey, Samantha; Ortel, Bernhard; Sinha, Alok; Khachemoune, Amor

    2006-02-01

    Photodynamic therapy (PDT) using aminolevulinic acid (ALA) relies upon the uptake of ALA into cancer cells, where it is converted into a porphyrin intermediate, protoporphyrin IX (PpIX) that is highly photosensitizing. For large or resistant tumors, however, ALA/PDT is often not completely effective due to inadequate PpIX levels. Therefore, new approaches to enhance the intracellular production of PpIX are sought. Here, we describe a general approach to improve intracellular PpIX accumulation via manipulations that increase the expression of an enzyme, coproporphyrinogen oxidase (CPO), that is rate-determining for PpIX production. We show that nuclear hormones that promote terminal differentiation, e.g. vitamin D or androgens, can also increase the accumulation of PpIX and the amount of killing of the target cells upon exposure to light. These hormones bind to intracellular hormone receptors that translocate to the nucleus, where they act as transcription factors to increase the expression of target genes. We have found that several other transcription factors associated with terminal differentiation, including members of the CCAAT enhancer binding (C/EBP) family, and a homeobox protein named Hoxb13, are also capable of enhancing PpIX accumulation. These latter transcription factors appear to interact directly with the CPO gene promoter, resulting in enhanced CPO transcriptional activity. Our data in several different cell systems, including epithelial cells of the skin and prostate cancer cells, indicate that enhancement of CPO expression and PpIX accumulation represents a viable new approach toward improving the efficacy of ALA/PDT.

  10. Hepatocyte nuclear factor 4 alpha ligand binding and F domains mediate interaction and transcriptional synergy with the pancreatic islet LIM HD transcription factor Isl1.

    PubMed

    Eeckhoute, J; Briche, I; Kurowska, M; Formstecher, P; Laine, B

    2006-12-01

    The orphan nuclear receptor HNF4alpha and the LIM homeodomain factor Isl1 are co-expressed in pancreatic beta-cells and are required for the differentiation and function of these endocrine cells. HNF4alpha activates numerous genes and mutations in its gene are associated with maturity onset diabetes of the young. Cofactors and transcription factors that interact with HNF4alpha are crucial to modulate its transcriptional activity, since the latter is not regulated by conventional ligands. These transcriptional partners interact mainly through the HNF4alpha AF-1 module and the ligand binding domain, which contains the AF-2 module. Here, we showed that Isl1 could enhance the HNF4alpha-mediated activation of transcription of the HNF1alpha, PPARalpha and insulin I promoters. Isl1 interacted with the HNF4alpha AF-2 but also required the HNF4alpha carboxy-terminal F domain for optimal interaction and transcriptional synergy. More specifically, we found that naturally occurring HNF4alpha isoforms, differing only in their F domain, exhibited different abilities to interact and synergize with Isl1, extending the crucial transcriptional modulatory role of the HNF4alpha F domain. HNF4alpha interacted with both the homeodomain and the first LIM domain of Isl1. We found that the transcriptional synergy between HNF4alpha and Isl1 involved an increase in HNF4alpha loading on promoter. The effect was more pronounced on the rat insulin I promoter containing binding sites for both HNF4alpha and Isl1 than on the human HNF1alpha promoter lacking an Isl1 binding site. Moreover, Isl1 could mediate the recruitment of the cofactor CLIM2 resulting in a further transcriptional enhancement of the HNF1alpha promoter activity.

  11. Towards understanding the epigenetics of transcription by chromatin structure and the nuclear matrix

    PubMed Central

    Martins, Rui Pires; Krawetz, Stephen A.

    2010-01-01

    Summary The eukaryotic nucleus houses a significant amount of information that is carefully ordered to ensure that genes can be transcribed as needed throughout development and differentiation. The genome is partitioned into regions containing functional transcription units, providing the means for the cell to selectively activate some, while keeping other regions of the genome silent. Over the last quarter of a century the structure of chromatin and how it is influenced by epigenetics has come into the forefront of modern biology. However, it has thus far failed to identify the mechanism by which individual genes or domains are selected for expression. Through covalent and structural modification of the DNA and chromatin proteins, epigenetics maintains both active and silent chromatin states. This is the “other” genetic code, often superseding that dictated by the nucleotide sequence. The nuclear matrix is rich in many of the factors that govern nuclear processes. It includes a host of unknown factors that may provide our first insight into the structural mechanism responsible for the genetic selectivity of a differentiating cell. This review will consider the nuclear matrix as an integral component of the epigenetic mechanism. PMID:21243045

  12. Transcription of Nrdp1 by the androgen receptor is regulated by nuclear Filamin A in prostate cancer

    PubMed Central

    Savoy, Rosalinda M.; Chen, Liqun; Siddiqui, Salma; Melgoza, Frank U.; Durbin-Johnson, Blythe; Drake, Christiana; Jathal, Maitreyee K.; Bose, Swagata; Steele, Thomas M.; Mooso, Benjamin A.; D’Abronzo, Leandro S.; Fry, William H.; Carraway, Kermit L.; Mudryj, Maria; Ghosh, Paramita M.

    2015-01-01

    Prostate cancer (PCa) progression is regulated by the androgen receptor (AR); however, patients undergoing androgen deprivation therapy (ADT) for disseminated PCa eventually develop castration resistant PCa (CRPC). Studies showed that AR, a transcription factor, occupies distinct genomic loci in CRPC compared to hormone-naïve PCa; however, the cause for this distinction was unknown. The E3 ubiquitin ligase Nrdp1 is a model AR target modulated by androgens in hormone-naïve PCa but not in CRPC. Using Nrdp1, we investigated how AR switches transcription programs during CRPC progression. The proximal Nrdp1 promoter contains an androgen response element (ARE); we demonstrated AR binding to this ARE in androgen-sensitive PCa. Analysis of hormone-naive human prostatectomy specimens revealed correlation between Nrdp1 and AR expression, supporting AR regulation of Nrdp1 levels in androgen-sensitive tissue. However, despite sustained AR levels, AR binding to the Nrdp1 promoter and Nrdp1 expression were suppressed in CRPC. Elucidation of the suppression mechanism demonstrated correlation of Nrdp1 levels with nuclear localization of the scaffolding protein Filamin A (FlnA) which, as we previously showed, is itself repressed following ADT in many CRPC tumors. Restoration of nuclear FlnA in CRPC stimulated AR binding to Nrdp1 ARE, increased its transcription, and augmented Nrdp1 protein expression and responsiveness to ADT, indicating that nuclear FlnA controls AR-mediated androgen-sensitive Nrdp1 transcription. Expressions of other AR-regulated genes lost in CRPC were also re-established by nuclear FlnA. Thus our data demonstrate that nuclear FlnA promotes androgen-dependent AR-regulated transcription in PCa, while loss of nuclear FlnA in CRPC alters the AR-regulated transcription program. PMID:25759396

  13. Herpes simplex virus type 1 protein IE63 affects the nuclear export of virus intron-containing transcripts.

    PubMed Central

    Phelan, A; Dunlop, J; Clements, J B

    1996-01-01

    Using in situ hybridization labelling methods, we have determined that the herpes simplex virus type 1 immediate-early protein IE63 (ICP27) affects the cellular localization of virus transcripts. Intronless transcripts from the IE63, UL38, and UL44 genes are rapidly exported to and accumulate in the cytoplasm throughout infection, in either the presence or absence of IE63 expression. The intron-containing transcripts from the IE110 and UL15 genes, while initially cytoplasmic, are increasingly retained in the nucleus in distinct clumps as infection proceeds, and the clumps colocalize with the redistributed small nuclear ribonucleoprotein particles. Infections with the IE63 mutant virus 27-lacZ demonstrated that in the absence of IE63 expression, nuclear retention of intron-containing transcripts was lost. The nuclear retention of UL15 transcripts, which demonstrated both nuclear and cytoplasmic label, was not as pronounced as that of the IE110 transcripts, and we propose that this is due to the late expression of UL15. Infections with the mutant virus 110C1, in which both introns of IE110 have been precisely removed (R.D. Everett, J. Gen. Virol. 72:651-659, 1991), demonstrated IE110 transcripts in both the nucleus and the cytoplasm; thus, exon definition sequences which regulate viral RNA transport are present in the IE110 transcript. By in situ hybridization a stable population of polyadenylated RNAs was found to accumulate in the nucleus in spots, most of which were separate from the small nuclear ribonucleoprotein particle clumps. The IE63 protein has an involvement, either direct or indirect, in the regulation of nucleocytoplasmic transport of viral transcripts, a function which contrasts with the recently proposed role of herpes simplex virus type 1 Us11 in promoting the nuclear export of partially spliced or unspliced transcripts (J.-J. Diaz, M. Duc Dodon, N. Schaerer-Uthurraly, D. Simonin, K. Kindbeiter, L. Gazzolo, and J.-J. Madjar, Nature [London] 379

  14. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling. PMID:26900020

  15. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling.

  16. Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription.

    PubMed

    Barucker, Christian; Harmeier, Anja; Weiske, Joerg; Fauler, Beatrix; Albring, Kai Frederik; Prokop, Stefan; Hildebrand, Peter; Lurz, Rudi; Heppner, Frank L; Huber, Otmar; Multhaup, Gerhard

    2014-07-18

    Although soluble species of the amyloid-β peptide Aβ42 correlate with disease symptoms in Alzheimer disease, little is known about the biological activities of amyloid-β (Aβ). Here, we show that Aβ peptides varying in lengths from 38 to 43 amino acids are internalized by cultured neuroblastoma cells and can be found in the nucleus. By three independent methods, we demonstrate direct detection of nuclear Aβ42 as follows: (i) biochemical analysis of nuclear fractions; (ii) detection of biotin-labeled Aβ in living cells by confocal laser scanning microscopy; and (iii) transmission electron microscopy of Aβ in cultured cells, as well as brain tissue of wild-type and transgenic APPPS1 mice (overexpression of amyloid precursor protein and presenilin 1 with Swedish and L166P mutations, respectively). Also, this study details a novel role for Aβ42 in nuclear signaling, distinct from the amyloid precursor protein intracellular domain. Chromatin immunoprecipitation showed that Aβ42 specifically interacts as a repressor of gene transcription with LRP1 and KAI1 promoters. By quantitative RT-PCR, we confirmed that mRNA levels of the examined candidate genes were exclusively decreased by the potentially neurotoxic Aβ42 wild-type peptide. Shorter peptides (Aβ38 or Aβ40) and other longer peptides (nontoxic Aβ42 G33A substitution or Aβ43) did not affect mRNA levels. Overall, our data indicate that the nuclear translocation of Aβ42 impacts gene regulation, and deleterious effects of Aβ42 in Alzheimer disease pathogenesis may be influenced by altering the expression profiles of disease-modifying genes.

  17. Transcriptional Regulation of BK Virus by Nuclear Factor of Activated T Cells▿

    PubMed Central

    Jordan, Joslynn A.; Manley, Kate; Dugan, Aisling S.; O'Hara, Bethany A.; Atwood, Walter J.

    2010-01-01

    The human polyomavirus BK virus (BKV) is a common virus for which 80 to 90% of the adult population is seropositive. BKV reactivation in immunosuppressed patients or renal transplant patients is the primary cause of polyomavirus-associated nephropathy (PVN). Using the Dunlop strain of BKV, we found that nuclear factor of activated T cells (NFAT) plays an important regulatory role in BKV infection. Luciferase reporter assays and chromatin immunoprecipitation assays demonstrated that NFAT4 bound to the viral promoter and regulated viral transcription and infection. The mutational analysis of the NFAT binding sites demonstrated complex functional interactions between NFAT, c-fos, c-jun, and the p65 subunit of NF-κB that together influence promoter activity and viral growth. These data indicate that NFAT is required for BKV infection and is involved in a complex regulatory network that both positively and negatively influences promoter activity and viral infection. PMID:19955309

  18. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance

    PubMed Central

    Tsang, Chi Kwan; Liu, Yuan; Thomas, Janice; Zhang, Yanjie; Zheng, X. F. Steven

    2015-01-01

    Summary Superoxide dismutase 1 (Sod1) has been known for nearly half a century for catalysis of superoxide to hydrogen peroxide. Here we report a new Sod1 function in oxidative signaling: in response to elevated endogenous and exogenous reactive oxygen species (ROS), Sod1 rapidly relocates into the nucleus, which is important for maintaining genomic stability. Interestingly, H2O2 is sufficient to promote Sod1 nuclear localization, indicating that it is responding to general ROS rather than Sod1 substrate superoxide. ROS signaling is mediated by Mec1/ATM and its effector Dun1/Cds1 kinase, through Dun1 interaction with Sod1 and regulation of Sod1 by phosphorylation at S60, 99. In the nucleus, Sod1 binds to the promoters and regulates the expression of oxidative resistance and repair genes. Altogether, our study unravels an unorthodox function of Sod1 as a transcription factor and elucidates the regulatory mechanism for its localization. PMID:24647101

  19. Expression Profiles of the Nuclear Receptors and Their Transcriptional Coregulators During Differentiation of Neural Stem Cells

    PubMed Central

    Androutsellis-Theotokis, A.; Chrousos, G. P.; McKay, R. D.; DeCherney, A. H.; Kino, T.

    2013-01-01

    Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0–5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUPTFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands. PMID:22990992

  20. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    SciTech Connect

    Dement, Gregory A.; Maloney, Scott C.; Reeves, Raymond . E-mail: reevesr@mail.wsu.edu

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential ({delta}{psi}{sub m}). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression.

  1. Nuclear Factor of Activated T Cells Transcription Factor Nfatp Controls Superantigen-Induced Lethal Shock

    PubMed Central

    Tsytsykova, Alla V.; Goldfeld, Anne E.

    2000-01-01

    Tumor necrosis factor α (TNF-α) is the key mediator of superantigen-induced T cell lethal shock. Here, we show that nuclear factor of activated T cells transcription factor, NFATp, controls susceptibility to superantigen-induced lethal shock in mice through its activation of TNF-α gene transcription. In NFATp-deficient mice, T cell stimulation leads to delayed induction and attenuation of TNF-α mRNA levels, decreased TNF-α serum levels, and resistance to superantigen-induced lethal shock. By contrast, after lipopolysaccharide (LPS) challenge, serum levels of TNF-α and susceptibility to shock are unaffected. These results demonstrate that NFATp is an essential activator of immediate early TNF-α gene expression in T cells and they present in vivo evidence of the inducer- and cell type–specific regulation of TNF-α gene expression. Furthermore, they suggest NFATp as a potential selective target in the treatment of superantigen-induced lethal shock. PMID:10952728

  2. Role of the liver-enriched transcription factor hepatocyte nuclear factor 1 in transcriptional regulation of the factor V111 gene.

    PubMed

    McGlynn, L K; Mueller, C R; Begbie, M; Notley, C R; Lillicrap, D

    1996-05-01

    Coagulation factor VIII is an essential cofactor required for normal hemostatic function. A deficiency in factor VIII results in the bleeding disorder hemophilia A. Despite the fact that the factor VIII gene was cloned a decade ago, the mechanisms which control its transcription remain unresolved. In our studies, we have characterized 12 protein binding sites within the factor VIII promoter by DNase I protection assays performed with rat liver nuclear extracts. Three of these elements (sites 1 to 3) are situated within the 5' untranslated region of the gene, while three other sites (sites 4 to 6) lie within the first 100 bp upstream of the transcriptional start site. We have identified an additional site (site 7) approximately 300 bp upstream from site 6, as well as a cluster of five sites in a 250-bp region which terminates approximately 1 kb from the transcriptional start site. Seven of these binding sites (sites 2, 3, 4, 6, 7, 9, and 10) bind members of the C/EBP family of transcription factors. DBP also binds to five of these sites (sites 3, 4, 6, 7, and 9). Utilizing transient transfection studies in HepG2 cells, we have shown that deletion of the factor VIII promoter sequences distal to nucleotide -44 results in a significant but small increase in promoter activity. The activity of each of the various 5' deletion constructs is significantly enhanced by cotransfection of C/EBPalpha and D-site-binding protein expression plasmids, while cotransfection of both C/EBPalpha and C/EBPbeta plasmids resulted in a further enhancement of transactivation. These studies also provide evidence of a repressor element located between nucleotides -740 and -1002. Since the minimal promoter sequence (-44 to +148) maintains the transcriptional activity of the full-length promoter sequence, we proceeded to identify additional factors binding to sites 1 to 4. Competition studies revealed that a ubiquitous transcription factor, NF-Y, binds to site 4, while the liver

  3. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors.

    PubMed

    Kojima, Hiroyuki; Takeuchi, Shinji; Van den Eede, Nele; Covaci, Adrian

    2016-03-14

    Organophosphate flame retardants (OPFRs) have been used in a wide variety of applications and detected in several environmental matrices, including indoor air and dust. Continuous human exposure to these chemicals is of growing concern. In this study, the agonistic and/or antagonistic activities of 12 primary OPFR-metabolites against ten human nuclear receptors were examined using cell-based transcriptional assays, and compared to those of their parent compounds. As a result, 3-hydroxylphenyl diphenyl phosphate and 4-hydroxylphenyl diphenyl phosphate showed more potent estrogen receptor α (ERα) and ERβ agonistic activity than did their parent, triphenyl phosphate (TPHP). In addition, these hydroxylated TPHP-metabolites also showed ERβ antagonistic activity at higher concentrations and exhibited pregnane X receptor (PXR) agonistic activity as well as androgen receptor (AR) and glucocorticoid receptor (GR) antagonistic activities at similar levels to those of TPHP. Bis(2-butoxyethyl) 3'-hydroxy-2-butoxyethyl phosphate and 2-hydroxyethyl bis(2-butoxyethyl) phosphate act as PXR agonists at similar levels to their parent, tris(2-butoxyethyl) phosphate. On the other hand, seven diester OPFR-metabolites and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate did not show any receptor activity. Taken together, these results suggest that hydroxylated TPHP-metabolites show increased estrogenicity compared to the parent compound, whereas the diester OPFR-metabolites may have limited nuclear receptor activity compared to their parent triester OPFRs.

  4. Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes.

    PubMed Central

    Tomic, M; Jiang, C K; Epstein, H S; Freedberg, I M; Samuels, H H; Blumenberg, M

    1990-01-01

    In the epidermis, retinoids regulate the expression of keratins, the intermediate filament proteins of epithelial cells. We have cloned the 5' regulatory regions of four human epidermal keratin genes, K#5, K#6, K#10, and K#14, and engineered constructs in which these regions drive the expression of the CAT reporter gene. By co-transfecting the constructs into epithelial cells along with the vectors expressing nuclear receptors for retinoic acid (RA) and thyroid hormone, we have demonstrated that the receptors can suppress the promoters of keratin genes. The suppression is ligand dependent; it is evident both in established cell lines and in primary cultures of epithelial cells. The three RA receptors have similar effects on keratin gene transcription. Our data indicate that the nuclear receptors for RA and thyroid hormone regulate keratin synthesis by binding to negative recognition elements in the upstream DNA sequences of the keratin genes. RA thus has a twofold effect on epidermal keratin expression: qualitatively, it regulates the regulators that effect the switch from basal cell-specific keratins to differentiation-specific ones; and quantitatively, it determines the level of keratin synthesis within the cell by direct interaction of its receptors with the keratin gene promoters. Images PMID:1712634

  5. Transcription-dependent nucleolar cap localization and possible nuclear function of DExH RNA helicase RHAU

    SciTech Connect

    Iwamoto, Fumiko; Stadler, Michael; Chalupnikova, Katerina; Oakeley, Edward; Nagamine, Yoshikuni

    2008-04-01

    RHAU (RNA helicase associated with AU-rich element) is a DExH protein originally identified as a factor accelerating AU-rich element-mediated mRNA degradation. The discovery that RHAU is predominantly localized in the nucleus, despite mRNA degradation occurring in the cytoplasm, prompted us to consider the nuclear functions of RHAU. In HeLa cells, RHAU was found to be localized throughout the nucleoplasm with some concentrated in nuclear speckles. Transcriptional arrest altered the localization to nucleolar caps, where RHAU is closely localized with RNA helicases p68 and p72, suggesting that RHAU is involved in transcription-related RNA metabolism in the nucleus. To see whether RHAU affects global gene expression transcriptionally or posttranscriptionally, we performed microarray analysis using total RNA from RHAU-depleted HeLa cell lines, measuring both steady-state mRNA levels and mRNA half-lives by actinomycin D chase. There was no change in the half-lives of most transcripts whose steady-state levels were affected by RHAU knockdown, suggesting that these transcripts are subjected to transcriptional regulation. We propose that RHAU has a dual function, being involved in both the synthesis and degradation of mRNA in different subcellular compartments.

  6. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells.

    PubMed

    Wada, Takeyoshi; Asahi, Toru; Sawamura, Naoya

    2016-08-26

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. PMID:27329811

  7. A new take on v(d)j recombination: transcription driven nuclear and chromatin reorganization in rag-mediated cleavage.

    PubMed

    Chaumeil, Julie; Skok, Jane A

    2013-12-06

    It is nearly 30 years since the Alt lab first put forward the accessibility model, which proposes that cleavage of the various antigen receptor loci is controlled by lineage and stage specific factors that regulate RAG access. Numerous labs have since demonstrated that locus opening is regulated at multiple levels that include sterile transcription, changes in chromatin packaging, and alterations in locus conformation. Here we focus on the interplay between transcription and RAG binding in facilitating targeted cleavage. We discuss the results of recent studies that implicate transcription in regulating nuclear organization and altering the composition of resident nucleosomes to promote regional access to the recombinase machinery. Additionally we include new data that provide insight into the role of the RAG proteins in defining nuclear organization in recombining T cells.

  8. Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae.

    PubMed

    Numamoto, Minori; Tagami, Shota; Ueda, Yusuke; Imabeppu, Yusuke; Sasano, Yu; Sugiyama, Minetaka; Maekawa, Hiromi; Harashima, Satoshi

    2015-08-01

    The GATA transcription activator Gln3 in the budding yeast (Saccharomyces cerevisiae) activates transcription of nitrogen catabolite repression (NCR)-sensitive genes. In cells grown in the presence of preferred nitrogen sources, Gln3 is phosphorylated in a TOR-dependent manner and localizes in the cytoplasm. In cells grown in non-preferred nitrogen medium or treated with rapamycin, Gln3 is dephosphorylated and is transported from the cytoplasm to the nucleus, thereby activating the transcription of NCR-sensitive genes. Caffeine treatment also induces dephosphorylation of Gln3 and its translocation to the nucleus and transcription of NCR-sensitive genes. However, the details of the mechanism by which phosphorylation controls Gln3 localization and transcriptional activity are unknown. Here, we focused on two regions of Gln3 with nuclear localization signal properties (NLS-K, and NLS-C) and one with nuclear export signal (NES). We constructed various mutants for our analyses: gln3 containing point mutations in all potential phosphoacceptor sites (Thr-339, Ser-344, Ser-347, Ser-355, Ser-391) in the NLS and NES regions to produce non-phosphorylatable (alanine) or mimic-phosphorylatable (aspartic acid) residues; and deletion mutants. We found that phosphorylation of Gln3 was impaired in all of these mutations and that the aspartic acid substitution mutants showed drastic reduction of Gln3-mediated transcriptional activity despite the fact that the mutations had no effect on nuclear localization of Gln3. Our observations suggest that these regions are required for transcription of target genes presumably through dephosphorylation.

  9. Depression of nuclear transcription and extension of mRNA half-life under anoxia in Artemia franciscana embryos.

    PubMed

    van Breukelen, F; Maier, R; Hand, S C

    2000-04-01

    Transcriptional activity, as assessed by nuclear run-on assays, was constant during 10 h of normoxic development for embryos of the brine shrimp Artemia franciscana. Exposure of embryos to only 4 h of anoxia resulted in a 79.3+/-1 % decrease in levels of in-vivo-initiated transcripts, and transcription was depressed by 88. 2+/-0.7 % compared with normoxic controls after 24 h of anoxia (means +/- s.e.m., N=3). Initiation of transcription was fully restored after 1 h of normoxic recovery. Artificially lowering the intracellular pH of aerobic embryos to the value reflective of anoxia (pH 6.7) showed that acidification alone explained over half the transcriptional arrest. Initiation of transcription was not rescued by application of 80 % carbon monoxide under anoxia, which suggests that heme-based oxygen sensing is not involved in this global arrest. When these transcriptional data are combined with the finding that mRNA levels are unchanged for at least 6 h of anoxia, it is clear that the half-life of mRNA is extended at least 8.5-fold compared with that in aerobic embryos. In contrast to the activation of compensatory mechanisms to cope with anoxia that occurs in mammalian cells, A. franciscana embryos enter a metabolically depressed state in which gene expression and mRNA turnover are cellular costs apparently not compatible with survival and in which extended tolerance supercedes the requirement for continued metabolic function. PMID:10708633

  10. Protein kinase A activation enhances β-catenin transcriptional activity through nuclear localization to PML bodies.

    PubMed

    Zhang, Mei; Mahoney, Emilia; Zuo, Tao; Manchanda, Parmeet K; Davuluri, Ramana V; Kirschner, Lawrence S

    2014-01-01

    The Protein Kinase A (PKA) and Wnt signaling cascades are fundamental pathways involved in cellular development and maintenance. In the osteoblast lineage, these pathways have been demonstrated functionally to be essential for the production of mineralized bone. Evidence for PKA-Wnt crosstalk has been reported both during tumorigenesis and during organogenesis, and the nature of the interaction is thought to rely on tissue and cell context. In this manuscript, we analyzed bone tumors arising from mice with activated PKA caused by mutation of the PKA regulatory subunit Prkar1a. In primary cells from these tumors, we observed relocalization of β-catenin to intranuclear punctuate structures, which were identified as PML bodies. Cellular redistribution of β-catenin could be recapitulated by pharmacologic activation of PKA. Using 3T3-E1 pre-osteoblasts as a model system, we found that PKA phosphorylation sites on β-catenin were required for nuclear re-localization. Further, β-catenin's transport to the nucleus was accompanied by an increase in canonical Wnt-dependent transcription, which also required the PKA sites. PKA-Wnt crosstalk in the cells was bi-directional, including enhanced interactions between β-catenin and the cAMP-responsive element binding protein (CREB) and transcriptional crosstalk between the Wnt and PKA signaling pathways. Increases in canonical Wnt/β-catenin signaling were associated with a decrease in the activity of the non-canonical Wnt/Ror2 pathway, which has been shown to antagonize canonical Wnt signaling. Taken together, this study provides a new understanding of the complex regulation of the subcellular distribution of β-catenin and its differential protein-protein interaction that can be modulated by PKA signaling. PMID:25299576

  11. Heterogeneous nuclear ribonucleoprotein K represses transcription from a cytosine/thymidine-rich element in the osteocalcin promoter

    PubMed Central

    2004-01-01

    HnRNP K (heterogeneous nuclear ribonucleoprotein K) was biochemically purified from a screen of proteins co-purifying with binding activity to the osteocalcin promoter. We identify hnRNP K as a novel repressor of osteocalcin gene transcription. Overexpression of hnRNP K lowers the expression of osteocalcin mRNA by 5-fold. Furthermore, luciferase reporter assays demonstrate that overexpression of hnRNP K represses osteocalcin transcription from a CT (cytosine/thymidine)-rich element in the proximal promoter. Electrophoretic mobility-shift analysis reveals that recombinant hnRNP K binds to the CT-rich element, but binds ss (single-stranded), rather than ds (double-stranded) oligonucleotide probes. Accordingly, hnRNP K antibody can supershift a binding activity present in nuclear extracts using ss sense, but not antisense or ds oligonucleotides corresponding to the CT-rich −95 to −47 osteocalcin promoter. Importantly, addition of recombinant hnRNP K to ROS 17/2.8 nuclear extract disrupts formation of a DNA–protein complex on ds CT element oligonucleotides. This action is mutually exclusive with hnRNP K's ability to bind ss DNA. These results demonstrate that hnRNPK, although co-purified with a dsDNA-binding activity, does not itself bind dsDNA. Rather, hnRNP K represses osteocalcin gene transcription by inhibiting the formation of a transcriptional complex on the CT element of the osteocalcin promoter. PMID:15361071

  12. Cancer-causing mutations in a novel transcription-dependent nuclear export motif of VHL abrogate oxygen-dependent degradation of hypoxia-inducible factor.

    PubMed

    Khacho, Mireille; Mekhail, Karim; Pilon-Larose, Karine; Payette, Josianne; Lee, Stephen

    2008-01-01

    It is thought that degradation of nuclear proteins by the ubiquitylation system requires nuclear-cytoplasmic trafficking of E3 ubiquitin ligases. The von Hippel-Lindau (VHL) tumor suppressor protein is the substrate recognition component of a Cullin-2-containing E3 ubiquitin ligase that recruits hypoxia-inducible factor (HIF) for oxygen-dependent degradation. We demonstrated that VHL engages in nuclear-cytoplasmic trafficking that requires ongoing transcription to promote efficient HIF degradation. Here, we report the identification of a discreet motif, DXGX(2)DX(2)L, that directs transcription-dependent nuclear export of VHL and which is targeted by naturally occurring mutations associated with renal carcinoma and polycythemia in humans. The DXGX(2)DX(2)L motif is also found in other proteins, including poly(A)-binding protein 1, to direct its transcription-dependent nuclear export. We define DXGX(2)DX(2)L as TD-NEM (transcription-dependent nuclear export motif), since inhibition of transcription by actinomycin D or 5,6-dichlorobenzimidazole abrogates its nuclear export activity. Disease-causing mutations of key residues of TD-NEM restrain the ability of VHL to efficiently mediate oxygen-dependent degradation of HIF by altering its nuclear export dynamics without affecting interaction with its substrate. These results identify a novel nuclear export motif, further highlight the role of nuclear-cytoplasmic shuttling of E3 ligases in degradation of nuclear substrates, and provide evidence that disease-causing mutations can target subcellular trafficking.

  13. Identification of two independent transcriptional activation domains in the Autographa californica multicapsid nuclear polyhedrosis virus IE1 protein.

    PubMed

    Slack, J M; Blissard, G W

    1997-12-01

    The Autographa californica multicapsid nuclear polyhedrosis virus immediate-early protein, IE1, is a 582-amino-acid phosphoprotein that regulates the transcription of early viral genes. Deletion of N-terminal regions of IE1 in previous studies (G. R. Kovacs, J. Choi, L. A. Guarino, and M. D. Summers, J. Virol. 66:7429-7437, 1992) resulted in the loss of transcriptional activation, suggesting that this region may contain an acidic activation domain. To identify independently functional transcriptional activation domains, we developed a heterologous system in which potential regulatory domains were fused with a modified Escherichia coli Lac repressor protein that contains a nuclear localization signal (NLacR). Transcriptional activation by the resulting NLacR-IE1 chimeras was measured with a basal baculovirus early promoter containing optimized Lac repressor binding sites (lac operators). Chimeras containing IE1 peptides dramatically activated transcription of the basal promoter only when lac operator sequences were present. In addition, transcriptional activation by NLacR-IE1 chimeras was allosterically regulated by the lactose analog, isopropyl-beta-D-thiogalactopyranoside (IPTG). For a more detailed analysis of IE1 regulatory domains, the M1 to T266 N-terminal portion of IE1 was subdivided (on the basis of average amino acid charge) into five smaller regions which were fused in various combinations to NLacR. Regions M1 to N125 and A168 to G222 were identified as independent transcriptional activation domains. Some NLacR-IE1 chimeras exhibited retarded migration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. As with wild-type IE1, this aberrant gel mobility was associated with phosphorylation. Mapping studies with the NLacR-IE1 chimeras indicate that the M1 to A168 region of IE1 is necessary for this phosphorylation-associated effect.

  14. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals

    PubMed Central

    Qiu, Jing; Tan, Yan-Wei; Hagenston, Anna M.; Martel, Marc-Andre; Kneisel, Niclas; Skehel, Paul A.; Wyllie, David J. A.; Bading, Hilmar; Hardingham, Giles E.

    2013-01-01

    The recent identification of the mitochondrial Ca2+ uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca2+ uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca2+ levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca2+, resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca2+ overload when cytoplasmic Ca2+ levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca2+ and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca2+ uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders. PMID:23774321

  15. Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals

    PubMed Central

    Goeman, Frauke; Manni, Isabella; Artuso, Simona; Ramachandran, Balaji; Toietta, Gabriele; Bossi, Gianluca; Rando, Gianpaolo; Cencioni, Chiara; Germoni, Sabrina; Straino, Stefania; Capogrossi, Maurizio C.; Bacchetti, Silvia; Maggi, Adriana; Sacchi, Ada; Ciana, Paolo; Piaggio, Giulia

    2012-01-01

    In vivo imaging involving the use of genetically engineered animals is an innovative powerful tool for the noninvasive assessment of the molecular and cellular events that are often targets of therapy. On the basis of the knowledge that the activity of the nuclear factor-Y (NF-Y) transcription factor is restricted in vitro to proliferating cells, we have generated a transgenic reporter mouse, called MITO-Luc (for mitosis-luciferase), in which an NF-Y–dependent promoter controls luciferase expression. In these mice, bioluminescence imaging of NF-Y activity visualizes areas of physiological cell proliferation and regeneration during response to injury. Using this tool, we highlight for the first time a role of NF-Y activity on hepatocyte proliferation during liver regeneration. MITO-Luc reporter mice should facilitate investigations into the involvement of genes in cell proliferation and provide a useful model for studying aberrant proliferation in disease pathogenesis. They should be also useful in the development of new anti/proproliferative drugs and assessment of their efficacy and side effects on nontarget tissues. PMID:22379106

  16. Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals.

    PubMed

    Goeman, Frauke; Manni, Isabella; Artuso, Simona; Ramachandran, Balaji; Toietta, Gabriele; Bossi, Gianluca; Rando, Gianpaolo; Cencioni, Chiara; Germoni, Sabrina; Straino, Stefania; Capogrossi, Maurizio C; Bacchetti, Silvia; Maggi, Adriana; Sacchi, Ada; Ciana, Paolo; Piaggio, Giulia

    2012-04-01

    In vivo imaging involving the use of genetically engineered animals is an innovative powerful tool for the noninvasive assessment of the molecular and cellular events that are often targets of therapy. On the basis of the knowledge that the activity of the nuclear factor-Y (NF-Y) transcription factor is restricted in vitro to proliferating cells, we have generated a transgenic reporter mouse, called MITO-Luc (for mitosis-luciferase), in which an NF-Y-dependent promoter controls luciferase expression. In these mice, bioluminescence imaging of NF-Y activity visualizes areas of physiological cell proliferation and regeneration during response to injury. Using this tool, we highlight for the first time a role of NF-Y activity on hepatocyte proliferation during liver regeneration. MITO-Luc reporter mice should facilitate investigations into the involvement of genes in cell proliferation and provide a useful model for studying aberrant proliferation in disease pathogenesis. They should be also useful in the development of new anti/proproliferative drugs and assessment of their efficacy and side effects on nontarget tissues. PMID:22379106

  17. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals.

    PubMed

    Qiu, Jing; Tan, Yan-Wei; Hagenston, Anna M; Martel, Marc-Andre; Kneisel, Niclas; Skehel, Paul A; Wyllie, David J A; Bading, Hilmar; Hardingham, Giles E

    2013-01-01

    The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders.

  18. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPAR{gamma}

    SciTech Connect

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar; Park, Yun-Yong; Kim, Kyung Tae; Park, Sang Chul; Lee, Young Chul; Kim, Jae Bum Choi, Hueng-Sik

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) {gamma} is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPAR{gamma}. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPAR{gamma} in a dose-dependent manner. DAX-1 directly competed with the PPAR{gamma} coactivator (PGC)-1{alpha} for binding to PPAR{gamma}. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPAR{gamma} target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPAR{gamma} and performs a potential function in the regulation of PPAR{gamma}-mediated cellular differentiation.

  19. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPARgamma.

    PubMed

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar; Park, Yun-Yong; Kim, Kyung Tae; Park, Sang Chul; Lee, Young Chul; Kim, Jae Bum; Choi, Hueng-Sik

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) gamma is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPARgamma. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPARgamma in a dose-dependent manner. DAX-1 directly competed with the PPARgamma coactivator (PGC)-1alpha for binding to PPARgamma. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPARgamma target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPARgamma and performs a potential function in the regulation of PPARgamma-mediated cellular differentiation. PMID:18381063

  20. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products. Progress report, June 1, 1990--June 30, 1992

    SciTech Connect

    Kuchka, M.R.

    1992-08-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5` UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  1. Coupling signalling pathways to transcriptional control: nuclear factors responsive to cAMP.

    PubMed

    Tamai, K T; Monaco, L; Nantel, F; Zazopoulos, E; Sassone-Corsi, P

    1997-01-01

    Several endocrine and neuronal functions are governed by the cAMP-dependent signalling pathway. In eukaryotes, transcriptional regulation upon stimulation of the adenylyl cyclase signalling pathway is mediated by a family of cAMP-responsive nuclear factors. This family consists of a large number of members that may act as activators or repressors. These factors contain the basic domain/ leucine zipper motifs and bind as dimers to cAMP-response elements (CRE). The function of CRE-binding proteins (CREBs) is modulated by phosphorylation by several kinases. Direct activation of gene expression by CREB requires phosphorylation by the cAMP-dependent protein kinase A to the serine-133 residue. Among the repressors, ICER (Inducible cAMP Early Repressor) deserves special mention. ICER is generated from an alternative CREM promoter and constitutes the only inducible cAMP-responsive element binding protein. Furthermore, ICER negatively autoregulates the alternative promoter, thus generating a feedback loop. In contrast to the other members of the CRE-binding protein family, ICER expression is tissue specific and developmentally regulated. The kinetics of ICER expression are characteristic of an early response gene. Our results indicate that CREM plays a key physiological and developmental role within the hypothalamic-pituitary-gonadal axis. We have previously shown that the transcriptional activator CREM is highly expressed in postmeiotic cells. Spermiogenesis is a complex process by which postmeiotic male germ cells differentiate into mature spermatozoa. This process involves remarkable structural and biochemical changes that are under the hormonal control of the hypothalamic-pituitary axis. We have addressed the specific role of CREM in spermiogenesis using CREM-mutant mice generated by homologous recombination. Analysis of the seminiferous epithelium from mutant male mice reveals that spermatogenesis stops at the first step of spermiogenesis. Late spermatids are

  2. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65

    PubMed Central

    Snow, Wanda M.; Pahlavan, Payam S.; Djordjevic, Jelena; McAllister, Danielle; Platt, Eric E.; Alashmali, Shoug; Bernstein, Michael J.; Suh, Miyoung; Albensi, Benedict C.

    2015-01-01

    Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory. PMID:26635523

  3. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65.

    PubMed

    Snow, Wanda M; Pahlavan, Payam S; Djordjevic, Jelena; McAllister, Danielle; Platt, Eric E; Alashmali, Shoug; Bernstein, Michael J; Suh, Miyoung; Albensi, Benedict C

    2015-01-01

    Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory.

  4. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons

    PubMed Central

    Getz, Angela M.; Visser, Frank; Bell, Erin M.; Xu, Fenglian; Flynn, Nichole M.; Zaidi, Wali; Syed, Naweed I.

    2016-01-01

    Synapse formation and plasticity depend on nuclear transcription and site-specific protein targeting, but the molecular mechanisms that coordinate these steps have not been well defined. The MEN1 tumor suppressor gene, which encodes the protein menin, is known to induce synapse formation and plasticity in the CNS. This synaptogenic function has been conserved across evolution, however the underlying molecular mechanisms remain unidentified. Here, using central neurons from the invertebrate Lymnaea stagnalis, we demonstrate that menin coordinates subunit-specific transcriptional regulation and synaptic clustering of nicotinic acetylcholine receptors (nAChR) during neurotrophic factor (NTF)-dependent excitatory synaptogenesis, via two proteolytic fragments generated by calpain cleavage. Whereas menin is largely regarded as a nuclear protein, our data demonstrate a novel cytoplasmic function at central synapses. Furthermore, this study identifies a novel synaptogenic mechanism in which a single gene product coordinates the nuclear transcription and postsynaptic targeting of neurotransmitter receptors through distinct molecular functions of differentially localized proteolytic fragments. PMID:27538741

  5. Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor 4α.

    PubMed

    Theofilatos, Dimitris; Anestis, Aristomenis; Hashimoto, Koshi; Kardassis, Dimitris

    2016-01-15

    Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5' deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells. This analysis showed that the activity of the human LXRα promoter was significantly reduced by deleting the -111 to -42 region suggesting the presence of positive regulatory elements in this short proximal fragment. Bioinformatics data including motif search and ChIP-Seq revealed the presence of a potential binding motif for Hepatocyte Nuclear Factor 4 α (HNF-4α) in this area. Overexpression of HNF-4α in HEK 293T cells increased the expression of all LXRα promoter constructs except -42/+384. In line, silencing the expression of endogenous HNF-4α in HepG2 cells was associated with reduced LXRα protein levels and reduced activity of the -111/+384 LXRα promoter but not of the -42/+384 promoter. Using ChiP assays in HepG2 cells combined with DNAP assays we mapped the novel HNF-4α specific binding motif (H4-SBM) in the -50 to -40 region of the human LXRα promoter. A triple mutation in this H4-SBM abolished HNF-4α binding and reduced the activity of the promoter to 65% relative to the wild type. Furthermore, the mutant promoter could not be transactivated by HNF-4α. In conclusion, our data indicate that HNF-4α may have a wider role in cell and plasma cholesterol homeostasis by controlling the expression of LXRα in hepatic cells. PMID:26692490

  6. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    SciTech Connect

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  7. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants.

    PubMed

    Kowluru, Renu A; Koppolu, Prashant; Chakrabarti, Subrata; Chen, Shali

    2003-11-01

    Oxidative stress is increased in the retina in diabetes, and long-term administration of antioxidants inhibits the development of retinopathy in diabetic rats. The purpose of this study is to determine how diabetes affects the activation of a redox-sensitive nuclear transcriptional factor in the retina, NF-kappaB, and its inhibition by antioxidants. Alloxan diabetic rats were assigned to receive standard diet or the diet supplemented with multiple antioxidants, including ascorbic acid, Trolox, dl alpha-tocopherol acetate, N-acetyl cysteine, beta-carotene, and selenium for up to 14 months. NF-kappaB activation, oxidative stress and nitric oxides were measured in the retina at 2, 8 and 14 months of diabetes. Retinal NF-kappaB was activated by about 60% at two months after induction of diabetes, remained activated for up to 14 months of diabetes, and the duration of diabetes had no effect on the intensity of NF-kappaB activation. Similarly, oxidative stress and nitric oxides were elevated by over 50% in the retina of rats diabetic for 14 months, and nitrotyrosine levels were elevated by over two folds. Administration of the antioxidants to the rats for the entire duration of diabetes inhibited activation of NF-kappaB and elevations in oxidative stress, nitric oxides and nitrotyrosine formation without ameliorating the severity of hyperglycemia. These in vivo results were confirmed by in vitro studies showing that high glucose activates NF-kappaB and elevates NO and lipid peroxides in both retinal endothelial cells and pericytes that can be inhibited by antioxidants. Thus, the results suggest that the activation of retinal NF-KB in diabetes is an early event in the development of retinopathy, and it remains active when the retinal capillary cell death is accelerating, and histopathology is developing. Beneficial effects of antioxidants on the development of diabetic retinopathy might involve inhibition of NF-kappaB activation and its downstream pathways in the retina.

  8. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

    PubMed

    Serpeloni, Mariana; Moraes, Carolina Borsoi; Muniz, João Renato Carvalho; Motta, Maria Cristina Machado; Ramos, Augusto Savio Peixoto; Kessler, Rafael Luis; Inoue, Alexandre Haruo; daRocha, Wanderson Duarte; Yamada-Ogatta, Sueli Fumie; Fragoso, Stenio Perdigão; Goldenberg, Samuel; Freitas-Junior, Lucio H; Avila, Andréa Rodrigues

    2011-01-01

    In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX) multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei -except the fibrillar center of nucleolus- and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II), but not RNA polymerase I (RNA pol I) or Spliced Leader (SL) transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and decrease of

  9. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration.

    PubMed

    Bakay, Marina; Wang, Zuyi; Melcon, Gisela; Schiltz, Louis; Xuan, Jianhua; Zhao, Po; Sartorelli, Vittorio; Seo, Jinwook; Pegoraro, Elena; Angelini, Corrado; Shneiderman, Ben; Escolar, Diana; Chen, Yi-Wen; Winokur, Sara T; Pachman, Lauren M; Fan, Chenguang; Mandler, Raul; Nevo, Yoram; Gordon, Erynn; Zhu, Yitan; Dong, Yibin; Wang, Yue; Hoffman, Eric P

    2006-04-01

    Mutations of lamin A/C (LMNA) cause a wide range of human disorders, including progeria, lipodystrophy, neuropathies and autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD). EDMD is also caused by X-linked recessive loss-of-function mutations of emerin, another component of the inner nuclear lamina that directly interacts with LMNA. One model for disease pathogenesis of LMNA and emerin mutations is cell-specific perturbations of the mRNA transcriptome in terminally differentiated cells. To test this model, we studied 125 human muscle biopsies from 13 diagnostic groups (125 U133A, 125 U133B microarrays), including EDMD patients with LMNA and emerin mutations. A Visual and Statistical Data Analyzer (VISDA) algorithm was used to statistically model cluster hierarchy, resulting in a tree of phenotypic classifications. Validations of the diagnostic tree included permutations of U133A and U133B arrays, and use of two probe set algorithms (MAS5.0 and MBEI). This showed that the two nuclear envelope defects (EDMD LMNA, EDMD emerin) were highly related disorders and were also related to fascioscapulohumeral muscular dystrophy (FSHD). FSHD has recently been hypothesized to involve abnormal interactions of chromatin with the nuclear envelope. To identify disease-specific transcripts for EDMD, we applied a leave-one-out (LOO) cross-validation approach using LMNA patient muscle as a test data set, with reverse transcription-polymerase chain reaction (RT-PCR) validations in both LMNA and emerin patient muscle. A high proportion of top-ranked and validated transcripts were components of the same transcriptional regulatory pathway involving Rb1 and MyoD during muscle regeneration (CRI-1, CREBBP, Nap1L1, ECREBBP/p300), where each was specifically upregulated in EDMD. Using a muscle regeneration time series (27 time points) we develop a transcriptional model for downstream consequences of LMNA and emerin mutations. We propose that key interactions between the nuclear

  10. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity

    PubMed Central

    Holden, Jennifer M.; Koreny, Ludek; Obado, Samson; Ratushny, Alexander V.; Chen, Wei-Ming; Chiang, Jung-Hsien; Kelly, Steven; Chait, Brian T.; Aitchison, John D.; Rout, Michael P.; Field, Mark C.

    2014-01-01

    The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina. PMID:24600046

  11. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  12. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis.

    PubMed

    Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin

    2013-12-01

    Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with werewolf (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER's nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization.

  13. Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in Arabidopsis[C][W

    PubMed Central

    Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin

    2013-01-01

    Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with WEREWOLF (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER’s nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization. PMID:24368785

  14. Nuclear sequestration of COL1A1 mRNA transcript associated with type I osteogenesis imperfecta (OI)

    SciTech Connect

    Primorac, D.; Stover, M.L.; McKinstry, M.B.

    1994-09-01

    Previously we identified an OI type I patient with a splice donor mutation that resulted in intron 26 retention instead of exon skipping and sequestration of normal levels of the mutant transcript in the nuclear compartment. Intron retention was consistent with the exon definition hypothesis for splice site selection since the size of the exon-intron-exon unit was less than 300 bp. Furthermore, the retained intron contained in-frame stop codons which is thought to cause the mutant RNA to remain within the nucleus rather than appearing in the cytoplasm. To test these hypotheses, genomic fragments containing the normal sequence or the donor mutation were cloned into a collagen minigene and expressed in stably tansfected NIH 3T3 cells. None of the modifications to the normal intron altered the level of RNA that accumulated in the cytoplasm, as expected. However none of the modifications to the mutant intron allowed accumulation of normal levels of mRNA in the cytoplasm. Moreover, in contrast to our findings in the patient`s cells only low levels of mutant transcript were found in the nucleus; a fraction of the transcript did appear in the cytoplasm which had spliced the mutant donor site correctly. Nuclear run-on experiments demonstrated equal levels of transcription from each transgene. Expression of another donor mutation known to cause in-frame exon skipping in OI type IV was accurately reproduced in the minigene in transfected 3T3 cells. Our experience suggests that either mechanism can lead to formation of a null allele possibly related to the type of splicing events surrounding the potential stop codons. Understanding the rules governing inactivation of a collagen RNA transcript may be important in designing a strategy to inactivate a dominate negative mutation associated with the more severe forms of OI.

  15. Regulation of Nuclear Localization and Transcriptional Activity of TFII-I by Bruton’s Tyrosine Kinase

    PubMed Central

    Novina, Carl D.; Kumar, Sanjay; Bajpai, Urmila; Cheriyath, Venugopalan; Zhang, Keming; Pillai, Shiv; Wortis, Henry H.; Roy, Ananda L.

    1999-01-01

    Bruton’s tyrosine kinase (Btk) is required for normal B-cell development, as defects in Btk lead to X-linked immunodeficiency (xid) in mice and X-linked agammaglobulinemia (XLA) in humans. Here we demonstrate a functional interaction between the multifunctional transcription factor TFII-I and Btk. Ectopic expression of wild-type Btk enhances TFII-I-mediated transcriptional activation and its tyrosine phosphorylation in transient-transfection assays. Mutation of Btk in either the PH domain (R28C, as in the murine xid mutation) or the kinase domain (K430E) compromises its ability to enhance both the tyrosine phosphorylation and the transcriptional activity of TFII-I. TFII-I associates constitutively in vivo with wild-type Btk and kinase-inactive Btk but not xid Btk. However, membrane immunoglobulin M cross-linking in B cells leads to dissociation of TFII-I from Btk. We further show that while TFII-I is found in both the nucleus and cytoplasm of wild-type and xid primary resting B cells, nuclear TFII-I is greater in xid B cells. Most strikingly, receptor cross-linking of wild-type (but not xid) B cells results in increased nuclear import of TFII-I. Taken together, these data suggest that although the PH domain of Btk is primarily responsible for its physical interaction with TFII-I, an intact kinase domain of Btk is required to enhance transcriptional activity of TFII-I in the nucleus. Thus, mutations impairing the physical and/or functional association between TFII-I and Btk may result in diminished TFII-I-dependent transcription and contribute to defective B-cell development and/or function. PMID:10373551

  16. Nuclear respiratory factor 2 regulates the transcription of AMPA receptor subunit GluA2 (Gria2).

    PubMed

    Priya, Anusha; Johar, Kaid; Nair, Bindu; Wong-Riley, Margaret T T

    2014-12-01

    Neuronal activity is highly dependent on energy metabolism. Nuclear respiratory factor 2 (NRF-2) tightly couples neuronal activity and energy metabolism by transcriptionally co-regulating all 13 subunits of an important energy-generating enzyme, cytochrome c oxidase (COX), as well as critical subunits of excitatory NMDA receptors. AMPA receptors are another major class of excitatory glutamatergic receptors that mediate most of the fast excitatory synaptic transmission in the brain. They are heterotetrameric proteins composed of various combinations of GluA1-4 subunits, with GluA2 being the most common one. We have previously shown that GluA2 (Gria2) is transcriptionally regulated by nuclear respiratory factor 1 (NRF-1) and specificity protein 4 (Sp4), which also regulate all subunits of COX. However, it was not known if NRF-2 also couples neuronal activity and energy metabolism by regulating subunits of the AMPA receptors. By means of multiple approaches, including electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate the expression of Gria2, but not of Gria1, Gria3, or Gria4 genes in neurons. By regulating the GluA2 subunit of the AMPA receptor, NRF-2 couples energy metabolism and neuronal activity at the transcriptional level through a concurrent and parallel mechanism with NRF-1 and Sp4. PMID:25245478

  17. Nucleolin is important for Epstein–Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription

    PubMed Central

    Chen, Ya-Lin; Liu, Cheng-Der; Cheng, Chi-Ping; Zhao, Bo; Hsu, Hao-Jen; Shen, Chih-Long; Chiu, Shu-Jun; Kieff, Elliott; Peng, Chih-wen

    2014-01-01

    Epstein–Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for EBV episome maintenance, replication, and transcription. These effects are mediated by EBNA1 binding to cognate oriP DNA, which comprise 20 imperfect copies of a 30-bp dyad symmetry enhancer and an origin for DNA replication. To identify cell proteins essential for these EBNA1 functions, EBNA1 associated cell proteins were immune precipitated and analyzed by liquid chromatography-tandem mass spectrometry. Nucleolin (NCL) was identified to be EBNA1 associated. EBNA1's N-terminal 100 aa and NCL's RNA-binding domains were critical for EBNA1/NCL interaction. Lentivirus shRNA-mediated NCL depletion substantially reduced EBNA1 recruitment to oriP DNA, EBNA1-dependent transcription of an EBV oriP luciferase reporter, and EBV genome maintenance in lymphoblastoid cell lines. NCL RNA-binding domain K429 was critical for ATP and EBNA1 binding. NCL overexpression increased EBNA1 binding to oriP and transcription, whereas NCL K429A was deficient. Moreover, NCL silencing impaired lymphoblastoid cell line growth. These experiments reveal a surprisingly critical role for NCL K429 in EBNA1 episome maintenance and transcription, which may be a target for therapeutic intervention. PMID:24344309

  18. Nuclear Factor 1 and T-Cell Factor/LEF Recognition Elements Regulate Pitx2 Transcription in Pituitary Development▿

    PubMed Central

    Ai, Di; Wang, Jun; Amen, Melanie; Lu, Mei-Fang; Amendt, Brad A.; Martin, James F.

    2007-01-01

    Pitx2, a paired-related homeobox gene that is mutated in Rieger syndrome I, is the earliest known marker of oral ectoderm. Pitx2 was previously shown to be required for tooth, palate, and pituitary development in mice; however, the mechanisms regulating Pitx2 transcription in the oral ectoderm are poorly understood. Here we used an in vivo transgenic approach to investigate the mechanisms regulating Pitx2 transcription. We identified a 7-kb fragment that directs LacZ expression in oral ectoderm and in many of its derivatives. Deletion analysis of transgenic embryos reduced this fragment to a 520-bp region that directed LacZ activity to Rathke's pouch. A comparison of the mouse and human sequences revealed a conserved nuclear factor 1 (NF-1) recognition element near a consensus T-cell factor (TCF)/LEF binding site. The mutation of either site individually abolished LacZ activity in transgenic embryos, identifying Pitx2 as a direct target of Wnt signaling in pituitary development. These findings uncover a requirement for NF-1 and TCF factors in Pitx2 transcriptional regulation in the pituitary and provide insight into the mechanisms controlling region-specific transcription in the oral ectoderm and its derivatives. PMID:17562863

  19. Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells

    PubMed Central

    Tilton, Susan C.; Menachery, Vineet D.; Gralinski, Lisa E.; Schäfer, Alexandra; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Chang, Jean; Luna, Maria L.; Long, Casey E.; Shukla, Anil K.; Bankhead, Armand R.; Burkett, Susan E.; Zornetzer, Gregory; Tseng, Chien-Te Kent; Metz, Thomas O.; Pickles, Raymond; McWeeney, Shannon; Smith, Richard D.; Katze, Michael G.; Waters, Katrina M.; Baric, Ralph S.

    2013-01-01

    The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo. PMID:23365422

  20. Upregulation of Nuclear Factor-Related Kappa B Suggests a Disorder of Transcriptional Regulation in Minimal Change Nephrotic Syndrome

    PubMed Central

    Candelier, Marina; Lang, Philippe; Sahali, Djillali

    2012-01-01

    Immune mechanisms underlying the pathophysiology of idiopathic nephrotic syndrome, the most frequent glomerular disease in children, are believed to involve a systemic disorder of T cell function and cell mediated immunity. How these perturbations take place remains unclear. We report here that NFRKB, a member of the chromatin remodeling complex, is upregulated in MCNS relapse, mainly in CD4+T cells and B cells and undergo post-translational modifications including sumoylation. We showed that NFRKB was highly expressed in nuclear compartment during the relapse, while it was restricted to cytoplasm in remission. NFRKB induced the activation of AP1 signaling pathway by upregulating the expression of c-jun. We showed that NFRKB promotes hypomethylation of genomic DNA, suggesting its implication in regulation of gene expression by enhancing the binding of transcription factors through chromatin remodeling. These results suggest for the first time that NFRKB may be involved in the disorders of transcriptional regulation commonly observed in MCNS relapse. PMID:22291976

  1. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products. Progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Kuchka, M.R.

    1992-05-01

    The following is a review of research accomplished in the first two years of funding for the above mentioned project. The work performed is a molecular characterization of nuclear mutants of Chlamydomonas reinhardtii which are deficient in different stages in the post-transcriptional expression of a single chloroplast encoded polypeptide, the D2 protein of Photosystem II. Our long-term goals are to understand the molecular mechanisms by which nuclear gene products affect the expression of chloroplast genes. Specifically, we which to understand how specific nuclear gene products affect the turnover rate of the D2 encoding mRNA (psbD), how other nuclear encoded factors work to promote the translation of psbD mRNA and/or stabilize the D2 protein, and what the role of the D2 protein itself is in Photosystem II assembly and in the control of expression of other chloroplast genes. This progress report will be organized into four major sections concerning (I) The characterization of nuclear mutants affected in D2 translation/turnover, (II) The study of trans-acting factors which associate with the 5{prime} end of the psbD mRNA, (III) In vitro mutagenesis of the psbD gene, and (IV) Additional studies.

  2. Interaction with plant transcription factors can mediate nuclear import of phytochrome B.

    PubMed

    Pfeiffer, Anne; Nagel, Marie-Kristin; Popp, Claudia; Wüst, Florian; Bindics, János; Viczián, András; Hiltbrunner, Andreas; Nagy, Ferenc; Kunkel, Tim; Schäfer, Eberhard

    2012-04-10

    Phytochromes (phy) are red/far-red-absorbing photoreceptors that regulate the adaption of plant growth and development to changes in ambient light conditions. The nuclear transport of the phytochromes upon light activation is regarded as a key step in phytochrome signaling. Although nuclear import of phyA is regulated by the transport facilitators far red elongated hypocotyl 1 (FHY1) and fhy1-like, an intrinsic nuclear localization signal was proposed to be involved in the nuclear accumulation of phyB. We recently showed that nuclear import of phytochromes can be analyzed in a cell-free system consisting of isolated nuclei of the unicellular green algae Acetabularia acetabulum. We now show that this system is also versatile to elucidate the mechanism of the nuclear transport of phyB. We tested the nuclear transport characteristics of full-length phyB as well as N- and C-terminal phyB fragments in vitro and showed that the nuclear import of phyB can be facilitated by phytochrome-interacting factor 3 (PIF3). In vivo measurements of phyB nuclear accumulation in the absence of PIF1, -3, -4, and -5 indicate that these PIFs are the major transport facilitators during the first hours of deetiolation. Under prolonged irradiations additional factors might be responsible for phyB nuclear transport in the plant.

  3. Dexamethasone inhibits human interleukin 2 but not interleukin 2 receptor gene expression in vitro at the level of nuclear transcription.

    PubMed Central

    Boumpas, D T; Anastassiou, E D; Older, S A; Tsokos, G C; Nelson, D L; Balow, J E

    1991-01-01

    Glucocorticosteroids have an inhibitory effect on the expression of interleukin 2 (IL-2) and interleukin 2 receptor (IL-2R) genes. To determine the mechanisms of this inhibition, human T lymphocytes were stimulated with mitogens in the presence of dexamethasone. Nuclear transcription run-off assays showed that high doses of dexamethasone inhibited the transcription of the IL-2 gene but not that of the IL-2R gene. Post-transcriptionally, high doses of dexamethasone (10(-4) M) were required to inhibit IL-2R mRNA levels by 50%, whereas lower doses (10(-6) M) inhibited by greater than 70% the accumulation of IL-2 mRNA. IL-2 mRNA half-life decreased in the presence of dexamethasone (10(-6) M) by approximately 50%. At the protein product level, dexamethasone inhibited both IL-2 production, as well as cell surface and soluble forms of IL-2R. IL-2R gene expression was inhibited for at least 72 h after exposure of cells to dexamethasone. In the presence of exogenous IL-2, dexamethasone failed to exert a significant effect on the production of IL-2R protein. These data indicate that dexamethasone has a greater effect on the expression of the IL-2 gene than on the IL-2R gene. Dexamethasone both inhibits transcription of the IL-2 gene and decreases the stability of IL-2 mRNA. The effect of dexamethasone on the IL-2R gene is post-transcriptional and may result indirectly from decreased IL-2 production. Images PMID:2022743

  4. Rac, PAK and p38 regulate cell contact-dependent nuclear translocation of myocardin-related transcription factor.

    PubMed

    Sebe, Attila; Masszi, András; Zulys, Matthew; Yeung, Tony; Speight, Pam; Rotstein, Ori D; Nakano, Hiroyasu; Mucsi, István; Szászi, Katalin; Kapus, András

    2008-01-23

    We investigated the mechanism whereby cell contact injury stimulates the alpha-smooth muscle actin (SMA) promoter, a key process for epithelial-mesenchymal transition (EMT) during organ fibrosis. Contact disruption by low-Ca(2+) medium (LCM) activated Rac, PAK and p38 MAPK, and triggered the nuclear accumulation of myocardin-related transcription factor (MRTF), an inducer of the SMA promoter. Dominant negative (DN) Rac, DN-PAK, DN-p38, or the p38 inhibitor SB203580 suppressed the LCM-induced nuclear accumulation of MRTF and the activation of the SMA promoter. These studies define novel pathway(s) involving Rac, PAK, and p38 in the regulation of MRTF and the contact-dependent induction of EMT.

  5. Rac, PAK and p38 regulate cell contact-dependent nuclear translocation of myocardin-related transcription factor

    PubMed Central

    Sebe, Attila; Masszi, András; Zulys, Matthew; Yeung, Tony; Speight, Pam; Rotstein, Ori. D.; Nakano, Hiroyasu; Mucsi, István; Szászi, Katalin; Kapus, András

    2016-01-01

    We investigated the mechanism whereby cell contact injury stimulates the α-smooth muscle actin (SMA) promoter, a key process for epithelial–mesenchymal transition (EMT) during organ fibrosis. Contact disruption by low-Ca2+ medium (LCM) activated Rac, PAK and p38 MAPK, and triggered the nuclear accumulation of myocardin-related transcription factor (MRTF), an inducer of the SMA promoter. Dominant negative (DN) Rac, DN-PAK, DN-p38, or the p38 inhibitor SB203580 suppressed the LCM-induced nuclear accumulation of MRTF and the activation of the SMA promoter. These studies define novel pathway(s) involving Rac, PAK, and p38 in the regulation of MRTF and the contact-dependent induction of EMT. PMID:18154735

  6. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.

    PubMed

    Xu, Li; Lin, Zhongyuan; Tao, Qing; Liang, Mingxiang; Zhao, Gengmao; Yin, Xiangzhen; Fu, Ruixin

    2014-01-01

    Members of the plant NUCLEAR FACTOR Y (NF-Y) family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola), each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14) were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12) and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14) were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12) and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14) and two NF-YC members (BnNF-YC2 and BnNF-YC3) were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides insight into

  7. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.

    PubMed

    Xu, Li; Lin, Zhongyuan; Tao, Qing; Liang, Mingxiang; Zhao, Gengmao; Yin, Xiangzhen; Fu, Ruixin

    2014-01-01

    Members of the plant NUCLEAR FACTOR Y (NF-Y) family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola), each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14) were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12) and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14) were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12) and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14) and two NF-YC members (BnNF-YC2 and BnNF-YC3) were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides insight into

  8. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis.

    PubMed

    Kang, Sona; Tsai, Linus T; Zhou, Yiming; Evertts, Adam; Xu, Su; Griffin, Michael J; Issner, Robbyn; Whitton, Holly J; Garcia, Benjamin A; Epstein, Charles B; Mikkelsen, Tarjei S; Rosen, Evan D

    2015-01-01

    Insulin resistance is a cardinal feature of Type 2 diabetes (T2D) and a frequent complication of multiple clinical conditions, including obesity, ageing and steroid use, among others. How such a panoply of insults can result in a common phenotype is incompletely understood. Furthermore, very little is known about the transcriptional and epigenetic basis of this disorder, despite evidence that such pathways are likely to play a fundamental role. Here, we compare cell autonomous models of insulin resistance induced by the cytokine tumour necrosis factor-α or by the steroid dexamethasone to construct detailed transcriptional and epigenomic maps associated with cellular insulin resistance. These data predict that the glucocorticoid receptor and vitamin D receptor are common mediators of insulin resistance, which we validate using gain- and loss-of-function studies. These studies define a common transcriptional and epigenomic signature in cellular insulin resistance enabling the identification of pathogenic mechanisms. PMID:25503565

  9. Sensitive detection of transcription factors in cell nuclear extracts by using a molecular beacons based amplification strategy.

    PubMed

    Zhang, Kai; Wang, Ke; Zhu, Xue; Xie, Minhao

    2016-03-15

    Monitoring transcription factor (TF) levels provides an important assessment of the state of cell populations. Unfortunately, traditional methods for monitoring TF concentration are generally cumbersome and time-consuming. We developed an ultrasensitive one-pot TF detection method that uses target-molecular beacons-dependent amplification (TMDA) fluorescence strategy to circumvent the aforementioned limitations in TF detection. In this assay, we employed a DNA1/DNA2 duplex as the reporting probe and a stem-loop DNA molecular beacon (MB) as the signaling probe. The integration of protein-DNA1/DNA2 duplex and exonuclease III (Exo III) digestion can convert the detection of transcription factors to the detection of reporter oligonucleotides. The subsequent hybridization of the reporter oligonucleotides with the molecular beacons opens the stem-loop structure. The formation of the DNA complex triggers amplification reaction and the recovery of the fluorescence. This assay exhibits high sensitivity with a detection limit of 2.2 pM and a detection range of 3 orders of magnitude, which is superior to most currently used methods for transcription factor detection. More importantly, this method is suitable for the direct detection of TFs in crude nuclear extracts of cancer cells.

  10. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function.

    PubMed

    Gallardo-Montejano, Violeta I; Saxena, Geetu; Kusminski, Christine M; Yang, Chaofeng; McAfee, John L; Hahner, Lisa; Hoch, Kathleen; Dubinsky, William; Narkar, Vihang A; Bickel, Perry E

    2016-01-01

    Dysfunctional cellular lipid metabolism contributes to common chronic human diseases, including type 2 diabetes, obesity, fatty liver disease and diabetic cardiomyopathy. How cells balance lipid storage and mitochondrial oxidative capacity is poorly understood. Here we identify the lipid droplet protein Perilipin 5 as a catecholamine-triggered interaction partner of PGC-1α. We report that during catecholamine-stimulated lipolysis, Perilipin 5 is phosphorylated by protein kinase A and forms transcriptional complexes with PGC-1α and SIRT1 in the nucleus. Perilipin 5 promotes PGC-1α co-activator function by disinhibiting SIRT1 deacetylase activity. We show by gain-and-loss of function studies in cells that nuclear Perilipin 5 promotes transcription of genes that mediate mitochondrial biogenesis and oxidative function. We propose that Perilipin 5 is an important molecular link that couples the coordinated catecholamine activation of the PKA pathway and of lipid droplet lipolysis with transcriptional regulation to promote efficient fatty acid catabolism and prevent mitochondrial dysfunction. PMID:27554864

  11. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  12. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function

    PubMed Central

    Gallardo-Montejano, Violeta I.; Saxena, Geetu; Kusminski, Christine M.; Yang, Chaofeng; McAfee, John L.; Hahner, Lisa; Hoch, Kathleen; Dubinsky, William; Narkar, Vihang A.; Bickel, Perry E.

    2016-01-01

    Dysfunctional cellular lipid metabolism contributes to common chronic human diseases, including type 2 diabetes, obesity, fatty liver disease and diabetic cardiomyopathy. How cells balance lipid storage and mitochondrial oxidative capacity is poorly understood. Here we identify the lipid droplet protein Perilipin 5 as a catecholamine-triggered interaction partner of PGC-1α. We report that during catecholamine-stimulated lipolysis, Perilipin 5 is phosphorylated by protein kinase A and forms transcriptional complexes with PGC-1α and SIRT1 in the nucleus. Perilipin 5 promotes PGC-1α co-activator function by disinhibiting SIRT1 deacetylase activity. We show by gain-and-loss of function studies in cells that nuclear Perilipin 5 promotes transcription of genes that mediate mitochondrial biogenesis and oxidative function. We propose that Perilipin 5 is an important molecular link that couples the coordinated catecholamine activation of the PKA pathway and of lipid droplet lipolysis with transcriptional regulation to promote efficient fatty acid catabolism and prevent mitochondrial dysfunction. PMID:27554864

  13. Estrogen receptor beta inhibits transcriptional activity of hypoxia inducible factor-1 through the downregulation of arylhydrocarbon receptor nuclear translocator

    PubMed Central

    2011-01-01

    Introduction Estrogen receptor (ER) β is predicted to play an important role in prevention of breast cancer development and metastasis. We have shown previously that ERβ inhibits hypoxia inducible factor (HIF)-1α mediated transcription, but the mechanism by which ERβ works to exert this effect is not understood. Methods Vascular endothelial growth factor (VEGF) was measured in conditioned medium by enzyme-linked immunosorbent assays. Reverse transcription polymerase chain reaction (RT-PCR), Western blotting, immunoprecipitation, luciferase assays and chromatin immunoprecipitation (ChIP) assays were used to ascertain the implication of ERβ on HIF-1 function. Results In this study, we found that the inhibition of HIF-1 activity by ERβ expression was correlated with ERβ's ability to degrade aryl hydrocarbon receptor nuclear translocator (ARNT) via ubiquitination processes leading to the reduction of active HIF-1α/ARNT complexes. HIF-1 repression by ERβ was rescued by overexpression of ARNT as examined by hypoxia-responsive element (HRE)-driven luciferase assays. We show further that ERβ attenuated the hypoxic induction of VEGF mRNA by directly decreasing HIF-1α binding to the VEGF gene promoter. Conclusions These results show that ERβ suppresses HIF-1α-mediated transcription via ARNT down-regulation, which may account for the tumour suppressive function of ERβ. PMID:21435239

  14. Functional interplay of SP family members and nuclear factor Y is essential for transcriptional activation of the human Calreticulin gene.

    PubMed

    Schardt, Julian A; Keller, Manuela; Seipel, Katja; Pabst, Thomas

    2015-09-01

    Calreticulin (CALR) is a highly conserved, multifunctional protein involved in a variety of cellular processes including the maintenance of intracellular calcium homeostasis, proper protein folding, differentiation and immunogenic cell death. More recently, a crucial role for CALR in the pathogenesis of certain hematologic malignancies was discovered: in clinical subgroups of acute myeloid leukemia, CALR overexpression mediates a block in differentiation, while somatic mutations have been found in the majority of patients with myeloproliferative neoplasms with nonmutated Janus kinase 2 gene (JAK2) or thrombopoietin receptor gene (MPL). However, the mechanisms underlying CALR promoter activation have insufficiently been investigated so far. By dissecting the core promoter region, we could identify a functional TATA-box relevant for transcriptional activation. In addition, we characterized two evolutionary highly conserved cis-regulatory modules (CRMs) within the proximal promoter each composed of one binding site for the transcription factors SP1 and SP3 as well as for the nuclear transcription factor Y (NFY) and we verified binding of these factors to their cognate sites in vitro and in vivo.

  15. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants.

    PubMed

    Moreno, Ana Beatriz; Martínez de Alba, Angel Emilio; Bardou, Florian; Crespi, Martin D; Vaucheret, Hervé; Maizel, Alexis; Mallory, Allison C

    2013-04-01

    Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5'-3' exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates. Here, we show that impairing nonsense-mediated decay, deadenylation or exosome activity enhanced S-PTGS, which requires host RNA-dependent RNA polymerase 6 (RDR6/SGS2/SDE1) and SUPPRESSOR OF GENE SILENCING 3 (SGS3) for the transformation of single-stranded RNA into dsRNA to trigger PTGS. However, these RQC mutations had no effect on inverted-repeat-PTGS, which directly produces hairpin dsRNA through transcription. Moreover, we show that these RQC factors are nuclear and cytoplasmic and are found in two RNA degradation foci in the cytoplasm: siRNA-bodies and processing-bodies. We propose a model of single-stranded RNA tug-of-war between RQC and S-PTGS that ensures the correct partitioning of RNA substrates among these RNA degradation pathways. PMID:23482394

  16. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii

    PubMed Central

    Beiting, Daniel P.; Hidano, Shinya; Baggs, Julie E.; Geskes, Jeanne M.; Fang, Qun; Wherry, E. John; Hunter, Christopher A.; Roos, David S.; Cherry, Sara

    2015-01-01

    The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host–pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such “modifiers.” PMID:26196739

  17. Modulation of transcriptional activation and coactivator interaction by a splicing variation in the F domain of nuclear receptor hepatocyte nuclear factor 4alpha1.

    PubMed

    Sladek, F M; Ruse, M D; Nepomuceno, L; Huang, S M; Stallcup, M R

    1999-10-01

    Transcription factors, such as nuclear receptors, often exist in various forms that are generated by highly conserved splicing events. Whereas the functional significance of these splicing variants is often not known, it is known that nuclear receptors activate transcription through interaction with coactivators. The parameters, other than ligands, that might modulate those interactions, however, are not well characterized, nor is the role of splicing variants. In this study, transient transfection, yeast two-hybrid, and GST pulldown assays are used to show not only that nuclear receptor hepatocyte nuclear factor 4 alpha1 (HNF4alpha1, NR2A1) interacts with GRIP1, and other coactivators, in the absence of ligand but also that the uncommonly large F domain in the C terminus of the receptor inhibits that interaction. In vitro, the F domain was found to obscure an AF-2-independent binding site for GRIP1 that did not map to nuclear receptor boxes II or III. The results also show that a natural splicing variant containing a 10-amino-acid insert in the middle of the F domain (HNF4alpha2) abrogates that inhibition in vivo and in vitro. A series of protease digestion assays indicates that there may be structural differences between HNF4alpha1 and HNF4alpha2 in the F domain as well as in the ligand binding domain (LBD). The data also suggest that there is a direct physical contact between the F domain and the LBD of HNF4alpha1 and -alpha2 and that that contact is different in the HNF4alpha1 and HNF4alpha2 isoforms. Finally, we propose a model in which the F domain of HNF4alpha1 acts as a negative regulatory region for transactivation and in which the alpha2 insert ameliorates the negative effect of the F domain. A conserved repressor sequence in the F domains of HNF4alpha1 and -alpha2 suggests that this model may be relevant to other nuclear receptors as well. PMID:10490591

  18. microRNA-365-targeted nuclear factor I/B transcriptionally represses cyclin-dependent kinase 6 and 4 to inhibit the progression of cutaneous squamous cell carcinoma.

    PubMed

    Zhou, Liang; Wang, Yinghui; Ou, Chengshan; Lin, Zhixiang; Wang, Jianyu; Liu, Hongxia; Zhou, Meijuan; Ding, Zhenhua

    2015-08-01

    Cyclin-dependent kinases are either post-transcriptionally regulated by interacting with cyclins and cyclin-dependent kinase inhibitors or are transcriptionally regulated by transcription factors, but the latter mechanism has not been extensively investigated. Dysregulated transcription factors resulting from aberrantly expressed microRNAs play critical roles in tumor development and progression. Our previous work identified miR-365 as an oncogenic microRNA that promotes the development of cutaneous squamous cell carcinoma via repression of cyclin-dependent kinase 6, while miR-365 also targets nuclear factor I/B. However, the underlying mechanism(s) of the interaction between nuclear factor I/B and cyclin-dependent kinase 6 are unclear. In this work, we demonstrate that miR-365-regulated nuclear factor I/B transcriptionally inhibits cyclin-dependent kinases 6 and 4 by binding to their promoter regions. In vivo and in vitro experiments demonstrate that the loss of nuclear factor I/B after miR-365 expression or treatment with small interfering RNAs results in the upregulation of cyclin-dependent kinases 6 and 4. This upregulation, in turn, enhances the phosphorylation of retinoblastoma protein and tumor progression. Characterizing this transcriptional repression of cyclin-dependent kinases 6 and 4 by nuclear factor I/B contributes to the understanding of the transcriptional regulation of cyclin-dependent kinases by transcription factors and also facilitates the development of new therapeutic regimens to improve the clinical treatment of cutaneous squamous cell carcinoma.

  19. microRNA-365-targeted nuclear factor I/B transcriptionally represses cyclin-dependent kinase 6 and 4 to inhibit the progression of cutaneous squamous cell carcinoma.

    PubMed

    Zhou, Liang; Wang, Yinghui; Ou, Chengshan; Lin, Zhixiang; Wang, Jianyu; Liu, Hongxia; Zhou, Meijuan; Ding, Zhenhua

    2015-08-01

    Cyclin-dependent kinases are either post-transcriptionally regulated by interacting with cyclins and cyclin-dependent kinase inhibitors or are transcriptionally regulated by transcription factors, but the latter mechanism has not been extensively investigated. Dysregulated transcription factors resulting from aberrantly expressed microRNAs play critical roles in tumor development and progression. Our previous work identified miR-365 as an oncogenic microRNA that promotes the development of cutaneous squamous cell carcinoma via repression of cyclin-dependent kinase 6, while miR-365 also targets nuclear factor I/B. However, the underlying mechanism(s) of the interaction between nuclear factor I/B and cyclin-dependent kinase 6 are unclear. In this work, we demonstrate that miR-365-regulated nuclear factor I/B transcriptionally inhibits cyclin-dependent kinases 6 and 4 by binding to their promoter regions. In vivo and in vitro experiments demonstrate that the loss of nuclear factor I/B after miR-365 expression or treatment with small interfering RNAs results in the upregulation of cyclin-dependent kinases 6 and 4. This upregulation, in turn, enhances the phosphorylation of retinoblastoma protein and tumor progression. Characterizing this transcriptional repression of cyclin-dependent kinases 6 and 4 by nuclear factor I/B contributes to the understanding of the transcriptional regulation of cyclin-dependent kinases by transcription factors and also facilitates the development of new therapeutic regimens to improve the clinical treatment of cutaneous squamous cell carcinoma. PMID:26072217

  20. Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation

    PubMed Central

    Stathopoulos-Gerontides, Angelike; Guo, Jim Jun; Cyert, Martha S.

    1999-01-01

    Calcineurin, a Ca2+/calmodulin dependent protein phosphatase, regulates Ca2+-dependent processes in a wide variety of cells. In the yeast, Saccharomyces cerevisiae, calcineurin effects Ca2+-dependent changes in gene expression through regulation of the Crz1p transcription factor. We show here that calcineurin dephosphorylates Crz1p and that this results in translocation of Crz1p to the nucleus. We identify a region of Crz1p that is required for calcineurin-dependent regulation of its phosphorylation, localization, and activity, and show that this region has significant sequence simlarity to a portion of NF-AT, a family of mammalian transcription factors whose localization is also regulated by calcineurin. Thus, the mechanism of Ca2+/calcineurin-dependent signaling shows remarkable conservation between yeast and mammalian cells. PMID:10197980

  1. Expression of Nuclear Transcription Factor Kappa B in Locally Advanced Human Cervical Cancer Treated With Definitive Chemoradiation

    SciTech Connect

    Garg, Amit K.; Jhingran, Anuja; Klopp, Ann H.; Aggarwal, Bharat B.; Kunnumakkara, Ajai B.; Broadus, Russell R.; Eifel, Patricia J.; Buchholz, Thomas A.

    2010-12-01

    Purpose: Nuclear factor kappa B (NF-{kappa}B), a transcriptional factor that has been shown to be constitutively active in cervical cancer, is part of an important pathway leading to treatment resistance in many tumor types. The purpose of our study was to determine whether expression of NF-{kappa}B in pretreatment specimens and specimens taken shortly after treatment initiation correlated with outcome in cervical cancer patients treated with definitive chemoradiation. Methods and Materials: Eighteen patients with locally advanced cervical cancer were enrolled in a study in which cervical biopsy specimens were obtained before radiation therapy and 48 h after treatment initiation. Matched biopsy specimens from 16 of these patients were available and evaluated for the nuclear expression of NF-{kappa}B protein by immunohistochemical staining. Results: After a median follow-up of 43 months, there were 9 total treatment failures. Nuclear staining for NF-{kappa}B was positive in 3 of 16 pretreatment biopsy specimens (19%) and 5 of 16 postradiation biopsy specimens (31%). Pretreatment expression of NF-{kappa}B nuclear staining correlated with increased rates of local-regional failure (100% vs. 23%, p = 0.01), distant failure (100% vs. 38%, p = 0.055), disease-specific mortality (100% vs. 31%, p = 0.03), and overall mortality (100% vs. 38%, p = 0.055). Conclusions: Our data suggest that pretreatment nuclear expression of NF-{kappa}B may be associated with a poor outcome for cervical cancer patients treated with chemoradiation. Although these data require validation in a larger group of patients, the results support the continued study of the relationship between NF-{kappa}B and outcome in patients treated for carcinoma of the cervix.

  2. Transcription Factor Hepatocyte Nuclear Factor-1β Regulates Renal Cholesterol Metabolism.

    PubMed

    Aboudehen, Karam; Kim, Min Soo; Mitsche, Matthew; Garland, Kristina; Anderson, Norma; Noureddine, Lama; Pontoglio, Marco; Patel, Vishal; Xie, Yang; DeBose-Boyd, Russell; Igarashi, Peter

    2016-08-01

    HNF-1β is a tissue-specific transcription factor that is expressed in the kidney and other epithelial organs. Humans with mutations in HNF-1β develop kidney cysts, and HNF-1β regulates the transcription of several cystic disease genes. However, the complete spectrum of HNF-1β-regulated genes and pathways is not known. Here, using chromatin immunoprecipitation/next generation sequencing and gene expression profiling, we identified 1545 protein-coding genes that are directly regulated by HNF-1β in murine kidney epithelial cells. Pathway analysis predicted that HNF-1β regulates cholesterol metabolism. Expression of dominant negative mutant HNF-1β or kidney-specific inactivation of HNF-1β decreased the expression of genes that are essential for cholesterol synthesis, including sterol regulatory element binding factor 2 (Srebf2) and 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr). HNF-1β mutant cells also expressed lower levels of cholesterol biosynthetic intermediates and had a lower rate of cholesterol synthesis than control cells. Additionally, depletion of cholesterol in the culture medium mitigated the inhibitory effects of mutant HNF-1β on the proteins encoded by Srebf2 and Hmgcr, and HNF-1β directly controlled the renal epithelial expression of proprotein convertase subtilisin-like kexin type 9, a key regulator of cholesterol uptake. These findings reveal a novel role of HNF-1β in a transcriptional network that regulates intrarenal cholesterol metabolism. PMID:26712526

  3. Transcription Factor EB Is Selectively Reduced in the Nuclear Fractions of Alzheimer's and Amyotrophic Lateral Sclerosis Brains

    PubMed Central

    Wang, Hongjie

    2016-01-01

    Multiple studies suggest that autophagy is strongly dysregulated in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), as evidenced by accumulation of numerous autophagosomes, lysosomes with discontinuous membranes, and aggregated proteins in the patients' brains. Transcription factor EB (TFEB) was recently discovered to be a master regulator of lysosome biogenesis and autophagy. To examine whether aberrant autophagy in AD and ALS is due to alterations in TFEB expression, we systematically quantified the levels of TFEB in these brains by immunoblotting. Interestingly, cytoplasmic fractions of AD brains showed increased levels of normalized (to tubulin) TFEB only at Braak stage IV (61%, p < 0.01). Most importantly, normalized (to lamin) TFEB levels in the nuclear fractions were consistently reduced starting from Braak stage IV (52%, p < 0.01), stage V (67%, p < 0.01), and stage VI (85%, p < 0.01) when compared to normal control (NC) brains. In the ALS brains also, nuclear TFEB levels were reduced by 62% (p < 0.001). These data suggest that nuclear TFEB is selectively lost in ALS as well as AD brains, in which TFEB reduction was Braak-stage-dependent. Taken together, the observed reductions in TFEB protein levels may be responsible for the widely reported autophagy defects in these disorders. PMID:27433468

  4. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    SciTech Connect

    Holowachuk, Eugene W. . E-mail: geneh@telenet.net

    2007-09-21

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3{beta} inhibitors (Li{sup +} or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNF{alpha}-induced rates of lipolysis by 50%. Adipocytes preincubated with Li{sup +} or TZDZ-8 prior to CsA and/or TNF{alpha}, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPAR{gamma}, ACS and Adn), compared with control or TNF{alpha}-treatment, whereas Li{sup +} pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPAR{gamma}, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li{sup +} treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis.

  5. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR

    PubMed Central

    2013-01-01

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism. PMID:22414897

  6. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR.

    PubMed

    Calkin, Anna C; Tontonoz, Peter

    2012-03-14

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism.

  7. Structural and calorimetric studies demonstrate that the hepatocyte nuclear factor 1β (HNF1β) transcription factor is imported into the nucleus via a monopartite NLS sequence.

    PubMed

    Wiedmann, Mareike M; Aibara, Shintaro; Spring, David R; Stewart, Murray; Brenton, James D

    2016-09-01

    The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in ovarian clear cell carcinoma (CCC) and is a potential therapeutic target. To explore potential approaches that block HNF1β transcription we have identified and characterised extensively the nuclear localisation signal (NLS) for HNF1β and its interactions with the nuclear protein import receptor, Importin-α. Pull-down assays demonstrated that the DNA binding domain of HNF1β interacted with a spectrum of Importin-α isoforms and deletion constructs tagged with eGFP confirmed that the HNF1β (229)KKMRRNR(235) sequence was essential for nuclear localisation. We further characterised the interaction between the NLS and Importin-α using complementary biophysical techniques and have determined the 2.4Å resolution crystal structure of the HNF1β NLS peptide bound to Importin-α. The functional, biochemical, and structural characterisation of the nuclear localisation signal present on HNF1β and its interaction with the nuclear import protein Importin-α provide the basis for the development of compounds targeting transcription factor HNF1β via its nuclear import pathway.

  8. Global transcriptional analysis of nuclear reprogramming in the transition from MEFs to iPSCs.

    PubMed

    Dong, Fulu; Song, Zhenwei; Zhang, Jinping; Lu, Youde; Song, Chunlei; Jiang, BaoChun; Zhang, Baole; Cong, Peiqing; Sun, Hongyan; Shi, Fangxiong; Liu, Honglin

    2013-01-01

    Induced pluripotent stem cells (iPSCs) are flourishing in the investigation of cell reprogramming. However, we still know little about the sequential molecular mechanism during somatic cell reprogramming (SCR). Here, we first observed rapid generation of colonies whereas mouse embryonic fibroblasts (MEFs) were induced by OCT4, SOX2, KLF4 (OSK), and vitamin C for 7 days. The colony's global transcriptional profiles were analyzed using Affymetrix microarray. Microarray data confirmed that SCR was a process in which transcriptome got reversed and pluripotent genes expressed de novo. There were many changes, especially substantial growth expression of epigenetic factors, on transcriptome during the transition from Day 7 to iPSCs indicating that this period may provide 'flexibility' genome structure, chromatin remodeling, and epigenetic modifications to rebind to the transcriptional factors. Several biological processes such as viral immune response, apoptosis, cell fate specification, and cell communication were mainly involved before Day 7 whereas cell cycle, DNA methylation, and histone modification were mainly involved after Day 7. Furthermore, it was suggested that p53 signaling contributed to the transition 'hyperdynamic plastic' cell state and assembled cell niche for SCR, and small molecular compounds useful for chromatin remodeling can enhance iPSCs by exciting epigenetic modification rather than the exogenous expression of more TFs vectors. PMID:23231677

  9. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor.

    PubMed

    Matsuda, Shun; Adachi, Jun; Ihara, Masaru; Tanuma, Nobuhiro; Shima, Hiroshi; Kakizuka, Akira; Ikura, Masae; Ikura, Tsuyoshi; Matsuda, Tomonari

    2016-01-29

    Pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase complex (PDC) regulate production of acetyl-CoA, which functions as an acetyl donor in diverse enzymatic reactions, including histone acetylation. However, the mechanism by which the acetyl-CoA required for histone acetylation is ensured in a gene context-dependent manner is not clear. Here we show that PKM2, the E2 subunit of PDC and histone acetyltransferase p300 constitute a complex on chromatin with arylhydrocarbon receptor (AhR), a transcription factor associated with xenobiotic metabolism. All of these factors are recruited to the enhancer of AhR-target genes, in an AhR-dependent manner. PKM2 contributes to enhancement of transcription of cytochrome P450 1A1 (CYP1A1), an AhR-target gene, acetylation at lysine 9 of histone H3 at the CYP1A1 enhancer. Site-directed mutagenesis of PKM2 indicates that this enhancement of histone acetylation requires the pyruvate kinase activity of the enzyme. Furthermore, we reveal that PDC activity is present in nuclei. Based on these findings, we propose a local acetyl-CoA production system in which PKM2 and PDC locally supply acetyl-CoA to p300 from abundant PEP for histone acetylation at the gene enhancer, and our data suggest that PKM2 sensitizes AhR-mediated detoxification in actively proliferating cells such as cancer and fetal cells.

  10. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor

    PubMed Central

    Matsuda, Shun; Adachi, Jun; Ihara, Masaru; Tanuma, Nobuhiro; Shima, Hiroshi; Kakizuka, Akira; Ikura, Masae; Ikura, Tsuyoshi; Matsuda, Tomonari

    2016-01-01

    Pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase complex (PDC) regulate production of acetyl-CoA, which functions as an acetyl donor in diverse enzymatic reactions, including histone acetylation. However, the mechanism by which the acetyl-CoA required for histone acetylation is ensured in a gene context-dependent manner is not clear. Here we show that PKM2, the E2 subunit of PDC and histone acetyltransferase p300 constitute a complex on chromatin with arylhydrocarbon receptor (AhR), a transcription factor associated with xenobiotic metabolism. All of these factors are recruited to the enhancer of AhR-target genes, in an AhR-dependent manner. PKM2 contributes to enhancement of transcription of cytochrome P450 1A1 (CYP1A1), an AhR-target gene, acetylation at lysine 9 of histone H3 at the CYP1A1 enhancer. Site-directed mutagenesis of PKM2 indicates that this enhancement of histone acetylation requires the pyruvate kinase activity of the enzyme. Furthermore, we reveal that PDC activity is present in nuclei. Based on these findings, we propose a local acetyl-CoA production system in which PKM2 and PDC locally supply acetyl-CoA to p300 from abundant PEP for histone acetylation at the gene enhancer, and our data suggest that PKM2 sensitizes AhR-mediated detoxification in actively proliferating cells such as cancer and fetal cells. PMID:26405201

  11. Transcriptional Regulation of CYP2B6 Expression by Hepatocyte Nuclear Factor 3β in Human Liver Cells

    PubMed Central

    Li, Linhao; Li, Daochuan; Heyward, Scott; Wang, Hongbing

    2016-01-01

    CYP2B6 plays an increasingly important role in xenobiotic metabolism and detoxification. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) have been established as predominant regulators for the inductive expression of CYP2B6 gene in human liver. However, there are dramatic interindividual variabilities in CYP2B6 expression that cannot be fully explained by the CAR/PXR-based modulation alone. Here, we show that expression level of CYP2B6 was correlated with that of hepatocyte nuclear factor 3β (HNF3β) in human primary hepatocytes prepared from 35 liver donors. Utilizing recombinant virus-mediated overexpression or knockdown of HNF3β in HepG2 cells, as well as constructs containing serial deletion and site-directed mutation of HNF3β binding motifs in CYP2B6 luciferase reporter assays, we demonstrated that the presence or lack of HNF3β expression markedly correlated with CYP2B6 gene expression and its promoter activity. Novel enhancer modules of HNF3β located upstream of the CYP2B6 gene transcription start site were identified and functionally validated as key elements governing HNF3β-mediated CYP2B6 expression. Chromatin immunoprecipitation assays in human primary hepatocytes and surface plasmon resonance binding affinity experiments confirmed the essential role of these enhancers in the recruitment of HNF3β to the promoter of CYP2B6 gene. Overall, these findings indicate that HNF3β represents a new liver enriched transcription factor that is involved in the transcription of CYP2B6 gene and contributes to the large interindividual variations of CYP2B6 expression in human population. PMID:26930610

  12. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    PubMed

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  13. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    PubMed

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.

  14. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope

    PubMed Central

    Tsai, Shang-Yi A.; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-fei; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-01-01

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER–mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  15. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease

    PubMed Central

    Powell, Christopher A.; Nicholls, Thomas J.; Minczuk, Michal

    2015-01-01

    The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes. PMID:25806043

  16. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B.

    PubMed

    Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro

    2013-01-15

    Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation. PMID:23232059

  17. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B.

    PubMed

    Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro

    2013-01-15

    Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation.

  18. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    PubMed Central

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  19. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival.

    PubMed

    Choudhry, H; Albukhari, A; Morotti, M; Haider, S; Moralli, D; Smythies, J; Schödel, J; Green, C M; Camps, C; Buffa, F; Ratcliffe, P; Ragoussis, J; Harris, A L; Mole, D R

    2015-08-20

    Activation of cellular transcriptional responses, mediated by hypoxia-inducible factor (HIF), is common in many types of cancer, and generally confers a poor prognosis. Known to induce many hundreds of protein-coding genes, HIF has also recently been shown to be a key regulator of the non-coding transcriptional response. Here, we show that NEAT1 long non-coding RNA (lncRNA) is a direct transcriptional target of HIF in many breast cancer cell lines and in solid tumors. Unlike previously described lncRNAs, NEAT1 is regulated principally by HIF-2 rather than by HIF-1. NEAT1 is a nuclear lncRNA that is an essential structural component of paraspeckles and the hypoxic induction of NEAT1 induces paraspeckle formation in a manner that is dependent upon both NEAT1 and on HIF-2. Paraspeckles are multifunction nuclear structures that sequester transcriptionally active proteins as well as RNA transcripts that have been subjected to adenosine-to-inosine (A-to-I) editing. We show that the nuclear retention of one such transcript, F11R (also known as junctional adhesion molecule 1, JAM1), in hypoxia is dependent upon the hypoxic increase in NEAT1, thereby conferring a novel mechanism of HIF-dependent gene regulation. Induction of NEAT1 in hypoxia also leads to accelerated cellular proliferation, improved clonogenic survival and reduced apoptosis, all of which are hallmarks of increased tumorigenesis. Furthermore, in patients with breast cancer, high tumor NEAT1 expression correlates with poor survival. Taken together, these results indicate a new role for HIF transcriptional pathways in the regulation of nuclear structure and that this contributes to the pro-tumorigenic hypoxia-phenotype in breast cancer.

  20. A nuclear transcription factor related to plastid ribosome biogenesis is synthesised early during germination and priming.

    PubMed

    Achard, Patrick; Job, Dominique; Mache, Régis

    2002-05-01

    Germination is a short developmental process during which many new proteins are synthesised. We have chosen the previously characterised RPL21 gene encoding plastid-localised ribosomal proteins RPL21, to analyse activation of gene expression during germination. Transcription activation occurs at the P1 promoter during the first hours following imbibition and coincides with the appearance of a trans-acting factor that we named AUBE1. AUBE1 binds specifically to a short DNA fragment that encompasses the P1 promoter of the RPL21 gene. The protein has a size of 28-30 kDa and is transiently expressed during the early phase of germination. Using the properties of primed seeds we show that AUBE1 is maintained after desiccation of primed seeds. We conclude that AUBE1 can be used as a marker in spinach seed priming.

  1. Amphibian transcription factor IIIA proteins contain a sequence element functionally equivalent to the nuclear export signal of human immunodeficiency virus type 1 Rev.

    PubMed

    Fridell, R A; Fischer, U; Lührmann, R; Meyer, B E; Meinkoth, J L; Malim, M H; Cullen, B R

    1996-04-01

    The human immunodeficiency virus type 1 (HIV-1) Rev protein is required for nuclear export of late HIV-1 mRNAs. This function is dependent on the mutationally defined Rev activation domain, which also forms a potent nuclear export signal. Transcription factor IIIA (TFIIIA) binds to 5S rRNA transcripts and this interaction has been proposed to play a role in the efficient nuclear export of 5S rRNA in amphibian oocytes. Here it is reported that amphibian TFIIIA proteins contain a sequence element with homology to the Rev activation domain that effectively substitutes for this domain in inducing the nuclear export of late HIV-1 mRNAs. It is further demonstrated that this TFIIIA sequence element functions as a protein nuclear export signal in both human cells and frog oocytes. Thus, this shared protein motif may play an analogous role in mediating the nuclear export of both late HIV-1 RNAs and 5S rRNA transcripts. PMID:8610146

  2. Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast.

    PubMed

    Okazaki, Shoko; Naganuma, Akira; Kuge, Shusuke

    2005-01-01

    A redox reaction involving cysteine thiol-disulfide exchange is crucial for the intracellular monitoring of oxidation status. The yeast transcription factor Yap1 is activated by formation of a disulfide bond, which inhibits nuclear export in response to peroxide stress, with resultant enhancement of the nuclear localization of Yap1. A glutathione peroxidase-like protein, Gpx3, which has peroxiredoxin activity, is required for formation of the disulfide bond in Yap1. We show here that the requirement for Gpx3 in the regulation of Yap1 is strain-specific. Thus, Tsa1, a ubiquitous thioredoxin peroxidase, is required for the activation of Yap1 in yeast strain Y700, which is derived from W303. The strain-specific utilization of different peroxiredoxins appears to be determined by Ybp1, a Yap1-binding protein. The Ybp1 of Y700 has a nonsense mutation, and a wild-type YBP1 gene can restore the Gpx3-dependent activation of Yap1. These results suggest that Tsa1, a ubiquitous peroxiredoxin, has the potential for transducing redox signals to a particular sensor protein. PMID:15706081

  3. Interaction of Sp1 zinc finger with transport factor in the nuclear localization of transcription factor Sp1

    SciTech Connect

    Ito, Tatsuo; Kitamura, Haruka; Uwatoko, Chisana; Azumano, Makiko; Itoh, Kohji; Kuwahara, Jun

    2010-12-10

    Research highlights: {yields} Sp1 zinc fingers themselves interact with importin {alpha}. {yields} Sp1 zinc finger domains play an essential role as a nuclear localization signal. {yields} Sp1 can be transported into the nucleus in an importin-dependent manner. -- Abstract: Transcription factor Sp1 is localized in the nucleus and regulates the expression of many cellular genes, but the nuclear transport mechanism of Sp1 is not well understood. In this study, we revealed that GST-fused Sp1 protein bound to endogenous importin {alpha} in HeLa cells via the Sp1 zinc finger domains, which comprise the DNA binding domain of Sp1. It was found that the Sp1 zinc finger domains directly interacted with a wide range of importin {alpha} including the armadillo (arm) repeat domain and the C-terminal acidic domain. Furthermore, it turned out that all three zinc fingers of Sp1 are essential for binding to importin {alpha}. Taken together, these results suggest that the Sp1 zinc finger domains play an essential role as a NLS and Sp1 can be transported into the nucleus in an importin-dependent manner even though it possesses no classical NLSs.

  4. Decreased expression of hepatocyte nuclear factor 3 alpha during the acute-phase response influences transthyretin gene transcription.

    PubMed Central

    Qian, X; Samadani, U; Porcella, A; Costa, R H

    1995-01-01

    Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (alpha, beta, and gamma) are known to regulate the transcription of numerous liver-specific genes. The HNF-3 proteins bind to DNA as monomers through a winged-helix motif, which is also utilized by a number of developmental regulators, including the Drosophila homeotic fork head (fkh) protein. We have previously characterized a strong-affinity HNF-3S site in the transthyretin (TTR) promoter region which is essential for expression in human hepatoma (HepG2) cells. In the current study, we identify an activating protein 1 (AP-1) site which partially overlaps the HNF-3S sequence in the TTR promoter. We show that in HepG2 cells the AP-1 sequence confers 12-O-tetradecanoylphorbol-13-acetate inducibility to the TTR promoter and contributes to normal TTR transcriptional activity. We also demonstrate that the HNF-3 proteins and AP-1 bind independently to the TTR AP-1-HNF-3 site, and cotransfection experiments suggest that they do not cooperate to activate an AP-1-HNF-3 reporter construct. In addition, 12-O-tetradecanoylphorbol-13-acetate exposure of HepG2 cells results in a reciprocal decrease in HNF-3 alpha and -3 gamma expression which may facilitate interaction of AP-1 with the TTR AP-1-HNF-3 site. In order to explore the role of HNF-3 in the liver, we have examined expression patterns of TTR and HNF-3 during the acute-phase response and liver regeneration. Partial hepatectomy produced minimal fluctuation in HNF-3 and TTR expression, suggesting that HNF-3 expression is not influenced by proliferative signals induced during liver regeneration. In acute-phase livers, we observed a dramatic reduction in HNF-3 alpha expression which correlates with a decrease in the expression of its target gene, the TTR gene. Furthermore, consistent with previous studies, the acute-phase livers are induced for c-jun but not c-fos expression. We propose that the reduction in TTR gene expression during the acute phase is likely due

  5. Distinct transcriptional responses elicited by unfolded nuclear or cytoplasmic protein in mammalian cells

    PubMed Central

    Miyazaki, Yusuke; Chen, Ling-chun; Chu, Bernard W; Swigut, Tomek; Wandless, Thomas J

    2015-01-01

    Eukaryotic cells possess a variety of signaling pathways that prevent accumulation of unfolded and misfolded proteins. Chief among these is the heat shock response (HSR), which is assumed to respond to unfolded proteins in the cytosol and nucleus alike. In this study, we probe this axiom further using engineered proteins called ‘destabilizing domains’, whose folding state we control with a small molecule. The sudden appearance of unfolded protein in mammalian cells elicits a robust transcriptional response, which is distinct from the HSR and other known pathways that respond to unfolded proteins. The cellular response to unfolded protein is strikingly different in the nucleus and the cytosol, although unfolded protein in either compartment engages the p53 network. This response provides cross-protection during subsequent proteotoxic stress, suggesting that it is a central component of protein quality control networks, and like the HSR, is likely to influence the initiation and progression of human pathologies. DOI: http://dx.doi.org/10.7554/eLife.07687.001 PMID:26314864

  6. Genetic disruption of KSHV major latent nuclear antigen LANA enhances viral lytic transcriptional program

    SciTech Connect

    Li Qiuhua; Zhou Fuchun; Ye Fengchun; Gao Shoujiang

    2008-09-30

    Following primary infection, KSHV establishes a lifelong persistent latent infection in the host. The mechanism of KSHV latency is not fully understood. The latent nuclear antigen (LANA or LNA) encoded by ORF73 is one of a few viral genes expressed during KSHV latency, and is consistently detected in all KSHV-related malignancies. LANA is essential for KSHV episome persistence, and regulates the expression of viral lytic genes through epigenetic silencing, and inhibition of the expression and transactivation function of the key KSHV lytic replication initiator RTA (ORF50). In this study, we used a genetic approach to examine the role of LANA in regulating KSHV lytic replication program. Deletion of LANA did not affect the expression of its adjacent genes vCyclin (ORF72) and vFLIP (ORF71). In contrast, the expression levels of viral lytic genes including immediate-early gene RTA, early genes MTA (ORF57), vIL-6 (ORF-K2) and ORF59, and late gene ORF-K8.1 were increased before and after viral lytic induction with 12-O-tetradecanoyl-phorbol-13-acetate and sodium butyrate. This enhanced expression of viral lytic genes was also observed following overexpression of RTA with or without simultaneous chemical induction. Consistent with these results, the LANA mutant cells produced more infectious virions than the wild-type virus cells did. Furthermore, genetic repair of the mutant virus reverted the phenotypes to those of wild-type virus. Together, these results have demonstrated that, in the context of viral genome, LANA contributes to KSHV latency by regulating the expression of RTA and its downstream genes.

  7. Genetic Disruption of KSHV Major Latent Nuclear Antigen LANA Enhances Viral Lytic 2 Transcriptional Program

    PubMed Central

    Li, Qiuhua; Zhou, Fuchun; Ye, Fengchun; Gao, Shou-Jiang

    2008-01-01

    Following primary infection, KSHV establishes a lifelong persistent latent infection in the host. The mechanism of KSHV latency is not fully understood. The latent nuclear antigen (LANA or LNA) encoded by ORF73 is one of a few viral genes expressed during KSHV latency, and is consistently detected in all KSHV-related malignancies. LANA is essential for KSHV episome persistence, and regulates the expression of viral lytic genes through epigenetic silencing, and inhibition of the expression and transactivation function of the key KSHV lytic replication initiator RTA (ORF50). In this study, we used a genetic approach to examine the role of LANA in regulating KSHV lytic replication program. Deletion of LANA did not affect the expression of its adjacent genes vCyclin (ORF72) and vFLIP (ORF71). In contrast, the expression levels of viral lytic genes including immediate-early gene RTA, early genes MTA (ORF57), vIL-6 (ORF-K2) and ORF59, and late gene ORF-K8.1 were increased before and after viral lytic induction with 12-O-tetradecanoyl-phorbol-13-acetate and sodium butyrate. This enhanced expression of viral lytic genes was also observed following overexpression of RTA with or without simultaneous chemical induction. Consistent with these results, the LANA mutant cells produced more infectious virions than the wild-type virus cells did. Furthermore, genetic repair of the mutant virus reverted the phenotypes to those of wild-type virus. Together, these results have demonstrated that, in the context of viral genome, LANA contributes to KSHV latency by regulating the expression of RTA and its downstream genes. PMID:18684478

  8. c-Fos-activated synthesis of nuclear phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂] promotes global transcriptional changes.

    PubMed

    Ferrero, Gabriel O; Renner, Marianne L; Gil, Germán A; Rodríguez-Berdini, Lucia; Caputto, Beatriz L

    2014-08-01

    c-Fos is a well-recognized member of the AP-1 (activator protein-1) family of transcription factors. In addition to this canonical activity, we previously showed that cytoplasmic c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. c-Fos associates with particular enzymes of the lipid synthesis pathway at the endoplasmic reticulum and increases the Vmax of the reactions without modifying the Km values. This lipid synthesis activation is associated with events of differentiation and proliferation that require high rates of membrane biogenesis. Since lipid synthesis also occurs in the nucleus, and different phospholipids have been assigned transcription regulatory functions, in the present study we examine if c-Fos also acts as a regulator of phospholipid synthesis in the nucleus. Furthermore, we examine if c-Fos modulates transcription through its phospholipid synthesis activator capacity. We show that nuclear-localized c-Fos associates with and activates PI4P5K (phosphatidylinositol-4-monophosphate 5-kinase), but not with PI4KIIIβ (type IIIβ phosphatidylinositol 4-kinase) thus promoting PtdIns(4,5)P₂ (phosphatidylinositol 4,5-bisphosphate) formation, which, in turn, promotes transcriptional changes. We propose c-Fos as a key regulator of nuclear PtdIns(4,5)P₂ synthesis in response to growth signals that results in c-Fos-dependent transcriptional changes promoted by the newly synthesized lipids.

  9. Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs.

    PubMed

    You, Jinyoung; Lee, Joohyeong; Kim, Jinyoung; Park, Junhong; Lee, Eunsong

    2010-02-01

    The objective of this study was to examine the effect of post-fusion treatment of somatic cell nuclear transfer (SCNT) oocytes with the proteasomal inhibitor MG132 on maturation promoting factor (MPF) activity, nuclear remodeling, embryonic development, and gene expression of cloned pig embryos. Immediately after electrofusion, SCNT oocytes were treated with MG132 and/or caffeine for 2 hr, vanadate for 0.5 hr, or vanadate for 0.5 hr followed by MG132 for 1.5 hr. Of the MG132 concentrations tested (0-5 microM), the 1 microM concentration showed a higher rate of blastocyst formation (25.9%) than 0 (14.2%), 0.5 (16.9%), and 5 microM (16.9%). Post-fusion treatment with MG132, caffeine, and both MG132 and caffeine improved blastocyst formation (22.1%, 21.4%, and 24.4%, respectively), whereas vanadate treatment inhibited blastocyst formation (6.5%) compared to the control (11.1%). When examined 2 hr after fusion and 1 hr after activation, MPF activity remained at a higher (P < 0.05) level in SCNT oocytes that were treated post-fusion with caffeine and/or MG132, but it was decreased by vanadate. The rate of oocytes showing premature chromosome condensation was not altered by MG132 but was decreased by vanadate treatment. In addition, formation of single pronuclei was increased by MG132 compared to control and vanadate treatment. MG132-treated embryos showed increased expression of POU5F1, DPPA2, DPPA3, DPPA5, and NDP52l1 genes compared to control embryos. Our results demonstrate that post-fusion treatment of SCNT oocytes with MG132 prevents MPF degradation and increases expression of transcription factors in SCNT embryos, which are necessary for normal development of SCNT embryos.

  10. Three non-autonomous signals collaborate for nuclear targeting of CrMYC2, a Catharanthus roseus bHLH transcription factor

    PubMed Central

    2010-01-01

    Background CrMYC2 is an early jasmonate-responsive bHLH transcription factor involved in the regulation of the expression of the genes of the terpenic indole alkaloid biosynthesis pathway in Catharanthus roseus. In this paper, we identified the amino acid domains necessary for the nuclear targeting of CrMYC2. Findings We examined the intracellular localization of whole CrMYC2 and of various deletion mutants, all fused with GFP, using a transient expression assay in onion epidermal cells. Sequence analysis of this protein revealed the presence of four putative basic nuclear localization signals (NLS). Assays showed that none of the predicted NLS is active alone. Further functional dissection of CrMYC2 showed that the nuclear targeting of this transcription factor involves the cooperation of three domains located in the C-terminal region of the protein. The first two domains are located at amino acid residues 454-510 and 510-562 and contain basic classical monopartite NLSs; these regions are referred to as NLS3 (KRPRKR) and NLS4 (EAERQRREK), respectively. The third domain, between residues 617 and 652, is rich in basic amino acids that are well conserved in other phylogenetically related bHLH transcription factors. Our data revealed that these three domains are inactive when isolated but act cooperatively to target CrMYC2 to the nucleus. Conclusions This study identified three amino acid domains that act in cooperation to target the CrMYC2 transcription factor to the nucleus. Further fine structure/function analysis of these amino acid domains will allow the identification of new NLS domains and will allow the investigation of the related molecular mechanisms involved in the nuclear targeting of the CrMYC2 bHLH transcription factor. PMID:21073696

  11. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  12. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element

    PubMed Central

    Claudel, Thierry; Sturm, Ekkehard; Duez, Hélène; Torra, Inés Pineda; Sirvent, Audrey; Kosykh, Vladimir; Fruchart, Jean-Charles; Dallongeville, Jean; Hum, Dean W.; Kuipers, Folkert; Staels, Bart

    2002-01-01

    Serum levels of HDL are inversely correlated with the risk of coronary heart disease. The anti-atherogenic effect of HDL is partially mediated by its major protein constituent apoA-I. In this study, we identify bile acids that are activators of the nuclear receptor farnesoid X receptor (FXR) as negative regulators of human apoA-I expression. Intrahepatocellular accumulation of bile acids, as seen in patients with progressive familial intrahepatic cholestasis and biliary atresia, was associated with diminished apoA-I serum levels. In human apoA-I transgenic mice, treatment with the FXR agonist taurocholic acid strongly decreased serum concentrations and liver mRNA levels of human apoA-I, which was associated with reduced serum HDL levels. Incubation of human primary hepatocytes and hepatoblastoma HepG2 cells with bile acids resulted in a dose-dependent downregulation of apoA-I expression. Promoter mutation analysis and gel-shift experiments in HepG2 cells demonstrated that bile acid–activated FXR decreases human apoA-I promoter activity by a negative FXR response element mapped to the C site. FXR bound this site and repressed transcription in a manner independent of retinoid X receptor. The nonsteroidal synthetic FXR agonist GW4064 likewise decreased apoA-I mRNA levels and promoter activity in HepG2 cells. PMID:11927623

  13. Transcription factors nuclear factor I and Sp1 interact with the murine collagen alpha 1 (I) promoter.

    PubMed Central

    Nehls, M C; Rippe, R A; Veloz, L; Brenner, D A

    1991-01-01

    The collagen alpha 1(I) promoter, which is efficiently transcribed in NIH 3T3 fibroblasts, contains four binding sites for trans-acting factors, as demonstrated by DNase I protection assays (D. A. Brenner, R. A. Rippe, and L. Veloz, Nucleic Acids Res. 17:6055-6064, 1989). This study characterizes the DNA-binding proteins that interact with the two proximal footprinted regions, both of which contain a reverse CCAAT box and a G + C-rich 12-bp direct repeat. Analysis by DNase I protection assays, mobility shift assays, competition with specific oligonucleotides, binding with recombinant proteins, and reactions with specific antisera showed that the transcriptional factors nuclear factor I (NF-I) and Sp1 bind to these two footprinted regions. Because of overlapping binding sites, NF-I binding and Sp1 binding appear to be mutually exclusive. Overexpression of NF-I in cotransfection experiments with the alpha 1(I) promoter in NIH 3T3 fibroblasts increased alpha 1(I) expression, while Sp1 overexpression reduced this effect, as well as basal promoter activity. The herpes simplex virus thymidine kinase promoter, which contains independent NF-I- and Sp1-binding sites, was stimulated by both factors. Therefore, expression of the collagen alpha 1(I) gene may depend on the relative activities of NF-I and Sp1. Images PMID:2072909

  14. FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB.

    PubMed

    Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook

    2005-07-29

    The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.

  15. Heterogeneous nuclear ribonucleoprotein K and nucleolin as transcriptional activators of the vascular endothelial growth factor promoter through interaction with secondary DNA structures

    PubMed Central

    Uribe, Diana J.; Guo, Kexiao; Shin, Yoon-Joo; Sun, Daekyu

    2011-01-01

    The human vascular endothelial growth factor (VEGF) promoter contains a polypurine/polypyrimidine (pPu/pPy) tract that is known to play a critical role in its transcriptional regulation. This pPu/pPy tract undergoes a conformational transition between B-DNA, single stranded DNA and atypical secondary DNA structures such as G-quadruplexes and i-motifs. We studied the interaction of the cytosine-rich (C-rich) and guanine-rich (G-rich) strands of this tract with transcription factors heterogeneous nuclear ribonucleoprotein (hnRNP) K and nucleolin, respectively, both in vitro and in vivo and their potential role in the transcriptional control of VEGF. Using chromatin immunoprecipitation (ChIP) assay for our in vivo studies and electrophoretic mobility shift assay (EMSA) for our in vitro studies, we demonstrated that both nucleolin and hnRNP K bind selectively to the G- and C-rich sequences, respectively, in the pPu/pPy tract of the VEGF promoter. The small interfering RNA (siRNA)-mediated silencing of either nucleolin or hnRNP K resulted in the down-regulation of basal VEGF gene, suggesting that they act as activators of VEGF transcription. Taken together, the identification of transcription factors that can recognize and bind to atypical DNA structures within the pPu/pPy tract will provide new insight into mechanisms of transcriptional regulation of the VEGF gene. PMID:21466159

  16. Messenger RNA transcripts of the hepatocyte nuclear factor-1alpha gene containing premature termination codons are subject to nonsense-mediated decay.

    PubMed

    Harries, Lorna W; Hattersley, Andrew T; Ellard, Sian

    2004-02-01

    Mutations in the hepatocyte nuclear factor-1alpha (HNF-1a) gene cause maturity-onset diabetes of the young (MODY). Approximately 30% of these mutations generate mRNA transcripts harboring premature termination codons (PTCs). Degradation of such transcripts by the nonsense-mediated decay (NMD) pathway has been reported for many genes. To determine whether PTC mutant transcripts of the HNF-1alpha gene elicit NMD, we have developed a novel quantitative RT-PCR assay. We performed quantification of ectopically expressed mutant transcripts relative to normal transcripts in lymphoblastoid cell lines using a coding single nucleotide polymorphism (cSNP) as a marker. The nonsense mutations R171X, I414G415ATCG-->CCA, and P291fsinsC showed reduced mutant mRNA expression to 40% (P = 0.009), <0.01% (P Transcript levels were restored using the translation inhibitor cycloheximide, indicating that the instability arises from NMD. The missense mutations G207D and R229P did not show NMD although R229P exhibited moderate RNA instability. This study provides the first evidence that HNF-1alpha PTC mutations may be subject to NMD. Mutations that result in significant reduction of protein levels due to NMD will not have dominant-negative activity in vivo. Haploinsufficiency is therefore likely to be the most important mutational mechanism of HNF-1alpha mutations causing MODY. PMID:14747304

  17. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome–nucleus association and transcriptional signaling

    PubMed Central

    Meyer, Adam J.; Almendrala, Donna K.; Go, Minjoung M.; Krauss, Sharon Wald

    2011-01-01

    The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus–centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome–nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export. PMID:21486941

  18. Meiotic nuclear movements in fission yeast are regulated by the transcription factor Mei4 downstream of a Cds1-dependent replication checkpoint pathway.

    PubMed

    Ruan, Kun; Yamamoto, Takaharu G; Asakawa, Haruhiko; Chikashige, Yuji; Masukata, Hisao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-03-01

    In meiosis, the fission yeast nucleus displays an elongated morphology, moving back and forth within the cell; these nuclear movements continue for approximately 2 h before meiotic nuclear divisions. Meiotic DNA replication occurs in an early phase of the nuclear movements and is followed by meiotic prophase. Here we report that in mutants deficient in meiotic DNA replication, the duration of nuclear movements is strikingly prolonged to four to 5 h. We found that this prolongation was caused by the Cds1-dependent replication checkpoint, which represses expression of the mei4(+) gene encoding a meiosis-specific transcription factor. In the absence of Mei4, nuclear movements persisted for more than 8 h. In contrast, overproduction of Mei4 accelerated termination of nuclear movements to approximately 30 min. These results show that Mei4 is involved in the termination of nuclear movements and that Mei4-mediated regulatory pathways link a DNA replication checkpoint to the termination of nuclear movements.

  19. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa histone deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1.

    PubMed

    Compagnucci, Claudia; Barresi, Sabina; Petrini, Stefania; Bertini, Enrico; Zanni, Ginevra

    2015-04-01

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin-myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK.

  20. Isolation of a Novel Family of C2H2 Zinc Finger Proteins Implicated in Transcriptional Repression Mediated by Chicken Ovalbumin Upstream Promoter Transcription Factor (COUP-TF) Orphan Nuclear Receptors*

    PubMed Central

    Avram, Dorina; Fields, Andrew; Top, Karen Pretty On; Nevrivy, Daniel J.; Ishmael, Jane E.; Leid, Mark

    2010-01-01

    Two novel and related C2H2 zinc finger proteins that are highly expressed in the brain, CTIP1 and CTIP2 (COUP TF-interacting proteins 1 and 2, respectively), were isolated and shown to interact with all members of the chicken ovalbumin upstream promoter transcription factor (COUP-TF) subfamily of orphan nuclear receptors. The interaction of CTIP1 with ARP1 was studied in detail, and CTIP1 was found to harbor two independent ARP1 interaction domains, ID1 and ID2, whereas the putative AF-2 of ARP1 was required for interaction with CTIP1. CTIP1, which exhibited a punctate staining pattern within the nucleus of transfected cells, recruited cotransfected ARP1 to these foci and potentiated ARP1-mediated transcriptional repression of a reporter construct. However, transcriptional repression mediated by ARP1 acting through CTIP1 did not appear to involve recruitment of a trichostatin A-sensitive histone deacetylase(s) to the template, suggesting that this repression pathway may be distinct from that utilized by several other nuclear receptors. PMID:10744719

  1. Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix

    PubMed Central

    Iarovaia, Olga V.; Akopov, Sergey B.; Nikolaev, Lev G.; Sverdlov, Eugene D.; Razin, Sergey V.

    2005-01-01

    The spatial organization of an ∼170 kb region of human chromosome 19, including CD22 and GPR40–GPR43 genes, was studied using in situ hybridization of a set of cosmid and PAC probes with nuclear halos prepared from proliferating and differentiated HL60 cells. The whole region under study was found to be looped out into the nuclear halo in proliferating cells. It is likely that the loop observed was attached to the nuclear matrix via MAR elements present at the flanks of the area under study. Upon dimethyl sulfoxide-induced differentiation of the cells the looped fragment became associated with the nuclear matrix. This change in the spatial organization correlated with the activation of transcription of at least two (CD22 and GPR43) genes present within the loop. The data obtained are discussed in the framework of the hypothesis postulating that the spatial organization of chromosomal DNA is maintained via constitutive (basic) and facultative (transcription-related) interactions of the latter with the nuclear matrix. PMID:16049024

  2. Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix.

    PubMed

    Iarovaia, Olga V; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D; Razin, Sergey V

    2005-01-01

    The spatial organization of an approximately 170 kb region of human chromosome 19, including CD22 and GPR40-GPR43 genes, was studied using in situ hybridization of a set of cosmid and PAC probes with nuclear halos prepared from proliferating and differentiated HL60 cells. The whole region under study was found to be looped out into the nuclear halo in proliferating cells. It is likely that the loop observed was attached to the nuclear matrix via MAR elements present at the flanks of the area under study. Upon dimethyl sulfoxide-induced differentiation of the cells the looped fragment became associated with the nuclear matrix. This change in the spatial organization correlated with the activation of transcription of at least two (CD22 and GPR43) genes present within the loop. The data obtained are discussed in the framework of the hypothesis postulating that the spatial organization of chromosomal DNA is maintained via constitutive (basic) and facultative (transcription-related) interactions of the latter with the nuclear matrix. PMID:16049024

  3. Interaction of Yna1 and Yna2 Is Required for Nuclear Accumulation and Transcriptional Activation of the Nitrate Assimilation Pathway in the Yeast Hansenula polymorpha

    PubMed Central

    Silvestrini, Lucia; Rossi, Beatrice; Gallmetzer, Andreas; Mathieu, Martine; Scazzocchio, Claudio; Berardi, Enrico; Strauss, Joseph

    2015-01-01

    A few yeasts, including Hansenula polymorpha are able to assimilate nitrate and use it as nitrogen source. The genes necessary for nitrate assimilation are organised in this organism as a cluster comprising those encoding nitrate reductase (YNR1), nitrite reductase (YNI1), a high affinity transporter (YNT1), as well as the two pathway specific Zn(II)2Cys2 transcriptional activators (YNA1, YNA2). Yna1p and Yna2p mediate induction of the system and here we show that their functions are interdependent. Yna1p activates YNA2 as well as its own (YNA1) transcription thus forming a nitrate-dependent autoactivation loop. Using a split-YFP approach we demonstrate here that Yna1p and Yna2p form a heterodimer independently of the inducer and despite both Yna1p and Yna2p can occupy the target promoter as mono- or homodimer individually, these proteins are transcriptionally incompetent. Subsequently, the transcription factors target genes containing a conserved DNA motif (termed nitrate-UAS) determined in this work by in vitro and in vivo protein-DNA interaction studies. These events lead to a rearrangement of the chromatin landscape on the target promoters and are associated with the onset of transcription of these target genes. In contrast to other fungi and plants, in which nuclear accumulation of the pathway-specific transcription factors only occur in the presence of nitrate, Yna1p and Yna2p are constitutively nuclear in H. polymorpha. Yna2p is needed for this nuclear accumulation and Yna1p is incapable of strictly positioning in the nucleus without Yna2p. In vivo DNA footprinting and ChIP analyses revealed that the permanently nuclear Yna1p/Yna2p heterodimer only binds to the nitrate-UAS when the inducer is present. The nitrate-dependent up-regulation of one partner protein in the heterodimeric complex is functionally similar to the nitrate-dependent activation of nuclear accumulation in other systems. PMID:26335797

  4. Interaction of Yna1 and Yna2 Is Required for Nuclear Accumulation and Transcriptional Activation of the Nitrate Assimilation Pathway in the Yeast Hansenula polymorpha.

    PubMed

    Silvestrini, Lucia; Rossi, Beatrice; Gallmetzer, Andreas; Mathieu, Martine; Scazzocchio, Claudio; Berardi, Enrico; Strauss, Joseph

    2015-01-01

    A few yeasts, including Hansenula polymorpha are able to assimilate nitrate and use it as nitrogen source. The genes necessary for nitrate assimilation are organised in this organism as a cluster comprising those encoding nitrate reductase (YNR1), nitrite reductase (YNI1), a high affinity transporter (YNT1), as well as the two pathway specific Zn(II)2Cys2 transcriptional activators (YNA1, YNA2). Yna1p and Yna2p mediate induction of the system and here we show that their functions are interdependent. Yna1p activates YNA2 as well as its own (YNA1) transcription thus forming a nitrate-dependent autoactivation loop. Using a split-YFP approach we demonstrate here that Yna1p and Yna2p form a heterodimer independently of the inducer and despite both Yna1p and Yna2p can occupy the target promoter as mono- or homodimer individually, these proteins are transcriptionally incompetent. Subsequently, the transcription factors target genes containing a conserved DNA motif (termed nitrate-UAS) determined in this work by in vitro and in vivo protein-DNA interaction studies. These events lead to a rearrangement of the chromatin landscape on the target promoters and are associated with the onset of transcription of these target genes. In contrast to other fungi and plants, in which nuclear accumulation of the pathway-specific transcription factors only occur in the presence of nitrate, Yna1p and Yna2p are constitutively nuclear in H. polymorpha. Yna2p is needed for this nuclear accumulation and Yna1p is incapable of strictly positioning in the nucleus without Yna2p. In vivo DNA footprinting and ChIP analyses revealed that the permanently nuclear Yna1p/Yna2p heterodimer only binds to the nitrate-UAS when the inducer is present. The nitrate-dependent up-regulation of one partner protein in the heterodimeric complex is functionally similar to the nitrate-dependent activation of nuclear accumulation in other systems.

  5. BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function

    SciTech Connect

    Morrison, Thomas E.; Kenney, Shannon C. . E-mail: shann@med.unc.edu

    2004-10-25

    We have previously demonstrated that the Epstein-Barr virus immediate-early BZLF1 protein interacts with, and is inhibited by, the NF-{kappa}B family member p65. However, the effects of BZLF1 on NF-{kappa}B activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-{kappa}B-responsive genes, ICAM-1 and I{kappa}B-{alpha}. BZLF1 also reduced the constitutive level of I{kappa}B-{alpha} protein in HeLa and A549 cells, and increased the amount of nuclear NF-{kappa}B to a similar extent as tumor necrosis factor-alpha (TNF-{alpha}) treatment. In spite of this BZLF1-associated increase in the nuclear form of NF-{kappa}B, BZLF1 did not induce binding of NF-{kappa}B to NF-{kappa}B responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-{alpha} treatment induced NF-{kappa}B binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-{kappa}B also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of I{kappa}B-{alpha}, decreased expression of I{kappa}B-{alpha} protein, and subsequent translocation of NF-{kappa}B to the nucleus. This nuclear translocation of NF-{kappa}B may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection.

  6. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells.

    PubMed

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT. PMID:26160345

  7. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  8. Transcription of the Tollip gene is elevated in intestinal epithelial cells through impaired O-GlcNAcylation-dependent nuclear translocation of the negative regulator Elf-1

    SciTech Connect

    Sugi, Yutaka; Takahashi, Kyoko; Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi

    2011-09-09

    Highlights: {yields} Transcriptional activation of the Tollitip gene is higher in IECs than in monocytes. {yields} Nt -194/-186 region acts as a cis-element and is recognized by Elf-1. {yields} Elf-1 suppresses Tollip gene transcription in monocytes but not in IECs. {yields} O-GlcNAc modification is necessary for nuclear translocation of Elf-1. {yields} O-GlcNAcylation-dependent nuclear translocation of Elf-1 is impaired in IECs. -- Abstract: Intestinal epithelial cells (IECs) must be tolerant of the large number of commensal bacteria inhabiting the intestinal tract to avoid excessive inflammatory reactions. Toll-interacting protein (Tollip), a negative regulator of Toll-like receptor signaling, is known to be expressed at high levels in IECs, and to thereby contribute to the hyporesponsiveness of IECs to commensals. In this study, we analyzed the underlying mechanisms for elevated transcription of the Tollip gene in IECs using a human IEC line, Caco-2, and a human monocyte line, THP-1, as a control. Elf-1 was identified as a transcription factor that negatively regulates Tollip gene expression. The transcription factor Elf-1 was localized in the nucleus by O-linked N-acetylglucosamine (O-GlcNAc) modification, whereas the unmodified form was detected only in the cytoplasm. Comparison of Caco-2 and THP-1 cells revealed that O-GlcNAc modification of Elf-1 was significantly lower in IECs than in monocytes. Collectively, the results indicate that insufficient O-GlcNAc modification prevents Elf-1-mediated transcriptional repression and thereby upregulates Tollip gene expression in IECs.

  9. Role of Calcineurin, hnRNPA2 and Akt in Mitochondrial Respiratory Stress-Mediated Transcription Activation of Nuclear Gene Targets

    PubMed Central

    Guha, Manti; Tang, Weigang; Sondheimer, Neal; Avadhani, Narayan G.

    2010-01-01

    Pathophysiological conditions causing mitochondrial dysfunction and altered transmembrane potential (Δψm) initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a variety of mammalian cells. An increase in the cytosolic Ca2+ [Ca2+]c as part of this signaling cascade activates Ca2+ responsive phosphatase, Calcineurin (Cn). Activation of IGF1R accompanied by increased glycolysis, invasiveness, and resistance to apoptosis are phenotypic hallmarks of C2C12 rhabdomyoblast cells subjected to this stress. The signaling is associated with activation and increased nuclear translocation of a number of transcription factors including a novel NFκB (cRel: p50) pathway, NFAT, CREB and C/EBPδ. This culminates in the upregulation of a number of nuclear genes including Cathepsin L, RyR1, Glut4 and Akt1. We observed that stress regulated transcription activation of nuclear genes involves a cooperative interplay between NFκB (cRel:p50), C/EBPδ, CREB, NFAT. Our results show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein, hnRNPA2 as a transcriptional co-activator. We report here that mitochondrial stress leads to induced expression and activation of serine threonine kinase Akt1. Interestingly, we observe that Akt1 phosphorylates hnRNPA2 under mitochondrial stress conditions, which is a crucial step for the recruitment of this coactivator to the stress target promoters and culmination in mitochondrial stress-mediated transcription activation of target genes. We propose that mitochondrial stress plays an important role in tumor progression and emergence of invasive phenotypes. PMID:20153290

  10. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex.

    PubMed

    Sharma, Sonia; Findlay, Gregory M; Bandukwala, Hozefa S; Oberdoerffer, Shalini; Baust, Beate; Li, Zhigang; Schmidt, Valentina; Hogan, Patrick G; Sacks, David B; Rao, Anjana

    2011-07-12

    Nuclear factor of activated T cells (NFAT) proteins are Ca(2+)-regulated transcription factors that control gene expression in many cell types. NFAT proteins are heavily phosphorylated and reside in the cytoplasm of resting cells; when cells are stimulated by a rise in intracellular Ca(2+), NFAT proteins are dephosphorylated by the Ca(2+)/calmodulin-dependent phosphatase calcineurin and translocate to the nucleus to activate target gene expression. Here we show that phosphorylated NFAT1 is present in a large cytoplasmic RNA-protein scaffold complex that contains a long intergenic noncoding RNA (lincRNA), NRON [noncoding (RNA) repressor of NFAT]; a scaffold protein, IQ motif containing GTPase activating protein (IQGAP); and three NFAT kinases, casein kinase 1, glycogen synthase kinase 3, and dual specificity tyrosine phosphorylation regulated kinase. Combined knockdown of NRON and IQGAP1 increased NFAT dephosphorylation and nuclear import exclusively after stimulation, without affecting the rate of NFAT rephosphorylation and nuclear export; and both NRON-depleted T cells and T cells from IQGAP1-deficient mice showed increased production of NFAT-dependent cytokines. Our results provide evidence that a complex of lincRNA and protein forms a scaffold for a latent transcription factor and its regulatory kinases, and support an emerging consensus that lincRNAs that bind transcriptional regulators have a similar scaffold function.

  11. Induction of megakaryocyte differentiation drives nuclear accumulation and transcriptional function of MKL1 via actin polymerization and RhoA activation

    PubMed Central

    Smith, Elenoe C.; Teixeira, Alexandra M.; Chen, Rachel C.; Wang, Lin; Gao, Yuan; Hahn, Katherine L.

    2013-01-01

    How components of the cytoskeleton regulate complex cellular responses is fundamental to understanding cellular function. Megakaryoblast leukemia 1 (MKL1), an activator of serum response factor (SRF) transcriptional activity, promotes muscle, neuron, and megakaryocyte differentiation. In muscle cells, where MKL1 subcellular localization is one mechanism by which cells control SRF activity, MKL1 translocation from the cytoplasm to the nucleus in response to actin polymerization is critical for its function as a transcriptional regulator. MKL1 localization is cell-type specific; it is predominantly cytoplasmic in unstimulated fibroblasts and some muscle cell types and is constitutively nuclear in neuronal cells. In the present study, we report that in megakaryocytes, subcellular localization and regulation of MKL1 is dependent on RhoA activity and actin organization. Induction of megakaryocytic differentiation of human erythroleukemia cells by 12-O-tetradecanoylphorbol-13-acetate and primary megakaryocytes by thrombopoietin promotes MKL1 nuclear localization. This MKL1 localization is blocked by drugs inhibiting RhoA activity or actin polymerization. We also show that nuclear-localized MKL1 activates the transcription of SRF target genes. This report broadens our knowledge of the molecular mechanisms regulating megakaryocyte differentiation. PMID:23243284

  12. Dynamics of Nuclear Receptor Helix-12 Switch of Transcription Activation by Modeling Time-Resolved Fluorescence Anisotropy Decays

    PubMed Central

    Batista, Mariana R.B.; Martínez, Leandro

    2013-01-01

    Nuclear hormone receptors (NRs) are major targets for pharmaceutical development. Many experiments demonstrate that their C-terminal Helix (H12) is more flexible in the ligand-binding domains (LBDs) without ligand, this increased mobility being correlated with transcription repression and human diseases. Crystal structures have been obtained in which the H12 is extended, suggesting the possibility of large amplitude H12 motions in solution. However, these structures were interpreted as possible crystallographic artifacts, and thus the microscopic nature of H12 movements is not well known. To bridge the gap between experiments and molecular models and provide a definitive picture of H12 motions in solution, extensive molecular dynamics simulations of the peroxisome proliferator-activated receptor-γ LBD, in which the H12 was bound to a fluorescent probe, were performed. A direct comparison of the modeled anisotropy decays to time-resolved fluorescence anisotropy experiments was obtained. It is shown that the decay rates are dependent on the interactions of the probe with the surface of the protein, and display little correlation with the flexibility of the H12. Nevertheless, for the probe to interact with the surface of the LBD, the H12 must be folded over the body of the LBD. Therefore, the molecular mobility of the H12 should preserve the globularity of the LBD, so that ligand binding and dissociation occur by diffusion through the surface of a compact receptor. These results advance the comprehension of both ligand-bound and ligand-free receptor structures in solution, and also guide the interpretation of time-resolved anisotropy decays from a molecular perspective, particularly by the use of simulations. PMID:24094408

  13. Glucocorticoids antagonize cAMP-induced Star transcription in Leydig cells through the orphan nuclear receptor NR4A1.

    PubMed

    Martin, Luc J; Tremblay, Jacques J

    2008-09-01

    It is well established that stress, either physical or psychosocial, causes a decrease in testosterone production by Leydig cells. Glucocorticoids (Gc) are the main mediators of stress response and they convey their repressive effect on Leydig cells through the glucocorticoid receptor (GR). So far, various mechanisms have been proposed to explain the mechanism of action of Gc on Leydig cell steroidogenesis including repression of genes involved in testosterone biosynthesis. Several steroidogenic genes, including steroidogenic acute regulatory (STAR) protein, have been shown to be repressed by Gc in a GR-dependent manner but the underlying mechanisms remain to be fully elucidated. Here, we found that dexamethasone (Dex), a potent synthetic Gc, partly antagonizes the cAMP-dependent stimulation of the mouse Star promoter in MA-10 Leydig cells as revealed by transient transfection assays. This repression requires an element located at -95 bp previously implicated in the activation of the Star promoter by the nuclear receptors, NR4A1 and NR5A1. Dex was found to inhibit NR4A1-dependent transactivation of the Star promoter in Leydig cells by decreasing NR4A1, but not NR5A1, recruitment to the proximal Star promoter as determined by chromatin immunoprecipitation assay. Western blots revealed that Dex did not affect NR4A1 or NR5A1 expression in response to cAMP. These data suggest that NR4A1 would be associated with the GR in a transcriptionally inactive complex as previously demonstrated in pituitary corticotrope cells. Thus, our data provide new molecular insights into the stress-mediated suppression of testosterone production in testicular Leydig cells.

  14. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes1[OPEN

    PubMed Central

    Laloum, Tom; Lepage, Agnès; Ariel, Federico; Frances, Lisa; Gamas, Pascal; de Carvalho-Niebel, Fernanda

    2015-01-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants. PMID:26432878

  15. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes.

    PubMed

    Baudin, Maël; Laloum, Tom; Lepage, Agnès; Rípodas, Carolina; Ariel, Federico; Frances, Lisa; Crespi, Martin; Gamas, Pascal; Blanco, Flavio Antonio; Zanetti, Maria Eugenia; de Carvalho-Niebel, Fernanda; Niebel, Andreas

    2015-12-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants.

  16. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    SciTech Connect

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G.

    2013-11-15

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  17. {beta}-Catenin can act as a nuclear import receptor for its partner transcription factor, lymphocyte enhancer factor-1 (lef-1)

    SciTech Connect

    Asally, Munehiro; Yoneda, Yoshihiro . E-mail: yyoneda@anat3.med.osaka-u.ac.jp

    2005-08-15

    Nuclear accumulation of {beta}-catenin plays an important role in the Wnt signaling pathway. In the nucleus, {beta}-catenin acts as a transcriptional co-activator for TCF/LEF family of transcription factors. It has been shown that lef-1 contains a typical basic type nuclear localization signal (NLS) and is transported into the nucleus by the conventional import pathway. In this study, we found that a mutant lef-1 lacking the classical NLS accumulated in the nucleus of living cells, when {beta}-catenin was co-expressed. In addition, in a cell-free import assay, lef-1 migrated into the nucleus in the presence of {beta}-catenin alone without any other soluble factors. In contrast, another mutant lef-1 lacking the {beta}-catenin binding domain failed to migrate into the nucleus, even in the presence of {beta}-catenin. These findings indicate that {beta}-catenin alone can mediate the nuclear import of lef-1 through the direct binding. Collectively, we propose that there are two distinct pathways for the nuclear import of lef-1: importin {alpha}/{beta}-mediated and {beta}-catenin-mediated one, which provides a novel paradigm for Wnt signaling pathway.

  18. Making sense of nuclear localization: A zinc-finger protein encoded by a cytoplasmically replicating plant RNA virus acts a transcription factor

    PubMed Central

    Lukhovitskaya, Nina I.; Gushchin, Vladimir A.; Solovyev, Andrey G.; Savenkov, Eugene I.

    2013-01-01

    Recent studies have uncovered numerous nucleus-localized proteins encoded by plant RNA viruses. Whereas for some of these viruses nuclear (or, more specifically, nucleolar) passage of the proteins is needed for the virus movement within the plant or suppression of host defense, the nuclear function of these proteins remains largely unknown. Recently, the situation has been clarified for one group of plant RNA viruses, the Carlaviruses. Being positive-stranded RNA viruses, carlaviruses multiply exclusively in the cytoplasm. Chrysanthemum virus B (CVB, a carlavirus) encodes a zinc-finger protein p12 targeted to the nucleus in a nuclear localization signal-dependent manner. In a recent work, we demonstrated that p12 directly interacts with chromatin and plant promoters, thus, acts as a eukaryotic transcription factor (TF) and activates expression of a host TF involved in regulation of cell size and proliferation to favor virus infection. Therefore our studies identified a novel nuclear stage of in CVB infection involving modulation of host gene expression and plant development. Whereas it is well established that any RNA virus actively replicating in the cell causes changes in the transcriptome, our study expanded this view by showing that some positive-stranded RNA viruses can directly manipulate host transcription by encoding eukaryotic TFs. PMID:23759549

  19. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells.

    PubMed

    Bach, Anne-Sophie; Derocq, Danielle; Laurent-Matha, Valérie; Montcourrier, Philippe; Sebti, Salwa; Orsetti, Béatrice; Theillet, Charles; Gongora, Céline; Pattingre, Sophie; Ibing, Eva; Roger, Pascal; Linares, Laetitia K; Reinheckel, Thomas; Meurice, Guillaume; Kaiser, Frank J; Gespach, Christian; Liaudet-Coopman, Emmanuelle

    2015-09-29

    The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner. PMID:26183398

  20. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells.

    PubMed

    Bach, Anne-Sophie; Derocq, Danielle; Laurent-Matha, Valérie; Montcourrier, Philippe; Sebti, Salwa; Orsetti, Béatrice; Theillet, Charles; Gongora, Céline; Pattingre, Sophie; Ibing, Eva; Roger, Pascal; Linares, Laetitia K; Reinheckel, Thomas; Meurice, Guillaume; Kaiser, Frank J; Gespach, Christian; Liaudet-Coopman, Emmanuelle

    2015-09-29

    The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner.

  1. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells

    PubMed Central

    Bach, Anne-Sophie; Derocq, Danielle; Laurent-Matha, Valérie; Montcourrier, Philippe; Salwa Sebti, Salwa; Orsetti, Béatrice; Theillet, Charles; Gongora, Céline; Pattingre, Sophie; Ibing, Eva; Roger, Pascal; Linares, Laetitia K.; Reinheckel, Thomas; Meurice, Guillaume; Kaiser, Frank J.; Gespach, Christian; Liaudet-Coopman, Emmanuelle

    2015-01-01

    The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner. PMID:26183398

  2. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription

    PubMed Central

    Tuand, Krizia; Stijnen, Pieter; Volders, Karolien; Declercq, Jeroen; Nuytens, Kim; Meulemans, Sandra; Creemers, John

    2016-01-01

    Background Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. Methods Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. Results Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. Conclusion Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for

  3. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans.

    PubMed

    Ahn, Jeong H; Rechsteiner, Andreas; Strome, Susan; Kelly, William G

    2016-08-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3' end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  4. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans

    PubMed Central

    Ahn, Jeong H.; Rechsteiner, Andreas; Strome, Susan; Kelly, William G.

    2016-01-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3’ end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  5. Crm1-mediated nuclear export of the Schizosaccharomyces pombe transcription factor Cuf1 during a shift from low to high copper concentrations.

    PubMed

    Beaudoin, Jude; Labbé, Simon

    2007-05-01

    In this study, we examine the fate of the nuclear pool of the Schizosaccharomyces pombe transcription factor Cuf1 in response to variations in copper levels. A nuclear pool of Cuf1-green fluorescent protein (GFP) was generated by expressing a functional cuf1(+)-GFP allele in the presence of a copper chelator. We then extinguished cuf1(+)-GFP expression and tracked the changes in the localization of the nuclear pool of Cuf1-GFP in the presence of low or high copper concentrations. Treating cells with copper as well as silver ions resulted in the nuclear export of Cuf1. We identified a leucine-rich nuclear export signal (NES), (349)LAALNHISAL(358), within the C-terminal region of Cuf1. Mutations in this sequence abrogated Cuf1 export from the nucleus. Furthermore, amino acid substitutions that impair Cuf1 NES function resulted in increased target gene expression and a concomitant cellular hypersensitivity to copper. Export of the wild-type Cuf1 protein was inhibited by leptomycin B (LMB), a specific inhibitor of the nuclear export protein Crm1. We further show that cells expressing a temperature-sensitive mutation in crm1(+) exhibit increased nuclear accumulation of Cuf1 at the nonpermissive temperature. Although wild-type Cuf1 is localized in the nucleus in both conditions, we observed that the protein can still be inactivated by copper, resulting in the repression of ctr4(+) gene expression in the presence of exogenous copper. These results demonstrate that nuclear accumulation of Cuf1 per se is not sufficient to cause the unregulated expression of the copper transport genes like ctr4(+). In addition to nuclear localization, a functional Cys-rich domain or NES element in Cuf1 is required to appropriately regulate copper transport gene expression in response to changes in intracellular copper concentration.

  6. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells.

    PubMed

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. PMID:23948303

  7. Identification of novel Saccharomyces cerevisiae proteins with nuclear export activity: cell cycle-regulated transcription factor ace2p shows cell cycle-independent nucleocytoplasmic shuttling.

    PubMed

    Jensen, T H; Neville, M; Rain, J C; McCarthy, T; Legrain, P; Rosbash, M

    2000-11-01

    Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the NES receptor CRM1/Crm1p. We have carried out a yeast two-hybrid screen with Crm1p as a bait. The Crm1p-interacting clones were subscreened for nuclear export activity in a visual assay utilizing the Crm1p-inhibitor leptomycin B (LMB). This approach identified three Saccharomyces cerevisiae proteins not previously known to have nuclear export activity. These proteins are the 5' RNA triphosphatase Ctl1p, the cell cycle-regulated transcription factor Ace2p, and a protein encoded by the previously uncharacterized open reading frame YDR499W. Mutagenesis analysis show that YDR499Wp contains an NES that conforms to the consensus sequence for leucine-rich NESs. Mutagenesis of Ctl1p and Ace2p were unable to identify specific NES residues. However, a 29-amino-acid region of Ace2p, rich in hydrophobic residues, contains nuclear export activity. Ace2p accumulates in the nucleus at the end of mitosis and activates early-G(1)-specific genes. We now provide evidence that Ace2p is nuclear not only in late M-early G(1) but also during other stages of the cell cycle. This feature of Ace2p localization explains its ability to activate genes such as CUP1, which are not expressed in a cell cycle-dependent manner.

  8. The Nuclear Protein IκBζ Forms a Transcriptionally Active Complex with Nuclear Factor-κB (NF-κB) p50 and the Lcn2 Promoter via the N- and C-terminal Ankyrin Repeat Motifs.

    PubMed

    Kohda, Akira; Yamazaki, Soh; Sumimoto, Hideki

    2016-09-23

    The nuclear protein IκBζ, comprising the N-terminal trans-activation domain and the C-terminal ankyrin repeat (ANK) domain composed of seven ANK motifs, activates transcription of a subset of nuclear factor-κB (NF-κB)-dependent innate immune genes such as Lcn2 encoding the antibacterial protein lipocalin-2. Lcn2 activation requires formation of a complex containing IκBζ and NF-κB p50, a transcription factor that harbors the DNA-binding Rel homology region but lacks a trans-activation domain, on the promoter with the canonical NF-κB-binding site (κB site) and its downstream cytosine-rich element. Here we show that IκBζ productively interacts with p50 via Asp-451 in the N terminus of ANK1, a residue that is evolutionarily conserved among IκBζ and the related nuclear IκB proteins Bcl-3 and IκBNS Threonine substitution for Asp-451 abrogates direct association with the κB-site-binding protein p50, complex formation with the Lcn2 promoter DNA, and activation of Lcn2 transcription. The basic residues Lys-717 and Lys-719 in the C-terminal region of ANK7 contribute to IκBζ binding to the Lcn2 promoter, probably via interaction with the cytosine-rich element required for Lcn2 activation; glutamate substitution for both lysines results in a loss of transcriptionally active complex formation without affecting direct contact of IκBζ with p50. Both termini of the ANK domain in Bcl-3 and IκBNS function in a manner similar to that of IκBζ to interact with promoter DNA, indicating a common mechanism in which the nuclear IκBs form a regulatory complex with NF-κB and promoter DNA via the invariant aspartate in ANK1 and the conserved basic residues in ANK7.

  9. Hepatocyte nuclear factor 3beta is involved in pancreatic beta-cell-specific transcription of the pdx-1 gene.

    PubMed Central

    Wu, K L; Gannon, M; Peshavaria, M; Offield, M F; Henderson, E; Ray, M; Marks, A; Gamer, L W; Wright, C V; Stein, R

    1997-01-01

    The mammalian homeobox gene pdx-1 is expressed in pluripotent precursor cells in the dorsal and ventral pancreatic bud and duodenal endoderm, which will produce the pancreas and the rostral duodenum. In the adult, pdr-1 is expressed principally within insulin-secreting pancreatic islet beta cells and cells of the duodenal epithelium. Our objective in this study was to localize sequences within the mouse pdx-1 gene mediating selective expression within the islet. Studies of transgenic mice in which a genomic fragment of the mouse pdx-1 gene from kb -4.5 to +8.2 was used to drive a beta-galactosidase reporter showed that the control sequences sufficient for appropriate developmental and adult specific expression were contained within this region. Three nuclease-hypersensitive sites, located between bp -2560 and -1880 (site 1), bp -1330 and -800 (site 2), and bp -260 and +180 (site 3), were identified within the 5'-flanking region of the endogenous pdx-1 gene. Pancreatic beta-cell-specific expression was shown to be controlled by sequences within site 1 from an analysis of the expression pattern of various pdr-1-herpes simplex virus thymidine kinase promoter expression constructs in transfected beta-cell and non-beta-cell lines. Furthermore, we also established that this region was important in vivo by demonstrating that expression from a site 1-driven beta-galactosidase reporter construct was directed to islet beta-cells in transgenic mice. The activity of the site 1-driven constructs was reduced substantially in beta-cell lines by mutating a hepatocyte nuclear factor 3 (HNF3)-like site located between nucleotides -2007 and -1996. Gel shift analysis indicated that HNF3beta present in islet beta cells binds to this element. Immunohistochemical studies revealed that HNF3beta was present within the nuclei of almost all islet beta cells and subsets of pancreatic acinar cells. Together, these results suggest that HNF3beta, a key regulator of endodermal cell lineage

  10. The intergenic region of maize streak virus contains a GC-rich element that activates rightward transcription and binds maize nuclear factors.

    PubMed

    Fenoll, C; Schwarz, J J; Black, D M; Schneider, M; Howell, S H

    1990-12-01

    Maize streak virus (MSV) is transcribed bidirectionally from an intergenic region and rightward transcription produces an RNA that encodes the coat protein. The intergenic region contains promoter elements required for rightward transcription including an upstream activating sequence (UAS) which endows the promoter with full activity in a maize transient expression system. The UAS contains two GC-rich repeats (GC boxes) and a long inverted repeat or hairpin with a loop harboring a TAATATTAC sequence common to all geminiviruses. Deletions through the UAS demonstrated the presence of an element, called the rightward promoter element (rpe1), which is responsible for transcriptional activation. Rpe1 includes the two GC-rich boxes, which are similar in sequence to Sp1 binding sites in mammalian cells, but not the conserved hairpin loop. Rpe1 binds maize nuclear factors in vitro and the characteristics of the binding interaction have been determined by 1) binding competition with oligonucleotides, 2) methidiumpropyl-EDTA footprinting and 3) methylation interference assays. Binding of maize nuclear factors to the UAS generates two major bands, slow and fast migrating bands, in gel retardation assays. Footprinting and factor titration data suggest that the fast bands arise by the binding of factors to one GC box while the slow bands are generated by factors binding to both boxes. The data further indicate that the factors bind to the two GC-rich boxes with little cooperativity and bind on opposite faces of the DNA helix.

  11. The relationship between transcript expression levels of nuclear encoded (TFAM, NRF1) and mitochondrial encoded (MT-CO1) genes in single human oocytes during oocyte maturation

    PubMed Central

    Novin, M Ghaffari; Allahveisi, A; Noruzinia, M; Farhadifar, F; Yousefian, E; Fard, A Dehghani; Salimi, M

    2015-01-01

    In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII) stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA), copied in oocytes, is essential for providing adenosine triphosphate (ATP) during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1) and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) in various stages of human oocyte maturation. Nine consenting patients, age 21–35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI) procedures. mRNA levels of mitochondrial-related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR). There was no significant relationship between the relative expression levels in germinal vesicle (GV) stage oocytes (p = 0.62). On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI) and MII (p = 0.03 and p = 0.002). A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation. PMID:26929904

  12. Evidence for the Involvement of Xenobiotic-responsive Nuclear Receptors in Transcriptional Effects Upon Perfluoroalkyl Acid Exposure in Diverse Species.

    EPA Science Inventory

    Humans and other species have detectable body burdens of a number of perfluorinated alkyl acids (PFAA) including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). In mouse and rat liver these compounds elicit transcriptional and phenotypic effects similar to pe...

  13. Evidence for the Involvement of Xenobiotic-response Nuclear Receptors in Transcriptional Effects Upon Perfluroroalkyl Acid Exposure in Diverse Species

    EPA Science Inventory

    Humans and ecological species have been found to have detectable body burdens of a number of perfluorinated alkyl acids (PFAA) including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). In mouse and rat liver these compounds elicit transcriptional and phenotyp...

  14. Critical role of charged residues in helix 7 of the ligand binding domain in Hepatocyte Nuclear Factor 4alpha dimerisation and transcriptional activity.

    PubMed

    Eeckhoute, Jérôme; Oxombre, Bénédicte; Formstecher, Pierre; Lefebvre, Philippe; Laine, Bernard

    2003-11-15

    Hepatocyte Nuclear Factor 4alpha (HNF4alpha, NR2A1) is central to hepatocyte and pancreatic beta-cell functions. Along with retinoid X receptor alpha (RXRalpha), HNF4alpha belongs to the nuclear receptor subfamily 2 (NR2), characterised by a conserved arginyl residue and a glutamate residue insert in helix 7 (H7) of the ligand binding domain (LBD). Crystallographic studies indicate that R348 and E352 residues in RXRalpha H7 are involved in charge-driven interactions that improve dimerisation. Consistent with these findings, we showed that removing the charge of the corresponding residues in HNF4alpha H7, R258 and E262, impaired dimerisation in solution. Moreover, our results provide a new concept according to which helices of the HNF4alpha LBD dimerisation interface contribute differently to dimerisation required for DNA binding; unlike H9 and H10, H7 is not involved in DNA binding. Substitutions of E262 decreased the repression of HNF4alpha transcriptional activity by a dominant-negative HNF4alpha mutant, highlighting the importance of this residue for dimerisation in the cell context. The E262 insert is crucial for HNF4alpha function since its deletion abolished HNF4alpha transcriptional activity and coactivator recruitment. The glutamate residue insert and the conserved arginyl residue in H7 most probably represent a signature of the NR2 subfamily of nuclear receptors.

  15. Altered RNA processing and export lead to retention of mRNAs near transcription sites and nuclear pore complexes or within the nucleolus.

    PubMed

    Paul, Biplab; Montpetit, Ben

    2016-09-01

    Many protein factors are required for mRNA biogenesis and nuclear export, which are central to the eukaryotic gene expression program. It is unclear, however, whether all factors have been identified. Here we report on a screen of >1000 essential gene mutants in Saccharomyces cerevisiae for defects in mRNA processing and export, identifying 26 mutants with defects in this process. Single-molecule FISH data showed that the majority of these mutants accumulated mRNA within specific regions of the nucleus, which included 1) mRNAs within the nucleolus when nucleocytoplasmic transport, rRNA biogenesis, or RNA processing and surveillance was disrupted, 2) the buildup of mRNAs near transcription sites in 3'-end processing and chromosome segregation mutants, and 3) transcripts being enriched near nuclear pore complexes when components of the mRNA export machinery were mutated. These data show that alterations to various nuclear processes lead to the retention of mRNAs at discrete locations within the nucleus.

  16. STAT6 Transcription Factor Is a Facilitator of the Nuclear Receptor PPARγ-Regulated Gene Expression in Macrophages and Dendritic Cells

    PubMed Central

    Szanto, Attila; Balint, Balint L.; Nagy, Zsuzsanna S.; Barta, Endre; Dezso, Balazs; Pap, Attila; Szeles, Lajos; Poliska, Szilard; Oros, Melinda; Evans, Ronald M.; Barak, Yaacov; Schwabe, John; Nagy, Laszlo

    2010-01-01

    Summary Peroxisome proliferator-activated receptor γ (PPARγ) is a lipid-activated transcription factor regulating lipid metabolism and inflammatory response in macrophages and dendritic cells (DCs). These immune cells exposed to distinct inflammatory milieu show cell type specification as a result of altered gene expression. We demonstrate here a mechanism how inflammatory molecules modulate PPARγ signaling in distinct subsets of cells. Proinflammatory molecules inhibited whereas interleukin-4 (IL-4) stimulated PPARγ activity in macrophages and DCs. Furthermore, IL-4 signaling augmented PPARγ activity through an interaction between PPARγ and signal transducer and activators of transcription 6 (STAT6) on promoters of PPARγ target genes, including FABP4. Thus, STAT6 acts as a facilitating factor for PPARγ by promoting DNA binding and consequently increasing the number of regulated genes and the magnitude of responses. This interaction, underpinning cell type-specific responses, represents a unique way of controlling nuclear receptor signaling by inflammatory molecules in immune cells. PMID:21093321

  17. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    SciTech Connect

    Compagnucci, Claudia; Barresi, Sabina; Petrini, Stefania; Bertini, Enrico; Zanni, Ginevra

    2015-04-03

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.

  18. Poly(ADP-ribose) Polymerase 1 Interacts with Nuclear Respiratory Factor 1 (NRF-1) and Plays a Role in NRF-1 Transcriptional Regulation*S⃞

    PubMed Central

    Hossain, Mohammad B.; Ji, Ping; Anish, Ramakrishnan; Jacobson, Raymond H.; Takada, Shinako

    2009-01-01

    Nuclear respiratory factor 1 (NRF-1) is one of the key transcriptional activators for nuclear-coded genes involved in mitochondrial biogenesis and function as well as for many housekeeping genes. A transcriptional co-activator PGC-1 and its related family member PRC have previously been shown to interact with NRF-1 and co-activate NRF-1. We show here that NRF-1 can also directly interact with poly(ADP-ribose) polymerase 1 (PARP-1) and co-purify the PARP-1·DNA-PK·Ku80·Ku70·topoisomerase IIβ-containing protein complex. Our in vitro binding experiments show that DNA-binding/dimerization domain of NRF-1 and the N-terminal half of PARP-1, which contains two Zinc fingers and the auto-modification domain, are responsible for the interaction, and that this interaction occurs with or without PARP-1 poly(ADP-ribosyl)ation (PARylation). DNA-bound NRF-1 can form a complex with PARP-1, suggesting that NRF-1 can recruit the PARP-1·DNA-PK·Ku80·Ku70·topoisomerase IIβ-containing protein complex to the promoter. PARP-1 can also PARylate the DNA-binding domain of NRF-1 and negatively regulate NRF-1·PARP-1 interaction. Transient transfection and chromatin immunoprecipitation experiments suggest that PARP-1 plays a role during transcriptional activation by NRF-1. Our finding identifies a new aspect of transcriptional regulation used by NRF-1. PMID:19181665

  19. Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa.

    PubMed Central

    Robertson, E S; Grossman, S; Johannsen, E; Miller, C; Lin, J; Tomkinson, B; Kieff, E

    1995-01-01

    The Epstein-Barr virus (EBV) nuclear protein 3C (EBNA 3C) is essential for EBV-mediated transformation of primary B lymphocytes, is turned on by EBNA 2, and regulates transcription of some of the viral and cellular genes which are regulated by EBNA 2. EBNA 2 is targeted to response elements by binding to the DNA sequence-specific, transcriptional repressor protein J kappa. We now show that EBNA 3C also binds to J kappa. EBNA 3C causes J kappa to not bind DNA or EBNA 2. J kappa DNA binding activity in EBV-transformed lymphoblastoid cells is consequently reduced. More than 10% of the EBNA 3C coimmunoprecipitated with J kappa from extracts of non-EBV-infected B lymphoblasts that had been stably converted to EBNA 3C expression. EBNA 3C in nuclear extracts from these cells (or in vitro-translated EBNA 3C) prevented J kappa from interacting with a high-affinity DNA binding site. Under conditions of transient overexpression in B lymphoblasts, EBNA 2 and EBNA 3C associated with J kappa and less EBNA 2 associated with J kappa when EBNA 3C was coexpressed in the same cell. EBNA 3C had no effect on the activity of a -512/+40 LMP1 promoter-CAT reporter construct that has two upstream J kappa sites, but it did inhibit EBNA 2 transactivation of this promoter. These data are compatible with a role for EBNA 3C as a "feedback" down modulator of EBNA 2-mediated transactivation. EBNA 3C could, in theory, also activate transcription by inhibiting the interaction of the J kappa repressor with its cognate DNA. The interaction of two viral transcriptional regulators with the same cell protein may reflect an unusually high level of complexity or stringency in target gene regulation. PMID:7707539

  20. Hepatocyte Nuclear Factor 4α (HNF4α) Is a Transcription Factor of Vertebrate Fatty Acyl Desaturase Gene as Identified in Marine Teleost Siganus canaliculatus

    PubMed Central

    Dong, Yewei; Wang, Shuqi; Chen, Junliang; Zhang, Qinghao; Liu, Yang; You, Cuihong; Monroig, Óscar; Tocher, Douglas R.; Li, Yuanyou

    2016-01-01

    Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis. PMID:27472219

  1. Hepatocyte Nuclear Factor 4α (HNF4α) Is a Transcription Factor of Vertebrate Fatty Acyl Desaturase Gene as Identified in Marine Teleost Siganus canaliculatus.

    PubMed

    Dong, Yewei; Wang, Shuqi; Chen, Junliang; Zhang, Qinghao; Liu, Yang; You, Cuihong; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-01-01

    Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis.

  2. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    SciTech Connect

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  3. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR).

    PubMed

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Isaac, Sara; Eden, Amir; Lauria, Ines; Langer, Thomas; Orly, Joseph

    2015-06-15

    High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases.

  4. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I.

    PubMed

    Martin, Luc J; Boucher, Nicolas; Brousseau, Catherine; Tremblay, Jacques J

    2008-09-01

    Cholesterol transport in the mitochondrial membrane, an essential step of steroid biosynthesis, is mediated by a protein complex containing the steroidogenic acute regulatory (StAR) protein. The importance of this transporter is underscored by mutations in the human StAR gene that cause lipoid congenital adrenal hyperplasia, male pseudohermaphroditism, and adrenal insufficiency. StAR transcription in steroidogenic cells is hormonally regulated and involves several transcription factors. The nuclear receptor NUR77 is present in steroidogenic cells, and its expression is induced by hormones known to activate StAR expression. We have now established that StAR transcription in cAMP-stimulated Leydig cells requires de novo protein synthesis and involves NUR77. We found that cAMP-induced NUR77 expression precedes that of StAR both at the mRNA and protein levels in Leydig cells. In these cells, small interfering RNA-mediated NUR77 knockdown reduces cAMP-induced StAR expression. Chromatin immunoprecipitation assays revealed a cAMP-dependent increase in NUR77 recruitment to the proximal StAR promoter, whereas transient transfections in MA-10 Leydig cells confirmed that NUR77 can activate the StAR promoter and that this requires an element located at -95 bp. cAMP-induced StAR and NUR77 expression in Leydig cells was found to require a Ca2+/calmodulin-dependent protein kinase (CaMK)-dependent signaling pathway. Consistent with this, we show that within the testis, CaMKI is specifically expressed in Leydig cells. Finally, we report that CaMKI transcriptionally cooperates with NUR77, but not steroidogenic factor 1, to further enhance StAR promoter activity in Leydig cells. All together, our results implicate NUR77 as a mediator of cAMP action on StAR transcription in steroidogenic Leydig cells and identify a role for CaMKI in this process.

  5. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor.

    PubMed

    Macfarlan, Todd; Kutney, Sara; Altman, Brian; Montross, Rebecca; Yu, Jiujiu; Chakravarti, Debabrata

    2005-02-25

    The identities of signal transducer proteins that integrate histone hypoacetylation and transcriptional repression are largely unknown. Here we demonstrate that THAP7, an uncharacterized member of the recently identified THAP (Thanatos-associated protein) family of proteins, is ubiquitously expressed, associates with chromatin, and represses transcription. THAP7 binds preferentially to hypoacetylated (un-, mono-, and diacetylated) histone H4 tails in vitro via its C-terminal 77 amino acids. Deletion of this domain, or treatment of cells with the histone deacetylase inhibitor TSA, which leads to histone hyperacetylation, partially disrupts THAP7/chromatin association in living cells. THAP7 coimmunoprecipitates with histone deacetylase 3 (HDAC3) and the nuclear hormone receptor corepressor (NCoR) and represses transcription as a Gal4 fusion protein. Chromatin immunoprecipitation assays demonstrate that these corepressors are recruited to promoters in a THAP7 dependent manner and promote histone H3 hypoacetylation. The conserved THAP domain is a key determinant for full HDAC3 association in vitro, and both the THAP domain and the histone interaction domain are important for the repressive properties of THAP7. Full repression mediated by THAP7 is also dependent on NCoR expression. We hypothesize that THAP7 is a dual function repressor protein that actively targets deacetylation of histone H3 necessary to establish transcriptional repression and functions as a signal transducer of the repressive mark of hypoacetylated histone H4. This is the first demonstration of the transcriptional regulatory properties of a human THAP domain protein, and a critical identification of a potential transducer of the repressive signal of hypoacetylated histone H4 in higher eukaryotes. PMID:15561719

  6. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors

    SciTech Connect

    Khaiboullina, Svetlana F.; Morzunov, Sergey P.; Boichuk, Sergei V.; Palotás, András; Jeor, Stephen St.; Lombardi, Vincent C.; Rizvanov, Albert A.

    2013-09-01

    Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.

  7. Signal transduction triggered by iron to induce the nuclear importation of a Myb3 transcription factor in the parasitic protozoan Trichomonas vaginalis.

    PubMed

    Hsu, Hong-Ming; Lee, Yu; Hsu, Pang-Hung; Liu, Hsing-Wei; Chu, Chien-Hsin; Chou, Ya-Wen; Chen, Yet-Ran; Chen, Shu-Hui; Tai, Jung-Hsiang

    2014-10-17

    Iron was previously shown to induce rapid nuclear translocation of a Myb3 transcription factor in the protozoan parasite, Trichomonas vaginalis. In the present study, iron was found to induce a transient increase in cellular cAMP, followed by the nuclear influx of Myb3, whereas the latter was also induced by 8-bromo-cyclic AMP. Iron-inducible cAMP production and nuclear influx of Myb3 were inhibited by suramin and SQ22536, respective inhibitors of the Gα subunit of heterotrimeric G proteins and adenylyl cyclases. In contrast, the nuclear influx of Myb3 induced by iron or 8-bromo-cAMP was delayed or inhibited, respectively, by H89, the inhibitor of protein kinase A. Using liquid chromatography-coupled tandem mass spectrometry, Thr(156) and Lys(143) in Myb3 were found to be phosphorylated and ubiquitinated, respectively. These modifications were induced by iron and inhibited by H89, as shown by immunoprecipitation-coupled Western blotting. Iron-inducible ubiquitination and nuclear influx were aborted in T156A and K143R, but T156D was constitutively ubiquitinated and persistently localized to the nucleus. Myb3 was phosphorylated in vitro by the catalytic subunit of a T. vaginalis protein kinase A, TvPKAc. A transient interaction between TvPKAc and Myb3 and the phosphorylation of both proteins were induced in the parasite shortly after iron or 8-bromo-cAMP treatment. Together, these observations suggest that iron may induce production of cAMP and activation of TvPKAc, which then induces the phosphorylation of Myb3 and subsequent ubiquitination for accelerated nuclear influx. It is conceivable that iron probably exerts a much broader impact on the physiology of the parasite than previously thought to encounter environmental changes.

  8. IL6 Inhibits HBV Transcription by Targeting the Epigenetic Control of the Nuclear cccDNA Minichromosome

    PubMed Central

    Palumbo, Gianna Aurora; Scisciani, Cecilia; Pediconi, Natalia; Lupacchini, Leonardo; Alfalate, Dulce; Guerrieri, Francesca; Calvo, Ludovica; Salerno, Debora; Di Cocco, Silvia; Levrero, Massimo; Belloni, Laura

    2015-01-01

    The HBV covalently closed circular DNA (cccDNA) is organized as a mini-chromosome in the nuclei of infected hepatocytes by histone and non-histone proteins. Transcription from the cccDNA of the RNA replicative intermediate termed pre-genome (pgRNA), is the critical step for genome amplification and ultimately determines the rate of HBV replication. Multiple evidences suggest that cccDNA epigenetic modifications, such as histone modifications and DNA methylation, participate in regulating the transcriptional activity of the HBV cccDNA. Inflammatory cytokines (TNFα, LTβ) and the pleiotropic cytokine interleukin-6 (IL6) inhibit hepatitis B virus (HBV) replication and transcription. Here we show, in HepG2 cells transfected with linear HBV monomers and HBV-infected NTCP-HepG2 cells, that IL6 treatment leads to a reduction of cccDNA-bound histone acetylation paralleled by a rapid decrease in 3.5kb/pgRNA and subgenomic HBV RNAs transcription without affecting cccDNA chromatinization or cccDNA levels. IL6 repressive effect on HBV replication is mediated by a loss of HNF1α and HNF4α binding to the cccDNA and a redistribution of STAT3 binding from the cccDNA to IL6 cellular target genes. PMID:26580974

  9. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.

    PubMed

    Städeli, Reto; Basler, Konrad

    2005-11-01

    Members of the Wingless (Wg)/Wnt family of secreted glycoproteins control cell fate during embryonic development and adult homeostasis. Wnt signals regulate the expression of target genes by activating a conserved signal transduction pathway. Upon receptor activation, the signal is transmitted intracellularly by stabilization of Armadillo (Arm)/beta-catenin. Arm/beta-catenin translocates to the nucleus, interacts with DNA-binding factors of the Pangolin (Pan)/TCF/LEF class and activates transcription of target genes in cooperation with the recently identified proteins Legless/BCL9 (Lgs) and Pygopus (Pygo). Here, we analyse the mode of action of Pan, Arm, Lgs, and Pygo in Drosophila cultured cells. We provide evidence that together these four proteins form a 'chain of adaptors' linking the NH2-terminal homology domain (NHD) of Pygo to the DNA-binding domain of Pan. We show that the NHD has potent transcriptional activation capacity, which differs from that of acidic activator domains and depends on a conserved NPF tripeptide. A single point mutation within this NPF motif abolishes the transcriptional activity of the Pygo NHD in vitro and strongly reduces Wg signalling in vivo. Together, our results suggest that the transcriptional output of Wg pathway activity largely relies on a 'chain of adaptors' design to direct the Pygo NHD to Wg target promoters in an Arm-dependent manner. PMID:16169192

  10. NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana

    PubMed Central

    Siriwardana, Chamindika L.; Holt III, Ben F.

    2016-01-01

    Recent reports suggest that NF-Y transcription factors are positive regulators of skotomorphogenesis in Arabidopsis thaliana. Three NF-YC genes (NF-YC3, NF-YC4, and NF-YC9) are known to have overlapping functions in photoperiod dependent flowering and previous studies demonstrated that they interact with basic leucine zipper (bZIP) transcription factors. This included ELONGATED HYPOCOTYL 5 (HY5), which has well-demonstrated roles in photomorphogenesis. Similar to hy5 mutants, we report that nf-yc3 nf-yc4 nf-yc9 triple mutants failed to inhibit hypocotyl elongation in all tested light wavelengths. Surprisingly, nf-yc3 nf-yc4 nf-yc9 hy5 mutants had synergistic defects in light perception, suggesting that NF-Ys represent a parallel light signaling pathway. As with other photomorphogenic transcription factors, nf-yc3 nf-yc4 nf-yc9 triple mutants also partially suppressed the short hypocotyl and dwarf rosette phenotypes of CONSTITUTIVE PHOTOMORPHOGENIC 1 (cop1) mutants. Thus, our data strongly suggest that NF-Y transcription factors have important roles as positive regulators of photomorphogenesis, and in conjunction with other recent reports, implies that the NF-Y are multifaceted regulators of early seedling development. PMID:27685091

  11. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.

    PubMed

    Städeli, Reto; Basler, Konrad

    2005-11-01

    Members of the Wingless (Wg)/Wnt family of secreted glycoproteins control cell fate during embryonic development and adult homeostasis. Wnt signals regulate the expression of target genes by activating a conserved signal transduction pathway. Upon receptor activation, the signal is transmitted intracellularly by stabilization of Armadillo (Arm)/beta-catenin. Arm/beta-catenin translocates to the nucleus, interacts with DNA-binding factors of the Pangolin (Pan)/TCF/LEF class and activates transcription of target genes in cooperation with the recently identified proteins Legless/BCL9 (Lgs) and Pygopus (Pygo). Here, we analyse the mode of action of Pan, Arm, Lgs, and Pygo in Drosophila cultured cells. We provide evidence that together these four proteins form a 'chain of adaptors' linking the NH2-terminal homology domain (NHD) of Pygo to the DNA-binding domain of Pan. We show that the NHD has potent transcriptional activation capacity, which differs from that of acidic activator domains and depends on a conserved NPF tripeptide. A single point mutation within this NPF motif abolishes the transcriptional activity of the Pygo NHD in vitro and strongly reduces Wg signalling in vivo. Together, our results suggest that the transcriptional output of Wg pathway activity largely relies on a 'chain of adaptors' design to direct the Pygo NHD to Wg target promoters in an Arm-dependent manner.

  12. The nuclear localization of the Arabidopsis transcription factor TIP is blocked by its interaction with the coat protein of Turnip crinkle virus

    SciTech Connect

    Ren Tao; Qu Feng; Morris, T. Jack . E-mail: jmorris@unlnotes.unl.edu

    2005-01-20

    We have previously reported that TIP, an Arabidopsis protein, interacts with the coat protein (CP) of Turnip crinkle virus (TCV) in yeast cells and that this interaction correlated with the resistance response in the TCV-resistant Arabidopsis ecotype Dijon-17. TIP was also able to activate transcription of reporter genes in yeast cells, suggesting that it is likely a transcription factor. We have now verified the physical interaction between TIP and TCV CP in vitro and showed that CP mutants unable to interact with TIP in yeast cells bind TIP with much lower affinity in vitro. Secondly, we have performed gel shift experiments demonstrating that TIP does not bind to DNA in a sequence-specific manner. The subcellular localization of TIP was also investigated by transiently expressing green fluorescence protein (GFP)-tagged TIP in Nicotiana benthamiana plant cells, which showed that GFP-tagged TIP localizes primarily to nuclei. Significantly, co-expression of TCVCP and GFP-TIP prevented the nuclear localization of TIP. Together, these results suggest that TIP might be a transcription factor involved in regulating the defense response of Arabidopsis to TCV and that its normal role is compromised by interaction with the invading viral CP.

  13. Redefining the Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines.

    PubMed Central

    Schaefer, B C; Strominger, J L; Speck, S H

    1995-01-01

    The Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter for the restricted Epstein-Barr virus (EBV) latency program operating in group I Burkitt lymphoma (BL) cell lines was previously identified incorrectly. Here we present evidence from RACE (rapid amplification of cDNA ends) cloning, reverse transcription-PCR, and S1 nuclease analyses, which demonstrates that the EBNA-1 gene promoter in group I BL cell lines is located in the viral BamHI Q fragment, immediately upstream of two low-affinity EBNA-1 binding sites. Transcripts initiated from this promoter, referred to as Qp, have the previously reported Q/U/K exon splicing pattern. Qp is active in group I BL cell lines but not in group III BL cell lines or in EBV immortalized B-lymphoblastoid cell lines. In addition, transient transfection of Qp-driven reporter constructs into both an EBV-negative BL cell line and a group I BL cell line gave rise to correctly initiated transcripts. Inspection of Qp revealed that it is a TATA-less promoter whose architecture is similar to the promoters of housekeeping genes, suggesting that Qp may be a default promoter which ensures EBNA-1 expression in cells that cannot run the full viral latency program. Elucidation of the genetic mechanism responsible for the EBNA-1-restricted program of EBV latency is an essential step in understanding control of viral latency in EBV-associated tumors. Images Fig. 1 Fig. 3 Fig. 4 PMID:7479841

  14. Enhanced cardiac Akt/protein kinase B signaling contributes to pathological cardiac hypertrophy in part by impairing mitochondrial function via transcriptional repression of mitochondrion-targeted nuclear genes.

    PubMed

    Wende, Adam R; O'Neill, Brian T; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O; McCrory, Mark A; Nye, Brenna G; Benavides, Gloria A; Darley-Usmar, Victor M; Shioi, Tetsuo; Weimer, Bart C; Abel, E Dale

    2015-03-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity.

  15. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    PubMed Central

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  16. Equal impact of diffusion and DNA binding rates on the potential spatial distribution of nuclear factor κB transcription factor inside the nucleus.

    PubMed

    Sycheva, A M; Kel, A; Nikolaev, E N; Moshkovskii, S A

    2014-06-01

    There are two physical processes that influence the spatial distribution of transcription factor molecules entering the nucleus of a eukaryotic cell, the binding to genomic DNA and the diffusion throughout the nuclear volume. Comparison of the DNA-protein association rate constant and the protein diffusion constant may determine which one is the limiting factor. If the process is diffusion-limited, transcription factor molecules are captured by DNA before their even distribution in the nuclear volume. Otherwise, if the reaction rate is limiting, these molecules diffuse evenly and then find their binding sites. Using well-studied human NF-κB dimer as an example, we calculated its diffusion constant using the Debye-Smoluchowski equation. The value of diffusion constant was about 10(-15) cm(3)/s, and it was comparable to the NF-κB association rate constant for DNA binding known from previous studies. Thus, both diffusion and DNA binding play an equally important role in NF-κB spatial distribution. The importance of genome 3D-structure in gene expression regulation and possible dependence of gene expression on the local concentration of open chromatin can be hypothesized from our theoretical estimate.

  17. Post-transcriptional regulation of cyclins D1, D3 and G1 and proliferation of human cancer cells depend on IMP-3 nuclear localization.

    PubMed

    Rivera Vargas, T; Boudoukha, S; Simon, A; Souidi, M; Cuvellier, S; Pinna, G; Polesskaya, A

    2014-05-29

    RNA-binding proteins of the IMP family (insulin-like growth factor 2 (IGF2) mRNA-binding proteins 1-3) are important post-transcriptional regulators of gene expression. Multiple studies have linked high expression of IMP proteins, and especially of IMP-3, to an unfavorable prognosis in numerous types of cancer. The specific importance of IMP-3 for cancer transformation remains poorly understood. We here show that all three IMPs can directly bind the mRNAs of cyclins D1, D3 and G1 (CCND1, D3 and G1) in vivo and in vitro, and yet only IMP-3 regulates the expression of these cyclins in a significant manner in six human cancer cell lines of different origins. In the absence of IMP-3, the levels of CCND1, D3 and G1 proteins fall dramatically, and the cells accumulate in the G1 phase of the cell cycle, leading to almost complete proliferation arrest. Our results show that, compared with IMP-1 and IMP-2, IMP-3 is enriched in the nucleus, where it binds the transcripts of CCND1, D3 and G1. The nuclear localization of IMP-3 depends on its protein partner HNRNPM and is indispensable for the post-transcriptional regulation of expression of the cyclins. Cytoplasmic retention of IMP-3 and HNRNPM in human cancer cells leads to significant drop in proliferation. In conclusion, a nuclear IMP-3-HNRNPM complex is important for the efficient synthesis of CCND1, D3 and G1 and for the proliferation of human cancer cells.

  18. Transcription of Two Photosynthesis-Associated Nuclear Gene Families Correlates with the Presence of Chloroplasts in Leaves of the Variegated Tomato ghost Mutant.

    PubMed

    Giuliano, G; Scolnik, P A

    1988-01-01

    Leaves of the tomato ghost mutant show a variegated green/white phenotype due to a somatically unstable genetic block in carotenoid biosynthesis. Colored carotenoids are not synthesized in white leaves; consequently, chlorophyll is destroyed by photooxidation and the plastids formed show little development of internal membrane structures. Carotenoid biosynthesis proceeds to wild type levels in green tissue, thus chlorophyll accumulates and chloroplasts develop normally. The presence of green sectors allows for the production through tissue culture of variegated green/white plants, in which growth is supported by the photosynthetic green tissue. Thus, ghost is the first plant carotenoid mutant that can be grown to maturity. We determined the steady state mRNA levels for two nuclear gene families that code for chloroplast proteins: rbcS, which codes for the small subunit of ribulose-1-5-bisphosphate carboxylase; and cab, which codes for chlorophyll a/b binding protein. In ghost plants grown in light, the steady state mRNA levels for both gene families were low in white leaves but were similar to wild type in green leaves. Light regulation of the transcripts studied was observed in both ghost green and white leaves. Transcription experiments conducted on nuclei isolated from green and white leaves indicate that the low levels of cytoplasmic mRNAs observed in the absence of colored carotenoids and/or light are due to reduced rates of transcription. We conclude that maximum transcription of rbcS and cab genes in leaves of mature tomato plants requires both light and mature chloroplasts.

  19. Transcriptional suppression of CTP:phosphoethanolamine cytidylyltransferase by 25-hydroxycholesterol is mediated by nuclear factor-Y and Yin Yang 1.

    PubMed

    Ando, Hiromi; Aoyama, Chieko; Horibata, Yasuhiro; Satou, Motoyasu; Mitsuhashi, Satomi; Itoh, Masahiko; Hosaka, Kohei; Sugimoto, Hiroyuki

    2015-11-01

    Pcyt2 (CTP:phosphoethanolamine cytidylyltransferase) is the rate-limiting enzyme in mammalian PE (phosphatidylethanolamine) biosynthesis. Previously, we reported that Pcyt2 mRNA levels increased in several types of cells after serum starvation, an effect that could be suppressed by supplementation with low-density lipoprotein or 25-HC (25-hydroxycholesterol). Transcription of Hmgcr, which encodes 3-hydroxy-3-methylglutaryl-CoA reductase, is also suppressed by 25-HC in the same dose-dependent manner. Nevertheless, a sterol-regulatory element was not detected in the Pcyt2 promoter region. The important element for transcriptional control of Pcyt2 by 25-HC (1.25 μM) was determined to reside between -56 and -36 on the basis of analysis with several Pcyt2 promoter deletion-luciferase reporters in NIH 3T3 cells. Using the yeast one-hybrid system, we found that NF-Y (nuclear factor-Y) binds at C(-37)CAAT(-41) and YY1 (Yin Yang1) binds at C(-42)AT(-40) in the Pcyt2 promoter. Endogenous NF-Y and YY1 bind clearly and competitively to these sites and are important for basal Pcyt2 transcription. Moreover, NF-Y binds to the Hmgcr promoter at C(-14)CA(-12) in gel-shift analysis, and suppression of the basal luciferase activity of the Hmgcr promoter-reporter construct (-30/+61) by 25-HC was abolished when C(-14)CA(-12) was mutated. Furthermore, transcriptional suppression of Pcyt2 by 25-HC was reduced following knockdown targeting of NF-YA or YY1. ChIP analysis revealed that 25-HC inhibited the interaction between NF-Y and RNA polymerase II on the Pcyt2 and Hmgcr promoters. On the basis of these results, we conclude that NF-Y and YY1 are important for the basal transcription of Pcyt2 and that NF-Y is involved in the inhibitory effects of 25-HC on Pcyt2 transcription.

  20. Ciliary Entry of the Hedgehog Transcriptional Activator Gli2 Is Mediated by the Nuclear Import Machinery but Differs from Nuclear Transport in Being Imp-α/β1-Independent.

    PubMed

    Torrado, Belén; Graña, Martín; Badano, José L; Irigoín, Florencia

    2016-01-01

    Gli2 is the primary transcriptional activator of Hedgehog signalling in mammals. Upon stimulation of the pathway, Gli2 moves into the cilium before reaching the nucleus. However, the mechanisms underlying its entry into the cilium are not completely understood. Since several similarities have been reported between nuclear and ciliary import, we investigated if the nuclear import machinery participates in Gli2 ciliary entry. Here we show that while two conserved classical nuclear localization signals mediate Gli2 nuclear localization via importin (Imp)-α/β1, these sequences are not required for Gli2 ciliary import. However, blocking Imp-mediated transport through overexpression of GTP-locked Ran reduced the percentage of Gli2 positive cilia, an effect that was not explained by increased CRM1-dependent export of Gli2 from the cilium. We explored the participation of Imp-β2 in Gli2 ciliary traffic and observed that this transporter is involved in moving Gli2 into the cilium, as has been described for other ciliary proteins. In addition, our data indicate that Imp-β2 might also collaborate in Gli2 nuclear entry. How does Imp-β2 determine the final destination of a protein that can localize to two distinct subcellular compartments remains an open question. Therefore, our data shows that the nuclear-cytoplasmic shuttling machinery plays a critical role mediating the subcellular distribution of Gli2 and the activation of the pathway, but distinct importins likely play a differential role mediating its ciliary and nuclear translocation.

  1. Ciliary Entry of the Hedgehog Transcriptional Activator Gli2 Is Mediated by the Nuclear Import Machinery but Differs from Nuclear Transport in Being Imp-α/β1-Independent

    PubMed Central

    Torrado, Belén; Graña, Martín; Badano, José L.; Irigoín, Florencia

    2016-01-01

    Gli2 is the primary transcriptional activator of Hedgehog signalling in mammals. Upon stimulation of the pathway, Gli2 moves into the cilium before reaching the nucleus. However, the mechanisms underlying its entry into the cilium are not completely understood. Since several similarities have been reported between nuclear and ciliary import, we investigated if the nuclear import machinery participates in Gli2 ciliary entry. Here we show that while two conserved classical nuclear localization signals mediate Gli2 nuclear localization via importin (Imp)-α/β1, these sequences are not required for Gli2 ciliary import. However, blocking Imp-mediated transport through overexpression of GTP-locked Ran reduced the percentage of Gli2 positive cilia, an effect that was not explained by increased CRM1-dependent export of Gli2 from the cilium. We explored the participation of Imp-β2 in Gli2 ciliary traffic and observed that this transporter is involved in moving Gli2 into the cilium, as has been described for other ciliary proteins. In addition, our data indicate that Imp-β2 might also collaborate in Gli2 nuclear entry. How does Imp-β2 determine the final destination of a protein that can localize to two distinct subcellular compartments remains an open question. Therefore, our data shows that the nuclear-cytoplasmic shuttling machinery plays a critical role mediating the subcellular distribution of Gli2 and the activation of the pathway, but distinct importins likely play a differential role mediating its ciliary and nuclear translocation. PMID:27579771

  2. Ciliary Entry of the Hedgehog Transcriptional Activator Gli2 Is Mediated by the Nuclear Import Machinery but Differs from Nuclear Transport in Being Imp-α/β1-Independent.

    PubMed

    Torrado, Belén; Graña, Martín; Badano, José L; Irigoín, Florencia

    2016-01-01

    Gli2 is the primary transcriptional activator of Hedgehog signalling in mammals. Upon stimulation of the pathway, Gli2 moves into the cilium before reaching the nucleus. However, the mechanisms underlying its entry into the cilium are not completely understood. Since several similarities have been reported between nuclear and ciliary import, we investigated if the nuclear import machinery participates in Gli2 ciliary entry. Here we show that while two conserved classical nuclear localization signals mediate Gli2 nuclear localization via importin (Imp)-α/β1, these sequences are not required for Gli2 ciliary import. However, blocking Imp-mediated transport through overexpression of GTP-locked Ran reduced the percentage of Gli2 positive cilia, an effect that was not explained by increased CRM1-dependent export of Gli2 from the cilium. We explored the participation of Imp-β2 in Gli2 ciliary traffic and observed that this transporter is involved in moving Gli2 into the cilium, as has been described for other ciliary proteins. In addition, our data indicate that Imp-β2 might also collaborate in Gli2 nuclear entry. How does Imp-β2 determine the final destination of a protein that can localize to two distinct subcellular compartments remains an open question. Therefore, our data shows that the nuclear-cytoplasmic shuttling machinery plays a critical role mediating the subcellular distribution of Gli2 and the activation of the pathway, but distinct importins likely play a differential role mediating its ciliary and nuclear translocation. PMID:27579771

  3. FUS interacts with nuclear matrix-associated protein SAFB1 as well as Matrin3 to regulate splicing and ligand-mediated transcription

    PubMed Central

    Yamaguchi, Atsushi; Takanashi, Keisuke

    2016-01-01

    FUS (Fused-in-Sarcoma) is a multifunctional DNA/RNA binding protein linked to familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). Since FUS is localized mainly in the nucleus with nucleo-cytoplasmic shuttling, it is critical to understand physiological functions in the nucleus to clarify pathogenesis. Here we report a yeast two-hybrid screening identified FUS interaction with nuclear matrix-associated protein SAFB1 (scaffold attachment factor B1). FUS and SAFB1, abundant in chromatin-bound fraction, interact in a DNA-dependent manner. N-terminal SAP domain of SAFB1, a DNA-binding motif, was required for its localization to chromatin-bound fraction and splicing regulation. In addition, depletion of SAFB1 reduced FUS’s localization to chromatin-bound fraction and splicing activity, suggesting SAFB1 could tether FUS to chromatin compartment thorough N-terminal DNA-binding motif. FUS and SAFB1 also interact with Androgen Receptor (AR) regulating ligand-dependent transcription. Moreover, FUS interacts with another nuclear matrix-associated protein Matrin3, which is muted in a subset of familial ALS cases and reportedly interacts with TDP-43. Interestingly, ectopic ALS-linked FUS mutant sequestered endogenous Matrin3 and SAFB1 in the cytoplasmic aggregates. These findings indicate SAFB1 could be a FUS’s functional platform in chromatin compartment to regulate RNA splicing and ligand-dependent transcription and shed light on the etiological significance of nuclear matrix-associated proteins in ALS pathogenesis. PMID:27731383

  4. Nuclear Localization of CD26 Induced by a Humanized Monoclonal Antibody Inhibits Tumor Cell Growth by Modulating of POLR2A Transcription

    PubMed Central

    Yamada, Kohji; Hayashi, Mutsumi; Madokoro, Hiroko; Nishida, Hiroko; Du, Wenlin; Ohnuma, Kei; Sakamoto, Michiie; Morimoto, Chikao; Yamada, Taketo

    2013-01-01

    CD26 is a type II glycoprotein known as dipeptidyl peptidase IV and has been identified as one of the cell surface markers associated with various types of cancers and a subset of cancer stem cells. Recent studies have suggested that CD26 expression is involved in tumor growth, tumor invasion, and metastasis. The CD26 is shown in an extensive intracellular distribution, ranging from the cell surface to the nucleus. We have previously showed that the humanized anti-CD26 monoclonal antibody (mAb), YS110, exhibits inhibitory effects on various cancers. However, functions of CD26 on cancer cells and molecular mechanisms of impaired tumor growth by YS110 treatment are not well understood. In this study, we demonstrated that the treatment with YS110 induced nuclear translocation of both cell-surface CD26 and YS110 in cancer cells and xenografted tumor. It was shown that the CD26 and YS110 were co-localized in nucleus by immunoelectron microscopic analysis. In response to YS110 treatment, CD26 was translocated into the nucleus via caveolin-dependent endocytosis. It was revealed that the nuclear CD26 interacted with a genomic flanking region of the gene for POLR2A, a subunit of RNA polymerase II, using a chromatin immunoprecipitation assay. This interaction with nuclear CD26 and POLR2A gene consequently led to transcriptional repression of the POLR2A gene, resulting in retarded cell proliferation of cancer cells. Furthermore, the impaired nuclear transport of CD26 by treatment with an endocytosis inhibitor or expressions of deletion mutants of CD26 reversed the POLR2A repression induced by YS110 treatment. These findings reveal that the nuclear CD26 functions in the regulation of gene expression and tumor growth, and provide a novel mechanism of mAb-therapy related to inducible translocation of cell-surface target molecule into the nucleus. PMID:23638030

  5. HMGN2 inducibly binds a novel transactivation domain in nuclear PRLr to coordinate Stat5a-mediated transcription.

    PubMed

    Fiorillo, Alyson A; Medler, Terry R; Feeney, Yvonne B; Liu, Yi; Tommerdahl, Kalie L; Clevenger, Charles V

    2011-09-01

    The direct actions of transmembrane receptors within the nucleus remain enigmatic. In this report, we demonstrate that the prolactin receptor (PRLr) localizes to the nucleus where it functions as a coactivator through its interactions with the latent transcription factor signal transducer and activator of transcription 5a (Stat5a) and the high-mobility group N2 protein (HMGN2). We identify a novel transactivation domain within the PRLr that is activated by ligand-induced phosphorylation, an event coupled to HMGN2 binding. The association of the PRLr with HMGN2 enables Stat5a-responsive promoter binding, thus facilitating transcriptional activation and promoting anchorage-independent growth. We propose that HMGN2 serves as a critical regulatory factor in Stat5a-driven gene expression by facilitating the assembly of PRLr/Stat5a onto chromatin and that these events may serve to promote biological events that contribute to a tumorigenic phenotype. Our data imply that phosphorylation may be the molecular switch that activates a cell surface receptor transactivation domain, enabling it to tether chromatin-modifying factors, such as HMGN2, to target promoter regions in a sequence-specific manner.

  6. Differential effects of high-temperature stress on nuclear topology and transcription of repetitive noncoding and coding rye sequences.

    PubMed

    Tomás, D; Brazão, J; Viegas, W; Silva, M

    2013-01-01

    The plant stress response has been extensively characterized at the biochemical and physiological levels. However, knowledge concerning repetitive sequence genome fraction modulation during extreme temperature conditions is scarce. We studied high-temperature effects on subtelomeric repetitive sequences (pSc200) and 45S rDNA in rye seedlings submitted to 40°C during 4 h. Chromatin organization patterns were evaluated through fluorescent in situ hybridization and transcription levels were assessed using quantitative real-time PCR. Additionally, the nucleolar dynamics were evaluated through fibrillarin immunodetection in interphase nuclei. The results obtained clearly demonstrated that the pSc200 sequence organization is not affected by high-temperature stress (HTS) and proved for the first time that this noncoding subtelomeric sequence is stably transcribed. Conversely, it was demonstrated that HTS treatment induces marked rDNA chromatin decondensation along with nucleolar enlargement and a significant increase in ribosomal gene transcription. The role of noncoding and coding repetitive rye sequences in the plant stress response that are suggested by their clearly distinct behaviors is discussed. While the heterochromatic conformation of pSc200 sequences seems to be involved in the stabilization of the interphase chromatin architecture under stress conditions, the dynamic modulation of nucleolar and rDNA topology and transcription suggest their role in plant stress response pathways.

  7. Mechanism Underlying the Iron-dependent Nuclear Export of the Iron-responsive Transcription Factor Aft1p in Saccharomyces cerevisiae

    PubMed Central

    Ueta, Ryo; Fujiwara, Naoko

    2007-01-01

    Aft1p is an iron-responsive transcriptional activator that plays a central role in maintaining iron homeostasis in Saccharomyces cerevisiae. Aft1p is regulated primarily by iron-induced shuttling of the protein between the nucleus and cytoplasm, but its nuclear import is not regulated by iron. Here, we have shown that the nuclear export of Aft1p is promoted in the presence of iron and that Msn5p is the nuclear export receptor (exportin) for Aft1p. Msn5p recognizes Aft1p in the iron-replete condition. Phosphorylation of S210 and S224 in Aft1p, which is not iron dependent, and the iron-induced intermolecular interaction of Aft1p are both essential for its recognition by Msn5p. Mutation of Cys291 of Aft1p to Phe, which causes Aft1p to be retained in the nucleus and results in constitutive activation of Aft1-target genes, disrupts the intermolecular interaction of Aft1p. Collectively, these results suggest that iron induces a conformational change in Aft1p, in which Aft1p Cys291 plays a critical role, and that, in turn, Aft1p is recognized by Msn5p and exported into the cytoplasm in an iron-dependent manner. PMID:17538022

  8. Transcriptional activation of human adult alpha-globin genes by hypersensitive site-40 enhancer: function of nuclear factor-binding motifs occupied in erythroid cells.

    PubMed Central

    Rombel, I; Hu, K Y; Zhang, Q; Papayannopoulou, T; Stamatoyannopoulos, G; Shen, C K

    1995-01-01

    The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters have revealed a number of binding sites for nuclear factors that are common to HeLa and K-562 extracts. However, genomic footprinting analysis has demonstrated that only a subset of these sites, clustered between -130 and +1, is occupied in an erythroid tissue-specific manner. The function of these in vivo-occupied motifs of the alpha-globin promoters, as well as those previously mapped in the HS-40 region, is assayed by site-directed mutagenesis and transient expression in embryonic/fetal erythroid K-562 cells. These studies, together with our expression data on the human embryonic zeta-globin promoter, provide a comprehensive view of the functional roles of individual nuclear factor-DNA complexes in the final stages of transcriptional activation of the human alpha-like globin promoters by the HS-40 element. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:7604012

  9. EBV Nuclear Antigen 3C Mediates Regulation of E2F6 to Inhibit E2F1 Transcription and Promote Cell Proliferation.

    PubMed

    Pei, Yonggang; Banerjee, Shuvomoy; Sun, Zhiguo; Jha, Hem Chandra; Saha, Abhik; Robertson, Erle S

    2016-08-01

    Epstein-Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate. Specifically, E2F6, one of the unique E2F family members, is known to be a pRb-independent transcription repressor of E2F-target genes. In our current study, we explore the role of EBNA3C in regulating E2F6 activities. We observed that EBNA3C plays an important role in inducing E2F6 expression in LCLs. Our study also shows that EBNA3C physically interacts with E2F6 at its amino and carboxy terminal domains and they form a protein complex in human cells. In addition, EBNA3C stabilizes the E2F6 protein and is co-localized in the nucleus. We also demonstrated that both EBNA3C and E2F6 contribute to reduction in E2F1 transcriptional activity. Moreover, E2F1 forms a protein complex with EBNA3C and E2F6, and EBNA3C competes with E2F1 for E2F6 binding. E2F6 is also recruited by EBNA3C to the E2F1 promoter, which is critical for EBNA3C-mediated cell proliferation. These results demonstrate a critical role for E2F family members in EBV-induced malignancies, and provide new insights for targeting E2F transcription factors in EBV-associated cancers as potential therapeutic intervention strategies. PMID:27548379

  10. EBV Nuclear Antigen 3C Mediates Regulation of E2F6 to Inhibit E2F1 Transcription and Promote Cell Proliferation.

    PubMed

    Pei, Yonggang; Banerjee, Shuvomoy; Sun, Zhiguo; Jha, Hem Chandra; Saha, Abhik; Robertson, Erle S

    2016-08-01

    Epstein-Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate. Specifically, E2F6, one of the unique E2F family members, is known to be a pRb-independent transcription repressor of E2F-target genes. In our current study, we explore the role of EBNA3C in regulating E2F6 activities. We observed that EBNA3C plays an important role in inducing E2F6 expression in LCLs. Our study also shows that EBNA3C physically interacts with E2F6 at its amino and carboxy terminal domains and they form a protein complex in human cells. In addition, EBNA3C stabilizes the E2F6 protein and is co-localized in the nucleus. We also demonstrated that both EBNA3C and E2F6 contribute to reduction in E2F1 transcriptional activity. Moreover, E2F1 forms a protein complex with EBNA3C and E2F6, and EBNA3C competes with E2F1 for E2F6 binding. E2F6 is also recruited by EBNA3C to the E2F1 promoter, which is critical for EBNA3C-mediated cell proliferation. These results demonstrate a critical role for E2F family members in EBV-induced malignancies, and provide new insights for targeting E2F transcription factors in EBV-associated cancers as potential therapeutic intervention strategies.

  11. EBV Nuclear Antigen 3C Mediates Regulation of E2F6 to Inhibit E2F1 Transcription and Promote Cell Proliferation

    PubMed Central

    Sun, Zhiguo; Jha, Hem Chandra; Saha, Abhik; Robertson, Erle S.

    2016-01-01

    Epstein–Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate. Specifically, E2F6, one of the unique E2F family members, is known to be a pRb-independent transcription repressor of E2F-target genes. In our current study, we explore the role of EBNA3C in regulating E2F6 activities. We observed that EBNA3C plays an important role in inducing E2F6 expression in LCLs. Our study also shows that EBNA3C physically interacts with E2F6 at its amino and carboxy terminal domains and they form a protein complex in human cells. In addition, EBNA3C stabilizes the E2F6 protein and is co-localized in the nucleus. We also demonstrated that both EBNA3C and E2F6 contribute to reduction in E2F1 transcriptional activity. Moreover, E2F1 forms a protein complex with EBNA3C and E2F6, and EBNA3C competes with E2F1 for E2F6 binding. E2F6 is also recruited by EBNA3C to the E2F1 promoter, which is critical for EBNA3C-mediated cell proliferation. These results demonstrate a critical role for E2F family members in EBV-induced malignancies, and provide new insights for targeting E2F transcription factors in EBV-associated cancers as potential therapeutic intervention strategies. PMID:27548379

  12. PNRC: a proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors including orphan receptors SF1 (steroidogenic factor 1) and ERRalpha1 (estrogen related receptor alpha-1).

    PubMed

    Zhou, D; Quach, K M; Yang, C; Lee, S Y; Pohajdak, B; Chen, S

    2000-07-01

    PNRC (proline-rich nuclear receptor coregulatory protein) was identified using bovine SF1 (steroidogenic factor 1) as the bait in a yeast two-hybrid screening of a human mammary gland cDNA expression library. PNRC is unique in that it has a molecular mass of 35 kDa, significantly smaller than most of the coregulatory proteins reported so far, and it is proline-rich. PNRC's nuclear localization was demonstrated by immunofluorescence and Western blot analyses. In the yeast two-hybrid assays, PNRC interacted with the orphan receptors SF1 and ERRalpha1 in a ligand-independent manner. PNRC was also found to interact with the ligand-binding domains of all the nuclear receptors tested including estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), thyroid hormone receptor (TR), retinoic acid receptor (RAR), and retinoid X receptor (RXR) in a ligand-dependent manner. Functional AF2 domain is required for nuclear receptors to bind to PNRC. Furthermore, in vitro glutathione-S-transferase pull-down assay was performed to demonstrate a direct contact between PNRC and nuclear receptors such as SF1. Coimmunoprecipitation experiment using Hela cells that express PNRC and ER was performed to confirm the interaction of PNRC and nuclear receptors in vivo in a ligand-dependent manner. PNRC was found to function as a coactivator to enhance the transcriptional activation mediated by SF1, ERR1 (estrogen related receptor alpha-1), PR, and TR. By examining a series of deletion mutants of PNRC using the yeast two-hybrid assay, a 23-amino acid (aa) sequence in the carboxy-terminal region, aa 278-300, was shown to be critical and sufficient for the interaction with nuclear receptors. This region is proline rich and contains a SH3-binding motif, S-D-P-P-S-P-S. Results from the mutagenesis study demonstrated that the two conserved proline (P) residues in this motif are crucial for PNRC to interact with the nuclear receptors. The exact 23

  13. microRNA-22 Promotes Heart Failure through Coordinate Suppression of PPAR/ERR-Nuclear Hormone Receptor Transcription

    PubMed Central

    Gurha, Priyatansh; Wang, Tiannan; Larimore, Ashley H.; Sassi, Yassine; Abreu-Goodger, Cei; Ramirez, Maricela O.; Reddy, Anilkumar K.; Engelhardt, Stefan; Taffet, George E.; Wehrens, Xander H. T.; Entman, Mark L.; Rodriguez, Antony

    2013-01-01

    Increasing evidence suggests that microRNAs are intimately involved in the pathophysiology of heart failure. MicroRNA-22 (miR-22) is a muscle-enriched miRNA required for optimum cardiac gene transcription and adaptation to hemodynamic stress by pressure overload in mice. Recent evidence also suggests that miR-22 induces hypertrophic growth and it is oftentimes upregulated in end stage heart failure. However the scope of mRNA targets and networks of miR-22 in the heart failure remained unclear. We analyzed transgenic mice with enhanced levels of miR-22 expression in adult cardiomyocytes to identify important pathophysiologic targets of miR-22. Our data shows that forced expression of miR-22 induces a pro-hypertrophic gene expression program, and it elicits contractile dysfunction leading to cardiac dilation and heart failure. Increased expression of miR-22 impairs the Ca2+ transient, Ca2+ loading into the sarcoplasmic reticulum plus it interferes with transcription of estrogen related receptor (ERR) and PPAR downstream genes. Mechanistically, miR-22 postranscriptionally inhibits peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), PPARα and sirtuin 1 (SIRT1) expression via a synergistic circuit, which may account for deleterious actions of unchecked miR-22 expression on the heart. PMID:24086656

  14. Identification of sequences involved in the polyadenylation of higher plant nuclear transcripts using Agrobacterium T-DNA genes as models.

    PubMed Central

    Dhaese, P; De Greve, H; Gielen, J; Seurinck, L; Van Montagu, M; Schell, J

    1983-01-01

    Sequences in the 3'-untranslated region of two different octopine T-DNA genes were analyzed with regard to their significance in polyadenylation. Poly(A) addition sites were localized precisely by S1 nuclease mapping with T-DNA-derived mRNAs isolated from tobacco. The gene encoding transcript 7' contains two AATAAA hexanucleotides, respectively 119 bp and 170 bp downstream of the TAA stop codon. A single poly(A) site was mapped 24-25 bp downstream of the first AATAAA. Further, we show that a mutant octopine synthase gene, which has lost part of its 3'-untranslated region by deletion, is still active. This mutant gene terminates 19 bp upstream from the major wild-type polyadenylation site. The deletion also removes the AATAAT signal preceding this site. The mutant octopine synthase gene contains a minimum of four different poly(A) sites. The most prominent of these sites is identical to the minor poly(A) site of the wild-type gene, and is preceded by a sequence AATGAATATA. Three other sites are located within the adjacent plant DNA, giving rise to hybrid T-DNA/plant DNA transcripts. The two most distal sites are probably dependent on a motif AATAAATAAA, found 29 bp away from the T-DNA/plant DNA junction. Images Fig. 3. Fig. 6. PMID:11894958

  15. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    PubMed

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  16. Nuclear proteins TREF1 and TREF2 bind to the transcriptional control element of the transferrin receptor gene and appear to be associated as a heterodimer.

    PubMed Central

    Roberts, M R; Miskimins, W K; Ruddle, F H

    1989-01-01

    Two novel proteins that bind specifically to the transferrin receptor (TR) promoter, have been isolated from HeLa cell nuclear extract using a combination of ion exchange and oligonucleotide-affinity chromatography. TREF1 and TREF2, which have apparent molecular weights of 82 and 62 kDa, respectively, appear to be associated as a heterocomplex (TREF), and both proteins are able to contact target DNA directly. TREF interacts specifically with a region of the TR promoter which contains the TR transcriptional control element. This region is similar in sequence to the cAMP-responsive and phorbol ester-responsive elements found in several viral and cellular genes. Binding of TREF to the TR promoter results in modification of DNA topology over multiple helical turns, including a sequence revealed by a helical periodicity map as having an unusual structure. Images PMID:2519614

  17. Suppressor of fused (Sufu) represses Gli1 transcription and nuclear accumulation, inhibits glioma cell proliferation, invasion and vasculogenic mimicry, improving glioma chemo-sensitivity and prognosis

    PubMed Central

    Chen, Lingchao; Wang, Guangzhi; Cui, Yuqiong; Liu, Yang; Dou, Zhijin; Wang, Hongjun; Zhang, Ping; Chang, Liang; Yi, Liye; Cai, Jinquan; Jiang, Chuanlu

    2014-01-01

    Glioblastoma are highly aggressive brain tumors with poor prognosis. While various dysregulation of signaling pathways in gliomas have been described, the identification of biomarkers and therapy targets remains an important task for novel diagnostic and therapeutic approaches. Here we described that the Suppressor of fused (also known as Sufu) is significantly down-regulated in high-grade gliomas, correlating with a poor prognosis. We demonstrated that ectopic expression of Sufu inhibited cell proliferation, invasion and vasculogenic mimicry. In addition, overexpression of Sufu reduced Gli reporter gene transcription activity and prevented Gli1 nuclear accumulation, whereas knockdown of Sufu reversed these effects. Furthermore, overexpressed Sufu sensitized glioblastoma to Temozolomide and Cyclopamine. Thus, Sufu is potential tumor suppressor and therapeutic target in glioblastoma. PMID:25373737

  18. The first intron of the 4F2 heavy-chain gene contains a transcriptional enhancer element that binds multiple nuclear proteins

    SciTech Connect

    Karpinski, B.A.; Yang, L.H.; Cacheris, P.; Morle, G.D.; Leiden, J.M.

    1989-06-01

    The authors utilized the human 4F2 heavy-chain (4F2HC) gene as a model system to study the regulation of inducible gene expression during normal human T-cell activation. Previous studies have demonstrated that 4F2HC gene expression is induced during normal T-cell activation and that the activity of the gene is regulated, at least in part, by the interaction of a constitutively active 5'-flanking housekeeping promoter and a phorbol ester-responsive transcriptional attenuator element located in the exon 1-intron 1 region of the gene. They now report that 4F2HC intron 1 contains a transcriptional enhancer element which is active on a number of heterologous promoters in a variety of murine and human cells. This enhancer element has been mapped to a 187-base-pair RsaI-AluI fragment from 4F2HC intron 1. DNase I footprinting and gel mobility shift analyses demonstrated that this fragment contains two nuclear protein-binding sites (NF-4FA and NF-4FB) which flank a consensus binding site for the inducible AP-1 transcription factor. Deletion analysis showed that the NF-4FA, NF-4FB, and AP-1 sequences are each necessary for full enhancer activity. Murine 4F2HC intron 1 displayed enhancer activity similar to that of its human counterpart. Comparison of the sequences of human and murine 4F2HC intron 1s demonstrated that the NF-4FA, NF-4FB, and AP-1 sequence motifs have been highly conserved during mammalian evolution.

  19. A role for nuclear factor interleukin-3 (NFIL3), a critical transcriptional repressor, in down-regulation of periovulatory gene expression.

    PubMed

    Li, Feixue; Liu, Jing; Jo, Misung; Curry, Thomas E

    2011-03-01

    The LH surge triggers dramatic transcriptional changes in genes associated with ovulation and luteinization. The present study investigated the spatiotemporal expression of nuclear factor IL-3 (NFIL3), a transcriptional regulator of the basic leucine zipper transcription factor superfamily, and its potential role in the ovary during the periovulatory period. Immature female rats were injected with pregnant mare's serum gonadotropin, treated with human chorionic gonadotropin (hCG), and ovaries or granulosa cells were collected at various times after hCG. Nfil3 mRNA was highly induced both in intact ovaries and granulosa cells after hCG treatment. In situ hybridization demonstrated that Nfil3 mRNA was highly induced in theca-interstitial cells at 4-8 h after hCG, localized to granulosa cells at 12 h, and decreased at 24 h. Overexpression of NFIL3 in granulosa cells inhibited the induction of prostaglandin-endoperoxide synthase 2 (Ptgs2), progesterone receptor (Pgr), epiregulin (Ereg), and amphiregulin (Areg) and down-regulated levels of prostaglandin E2. The inhibitory effect on Ptgs2 induction was reversed by NFIL3 small interfering RNA treatment. In theca-interstitial cells the expression of hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (Hpgd) was also inhibited by NFIL3 overexpression. Data from luciferase assays demonstrated that NFIL3 overexpression decreased the induction of the Ptgs2 and Areg promoter activity. EMSA and chromatin immunoprecipitation analyses indicated that NFIL3 binds to the promoter region containing the DNA-binding sites of cAMP response element binding protein and CCAAT enhancer binding protein-β. In summary, hCG induction of NFIL3 expression may modulate the process of ovulation and theca-interstitial and granulosa cell differentiation by regulating expression of PTGS2, PGR, AREG, EREG, and HPGD, potentially through interactions with cAMP response element binding protein and CCAAT enhancer binding protein-β on

  20. Positive regulation by γ-aminobutyric acid B receptor subunit-1 of chondrogenesis through acceleration of nuclear translocation of activating transcription factor-4.

    PubMed

    Takahata, Yoshifumi; Hinoi, Eiichi; Takarada, Takeshi; Nakamura, Yukari; Ogawa, Shinya; Yoneda, Yukio

    2012-09-28

    A view that signaling machineries for the neurotransmitter γ-aminobutyric acid (GABA) are functionally expressed by cells outside the central nervous system is now prevailing. In this study, we attempted to demonstrate functional expression of GABAergic signaling molecules by chondrocytes. In cultured murine costal chondrocytes, mRNA was constitutively expressed for metabotropic GABA(B) receptor subunit-1 (GABA(B)R1), but not for GABA(B)R2. Immunohistochemical analysis revealed the predominant expression of GABA(B)R1 by prehypertrophic to hypertrophic chondrocytes in tibial sections of newborn mice. The GABA(B)R agonist baclofen failed to significantly affect chondrocytic differentiation determined by Alcian blue staining and alkaline phosphatase activity in cultured chondrocytes, whereas newborn mice knocked out of GABA(B)R1 (KO) showed a decreased body size and delayed calcification in hyoid bone and forelimb and hindlimb digits. Delayed calcification was also seen in cultured metatarsals from KO mice with a marked reduction of Indian hedgehog gene (Ihh) expression. Introduction of GABA(B)R1 led to synergistic promotion of the transcriptional activity of activating transcription factor-4 (ATF4) essential for normal chondrogenesis, in addition to facilitating ATF4-dependent Ihh promoter activation. Although immunoreactive ATF4 was negligibly detected in the nucleus of chondrocytes from KO mice, ATF4 expression was again seen in the nucleus and cytoplasm after the retroviral introduction of GABA(B)R1 into cultured chondrocytes from KO mice. In nuclear extracts of KO chondrocytes, a marked decrease was seen in ATF4 DNA binding. These results suggest that GABA(B)R1 positively regulates chondrogenesis through a mechanism relevant to the acceleration of nuclear translocation of ATF4 for Ihh expression in chondrocytes. PMID:22879594

  1. The nuclear calcium signaling target, activating transcription factor 3 (ATF3), protects against dendrotoxicity and facilitates the recovery of synaptic transmission after an excitotoxic insult.

    PubMed

    Ahlgren, Hanna; Bas-Orth, Carlos; Freitag, H Eckehard; Hellwig, Andrea; Ottersen, Ole Petter; Bading, Hilmar

    2014-04-01

    The focal swellings of dendrites ("dendritic beading") are an early morphological hallmark of neuronal injury and dendrotoxicity. They are associated with a variety of pathological conditions, including brain ischemia, and cause an acute disruption of synaptic transmission and neuronal network function, which contribute to subsequent neuronal death. Here, we show that increased synaptic activity prior to excitotoxic injury protects, in a transcription-dependent manner, against dendritic beading. Expression of activating transcription factor 3 (ATF3), a nuclear calcium-regulated gene and member of the core gene program for acquired neuroprotection, can protect against dendritic beading. Conversely, knockdown of ATF3 exacerbates dendritic beading. Assessment of neuronal network functions using microelectrode array recordings revealed that hippocampal neurons expressing ATF3 were able to regain their ability for functional synaptic transmission and to participate in coherent neuronal network activity within 48 h after exposure to toxic concentrations of NMDA. Thus, in addition to attenuating cell death, synaptic activity and expression of ATF3 render hippocampal neurons more resistant to acute dendrotoxicity and loss of synapses. Dendroprotection can enhance recovery of neuronal network functions after excitotoxic insults.

  2. Nuclear transcription factor CDX2 inhibits gastric cancer‑cell growth and reverses epithelial‑to‑mesenchymal transition in vitro and in vivo.

    PubMed

    Zhang, Jian-Feng; Qu, Li-Shuai; Qian, Xue-Fen; Xia, Bei-Lei; Mao, Zhen-Biao; Chen, Wei-Chang

    2015-10-01

    The epithelial‑to‑mesenchymal transition (EMT) has been noted as a critical event in the early step of cancer metastasis. Recent studies showed that nuclear transcription factor caudal type homeobox transcription factor 2 (CDX2) is a prognostic factor, which acts as a marker of good outcome in gastric cancer (GC) patients. However, the association between CDX2 expression and EMT has remained to be fully elucidated. The present study reported that forced overexpression of CDX2 in MKN45/CDX2 cells inhibited GC‑cell growth and proliferation, and attenuated migration and invasion in vitro. Furthermore, MKN45/CDX2 cells exhibited a significant upregulation of E‑cadherin protein and a significant downregulation of vimentin protein expression. These results were further supported by in vivo tumorigenicity assays, which showed that CDX2 suppressed gastric tumor xenograft growth and inhibited EMT in nude mice. These results indicated that CDX2 is capable of inhibiting GC‑cell growth and invasion. CDX2 may participate in the process of EMT of GC cells by regulating the expression of the epithelial and mesenchymal proteins E‑cadherin and vimentin. PMID:26238762

  3. PCBs alter gene expression of nuclear transcription factors and other heart-specific genes in cultures of primary cardiomyocytes: possible implications for cardiotoxicity.

    PubMed

    Borlak, J; Thum, T

    2002-12-01

    1. Polychlorinated biphenyls (PCBs) are well-known environmental pollutants that bioaccumulate mainly in the fatty tissue of animals and humans. Although contamination occurs primarily via the food chain, waste combustion leads to airborne PCBs. From epidemiological studies, there is substantial evidence that cardiovascular disease is linked to air pollution, but little is known about the underlying molecular events. 2. We investigated the effects of Aroclor 1254, a complex mixture of >80 PCB isomers and congeners, on the expression of nuclear transcription factors (GATA-4, Nkx-2.5, MEF-2c, OCT-1) and of downstream target genes (atrial and brain natriuretic peptide, alpha- and beta-myosin heavy chain, alpha-cardiac and alpha-skeletal actin), which play an important role in cardiac biology. 3. We treated cultures of primary cardiomyocytes of adult rats with Aroclor 1254 (10.0 micro M) and found significant induction of the transcription factor genes GATA-4 and MEF-2c and of genes regulated by these factors, i.e. atrial natriuretic peptide, brain-type natriuretic peptide, alpha- and beta-myosin heavy chain, and skeletal alpha actin. 4. We have shown PCBs to modulate expression of genes coding for programmes of cellular differentiation and stress (e.g. atrial natriuretic peptide, brain-type natriuretic peptide) and these alterations may be important in the increase of cardiovascular disease in polluted areas.

  4. Preferential nuclear location of a transgene does not depend on its transcriptional activity during early mouse development.

    PubMed

    Thompson, E M; Renard, J P

    1998-11-01

    Changes in chromatin structure play an important role in regulation of the HSP70.1 gene during mouse preimplantation development. Using in situ PCR we have now examined whether the spatial organization of an HSP70.1 luciferase transgene within the nucleus is also a factor in regulating its expression. The transgene showed a preferential localization towards the nuclear periphery throughout preimplantation development. This preferential location was independent of the level of constitutive activity of the transgene and did not change when transgene expression was induced through core histone hyperacetylation at the eight-cell stage or by heat shock in blastocysts. In contrast, at the two-cell stage, when embryos are unable to continue development after heat shock, thermal stress provoked a significant disruption of the nuclear location of the transgene. These results do not agree with a recent model of embryonic genome activation in mice which hypothesizes that directed, active movement of DNA within the nucleus is a determinant factor in establishing early patterns of gene expression. Instead, they are consistent with models proposing that chromatin segments are restricted to nuclear subregions, but that they remain free to undergo substantial Brownian motion.

  5. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    SciTech Connect

    Lv, Peng; Xue, Peng; Dong, Jian; Peng, Hui; Clewell, Rebecca; Wang, Aiping; Wang, Yue; Peng, Shuangqing; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2 activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.

  6. The pesticide deltamethrin increases free radical production and promotes nuclear translocation of the stress response transcription factor Nrf2 in rat brain

    PubMed Central

    Li, HY; Wu, SY; Ma, Q; Shi, N

    2015-01-01

    The transcription factor NF-E2-related factor 2 (Nrf2) plays a critical role in the mammalian response to chemical and oxidative stress through induction of phase II detoxification enzymes and oxidative stress response proteins. We reported that Nrf2 expression was activated by deltamethrin (DM), a prototype of the widely used pyrithroid pesticides, in PC12 cells. However, no study has examined Nrf2 nuclear translocation and free radical production, two hallmarks of oxidative stress, in the mammalian brain in vivo. To this end, we examined translocation of Nrf2 and production of free radicals in rat brain exposed to DM. Indeed, DM initiated nuclear translocation of Nrf2 in a dose-dependent manner. Furthermore, Nrf2 translocation was accompanied by the expression of heme oxygenase-1 gene, an Nrf2-regulated gene linked to free radical production. Deltamethrin exposure promoted free radical formation in rat brain and reactive oxygen species generation in PC12 cells. Translocation of Nrf2 may be a response to DM-dependent induction of free radicals and DM may act as a mammalian neurotoxin by initiating oxidative stress. PMID:21398409

  7. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells.

    PubMed

    Wires, Emily S; Alvarez, David; Dobrowolski, Curtis; Wang, Yun; Morales, Marisela; Karn, Jonathan; Harvey, Brandon K

    2012-10-01

    Human immunodeficiency virus (HIV) primarily infects glial cells in the central nervous system (CNS). Recent evidence suggests that HIV-infected individuals who abuse drugs such as methamphetamine (METH) have higher viral loads and experience more severe neurological complications than HIV-infected individuals who do not abuse drugs. The aim of this study was to determine the effect of METH on HIV expression from the HIV long terminal repeat (LTR) promoter and on an HIV integrated provirus in microglial cells, the primary host cells for HIV in the CNS. Primary human microglial cells immortalized with SV40 T antigen (CHME-5 cells) were cotransfected with an HIV LTR reporter and the HIV Tat gene, a key regulator of viral replication and gene expression, and exposed to METH. Our results demonstrate that METH treatment induced LTR activation, an effect potentiated in the presence of Tat. We also found that METH increased the nuclear translocation of the nuclear factor kappa B (NF-κB), a key cellular transcriptional regulator of the LTR promoter, and the activity of an NF-κB-specific reporter plasmid in CHME-5 cells. The presence of a dominant-negative regulator of NF-κB blocked METH-related activation of the HIV LTR. Furthermore, treatment of HIV-latently infected CHME-5 (CHME-5/HIV) cells with METH induced HIV expression and nuclear translocation of the p65 subunit of NF-κB. These results suggest that METH can stimulate HIV gene expression in microglia cells through activation of the NF-κB signaling pathway. This mechanism may outline the initial biochemical events leading to the observed increased neurodegeneration in HIV-positive individuals who use METH.

  8. A quasi-lentiviral green fluorescent protein reporter exhibits nuclear export features of late human immunodeficiency virus type 1 transcripts

    SciTech Connect

    Graf, Marcus; Ludwig, Christine; Kehlenbeck, Sylvia; Jungert, Kerstin; Wagner, Ralf . E-mail: ralf.wagner@klinik.uni-regensburg.de

    2006-09-01

    We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to the cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays.

  9. Phosphate ions in root-tip dividing cells: a combined trapping and squash method with implications for nuclear transcription.

    PubMed

    Tandler, C J; Rios, H

    2001-01-01

    We examined the pattern of inorganic orthophosphate (PPi) ion distribution in dividing cells of Zea mays root-tips. Unfixed and paraformaldehyde- or glutaraldehyde-vapor fixed tissues were immersed in lead acetate, glutaraldehyde, and cacodylate buffer to capture PPi as insoluble orthophosphate lead hydroxyapatite. Excess lead ions were removed with sodium citrate, then permeabilized in ammonia. Precipitates were stained with potassium sulfide, washed with distilled water and squashed in a drop of glycerin. The accumulation of PPi ions was cyclic in the cytoplasm during mitosis and they surrounded all chromosomes during metaphase and anaphase. Partition between dividing cells started with a high concentration of PPi ions at sites where plasma membrane and cell walls formed. Small daughter cells and those in G1 phase had PPi concentrated in the nucleolus, with lower levels elsewhere in the nucleus. Later in the cell cycle, there were greater amounts of PPi ions associated with condensed chromatin in larger nuclei. In Xenopus laevis oocytes, PPi was concentrated in the nucleus, mainly in the active central core of multiple nucleoli. These results and others indicate that compartmentalization of PPi occurs in the intact cell and correlates with the rate of transcription in distinct functional domains within the nucleus. PMID:11871744

  10. Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors.

    PubMed

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obesity is a major risk factor for chronic diseases such as diabetes, cardiovascular diseases, and hypertension. Many modern people have a tendency to overeat owing to stress and loosening of self-control. Moreover, energy expenditure varies greatly among individuals. Scientific reduction of obesity is important under these circumstances. Furthermore, recent research on molecular levels has clarified the differentiation of adipocytes, the level of subsequent fat accumulation, and the secretion of the biologically active adipokines by adipocytes. Adipose tissues and obesity have become the most important target for the prevention and treatment of many chronic diseases. We have identified various food-derived compounds modulating nuclear receptors, especially peroxisome proliferators-activated receptor(PPAR), in the regulation of energy metabolism and obesity. In this review, we discuss the PPARs that are most important in obesity and energy metabolism.

  11. Identification of the Flavonoid Luteolin as a Repressor of the Transcription Factor Hepatocyte Nuclear Factor 4α.

    PubMed

    Li, Juan; Inoue, Jun; Choi, Jung-Min; Nakamura, Shugo; Yan, Zhen; Fushinobu, Shinya; Kamada, Haruhiko; Kato, Hisanori; Hashidume, Tsutomu; Shimizu, Makoto; Sato, Ryuichiro

    2015-09-25

    Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor that regulates the expression of genes involved in the secretion of apolipoprotein B (apoB)-containing lipoproteins and in glucose metabolism. In the present study, we identified a naturally occurring flavonoid, luteolin, as a repressor of HNF4α by screening for effectors of the human microsomal triglyceride transfer protein (MTP) promoter. Luciferase reporter gene assays revealed that the activity of the MTP gene promoter was suppressed by luteolin and that the mutation of HNF4α-binding element abolished luteolin responsiveness. Luteolin treatment caused a significant decrease in the mRNA levels of HNF4α target genes in HepG2 cells and inhibited apoB-containing lipoprotein secretion in HepG2 and differentiated Caco2 cells. The interaction between luteolin and HNF4α was demonstrated using absorption spectrum analysis and luteolin-immobilized beads. Luteolin did not affect the DNA binding of HNF4α to the promoter region of its target genes but suppressed the acetylation level of histone H3 in the promoter region of certain HNF4α target genes. Short term treatment of mice with luteolin significantly suppressed the expression of HNF4α target genes in the liver. In addition, long term treatment of mice with luteolin significantly suppressed their diet-induced obesity and improved their serum glucose and lipid parameters. Importantly, long term luteolin treatment lowered serum VLDL and LDL cholesterol and serum apoB protein levels, which was not accompanied by fat accumulation in the liver. These results suggest that the flavonoid luteolin ameliorates an atherogenic lipid profile in vivo that is likely to be mediated through the inactivation of HNF4α. PMID:26272613

  12. Identification of the Flavonoid Luteolin as a Repressor of the Transcription Factor Hepatocyte Nuclear Factor 4α*

    PubMed Central

    Li, Juan; Inoue, Jun; Choi, Jung-Min; Nakamura, Shugo; Yan, Zhen; Fushinobu, Shinya; Kamada, Haruhiko; Kato, Hisanori; Hashidume, Tsutomu; Shimizu, Makoto; Sato, Ryuichiro

    2015-01-01

    Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor that regulates the expression of genes involved in the secretion of apolipoprotein B (apoB)-containing lipoproteins and in glucose metabolism. In the present study, we identified a naturally occurring flavonoid, luteolin, as a repressor of HNF4α by screening for effectors of the human microsomal triglyceride transfer protein (MTP) promoter. Luciferase reporter gene assays revealed that the activity of the MTP gene promoter was suppressed by luteolin and that the mutation of HNF4α-binding element abolished luteolin responsiveness. Luteolin treatment caused a significant decrease in the mRNA levels of HNF4α target genes in HepG2 cells and inhibited apoB-containing lipoprotein secretion in HepG2 and differentiated Caco2 cells. The interaction between luteolin and HNF4α was demonstrated using absorption spectrum analysis and luteolin-immobilized beads. Luteolin did not affect the DNA binding of HNF4α to the promoter region of its target genes but suppressed the acetylation level of histone H3 in the promoter region of certain HNF4α target genes. Short term treatment of mice with luteolin significantly suppressed the expression of HNF4α target genes in the liver. In addition, long term treatment of mice with luteolin significantly suppressed their diet-induced obesity and improved their serum glucose and lipid parameters. Importantly, long term luteolin treatment lowered serum VLDL and LDL cholesterol and serum apoB protein levels, which was not accompanied by fat accumulation in the liver. These results suggest that the flavonoid luteolin ameliorates an atherogenic lipid profile in vivo that is likely to be mediated through the inactivation of HNF4α. PMID:26272613

  13. Sites in human nuclei where damage induced by ultraviolet light is repaired: localization relative to transcription sites and concentrations of proliferating cell nuclear antigen and the tumour suppressor protein, p53.

    PubMed

    Jackson, D A; Hassan, A B; Errington, R J; Cook, P R

    1994-07-01

    The repair of damage induced in DNA by ultraviolet light involves excision of the damaged sequence and synthesis of new DNA to repair the gap. Sites of such repair synthesis were visualized by incubating permeabilized HeLa or MRC-5 cells with the DNA precursor, biotin-dUTP, in a physiological buffer; then incorporated biotin was immunolabeled with fluorescent antibodies. Repair did not take place at sites that reflected the DNA distribution; rather, sites were focally concentrated in a complex pattern. This pattern changed with time; initially intense repair took place at transcriptionally active sites but when transcription became inhibited it continued at sites with little transcription. Repair synthesis in vitro also occurred in the absence of transcription. Repair sites generally contained a high concentration of proliferating cell nuclear antigen but not the tumour-suppressor protein, p53.

  14. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities

    SciTech Connect

    Yi Fuming; Saha, Abhik; Murakami, Masanao; Kumar, Pankaj; Knight, Jason S.; Cai Qiliang; Choudhuri, Tathagata; Robertson, Erle S.

    2009-06-05

    The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3C with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF{sup Skp2}, cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53{sup -/-}) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.

  15. Germ Cell Nuclear Factor (GCNF/RTR) Regulates Transcription of Gonadotropin-Regulated Testicular RNA Helicase (GRTH/DDX25) in Testicular Germ Cells--The Androgen Connection.

    PubMed

    Kavarthapu, Raghuveer; Dufau, Maria L

    2015-12-01

    Gonadotropin-regulated testicular RNA helicase (GRTH) (GRTH/DDX25), is a testis-specific protein essential for completion of spermatogenesis. Transgenic mice carrying 5'-flanking regions of the GRTH gene/green fluorescence protein (GFP) reporter revealed a region (-6.4/-3.6 kb) which directs its expression in germ cells (GCs) via androgen action. This study identifies a functional cis-binding element on the GRTH gene for GC nuclear factor (GCNF) (GCNF/RTR) required to regulate GRTH gene expression in postmeiotic testis GCs and explore the action of androgen on GCNF and GRTH transcription/expression. GCNF expression decreased in mice testis upon flutamide (androgen receptor antagonist) treatment, indicating the presence of an androgen/GCNF network to direct GRTH expression in GC. Binding studies and chromatin immunoprecipitation demonstrated specific association of GCNF to a consensus half-site (-5270/-5252) of the GRTH gene in both round spermatids and spermatocytes, which was abolished by flutamide treatment in round spermatids. Moreover, flutamide treatment of wild-type mice caused selective reduction of GCNF and GRTH in round spermatids. GCNF knock-down in seminiferous tubules from GRTH-transgenic mice (dark zone, round spermatid rich) caused decreased GFP expression. Exposure of tubules to flutamide caused decrease in GCNF and GFP expression, whereas androgen exposure induced significant increase. Our studies provide evidence for actions of androgen on GCNF cell-specific regulation of GRTH expression in GC. GRTH associates with GCNF mRNA, its absence caused increase on GCNF expression and mRNA stability indicative of a negative autocrine regulation of GCNF by GRTH. These in vivo/in vitro models link androgen actions to GC through GCNF, as regulated transfactor that controls transcription/expression of GRTH. PMID:26484580

  16. Long term environmental tobacco smoke activates nuclear transcription factor-kappa B, activator protein-1, and stress responsive kinases in mouse brain.

    PubMed

    Manna, Sunil K; Rangasamy, Thirumalai; Wise, Kimberly; Sarkar, Shubhashish; Shishodia, Shishir; Biswal, Shyam; Ramesh, Govindarajan T

    2006-05-28

    Environmental tobacco smoke (ETS) is a key mediator of several diseases. Tobacco smoke contains a mixture of over 4700 chemical components many of which are toxic and have been implicated in the etiology of oxidative stress related diseases such as chronic obstructive pulmonary disease, Parkinson's disease, asthma, cancer and cardiovascular disease. However, the mechanism of action of cigarette smoke in the onset of these diseases is still largely unknown. Previous studies have revealed that the free radicals generated by cigarette smoke may contribute to many of these chronic health problems and this study sought to address the role of environmental tobacco smoke in oxidative stress related damage in different regions of the mouse brain. In this study, male mice were exposed for 7h/day, 7 days/week, for 6 months. Our results show that tobacco smoke led to increased generation of reactive oxygen species with an increase in NF-kappaB activation. Gel shift analysis also revealed the elevated level of the oxidative stress sensitive proinflammatory nuclear transcription factor-kappa B and activator protein-1 in different regions of the brain of cigarette smoke exposed mice. Tobacco smoke led to activation of COX-2 in all the regions of the brain. Activation of mitogen activated protein kinase and c-Jun N-terminal kinase were also observed in various regions of brain of ETS exposed mice. Overall our results indicate that exposure to long-term cigarette smoke induces oxidative stress leading to activation of stress induced kinases and activation of proinflammatory transcription factors.

  17. Berberis vulgaris root extract alleviates the adverse effects of heat stress via modulating hepatic nuclear transcription factors in quails.

    PubMed

    Sahin, Kazim; Orhan, Cemal; Tuzcu, Mehmet; Borawska, Maria H; Jabłonski, Jakub; Guler, Osman; Sahin, Nurhan; Hayirli, Armagan

    2013-08-01

    To evaluate the action mode of Berberis vulgaris root extract in the alleviation of oxidative stress, female Japanese quails (n 180, aged 5 weeks) were reared, either at 22°C for 24 h/d (thermoneutral, TN) or 34°C for 8 h/d (heat stress, HS), and fed one of three diets: diets containing 0, 100 or 200 mg of B. vulgaris root extract per kg for 12 weeks. Exposure to HS depressed feed intake by 8·5% and egg production by 12·1%, increased hepatic malondialdehyde (MDA) level by 98·0% and decreased hepatic superoxide dismutase, catalase and glutathione peroxidase activities by 23·5, 35·4 and 55·7%, respectively (P<0·001 for all). There were also aggravations in expressions of hepatic NF-κB and heat-shock protein 70 (HSP70) by 42 and 43%, respectively and suppressions in expressions of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and haeme-oxygenase 1 (HO-1) by 57 and 61%, respectively, in heat-stressed quails (P<0·001 for all). As supplemental B. vulgaris extract increased, there were linear increases in performance parameters, activities of antioxidant enzymes and hepatic Nrf2 and HO-1 expressions (P<0·001 for all) and linear decreases in hepatic MDA level and NF-κB and HSP70 expressions at a greater extent in quails reared under TN condition and those reared under HS condition. In conclusion, dietary supplementation of B. vulgaris root extract to quails reduces the detrimental effects of oxidative stress and lipid peroxidation resulting from HS via activating the host defence system at the cellular level.

  18. Green tea component EGCG, insulin and IGF-1 promote nuclear efflux of atrophy-associated transcription factor Foxo1 in skeletal muscle fibers.

    PubMed

    Wimmer, Robert J; Russell, Sarah J; Schneider, Martin F

    2015-12-01

    Prevention and slowing of skeletal muscle atrophy with nutritional approaches offers the potential to provide far-reaching improvements in the quality of life for our increasingly aging population. Here we show that polyphenol flavonoid epigallocatechin 3-gallate (EGCG), found in the popular beverage green tea (Camellia sinensis), demonstrates similar effects to the endogenous hormones insulin-like growth factor 1 (IGF-1) and insulin in the ability to suppress action of the atrophy-promoting transcription factor Foxo1 through a net translocation of Foxo1 out of the nucleus as monitored by nucleo-cytoplasmic movement of Foxo1-green fluorescent protein (GFP) in live skeletal muscle fibers. Foxo1-GFP nuclear efflux is rapid in IGF-1 or insulin, but delayed by an additional 30 min for EGCG. Once activated, kinetic analysis with a simple mathematical model shows EGCG, IGF-1 and insulin all produce similar apparent rate constants for Foxo1-GFP unidirectional nuclear influx and efflux. Interestingly, EGCG appears to have its effect at least partially via parallel signaling pathways that are independent of IGF-1's (and insulin's) downstream PI3K/Akt/Foxo1 signaling axis. Using the live fiber model system, we also determine the dose-response curve for both IGF-1 and insulin on Foxo1 nucleo-cytoplasmic distribution. The continued understanding of the activation mechanisms of EGCG could allow for nutritional promotion of green tea's antiatrophy skeletal muscle benefits and have implications in the development of a clinically significant parallel pathway for new drugs to target muscle wasting and the reduced insulin receptor sensitivity which causes type II diabetes mellitus. PMID:26344776

  19. Green tea component EGCG, insulin and IGF-1 promote nuclear efflux of atrophy-associated transcription factor Foxo1 in skeletal muscle fibers.

    PubMed

    Wimmer, Robert J; Russell, Sarah J; Schneider, Martin F

    2015-12-01

    Prevention and slowing of skeletal muscle atrophy with nutritional approaches offers the potential to provide far-reaching improvements in the quality of life for our increasingly aging population. Here we show that polyphenol flavonoid epigallocatechin 3-gallate (EGCG), found in the popular beverage green tea (Camellia sinensis), demonstrates similar effects to the endogenous hormones insulin-like growth factor 1 (IGF-1) and insulin in the ability to suppress action of the atrophy-promoting transcription factor Foxo1 through a net translocation of Foxo1 out of the nucleus as monitored by nucleo-cytoplasmic movement of Foxo1-green fluorescent protein (GFP) in live skeletal muscle fibers. Foxo1-GFP nuclear efflux is rapid in IGF-1 or insulin, but delayed by an additional 30 min for EGCG. Once activated, kinetic analysis with a simple mathematical model shows EGCG, IGF-1 and insulin all produce similar apparent rate constants for Foxo1-GFP unidirectional nuclear influx and efflux. Interestingly, EGCG appears to have its effect at least partially via parallel signaling pathways that are independent of IGF-1's (and insulin's) downstream PI3K/Akt/Foxo1 signaling axis. Using the live fiber model system, we also determine the dose-response curve for both IGF-1 and insulin on Foxo1 nucleo-cytoplasmic distribution. The continued understanding of the activation mechanisms of EGCG could allow for nutritional promotion of green tea's antiatrophy skeletal muscle benefits and have implications in the development of a clinically significant parallel pathway for new drugs to target muscle wasting and the reduced insulin receptor sensitivity which causes type II diabetes mellitus.

  20. The nuclear receptor E75 from the swimming crab, Portunus trituberculatus: cDNA cloning, transcriptional analysis, and putative roles on expression of ecdysteroid-related genes.

    PubMed

    Xie, Xi; Zhou, Yanqi; Liu, Mingxin; Tao, Tian; Jiang, Qinghua; Zhu, Dongfa

    2016-10-01

    The nuclear receptor E75 is an early-responsive gene in 20-hydroxyecdysone (20E) signaling pathway, and is found to play essential roles in many aspects of arthropods development. In this study, a cDNA encoding the E75 nuclear receptor of the swimming crab, Portunus trituberculatus was cloned using RT-PCR and RACE. The PtE75 cDNA was 3211bp in length, and encodes a protein of 795 amino acids. The DBD region of the predicted amino acid sequence for PtE75 was highly conserved with other arthropoda E75s, while its LBD region was more similar to decapod E75s. Tissue distribution analysis showed that PtE75 transcript was widespread among tissues and relatively abundant in Y-organ, epidermis, eyestalk, and muscles. PtE75 exhibited tissue-specific expression patterns in these four tissues, which may depend on the distinct action of 20E on different tissues. The expression of PtE75 in Y-organ and epidermis were induced by eyestalk ablation (ESA), indicating its responsiveness to the increasing hemolymph 20E titer. To identify potential targets for ecdysteroid control the in Y-organ, epidermis, and eyestalk, the expression change of an ecdysteroid synthesis gene PtSad in Y-organ, a chitin degradation gene PtChi1 in epidermis, and the molt-inhibiting hormone gene PtMIH in eyestalk were investigated after silencing of PtE75 mRNA. The double stranded RNA (dsRNA) of PtE75 caused a loss in PtChi and PtMIH expression, while an increase in PtSad expression. The results suggested that the ecdysteroids may act through E75, and play a stimulatory role on chitin degradation in epidermis and MIH synthesis in eyestalk, and an negative feedback effect on ecdysteroid synthesis in Y-organ.

  1. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    SciTech Connect

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y.

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  2. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-κB pathways in subtypes of diffuse large B-cell lymphoma

    PubMed Central

    Lam, Lloyd T.; Wright, George; Davis, R. Eric; Lenz, Georg; Farinha, Pedro; Dang, Lenny; Chan, John W.; Rosenwald, Andreas; Gascoyne, Randy D.

    2008-01-01

    The activated B cell–like (ABC) subgroup of diffuse large B-cell lymphoma (DLBCL) is characterized by constitutive activation of the nuclear factor-κB (NF-κB) pathway. In this study, we showed that the NF-κB pathway induced the expression of the cytokines interleukin (IL)-6 and IL-10 in ABC DLBCL cell lines, which also have high levels of total and phosphorylated signal transducer and activator of transcription (STAT) 3 protein, suggesting autocrine signaling. Using RNA interference for STAT3, we defined a gene expression signature of IL-6 and IL-10 signaling through STAT3. Based on this signature, we constructed a molecular predictor of STAT3 signaling that defined a subset of ABC DLBCL tumors with high expression of STAT3, IL-6, and/or IL-10 and their downstream targets. Although the STAT3-high and STAT3-low subsets had equivalent expression of genes that distinguish ABC DLBCL from germinal center B cell–like DLBCL, STAT3-high ABC DLBCLs had higher expression of signatures that reflected NF-κB activity, proliferation, and glycolysis. A small-molecule inhibitor of Janus kinase signaling, which blocked STAT3 signature expression, was toxic only for ABC DLBCL lines and synergized with an inhibitor of NF-κB signaling. These findings suggest that the biological interplay between the STAT3 and NF-κB pathways may be exploited for the treatments of a subset of ABC DLBCLs. PMID:18160665

  3. 2-Methoxystypandrone inhibits signal transducer and activator of transcription 3 and nuclear factor-κB signaling by inhibiting Janus kinase 2 and IκB kinase.

    PubMed

    Kuang, Shan; Qi, Chunting; Liu, Jiawei; Sun, Xiaoxiao; Zhang, Qing; Sima, Zhenhua; Liu, Jingli; Li, Wuguo; Yu, Qiang

    2014-04-01

    Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) or the nuclear factor-κB (NF-κB) pathway occurs frequently in cancer cells and contributes to oncogenesis. The activation of Janus kinase 2 (JAK2) and IκB kinase (IKK) are key events in STAT3 and NF-κB signaling, respectively. We have identified 2-methoxystypandrone (2-MS) from a traditional Chinese medicinal herb Polygonum cuspidatum as a novel dual inhibitor of JAK2 and IKK. 2-MS inhibits both interleukin-6-induced and constitutively-activated STAT3, as well as tumor necrosis factor-α-induced NF-κB activation. 2-MS specifically inhibits JAK and IKKβ kinase activities but has little effect on activities of other kinases tested. The inhibitory effects of 2-MS on STAT3 and NF-κB signaling can be eliminated by DTT or glutathione and can last for 4 h after a pulse treatment. Furthermore, 2-MS inhibits growth and induces death of tumor cells, particularly those with constitutively-activated STAT3 or NF-κB signaling. We propose that the natural compound 2-MS, as a potent dual inhibitor of STAT3 and NF-κB pathways, is a promising anticancer drug candidate. PMID:24450414

  4. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1.

    PubMed

    Biswas, Madhurima; Kwong, Erick K; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF-Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A-Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation.

  5. Effect of fluoride on calcium ion concentration and expression of nuclear transcription factor kappa-B ρ65 in rat hippocampus.

    PubMed

    Zhang, Jing; Zhu, Wen-Jing; Xu, Xiao-Hong; Zhang, Zi-Gui

    2011-07-01

    The study investigated the neurotoxicity of drinking water fluorosis in rat hippocampus. Just weaning male Sprague-Dawley (SD) rats were given 15, 30, 60 mg/L NaF solution and tap water for 9 months. The calcium ion concentration ([Ca(2+)]) in synaptosomes was measured by double wavelength fluorescence spectrophotometer and the expression level of nuclear transcription factor kappa-B ρ65 (NF-κB ρ65) in hippocampal CA3 region was measured by immunohistochemistry. The results showed that [Ca(2+)] significantly increased (F = 33.218, P < 0.01) in moderate fluoride group compared with the control group, and the expression level of NF-κB ρ65 in CA3 region presented an increasing trend as fluoride concentration increased. These results indicate that increase of synaptosomes [Ca(2+)] and NF-κB ρ65 expression level may be the molecular basis of central nervous system damage caused by chronic fluoride intoxication. NF-κB ρ65 in CA3 region is probably a target molecule for fluorosis.

  6. Regulation of nuclear translocation of the Myb1 transcription factor by TvCyclophilin 1 in the protozoan parasite Trichomonas vaginalis.

    PubMed

    Hsu, Hong-Ming; Chu, Chien-Hsin; Wang, Ya-Ting; Lee, Yu; Wei, Shu-Yi; Liu, Hsing-Wei; Ong, Shiou-Jeng; Chen, Chinpan; Tai, Jung-Hsiang

    2014-07-01

    In Trichomonas vaginalis, a Myb1 protein was previously demonstrated to repress transcription of an iron-inducible ap65-1 gene. In this study, a human cyclophilin A homologue, TvCyclophilin 1 (TvCyP1), was identified as a Myb1-binding protein using a bacterial two-hybrid library screening system. The recombinant TvCyP1 exhibited typical peptidyl-prolyl isomerase activity with kcat/Km of ∼7.1 μm(-1) s(-1). In a pulldown assay, the His-tagged Myb1 interacted with a GST-TvCyP1 fusion protein, which had an enzymatic proficiency half that of recombinant TvCyP1. Both the enzymatic proficiency of GST-TvCyP1 and its binding to His-Myb1 were eliminated by mutation of Arg(63) in the catalytic motif or inhibited by cyclosporin A. TvCyP1 was primarily localized to the hydrogenosomes by immunofluorescence assay, but it was also co-purified with Myb1 in certain vesicle fractions from differential and gradient centrifugations. Transgenic cells overexpressing HA-TvCyP1 had a higher level of nuclear Myb1 but a much lower level of Myb1 associated with the vesicles than control and those overexpressing HA-TvCyP1(R63A). Myb1 was detected at a much higher level in the HA-TvCyP1 protein complex than in the HA-TvCyP1(R63A) protein complex immunoprecipitated from P15 and P100, but not S100, fractions of postnuclear lysates. A TvCyP1-binding motif, (105)YGPKWNK(111), was identified in Myb1 in which Gly(106) and Pro(107) were essential for its binding to TvCyP1. Mutation of Gly(106) and Pro(107), respectively, in HA-Myb1 resulted in cytoplasmic retention and elevated nuclear translocation of the overexpressed protein. These results suggest that TvCyP1 may induce the release of Myb1 that is restrained to certain cytoplasmic vesicles prior to its nuclear translocation.

  7. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3'-5'-bisdiphosphate and activation by sigma factor 5.

    PubMed

    Yamburenko, Maria V; Zubo, Yan O; Börner, Thomas

    2015-06-01

    Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription. PMID:25976841

  8. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene.

    PubMed Central

    Riccio, A; Pedone, P V; Lund, L R; Olesen, T; Olsen, H S; Andreasen, P A

    1992-01-01

    Transforming growth factor beta (TGF-beta) is the name of a group of closely related polypeptides characterized by a multiplicity of effects, including regulation of extracellular proteolysis and turnover of the extracellular matrix. Its cellular mechanism of action is largely unknown. TGF-beta 1 is a strong and fast inducer of type 1 plasminogen activator inhibitor gene transcription. We have identified a TGF-beta 1-responsive element in the 5'-flanking region of the human type 1 plasminogen activator inhibitor gene and shown that it is functional both in its natural context and when fused to a heterologous nonresponsive promoter. Footprinting and gel retardation experiments showed that two different nuclear factors, present in extracts from both TGF-beta 1-treated and nontreated cells, bind to adjacent sequences contained in the responsive unit. A palindromic sequence binds a trans-acting factor(s) of the CCAAT-binding transcription factor-nuclear factor I family. A partially overlapping dyad symmetry interacts with a second protein that much evidence indicates to be USF. USF is a transactivator belonging to the basic helix-loop-helix family of transcription factors. Mutations which abolish the binding of either CCAAT-binding transcription factor-nuclear factor I or USF result in reduction of transcriptional activation upon exposure to TGF-beta 1, thus showing that both elements of the unit are necessary for the TGF-beta 1 response. We discuss the possible relationship of these findings to the complexity of the TGF-beta action. Images PMID:1549130

  9. Hepatocyte nuclear factor 4 alpha isoforms originated from the P1 promoter are expressed in human pancreatic beta-cells and exhibit stronger transcriptional potentials than P2 promoter-driven isoforms.

    PubMed

    Eeckhoute, J; Moerman, E; Bouckenooghe, T; Lukoviak, B; Pattou, F; Formstecher, P; Kerr-Conte, J; Vandewalle, B; Laine, B

    2003-05-01

    The nuclear receptor hepatocyte nuclear factor (HNF) 4 alpha is involved in a transcriptional network and plays an important role in pancreatic beta-cells. Mutations in the HNF4 alpha gene are correlated with maturity-onset diabetes of the young 1. HNF4 alpha isoforms result from both alternative splicing and alternate usage of promoters P1 and P2. It has recently been reported that HNF4 alpha transcription is driven almost exclusively by the P2 promoter in pancreatic islets. We observed that transcripts from both P1 and P2 promoters were expressed in human pancreatic beta-cells and in the pancreatic beta-cell lines RIN m5F and HIT-T15. Expression of HNF4 alpha proteins originating from the P1 promoter was confirmed by immunodetection. Due to the presence of the activation function module AF-1, HNF4 alpha isoforms originating from the P1 promoter exhibit stronger transcriptional activities and recruit coactivators more efficiently than isoforms driven by the P2 promoter. Conversely, activities of isoforms produced by both promoters were similarly repressed by the corepressor small heterodimer partner. These behaviors were observed on the promoter of HNF1 alpha that is required for beta-cell function. Our results highlight that expression of P1 promoter-driven isoforms is important in the control of pancreatic beta-cell function.

  10. Berry Phenolic Compounds Increase Expression of Hepatocyte Nuclear Factor-1α (HNF-1α) in Caco-2 and Normal Colon Cells Due to High Affinities with Transcription and Dimerization Domains of HNF-1α.

    PubMed

    Real Hernandez, Luis M; Fan, Junfeng; Johnson, Michelle H; Gonzalez de Mejia, Elvira

    2015-01-01

    Hepatocyte nuclear factor-1α (HNF-1α) is found in the kidneys, spleen, thymus, testis, skin, and throughout the digestive organs. It has been found to promote the transcription of various proteins involved in the management of type II diabetes, including dipeptidyl peptidase-IV (DPP-IV). Phenolic compounds from berries and citrus fruits are known to inhibit DPP-IV, but have not been tested for their interactions with wild-type HNF-1α. By studying the interactions of compounds from berries and citrus fruits have with HNF-1α, pre-transcriptional mechanisms that inhibit the expression of proteins such as DPP-IV may be elucidated. In this study, the interactions of berry phenolic compounds and citrus flavonoids with the dimerization and transcriptional domains of HNF-1α were characterized using the molecular docking program AutoDock Vina. The anthocyanin delphinidin-3-O-arabinoside had the highest binding affinity for the dimerization domain as a homodimer (-7.2 kcal/mol) and transcription domain (-8.3 kcal/mol) of HNF-1α. Anthocyanins and anthocyanidins had relatively higher affinities than resveratrol and citrus flavonoids for both, the transcription domain and the dimerization domain as a homodimer. The flavonoid flavone had the highest affinity for a single unit of the dimerization domain (-6.5 kcal/mol). Nuclear expression of HNF-1α was measured in Caco-2 and human normal colon cells treated with blueberry and blackberry anthocyanin extracts. All extracts tested increased significantly (P < 0.05) the nuclear expression of HNF-1α in Caco-2 cells by 85.2 to 260% compared to a control. The extracts tested increased significantly (P < 0.02) the nuclear expression of HNF-1α in normal colon cells by 48.6 to 243%. It was confirmed that delphinidin-3-O-glucoside increased by 3-fold nuclear HNF-1α expression in Caco-2 cells (P < 0.05). Anthocyanins significantly increased nuclear HNF-1α expression, suggesting that these compounds might regulate the genes HNF-1

  11. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway.

    PubMed

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-09-15

    . Consistent with the downregulation of AMPK expression, immunoblotting procedures confirmed upregulation of p70S6K and increased phosphorylation of mTOR in Sox2-overexpressing CSC-like cell populations. Using an in vitro model of the de novo generation of CSC-like states through the nuclear reprogramming of an established breast cancer cell line, we reveal that the transcriptional suppression of mTOR repressors is an intrinsic process occurring during the acquisition of CSC-like properties by differentiated populations of luminal-like breast cancer cells. This approach may provide a new path for obtaining information about preventing the appearance of CSCs through the modulation of the AMPK/mTOR pathway.

  12. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway

    PubMed Central

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-01-01

    cells. Consistent with the downregulation of AMPK expression, immunoblotting procedures confirmed upregulation of p70S6K and increased phosphorylation of mTOR in Sox2-overexpressing CSC-like cell populations. Using an in vitro model of the de novo generation of CSC-like states through the nuclear reprogramming of an established breast cancer cell line, we reveal that the transcriptional suppression of mTOR repressors is an intrinsic process occurring during the acquisition of CSC-like properties by differentiated populations of luminal-like breast cancer cells. This approach may provide a new path for obtaining information about preventing the appearance of CSCs through the modulation of the AMPK/mTOR pathway. PMID:23974095

  13. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-{kappa}B in human aortic smooth muscle cells

    SciTech Connect

    Manea, Adrian; Tanase, Laurentia I.; Raicu, Monica; Simionescu, Maya

    2010-06-11

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.

  14. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells.

    PubMed

    Manea, Adrian; Tanase, Laurentia I; Raicu, Monica; Simionescu, Maya

    2010-06-11

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-kappaB (NF-kappaB) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-kappaB signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-alpha (TNFalpha), a potent inducer of both Nox and NF-kappaB, up to 24h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-kappaB pathway reduced significantly the TNFalpha-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-kappaB elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-kappaB significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-kappaB proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-kappaB is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-kappaB and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications. PMID:20457132

  15. Protein-energy malnutrition increases activation of the transcription factor, nuclear factor kappaB, in the gerbil hippocampus following global ischemia.

    PubMed

    Ji, Liang; Nazarali, Adil J; Paterson, Phyllis G

    2008-11-01

    Protein-energy malnutrition (PEM) exacerbates functional impairment caused by brain ischemia. This is correlated with reactive gliosis, which suggests an increased inflammatory response. The objective of the current study was to investigate if PEM increases hippocampal activation of nuclear factor kappaB (NFkappaB), a transcription factor that amplifies the inflammatory response involved in ischemic brain injury. Mongolian gerbils (11-12 weeks old) were randomly assigned to control diet (12.5% protein) or protein-deficient diet (2%) for 4 weeks. The 2% protein group had a 15% decrease in voluntary food intake (P<.001; unpaired t test), resulting in PEM. Body weight after 4 weeks was 20% lower in the PEM group (P<.001). Gerbils were then exposed to sham surgery or global ischemia induced by 5-min bilateral common carotid artery occlusion. PEM independently increased hippocampal NFkappaB activation detected by electrophoretic mobility shift assay at 6 h after surgery (P=.014; 2-factor ANOVA). Ischemia did not significantly affect NFkappaB activation nor was there interaction between diet and ischemia. Serum glucose and cortisol concentrations at 6 h postischemia were unaltered by diet or ischemia. A second experiment using gerbils of the same age and feeding paradigm demonstrated that PEM also increases hippocampal NFkappaB activation in the absence of surgery. These findings suggest that PEM, which exists in 16% of elderly patients at admission for stroke, may worsen outcome by increasing activation of NFkappaB. Since PEM increased NFkappaB activation independent of ischemia or surgery, the data also have implications for the inflammatory response of the many individuals affected globally by PEM.

  16. Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring.

    PubMed

    Petropoulos, Sophie; Matthews, Stephen G; Szyf, Moshe

    2014-02-01

    Synthetic glucocorticoids (sGCs) are commonly prescribed for the management of inflammatory and endocrine disorders. However, nothing is known regarding the effects of sGC on adult germline methylome and whether these effects can be transmitted to the next generation. We hypothesized that administration of sGC to adult male mice alters DNA methylation in mature sperm and modifies the transcription and methylation of steroid receptors in male F1 offspring. Adult C57BL/6 males (n = 10/group) were injected on five consecutive days with 1 mg/kg sGC (i.e., dexamethasone) or vehicle and euthanized 35 or 60 days after initial treatment or bred with control females (60 days postinitial treatment; n = 5/group). A significant increase in global non-CpG methylation was observed in F0 sperm 60 days following sGC treatment. In the hippocampus and kidney of Postnatal Day 50 (PND50) and PND240 male offspring derived from fathers exposed to sGC, significant differences in mineralocorticoid receptor (Nr3c2; Mr), estrogen alpha receptor (Nr3a1; Ers1), and glucocorticoid receptor (Nr3c1; Gr) expression were observed. Furthermore, significant demethylation in regulatory regions of Mr, Gr, and Esr1 was observed in the PND50 kidney derived from fathers exposed to sGC. This is the first demonstration that paternal pharmacological exposure to sGC can alter the expression and DNA methylation of nuclear steroid receptors in brain and somatic tissues of offspring. These findings provide proof of principle that adult male exposure to sGC can affect DNA methylation and gene expression in offspring, indicating the possibility that adult experiences that evoke increases in endogenous glucocorticoid (i.e., stress) might have similar effects.

  17. The Transcription Factor Bach2 Is Phosphorylated at Multiple Sites in Murine B Cells but a Single Site Prevents Its Nuclear Localization.

    PubMed

    Ando, Ryo; Shima, Hiroki; Tamahara, Toru; Sato, Yoshihiro; Watanabe-Matsui, Miki; Kato, Hiroki; Sax, Nicolas; Motohashi, Hozumi; Taguchi, Keiko; Yamamoto, Masayuki; Nio, Masaki; Maeda, Tatsuya; Ochiai, Kyoko; Muto, Akihiko; Igarashi, Kazuhiko

    2016-01-22

    The transcription factor Bach2 regulates the immune system at multiple points, including class switch recombination (CSR) in activated B cells and the function of T cells in part by restricting their terminal differentiation. However, the regulation of Bach2 expression and its activity in the immune cells are still unclear. Here, we demonstrated that Bach2 mRNA expression decreased in Pten-deficient primary B cells. Bach2 was phosphorylated in primary B cells, which was increased upon the activation of the B cell receptor by an anti-immunoglobulin M (IgM) antibody or CD40 ligand. Using specific inhibitors of kinases, the phosphorylation of Bach2 in activated B cells was shown to depend on the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway. The complex of mTOR and Raptor phosphorylated Bach2 in vitro. We identified multiple new phosphorylation sites of Bach2 by mass spectrometry analysis of epitope-tagged Bach2 expressed in the mature B cell line BAL17. Among the sites identified, serine 535 (Ser-535) was critical for the regulation of Bach2 because a single mutation of Ser-535 abolished cytoplasmic accumulation of Bach2, promoting its nuclear accumulation in pre-B cells, whereas Ser-509 played an auxiliary role. Bach2 repressor activity was enhanced by the Ser-535 mutation in B cells. These results suggest that the PI3K-Akt-mTOR pathway inhibits Bach2 by both repressing its expression and inducing its phosphorylation in B cells. PMID:26620562

  18. Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors PParalpha and CAR, the constitutive androstane receptor, in mouse liver.

    PubMed

    Sarkar, Joy; Qi, Chao; Guo, Dongsheng; Ahmed, Mohamed R; Jia, Yuzhi; Usuda, Nobuteru; Viswakarma, Navin; Rao, M Sambasiva; Reddy, Janardan K

    2007-01-01

    Disruption of the genes encoding for the transcription coactivators, peroxisome proliferator-activated receptor (PPAR)-interacting protein (PRIP/ASC-2/RAP250/TRBP/NRC) and PPAR-binding protein (PBP/TRAP220/DRIP205/MED1), results in embryonic lethality by affecting placental and multiorgan development. Targeted deletion of coactivator PBP gene in liver parenchymal cells (PBP(LIV-/-)) results in the near abrogation of the induction of PPARalpha and CAR (constitutive androstane receptor)-regulated genes in liver. Here, we show that targeted deletion of coactivator PRIP gene in liver (PRIP(LIV-/-)) does not affect the induction of PPARalpha-regulated pleiotropic responses, including hepatomegaly, hepatic peroxisome proliferation, and induction of mRNAs of genes involved in fatty acid oxidation system, indicating that PRIP is not essential for PPARalpha-mediated transcriptional activity. We also provide additional data to show that liver-specific deletion of PRIP gene does not interfere with the induction of genes regulated by nuclear receptor CAR. Furthermore, disruption of PRIP gene in liver did not alter zoxazolamine-induced paralysis, and acetaminophen-induced hepatotoxicity. Studies with adenovirally driven EGFP-CAR expression in liver demonstrated that, unlike PBP, the absence of PRIP does not prevent phenobarbital-mediated nuclear translocation/retention of the receptor CAR in liver in vivo and cultured hepatocytes in vitro. These results show that PRIP deficiency in liver does not interfere with the function of nuclear receptors PPARalpha and CAR. The dependence of PPARalpha- and CAR-regulated gene transcription on coactivator PBP but not on PRIP attests to the existence of coactivator selectivity in nuclear receptor function.

  19. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    SciTech Connect

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  20. Human sat III and Drosophila hsrω transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells

    PubMed Central

    Jolly, Caroline; Lakhotia, Subhash C.

    2006-01-01

    Exposure of cells to stressful conditions elicits a highly conserved defense mechanism termed the heat shock response, resulting in the production of specialized proteins which protect the cells against the deleterious effects of stress. The heat shock response involves not only a widespread inhibition of the ongoing transcription and activation of heat shock genes, but also important changes in post-transcriptional processing. In particular, a blockade in splicing and other post-transcriptional processing has been described following stress in different organisms, together with an altered spatial distribution of the proteins involved in these activities. However, the specific mechanisms that regulate these activities under conditions of stress are little understood. Non-coding RNA molecules are increasingly known to be involved in the regulation of various activities in the cell, ranging from chromatin structure to splicing and RNA degradation. In this review, we consider two non-coding RNAs, the hsrω transcripts in Drosophila and the sat III transcripts in human cells, that seem to be involved in the dynamics of RNA-processing factors in normal and/or stressed cells, and thus provide new paradigms for understanding transcriptional and post-transcriptional regulations in normal and stressed cells. PMID:17020918

  1. Activated nuclear transcription factor {kappa}B in patients with myocarditis and dilated cardiomyopathy-relation to inflammation and cardiac function

    SciTech Connect

    Alter, Peter . E-mail: palter@med.uni-marburg.de; Rupp, Heinz; Maisch, Bernhard

    2006-01-06

    Objectives and background: Myocarditis is caused by various agents and autoimmune processes. It is unknown whether viral genome persistence represents inactive remnants of previous infections or whether it is attributed to ongoing adverse processes. The latter also applies to the course of autoimmune myocarditis. One principal candidate for an adverse remodeling is nuclear factor-{kappa}B (NF{kappa}B). Methods: A total of 93 patients with suspected myocarditis/cardiomyopathy was examined. Hemodynamics were assessed by echocardiography as well as right and left heart catheterization. Endomyocardial biopsies were taken from the left ventricle. Biopsies were examined by immunohistochemistry and PCR for viral genomes. Selective immunostaining of activated NF{kappa}B was performed. Results: NF{kappa}B was increased in patients with myocarditis when compared with controls (11.1 {+-} 7.1% vs. 5.0 {+-} 5.3%, P < 0.005) whereas dilated cardiomyopathy showed no significant increase. Patients with myocarditis and preserved left ventricular function exhibited increased activated NF{kappa}B when compared with reduced function (r {sup 2} = 0.72, P < 0.001). In parallel, inverse correlation of NF{kappa}B and left ventricular enddiasstolic volume was found (r {sup 2} = 0.43, P < 0.02). Increased activated NF{kappa}B was found in adenovirus persistence when compared with controls (P = 0.001). Only a trend of increased NF{kappa}B activation was seen in cytomegalovirus persistence. Parvovirus B19 persistence did not affect NF{kappa}B activation. Conclusions: Increased activation of NF{kappa}B is related to inflammatory processes in myocarditis. Since activated NF{kappa}B correlates with left ventricular function, it could be assumed that NF{kappa}B activation occurs at early stages of inflammation. Potentially, NF{kappa}B could inhibit loss of cardiomyocytes by apoptosis and protect from cardiac dilation. Since NF{kappa}B is a crucial key transcription factor of inflammation, its

  2. The liver-enriched inhibitory protein isoform of CCAAT/enhancer-binding protein beta, but not nuclear factor-kappaB, mediates the transcriptional inhibition of beta-casein by tumor necrosis factor-alpha.

    PubMed

    Zhang, Haitao; Zhang, Haiwei; Lee, Laura; Ip, Margot M

    2004-06-01

    TNF-alpha is a physiological regulator of mammary gland development that stimulates the growth of both normal and malignant mammary epithelial cells in primary culture and inhibits functional differentiation. To understand how TNF exerts its effects, the current study examined the mechanism by which TNF down-regulates expression of the beta-casein and whey acidic protein (WAP) genes. TNF treatment markedly decreased activity of the beta-casein and WAP promoters in transiently transfected HC11 mammary epithelial cells. Overexpression of the nuclear factor-kappaB (NFkappaB) p50 and/or p65 proteins increased the transcriptional activity of the beta-casein and WAP promoters in HC11 cells, suggesting that the inhibitory effect of TNF on transcription of these genes is not mediated by NFkappaB. This was further confirmed in experiments in which an NFkappaB super-repressor was overexpressed, and by deletion of an NFkappaB binding site in the beta-casein promoter. In contrast, we found that TNF induced both nuclear expression and the DNA-binding activity of liver-enriched inhibitory protein (LIP) isoform of CCAAT/enhancer-binding protein beta. Moreover, cotransfection of LIP and beta-casein expression vectors showed that LIP suppressed the transcriptional activity of the beta-casein promoter. Together, these results suggest that LIP plays a critical role in mediating TNF-induced down-regulation of the beta-casein gene.

  3. The 5' flanking region of the gene for the Epstein-Barr virus-encoded nuclear antigen 2 contains a cell type specific cis-acting regulatory element that activates transcription in transfected B-cells.

    PubMed Central

    Ricksten, A; Olsson, A; Andersson, T; Rymo, L

    1988-01-01

    We have recently identified the promoter that positions the initiation (cap) site for RNA encoding the Epstein-Barr virus (EBV) determined nuclear antigen 2 (EBNA2) in transfected COS-1 cells. The cells were transfected with recombinant vectors that contained the BamHI WYH region of the EBV genome. In order to delineate regulatory DNA sequences required for the expression of EBNA2 the 5' flanking region of the gene was linked to reporter genes in expression vectors and transfected into EBV genome-negative lymphoid DG75 cells. We demonstrate that several cis-acting elements contribute to a transcriptional enhancer activity found in the region between nucleotides-553 and -86 relative to the cap site. The enhancer was active in lymphoid DG75 cells but not in HeLa cells and stimulated transcription also from the heterologous thymidine kinase (TK) and beta-globin promoters. Nuclear extracts of lymphoid cells contained protein factors that bound to the enhancer. The in vitro introduction of a mutation in the enhancer sequence that substantially reduced the transcription stimulatory activity concurrently blocked the binding of one of the factors. Images PMID:2843816

  4. Transcriptional coupling of synaptic transmission and energy metabolism: role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons.

    PubMed

    Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T

    2009-10-01

    Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.

  5. Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol.

    PubMed

    Hur, Eunseon; Kim, Hong-Hee; Choi, Su Mi; Kim, Jin Hee; Yim, Sujin; Kwon, Ho Jeong; Choi, Youngyeon; Kim, Dae Kyong; Lee, Mi-Ock; Park, Hyunsung

    2002-11-01

    Under low oxygen tension, cells increase the transcription of specific genes involved in angiogenesis, erythropoiesis, and glycolysis. Hypoxia-induced gene expression depends primarily on stabilization of the alpha subunit of hypoxia-inducible factor-1 (HIF-1alpha), which acts as a heterodimeric trans-activator with the nuclear protein known as the aryl hydrocarbon receptor nuclear translocator (Arnt). The resulting heterodimer (HIF-1alpha/Arnt) interacts specifically with the hypoxia-responsive element (HRE), thereby increasing transcription of the genes under HRE control. Our results indicate that the 90-kDa heat-shock protein (Hsp90) inhibitor radicicol reduces the hypoxia-induced expression of both endogenous vascular endothelial growth factor (VEGF) and HRE-driven reporter plasmids. Radicicol treatment (0.5 microg/ml) does not significantly change the stability of the HIF-1alpha protein and does not inhibit the nuclear localization of HIF-1alpha. However, this dose of radicicol significantly reduces HRE binding by the HIF-1alpha/Arnt heterodimer. Our results, the first to show that radicicol specifically inhibits the interaction between the HIF-1alpha/Arnt heterodimer and HRE, suggest that Hsp90 modulates the conformation of the HIF-1alpha/Arnt heterodimer, making it suitable for interaction with HRE. Furthermore, we demonstrate that radicicol reduces hypoxia-induced VEGF expression to decrease hypoxia-induced angiogenesis.

  6. Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation

    PubMed Central

    Li, Jasmine; Hardy, Kristine; Phetsouphanh, Chan; Tu, Wen Juan; Sutcliffe, Elissa L.; McCuaig, Robert; Sutton, Christopher R.; Zafar, Anjum; Munier, C. Mee Ling; Zaunders, John J.; Xu, Yin; Theodoratos, Angelo; Tan, Abel; Lim, Pek Siew; Knaute, Tobias; Masch, Antonia; Zerweck, Johannes; Brezar, Vedran; Milburn, Peter J.; Dunn, Jenny; Casarotto, Marco G.; Turner, Stephen J.; Seddiki, Nabila; Kelleher, Anthony D.

    2016-01-01

    ABSTRACT Memory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4+ T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation. Flanked by permissive histone modifications, these PKC-enriched regions are significantly enriched with NF-κB motifs in ex vivo bulk and vaccinia-responsive human memory CD4+ T cells. Within the nucleus, PKC-θ catalytic activity maintains the Ser536 phosphorylation on the p65 subunit of NF-κB (also known as RelA) and can directly influence chromatin accessibility at transcriptional memory genes by regulating H2B deposition through Ser32 phosphorylation. Furthermore, using a cytoplasm-restricted PKC-θ mutant, we highlight that chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit transcriptional memory responses in human memory T cells. PMID:27149922

  7. Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation.

    PubMed

    Li, Jasmine; Hardy, Kristine; Phetsouphanh, Chan; Tu, Wen Juan; Sutcliffe, Elissa L; McCuaig, Robert; Sutton, Christopher R; Zafar, Anjum; Munier, C Mee Ling; Zaunders, John J; Xu, Yin; Theodoratos, Angelo; Tan, Abel; Lim, Pek Siew; Knaute, Tobias; Masch, Antonia; Zerweck, Johannes; Brezar, Vedran; Milburn, Peter J; Dunn, Jenny; Casarotto, Marco G; Turner, Stephen J; Seddiki, Nabila; Kelleher, Anthony D; Rao, Sudha

    2016-06-15

    Memory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4(+) T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation. Flanked by permissive histone modifications, these PKC-enriched regions are significantly enriched with NF-κB motifs in ex vivo bulk and vaccinia-responsive human memory CD4(+) T cells. Within the nucleus, PKC-θ catalytic activity maintains the Ser536 phosphorylation on the p65 subunit of NF-κB (also known as RelA) and can directly influence chromatin accessibility at transcriptional memory genes by regulating H2B deposition through Ser32 phosphorylation. Furthermore, using a cytoplasm-restricted PKC-θ mutant, we highlight that chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit transcriptional memory responses in human memory T cells. PMID:27149922

  8. Heterogeneous Nuclear Ribonucleoprotein (HnRNP) K Genome-wide Binding Survey Reveals Its Role in Regulating 3′-End RNA Processing and Transcription Termination at the Early Growth Response 1 (EGR1) Gene through XRN2 Exonuclease*

    PubMed Central

    Mikula, Michal; Bomsztyk, Karol; Goryca, Krzysztof; Chojnowski, Krzysztof; Ostrowski, Jerzy

    2013-01-01

    The heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a nucleic acid-binding protein that acts as a docking platform integrating signal transduction pathways to nucleic acid-related processes. Given that hnRNPK could be involved in other steps that compose gene expression the definition of its genome-wide occupancy is important to better understand its role in transcription and co-transcriptional processes. Here, we used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to analyze the genome-wide hnRNPK-DNA interaction in colon cancer cell line HCT116. 9.1/3.6 and 7.0/3.4 million tags were sequenced/mapped, then 1809 and 642 hnRNPK binding sites were detected in quiescent and 30-min serum-stimulated cells, respectively. The inspection of sequencing tracks revealed inducible hnRNPK recruitment along a number of immediate early gene loci, including EGR1 and ZFP36, with the highest densities present at the transcription termination sites. Strikingly, hnRNPK knockdown with siRNA resulted in increased pre-RNA levels transcribed downstream of the EGR1 polyadenylation (A) site suggesting altered 3′-end pre-RNA degradation. Further ChIP survey of hnRNPK knockdown uncovered decreased recruitment of the 5′-3′ exonuclease XRN2 along EGR1 and downstream of the poly(A) signal without altering RNA polymerase II density at these sites. Immunoprecipitation of hnRNPK and XRN2 from intact and RNase A-treated nuclear extracts followed by shotgun mass spectrometry revealed the presence of hnRNPK and XRN2 in the same complexes along with other spliceosome-related proteins. Our data suggest that hnRNPK may play a role in recruitment of XRN2 to gene loci thus regulating coupling 3′-end pre-mRNA processing to transcription termination. PMID:23857582

  9. Transcriptional activation of the H-ferritin gene in differentiated Caco-2 cells parallels a change in the activity of the nuclear factor Bbf.

    PubMed Central

    Bevilacqua, M A; Faniello, M C; D'Agostino, P; Quaresima, B; Tiano, M T; Pignata, S; Russo, T; Cimino, F; Costanzo, F

    1995-01-01

    In this paper, we examine the mechanisms that regulate the expression of the heavy (H) ferritin subunit in the colon carcinoma Caco-2 cell line allowed to differentiate spontaneously in vitro. The differentiation process of these cells in continuous culture is accompanied by an accumulation of the mRNA coding for the apoferritin H chain. The analysis of Caco-2 subclones stably transfected with an H-chain promoter-chloramphenicol acetyltransferase (CAT) construct revealed that the mRNA increase is paralleled by an enhanced transcription of the H gene, driven by the -100 to +4 region of the H promoter. The H gene transcriptional activation seems to be a specific feature of differentiated Caco-2 cells, since the activity of other promoters did not change upon differentiation. The -100 to +4 region of the H promoter binds a transcription factor called Bbf (B-box binding factor); electrophoretic-mobility-shift-assay analyses showed that the retarded complex due to Bbf-H promoter interaction is significantly increased in the differentiated cells. We propose that the activation of H-ferritin gene expression may be associated with the establishment of a differentiated phenotype in Caco-2 cells, and that the H-ferritin gene transcriptional up-regulation is accompanied by a modification in the activity of the transcription factor Bbf. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7487931

  10. Your Radiologist Explains Nuclear Medicine

    MedlinePlus

    ... produced by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  11. Transcription of the Epstein-Barr virus nuclear antigen 1 (EBNA1) gene occurs before induction of the BCR2 (Cp) EBNA gene promoter during the initial stages of infection in B cells.

    PubMed

    Schlager, S; Speck, S H; Woisetschläger, M

    1996-06-01

    The purpose of this study was to gain insights into the regulation of Epstein-Barr virus (EBV) gene transcription during the establishment of viral latency in B cells. During the early stages of EBV infection in B lymphocytes, transcription of six viral nuclear antigens (EBNAs) is initiated from an early promoter (Wp). This is followed by a switch of promoter usage to an upstream promoter, Cp, whose activity is autoregulated by both EBNA1 and EBNA2. Previously it was demonstrated that infection of primary B cells with EBNA2-negative (EBNA2-) EBNA4-mutant (EBNA4mut) virus resulted only in the expression of mutant EBNA4 protein and failure to express the other EBNA gene products (C. Rooney H. G. Howe, S. H. Speck, and G. Miller, J. Virol. 63:1531-1539, 1989). We extended this research to demonstrate that Wp-to-Cp switching did not occur upon infection of primary B cells with an EBNA2- EBNA4mut virus (M. Woisetschlaeger, X. W. Jin, C. N. Yandara, L. A. Furmanski, J. L. Strominger, and S. H. Speck, Proc. Natl. Acad. Sci. USA 88:3942-3946, 1991). Further characterization of this phenomenon led to the identification of an EBNA2-dependent enhancer upstream of Cp. On the basis of these data, a model was proposed in which initial transcription from Wp gives rise to the expression of EBNA2 and EBNA4, and then transcription is upregulated from Cp via the EBNA2- dependent enhancer (Woisetschlaeger et al., as noted above). Implicit in this model is that transcription of the EBNA1 and EBNA3a to -3c genes is dependent on the switch from Wp to Cp, since primary cells infected with EBNA2- EBNA4mut virus fail to switch and also fail to express these viral antigens. Here we critically evaluate this model and demonstrate, in contrast to the predictions of the model, that transcription of both the EBNA1 and EBNA2 genes precedes activation of Cp. Furthermore, the level of EBNA1 gene transcription was strongly reduced in primary B cells infected with EBNA2- EBNA4mut virus compared with

  12. The ß-importin KAP8 (Pse1/Kap121) is required for nuclear import of the cellulase transcriptional regulator XYR1, asexual sporulation and stress resistance in Trichoderma reesei.

    PubMed

    Ghassemi, Sara; Lichius, Alexander; Bidard, Fréderique; Lemoine, Sophie; Rossignol, Marie-Noëlle; Herold, Silvia; Seidl-Seiboth, Verena; Seiboth, Bernhard; Espeso, Eduardo A; Margeot, Antoine; Kubicek, Christian P

    2015-04-01

    The ascomycete Trichoderma reesei is an industrial producer of cellulolytic and hemicellulolytic enzymes, and serves as a prime model for their genetic regulation. Most of its (hemi-)cellulolytic enzymes are obligatorily dependent on the transcriptional activator XYR1. Here, we investigated the nucleo-cytoplasmic shuttling mechanism that transports XYR1 across the nuclear pore complex. We identified 14 karyopherins in T. reesei, of which eight were predicted to be involved in nuclear import, and produced single gene-deletion mutants of all. We found KAP8, an ortholog of Aspergillus nidulans KapI, and Saccharomyces cerevisiae Kap121/Pse1, to be essential for nuclear recruitment of GFP-XYR1 and cellulase gene expression. Transformation with the native gene rescued this effect. Transcriptomic analyses of Δkap8 revealed that under cellulase-inducing conditions 42 CAZymes, including all cellulases and hemicellulases known to be under XYR1 control, were significantly down-regulated. Δkap8 strains were capable of forming fertile fruiting bodies but exhibited strongly reduced conidiation both in light and darkness, and showed enhanced sensitivity towards abiotic stress, including high osmotic pressure, low pH and high temperature. Together, these data underscore the significance of nuclear import of XYR1 in cellulase and hemicellulase gene regulation in T. reesei, and identify KAP8 as the major karyopherin required for this process.

  13. The ß-importin KAP8 (Pse1/Kap121) is required for nuclear import of the cellulase transcriptional regulator XYR1, asexual sporulation and stress resistance in Trichoderma reesei

    PubMed Central

    Ghassemi, Sara; Lichius, Alexander; Bidard, Fréderique; Lemoine, Sophie; Rossignol, Marie-Noëlle; Herold, Silvia; Seidl-Seiboth, Verena; Seiboth, Bernhard; Espeso, Eduardo A; Margeot, Antoine; Kubicek, Christian P

    2015-01-01

    The ascomycete Trichoderma reesei is an industrial producer of cellulolytic and hemicellulolytic enzymes, and serves as a prime model for their genetic regulation. Most of its (hemi-)cellulolytic enzymes are obligatorily dependent on the transcriptional activator XYR1. Here, we investigated the nucleo-cytoplasmic shuttling mechanism that transports XYR1 across the nuclear pore complex. We identified 14 karyopherins in T. reesei, of which eight were predicted to be involved in nuclear import, and produced single gene-deletion mutants of all. We found KAP8, an ortholog of Aspergillus nidulans KapI, and Saccharomyces cerevisiae Kap121/Pse1, to be essential for nuclear recruitment of GFP-XYR1 and cellulase gene expression. Transformation with the native gene rescued this effect. Transcriptomic analyses of Δkap8 revealed that under cellulase-inducing conditions 42 CAZymes, including all cellulases and hemicellulases known to be under XYR1 control, were significantly down-regulated. Δkap8 strains were capable of forming fertile fruiting bodies but exhibited strongly reduced conidiation both in light and darkness, and showed enhanced sensitivity towards abiotic stress, including high osmotic pressure, low pH and high temperature. Together, these data underscore the significance of nuclear import of XYR1 in cellulase and hemicellulase gene regulation in T. reesei, and identify KAP8 as the major karyopherin required for this process. PMID:25626518

  14. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    PubMed

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  15. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.

    PubMed

    Tran, Kalvin Q; Tin, Antony S; Firestone, Gary L

    2014-03-01

    Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter. PMID:24296733

  16. Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.

    PubMed

    Tate, Jennifer J; Rai, Rajendra; Cooper, Terrance G

    2015-02-01

    A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This

  17. Oxygen-evoked changes in transcriptional activity of the 5'-flanking region of the human amiloride-sensitive sodium channel (alphaENaC) gene: role of nuclear factor kappaB.

    PubMed Central

    Baines, Deborah L; Janes, Mandy; Newman, David J; Best, Oliver G

    2002-01-01

    Expression of the alpha-subunit of the amiloride-sensitive sodium channel (alphaENaC) is regulated by a number of factors in the lung, including oxygen partial pressure (PO2). As transcriptional activation is a mechanism for raising cellular mRNA levels, we investigated the effect of physiological changes in PO2 on the activity of the redox-sensitive transcription factor nuclear factor kappaB (NF-kappaB) and transcriptional activity of 5'-flanking regions of the human alphaENaC gene using luciferase reporter-gene vectors transiently transfected into human adult alveolar carcinoma A549 cells. By Western blotting we confirmed the presence of NF-kappaB p65 but not p50 in these cells. Transiently increasing PO2 from 23 to 42 mmHg for 24 h evoked a significant increase in NF-kappaB DNA-binding activity and transactivation of a NF-kappaB-driven luciferase construct (pGLNF-kappaBpro), which was blocked by the NF-kappaB activation inhibitor sulphasalazine (5 mM). Transcriptional activity of alphaENaC-luciferase constructs containing 5'-flanking sequences (including the NF-kappaB consensus) were increased by raising PO2 from 23 to 142 mmHg if they contained transcriptional initiation sites (TIS) for exons 1A and 1B (pGL3E2.2) or the 3' TIS of exon 1B alone (pGL3E0.8). Sulphasalazine had no significant effect on the activity of these constructs, suggesting that the PO2-evoked rise in activity was not a direct consequence of NF-kappaB activation. Conversely, the relative luciferase activity of a construct that lacked the 3' TIS, a 3' intron and splice site but still retained the 5' TIS and NF-kappaB consensus sequence was suppressed significantly by raising PO2. This effect was reversed by sulphasalazine, suggesting that activation of NF-kappaB mediated PO2-evoked suppression of transcription from the exon 1A TIS of alphaENaC. PMID:12023897

  18. Runaway transcription

    PubMed Central

    2013-01-01

    A newly demonstrated defect in RNA polymerase II termination caused by 7SK snRNA knockdown may have revealed a novel mechanism uncoupling RNA processing from transcription. Please see related Research article, http://genomebiology.com/2013/14/9/R98 PMID:24079702

  19. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for the Involvement of Nuclear Receptors PPARα and CAR

    EPA Science Inventory

    A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects linked to liver cancer through the nuclear recep...

  20. Hepatocyte Nuclear Factor 1A Is a Cell-Intrinsic Transcription Factor Required for B Cell Differentiation and Development in Mice.

    PubMed

    von Wnuck Lipinski, Karin; Sattler, Katherine; Peters, Susann; Weske, Sarah; Keul, Petra; Klump, Hannes; Heusch, Gerd; Göthert, Joachim R; Levkau, Bodo

    2016-02-15

    The hepatocyte NF (HNF) family of transcription factors regulates the complex gene networks involved in lipid, carbohydrate, and protein metabolism. In humans, HNF1A mutations cause maturity onset of diabetes in the young type 3, whereas murine HNF6 participates in fetal liver B lymphopoiesis. In this study, we have identified a crucial role for the prototypical member of the family HNF1A in adult bone marrow B lymphopoiesis. HNF1A(-/-) mice exhibited a clear reduction in total blood and splenic B cells and a further pronounced one in transitional B cells. In HNF1A(-/-) bone marrow, all B cell progenitors-from pre-pro-/early pro-B cells to immature B cells-were dramatically reduced and their proliferation rate suppressed. IL-7 administration in vivo failed to boost B cell development in HNF1A(-/-) mice, whereas IL-7 stimulation of HNF1A(-/-) B cell progenitors in vitro revealed a marked impairment in STAT5 phosphorylation. The B cell differentiation potential of HNF1A(-/-) common lymphoid progenitors was severely impaired in vitro, and the expression of the B lymphopoiesis-promoting transcription factors E2A, EBF1, Pax5, and Bach2 was reduced in B cell progenitors in vivo. HNF1A(-/-) bone marrow chimera featured a dramatic defect in B lymphopoiesis recapitulating that of global HNF1A deficiency. The HNF1A(-/-) lymphopoiesis defect was confined to B cells as T lymphopoiesis was unaffected, and bone marrow common lymphoid progenitors and hematopoietic stem cells were even increased. Our data demonstrate that HNF1A is an important cell-intrinsic transcription factor in adult B lymphopoiesis and suggest the IL-7R/STAT5 module to be causally involved in mediating its function.

  1. Ethanol extract of Zhongtian hawthorn lowers serum cholesterol in mice by inhibiting transcription of 3-hydroxy-3-methylglutaryl-CoA reductase via nuclear factor-kappa B signal pathway.

    PubMed

    Hu, Hai-Jie; Luo, Xue-Gang; Dong, Qing-Qing; Mu, Ai; Shi, Guo-Long; Wang, Qiu-Tong; Chen, Xiao-Ying; Zhou, Hao; Zhang, Tong-Cun; Pan, Li-Wen

    2016-03-01

    Hawthorn is a berry-like fruit from the species of Crataegus. In China, it has another more famous name, Shan-Zha, which has been used to improve digestion as a traditional Chinese medicine or food for thousands of years. Moreover, during the last decades, hawthorn has received more attention because of its potential to treat cardiovascular diseases. However, currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included as Shan-Zha in the Chinese Pharmacopoeia. In this study, our results showed that the ethanol extract of Zhongtian hawthorn, a novel grafted cultivar of C. cuneata (wild Shan-Zha), could markedly reduce body weight and levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, and liver cholesterol of hyperlipidemia mice. It could suppress the stimulation effect of high-fat diet on the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and p65, and counteract the downregulation of CYP7A1 and LDLR. In addition, the results of luciferase reporter assay and Western blot showed that the transcriptional activity of HMGCR promoter was inhibited by Zhongtian hawthorn ethanol extract in a dose-dependent manner, while overexpression of p65 could reverse this transcriptional repression effect. These results suggested that Zhongtian hawthorn could provide health benefits by counteracting the high-fat diet-induced hypercholesteolemic and hyperlipidemic effects in vivo, and the mechanism underlying this event was mainly dependent on the suppressive effect of Zhongtian hawthorn ethanol extract on the transcription of HMGCR via nuclear factor-kappa B (NF-κB) signal pathway. Therefore, this novel cultivar of hawthorn cultivar which has much bigger fruits, early bearing, high yield, cold resistance, and drought resistance, might be considered as a good alternative to Shan-Zha and has great value in the food and medicine industry. In addition, to our best knowledge, this is also the first report that the

  2. Ethanol extract of Zhongtian hawthorn lowers serum cholesterol in mice by inhibiting transcription of 3-hydroxy-3-methylglutaryl-CoA reductase via nuclear factor-kappa B signal pathway.

    PubMed

    Hu, Hai-Jie; Luo, Xue-Gang; Dong, Qing-Qing; Mu, Ai; Shi, Guo-Long; Wang, Qiu-Tong; Chen, Xiao-Ying; Zhou, Hao; Zhang, Tong-Cun; Pan, Li-Wen

    2016-03-01

    Hawthorn is a berry-like fruit from the species of Crataegus. In China, it has another more famous name, Shan-Zha, which has been used to improve digestion as a traditional Chinese medicine or food for thousands of years. Moreover, during the last decades, hawthorn has received more attention because of its potential to treat cardiovascular diseases. However, currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included as Shan-Zha in the Chinese Pharmacopoeia. In this study, our results showed that the ethanol extract of Zhongtian hawthorn, a novel grafted cultivar of C. cuneata (wild Shan-Zha), could markedly reduce body weight and levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, and liver cholesterol of hyperlipidemia mice. It could suppress the stimulation effect of high-fat diet on the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and p65, and counteract the downregulation of CYP7A1 and LDLR. In addition, the results of luciferase reporter assay and Western blot showed that the transcriptional activity of HMGCR promoter was inhibited by Zhongtian hawthorn ethanol extract in a dose-dependent manner, while overexpression of p65 could reverse this transcriptional repression effect. These results suggested that Zhongtian hawthorn could provide health benefits by counteracting the high-fat diet-induced hypercholesteolemic and hyperlipidemic effects in vivo, and the mechanism underlying this event was mainly dependent on the suppressive effect of Zhongtian hawthorn ethanol extract on the transcription of HMGCR via nuclear factor-kappa B (NF-κB) signal pathway. Therefore, this novel cultivar of hawthorn cultivar which has much bigger fruits, early bearing, high yield, cold resistance, and drought resistance, might be considered as a good alternative to Shan-Zha and has great value in the food and medicine industry. In addition, to our best knowledge, this is also the first report that the

  3. Ethanol extract of Zhongtian hawthorn lowers serum cholesterol in mice by inhibiting transcription of 3-hydroxy-3-methylglutaryl-CoA reductase via nuclear factor-kappa B signal pathway

    PubMed Central

    Hu, Hai-Jie; Dong, Qing-Qing; Mu, Ai; Shi, Guo-Long; Wang, Qiu-Tong; Chen, Xiao-Ying; Zhou, Hao; Zhang, Tong-Cun

    2016-01-01

    Hawthorn is a berry-like fruit from the species of Crataegus. In China, it has another more famous name, Shan-Zha, which has been used to improve digestion as a traditional Chinese medicine or food for thousands of years. Moreover, during the last decades, hawthorn has received more attention because of its potential to treat cardiovascular diseases. However, currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included as Shan-Zha in the Chinese Pharmacopoeia. In this study, our results showed that the ethanol extract of Zhongtian hawthorn, a novel grafted cultivar of C. cuneata (wild Shan-Zha), could markedly reduce body weight and levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, and liver cholesterol of hyperlipidemia mice. It could suppress the stimulation effect of high-fat diet on the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and p65, and counteract the downregulation of CYP7A1 and LDLR. In addition, the results of luciferase reporter assay and Western blot showed that the transcriptional activity of HMGCR promoter was inhibited by Zhongtian hawthorn ethanol extract in a dose-dependent manner, while overexpression of p65 could reverse this transcriptional repression effect. These results suggested that Zhongtian hawthorn could provide health benefits by counteracting the high-fat diet-induced hypercholesteolemic and hyperlipidemic effects in vivo, and the mechanism underlying this event was mainly dependent on the suppressive effect of Zhongtian hawthorn ethanol extract on the transcription of HMGCR via nuclear factor-kappa B (NF-κB) signal pathway. Therefore, this novel cultivar of hawthorn cultivar which has much bigger fruits, early bearing, high yield, cold resistance, and drought resistance, might be considered as a good alternative to Shan-Zha and has great value in the food and medicine industry. In addition, to our best knowledge, this is also the first report that the

  4. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean

    PubMed Central

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na+ and K+, and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  5. TAF4, a subunit of transcription factor II D, directs promoter occupancy of nuclear receptor HNF4A during post-natal hepatocyte differentiation

    PubMed Central

    Alpern, Daniil; Langer, Diana; Ballester, Benoit; Le Gras, Stephanie; Romier, Christophe; Mengus, Gabrielle; Davidson, Irwin

    2014-01-01

    The functions of the TAF subunits of mammalian TFIID in physiological processes remain poorly characterised. In this study, we describe a novel function of TAFs in directing genomic occupancy of a transcriptional activator. Using liver-specific inactivation in mice, we show that the TAF4 subunit of TFIID is required for post-natal hepatocyte maturation. TAF4 promotes pre-initiation complex (PIC) formation at post-natal expressed liver function genes and down-regulates a subset of embryonic expressed genes by increased RNA polymerase II pausing. The TAF4–TAF12 heterodimer interacts directly with HNF4A and in vivo TAF4 is necessary to maintain HNF4A-directed embryonic gene expression at post-natal stages and promotes HNF4A occupancy of functional cis-regulatory elements adjacent to the transcription start sites of post-natal expressed genes. Stable HNF4A occupancy of these regulatory elements requires TAF4-dependent PIC formation highlighting that these are mutually dependent events. Local promoter-proximal HNF4A–TFIID interactions therefore act as instructive signals for post-natal hepatocyte differentiation. DOI: http://dx.doi.org/10.7554/eLife.03613.001 PMID:25209997

  6. Imaging of endogenous messenger RNA splice variants in living cells reveals nuclear retention of transcripts inaccessible to nonsense-mediated decay in Arabidopsis.

    PubMed

    Göhring, Janett; Jacak, Jaroslaw; Barta, Andrea

    2014-02-01

    Alternative splicing (AS) is an important regulatory process that leads to the creation of multiple RNA transcripts from a single gene. Alternative transcripts often carry premature termination codons (PTCs), which trigger nonsense-mediated decay (NMD), a cytoplasmic RNA degradation pathway. However, intron retention, the most prevalent AS event in plants, often leads to PTC-carrying splice variants that are insensitive to NMD; this led us to question the fate of these special RNA variants. Here, we present an innovative approach to monitor and characterize endogenous mRNA splice variants within living plant cells. This method combines standard confocal laser scanning microscopy for molecular beacon detection with a robust statistical pipeline for sample comparison. We demonstrate this technique on the localization of NMD-insensitive splice variants of two Arabidopsis thaliana genes, RS2Z33 and the SEF factor. The experiments reveal that these intron-containing splice variants remain within the nucleus, which allows them to escape the NMD machinery. Moreover, fluorescence recovery after photobleaching experiments in the nucleoplasm show a decreased mobility of intron-retained mRNAs compared with fully spliced RNAs. In addition, differences in mobility were observed for an mRNA dependent on its origin from an intron-free or an intron-containing gene.

  7. Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway.

    PubMed

    Wang, Tz-Ping; Hsu, Shu-Han; Feng, Hsin-Chun; Huang, Rwei-Fen S

    2012-06-01

    Low folate status is well recognized as one of the metabolic stressors for colorectal cancer carcinogenesis, but its role in colon cancer invasion remains unknown. Activation of the Sonic hedgehog (Shh) signal in interaction with the transcription nuclear factor-kappa B (NF-κB) pathway is crucial for cancer aggressiveness. The aims of this study were to investigate whether and how folate deprivation promotes invasion by colon cancer cells in relation to Shh signaling and NF-κB pathway activation. Cultivation of epithelial colon carcinoma-derived cells (HCT116) in folate-deficient (FD) medium enhanced cellular migration and invasion, in correlation with epithelial-mesenchymal transition (EMT) associated with Snail expression and E-cadherin suppression, increased production of β1 integrin and increased proteolysis by matrix metalloproteinase 2. Blockade of Shh signaling by cyclopamine (CYC) or of NF-κB activation by BAY abolished FD-enhanced EMT and invasion by HCT116 cells. FD cells had 50-80% less intracellular folate, associated with aberrant hypomethylation of the Shh promoter, than control cells, and increased binding of nuclear NF-κB subunit p65 to the Shh promoter region, which coincided with increased Shh expression and protein production of Shh ligand; in addition, the FD-induced Shh signaling targeted Gli1 transcription activator as well as Ptch receptor. The FD-induced Shh induction and activated signaling were blocked by NF-κB inhibitor BAY. Blockade of Shh signaling abrogated FD-promoted NF-κB activation measured by IκBα degradation and by target gene TNFα expression. Taken together, these findings demonstrate that folate deprivation enhanced invasiveness of colon cancer cells mediated by activation of Shh signaling through promoter hypomethylation and cross actions with the NF-κB pathway.

  8. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Jun; Li, Chunhua; Xu, Shujuan; Xing, Lijing; Xu, Yunyuan; Chong, Kang

    2015-01-01

    Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1’s function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1’s regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis. PMID:26392261

  9. T Cell Receptor-induced Nuclear Factor κB (NF-κB) Signaling and Transcriptional Activation Are Regulated by STIM1- and Orai1-mediated Calcium Entry.

    PubMed

    Liu, Xiaohong; Berry, Corbett T; Ruthel, Gordon; Madara, Jonathan J; MacGillivray, Katelyn; Gray, Carolyn M; Madge, Lisa A; McCorkell, Kelly A; Beiting, Daniel P; Hershberg, Uri; May, Michael J; Freedman, Bruce D

    2016-04-15

    T cell activation following antigen binding to the T cell receptor (TCR) involves the mobilization of intracellular Ca(2+) to activate the key transcription factors nuclear factor of activated T lymphocytes (NFAT) and NF-κB. The mechanism of NFAT activation by Ca(2+) has been determined. However, the role of Ca(2+) in controlling NF-κB signaling is poorly understood, and the source of Ca(2+) required for NF-κB activation is unknown. We demonstrate that TCR- but not TNF-induced NF-κB signaling upstream of IκB kinase activation absolutely requires the influx of extracellular Ca(2+) via STIM1-dependent Ca(2+) release-activated Ca(2+)/Orai channels. We further show that Ca(2+) influx controls phosphorylation of the NF-κB protein p65 on Ser-536 and that this posttranslational modification controls its nuclear localization and transcriptional activation. Notably, our data reveal that this role for Ca(2+) is entirely separate from its upstream control of IκBα degradation, thereby identifying a novel Ca(2+)-dependent distal step in TCR-induced NF-κB activation. Finally, we demonstrate that this control of distal signaling occurs via Ca(2+)-dependent PKCα-mediated phosphorylation of p65. Thus, we establish the source of Ca(2+) required for TCR-induced NF-κB activation and define a new distal Ca(2+)-dependent checkpoint in TCR-induced NF-κB signaling that has broad implications for the control of immune cell development and T cell functional specificity.

  10. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance.

    PubMed

    Sun, Fan; Xiao, Yadong; Qu, Zhaoxia

    2015-03-20

    Kaposi sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. However, how KSHV induces tumorigenesis remains largely unknown. Here, we demonstrate that one important mechanism underlying the tumorigenesis of KSHV is through transcriptional repression of the tumor suppressor gene PDZ-LIM domain-containing protein 2 (PDLIM2). PDLIM2 expression is repressed in KSHV-transformed human umbilical vascular endothelial cells as well as in KSHV-associated cancer cell lines and primary tumors. Importantly, PDLIM2 repression is essential for KSHV-induced persistent activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and subsequent tumorigenesis and tumor maintenance. Our mechanistic studies indicate that PDLIM2 repression by KSHV involves DNA methylation. Notably, the epigenetic repression of PDLIM2 can be reversed by 5-aza-2-deoxycytidine and vitamin D to suppress KSHV-associated cancer cell growth. These studies not only improve our understanding of KSHV pathogenesis but also provide immediate therapeutic strategies for KSHV-mediated cancers, particularly those associated with AIDS.

  11. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress.

    PubMed Central

    Sarge, K D; Murphy, S P; Morimoto, R I

    1993-01-01

    The existence of multiple heat shock factor (HSF) genes in higher eukaryotes has promoted questions regarding the functions of these HSF family members, especially with respect to the stress response. To address these questions, we have used polyclonal antisera raised against mouse HSF1 and HSF2 to examine the biochemical, physical, and functional properties of these two factors in unstressed and heat-shocked mouse and human cells. We have identified HSF1 as the mediator of stress-induced heat shock gene transcription. HSF1 displays stress-induced DNA-binding activity, oligomerization, and nuclear localization, while HSF2 does not. Also, HSF1 undergoes phosphorylation in cells exposed to heat or cadmium sulfate but not in cells treated with the amino acid analog L-azetidine-2-carboxylic acid, indicating that phosphorylation of HSF1 is not essential for its activation. Interestingly, HSF1 and HSF2 overexpressed in transfected 3T3 cells both display constitutive DNA-binding activity, oligomerization, and transcriptional activity. These results demonstrate that HSF1 can be activated in the absence of physiological stress and also provide support for a model of regulation of HSF1 and HSF2 activity by a titratable negative regulatory factor. Images PMID:8441385

  12. Nuclear Speckles

    PubMed Central

    Spector, David L.; Lamond, Angus I.

    2011-01-01

    Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleoplasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20–50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange continuously with the nucleoplasm and other nuclear locations, including active transcription sites. Studies on the composition, structure, and dynamics of speckles have provided an important paradigm for understanding the functional organization of the nucleus and the dynamics of the gene expression machinery. PMID:20926517

  13. The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain.

    PubMed

    Fluteau, Adeline; Ince, Paul G; Minett, Thais; Matthews, Fiona E; Brayne, Carol; Garwood, Claire J; Ratcliffe, Laura E; Morgan, Sarah; Heath, Paul R; Shaw, Pamela J; Wharton, Stephen B; Simpson, Julie E

    2015-11-16

    The accumulation of reactive oxygen species leading to oxidative damage and cell death plays an important role in a number of neurodegenerative disorders. FOXO3a, the main isoform of FOXO transcription factors, mediates the cellular response to oxidative stress by regulating the expression of genes involved in DNA repair and glutamine metabolism, including glutamine synthetase (GS). Immunohistochemical investigation of the population-based neuropathology cohort of the Medical Research Council's Cognitive Function and Ageing Study (MRC CFAS) demonstrates that nuclear retention of FOXO3a significantly correlates with a DNA damage response and with GS expression by astrocytes. Furthermore, we show that GS expression correlates with increasing Alzheimer-type pathology in this ageing cohort. Our findings suggest that in response to oxidative stress, the nuclear retention of FOXO3a in astrocytes upregulates expression of GS as a neuroprotective mechanism. However, the activity of GS may be compromised by increasing levels of oxidative stress in the ageing brain resulting in dysfunctional enzyme activity, neuronal excitotoxic damage and cognitive impairment.

  14. A phosphatase activity present in peripheral blood myeloid cells of chronic myelogenous leukemia patients but not normal individuals alters nuclear protein binding to transcriptional enhancers of interferon-inducible genes.

    PubMed Central

    Seong, D C; Sims, S; Johnson, E; Howard, O M; Reiter, B; Hester, J; Talpaz, M; Kantarjian, H; Deisseroth, A

    1990-01-01

    Cytoplasmic protein from peripheral blood myeloid cells of chronic myelogenous leukemia (CML) patients altered the electrophoretic mobility of complexes formed between nuclear proteins and interferon-inducible transcriptional enhancers. Immature myeloid marrow cells (blasts and promyelocytes) have a higher level of this activity than do mature myeloid marrow cells (bands and polys). This activity, which is not detectable in the peripheral blood cells of normal individuals, is at least 50-fold higher in CML marrow blasts and promyelocytes than that found in marrow blasts and promyelocytes of normal individuals. This activity was inhibited by in vivo incubation of immature myeloid cells with the phosphatase inhibitor, sodium orthovanadate (0.2 mM), and by adding orthovanadate (20 mM) directly to cytoplasmic proteins of myeloid cells. Interferon-alpha (1,000 U/ml) reduced the effects of the CML myeloid cell cytoplasmic protein on the electrophoretic mobility of nuclear protein-DNA complexes. These data suggest that a unique phosphatase may be involved in the abnormalities in CML which are modulated by interferon-alpha. Images PMID:2243138

  15. The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain

    PubMed Central

    Fluteau, Adeline; Ince, Paul G.; Minett, Thais; Matthews, Fiona E.; Brayne, Carol; Garwood, Claire J.; Ratcliffe, Laura E.; Morgan, Sarah; Heath, Paul R.; Shaw, Pamela J.; Wharton, Stephen B.; Simpson, Julie E.

    2015-01-01

    The accumulation of reactive oxygen species leading to oxidative damage and cell death plays an important role in a number of neurodegenerative disorders. FOXO3a, the main isoform of FOXO transcription factors, mediates the cellular response to oxidative stress by regulating the expression of genes involved in DNA repair and glutamine metabolism, including glutamine synthetase (GS). Immunohistochemical investigation of the population-based neuropathology cohort of the Medical Research Council’s Cognitive Function and Ageing Study (MRC CFAS) demonstrates that nuclear retention of FOXO3a significantly correlates with a DNA damage response and with GS expression by astrocytes. Furthermore, we show that GS expression correlates with increasing Alzheimer-type pathology in this ageing cohort. Our findings suggest that in response to oxidative stress, the nuclear retention of FOXO3a in astrocytes upregulates expression of GS as a neuroprotective mechanism. However, the activity of GS may be compromised by increasing levels of oxidative stress in the ageing brain resulting in dysfunctional enzyme activity, neuronal excitotoxic damage and cognitive impairment. PMID:26455863

  16. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL.

    PubMed

    Juvekar, Ashish; Manna, Subrata; Ramaswami, Sitharam; Chang, Tzu-Pei; Vu, Hai-Yen; Ghosh, Chandra C; Celiker, Mahmut Y; Vancurova, Ivana

    2011-02-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters. PMID:21224428

  17. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL.

    PubMed

    Juvekar, Ashish; Manna, Subrata; Ramaswami, Sitharam; Chang, Tzu-Pei; Vu, Hai-Yen; Ghosh, Chandra C; Celiker, Mahmut Y; Vancurova, Ivana

    2011-02-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters.

  18. The ORF012 Gene of Marek's Disease Virus Type 1 Produces a Spliced Transcript and Encodes a Novel Nuclear Phosphoprotein Essential for Virus Growth

    PubMed Central

    Schippers, Timo; Jarosinski, Keith

    2014-01-01

    ABSTRACT Marek's disease virus (MDV), an alphaherpesvirus, is the causative agent of a lethal disease in chickens characterized by generalized nerve inflammation and rapid lymphoma development. The extensive colinearity of the MDV genome with those of related herpesviruses has eased functional characterization of many MDV genes. However, MDV carries a number of unique open reading frames (ORFs) that have not yet been investigated regarding their coding potentials and the functions of their products. Among these unique ORFs are two putative ORFs, ORF011 and ORF012, which are found at the extreme left end of the MDV unique long region. Using reverse transcriptase PCR, we showed that ORF011 and ORF012 are not individual genes but form a single gene through mRNA splicing of a small intron, resulting in the novel ORF012. We generated an ORF012-null virus using an infectious clone of MDV strain RB-1B. The deletion virus had a marked growth defect in vitro and could not be passaged in cultured cells, suggesting an essential role for the ORF012 product in virus replication. Further studies revealed that protein 012 (p012) localized to the nucleus in transfected and infected cells, and we identified by site-directed mutagenesis and green fluorescent protein (GFP) reporter fusion assays a nuclear localization signal (NLS) that was mapped to a 23-amino-acid sequence at the protein's C terminus. Nuclear export was blocked using leptomycin B, suggesting a potential role for p012 as a nuclear/cytoplasmic shuttling protein. Finally, p012 is phosphorylated at multiple residues, a modification that could possibly regulate its subcellular distribution. IMPORTANCE Marek's disease virus (MDV) causes a devastating oncogenic disease in chickens with high morbidity and mortality. The costs for disease prevention reach several billion dollars annually. The functional investigation of MDV genes is necessary to understand its complex replication cycle, which eventually could help us to

  19. Feedback induction of a photoreceptor-specific isoform of retinoid-related orphan nuclear receptor β by the rod transcription factor NRL.

    PubMed

    Fu, Yulong; Liu, Hong; Ng, Lily; Kim, Jung-Woong; Hao, Hong; Swaroop, Anand; Forrest, Douglas

    2014-11-21

    Vision requires the generation of cone and rod photoreceptors that function in daylight and dim light, respectively. The neural retina leucine zipper factor (NRL) transcription factor critically controls photoreceptor fates as it stimulates rod differentiation and suppresses cone differentiation. However, the controls over NRL induction that balance rod and cone fates remain unclear. We have reported previously that the retinoid-related orphan receptor β gene (Rorb) is required for Nrl expression and other retinal functions. We show that Rorb differentially expresses two isoforms: RORβ2 in photoreceptors and RORβ1 in photoreceptors, progenitor cells, and other cell types. Deletion of RORβ2 or RORβ1 increased the cone:rod ratio ∼2-fold, whereas deletion of both isoforms in Rorb(-/-) mice produced almost exclusively cone-like cells at the expense of rods, suggesting that both isoforms induce Nrl. Electroporation of either RORβ isoform into retinal explants from Rorb(-/-) neonates reactivated Nrl and rod genes but, in Nrl(-/-) explants, failed to reactivate rod genes, indicating that NRL is the effector for both RORβ isoforms in rod differentiation. Unexpectedly, RORβ2 expression was lost in Nrl(-/-) mice. Moreover, NRL activated the RORβ2-specific promoter of Rorb, indicating that NRL activates Rorb, its own inducer gene. We suggest that feedback activation between Nrl and Rorb genes reinforces the commitment to rod differentiation. PMID:25296752

  20. Nuclear localization of vascular endothelial growth factor-D and regulation of c-Myc-dependent transcripts in human lung fibroblasts.

    PubMed

    El-Chemaly, Souheil; Pacheco-Rodriguez, Gustavo; Malide, Daniela; Meza-Carmen, Victor; Kato, Jiro; Cui, Ye; Padilla, Philip I; Samidurai, Arun; Gochuico, Bernadette R; Moss, Joel

    2014-07-01

    Lymphangiogenesis and angiogenesis are processes that are, in part, regulated by vascular endothelial growth factor (VEGF)-D. The formation of lymphatic structures has been implicated in multiple lung diseases, including pulmonary fibrosis. VEGF-D is a secreted protein produced by fibroblasts and macrophages, which induces lymphangiogenesis by signaling via VEGF receptor-3, and angiogenesis through VEGF receptor-2. VEGF-D contains a central VEGF homology domain, which is the biologically active domain, with flanking N- and C-terminal propeptides. Full-length VEGF-D (∼ 50 kD) is proteolytically processed in the extracellular space, to generate VEGF homology domain that contains the VEGF-D receptor-binding sites. Here, we report that, independent of its cell surface receptors, full-length VEGF-D accumulated in nuclei of fibroblasts, and that this process appears to increase with cell density. In nuclei, full-length VEGF-D associated with RNA polymerase II and c-Myc. In cells depleted of VEGF-D, the transcriptionally regulated genes appear to be modulated by c-Myc. These findings have potential clinical implications, as VEGF-D was found in fibroblast nuclei in idiopathic pulmonary fibrosis, a disease characterized by fibroblast proliferation. These findings are consistent with actions of full-length VEGF-D in cellular homeostasis in health and disease, independent of its receptors.

  1. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    PubMed

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders.

  2. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    PubMed

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  3. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes

    PubMed Central

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Background: Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. SUMMARY Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits

  4. Transcriptional regulators TRIM28, SETDB1, and TP53 are aberrantly expressed in porcine embryos produced by in vitro fertilization in comparison to in vivo- and somatic-cell nuclear transfer-derived embryos.

    PubMed

    Hamm, Jennifer; Tessanne, Kim; Murphy, Clifton N; Prather, Randall S

    2014-06-01

    In vitro embryo production is important for research in animal reproduction, embryo transfer, transgenics, and cloning. Yet, in vitro-fertilized (IVF) embryos are generally developmentally delayed and are inferior to in vivo-derived (IVV) embryos; this discrepancy is likely a result of aberrant gene expression. Transcription of three genes implicated to be important in normal preimplantation embryo development, TRIM28, SETDB1, and TP53, was determined by quanitative PCR in IVF, somatic-cell nuclear transfer (SCNT), parthenogenetic, and IVV porcine oocytes and embryos. There was no difference in TRIM28 or SETDB1 abundance between oocytes matured in vitro versus in vivo (P > 0.05), whereas TP53 levels were higher in in vitro-matured oocytes. TRIM28 increased from metaphase-II oocytes to the 4-cell and blastocyst stages in IVF embryos, whereas IVV embryos showed a reduction in TRIM28 abundance from maturation throughout development. The relative abundance of TP53 increased by the blastocyst stage in all treatment groups, but was higher in IVF embryos compared to IVV and SCNT embryos. In contrast, SETDB1 transcript levels decreased from the 2-cell to blastocyst stage in all treatments. For each gene analyzed, SCNT embryos of both hard-to-clone and easy-to-clone cell lines were more comparable to IVV than IVF embryos. Knockdown of TRIM28 also had no effect on blastocyst development or expression of SETDB1 or TP53. Thus, TRIM28, SETDB1, and TP53 are dynamically expressed in porcine oocytes and embryos. Furthermore, TRIM28 and TP53 abundances in IVV and SCNT embryos are similar, but different from quantities in IVF embryos. PMID:24659575

  5. Transcriptional regulators TRIM28, SETDB1, and TP53 are aberrantly expressed in porcine embryos produced by in vitro fertilization in comparison to in vivo- and somatic-cell nuclear transfer-derived embryos

    PubMed Central

    Hamm, Jennifer; Tessanne, Kim; Murphy, Clifton N; Prather, Randall S

    2014-01-01

    In vitro embryo production is important for research in animal reproduction, embryo transfer, transgenics, and cloning. Yet, in vitro-fertilized (IVF) embryos are generally developmentally delayed and are inferior to in vivo-derived (IVV) embryos; this discrepancy is likely a result of aberrant gene expression. Transcription of three genes implicated to be important in normal preimplantation embryo development, TRIM28, SETDB1, and TP53, was determined by quanitative PCR in IVF, somatic-cell nuclear transfer (SCNT), parthenogenetic, and IVV porcine oocytes and embryos. There was no difference in TRIM28 or SETDB1 abundance between oocytes matured in vitro versus in vivo (P > 0.05), whereas TP53 levels were higher in in vitro-matured oocytes. TRIM28 increased from metaphase-II oocytes to the 4-cell and blastocyst stages in IVF embryos, whereas IVV embryos showed a reduction in TRIM28 abundance from maturation throughout development. The relative abundance of TP53 increased by the blastocyst stage in all treatment groups, but was higher in IVF embryos compared to IVV and SCNT embryos. In contrast, SETDB1 transcript levels decreased from the 2-cell to blastocyst stage in all treatments. For each gene analyzed, SCNT embryos of both hard-to-clone and easy-to-clone cell lines were more comparable to IVV than IVF embryos. Knockdown of TRIM28 also had no effect on blastocyst development or expression of SETDB1 or TP53. Thus, TRIM28, SETDB1, and TP53 are dynamically expressed in porcine oocytes and embryos. Furthermore, TRIM28 and TP53 abundances in IVV and SCNT embryos are similar, but different from quantities in IVF embryos. Mol. Reprod. Dev. 81: 552–556, 2014. © 2014 The Authors. Published by Wiley Periodicals, Inc. PMID:24659575

  6. Activation of transcription factor IL-6 (NF-IL-6) and nuclear factor-kappaB (NF-kappaB) by lipid ozonation products is crucial to interleukin-8 gene expression in human airway epithelial cells.

    PubMed

    Kafoury, Ramzi M; Hernandez, Jazmir M; Lasky, Joseph A; Toscano, William A; Friedman, Mitchell

    2007-04-01

    Ozone (O(3)) is a major component of smog and an inhaled toxicant to the lung. O(3) rapidly reacts with the airway epithelial cell membrane phospholipids to generate lipid ozonation products (LOP). 1-Hydroxy-1-hydroperoxynonane (HHP-C9) is an important LOP, produced from the ozonation of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine. This LOP, at a biologically relevant concentration (100 microM), increases the activity of phospholipase C, nuclear factors-kappaB (NF-kappaB), and interleukin-6 (NF-IL-6) and the expression of the inflammatory gene, interleukin-8 (IL-8) in a cultured human bronchial epithelial cell line (BEAS-2B). The signaling pathways of ozone and its biologically-active products are as yet undefined. In the present study, we report that the HHP LOP, HHP-C9 (100 microM x 4 h), activated the expression of IL-8 (218 +/- 26% increase over control, n = 4, P < 0.01) through an apparent interaction between the two transcription factors, NF-kappaB and NF-IL-6. Transfection studies using luciferase reporter assays demonstrated that HHP-C9 induced a significant increase in NF-kappaB-DNA binding activity (37 +/- 7% increase over control, n = 6, P < 0.05). Inhibition of NF-kappaB showed a statistically significant but modest decrease in IL-8 release, which suggested a role for another transcription factor, NF-IL-6. Exposure of BEAS-2B cells to HHP-C9 induced a significant increase in the DNA binding activity of NF-IL-6 (45 +/- 11% increase over control, n = 6, P < 0.05). The results of the present study indicate that NF-IL-6 interacts with NF-kappaB in regulating the expression of IL-8 in cultured human airway epithelial cells exposed to LOP, the biological products of ozone in the lung. PMID:17366569

  7. Inhibition of transcription factor nuclear factor-κB by a mutant inhibitor-κBα attenuates resistance of human head and neck squamous cell carcinoma to TNF-α caspase-mediated cell death

    PubMed Central

    Duffey, D C; Crowl-Bancroft, C V; Chen, Z; Ondrey, F G; Nejad-Sattari, M; Dong, G; Van Waes, C

    2000-01-01

    Tumour necrosis factor-α (TNF-α) is a cytokine that can induce cell death of different cancers via a cellular cascade of proteases, the caspases. However, TNF-α has been detected in tumour and serum of patients with head and neck squamous cell carcinoma (HNSCC), and tumour cell lines derived from this environment often exhibit resistance to TNF-α-induced cell death. Cell death mediated by TNF-α and caspases may be inhibited by cytoprotective genes regulated by transcription factor nuclear factor-κB (NF-κB). We recently showed that NF-κB is constitutively activated in HNSCC, and that inhibition of NF-κB by expression of a nondegradable mutant inhibitor of NF-κB, IκBαM, markedly decreased survival and growth of HNSCC cells in vivo. In the present study, we examined the TNF-α sensitivity and response of HNSCC with constitutively active NF-κB, and of HNSCC cells in which NF-κB is inhibited by stable expression of a dominant negative mutant inhibitor, IκBαM. Human lines UM-SCC-9, 11B and 38, previously shown to exhibit constitutive activation of NF-κB, were found to be highly resistant to growth inhibition by up to 104U/ml of TNF-α in 5 day MTT assay. These TNF-α resistant HNSCC lines expressed TNF receptor I, and exhibited constitutive and TNF-α-inducible activation of NF-κB as demonstrated by nuclear localization of NF-κB p65 by immunohistochemistry. UM-SCC-9 I11 cells which stably expressed an inhibitor of NF-κB, IκBαm, were susceptible to TNF-α-induced growth inhibition. DNA cell cycle analysis revealed that TNF-α induced growth inhibition was associated with accumulation of cells with sub-G0/G1 DNA content. Cell death was demonstrated by trypan blue staining, and was blocked by caspase inhibitor. We conclude that HNSCC that exhibit constitutive and TNF-α-inducible activation of transcription factor NF-κB are resistant to TNF-α, and that inhibition of NF-κB sensitizes HNSCC to TNF-α caspase-mediated cytotoxicity. The demonstration of

  8. Development of brain injury in mice by Angiostrongylus cantonensis infection is associated with the induction of transcription factor NF-kappaB, nuclear protooncogenes, and protein tyrosine phosphorylation.

    PubMed

    Lee, H H; Shiow, S J; Chung, H C; Huang, C Y; Lin, C L; Hsu, J D; Shyu, L Y; Wang, C J

    2000-07-01

    Eosinophilic meningitis or meningoencephalitis caused by Angiostrongylus cantonensis is endemic to the Pacific area of Asia, especially Taiwan, Thailand, and Japan. Although eosinophilia is an important clinical manifestation of A. cantonensis infection, the role of eosinophils in the progress of the infection remains to be elucidated. In this experiment, we showed that A. cantonensis-caused eosinoplia and inflammation might lead to the induction of NF-kappaB and protooncogene expression via activation of the tyrosine phosphorylation signal pathway. After mice were infected daily with 30 third-stage larvae of A. cantonensis by oral adminstration for 6 weeks, no significant differences PKC-alpha, MEK-1, ERK-2, JNK, and p38 protein expression were found between the control and infected mice. However, the protein tyrosine phosphorylation levels, NF-kappaB, and iNOS protein products were significantly increased by 3.5-, 3.3-, and 6.3-fold, respectively, after 3 weeks of A. cantonensis infection. The same pattern was found for c-Myc, c-Jun, and c-Fos proteins, which were elevated by 3.2-, 2.3-, and 3.4-fold, respectively, compared to control animals after 3 weeks. The expression potency of these proteins started increasing in week 1, reaching maximal induction in week 3, and then declining in week 5 after A. cantonensis infection. Another consistent result was noted in the pathological observations, including eosinophilia, leukocyte infiltration, granulomatous reactions, and time responses in brain tissues of infected mice. These data suggest that the development of brain injury by eosinophlia of A. cantonensis infection is associated with NF-kappaB and/or nuclear protooncogenes expression, which is activated by the tyrosine phosphorylation pathway.

  9. Interaction of hepatocyte nuclear factors in transcriptional regulation of tissue specific hormonal expression of human multidrug resistance-associated protein 2 (abcc2)

    SciTech Connect

    Qadri, Ishtiaq Hu, L.-J.; Iwahashi, Mieko; Al-Zuabi, Subhi; Quattrochi, Linda C.; Simon, Francis R.

    2009-02-01

    Multidrug resistance-associated protein 2 (MRP2) (ABCC2) is an ATP-binding cassette membrane protein located primarily on apical surface of hepatocytes that mediates transport of conjugated xenobiotics and endogenous compounds into bile. MRP2 is highly expressed in hepatocytes, and at lower levels in small intestines, stomach and kidney. Previous reports have characterized mammalian MRP2 promoters, but none have established the molecular mechanism(s) involved in liver enriched expression. This study aims to investigate the mechanism of hepatic MRP2 regulation. A 2130 bp of MRP2 promoter was cloned from PAC-1 clone P108G1-7, to identify putative liver specific/hormone responsive functional DNA binding sites. Using deletion analysis, site specific mutagenesis and co-transfection studies, liver specific expression was determined. MRP2 promoter-LUC constructs were highly expressed in liver cell lines compared to non-liver cells. The region extending from - 3 to+ 458 bp of MRP2 promoter starting from AUG contained the potential binding sites for CAAATT box enhancer binding protein (C/EBP), hepatocytes nuclear factor 1, 3 and 4 (HNF1, HNF3, and HNF4. Only HNF1 and HNF4 co-transfection with MRP2 luciferase increased expression. Site specific mutational analysis of HNF1 binding site indicated an important role for HNF1{alpha}. HNF4{alpha} induction of MRP2 was independent of HNF1 binding site. C/EBP, HNF3, and HNF6 inhibited HNF1{alpha} while HNF4{alpha} induced MRP2 luciferase expression and glucocorticoids stimulated MRP2 expression. This study emphasizes the complex regulation of MRP2 with HNF1{alpha} and HNF4{alpha} playing a central role. The coordinated regulation of xenobiotic transporters and oxidative conjugation may determine the adaptive responses to cellular detoxification processes.

  10. Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3.

    PubMed

    Tyagi, Alpna; Singh, Rana P; Ramasamy, Kumaraguruparan; Raina, Komal; Redente, Elizabeth F; Dwyer-Nield, Lori D; Radcliffe, Richard A; Malkinson, Alvin M; Agarwal, Rajesh

    2009-01-01

    The latency period for lung tumor progression offers a window of opportunity for therapeutic intervention. Herein, we studied the effect of oral silibinin (742 mg/kg body weight, 5 d/wk for 10 weeks) on the growth and progression of established lung adenocarcinomas in A/J mice. Silibinin strongly decreased both tumor number and tumor size, an antitumor effect that correlates with reduced antiangiogenic activity. Silibinin reduced microvessel size (50%, P < 0.01) with no change in the number of tumor microvessels and reduced (by 30%, P < 0.05) the formation of nestin-positive microvessels in tumors. Analysis of several proteins involved in new blood vessel formation showed that silibinin decreased the tumor expression of interleukin-13 (47%) and tumor necrosis factor-alpha (47%), and increased tissue inhibitor of metalloproteinase-1 (2-fold) and tissue inhibitor of metalloproteinase-2 (7-fold) expression, without significant changes in vascular endothelial growth factor levels. Hypoxia- inducible factor-1 alpha expression and nuclear localization were also decreased by silibinin treatment. Cytokines secreted by tumor cells and tumor-associated macrophages regulate angiogenesis by activating nuclear factor-kappaB (NF-kappaB) and signal transducers and activators of transcription (STAT). Silibinin decreased the phosphorylation of p65NF-kappaB (ser276, 38%; P < 0.01) and STAT-3 (ser727, 16%; P < 0.01) in tumor cells and decreased the lung macrophage population. Angiopoietin-2 (Ang-2) and Ang-receptor tyrosine kinase (Tie-2) expression were increased by silibinin. Therapeutic efficacy of silibinin in lung tumor growth inhibition and regression by antiangiogenic mechanisms seem to be mediated by decreased tumor-associated macrophages and cytokines, inhibition of hypoxia-inducible factor-1 alpha, NF-kappaB, and STAT-3 activation, and up-regulation of the angiogenic inhibitors, Ang-2 and Tie-2.

  11. Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay

    SciTech Connect

    Chen, G.-D.; Chou, C.-M.; Hwang, S.-P.L.; Wang, F.-F.; Chen, Y.-C.; Hung, C.-C.; Chen, Jeou-Yuan . E-mail: bmchen@ibms.sinica.edu.tw; Huang, C.-J. . E-mail: cjibc@gate.sinica.edu.tw

    2006-05-26

    We expressed zebrafish p53 protein fused to GFP by a neuron-specific HuC promoter in zebrafish embryos. Instead of displaying neuronal expression patterns, p53-GFP was targeted to zebrafish YSL nuclei. This YSL targeting is p53 sequence-specific because GFP fusion proteins of p63 and p73 displayed neuronal-specific patterns. To dissect the underlying mechanisms, various constructs encoding a series of p53 mutant proteins under the control of different promoters were generated. Our results showed that expression of p53, in early zebrafish embryo, is preferentially targeted to the nuclei of YSL, which is mediated by importin. Similarly, this targeting is abrogated when p53 nuclear localization signal is disrupted. In addition, the transcriptional activity of p53 is required for this targeting. We further showed that fusion of pro-apoptotic BAD protein to p53-GFP led to apoptosis of YSL cells, and subsequent imperfect microtubule formation and abnormal blastomere movements.

  12. Monoamine neurotoxins-induced apoptosis in lymphocytes by a common oxidative stress mechanism: involvement of hydrogen peroxide (H(2)O(2)), caspase-3, and nuclear factor kappa-B (NF-kappaB), p53, c-Jun transcription factors.

    PubMed

    Del Rio, Marlene Jimenez; Velez-Pardo, Carlos

    2002-02-15

    The destruction of dopaminergic and serotonergic nerve cells by selective 6-hydroxydopamine (6-OHDA), 5,6-dihydroxytryptamine (5,6-DHT) and 5,7-dihydroxytryptamine (5,7-DHT), respectively, is a commonly used tool to investigate the mapping of neuronal pathways, elucidation of function and to mimic human neurodegenerative disease such as Parkinson's and Alzheimer's diseases. Despite intense investigations, a complete picture of the precise molecular cascade leading to cell death in a single cellular model is still lacking. In this study, we provide evidence that 6-OHDA, 5,6- and 5,7-DHT toxins-induced apoptosis in peripheral blood lymphocytes cells in a concentration-dependent fashion by a common oxidative mechanism involving: (1) the oxidation of toxins into quinones and production of the by-product hydrogen peroxide, reflected by desipramine-a monoamine uptake blocker-and antioxidants inhibition, (2) activation and/or translocation of nuclear factor-kappaB, p53 and c-Jun transcription factors, showed by immunocytochemical diaminobenzidine-positive stained nuclei, (3) caspase-3 activation, reflected by caspase Ac-DEVD-CHO inhibition, (4) mRNA and protein synthesis de novo according to cycloheximide and actinomycin D cell death inhibition. These results are consistent with the notion that uptake and intracellular autoxidation of those toxins precede the apoptotic process and that once H(2)O(2) is generated, it is able to trigger a specific cell death signalisation. Thus, taken together these results, we present an ordered cascade of the major molecular events leading peripheral blood lymphocytes to apoptosis. These results may contribute to explain the importance of H(2)O(2) as a second messenger of death signal in some degenerative diseases linked to oxidative stress stimuli.

  13. Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum- and glucocorticoid-inducible protein kinase-1.

    PubMed

    Terada, Yoshio; Ueda, Satoko; Hamada, Kazu; Shimamura, Yoshiko; Ogata, Koji; Inoue, Kosuke; Taniguchi, Yoshinori; Kagawa, Toru; Horino, Taro; Takao, Toshihiro

    2012-02-01

    Several clinical and experimental data support the hypothesis that aldosterone contributes to the progression of renal injury. To determine the signaling pathway of aldosterone in relation to fibrosis and inflammation in mesangial cells, we investigated the effects of aldosterone on expression and activation of serum- and glucocorticoid-inducible protein kinase-1 (SGK1), the activation of nuclear factor-kappa B (NF-κB activation, and the expressions of intercellular adhesion molecule-1 (ICAM-1) and connective tissue growth factor (CTGF). Aldosterone stimulated SGK1 expression, phosphorylation (Ser-256), and kinase activity. The increments of phosphorylation and expression of SGK1 induced by aldosterone were inhibited by mineralocorticoid receptor (MR) inhibitor (eplerenone). Aldosterone stimulated NF-κB activity measured by NF-κB responsive elements, luciferase assay, and the levels of inhibitor of kappa B (IκB) phosphorylation. This aldosterone-induced activation of NF-κB was inhibited by the transfection of dominant-negative SGK1. Furthermore, aldosterone augmented the promoter activities and protein expressions of ICAM-1 and CTGF. The effects of aldosterone on ICAM-1 and CTGF promoter activities and protein expressions were inhibited by the transfection of dominant-negative SGK1 and dominant-negative IκBα. We also found that the MR antagonist significantly ameliorated the glomerular injury and enhancements in SGK1, ICAM-1, and CTGF expressions induced by 1% sodium chloride and aldosterone in vivo. In conclusion, our findings suggest that aldosterone stimulates ICAM-1 and CTGF transcription via activation of SGK1 and NF-κB, which may be involved in the progression of aldosterone-induced mesangial fibrosis and inflammation. MR antagonists may serve as useful therapeutic targets for the treatment of glomerular inflammatory disease.

  14. Transcription in archaea

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  15. Intergenic transcriptional interference is blocked by RNA polymerase III transcription factor TFIIIB in Saccharomyces cerevisiae.

    PubMed

    Korde, Asawari; Rosselot, Jessica M; Donze, David

    2014-02-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such "extratranscriptional" activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467-ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins.

  16. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery.

    PubMed

    Shi, Yonghong; Dierckx, Anke; Wanrooij, Paulina H; Wanrooij, Sjoerd; Larsson, Nils-Göran; Wilhelmsson, L Marcus; Falkenberg, Maria; Gustafsson, Claes M

    2012-10-01

    Transcription factor A (TFAM) functions as a DNA packaging factor in mammalian mitochondria. TFAM also binds sequence-specifically to sites immediately upstream of mitochondrial promoters, but there are conflicting data regarding its role as a core component of the mitochondrial transcription machinery. We here demonstrate that TFAM is required for transcription in mitochondrial extracts as well as in a reconstituted in vitro transcription system. The absolute requirement of TFAM can be relaxed by conditions that allow DNA breathing, i.e., low salt concentrations or negatively supercoiled DNA templates. The situation is thus very similar to that described in nuclear RNA polymerase II-dependent transcription, in which the free energy of supercoiling can circumvent the need for a subset of basal transcription factors at specific promoters. In agreement with these observations, we demonstrate that TFAM has the capacity to induce negative supercoils in DNA, and, using the recently developed nucleobase analog FRET-pair tC(O)-tC(nitro), we find that TFAM distorts significantly the DNA structure. Our findings differ from recent observations reporting that TFAM is not a core component of the mitochondrial transcription machinery. Instead, our findings support a model in which TFAM is absolutely required to recruit the transcription machinery during initiation of transcription. PMID:23012404

  17. Regulation of Transcription by Long Noncoding RNAs

    PubMed Central

    Bonasio, Roberto; Shiekhattar, Ramin

    2014-01-01

    Over the past decade there has been a greater understanding of genomic complexity in eukaryotes ushered in by the immense technological advances in high-throughput sequencing of DNA and its corresponding RNA transcripts. This has resulted in the realization that beyond protein-coding genes, there are a large number of transcripts that do not encode for proteins and, therefore, may perform their function through RNA sequences and/or through secondary and tertiary structural determinants. This review is focused on the latest findings on a class of noncoding RNAs that are relatively large (>200 nucleotides), display nuclear localization, and use different strategies to regulate transcription. These are exciting times for discovering the biological scope and the mechanism of action for these RNA molecules, which have roles in dosage compensation, imprinting, enhancer function, and transcriptional regulation, with a great impact on development and disease. PMID:25251851

  18. Transcriptional Mechanisms Regulating Ca2+ Homeostasis

    PubMed Central

    Ritchie, Michael F.; Zhou, Yandong; Soboloff, Jonathan

    2011-01-01

    Ca2+ is a dynamic cellular secondary messenger which mediates a vast array of cellular responses. Control over these processes is achieved via an extensive combination of pumps and channels which regulate the concentration of Ca2+ within not only the cytosol but also all intracellular compartments. Precisely how these pumps and channels are regulated is only partially understood, however, recent investigations have identified members of the Early Growth Response (EGR) family of zinc finger transcription factors as critical players in this process. The roles of several other transcription factors in control of Ca2+ homeostasis have also been demonstrated, including Wilms Tumor Suppressor 1 (WT1), Nuclear Factor of Activated T cells (NFAT) and c-myc. In this review, we will discuss not only how these transcription factors regulate the expression of the major proteins involved in control of Ca2+ homeostasis, but also how this transcriptional remodeling of Ca2+ homeostasis affects Ca2+ dynamics and cellular responses. PMID:21074851

  19. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy.

  20. Transcriptional regulation by CHIP/LDB complexes.

    PubMed

    Bronstein, Revital; Levkovitz, Liron; Yosef, Nir; Yanku, Michaela; Ruppin, Eytan; Sharan, Roded; Westphal, Heiner; Oliver, Brian; Segal, Daniel

    2010-08-12

    It is increasingly clear that transcription factors play versatile roles in turning genes "on" or "off" depending on cellular context via the various transcription complexes they form. This poses a major challenge in unraveling combinatorial transcription complex codes. Here we use the powerful genetics of Drosophila combined with microarray and bioinformatics analyses to tackle this challenge. The nuclear adaptor CHIP/LDB is a major developmental regulator capable of forming tissue-specific transcription complexes with various types of transcription factors and cofactors, making it a valuable model to study the intricacies of gene regulation. To date only few CHIP/LDB complexes target genes have been identified, and possible tissue-dependent crosstalk between these complexes has not been rigorously explored. SSDP proteins protect CHIP/LDB complexes from proteasome dependent degradation and are rate-limiting cofactors for these complexes. By using mutations in SSDP, we identified 189 down-stream targets of CHIP/LDB and show that these genes are enriched for the binding sites of APTEROUS (AP) and PANNIER (PNR), two well studied transcription factors associated with CHIP/LDB complexes. We performed extensive genetic screens and identified target genes that genetically interact with components of CHIP/LDB complexes in directing the development of the wings (28 genes) and thoracic bristles (23 genes). Moreover, by in vivo RNAi silencing we uncovered novel roles for two of the target genes, xbp1 and Gs-alpha, in early development of these structures. Taken together, our results suggest that loss of SSDP disrupts the normal balance between the CHIP-AP and the CHIP-PNR transcription complexes, resulting in down-regulation of CHIP-AP target genes and the concomitant up-regulation of CHIP-PNR target genes. Understanding the combinatorial nature of transcription complexes as presented here is crucial to the study of transcription regulation of gene batteries required for

  1. A Nonnatural Transcriptional Coactivator

    NASA Astrophysics Data System (ADS)

    Nyanguile, Origene; Uesugi, Motonari; Austin, David J.; Verdine, Gregory L.

    1997-12-01

    In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.

  2. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts

    PubMed Central

    Turowski, Tomasz W.; Leśniewska, Ewa; Delan-Forino, Clementine; Sayou, Camille; Boguta, Magdalena; Tollervey, David

    2016-01-01

    RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5′ peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential “housekeeping” roles. Many tRNA genes were found to generate long, 3′-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3′-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5′-exonuclease Rat1. PMID:27206856

  3. Analyzing phosphorylation-dependent regulation of subcellular localization and transcriptional activity of transcriptional coactivator NT-PGC-1α.

    PubMed

    Chang, Ji Suk; Gettys, Thomas W

    2013-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a nuclear transcriptional coactivator that regulates the genes involved in energy metabolism. Recent evidence has been provided that alternative splicing of PPARGC1A gene produces a functional but predominantly cytosolic isoform of PGC-1α (NT-PGC-1α). We have demonstrated that transcriptional coactivation capacity of NT-PGC-1α is directly correlated with its nuclear localization in a PKA phosphorylation-dependent manner. In this chapter, we describe quantitative imaging analysis methods that are developed to measure the relative fluorescence intensity of the protein of interest in the nucleus and cytoplasm in a single cell and the frequency distribution of nuclear/cytoplasmic intensity ratios in the population of cells, respectively. This chapter also describes transient cotransfection and dual-luciferase reporter gene assay that examine the ability of coactivators to activate the transcriptional activity of transcription factors.

  4. 10 CFR 110.112 - Reporter and transcript for an oral hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Reporter and transcript for an oral hearing. 110.112 Section 110.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT....gov, and/or at the NRC Public Document Room. (c) Corrections of the official transcript may be...

  5. Nascent RNA sequencing reveals distinct features in plant transcription

    PubMed Central

    Hetzel, Jonathan; Duttke, Sascha H.; Benner, Christopher; Chory, Joanne

    2016-01-01

    Transcriptional regulation of gene expression is a major mechanism used by plants to confer phenotypic plasticity, and yet compared with other eukaryotes or bacteria, little is known about the design principles. We generated an extensive catalog of nascent and steady-state transcripts in Arabidopsis thaliana seedlings using global nuclear run-on sequencing (GRO-seq), 5′GRO-seq, and RNA-seq and reanalyzed published maize data to capture characteristics of plant transcription. De novo annotation of nascent transcripts accurately mapped start sites and unstable transcripts. Examining the promoters of coding and noncoding transcripts identified comparable chromatin signatures, a conserved “TGT” core promoter motif and unreported transcription factor-binding sites. Mapping of engaged RNA polymerases showed a lack of enhancer RNAs, promoter-proximal pausing, and divergent transcription in Arabidopsis seedlings and maize, which are commonly present in yeast and humans. In contrast, Arabidopsis and maize genes accumulate RNA polymerases in proximity of the polyadenylation site, a trend that coincided with longer genes and CpG hypomethylation. Lack of promoter-proximal pausing and a higher correlation of nascent and steady-state transcripts indicate Arabidopsis may regulate transcription predominantly at the level of initiation. Our findings provide insight into plant transcription and eukaryotic gene expression as a whole. PMID:27729530

  6. Coupling pre-mRNA processing to transcription on the RNA factory assembly line

    PubMed Central

    Lee, Kuo-Ming; Tarn, Woan-Yuh

    2013-01-01

    It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression. PMID:23392244

  7. Characterization of transcriptional regulatory domains of ankyrin repeat cofactor-1

    SciTech Connect

    Zhang, Aihua; Li, Chia-Wei; Chen, J. Don . E-mail: chenjd@umdnj.edu

    2007-07-13

    The ankyrin repeats cofactor-1 (ANCO-1) was recently identified as a p160 coactivator-interacting protein that may inhibit transcriptional activity of nuclear receptors. Here, we have characterized the transcriptional regulatory domains of ANCO-1. Two intrinsic repression domains (RD) were identified: an N-terminal RD1 at residues 318-611 and a C-terminal RD2 at 2369-2663. ANCO-1 also contains an activation domain (AD) capable of stimulating transcription in both mammalian and yeast cells. The minimal AD was delimited to a 70-amino acid region at residues 2076-2145. Overall, full-length ANCO-1 exhibited transcriptional repressor activity, suggesting that RD domains may suppress the AD activity. We further demonstrated that ANCO-1 silencing by siRNA enhanced progesterone receptor-mediated transcription. Together, these results indicate that the transcriptional potential of ANCO-1 may be modulated by a combination of repression and activation signals.

  8. Nuclear RNA Isolation and Sequencing.

    PubMed

    Dhaliwal, Navroop K; Mitchell, Jennifer A

    2016-01-01

    Most transcriptome studies involve sequencing and quantification of steady-state mRNA by isolating and sequencing poly (A) RNA. Although this type of sequencing data is informative to determine steady-state mRNA levels it does not provide information on transcriptional output and thus may not always reflect changes in transcriptional regulation of gene expression. Furthermore, sequencing poly (A) RNA may miss transcribed regions of the genome not usually modified by polyadenylation which includes many long noncoding RNAs. Here, we describe nuclear-RNA sequencing (nucRNA-seq) which investigates the transcriptional landscape through sequencing and quantification of nuclear RNAs which are both unspliced and spliced transcripts for protein-coding genes and nuclear-retained long noncoding RNAs.

  9. ASTP Onboard Voice Transcription

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transcription is presented of the Apollo-Soyuz Test Project voice communications as recorded on the command module data storage equipment. Data from this recorder are telemetered (dumped) to Space Tracking and Data Network sites for retransmission to the Johnson Space Center. The transcript is divided into three columns -- time, speaker, and text. The Greenwich mean time column consists of three two-digit numbers representing hours, minutes, and seconds (e.g., 22 34 14) for the Julian dates shown at the top of the page on which a new day begins. The speaker column indicates the source of a transmission; the text column contains the verbatim transcript of the communications.

  10. A position-dependent transcription-activating domain in TFIIIA.

    PubMed Central

    Mao, X; Darby, M K

    1993-01-01

    Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain. Images PMID:8246967

  11. LOX-1 transcription.

    PubMed

    Hermonat, Paul L; Zhu, Hongqing; Cao, Maohua; Mehta, Jawahar L

    2011-10-01

    The importance of the lectin-like oxidized LDL receptor (LOX-1) gene in cardiovascular and other diseases is slowly being revealed. LOX-1 gene expression appears to be a "canary in a coal mine" for atherogenesis, being strongly up-regulated early on in a number of cell types when they are activated, and predicting the sites of future disease. From this early time point the LOX-1 protein often participates in the disease process itself. While gene/protein expression can be regulated on a multiplicity of levels, the most basic and important mode of regulation is usually transcriptional. There are very few studies on the transcriptional regulation of the human LOX-1 promoter; fewer still on definitive mapping of the transcription factors involved. It is known that a wide variety of stimuli up-regulate LOX-1, usually/probably on the transcriptional level. Angiotensin II (Ang II) is one important regulator of renin-angiotensin system and stimulator LOX-1. Ang II is known to up-regulate LOX-1 transcription through an NF-kB motif located at nt -2158. Oxidized low density lipoprotein (ox-LDL) is another important cardiovascular regulator, particularly of atherosclerotic disease, and a strong stimulator of LOX-1. Ox-LDL is known to up-regulate LOX-1 transcription through an Oct-1 motif located at nt -1556. The subsequent enhanced LOX-1 receptor numbers and their binding by ox-LDL ligand triggers a positive feedback loop, increasing further LOX-1 expression, with a presently unknown regulatory governor. The Oct-1 gene also has its own Oct-1-driven positive feedback loop, which likely also contributes to LOX-1 up-regulation. There is also data which suggests the involvement of the transcription factor AP-1 during stimulation with Phorbol 12-myristate acetate. While the importance of NF-κB as a transcriptional regulator of cardiovascular-relevant genes is well known, the importance of Oct-1 is not. Data suggests that Oct-1-mediated up-regulation of transcription is an early

  12. Oxytocin-stimulated NFAT transcriptional activation in human myometrial cells.

    PubMed

    Pont, Jason N A; McArdle, Craig A; López Bernal, Andrés

    2012-10-01

    Oxytocin (OXT) is a peptide hormone that binds the OXT receptor on myometrial cells, initiating an intracellular signaling cascade, resulting in accumulation of intracellular calcium and smooth muscle contraction. In other systems, an elevation of intracellular Ca(2+) stimulates nuclear translocation of the transcription factor, nuclear factor of activated T cells (NFAT), which is transcriptionally active in arterial and ileal smooth muscle. Here we have investigated the role of NFAT in the mechanism of action of OXT. Human myometrial cells expressed all five NFAT isoforms (NFATC1-C4 and -5). Myometrial cells were transduced with a recombinant adenovirus expressing a NFATC1-EFP reporter, and a semi-automated imaging system was used to monitor effects of OXT on reporter localization in live cells. OXT induced a concentration-dependent nuclear translocation of NFATC1-EFP in a reversible manner, which was inhibited by OXT antagonists and calcineurin inhibitors. Pulsatile stimulation with OXT caused intermittent, pulse-frequency-dependent, nuclear translocation of NFATC1-EFP, which was more efficient than sustained stimulation. OXT induced nuclear translocation of endogenous NFAT that was transcriptionally active, because OXT stimulated activity of a NFAT-response element-luciferase reporter and induced calcineurin-NFAT dependent expression of RGS2, RCAN1, and PTGS2 (COX2) mRNA. Furthermore, OXT-dependent transcription was dependent on protein neosynthesis; cycloheximide abolished RGS2 transcription but augmented RCAN1 and COX2 transcriptional readouts. This study identifies a novel signaling mechanism within the myometrium, whereby calcineurin-NFAT signaling mediates OXT-induced transcriptional activity. Furthermore, we show NFATC1-EFP is responsive to pulses of OXT, a mechanism by which myometrial cells could decode OXT pulse frequency.

  13. Pleiotropic effects of gold(I) mixed-ligand complexes of 9-deazahypoxanthine on transcriptional activity of receptors for steroid hormones, nuclear receptors and xenoreceptors in human hepatocytes and cell lines.

    PubMed

    Kubešová, Kateřina; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-10-01

    Development of metal-based compounds is an important research avenue in anti-cancer and anti-inflammatory drug discovery. Here we examined the effects of three gold (I) mixed-ligand complexes with the general formula [Au(Ln)(PPh3)] (1, 2, 3) involving triphenylphosphine (PPh3) and a deprotonated form of O-substituted derivatives of 9-deazahypoxanthine (Ln) on the transcriptional activity of aryl hydrocarbon receptor (AhR), androgen receptor (AR), glucocorticoid receptor (GR), thyroid receptor (TR), pregnane X receptor (PXR) and vitamin D receptor (VDR), employing gene reporter assays. In addition, we measured mRNA (RT-PCR) and protein (western blot) expression of target genes for those receptors, including drug-metabolizing P450s, in primary human hepatocytes and cancer cell lines LS180 and HepG2. The tested compounds displayed anti-glucocorticoid effects, as revealed by inhibition of dexamethasone-inducible transcriptional activity of GR and down-regulation of tyrosine aminotransferase. All the compounds slightly and dose-dependently activated PXR and AhR, and moderately induced CYP3A4 and CYP1A1/2 genes in human hepatocytes and LS180 cells. The complexes antagonized basal and ligand-activated AR and VDR, indicating inverse agonist behaviour. Both basal and thyroid hormone-inducible transcriptional activity of TR was dose-dependently increased by all tested compounds. In contrast, the expression of SPOT14 mRNA was decreased by tested compounds in human hepatocytes and HepG2 cells. In conclusion, if intended for human pharmacotherapy, the potential of the complexes 1-3 to influence studied receptors should be taken in account. PMID:27318977

  14. Nuclear Medicine

    MedlinePlus

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  15. In vivo delivery of transcription factors with multifunctional oligonucleotides

    NASA Astrophysics Data System (ADS)

    Lee, Kunwoo; Rafi, Mohammad; Wang, Xiaojian; Aran, Kiana; Feng, Xuli; Lo Sterzo, Carlo; Tang, Richard; Lingampalli, Nithya; Kim, Hyun Jin; Murthy, Niren

    2015-07-01

    Therapeutics based on transcription factors have the potential to revolutionize medicine but have had limited clinical success as a consequence of delivery problems. The delivery of transcription factors is challenging because it requires the development of a delivery vehicle that can complex transcription factors, target cells and stimulate endosomal disruption, with minimal toxicity. Here, we present a multifunctional oligonucleotide, termed DARTs (DNA assembled recombinant transcription factors), which can deliver transcription factors with high efficiency in vivo. DARTs are composed of an oligonucleotide that contains a transcription-factor-binding sequence and hydrophobic membrane-disruptive chains that are masked by acid-cleavable galactose residues. DARTs have a unique molecular architecture, which allows them to bind transcription factors, trigger endocytosis in hepatocytes, and stimulate endosomal disruption. The DARTs have enhanced uptake in hepatocytes as a result of their galactose residues and can disrupt endosomes efficiently with minimal toxicity, because unmasking of their hydrophobic domains selectively occurs in the acidic environment of the endosome. We show that DARTs can deliver the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) to the liver, catalyse the transcription of Nrf2 downstream genes, and rescue mice from acetaminophen-induced liver injury.

  16. Evolution of a transcriptional regulator from a transmembrane nucleoporin

    PubMed Central

    Franks, Tobias M.; Benner, Chris; Narvaiza, Iñigo; Marchetto, Maria C.N.; Young, Janet M.; Malik, Harmit S.; Gage, Fred H.; Hetzer, Martin W.

    2016-01-01

    Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo–cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for “soluble Pom121”) that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components. PMID:27198230

  17. Evolution of a transcriptional regulator from a transmembrane nucleoporin.

    PubMed

    Franks, Tobias M; Benner, Chris; Narvaiza, Iñigo; Marchetto, Maria C N; Young, Janet M; Malik, Harmit S; Gage, Fred H; Hetzer, Martin W

    2016-05-15

    Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo-cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for "soluble Pom121") that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components. PMID:27198230

  18. The Role of Notch Receptors in Transcriptional Regulation

    PubMed Central

    WANG, HONGFANG; ZANG, CHONGZHI; LIU, X. SHIRLEY; ASTER, JON C.

    2015-01-01

    Notch signaling has pleiotropic context-specific functions that have essential roles in many processes, including embryonic development and maintenance and homeostasis of adult tissues. Aberrant Notch signaling (both hyper- and hypoactive) is implicated in a number of human developmental disorders and many cancers. Notch receptor signaling is mediated by tightly regulated proteolytic cleavages that lead to the assembly of a nuclear Notch transcription complex, which drives the expression of downstream target genes and thereby executes Notch’s functions. Thus, understanding regulation of gene expression by Notch is central to deciphering how Notch carries out its many activities. Here, we summarize the recent findings pertaining to the complex interplay between the Notch transcriptional complex and interacting factors involved in transcriptional regulation, including co-activators, cooperating transcription factors, and chromatin regulators, and discuss emerging data pertaining to the role of Notch-regulated noncoding RNAs in transcription. PMID:25418913

  19. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  20. Cellular or viral protein binding to a cytomegalovirus promoter transcription initiation site: effects on transcription.

    PubMed Central

    Macias, M P; Huang, L; Lashmit, P E; Stinski, M F

    1996-01-01

    We have previously shown that the IE2 protein of human cytomegalovirus (CMV) represses its own synthesis by binding to the major immediate-early promoter (M. P. Macias and M. F. Stinski, Proc. Natl. Acad. Sci. USA 90:707-711, 1993). The binding of a viral protein (IE2) and a cellular protein in the region of the transcription start site was investigated by site-specific mutational analysis and electrophoretic mobility shift assay. The viral protein and the cellular protein require different but adjacent core DNA sequence elements for binding. In situ chemical footprinting analysis of DNA-protein interactions with purified CMV IE2 protein or HeLa cell nuclear extracts demonstrated binding sites that overlap the transcription start site. The IE2 protein footprint was between bp -15 and +2, relative to the transcription start site, and the cellular protein was between bp -16 and +7. The ability of the unknown human cellular protein of approximately 150 kDa to bind the CMV major immediate-early promoter correlates with an increase in the level of transcription efficiency. Mutations in the core DNA sequence element for cellular protein binding significantly reduced the level of in vitro transcription efficiency. Mutations upstream and downstream of the core sequence moderately reduced the transcription efficiency level. Negative autoregulation of the CMV promoter by the viral IE2 protein may involve both binding to the DNA template and interference with the function of a cellular protein that binds to the transcription start site and enhances transcription efficiency. PMID:8648697

  1. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  2. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  3. Mediator and TREX-2: Emerging links between transcription initiation and mRNA export

    PubMed Central

    Schubert, Tobias; Köhler, Alwin

    2016-01-01

    ABSTRACT Nuclear pore proteins interact dynamically with chromatin to regulate gene activities. A key question is how nucleoporin interactions mechanistically alter a gene's intranuclear position and transcriptional output. We reported recently on a direct interaction between the nuclear pore-associated TREX-2 complex and promoter-bound Mediator. This highlights how nuclear-pore associated adaptors gain regulatory access to the core transcription machinery. In this Extra View, we discuss an additional implication that arises from our work and the recent literature: how promoter elements may regulate mRNA metabolism beyond transcription initiation. PMID:27028218

  4. p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB*

    PubMed Central

    Jain, Ashish; Rusten, Tor Erik; Katheder, Nadja; Elvenes, Julianne; Bruun, Jack-Ansgar; Sjøttem, Eva; Lamark, Trond; Johansen, Terje

    2015-01-01

    The selective autophagy receptor p62/sequestosome 1 (SQSTM1) interacts directly with LC3 and is involved in oxidative stress signaling in two ways in mammals. First, p62 is transcriptionally induced upon oxidative stress by the NF-E2-related factor 2 (NRF2) by direct binding to an antioxidant response element in the p62 promoter. Second, p62 accumulation, occurring when autophagy is impaired, leads to increased p62 binding to the NRF2 inhibitor KEAP1, resulting in reduced proteasomal turnover of NRF2. This gives chronic oxidative stress signaling through a feed forward loop. Here, we show that the Drosophila p62/SQSTM1 orthologue, Ref(2)P, interacts directly with DmAtg8a via an LC3-interacting region motif, supporting a role for Ref(2)P in selective autophagy. The ref(2)P promoter also contains a functional antioxidant response element that is directly bound by the NRF2 orthologue, CncC, which can induce ref(2)P expression along with the oxidative stress-associated gene gstD1. However, distinct from the situation in mammals, Ref(2)P does not interact directly with DmKeap1 via a KEAP1-interacting region motif; nor does ectopically expressed Ref(2)P or autophagy deficiency activate the oxidative stress response. Instead, DmAtg8a interacts directly with DmKeap1, and DmKeap1 is removed upon programmed autophagy in Drosophila gut cells. Strikingly, CncC induced increased Atg8a levels and autophagy independent of TFEB/MitF in fat body and larval gut tissues. Thus, these results extend the intimate relationship between oxidative stress-sensing NRF2/CncC transcription factors and autophagy and suggest that NRF2/CncC may regulate autophagic activity in other organisms too. PMID:25931115

  5. Transcript CONTU Meeting #10.

    ERIC Educational Resources Information Center

    National Commission on New Technological Uses of Copyrighted Works, Washington, DC.

    Testimony on the copyrightability of computer software was heard at the 10th Commission meeting held at the New York Public Library in November 1976. This transcript of the meeting also includes reports of the Commission subcommittees on photocopying, software, networks, and data bases. (Author/AP)

  6. Automatic Music Transcription

    NASA Astrophysics Data System (ADS)

    Klapuri, Anssi; Virtanen, Tuomas

    Written musical notation describes music in a symbolic form that is suitable for performing a piece using the available musical instruments. Traditionally, musical notation indicates the pitch, target instrument, timing, and duration of each sound to be played. The aim of music transcription either by humans or by a machine is to infer these musical parameters, given only the acoustic recording of a performance.

  7. The RNA Export Factor, Nxt1, Is Required for Tissue Specific Transcriptional Regulation

    PubMed Central

    Jiang, Jianqiao; White-Cooper, Helen

    2013-01-01

    The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex. PMID:23754955

  8. Transcriptional control of cardiac fibroblast plasticity.

    PubMed

    Lighthouse, Janet K; Small, Eric M

    2016-02-01

    Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling". PMID:26721596

  9. Ultraviolet B Regulation of Transcription Factor Families

    PubMed Central

    Cooper, S.J.; Bowden, G.T.

    2008-01-01

    Prolonged and repeated exposure of the skin to ultraviolet light (UV) leads not only to aging of the skin but also increases the incidence of non-melanoma skin cancer (NMSC). Damage of cells induced by ultraviolet B (UVB) light both at the DNA level and molecular level initiates the activation of transcription factor pathways, which in turn regulate the expression of a number of genes termed the “UV response genes”. Two such transcription factor families that are activated in this way are those of the nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) families. These two transcription factor families have been identified to be involved in the processes of cell proliferation, cell differentiation and cell survival and therefore play important roles in tumorigenesis. The study of these two transcription factor pathways and the cross-talk between them in response to UVB exposure may help with the development of new chemopreventive strategies for the prevention of UVB-induced skin carcinogenesis. PMID:17979627

  10. Polyphenol Compound as a Transcription Factor Inhibitor.

    PubMed

    Park, Seyeon

    2015-11-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  11. Polyphenol Compound as a Transcription Factor Inhibitor

    PubMed Central

    Park, Seyeon

    2015-01-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  12. HIV-1 transcription and latency: an update

    PubMed Central

    2013-01-01

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs. PMID:23803414

  13. Transcription Dynamics in Living Cells.

    PubMed

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  14. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    PubMed

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces.

  15. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

    SciTech Connect

    Lim, Kihong; Chang, Hyo-Ihl

    2009-03-13

    The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.

  16. DNA replication and transcription in mammalian mitochondria.

    PubMed

    Falkenberg, Maria; Larsson, Nils-Göran; Gustafsson, Claes M

    2007-01-01

    The mitochondrion was originally a free-living prokaryotic organism, which explains the presence of a compact mammalian mitochondrial DNA (mtDNA) in contemporary mammalian cells. The genome encodes for key subunits of the electron transport chain and RNA components needed for mitochondrial translation. Nuclear genes encode the enzyme systems responsible for mtDNA replication and transcription. Several of the key components of these systems are related to proteins replicating and transcribing DNA in bacteriophages. This observation has led to the proposition that some genes required for DNA replication and transcription were acquired together from a phage early in the evolution of the eukaryotic cell, already at the time of the mitochondrial endosymbiosis. Recent years have seen a rapid development in our molecular understanding of these machineries, but many aspects still remain unknown.

  17. Inhibition of transcription by platinum antitumor compounds

    PubMed Central

    Todd, Ryan C.; Lippard, Stephen J.

    2009-01-01

    Cisplatin, carboplatin, and oxaliplatin are three FDA-approved members of the platinum anticancer drug family. These compounds induce apoptosis in tumor cells by binding to nuclear DNA, forming a variety of structural adducts and triggering cellular responses, one of which is the inhibition of transcription. In this report we present (i) a detailed review of the structural investigations of various Pt-DNA adducts and the effects of these lesions on global DNA geometry; (ii) research detailing inhibition of cellular transcription by Pt-DNA adducts; and (iii) a mechanistic analysis of how DNA structural distortions induced by platinum damage may inhibit RNA synthesis in vivo. A thorough understanding of the molecular mechanism of action of platinum antitumor agents will aid in the development of new compounds in the family. PMID:20046924

  18. Methylation of an intragenic alternative promoter regulates transcription of GARP.

    PubMed

    Haupt, Sonja; Söntgerath, Viktoria Sophie Apollonia; Leipe, Jan; Schulze-Koops, Hendrik; Skapenko, Alla

    2016-02-01

    Alternative promoter usage has been proposed as a mechanism regulating transcriptional and translational diversity in highly elaborated systems like the immune system in humans. Here, we report that transcription of human glycoprotein A repetitions predominant (GARP) in regulatory CD4 T cells (Tregs) is tightly regulated by two alternative promoters. An intragenic promoter contains several CpGs and acts as a weak promoter that is demethylated and initiates transcription Treg-specifically. The strong up-stream promoter containing a CpG-island is, in contrast, fully demethylated throughout tissues. Transcriptional activity of the strong promoter was surprisingly down-regulated upon demethylation of the weak promoter. This demethylation-induced transcriptional attenuation regulated the magnitude of GARP expression and correlated with disease activity in rheumatoid arthritis. Treg-specific GARP transcription was initiated by synergistic interaction of forkhead box protein 3 (Foxp3) with nuclear factor of activated T cells (NFAT) and was underpinned by permissive chromatin remodeling caused by release of the H3K4 demethylase, PLU-1. Our findings describe a novel function of alternative promoters in regulating the extent of transcription. Moreover, since GARP functions as a transporter of transforming growth factor β (TGFβ), a cytokine with broad pleiotropic traits, GARP transcriptional attenuation by alternative promoters might provide a mechanism regulating peripheral TGFβ to avoid unwanted harmful effects.

  19. Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family.

    PubMed

    Sumegi, Janos; Streblow, Renae; Frayer, Robert W; Dal Cin, Paola; Rosenberg, Andrew; Meloni-Ehrig, Aurelia; Bridge, Julia A

    2010-03-01

    The fusion oncoproteins PAX3-FOXO1 [t(2;13)(q35;q14)] and PAX7-FOXO1 [t(1;13)(p36;q14)] typify alveolar rhabdomyosarcoma (ARMS); however, 20-30% of cases lack these specific translocations. In this study, cytogenetic and/or molecular characterization to include FISH, reverse transcription polymerase chain reaction (RT-PCR), and sequencing analyses of five rhabdomyosarcomas [four ARMS and one embryonal rhabdomyosarcoma (ERMS)] with novel, recurrent t(2;2)(p23;q35) or t(2;8)(q35;q13) revealed that these noncanonical translocations fuse PAX3 to NCOA1 or NCOA2, respectively. The PAX3-NCOA1 and PAX3-NCOA2 transcripts encode chimeric proteins composed of the paired-box and homeodomain DNA-binding domains of PAX3, and the CID domain, the Q-rich region, and the activation domain 2 (AD2) domain of NCOA1 or NCOA2. To investigate the biological function of these recurrent variant translocations, the coding regions of PAX3-NCOA1 and PAX3-NCOA2 cDNA constructs were introduced into expression vectors with tetracycline-regulated expression. Both fusion proteins showed transforming activity in the soft-agar assay. Deletion of the AD2 portion of the PAX3-NCOA fusion proteins reduced the transforming activity of each chimeric protein. Similarly, but with greater impact, CID domain deletion fully abrogated the transforming activity of the chimeric protein. These studies (1) expand our knowledge of PAX3 variant translocations in RMS with identification of a novel PAX3-NCOA2 fusion, (2) show that both PAX3-NCOA1 and PAX3-NCOA2 represent recurrent RMS rearrangements, (3) confirm the transforming activity of both translocation events and demonstrate the essentiality of intact AD2 and CID domains for optimal transforming activity, and (4) provide alternative approaches (FISH and RT-PCR) for detecting PAX-NCOA fusions in nondividing cells of RMS. The latter could potentially be used as aids in diagnostically challenging cases.

  20. Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions

    PubMed Central

    Stojic, Lovorka; Niemczyk, Malwina; Orjalo, Arturo; Ito, Yoko; Ruijter, Anna Elisabeth Maria; Uribe-Lewis, Santiago; Joseph, Nimesh; Weston, Stephen; Menon, Suraj; Odom, Duncan T.; Rinn, John; Gergely, Fanni; Murrell, Adele

    2016-01-01

    Long noncoding RNAs (lncRNAs) regulate gene expression via their RNA product or through transcriptional interference, yet a strategy to differentiate these two processes is lacking. To address this, we used multiple small interfering RNAs (siRNAs) to silence GNG12-AS1, a nuclear lncRNA transcribed in an antisense orientation to the tumour-suppressor DIRAS3. Here we show that while most siRNAs silence GNG12-AS1 post-transcriptionally, siRNA complementary to exon 1 of GNG12-AS1 suppresses its transcription by recruiting Argonaute 2 and inhibiting RNA polymerase II binding. Transcriptional, but not post-transcriptional, silencing of GNG12-AS1 causes concomitant upregulation of DIRAS3, indicating a function in transcriptional interference. This change in DIRAS3 expression is sufficient to impair cell cycle progression. In addition, the reduction in GNG12-AS1 transcripts alters MET signalling and cell migration, but these are independent of DIRAS3. Thus, differential siRNA targeting of a lncRNA allows dissection of the functions related to the process and products of its transcription. PMID:26832224

  1. Transcription Dynamics in Plant Immunity

    PubMed Central

    Moore, John W.; Loake, Gary J.; Spoel, Steven H.

    2011-01-01

    Plant cells maintain sophisticated gene transcription programs to regulate their development, communication, and response to the environment. Environmental stress cues, such as pathogen encounter, lead to dramatic reprogramming of transcription to favor stress responses over normal cellular functions. Transcription reprogramming is conferred by the concerted action of myriad transcription (co)factors that function directly or indirectly to recruit or release RNA Polymerase II. To establish an effective defense response, cells require transcription (co)factors to deploy their activity rapidly, transiently, spatially, and hierarchically. Recent findings suggest that in plant immunity these requirements are met by posttranslational modifications that accurately regulate transcription (co)factor activity as well as by sequential pulse activation of specific gene transcription programs that provide feedback and feedforward properties to the defense gene network. Here, we integrate these recent findings from plant defense studies into the emerging field of transcription dynamics in eukaryotes. PMID:21841124

  2. Machine Transcription--Practically Speaking.

    ERIC Educational Resources Information Center

    Clippinger, Dorinda A.

    1984-01-01

    Draws transcription teaching principles from Gagne's theories about learning. Recommends 12-16 weeks of instruction, pre-transcription development of related skills, frequent feedback, and use of teaching materials that are arranged to take advantage of learning cycles. (SK)

  3. The Role of Nuclear Bodies in Gene Expression and Disease

    PubMed Central

    Morimoto, Marie; Boerkoel, Cornelius F.

    2013-01-01

    This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease. PMID:24040563

  4. Cell cycle-dependent regulation of RNA polymerase II basal transcription activity.

    PubMed Central

    Yonaha, M; Chibazakura, T; Kitajima, S; Yasukochi, Y

    1995-01-01

    Regulation of transcription by RNA polymerase II (pol II) in eukaryotic cells requires both basal and regulatory transcription factors. In this report we have investigated in vitro pol II basal transcription activity during the cell cycle by using nuclear extracts from synchronized HeLa cells. It is shown that pol II basal transcription activity is low in the S and G2 phases and high in early G1 phase and TFIID is the rate limiting component of pol II basal transcription activity during the cell cycle. Further analyses reveal that TFIID exists as a less active form in the S and G2 phases and nuclear extracts from S and G2 phase cells contain a heat-sensitive repressor(s) of TATA box binding protein (TBP). These results suggest that pol II basal transcription activity is regulated by a qualitative change in the TFIID complex, which could involve repression of TBP, during the cell cycle. Images PMID:7479063

  5. Improving Mode of Action Analysis Using Transcript Profiling in Nullizygous Mouse Models

    EPA Science Inventory

    A number of nuclear receptors (NR) mediate transcriptional, hepatocyte growth and carcinogenic effects in the rodent liver after chemical exposure. These receptors include the constitutive activated/androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator...

  6. A Novel Transcription Mechanism Activated by Ethanol

    PubMed Central

    Lin, Xinghua; Yang, Hong; Zhang, Hongfeng; Zhou, LiChun; Guo, ZhongMao

    2013-01-01

    Solute carrier family 7, member 11 (Slc7a11) is a plasma membrane cystine/glutamate exchanger that provides intracellular cystine to produce glutathione, a major cellular antioxidant. Oxidative and endoplasmic reticulum stresses up-regulate Slc7a11 expression by activation of nuclear factor erythroid 2-related factor 2 and transcription factor 4. This study examined the effect of ethanol on Slc7a11 expression and the underlying mechanism involved. Treatment of mouse hepatic stellate cells with ethanol significantly increased Slc7a11 mRNA and protein levels. Deletion of a 20-bp DNA sequence between −2044 to −2024 upstream of the transcription start site significantly increased basal activity and completely abolished the ethanol-induced activity of the Slc7a11 promoter. This deletion did not affect Slc7a11 promoter activity induced by oxidative or endoplasmic reticulum stress. DNA sequence analysis revealed a binding motif for octamer-binding transcription factor 1 (OCT-1) in the deleted fragment. Mutation of this OCT-1 binding motif resulted in a similar effect as the deletion experiment, i.e. it increased the basal promoter activity and abolished the response to ethanol. Ethanol exposure significantly inhibited OCT-1 binding to the Slc7a11 promoter region, although it did not alter OCT-1 mRNA and protein levels. OCT-1 reportedly functions as either a transcriptional enhancer or repressor, depending on the target genes. Results from this study suggest that OCT-1 functions as a repressor on the Slc7a11 promoter and that ethanol inhibits OCT-1 binding to the Slc7a11 promoter, thereby increasing Slc7a11 expression. Taken together, inhibition of the DNA binding activity of transcriptional repressor OCT-1 is a mechanism by which ethanol up-regulates Slc711 expression. PMID:23592778

  7. Epigenetic hereditary transcription profiles II, aging revisited

    PubMed Central

    Simons, Johannes WIM

    2007-01-01

    Background Previously, we have shown that deviations from the average transcription profile of a group of functionally related genes can be epigenetically transmitted to daughter cells, thereby implicating nuclear programming as the cause. As a first step in further characterizing this phenomenon it was necessary to determine to what extent such deviations occur in non-tumorigenic tissues derived from normal individuals. To this end, a microarray database derived from 90 human donors aged between 22 to 87 years was used to study deviations from the average transcription profile of the proteasome genes. Results Increase in donor age was found to correlate with a decrease in deviations from the general transcription profile with this decline being gender-specific. The age-related index declined at a faster rate for males although it started from a higher level. Additionally, transcription profiles from similar tissues were more alike than those from different tissues, indicating that deviations arise during differentiation. Conclusion These findings suggest that aging and differentiation are related to epigenetic changes that alter the transcription profile of proteasomal genes. Since alterations in the structure and function of the proteasome are unlikely, such changes appear to occur without concomitant change in gene function. These findings, if confirmed, may have a significant impact on our understanding of the aging process. Open peer review This article was reviewed by Nathan Bowen (nominated by I. King Jordan), Timothy E. Reddy (nominated by Charles DeLisi) and by Martijn Huynen. For the full reviews, please go to the Reviewers'comments section. PMID:18163906

  8. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains

    PubMed Central

    Guo, Xiaoxian; Li, Hongye; Gu, Zhenglong

    2016-01-01

    Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC) was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations. PMID:27077367

  9. Structural insights into transcription initiation by RNA polymerase II

    PubMed Central

    Grünberg, Sebastian; Hahn, Steven

    2013-01-01

    Transcriptional regulation is one of the most important steps in control of cell identity, growth, differentiation and development. Many signaling pathways controlling these processes ultimately target the core transcription machinery that, for protein coding genes, consists of RNA polymerase II (Pol II) and the general transcription factors (GTFs). New studies on the structure and mechanism of the core assembly and how it interfaces with promoter DNA and coactivator complexes have given tremendous insight into early steps in the initiation process, genome-wide binding, and mechanisms conserved for all nuclear and archaeal Pols. Here we review recent developments in dissecting the architecture of the Pol II core machinery with a focus on early and regulated steps in transcription initiation. PMID:24120742

  10. Transcription is regulated by NusA:NusG interaction

    PubMed Central

    Strauß, Martin; Vitiello, Christal; Schweimer, Kristian; Gottesman, Max; Rösch, Paul; Knauer, Stefan H.

    2016-01-01

    NusA and NusG are major regulators of bacterial transcription elongation, which act either in concert or antagonistically. Both bind to RNA polymerase (RNAP), regulating pausing as well as intrinsic and Rho-dependent termination. Here, we demonstrate by nuclear magnetic resonance spectroscopy that the Escherichia coli NusG amino-terminal domain forms a complex with the acidic repeat domain 2 (AR2) of NusA. The interaction surface of either transcription factor overlaps with the respective binding site for RNAP. We show that NusA-AR2 is able to remove NusG from RNAP. Our in vivo and in vitro results suggest that interaction between NusA and NusG could play various regulatory roles during transcription, including recruitment of NusG to RNAP, resynchronization of transcription:translation coupling, and modulation of termination efficiency. PMID:27174929

  11. 7SK-BAF axis controls pervasive transcription at enhancers

    PubMed Central

    Flynn, Ryan A.; Do, Brian T.; Rubin, Adam J.; Calo, Eliezer; Lee, Byron; Kuchelmeister, Hannes; Rale, Michael; Chu, Ci; Kool, Eric T.; Wysocka, Joanna; Khavari, Paul A.

    2016-01-01

    RNA functions at enhancers remain mysterious. Here we show that the 7SK small nuclear RNA (snRNA) inhibits enhancer transcription by modulating nucleosome position. 7SK occupies enhancers and super enhancers genome-wide in mouse and human cells, and 7SK is required to limit eRNA initiation and synthesis in a manner distinct from promoter pausing. Clustered elements at super enhancers uniquely require 7SK to prevent convergent transcription and DNA damage signaling. 7SK physically interacts with the BAF chromatin remodeling complex, recruit BAF to enhancers, and inhibits enhancer transcription by modulating chromatin structure. In turn, 7SK occupancy at enhancers coincides with Brd4 and is exquisitely sensitive to the bromodomain inhibitor JQ1. Thus, 7SK employs distinct mechanisms to counteract diverse consequences of pervasive transcription that distinguish super enhancers, enhancers, and promoters. PMID:26878240

  12. 7SK-BAF axis controls pervasive transcription at enhancers.

    PubMed

    Flynn, Ryan A; Do, Brian T; Rubin, Adam J; Calo, Eliezer; Lee, Byron; Kuchelmeister, Hannes; Rale, Michael; Chu, Ci; Kool, Eric T; Wysocka, Joanna; Khavari, Paul A; Chang, Howard Y

    2016-03-01

    RNA functions at enhancers remain mysterious. Here we show that the 7SK small nuclear RNA (snRNA) inhibits enhancer transcription by modulating nucleosome position. 7SK occupies enhancers and super enhancers genome wide in mouse and human cells, and it is required to limit enhancer-RNA initiation and synthesis in a manner distinct from promoter pausing. Clustered elements at super enhancers uniquely require 7SK to prevent convergent transcription and DNA-damage signaling. 7SK physically interacts with the BAF chromatin-remodeling complex, recruits BAF to enhancers and inhibits enhancer transcription by modulating chromatin structure. In turn, 7SK occupancy at enhancers coincides with that of Brd4 and is exquisitely sensitive to the bromodomain inhibitor JQ1. Thus, 7SK uses distinct mechanisms to counteract the diverse consequences of pervasive transcription that distinguish super enhancers, enhancers and promoters. PMID:26878240

  13. Heterogeneity of Calcium Channel/cAMP-Dependent Transcriptional Activation.

    PubMed

    Kobrinsky, Evgeny

    2015-01-01

    The major function of the voltage-gated calcium channels is to provide the Ca(2+) flux into the cell. L-type voltage-gated calcium channels (Cav1) serve as voltage sensors that couple membrane depolarization to many intracellular processes. Electrical activity in excitable cells affects gene expression through signaling pathways involved in the excitation-transcription (E-T) coupling. E-T coupling starts with activation of the Cav1 channel and results in initiation of the cAMP-response element binding protein (CREB)-dependent transcription. In this review we discuss the new quantitative approaches to measuring E-T signaling events. We describe the use of wavelet transform to detect heterogeneity of transcriptional activation in nuclei. Furthermore, we discuss the properties of discovered microdomains of nuclear signaling associated with the E-T coupling and the basis of the frequency-dependent transcriptional regulation.

  14. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses.

  15. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. PMID:25219311

  16. Nuclear rights - nuclear wrongs

    SciTech Connect

    Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.

    1986-01-01

    This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.

  17. Nur transcription factors in stress and addiction

    PubMed Central

    Campos-Melo, Danae; Galleguillos, Danny; Sánchez, Natalia; Gysling, Katia; Andrés, María E.

    2013-01-01

    The Nur transcription factors Nur77 (NGFI-B, NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3) are a sub-family of orphan members of the nuclear receptor superfamily. These transcription factors are products of immediate early genes, whose expression is rapidly and transiently induced in the central nervous system by several types of stimuli. Nur factors are present throughout the hypothalamus-pituitary-adrenal (HPA) axis where are prominently induced in response to stress. Drugs of abuse and stress also induce the expression of Nur factors in nuclei of the motivation/reward circuit of the brain, indicating their participation in the process of drug addiction and in non-hypothalamic responses to stress. Repeated use of addictive drugs and chronic stress induce long-lasting dysregulation of the brain motivation/reward circuit due to reprogramming of gene expression and enduring alterations in neuronal function. Here, we review the data supporting that Nur transcription factors are key players in the molecular basis of the dysregulation of neuronal circuits involved in chronic stress and addiction. PMID:24348325

  18. A supercritical CO₂ extract from seabuckthorn leaves inhibits pro-inflammatory mediators via inhibition of mitogen activated protein kinase p38 and transcription factor nuclear factor-κB.

    PubMed

    Jayashankar, Bindhya; Mishra, K P; Kumar, M S Y; Udayasankar, K; Misra, K; Ganju, L; Singh, S B

    2012-08-01

    In the present study, we have demonstrated the anti-inflammatory properties of supercritical CO₂ extract of seabuckthorn leaves (SCE) on mouse alveolar macrophage cell line (MH-S), human peripheral blood mononuclear cells (hPBMCs) in-vitro and in-vivo. Treatment of MH-S cells with SCE (0.5-100 μg/ml) significantly inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production. It also inhibited the release of LPS-induced pro-inflammatory cytokines IL-6 and TNF-α, which was further confirmed by suppression of LPS induced TNF-α in hPBMCs by ELISPOT assay. In addition, western blot analysis demonstrated that SCE decreased LPS-induced inducible nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression in MH-S cells. Furthermore, SCE treatment also reduced nuclear factor-κB (NF-κB) translocation in nucleus induced by LPS in MH-S cells. To elucidate the molecular mechanism for inhibition of pro-inflammatory mediators by SCE (100 μg/ml), we further studied the effect of SCE on LPS-induced p38 mitogen-activated protein kinase (MAPK). It was observed that the phosphorylation of p38 MAPK in LPS-stimulated MH-S cells was significantly inhibited by SCE, which was further proven by suppression of LPS induced CD40 expression. The in-vivo model of AIA mice also showed a significant reduction in the inflammation of paw edema. These data collectively suggest that SCE suppressed the LPS-induced production of NO, IL-6, and TNF-α and expression of CD40, iNOS and COX-2 proteins by inhibiting NF-κB activation and phosphorylation of p38 MAPK. Hence, the SCE has potent anti-inflammatory activity and might be useful in chronic inflammatory diseases. PMID:22664145

  19. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex

    SciTech Connect

    Surapureddi, Sailesh; Viswakarma, Navin; Yu Songtao; Guo Dongsheng; Rao, M. Sambasiva; Reddy, Janardan K. . E-mail: jkreddy@northwestern.edu

    2006-05-05

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320 kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPAR{alpha}, CAR, ER{alpha}, and RXR, but only minimally with PPAR{gamma}. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPAR{alpha} and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPAR{alpha}-mediated transcription. We conclude that ciprofibrate, a PPAR{alpha} ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.

  20. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    PubMed

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  1. Nuclear hormone receptors in podocytes

    PubMed Central

    2012-01-01

    Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses. PMID:22995171

  2. Nuclear ventriculography

    MedlinePlus

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  3. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  4. Transcriptional Regulation: a Genomic Overview

    PubMed Central

    Riechmann, José Luis

    2002-01-01

    The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription. PMID:22303220

  5. 10 CFR 110.112 - Reporter and transcript for an oral hearing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Reporter and transcript for an oral hearing. 110.112 Section 110.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT... the NRC Web site, http://www.nrc.gov, and/or at the NRC Public Document Room. (c) Corrections of...

  6. Selective autophagic receptor p62 regulates the abundance of transcriptional coregulator ARIP4 during nutrient starvation

    PubMed Central

    Tsuchiya, Megumi; Isogai, Shin; Taniguchi, Hiroaki; Tochio, Hidehito; Shirakawa, Masahiro; Morohashi, Ken-ichirou; Hiraoka, Yasushi; Haraguchi, Tokuko; Ogawa, Hidesato

    2015-01-01

    Transcriptional coregulators contribute to several processes involving nuclear receptor transcriptional regulation. The transcriptional coregulator androgen receptor-interacting protein 4 (ARIP4) interacts with nuclear receptors and regulates their transcriptional activity. In this study, we identified p62 as a major interacting protein partner for ARIP4 in the nucleus. Nuclear magnetic resonance analysis demonstrated that ARIP4 interacts directly with the ubiquitin-associated (UBA) domain of p62. ARIP4 and ubiquitin both bind to similar amino acid residues within UBA domains; therefore, these proteins may possess a similar surface structure at their UBA-binding interfaces. We also found that p62 is required for the regulation of ARIP4 protein levels under nutrient starvation conditions. We propose that p62 is a novel binding partner for ARIP4, and that its binding regulates the cellular protein level of ARIP4 under conditions of metabolic stress. PMID:26412716

  7. A fluorescence-based assay to monitor transcriptional activity of NFAT in living cells.

    PubMed

    Rinne, Andreas; Blatter, Lothar A

    2010-09-01

    Ca(2+)-sensitive NFAT (nuclear factor of activated T-cells) transcription factors are implicated in many pathophysiological processes in different cell types. The precise control of activation varies with NFAT isoform and cell type. Here we present feasibility of an in vivo assay (NFAT-RFP) that reports transcriptional activity of NFAT via expression of red fluorescent protein (RFP) in individual cells. This new tool allows continuous monitoring of transcriptional activity of NFAT in a physiological context in living cells. Furthermore, NFAT-RFP can be used simultaneously with NFAT-GFP fusion proteins to monitor transcriptional activity and subcellular localization of NFAT in the same cell.

  8. Wild-Type p53 Binds to the TATA-Binding Protein and Represses Transcription

    NASA Astrophysics Data System (ADS)

    Seto, Edward; Usheva, Anny; Zambetti, Gerard P.; Momand, Jamil; Horikoshi, Nobuo; Weinmann, Roberto; Levine, Arnold J.; Shenk, Thomas

    1992-12-01

    p53 activates transcription of genes with a p53 response element, and it can repress genes lacking the element. Here we demonstrate that wild-type but not mutant p53 inhibits transcription in a HeLa nuclear extract from minimal promoters. Wild-type but not mutant p53 binds to human TATA-binding protein (TBP). p53 does not bind to yeast TBP, and it cannot inhibit transcription in a HeLa extract where yeast TBP substitutes for human TBP. These results suggest a model in which p53 binds to TBP and interferes with transcriptional initiation.

  9. Nuclear weapons and nuclear war

    SciTech Connect

    Cassel, C.; McCally, M.; Abraham, H.

    1984-01-01

    This book examines the potential radiation hazards and environmental impacts of nuclear weapons. Topics considered include medical responsibility and thermonuclear war, the threat of nuclear war, nuclear weaponry, biological effects, radiation injury, decontamination, long-term effects, ecological effects, psychological aspects, the economic implications of nuclear weapons and war, ethics, civil defense, arms control, nuclear winter, and long-term biological consequences of nuclear war.

  10. Nuclear Theory - Nuclear Power

    NASA Astrophysics Data System (ADS)

    Svenne, J. P.; Canton, L.; Kozier, K. S.

    2008-01-01

    The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three-body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) -3.3 evaluated angular distributions. The impact of these results on the calculated reactivity for various critical systems involving heavy water is shown.

  11. Tor Signaling Regulates Transcription of Amino Acid Permeases through a GATA Transcription Factor Gaf1 in Fission Yeast.

    PubMed

    Ma, Yan; Ma, Ning; Liu, Qingbin; Qi, Yao; Manabe, Ri-ichiroh; Furuyashiki, Tomoyuki

    2015-01-01

    In the fission yeast, two Tor isoforms, Tor1 and Tor2, oppositely regulate gene expression of amino acid permeases. To elucidate the transcriptional machinery for these regulations, here we have employed the cap analysis of gene expression (CAGE), a method of analyzing expression profiles and identifying transcriptional start sites (TSSs). The loss of Tor1 decreased, and Tor2 inhibition by its temperature sensitive mutation increased, mRNA expression of isp5+, per1+, put4+ and SPBPB2B2.01. In contrast, the loss of Tor1 increased, and Tor2 inhibition decreased, the expression of cat1+. These changes were confirmed by semi-quantitative RT-PCR. These opposite effects by the loss of Tor1 and Tor2 inhibition appeared to occur evenly across multiple TSSs for the respective genes. The motif discovery analysis based on the CAGE results identified the GATA motifs as a potential cis-regulatory element for Tor-mediated regulation. In the luciferase reporter assay, the loss of Tor1 reduced, and Tor2 inhibition and nitrogen depletion increased, the activity of isp5+ promoter as well as that of a GATAAG reporter. One of the GATAAG motifs in isp5+ promoter was critical for its transcriptional activity, and a GATA transcription factor Gaf1 was critical for the activities of isp5+ promoter and the GATAAG reporter. Furthermore, Tor2 inhibition and nitrogen depletion induced nuclear localization of Gaf1 from the cytosol and its dephosphorylation. These results suggest that Tor2 inhibition, which is known to be induced by nitrogen depletion, promotes nuclear localization of Gaf1, thereby inducing isp5+ transcription through Gaf1 binding to the GATAAG motif in its promoter. Since Gaf1 was also critical for transcription of per1+ and put4+, Tor-Gaf1 signaling may coordinate transcription of multiple amino acid permeases according to nutrient availability.

  12. Tor Signaling Regulates Transcription of Amino Acid Permeases through a GATA Transcription Factor Gaf1 in Fission Yeast

    PubMed Central

    Liu, Qingbin; Qi, Yao; Manabe, Ri-ichiroh; Furuyashiki, Tomoyuki

    2015-01-01

    In the fission yeast, two Tor isoforms, Tor1 and Tor2, oppositely regulate gene expression of amino acid permeases. To elucidate the transcriptional machinery for these regulations, here we have employed the cap analysis of gene expression (CAGE), a method of analyzing expression profiles and identifying transcriptional start sites (TSSs). The loss of Tor1 decreased, and Tor2 inhibition by its temperature sensitive mutation increased, mRNA expression of isp5+, per1+, put4+ and SPBPB2B2.01. In contrast, the loss of Tor1 increased, and Tor2 inhibition decreased, the expression of cat1+. These changes were confirmed by semi-quantitative RT-PCR. These opposite effects by the loss of Tor1 and Tor2 inhibition appeared to occur evenly across multiple TSSs for the respective genes. The motif discovery analysis based on the CAGE results identified the GATA motifs as a potential cis-regulatory element for Tor-mediated regulation. In the luciferase reporter assay, the loss of Tor1 reduced, and Tor2 inhibition and nitrogen depletion increased, the activity of isp5+ promoter as well as that of a GATAAG reporter. One of the GATAAG motifs in isp5+ promoter was critical for its transcriptional activity, and a GATA transcription factor Gaf1 was critical for the activities of isp5+ promoter and the GATAAG reporter. Furthermore, Tor2 inhibition and nitrogen depletion induced nuclear localization of Gaf1 from the cytosol and its dephosphorylation. These results suggest that Tor2 inhibition, which is known to be induced by nitrogen depletion, promotes nuclear localization of Gaf1, thereby inducing isp5+ transcription through Gaf1 binding to the GATAAG motif in its promoter. Since Gaf1 was also critical for transcription of per1+ and put4+, Tor-Gaf1 signaling may coordinate transcription of multiple amino acid permeases according to nutrient availability. PMID:26689777

  13. Hsp90 in Cancer: Transcriptional Roles in the Nucleus.

    PubMed

    Calderwood, Stuart K; Neckers, Len

    2016-01-01

    Hsp90 plays a key role in fostering metabolic pathways essential in tumorigenesis through its functions as a molecular chaperone. Multiple oncogenic factors in the membrane and cytoplasm are thus protected from degradation and destruction. Here, we have considered Hsp90's role in transcription in the nucleus. Hsp90 functions both in regulating the activity of sequence-specific transcription factors such as nuclear receptors and HSF1, as well as impacting more globally acting factors that act on chromatin and RNA polymerase II. Hsp90 influences transcription by modulating histone modification mediated by its clients SMYD3 and trithorax/MLL, as well as by regulating the processivity of RNA polymerase II through negative elongation factor. It is not currently clear how the transcriptional role of Hsp90 may be influenced by the cancer milieu although recently discovered posttranslational modification of the chaperone may be involved. Dysregulation of Hsp90 may thus influence malignant processes both by modulating the function of specific transcription factors and effects on more globally acting general components of the transcriptional machinery. PMID:26916002

  14. Mitochondrial transcription termination factor 1 directs polar replication fork pausing.

    PubMed

    Shi, Yonghong; Posse, Viktor; Zhu, Xuefeng; Hyvärinen, Anne K; Jacobs, Howard T; Falkenberg, Maria; Gustafsson, Claes M

    2016-07-01

    During replication of nuclear ribosomal DNA (rDNA), clashes with the transcription apparatus can cause replication fork collapse and genomic instability. To avoid this problem, a replication fork barrier protein is situated downstream of rDNA, there preventing replication in the direction opposite rDNA transcription. A potential candidate for a similar function in mitochondria is the mitochondrial transcription termination factor 1 (MTERF1, also denoted mTERF), which binds to a sequence just downstream of the ribosomal transcription unit. Previous studies have shown that MTERF1 prevents antisense transcription over the ribosomal RNA genes, a process which we here show to be independent of the transcription elongation factor TEFM. Importantly, we now demonstrate that MTERF1 arrests mitochondrial DNA (mtDNA) replication with distinct polarity. The effect is explained by the ability of MTERF1 to act as a directional contrahelicase, blocking mtDNA unwinding by the mitochondrial helicase TWINKLE. This conclusion is also supported by in vivo evidence that MTERF1 stimulates TWINKLE pausing. We conclude that MTERF1 can direct polar replication fork arrest in mammalian mitochondria. PMID:27112570

  15. Transcriptional regulation of drought response: a tortuous network of transcriptional factors.

    PubMed

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  16. Transcriptional regulation of drought response: a tortuous network of transcriptional factors

    PubMed Central

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  17. Structural basis of transcription activation.

    PubMed

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. PMID:27284196

  18. Nuclear choices

    SciTech Connect

    Wolfson, R.

    1991-01-01

    This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

  19. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos.

    PubMed

    Bothma, Jacques P; Garcia, Hernan G; Esposito, Emilia; Schlissel, Gavin; Gregor, Thomas; Levine, Michael

    2014-07-22

    We present the use of recently developed live imaging methods to examine the dynamic regulation of even-skipped (eve) stripe 2 expression in the precellular Drosophila embryo. Nascent transcripts were visualized via MS2 RNA stem loops. The eve stripe 2 transgene exhibits a highly dynamic pattern of de novo transcription, beginning with a broad domain of expression during nuclear cycle 12 (nc12), and progressive refinement during nc13 and nc14. The mature stripe 2 pattern is surprisingly transient, constituting just ∼15 min of the ∼90-min period of expression. Nonetheless, this dynamic transcription profile faithfully predicts the limits of the mature stripe visualized by conventional in situ detection methods. Analysis of individual transcription foci reveals intermittent bursts of de novo transcription, with duration cycles of 4-10 min. We discuss a multistate model of transcription regulation and speculate on its role in the dynamic repression of the eve stripe 2 expression pattern during development.

  20. Purification and characterization of nucleolin and its identification as a transcription repressor.

    PubMed Central

    Yang, T H; Tsai, W H; Lee, Y M; Lei, H Y; Lai, M Y; Chen, D S; Yeh, N H; Lee, S C

    1994-01-01

    Expression of the acute-phase response genes, such as that for alpha-1 acid glycoprotein (AGP), involves both positive and negative transcription factors. A positive transcription factor, AGP/EBP, and a negative transcription factor, factor B, have been identified as the two most important factors responsible for the induction of the AGP gene. In this paper we report the purification, characterization, and identification of a B-motif-binding factor from the mouse hepatoma cell line 129p. The purified factor has been identified as nucleolin by amino acid sequence analysis. Biochemical and functional studies further established that nucleolin is a transcription repressor for regulation of AGP and possibly other acute-phase response genes. Thus, in addition to the many known functions of nucleolin, such as rRNA transcription, processing, ribosome biogenesis, and the shuttling of proteins between the cytoplasmic and nuclear compartments, it may also function as a transcriptional repressor. Images PMID:8065340

  1. RNA polymerase and the regulation of transcription

    SciTech Connect

    Reznikoff, W.S.; Gross, C.A.; Burgess, R.R.; Record, M.T.; Dahlberg, J.E.; Wickens, M.P.

    1987-01-01

    This book consists of eight sections, each containing several papers. The section titles are: RNA Polymerases; Transcription Initiation - Bacterial; Regulation of Bacterial Transcription Initiation; Stable RNA Synthesis in Eukaryotes: Chromatin Structure; Promoters; Enhancers; and the Global Control of Eukaryotic Transcription; Specific Eukaryotic Transcription Factors; Termination of Transcription; and Short Communications.

  2. Post-Transcriptional Control of Chloroplast Gene Expression

    PubMed Central

    del Campo, Eva M.

    2009-01-01

    Chloroplasts contain their own genome, organized as operons, which are generally transcribed as polycistronic transcriptional units. These primary transcripts are processed into smaller RNAs, which are further modified to produce functional RNAs. The RNA processing mechanisms remain largely unknown and represent an important step in the control of chloroplast gene expression. Such mechanisms include RNA cleavage of pre-existing RNAs, RNA stabilization, intron splicing, and RNA editing. Recently, several nuclear-encoded proteins that participate in diverse plastid RNA processing events have been characterised. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is implicated in many crucial functions including organelle biogenesis and plant development. This review will provide an overview of current knowledge of the post-transcriptional processing in chloroplasts. PMID:19838333

  3. Pronounced cohabitation of active immunoglobulin genes from three different chromosomes in transcription factories during maximal antibody synthesis.

    PubMed

    Park, Sung-Kyun; Xiang, Yougui; Feng, Xin; Garrard, William T

    2014-06-01

    To understand the relationships between nuclear organization and gene expression in a model system, we employed three-dimensional imaging and chromatin immunoprecipitation (ChIP)-chromosome conformation capture (3C) techniques to investigate the topographies of the immunoglobulin (Ig) genes and transcripts during B-cell development. Remarkably, in plasma cells, when antibody synthesis peaks, active Ig genes residing on three different chromosomes exhibit pronounced colocalizations in transcription factories, often near the nuclear periphery, and display trans-chromosomal enhancer interactions, and their transcripts frequently share interchromatin trafficking channels. Conceptually, these features of nuclear organization maximize coordinated transcriptional and transcript trafficking control for potentiating the optimal cytoplasmic assembly of the resulting translation products into protein multimers.

  4. Transcription of Trypanosoma brucei maxicircles

    SciTech Connect

    Michelotti, E.F.; Hajduk, S.L.

    1987-05-01

    Trypanosoma brucei is a protozoan parasite which developmentally regulates mitochondrial activity. In the mammal T. brucei produces ATP entirely by glycolysis while cytochrome mediated respiration resumes in the life-stage in the midgut of the insect vector. Using quantitative S1 nuclease protection assays two types of regulation of the steady state levels of the mitochondrial transcripts were found. Transcription of cytochrome b, cytochrome oxidase, and the rRNA genes is repressed in early bloodstream developmental stages, undergoes dramatic activation in later bloodstream stages, and finally a lesser activation in the insect developmental stage. Transcription of NADH dehydrogenase genes, however, is unregulated. Mitochondrial transcripts with a 5' triphosphate terminus, representing the site of transcription initiation, were capped using guanylyl transferase. The in vitro capped RNA hybridized to only one of eight mitochondrial restriction fragments on a Southern blot, however, hybridization of Southern blots with RNA from ..cap alpha..-/sup 32/P-UTP pulsed mitochondria labelled all restriction fragments equally. These results suggest that each DNA strand has a single promoter which directs the transcription of a full-length RNA which is subsequently processed. Different mitochondrial genes, despite being expressed on the same precursor RNA molecule, are independently regulated by both transcription initiation and RNA processing.

  5. "Cat's Cradling" the 3D Genome by the Act of LncRNA Transcription.

    PubMed

    Melé, Marta; Rinn, John L

    2016-06-01

    There is growing evidence that transcription and nuclear organization are tightly linked. Yet, whether transcription of thousands of long noncoding RNAs (lncRNAs) could play a role in this packaging process remains elusive. Although some lncRNAs have been found to have clear roles in nuclear architecture (e.g., FIRRE, NEAT1, XIST, and others), the vast majority remain poorly understood. In this Perspective, we highlight how the act of transcription can affect nuclear architecture. We synthesize several recent findings into a proposed model where the transcription of lncRNAs can serve as guide-posts for shaping genome organization. This model is similar to the game "cat's cradle," where the shape of a string is successively changed by opening up new sites for finger placement. Analogously, transcription of lncRNAs could serve as "grip holds" for nuclear proteins to pull the genome into new positions. This model could explain general lncRNA properties such as low abundance and tissue specificity. Overall, we propose a general framework for how the act of lncRNA transcription could play a role in organizing the 3D genome.

  6. AthaMap, integrating transcriptional and post-transcriptional data

    PubMed Central

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403 173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  7. AthaMap, integrating transcriptional and post-transcriptional data.

    PubMed

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403,173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  8. The pseudorabies immediate early protein stimulates in vitro transcription by facilitating TFIID: promoter interactions.

    PubMed

    Abmayr, S M; Workman, J L; Roeder, R G

    1988-05-01

    The pseudorabies virus immediate early (IE) protein, partially purified from infected HeLa cells, stimulated transcription initiation by RNA polymerase II and associated factors in HeLa nuclear extracts. This stimulation was maximal at low template concentrations, where the basal level of transcription was also low. In an analysis of the limitations on transcription under these conditions, it was found that transcription could be increased drastically not only by IE addition but also by (1) the addition of nonpromoter-containing DNA, which titrated nonspecific DNA-binding proteins in the crude nuclear extract, and (2) preincubation of the template with either the nuclear extract (in the absence of Mg2+) or with the TATA box-binding factor, TFIID. These results suggest that in the absence of IE, nonspecific DNA-binding proteins competed with TFIID for binding to the promoter, thus making TFIID: promoter interactions limiting for transcription. The stimulation of transcription effected by IE was essentially the same as that observed following preassociation of TFIID with the template or by titration of nonspecific DNA-binding proteins. Moreover, the presence of IE under the latter conditions did not stimulate transcription further. These observations strongly suggest that all of these manipulations affected the same limiting step and, thus, that IE accentuated the rate or extent of formation of a preinitiation complex involving the TATA factor, rather than subsequent initiation or elongation steps.

  9. Sigma Factors for Cyanobacterial Transcription

    PubMed Central

    Imamura, Sousuke; Asayama, Munehiko

    2009-01-01

    Cyanobacteria are photosynthesizing microorganisms that can be used as a model for analyzing gene expression. The expression of genes involves transcription and translation. Transcription is performed by the RNA polymerase (RNAP) holoenzyme, comprising a core enzyme and a sigma (σ) factor which confers promoter selectivity. The unique structure, expression, and function of cyanobacterial σ factors (and RNAP core subunits) are summarized here based on studies, reported previously. The types of promoter recognized by the σ factors are also discussed with regard to transcriptional regulation. PMID:19838335

  10. Efficient transcription from the rice tungro bacilliform virus promoter requires elements downstream of the transcription start site.

    PubMed Central

    Chen, G; Rothnie, H M; He, X; Hohn, T; Fütterer, J

    1996-01-01

    Elements downstream of the transcription start site enhance the activity of the rice tungro bacilliform virus (RTBV) promoter in protoplasts derived from cultured rice cells. This enhancer region was located to the first 90 nucleotides of the RTBV leader sequence. Within this region, at least two components which act together to enhance expression from the RTBV promoter could be identified. One is a position- and orientation-independent DNA element within a CT-rich region, and the other is a position-dependent element. Either element was found to be capable of acting independently on a heterologous promoter. The enhancer activity of the DNA element correlates with specific binding of nuclear proteins. Nuclear proteins also recognize an RNA transcript covering the first 90 nucleotides of the RTBV leader. PMID:8970962

  11. A transcriptional network in polycystic kidney disease.

    PubMed

    Gresh, Lionel; Fischer, Evelyne; Reimann, Andreas; Tanguy, Myriam; Garbay, Serge; Shao, Xinli; Hiesberger, Thomas; Fiette, Laurence; Igarashi, Peter; Yaniv, Moshe; Pontoglio, Marco

    2004-04-01

    Mutations in cystic kidney disease genes represent a major genetic cause of end-stage renal disease. However, the molecular cascades controlling the expression of these genes are still poorly understood. Hepatocyte Nuclear Factor 1beta (HNF1beta) is a homeoprotein predominantly expressed in renal, pancreatic and hepatic epithelia. We report here that mice with renal-specific inactivation of HNF1beta develop polycystic kidney disease. We show that renal cyst formation is accompanied by a drastic defect in the transcriptional activation of Umod, Pkhd1 and Pkd2 genes, whose mutations are responsible for distinct cystic kidney syndromes. In vivo chromatin immunoprecipitation experiments demonstrated that HNF1beta binds to several DNA elements in murine Umod, Pkhd1, Pkd2 and Tg737/Polaris genomic sequences. Our results uncover a direct transcriptional hierarchy between HNF1beta and cystic disease genes. Interestingly, most of the identified HNF1beta target gene products colocalize to the primary cilium, a crucial organelle that plays an important role in controlling the proliferation of tubular cells. This may explain the increased proliferation of cystic cells in MODY5 patients carrying autosomal dominant mutations in HNF1beta. PMID:15029248

  12. Reinitiation enhances reliable transcriptional responses in eukaryotes.

    PubMed

    Liu, Bo; Yuan, Zhanjiang; Aihara, Kazuyuki; Chen, Luonan

    2014-08-01

    Gene transcription is a noisy process carried out by the transcription machinery recruited to the promoter. Noise reduction is a fundamental requirement for reliable transcriptional responses which in turn are crucial for signal transduction. Compared with the relatively simple transcription initiation in prokaryotes, eukaryotic transcription is more complex partially owing to its additional reinitiation mechanism. By theoretical analysis, we showed that reinitiation reduces noise in eukaryotic transcription independent of the transcription level. Besides, a higher reinitiation rate enables a stable scaffold complex an advantage in noise reduction. Finally, we showed that the coupling between scaffold formation and transcription can further reduce transcription noise independent of the transcription level. Furthermore, compared with the reinitiation mechanism, the noise reduction effect of the coupling can be of more significance in the case that the transcription level is low and the intrinsic noise dominates. Our results uncover a mechanistic route which eukaryotes may use to facilitate a more reliable response in the noisy transcription process. PMID:24850905

  13. Role of Sam68 in post-transcriptional gene regulation.

    PubMed

    Sánchez-Jiménez, Flora; Sánchez-Margalet, Víctor

    2013-11-28

    The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.

  14. Role of Sam68 in Post-Transcriptional Gene Regulation

    PubMed Central

    Sánchez-Jiménez, Flora; Sánchez-Margalet, Víctor

    2013-01-01

    The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation. PMID:24287914

  15. Nuclear receptors in stem cell biology.

    PubMed

    Shi, Yanhong; Sun, Guoqiang; Stewart, Richard

    2006-01-01

    Batteries of transcription factors have been proposed to control stem cell self-renewal and lineage progression by eliciting cascades of gene expression. Nuclear receptors provide an ideal model to study the transcriptional regulation of gene expression because they can activate as well as repress gene expression through ligand binding and recruitment of transcriptional coactivators or corepressors. Recent progress in defining specific roles of some nuclear receptors and their coregulators in stem cell self-renewal and differentiation provides a first glimpse of the regulatory events involved and is the beginning of a very promising area of research. This review summarizes the current state of knowledge regarding nuclear receptors and their roles in stem cell biology. These studies not only facilitate an understanding of stem cell biology but also provide a basis for the development of therapeutic drugs for the treatment of a variety of diseases.

  16. Nuclear functions of prefoldin

    PubMed Central

    Millán-Zambrano, Gonzalo; Chávez, Sebastián

    2014-01-01

    Prefoldin is a cochaperone, present in all eukaryotes, that cooperates with the chaperonin CCT. It is known mainly for its functional relevance in the cytoplasmic folding of actin and tubulin monomers during cytoskeleton assembly. However, both canonical and prefoldin-like subunits of this heterohexameric complex have also been found in the nucleus, and are functionally connected with nuclear processes in yeast and metazoa. Plant prefoldin has also been detected in the nucleus and physically associated with a gene regulator. In this review, we summarize the information available on the involvement of prefoldin in nuclear phenomena, place special emphasis on gene transcription, and discuss the possibility of a global coordination between gene regulation and cytoplasmic dynamics mediated by prefoldin. PMID:25008233

  17. Transcriptional Regulation of Hepatic Lipogenesis

    PubMed Central

    Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook

    2016-01-01

    Fatty acid and fat synthesis in liver is a highly regulated metabolic pathway critical for energy distribution. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcription level. Transcription factors, such as USF, SREBP-1c, LXR and ChREBP play critical roles in this process. Recently, insights have been gained into how various signaling pathways regulate these transcription factors. After feeding, high blood glucose and insulin induce lipogenic genes through several pathways, including DNA-PK, aPKC and Akt-mTOR. Various transcription factors and coregulators undergo specific modifications, such as phosphorylation, acetylation, or ubiquitination, which affect their function, stability, or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance. PMID:26490400

  18. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  19. Transcriptional Control of Inflammatory Responses

    PubMed Central

    Smale, Stephen T.; Natoli, Gioacchino

    2014-01-01

    The inflammatory response requires the activation of a complex transcriptional program that is both cell-type- and stimulus-specific and involves the dynamic regulation of hundreds of genes. In the context of an inflamed tissue, extensive changes in gene expression occur in both parenchymal cells and infiltrating cells of the immune system. Recently, basic transcriptional mechanisms that control inflammation have been clarified at a genome scale, particularly in macrophages and conventional dendritic cells. The regulatory logic of distinct groups of inflammatory genes can be explained to some extent by identifiable sequence-encoded features of their chromatin organization, which impact on transcription factor (TF) accessibility and impose different requirements for gene activation. Moreover, it has become apparent that the interplay between TFs activated by inflammatory stimuli and master regulators exerts a crucial role in controlling cell-type-specific transcriptional outputs. PMID:25213094

  20. The transcriptional foundation of pluripotency.

    PubMed

    Chambers, Ian; Tomlinson, Simon R

    2009-07-01

    A fundamental goal in biology is to understand the molecular basis of cell identity. Pluripotent embryonic stem (ES) cell identity is governed by a set of transcription factors centred on the triumvirate of Oct4, Sox2 and Nanog. These proteins often bind to closely localised genomic sites. Recent studies have identified additional transcriptional modulators that bind to chromatin near sites occupied by Oct4, Sox2 and Nanog. This suggests that the combinatorial control of gene transcription might be fundamental to the ES cell state. Here we discuss how these observations advance our understanding of the transcription factor network that controls pluripotent identity and highlight unresolved issues that arise from these studies. PMID:19542351

  1. Transcription factors dynamically control the spatial organization of the yeast genome

    PubMed Central

    Randise-Hinchliff, Carlo; Brickner, Jason H.

    2016-01-01

    ABSTRACT In yeast, inducible genes such as INO1, PRM1 and HIS4 reposition from the nucleoplasm to nuclear periphery upon activation. This leads to a physical interaction with nuclear pore complex (NPC), interchromosomal clustering, and stronger transcription. Repositioning to the nuclear periphery is controlled by cis-acting transcription factor (TF) binding sites located within the promoters of these genes and the TFs that bind to them. Such elements are both necessary and sufficient to control positioning of genes to the nuclear periphery. We have identified 4 TFs capable of controlling the regulated positioning of genes to the nuclear periphery in budding yeast under different conditions: Put3, Cbf1, Gcn4 and Ste12. In each case, we have defined the molecular basis of regulated relocalization to the nuclear periphery. Put3- and Cbf1-mediated targeting to nuclear periphery is regulated through local recruitment of Rpd3(L) histone deacetylase complex by transcriptional repressors. Rpd3(L), through its histone deacetylase activity, prevents TF-mediated gene positioning by blocking TF binding. Many yeast transcriptional repressors were capable of blocking Put3-mediated recruitment; 11 of these required Rpd3. Thus, it is a general function of transcription repressors to regulate TF-mediated recruitment. However, Ste12 and Gcn4-mediated recruitment is regulated independently of Rpd3(L) and transcriptional repressors. Ste12-mediated recruitment is regulated by phosphorylation of an inhibitor called Dig2, and Gcn4-mediated gene targeting is up-regulated by increasing Gcn4 protein levels. The ability to control spatial position of genes in yeast represents a novel function for TFs and different regulatory strategies provide dynamic control of the yeast genome through different time scales. PMID:27442220

  2. The nuclear envelope as a chromatin organizer

    PubMed Central

    Zuleger, Nikolaj; Robson, Michael I

    2011-01-01

    In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation. PMID:21970986

  3. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  4. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and for